
Griffin, Jim E., Spyropoulou, Maria-Zafeiria and Hopker, James G. (2026) Modelling 
between- and within-season trajectories in elite athletic performance data.  Journal 
of the Royal Statistical Society Series C: Applied Statistics . ISSN 0035-9254. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/112975/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1093/jrsssc/qlag002

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/112975/
https://doi.org/10.1093/jrsssc/qlag002
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Journal of the Royal Statistical Society Series C: 
Applied Statistics, 2026, 00, 1–15 
https://doi.org/10.1093/jrsssc/qlag002

Original Article

Modelling between- and within-season 
trajectories in elite athletic performance data
Jim E. Griffin1 , Maria-Zafeiria Spyropoulou2 and James Hopker2

1Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, UK
2School of Sport and Exercise Sciences, University of Kent, Canterbury, Kent CT2 7NZ, UK
Address for correspondence: Jim E. Griffin, Department of Statistical Science, University College London, Gower Street, 
London WC1E 6BT, UK. Email: j.griffin@ucl.ac.uk

Abstract
Athletic performance follows a typical pattern of improvement and decline during a career. This pattern is also 
often observed within-seasons, as an athlete aims for their performance to peak at key events such as the 
Olympic Games or World Championships. A Bayesian hierarchical model is developed to analyse the 
evolution of athletic sporting performance throughout an athlete’s career and separate these effects whilst 
allowing for confounding factors such as environmental conditions. Our model works in continuous time 
and estimates both g(t), the average performance level of the population at age t, and fi (t), the difference of 
the ith athlete from this average. We further decompose fi (t) into a season-to-season trajectory and a 
within-season trajectory, which is modelled by a restricted Bernstein polynomial. The model is fitted using 
an adaptive Metropolis-within-Gibbs algorithm with a carefully chosen blocking scheme. The model allows 
us to understand seasonal patterns in athlete performance, how these differ between athletes, and 
provides individual fitted and trend performance trajectories. The properties of the model are illustrated 
using a simulation study and an application to 100 and 200 m freestyle swimming for both female and male 
athletes.
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1 Introduction
The availability of large databases of elite athlete performance allows the modelling of perform
ance levels over an athlete’s career. Results from these models can be used for retrospective ana
lysis (understanding how an athlete’s performance level evolved over their career), short-term 
predictions (such as the results of future events), or long-term predictions (such as talent spotting 
through prediction of the evolution of performance levels at the start of an athlete’s career). 
Understanding the variation across athletes and time is critical to effectively performing these ana
lyses. We will concentrate on retrospective analysis in centimetre, gram, and seconds (CGS) sports, 
where performance is measured using one of these units.

Figure 1a shows the performances of an elite female 100 m swimmer from ages 16 to 27 and a 
curve fitted through the data (which we refer to as the athlete’s individual performance trajectory). 
Performance is clearly improving over the athlete’s career but there are also annual cyclical pat
terns. These follow from sports usually being organized into annual seasons with events of high 
importance (e.g. Olympics or World Championships) occurring at similar times in different years. 
Many athletes will tailor their training to peak for these events. Figure 1b and c decomposes the 
individual performance trajectory into two parts. An individual career trend trajectory (Figure 1b) 
which is a linear interpolation of the estimated performance level on the 1st January of each year 
and an effect for each year/season (Figure 1c), which we call within-season performance trajectories. 
Figure 1b shows the improvement in performance more clearly. Figure 1c shows that on average 
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the swimmer peaks in August with a performance improvement of about 0.4 s compared to 
January. However, there are also substantial differences in the within-season performance trajec
tory from season-to-season ranging from 1 second improvement in some season and close to 0 s in 
others. Being able to estimate the variability of within-season performance trajectories is import
ant for understanding whether an athlete is able to peak at the same time and by the same amount 
in different years.

Mixed models with scalar athlete and season effects have been used to understand variation 
within and between seasons in athletic performance (Bullock et al., 2009; Paton & Hopkins, 
2005; Pyne et al., 2004; Trewin et al., 2004). However, this often leads to an overestimation of 
variability between consecutive performances because variability is calculated for all competitions 
within a season regardless of how the competitions were distributed within a given season 
(Malcata & Hopkins, 2014). Longitudinal models were originally proposed for sporting perform
ance data by Berry et al. (1999), who build a linear mixed model with a common effect of age (usu
ally called the aging function or population performance trajectory), in addition to scalar athlete 
and season effects. The population performance trajectory reflects the usual effect of age on ath
letic performance which typically follows a ‘u’ shape (Stival et al., 2023) with athlete’s improving 
to a mid-career peak followed by deterioration. The age of peak performance often occurs between 
the ages 23 and 28 but can differ between sports, gender, and individuals (Griffin et al., 2022).

More recently, continuous-time longitudinal models have been used for the irregular observa
tions in data sets of all athlete performances. Griffin et al. (2022) build a model which allows 
for time-varying athlete effects and confounders such as meteorological factors (e.g. wind speed 
or temperature) or geographical factors (e.g. altitude). The observational variation is modelled 
by a skew-t distribution since athletes have a higher chance of underperforming rather than over
performing to the same degree. This model was adequate for the disciplines considered in their 

(a)

(b) (c)

Figure 1. Analysis of a 100 m swimmer. Panel (a) shows the observed performances with individual performance 
trajectory (shown as posterior median (black line) and 95% credible interval) with each calendar year indicated by 
alternating grey and white bands. Panel (b) shows the individual career trend trajectory shown as posterior median 
(black line) and 95% credible interval. Panel (c) shows posterior median within-season performance trajectories 
(light grey lines) and the posterior median of the athlete’s mean within-season performance trajectory (black line).
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paper (weightlifting and 100 m sprint), but does not model seasonal effects. In this paper, we de
velop this model to allow for changes in performance over a season using a restricted Bernstein 
polynomial (Wang & Ghosh, 2012). We also increase the flexibility of the model in two additional 
directions. Firstly, we investigate the use of a distribution which allows for different tail heaviness 
in each tail. Secondly, we address the sparsity of observations for some athletes using global–local 
shrinkage priors in a normal hierarchical model. This encourages parts of the hierarchy to be 
strongly shrunk towards the mean unless the data supports differences.

Similar to our approach is the model introduced by Dolmeta et al. (2023). The authors model 
performance with a non-linear function of time, a GARCH model for interseason changes and the 
effects of age, gender, and environmental covariates. Our model uses a more structured, yet flex
ible, model of the variation within seasons, which allows us to understand both individual and 
population average intra-seasonal effects.

The paper is organized as follows: Section 2 discusses the available data for our application to 
100 and 200 m freestyle performances for female and male swimmers. Section 3 explains how the 
model is formed. Inference is discussed in Section 4. Section 5 describes an application of our mod
el to simulated data and a simulation study. Section 6 discusses the application of our model to 100 
and 200 m freestyle performances for both males and females. Lastly, in Section 7, a discussion is 
provided. The online supplementary material for this paper (Griffin et al., 2026) includes some 
derivations, the full Markov chain Monte Carlo (MCMC) for Bayesian inference, an exploratory 
data analysis, MCMC diagnostics for the real data applications, and some additional results. R 
code to fit the model can be downloaded from https://jimegriffin.github.io/website/.

2 Elite swimming data
We use a large database of performance data from 100 and 200 m freestyle swimming for both 
females and males to illustrate our methods. We downloaded performance data from 19 March 
2008 to 08 September 2023 from the World Aquatics website1 and selected the 500 swimmers 
with the fastest personal bests for each combination of distance and gender. Summaries of the 
number of performances and athletes are provided in Table 1. The data includes performances 
in both 25 and 50 m pools. Swimmers are able to achieve faster times in a 25 m pool and so 
pool length is included as a confounder. To make performances comparable when presenting 
data in the paper, we plot 25 m pool performances adjusted to a 50 m pool using the posterior 
mean of this pool effect. An exploratory data analysis of this data is presented in online 
supplementary material Section 3 (Griffin et al., 2026), which shows the effect of ages and seasonal 
effects within the data.

3 Model
3.1 Sampling model
We construct a continuous-time longitudinal model for athlete performance which allows for ef
fects of age, the time of year, and confounders building on Griffin et al. (2022). Suppose that we 
have observations for M athletes where the ith athlete has ni performances yi = (yi,1, . . . , yi,ni ), 

Table 1. Summaries of the number of performances, number of athletes, and number of performances per athlete for 
the 100 and 200 m freestyle data sets

Event Number of performances Number of athletes Number of performances per athlete

Median Minimum Maximum

100 m, female 23,669 500 37.5 5 267

100 m, male 23,440 500 38 5 191

200 m, female 21,112 500 33 5 274

200 m, male 19,696 500 32 5 162

1 https://www.worldaquatics.com.
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which are observed at ages ai = (ai,1, . . . , ai,ni ) and calendar time ti = (ti,1, . . . , ti,ni ) (where 0 refers 
to the start of an athlete’s first season) with confounders xi = (xi,1, . . . , xi,ni ). We assume that the 
ith athlete competes in Si seasons and define si = (si,1, . . . , si,ni ) where si,k ∈ {1, . . . , Si} is the season 
of the kth performance. We assume the basic model

yi,k = μi(ai,k, ti,k) + xi,k ζ + ϵi,k, (1) 

where μi(a, t) is the individual performance trajectory of the ith athlete at age a and calendar time t 
(which is defined to be 0 at the start of an athlete’s first season), ζ are the effects of the confounders, 
and the ϵi,k’s are i.i.d. observation errors. These errors will typically be both skewed and heavy 
tailed since athletes have larger probabilities of extreme underperformance compared to overper
formance. We first describe the distribution of the errors before discussing the form of μi(a, t).

Griffin et al. (2022) assume that the errors follow a skew-t distribution but this assumes the same 
heaviness for both tails. We consider a distribution which allows differences in the heaviness of the 
two tails by generalizing the skew-t distribution. We define TN R(0, μ, σ2) to denote the normal dis
tribution with mean μ and variance σ2 truncated to the region R and IGa(a, b) to denote an inverse 
gamma distribution with density p(x) = ba

Γ(a) x−a−1 exp {−b/x}. The observation error is defined by 

ϵi,k = ϵ⋆
i,k + α�����

1+α2
√ κi,k, where ϵ⋆

i,k ∼ N (0, ωi,k σ2
i ), κi,k ∼ TN [0,∞](0, ϕi,k σ2

i ), ωi,k ∼ IG( ν1
2 , ν1

2 ), and 

ϕi,k ∼ IG( ν2
2 , ν2

2 ) for k = 1, . . . , ni, i = 1, . . . , M, and all elements are independent. This reverts 
to a skew-t distribution if ωi,k = ϕi,k (and so ν1 = ν2). If α > 0, the heaviness of the right-hand tail 
is controlled by the minimum of ν1 and ν2 and the heaviness of the left-hand tail by ν1 with smaller 
values representing heavier tails (with the effects on left- and right-hand tails reversed if α < 0).

The model of the individual performance trajectory μi(a, t) is initially decomposed into popula
tion and individual parts,

μi(a, t) = g(a) + θi(a, t), (2) 

where g(a) is the population performance trajectory and θi(a, t) is the individual excess perform
ance. We follow Griffin et al. (2022) by modelling g(a) using a dth order polynomial function 
g(a) =

􏽐d
k=0 δk (a − a̅)k, where δ1, . . . , δd are coefficients and ̅a is the mean age of all observed per

formances (we find that d = 4 is sufficiently flexible in our examples).
The individual excess performance is further decomposed into two parts,

θi(a, t) = fi(a) + hi(t), (3) 

where fi(a) is called the trend excess performance trajectory for the ith athlete and hi(t) is called the 
seasonal performance trajectory. We define g(a) + fi(a) to be the ith athlete’s individual trend per
formance trajectory, which adjusts the individual performance trajectory μi(a, t) for seasonal effects.

The trend excess performance trajectory is modelled by a piecewise linear function where the 
knots occur at the start/end of each season,

fi (s − 1 + r)Δ
( 􏼁

= ηi,s (1 − z) + ηi,s+1 z, z ∈ (0, 1), s = 1, . . . , Si.

where Δ is the length of each season and start on the same day of each year (although this could 
easily be changed in the model) and ηi,s is the value at the start of the sth season.

The seasonal performance trajectory is modelled season-by-season. Let the within-season per
formance trajectory for the ith athlete in the sth season be h⋆

i,s(z) for 0 < z < 1. We define the sea
sonal performance trajectory to be

hi((s − 1 + z)Δ) = h⋆
i,s(z), z ∈ (0, 1), s = 1, . . . , Si.

We want a flexible form for h⋆
i,s which is constrained by h⋆

i,s(0) = 0 and h⋆
i,s(1) = 0. This allows us to 

identify the model in (3) since
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θi(a, sΔ) = fi(a) + hi(sΔ) = fi(a) + h⋆
i,s(1) = fi(a) + h⋆

i,s+1(0) = fi(a) = ηi,s+1.

Therefore, the individual excess performance θi(a, sΔ) is equal to the trend excess performance 
fi(a) at the start and end of each season.

3.2 Prior distributions for fi(a) and h⋆
i,s(r)

We wish to have flexible forms for both the individual trend excess performance fi(a) and the 
within-season performance trajectories h⋆

i,s(r). The values of fi at the start of each season are 

ηi,1, . . . , ηi,Si+1. These are modelled using a random walk with initial value ηi,1

σ2
μ

∼ tνμ and increments 

ηi,s+1−ηi,s

σ2
η

∼i.i.d. tνη for s = 1, . . . , Si. This specification allows for heavy tails in both the distribution of 

the initial level ηi,1 and possibly large changes from season to season.
We want the functions h⋆

i,s to have some specific features. Firstly, for identifiability, the functions 
h⋆

i,s are constrained by h⋆
i,s(0) = 0 and h⋆

i,s(1) = 0. Secondly, we want a hierarchical structure to al
low sharing of information across different seasons for each athletes and between athletes. This 
allows the identification of those athletes who are better able to peak and those who can achieve 
this consistently. Thirdly, we assume that the seasonal variation is largely caused by athletes peak
ing for particular events or parts of the year (for example, the summer season in athletics) and that 
this is shared across athletes (i.e. athletes are peaking for events in the same point of the year).

A Bayesian hierarchical model built using Restricted Bernstein polynomials (RBPs) (Wang & 
Ghosh, 2012) is a convenient way to achieve our three goals. An nth order RBP m(z) with mn(0) = 
mn(1) = 0 has the form

mn(z) =
􏽘n−1

v=1

βn,v bn,v(z), 0 < z < 1, (4) 

where

bn,v(z) = n
v

􏼒 􏼓

zv(1 − z)n−v, v = 1, . . . , n − 1.

To provide additional flexibility, we use the sum of RBPs of order 2 to N giving the model

h⋆
i,s(z) =

􏽘N

n=2

􏽘n−1

v=1

β(i,s)
n,v bn,v(z), 0 < z < 1. (5) 

It is convenient to group the coefficients of the RBP in β(i,s) = (β(i,s)
2,1 , β(i,s)

3,1 , β(i,s)
3,2 , . . . , 

β(i,s)
N,1, . . . , β(i,s)

N,N−1).
To allow sharing of information across seasons and athletes, we use independent hierarchical 

priors for each coefficient in the RBP, which nest seasons within athletes. This leads to, for i = 
1, . . . , M and s = 1, . . . , Si,

β(i,s)
n,v ∼i.i.d.

N β(i)
n,v, λ2

i c2
n,v

􏼐 􏼑
, β(i)

n,v ∼i.i.d.
N βn,v, τ2

i d2
n,v

􏼐 􏼑
, v = 1, . . . , n − 1, n = 2, . . . , N.

The prior variances are a product of athlete-specific effects λ2
i and τ2

i , and coefficient-specific effects 
c2

n,v and d2
n,v. The use of coefficient-specific variance parameters allows for the variability of the 

functions h⋆
i (z) and h⋆(z) to change with z. The use of individual-specific variance parameters 

λ2
i and τ2

i allows for differences in the variability of the functions from athlete-to-athlete. The im
portance of allowing for differences is discussed in Section 4. In addition, since some athletes only 
have a few performances, we use global–local shrinkage priors (Bhadra et al., 2019) which avoids 
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overfitting and allows the effects to be shrunk towards the corresponding mean. Since the scale 
parameters c2

n,v and λ2
i enter multiplicatively (similarly, d2

n,v and τ2
i ), we centre c2

n,v’s and d2
n,v’s 

around 1 to avoid problems of interpretation, and use gamma priors to encourage regularization 
of the coefficients (see Griffin & Brown, 2010),

c2
n,v ∼ Ga 5, 5

( 􏼁
, d2

n,v ∼ Ga 5, 5
( 􏼁

, v = 1, . . . , n − 1, n = 2, . . . , N,

λ2
i ∼ Ga λ0, λ0/λ1

( 􏼁
, τ2

i ∼ Ga τ0, τ0/τ1
( 􏼁

, i = 1, . . . , M 

where Ga(a, b) represents a gamma distribution with density p(x) = ba

Γ(a) xa−1 exp {−b x} and so λ1 

and τ1 are the prior means of λ2
i and τ2

i , respectively.
The hierarchical structure introduces parameters β(i) = (β(i)

2,1, β(i)
3,1, β(i)

3,2, . . . , β(i)
N,1, . . . , β(i)

N,N−1) 
and β = (β2,1, β3,1, β3,2, . . . , βN,1, . . . , βN,N−1), which can be interpreted as average coefficients 
over all seasons for the ith athlete and average coefficients over all seasons and all athletes, respect
ively. It is convenient to define functions formed by the coefficients β,

h⋆(z) =
􏽘N

n=2

􏽘n−1

v=1

βn,v bn,v(z), 0 < z < 1, 

is called the average within-season performance trajectory at the population level, and by the co
efficients β(i),

h⋆
i (z) =

􏽘N

n=2

􏽘n−1

ν=1

β(i)
n,v bn,v(z), 0 < z < 1.

is called the average within-season performance trajectory for the ith individual.
Thirdly, the observation that athletes often peak at a particular time is included by constraining 

the within-season performance trajectory at the population level to have a single peak (rather than 
at the individual or seasonal level). This allows for differences in peak time (or the number of 
peaks) for some athletes and some seasons, which allows athletes to have different goals in 
some seasons (for example, in Olympic and non-Olympic years).

The shape of the population-level within-season performance trajectory is determined by the 
direction of improvement in the sport. In timed events such as swimming or running, the direction 
of improvement is negative since a better performances leads to a faster time whereas, in events 
such as weightlifting or throwing, the direction of improvement is positive since a better perform
ance leads to a heavier lift or a longer throw. Therefore, we constrain the trajectory to be concave if 
the direction of improvement is positive and convex if the direction of improvement is negative. As 
discussed by Wang and Ghosh (2012), the second derivative of the RBP in (4) can be expressed as

m′′n(z)
n(n − 1)

= βn,2 − 2βn,1

􏼐 􏼑
bn−2,0(z) +

􏽘n−2

v=1

βn,v+2 − 2βn,v+1 + βn,v

􏼐 􏼑
bn−2,v(z)

+ βn,n−2 − 2βn,n−1

􏼐 􏼑
bn−2,n−2(z).

Let βn = (βn,1, . . . , βn,n−1) then mn(z) is convex if Dnβn ≥ 0n−1 and concave if Dnβn ≤ 0n−1 where

Dn =

−2 1 0 0 · · · 0 0 0
1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 0 · · · 1 −2 1
0 0 0 0 · · · 0 1 −2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n−1)×(n−1)

, 
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and 0n−1 represents an (n − 1)-dimensional vector of 0’s. Therefore, if the direction of improve
ment is positive, the prior is a normal distribution with mean 0n−1 and covariance matrix 
diag(σ2

β,n) truncated to the region {βn ∣ Dn βn ≤ 0n−1}, where diag(a) represents a diagonal matrix 

with the elements of a on the diagonal, and σ2
β,n is an (n − 1)-dimensional vector of variance param

eters. If the direction of improvement is negative, the prior is truncated to the region 
{βn ∣ Dn βn ≥ 0n−1}. We apply the constraint for each value of n in the sum of RBPs prior for 
h⋆

i,s(z) to ensure that the sum is either convex or concave.

3.3 Priors for other parameters
The Bayesian model is completed by specifying priors for all other parameters. Following Griffin 
and Brown (2010), we centre the shape parameters λ0 and τ0 on 1 and give vague priors to the 

means λ1 and τ1 giving λ0, τ0 ∼i.i.d.
Ex(1), where Ex(θ) represents an exponential distribution with 

mean 1θ and λ1, τ1 ∼i.i.d.
IG(0.001, 0.001). The scale of the observation error for each athlete is given 

the population distribution σ2
i ∼ IG(σ2

a , σ2
a/σ2

m), and the skewness parameter is given the prior 
α ∼ N (0, 32), which provides support for reasonable values of the skewness. The degrees of free
dom parameters are given a prior mean of 20 and wide spread of possible values νμ ∼ Ga(2, 0.1), 
νη ∼ Ga(2, 0.1), ν1 ∼ Ga(2, 0.1), and ν2 ∼ Ga(2, 0.1). All other parameters are given vague priors 
p(ζ , δ) ∝ 1, σ2

η ∼ IG(0.001, 0.001), σ2
a ∼ IG(0.001, 0.001), σ2

m ∼ IG(0.001, 0.001), and 

σ2
μ ∼ IG(0.001, 0.001).

4 Inference
We use MCMC to fit the model and the full algorithm is described in online supplementary 
material Section 2 (Griffin et al., 2026). Blocking (Knorr-Held & Rue, 2002; Roberts & 
Sahu, 1997) and interweaving (Yu & Meng, 2011) are used to avoid slow mixing of some 
parameters.

The hierarchical model for the within-season performance trajectory allows us to estimate func
tional effects at the season, athlete, and population level. Figure 1c plots the within-season per
formance trajectory at the individual and seasonal levels. This shows substantial variation in 
the within-season performance trajectories for this individual. A univariate summary of the 
amount of variation is useful to compare athletes. Similarly, we define a univariate summary of 
the difference between an athlete’s within-season performance trajectory and the population 
within-season performance trajectory. To establish these summaries, we use the following results 
for the RBP in (5) (a proof is given in the online supplementary material Section 1 Griffin et al., 
2026). Suppose that ϵ(z) =

􏽐N
n=2

􏽐n−1
v=1 an,ν bn,v(z) then 

(a) ∫ 1
0ϵ(z) dz =

􏽐N
n=2

1
n+1

􏽐n−1
v=1 an,v,

(b)

∫ 1
0ϵ(z)2 dz =

􏽘N

n1=2

􏽘n1−1

v1=1

􏽘N

n2=2

􏽘n2−1

v2=1

an1,v1 an2,v2 Bn1,n2,v1,v2 , 

where

Bn1,n2,v1,v2 = n1

v1

􏼒 􏼓
n2

v2

􏼒 􏼓
(v1 + v2)!(n1 + n2 − v1 − v2)!

(n1 + n2 + 1)!
.

The variability over different seasons for the ith athlete can be measured by considering the differ
ences between the within-season performance trajectory for the sth season and the average within- 
season performance trajectory for the ith athlete which is
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ψi(z) = h⋆
i,s(z) − h⋆

i (z) =
􏽘N

n=2

􏽘n−1

v=1

β(i,s)
n,v − β(i)

n,v

􏼐 􏼑
bn,v(z).

Taking the expectation of ∫ 1
0ψ2

i (z) dz with respect to the prior distribution of β(i,j) − β(i) leads to the 
expression

Ψi = E ∫ 1
0ψ2

i (z) dz
􏽨 􏽩

= λ2
i

􏽘N

n=2

􏽘n−1

v=1

c2
n,v Bn,n,v,v, 

which we call the within-season variability for the ith athlete. In a similar way, we can summar
ize the size of the difference in effect between an athlete’s average within-season performance 
trajectory and the average within-season performance trajectory across all athletes using the 
measure

γi(z) = h⋆
i (z) − h⋆(z) =

􏽘N

n=2

􏽘n−1

v=1

(β(i)
n,v − βn,v) bn,v(z).

Taking the expectation of ∫ 1
0γ2

i (z) dz with respect to the prior distribution of β(i) − β leads to the 
expression

Γi = E ∫ 1
0γ2(z) dz

􏽨 􏽩
= τ2

i

􏽘N

n=2

􏽘n−1

v=1

d2
k,v Bn,n,v,v 

which we call the average effect size for the ith athlete. We are often interested in the ordering of 
each of these measures across athletes to find athletes which have small or large variability in 
their season effects or athletes are far from the population average. This can be achieved by 
just report λ2

i (in place of Ψi) and τ2
i (in place of Γi).

5 Simulated data
We use a simulated example and a simulation study to show how the model can capture individual 
career trend trajectories, within-season performance trajectories at the seasonal, individual and 
population levels, and differences in variation and the seasonal and individual levels. We generated 
data from the full model in Section 3 without confounders. The ith individual has observation for 
Si seasons were

Si ∼ Po(4) with probability p1,
Po(8) with probability 1 − p1.

􏼚

The parameter p1 controls the proportion of athletes with more or less observed seasons. A larger 
value of p1 leads to more athletes with a lower number of observed seasons. In the jth season, there 
were ni,j ∼ U(3, 11) performances. The age at the start of the first season was assumed to be dis
tributed U(18, 22) and the population performance trajectory was g(t) = 40 + 0.1(t − 26)2. The 
excess performances ηi,1, . . . , ηi,Si+1 were generated as ηi,1 ∼ N (0, 4) and ηi,j+1 − ηi,j ∼ 
N (0, 0.09) for j = 1, . . . , Si. The population-level within-season performance trajectory was 
h⋆(t) = 4(t − 1

2 )2 − 1 for 0 < t < 1, which has a minimum at t = 1
2. The individual and seasonal per

formance trajectories were parabolas with a maximum or minimum at different values for differ

ent individuals or seasons. The turning point for the individual trajectory was pi ∼i.i.d.
U(0.5, 0.7) 

and the value at that point was ai ∼ N (0, σ2
a). The trajectory was
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h⋆
i (t) − h⋆(t) =

ai 1 − (t−pi)
2

p2
i

􏼐 􏼑
, 0 < t ≤ pi,

ai 1 − (t−pi)
2

1−p2
i

􏼐 􏼑
, pi < t < 1.

⎧
⎨

⎩
(6) 

The turning point for the individual trajectory was ri,j ∼i.i.d.
U(0.5, 0.7) and the value at that point 

was bi,j ∼ N (0, σ2
b). The trajectory was

h⋆
i,j(t) − h⋆

i (t) =
bi,j 1 − (t−ri.j)

2

r2
i,j

􏼒 􏼓

, 0 < t ≤ ri,j,

bi,j 1 − (t−ri,j)
2

1−r2
i,j

􏼒 􏼓

, ri,j < t < 1.

⎧
⎪⎪⎨

⎪⎪⎩

(7) 

The errors were generated with α = 3, ν1 = 30, and ν2 = 7.
We simulated a data set of 500 individuals with p1 = 0.2, σ2

a = 0.5, and σ2
b = 0.25. The results are 

shown in Figure 2. The population performance trajectory and the population within-season per
formance trajectory and error distribution are well-estimated. Estimates at the individual level are 
unsurprisingly less well-estimated. The true values of the individual trend performance trajectory 
(η) and individual and seasonal within-season performance trajectories are all within the corre
sponding 95% credible intervals.

To quantify the performance of the model, we conducted a simulation study. We use 100 rep
lications for eight different combinations generated by varying four factors over two levels: 

Figure 2. Results for the simulated example. Results for Population performance trajectory, Population, Individual 
and Seasonal within-season performance trajectories are shown as true value (dotted line), posterior median (solid 
line), and 95% credible interval. Results for the error density are shown as true value (dotted line) and posterior mean 
(solid line). The results for η represent ηi,1, . . . , ηi,6 for one athlete and are shown as true value (block dot), posterior 
median (cross) with 95% credible interval.
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M = (200, 500), p1 = (0.2, 0.5), (σ2
a , σ2

b) = (0.1, 0.03), (0.5, 0.25). We use performance measures 
for seven parameters of interest: the Population Performance Trajectory g(·), the Population 
Within-Season Performance Trajectory h⋆, Individual Within-Season Performance Trajectory 
h⋆

i , the Within-Season Performance Trajectory h⋆
i,s, the excess performance at the start of each sea

son η1, . . . , ηM, Ψi and Γi. For the first four functional parameters, we define the root mean 
squared integrated error to be

RMISE = ∫ f̂ (z) − f (z)
􏼐 􏼑2

dz, 

where f is the true value of the function and f̂ is the posterior mean of f and the limit of integration 
are the possible range of z. The RMISE is averaged over all athletes for h⋆

i (·) and over all seasons 
and athletes for h⋆

i,s(·). For ηi, we calculate the average root mean squared error (AMRSE),

AMRSE =
1

􏽐M
i=1 Si + 1

􏽘M

i=1

􏽘Si+1

s=1

η̂i,s − ηi,s

􏼐 􏼑2
, 

where η̂i,s is the posterior mean of ηi,s. We would like to use τ2
i as a proxy for the squared difference 

between the individual and population within-season trajectory ((h⋆
i − h⋆)2). To understand the 

strength of this relationship, we calculate Spearman’s rank correlation coefficients between the 
posterior median of τ2

1, . . . , τ2
M and |a1|, . . . , |aM| as defined in (6) since these are not directly com

parable. Similarly, to understand the relationship between λ2
i and the squared difference between 

the seasonal and individual within-season trajectory, we calculate Spearman’s correlation between 
b̅i = 1

Si

􏽐Si
s=1 |bi,s| where bi,s is given in (7) and λ2

i .
The results for the functional parameters are shown in Figure 3. A larger number of athlete, M, 

leads to lower RMISE’s for each of these functions. The values of σ2
a and σ2

b have only a small effect 
on the estimation accuracy of the population performance trajectory. Conversely, σ2

a and σ2
b have a 

large effect on the estimation accuracy for all three within-season trajectories.
The results for the other three parameters of interest are shown in Figure 4. The estimation of η is 

most strongly affected by the number of athletes M. The two correlation measures increase with 
level of variation in the within-season trajectories but the other factors do not have a strong effect. 
We find that there is a stronger correlation between ai and τ2

i than b̅i and λ2
i . In fact, for the within- 

season correlation, the correlation is close to zero with the lower level of variation but is around 
0.7 for the higher level of variation. Therefore, these are useful summaries of the variation in these 
trajectories if there is sufficient variation in the data.

6 Application to elite swimming
We applied our model to performances for both female and male swimmers in the 100 and 200 m 
freestyle. We fitted the model separately to each combination of gender and distance, and included 

(a) (b) (c) (d)

Figure 3. Simulation Study: The RMISE for (a) the Population Performance Trajectory g(c )̇, (b) Population 
Within-Season Performance Trajectories h⋆(·), (c) Individual Within-Season Performance Trajectories h⋆(·)i , and (d) 
Seasonal Within-Season Performance Trajectories h⋆

i,s(t). For all plots, the x-axis labels are (i, j) where i is the level of 
M and j represents the level of (σ2

a , σ2
b), cross represents p1 = 0.2 and circle represents p1 = 0.5.
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pool length as a confounder. Some additional results are provided in online supplementary 
material Section 5 (Griffin et al., 2026). Two samplers were run for a total 50,000 iterations. 
The first 30,000 iterations were used as a burn-in and the subsequent 20,000 iterations were 
thinned every 20th value to 1,000 posterior samples. This took about ten hours to run with R using 
an Apple Mac with M4 chip. Some MCMC diagnostics for each data set are given in online 
supplementary material Section 4 (Griffin et al., 2026).

Figure 5 shows the estimated population performance trajectories, which all have a reverse 
J-shape, as in Griffin et al. (2022), with performance rapidly improving between 15 and 20, peak
ing around 22 (in both men and women), and subsequently decreasing. There is a clear difference 
between men and women. Men show a much greater improvement in performance between 15 
and 20 (for example, in the 100 m, females improve by 1.5 s between 15 and 20 whereas males 
improve by 2.6 s. Men are also better able to maintain their performance in their late twenties 
(for example, female performance decreases by 2 s by 25 and 30 whereas men’s performance de
creases by 0.7 s).

The population-level within-season trajectories are shown in Figure 6. The trajectories have 
very similar shapes across gender and distance with the within-season performance improvement 
peaking around July. The posterior median improvement is around 0.17 s in the 100 m and around 
0.39 s in the 200 m for both males and females. The error distributions were found to be positively 
skewed with evidence of a large difference in the heaviness of the left-hand and right-hand tails. 
Results are presented in online supplementary material Section 5 (Griffin et al., 2026).

Figure 7 shows within-season performance trajectories for six individuals in the 100 metres 
(three female and three male) with their average within-season performance trajectory. The ath
letes were chosen to show a range of behaviours where some individuals have a substantial differ
ence between their best and worst performance level within-season (Swimmer 1, 4, and 6) and 

(a) (b) (c)

Figure 4. Simulation Study: (a) The ARMSE of ηi,j , (b) Spearman’s rank correlation coefficient between ai and τ2
i , and 

(c) Spearman’s rank correlation coefficient between b̅i = 1
Si

􏽐Si
j=1 |bi,j | and λ2

i . For all plots, the x-axis labels are (i, j) 
where i is the level of M and j represents the level of (σ2

a , σ2
b), cross represents p1 = 0.2 and circle represents 

p1 = 0.5.

Figure 5. Estimated population performance trajectory g(·) for both females and males in the 100 and 200 m 
freestyle. The trajectories are shown as posterior median (black line) and 95% credible interval (grey shading).
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others show much less variation over the season (Swimmers 2 and 5). There are also some clear 
differences in the shape of the curve. Swimmers 1, 3, and 6 peak in October, whereas 
Swimmers 2 and 5 peak in July and Swimmer 4 in May. This reflects differences in the aims of ath
letes. Some athletes will target events such as the Olympics whereas other athletes will target the 
winter rather than summer season. We can use the posterior median of τ2

i to understand how these 
individual trajectories relate to the population trajectory. Swimmers 5 (τ2

i = 0.029), 2 (τ2
i = 0.089), 

and 3 (τ2
i = 0.175) are closest to the population trajectory with a similar shape and level of per

formance improvement. There are larger differences for Swimmers 1 (τ2
i = 0.288), who shows a 

Figure 6. Estimated population within-season performance trajectory h⋆(·) for both females and males in the 100 
and 200 m freestyle. The trajectories are shown as posterior median (black line) and 95% credible interval (grey 
shading).

Figure 7. Estimated within-season trajectories. Posterior median athlete-level (black line) and within-season 
performance trajectories for each career season (grey lines).
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different shape, and 4 (τ2
i = 0.274), who shows a larger level of improvement. Swimmer 6 

(τ2
i = 0.803) shows differences in both the shape of trajectory and the level of performance im

provement. There are also clear differences in the consistency of the trajectories across seasons. 
Swimmers 2 (λ2

i = 0.064), 5 (λ2
i = 0.077), and 4 (λ2

i = 0.086) show the lowest level of variation 
in the seasonal trajectory. Swimmers 3 (λ2

i = 0.1243) and 6 show (λ2
i = 0.154) show more variation 

and Swimmer 1 (λ2
i = 1.083) shows the most variation in trajectory. This may reflect several fac

tors including changing priorities over an swimmer’s career or injury problems.
Figure 8 shows the empirical distribution function of the posterior median values of the individ

ual within-season variability (λi) and the individual between-season variability (τi) for both females 
and males and the two distances. The distribution is similar for both females and males and so we 
concentrate on the results for female. Both distributions have a very heavy right-tail so that a few 
effects have much larger values of τi and λi than others. The distribution of τi is shifted to the left of 
the distribution of λi indicating that the within-season variability tends to be smaller than the aver
age effect size. In other words, the season-on-season variability within a swimmer tends to be 
smaller than the variability between swimmers. This indicates that swimmers have some ability 
to control how their performance levels evolve over a season through the training process and 
are able to replicate that improvement in different seasons.

7 Discussion
In this work, we have developed a Bayesian longitudinal model which can account for the vari
ation in performance change within a season across population-level, athlete-level, and within- 
season (i.e. within athletes). An application to freestyle swimming data shows that there is substan
tial variation between swimmers and between seasons with some having a clear pattern of peaking 
for major events (e.g. Olympics Games and World Championships) which usually occur during 
the summer months (July–August). We use a dth degree of polynomial to model the population- 
level effect of age and an error distribution which allows for skewness and different heaviness of 
the left and right tail. We find that the population-level effect of age follows the expected reverse J 
shape in freestyle swimming with a difference between the improvement in performance of females 
and males in years 15–23. We find that the error distribution has a much lighter left tail than right 
tail. The result suggests that swimmers are much less likely to have a performance that is substan
tially worse than expected, rather than one that is substantially better than expected. One explan
ation is that elite athletes generally perform close to their optimal level and so improvements are 
much harder to achieve than poor performances (which can be due to many factors including 
things such as poor race execution, illness, and injury).

The model provides some interesting insights about athlete performance but there are some lim
itations. An individual’s trend excess performance trajectory is assumed to follow a random walk, 
which is appropriate for retrospective analysis. This approach may also be able to provide short- 
term prediction but the lack of structure will struggle to provide good long-term prediction per
formance. This would need additional structure to explain the evolution of career trajectories, 
which could include additional covariates. The model is currently restricted to a single discipline 

Figure 8. Empirical distribution function of the posterior median values of the within-season variability (Δi ) and the 
average effect size (Γi ) for all swimmers (divided by gender) in the 100 and 200 metre freestyle.
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but athletes compete in multiple disciplines in some sports (across different distances in track run
ning or distances and styles in swimming). It would be interesting to extend this model to better 
understand differences in performance trajectories across disciplines for a single athlete. The mod
el also assumes a single season but the results show that athletes may follow different seasonal pat
terns. For example, Australian swimmers have different seasons to European swimmers. Our 
model is able to capture these differences but a more complicated model allowing for different sea
sonal patterns could provide better estimates. The model also assumes independence across ath
letes conditional on the population performance trajectory and population within-season 
performance trajectory. However, there could be further sharing of information across athletes 
at other levels of the hierarchy, such as the individual average within-season performance trajec
tories. Colombi et al. (2025) present an interesting Bayesian nonparametric approach to achieve 
this goal, which they use to stratify athletes by performance whilst allowing for difference between 
athletes and seasons.
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