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Abstract

Athletic performance follows a typical pattern of improvement and decline during a career. This pattern is also
often observed within-seasons, as an athlete aims for their performance to peak at key events such as the
Olympic Games or World Championships. A Bayesian hierarchical model is developed to analyse the
evolution of athletic sporting performance throughout an athlete’s career and separate these effects whilst
allowing for confounding factors such as environmental conditions. Our model works in continuous time
and estimates both g(t), the average performance level of the population at age t, and f,(t), the difference of
the ith athlete from this average. We further decompose fi(t) into a season-to-season trajectory and a
within-season trajectory, which is modelled by a restricted Bernstein polynomial. The model is fitted using
an adaptive Metropolis-within-Gibbs algorithm with a carefully chosen blocking scheme. The model allows
us to understand seasonal patterns in athlete performance, how these differ between athletes, and
provides individual fitted and trend performance trajectories. The properties of the model are illustrated
using a simulation study and an application to 100 and 200 m freestyle swimming for both female and male
athletes.

Keywords: Bayesian inference, global-local prior, longitudinal modelling, restricted Bernstein polynomial, splines

1 Introduction

The availability of large databases of elite athlete performance allows the modelling of perform-
ance levels over an athlete’s career. Results from these models can be used for retrospective ana-
lysis (understanding how an athlete’s performance level evolved over their career), short-term
predictions (such as the results of future events), or long-term predictions (such as talent spotting
through prediction of the evolution of performance levels at the start of an athlete’s career).
Understanding the variation across athletes and time is critical to effectively performing these ana-
lyses. We will concentrate on retrospective analysis in centimetre, gram, and seconds (CGS) sports,
where performance is measured using one of these units.

Figure 1a shows the performances of an elite female 100 m swimmer from ages 16 to 27 and a
curve fitted through the data (which we refer to as the athlete’s individual performance trajectory).
Performance is clearly improving over the athlete’s career but there are also annual cyclical pat-
terns. These follow from sports usually being organized into annual seasons with events of high
importance (e.g. Olympics or World Championships) occurring at similar times in different years.
Many athletes will tailor their training to peak for these events. Figure 1b and ¢ decomposes the
individual performance trajectory into two parts. An individual career trend trajectory (Figure 1b)
which is a linear interpolation of the estimated performance level on the 1st January of each year
and an effect for each year/season (Figure 1c), which we call within-season performance trajectories.
Figure 1b shows the improvement in performance more clearly. Figure 1c shows that on average
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Figure 1. Analysis of a 100 m swimmer. Panel (a) shows the observed performances with individual performance
trajectory (shown as posterior median (black line) and 95% credible interval) with each calendar year indicated by
alternating grey and white bands. Panel (b) shows the individual career trend trajectory shown as posterior median
(black line) and 95% credible interval. Panel (c) shows posterior median within-season performance trajectories

(light grey lines) and the posterior median of the athlete’s mean within-season performance trajectory (black line).

the swimmer peaks in August with a performance improvement of about 0.4s compared to
January. However, there are also substantial differences in the within-season performance trajec-
tory from season-to-season ranging from 1 second improvement in some season and close to 0 s in
others. Being able to estimate the variability of within-season performance trajectories is import-
ant for understanding whether an athlete is able to peak at the same time and by the same amount
in different years.

Mixed models with scalar athlete and season effects have been used to understand variation
within and between seasons in athletic performance (Bullock et al., 2009; Paton & Hopkins,
2005; Pyne et al., 2004; Trewin et al., 2004). However, this often leads to an overestimation of
variability between consecutive performances because variability is calculated for all competitions
within a season regardless of how the competitions were distributed within a given season
(Malcata & Hopkins, 2014). Longitudinal models were originally proposed for sporting perform-
ance data by Berry et al. (1999), who build a linear mixed model with a common effect of age (usu-
ally called the aging function or population performance trajectory), in addition to scalar athlete
and season effects. The population performance trajectory reflects the usual effect of age on ath-
letic performance which typically follows a ‘u’ shape (Stival et al., 2023) with athlete’s improving
to a mid-career peak followed by deterioration. The age of peak performance often occurs between
the ages 23 and 28 but can differ between sports, gender, and individuals (Griffin et al., 2022).

More recently, continuous-time longitudinal models have been used for the irregular observa-
tions in data sets of all athlete performances. Griffin et al. (2022) build a model which allows
for time-varying athlete effects and confounders such as meteorological factors (e.g. wind speed
or temperature) or geographical factors (e.g. altitude). The observational variation is modelled
by a skew-# distribution since athletes have a higher chance of underperforming rather than over-
performing to the same degree. This model was adequate for the disciplines considered in their
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Table 1. Summaries of the number of performances, number of athletes, and number of performances per athlete for
the 100 and 200 m freestyle data sets

Event Number of performances Number of athletes Number of performances per athlete
Median Minimum Maximum
100 m, female 23,669 500 37.5 S 267
100 m, male 23,440 500 38 S 191
200 m, female 21,112 500 33 5 274
200 m, male 19,696 500 32 S 162

paper (weightlifting and 100 m sprint), but does not model seasonal effects. In this paper, we de-
velop this model to allow for changes in performance over a season using a restricted Bernstein
polynomial (Wang & Ghosh, 2012). We also increase the flexibility of the model in two additional
directions. Firstly, we investigate the use of a distribution which allows for different tail heaviness
in each tail. Secondly, we address the sparsity of observations for some athletes using global-local
shrinkage priors in a normal hierarchical model. This encourages parts of the hierarchy to be
strongly shrunk towards the mean unless the data supports differences.

Similar to our approach is the model introduced by Dolmeta et al. (2023). The authors model
performance with a non-linear function of time, a GARCH model for interseason changes and the
effects of age, gender, and environmental covariates. Our model uses a more structured, yet flex-
ible, model of the variation within seasons, which allows us to understand both individual and
population average intra-seasonal effects.

The paper is organized as follows: Section 2 discusses the available data for our application to
100 and 200 m freestyle performances for female and male swimmers. Section 3 explains how the
model is formed. Inference is discussed in Section 4. Section 5 describes an application of our mod-
el to simulated data and a simulation study. Section 6 discusses the application of our model to 100
and 200 m freestyle performances for both males and females. Lastly, in Section 7, a discussion is
provided. The online supplementary material for this paper (Griffin et al., 2026) includes some
derivations, the full Markov chain Monte Carlo (MCMC) for Bayesian inference, an exploratory
data analysis, MCMC diagnostics for the real data applications, and some additional results. R
code to fit the model can be downloaded from https:/jimegriffin.github.io/website/.

2 Elite swimming data

We use a large database of performance data from 100 and 200 m freestyle swimming for both
females and males to illustrate our methods. We downloaded performance data from 19 March
2008 to 08 September 2023 from the World Aquatics website' and selected the 500 swimmers
with the fastest personal bests for each combination of distance and gender. Summaries of the
number of performances and athletes are provided in Table 1. The data includes performances
in both 25 and 50 m pools. Swimmers are able to achieve faster times in a 25 m pool and so
pool length is included as a confounder. To make performances comparable when presenting
data in the paper, we plot 25 m pool performances adjusted to a 50 m pool using the posterior
mean of this pool effect. An exploratory data analysis of this data is presented in online
supplementary material Section 3 (Griffin et al., 2026), which shows the effect of ages and seasonal
effects within the data.

3 Model

3.1 Sampling model

We construct a continuous-time longitudinal model for athlete performance which allows for ef-
fects of age, the time of year, and confounders building on Griffin et al. (2022). Suppose that we
have observations for M athletes where the ith athlete has #; performances y; = (yi1, -- -, Yin)»

U https:/www.worldaquatics.com.
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which are observed atages a; = (4,1, ..., aiy,) and calendar time #; = (¢;1, ..., t;,) (Where O refers
to the start of an athlete’s first season) with confounders x; = (x;1, ..., Xi»,). We assume that the
ith athlete competes in S; seasons and define s; = (s; 1, ..., si,,) Wheres;;, € {1, ..., S;} is the season
of the kth performance. We assume the basic model

Vik = Ui @ips tig) + Xip §+ €y (1)

where u;(a, t) is the individual performance trajectory of the ith athlete at age a and calendar time ¢
(which is defined to be 0 at the start of an athlete’s first season), {are the effects of the confounders,
and the ¢;’s are i.i.d. observation errors. These errors will typically be both skewed and heavy
tailed since athletes have larger probabilities of extreme underperformance compared to overper-
formance. We first describe the distribution of the errors before discussing the form of y,(a, ).
Griffin et al. (2022) assume that the errors follow a skew-¢ distribution but this assumes the same
heaviness for both tails. We consider a distribution which allows differences in the heaviness of the
two tails by generalizing the skew-t distribution. We define TAVg(0, u, 62) to denote the normal dis-
tribution with mean g and variance o> truncated to the region R and ZGa(a, b) to denote an inverse

gamma distribution with density p(x) = %x‘“‘l exp {—b/x}. The observation error is defined by
€k = (Zk + ﬁ Kiks where €Zk ~ N(()’ @ik 012)3 Kik ~ TN[O,OO](Oa ¢i,k 012)7 Wik~ Ig( Vz_la "2_1 )a and
$in ~LG(%, %) for k=1, ...,m,i=1, ..., M, and all elements are independent. This reverts

to a skew- distribution if w;; = ¢;, (and so v{ =v2). If a > 0, the heaviness of the right-hand tail
is controlled by the minimum of v; and v, and the heaviness of the left-hand tail by v; with smaller
values representing heavier tails (with the effects on left- and right-hand tails reversed if a < 0).

The model of the individual performance trajectory y;(a, #) is initially decomposed into popula-
tion and individual parts,

wila, t) = gla) + Oi(a, ), (2)

where g(a) is the population performance trajectory and 6;(a, t) is the individual excess perform-
ance. We follow Griffin et al. (2022) by modelling g(a) using a dth order polynomial function

gla)= ZZ:O O (a— a)k, where 51, ..., d4 are coefficients and 7 is the mean age of all observed per-
formances (we find that d = 4 is sufficiently flexible in our examples).
The individual excess performance is further decomposed into two parts,

Oila, t) = fila) + hi(2), (3)

where f;(a) is called the trend excess performance trajectory for the ith athlete and b;(¢) is called the
seasonal performance trajectory. We define g(a) + fi(a) to be the ith athlete’s individual trend per-
formance trajectory, which adjusts the individual performance trajectory u;(a, t) for seasonal effects.

The trend excess performance trajectory is modelled by a piecewise linear function where the
knots occur at the start/end of each season,

fils—1+nA)=n (1-2)+n.12 z2€(0,1), s=1,...,8.

where A is the length of each season and start on the same day of each year (although this could
easily be changed in the model) and 7 ; is the value at the start of the sth season.

The seasonal performance trajectory is modelled season-by-season. Let the within-season per-
formance trajectory for the ith athlete in the sth season be 5 (z) for 0 <z < 1. We define the sea-
sonal performance trajectory to be

hills—1+2)A)=h(z), 2€(0,1), s=1,..., 8.

We want a flexible form for b which is constrained by 4(0) = 0 and 5(1) = 0. This allows us to
identify the model in (3) since
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Oi(a, sA) = fia) + bi(sA) = fila) + b} (1) = fila) + b} 1 (0) = fia@) = 1, ¢4 -

Therefore, the individual excess performance 6;(a, sA) is equal to the trend excess performance
fi(a) at the start and end of each season.

3.2 Prior distributions for fi(a) and h}(r)

We wish to have flexible forms for both the individual trend excess performance f;(a) and the
within-season performance trajectories b} (r). The values of f; at the start of each season are

Nits -+ Mis+1- Lhese are modelled using a random walk with initial value Z—z’ ~ t and increments
i

d. . . ) g .
M’L tw fors=1, ..., S;. This specification allows for heavy tails in both the distribution of

'l
the initial level », ; and possibly large changes from season to season.

We want the functions b, to have some specific features. Firstly, for identifiability, the functions
b}, are constrained by b} (0 ( ) 0 and b} (1) = 0. Secondly, we want a hierarchical structure to al-
low sharing of information across different seasons for each athletes and between athletes. This
allows the identification of those athletes who are better able to peak and those who can achieve
this consistently. Thirdly, we assume that the seasonal variation is largely caused by athletes peak-
ing for particular events or parts of the year (for example, the summer season in athletics) and that
this is shared across athletes (i.e. athletes are peaking for events in the same point of the year).

A Bayesian hierarchical model built using Restricted Bernstein polynomials (RBPs) (Wang &
Ghosh, 2012) is a convenient way to achieve our three goals. An nth order RBP m1(z) with m1,,(0) =
m,(1) =0 has the form

=Zﬁn,v bﬂ,v(z)’ 0<z< 1, (4)
v=1
where

bn,v(z)z(’;)zu(l—Z)n_U, U=1, ...,71—1.

To provide additional flexibility, we use the sum of RBPs of order 2 to N giving the model

N n-1
)= B buulz), 0<z<l. (S)
n=2 v=1
It is convenient to group the coefficients of the RBP in g® (,821, 31, (3’2), s
(i,5) (i) )
N>+ 2 PNN-1/-

To allow sharing of information across seasons and athletes, we use independent hierarchical
priors for each coefficient in the RBP, which nest seasons within athletes. This leads to, for i =
1, ...,Mands=1, ..., S,

B SN (B 2 2)s BN (B B k), w1, n=1, m=2, LN,

The prior variances are a product of athlete-specific effects 27 and 77, and coefficient-specific effects

», and dZ . The use of coefficient-specific variance parameters allows for the variability of the
functions b} (z) and h*(z) to change with z. The use of individual-specific variance parameters
J# and 72 allows for differences in the variability of the functions from athlete-to-athlete. The im-

portance of allowing for differences is discussed in Section 4. In addition, since some athletes only
have a few performances, we use global-local shrinkage priors (Bhadra et al., 2019) which avoids
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overfitting and allows the effects to be shrunk towards the corresponding mean. Since the scale
parameters ¢2, and A7 enter multiplicatively (similarly, d, and 77), we centre ¢2,’s and d2 s

around 1 to av01d problems of interpretation, and use gamma priors to encourage regularization
of the coefficients (see Griffin & Brown, 2010),

e, ~Ga(s,s), di,~Ga(s,5), v=1,..,n-1, n=2, .. ,N,
2F ~Ga(los do/M), T ~Ga(to, 10/11), i=1,..., M

where Ga(a, b) represents a gamma distribution with density p(x) = %x”‘l

exp {—b x} and so 1y
and 7 are the prior means of 7 and 77, respectively.

The hierarchical structure 1ntr0duces parameters S (ﬂz 1,ﬁ3 1,ﬂ3 s ~--’ﬁ¥1),1a ...,ﬂ(]f]),N_l)
and f=(B21,P31>P325 > Bn.1s -+ > Bun—1)> Which can be interpreted as average coefficients
over all seasons for the ith athlete and average coefficients over all seasons and all athletes, respect-

ively. It is convenient to define functions formed by the coefficients f3,

n—1
Brwbup(z), 0<z<1,

v=1

E'qz

||
[\§)

n

is called the average within-season performance trajectory at the population level, and by the co-
efficients A,

2
|
—_

B b,,(2), 0<z<l.

ny

M=

hl(z)=

B
Il
)
<
I
—_

is called the average within-season performance trajectory for the ith individual.

Thirdly, the observation that athletes often peak at a particular time is included by constraining
the within-season performance trajectory at the population level to have a single peak (rather than
at the individual or seasonal level). This allows for differences in peak time (or the number of
peaks) for some athletes and some seasons, which allows athletes to have different goals in
some seasons (for example, in Olympic and non-Olympic years).

The shape of the population-level within-season performance trajectory is determined by the
direction of improvement in the sport. In timed events such as swimming or running, the direction
of improvement is negative since a better performances leads to a faster time whereas, in events
such as weightlifting or throwing, the direction of improvement is positive since a better perform-
ance leads to a heavier lift or a longer throw. Therefore, we constrain the trajectory to be concave if
the direction of improvement is positive and convex if the direction of improvement is negative. As
discussed by Wang and Ghosh (2012), the second derivative of the RBP in (4) can be expressed as

Y e

n(n—l

+ ( =2 Z/Bn,n—l)bnfl,an(z)-

Let B, = (B,15 -+ Bppn_1) then m,(2) is convex if D,f, > 0,1 and concave if D,g, < 0,_; where
-2 1 0 0 --- 0 0 O
1 -2 1 0 0O 0 O
0o 1 -2 1 0 0 0
Dn = N b
0 0 0 0 1 -2 1
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and 0,_1 represents an (n — 1)-dimensional vector of 0’s. Therefore, if the direction of improve-
ment is positive, the prior is a normal distribution with mean 0,_; and covariance matrix
dlag(oﬁn) truncated to the region {8, | D, 8, < 0,-1}, where diag(a) represents a diagonal matrix

with the elements of a on the diagonal, and 62 , is an (7 — 1)-dimensional vector of variance param-
eters. If the direction of improvement is negative, the prior is truncated to the region
{8, 1 Dnp, = 0,_1}. We apply the constraint for each value of 7 in the sum of RBPs prior for
h}.(z) to ensure that the sum is either convex or concave.

3.3 Priors for other parameters

The Bayesian model is completed by specifying priors for all other parameters. Following Griffin
and Brown (2010), we centre the shape parameters 4y and 7o on 1 and give vague priors to the

means A1 and 7 giving do, 70 "~ Ex(1), where £x(6) represents an exponential distribution with

mean §and A, 7; g ZG(0.001, 0.001). The scale of the observation error for each athlete is given
the population distribution o? ~ ZG(a2, 02 /0%,), and the skewness parameter is given the prior

a ~ N(0, 3%), which provides support for reasonable values of the skewness. The degrees of free-
dom parameters are given a prior mean of 20 and wide spread of possible values v ~ Ga(2, 0.1),
Vvl ~Ga(2,0.1), v ~Ga(2, 0.1), and v, ~ Ga(2, 0.1). All other parameters are given vague priors
(&, 0) x 1, oﬁ ~7G(0.001, 0.001), > ~ZG(0.001,0.001), o2, ~ZG(0.001,0.001), and

aﬁ ~17G(0.001, 0.001).

4 Inference

We use MCMC to fit the model and the full algorithm is described in online supplementary
material Section 2 (Griffin et al., 2026). Blocking (Knorr-Held & Rue, 2002; Roberts &
Sahu, 1997) and interweaving (Yu & Meng, 2011) are used to avoid slow mixing of some
parameters.

The hierarchical model for the within-season performance trajectory allows us to estimate func-
tional effects at the season, athlete, and population level. Figure 1¢ plots the within-season per-
formance trajectory at the individual and seasonal levels. This shows substantial variation in
the within-season performance trajectories for this individual. A univariate summary of the
amount of variation is useful to compare athletes. Similarly, we define a univariate summary of
the difference between an athlete’s within-season performance trajectory and the population
within-season performance trajectory. To establish these summaries, we use the following results
for the RBP in (5) (a proof is given in the online supplementary material Section 1 Griffin et al.,

2026). Suppose that €(z Zn — ZU 1 dny bny(z) then

(a) /é((Z) dZ = Zn =2 n+1 Zv 1 an U
(b)

71]—

a”l w1 A0, By 1,005

II M'\?

where

B _<ﬂ1><7l2>(v1+l/2) (n1 +ny —v1 —w)!
11,0,V 1,02 .

41 %) (m1 +ny + 1)!

The variability over different seasons for the ith athlete can be measured by considering the differ-
ences between the within-season performance trajectory for the sth season and the average within-
season performance trajectory for the ith athlete which is

920z Aieniga4 €0 UO Jasn salpnlg S80IAIeS YleaH 10} 81uad) Aq 9y£9G6H8/2006.lb/osssil/S601 0 1 /10p/alo1e-80ueApe/asssil/woo-dno-olwapeoe//:sdiy Woll papeojumoc]


http://academic.oup.com/jrsssc/article-lookup/doi/10.1093/jrsssc/qlag002#supplementary-data
http://academic.oup.com/jrsssc/article-lookup/doi/10.1093/jrsssc/qlag002#supplementary-data
http://academic.oup.com/jrsssc/article-lookup/doi/10.1093/jrsssc/qlag002#supplementary-data

8 Griffin et al.

n—1

D@ = B0~ @ = 30 S (15 — 4, ) bt

n=2 v=

Taking the expectation of f oW7(2) dz with respect to the prior distribution of ) — g9 leads to the
expression

- E[ [ovt(z) dz] =2 i G Bunows

which we call the within-season variability for the ith athlete. In a similar way, we can summar-
ize the size of the difference in effect between an athlete’s average within-season performance
trajectory and the average within-season performance trajectory across all athletes using the
measure

nl

N
7i(z) = b} () )=y = Bo) b 2).

n=2 v=]

Taking the expectation of foV; ) dz with respect to the prior distribution of % — f leads to the
expression

—_

n—

= E[ [y dﬂ:ﬁi &) B

n=2 v

Il
_

which we call the average effect size for the ith athlete. We are often interested in the ordering of
each of these measures across athletes to find athletes which have small or large variability in
their season effects or athletes are far from the population average. This can be achieved by

just report /11-2 (in place of ¥;) and 77 (in place of ;).

5 Simulated data

We use a simulated example and a simulation study to show how the model can capture individual
career trend trajectories, within-season performance trajectories at the seasonal, individual and
population levels, and differences in variation and the seasonal and individual levels. We generated
data from the full model in Section 3 without confounders. The ith individual has observation for
S; seasons were

S ~ Po(4)  with probability pq,
! Po(8) with probability 1 —p;.

The parameter p; controls the proportion of athletes with more or less observed seasons. A larger
value of p1 leads to more athletes with a lower number of observed seasons. In the jth season, there
were 7;; ~ U(3, 11) performances. The age at the start of the first season was assumed to be dis-
tributed 2/(18, 22) and the population performance trajectory was g(t) = 40 + 0.1(¢ — 26)*. The
excess performances 7,1, ..., 7;541 Wwere generated as n;; ~N(0,4) and ;4 —n;; ~
N(0,0.09) for j=1, ..., S;. The population-level within-season performance trajectory was
bh*(t)=4(t -3 ) — 1 for 0 <t <1, which has a minimum at # = J. The individual and seasonal per-
formance tra]ectories were parabolas with a maximum or minimum at different values for differ-

ent individuals or seasons. The turning point for the individual trajectory was p; L U(0.5,0.7)
and the value at that point was a; ~ N(0, o2). The trajectory was
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Figure 2. Results for the simulated example. Results for Population performance trajectory, Population, Individual
and Seasonal within-season performance trajectories are shown as true value (dotted line), posterior median (solid
line), and 95% credible interval. Results for the error density are shown as true value (dotted line) and posterior mean
(solid line). The results for y represent #; 1, ..., 1; for one athlete and are shown as true value (block dot), posterior
median (cross) with 95% credible interval.

(6)

The turning point for the individual trajectory was 7;; i U(0.5, 0.7) and the value at that point

was b;; ~ N(0, 0%). The trajectory was

t=ri;)
bi’/(l - (:T/)), 0<t < Tijs

isf

hi(t) = b (t) = o
b,',,' (1 - 1_;”2 ), rij <t< 1.
Ll

The errors were generated with a =3, vi =30, and v, = 7.

We simulated a data set of 500 individuals with py = 0.2, 0% = 0.5, and o} = 0.25. The results are
shown in Figure 2. The population performance trajectory and the population within-season per-
formance trajectory and error distribution are well-estimated. Estimates at the individual level are
unsurprisingly less well-estimated. The true values of the individual trend performance trajectory
(7) and individual and seasonal within-season performance trajectories are all within the corre-
sponding 95% credible intervals.

To quantify the performance of the model, we conducted a simulation study. We use 100 rep-
lications for eight different combinations generated by varying four factors over two levels:
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Figure 3. Simulation Study: The RMISE for (a) the Population Performance Trajectory g(c), (b) Population
Within-Season Performance Trajectories h*(-), (c) Individual Within-Season Performance Trajectories h*(-);, and (d)
Seasonal Within-Season Performance Trajectories h’(t). For all plots, the x-axis labels are (/, j) where iis the level of
M and j represents the level of (62, of,), cross represents p; = 0.2 and circle represents p; =0.5.

= (200, 500), p1 = (0.2, 0.5), (aﬁ, o%) =(0.1, 0.03), (0.5, 0.25). We use performance measures
for seven parameters of interest: the Population Performance Trajectory g(-), the Population
Within-Season Performance Trajectory b*, Individual Within-Season Performance Trajectory
h*, the Within-Season Performance Tra]ectory h,, the excess performance at the start of each sea-
son 7y, ..., 1y, ¥ and T;. For the first four functlonal parameters, we define the root mean
squared 1ntegrated error to be

RMISE = /((2) - f (z))2 dz,

where fis the true value of the function and f is the posterior mean of fand the limit of integration
are the possible range of z. The RMISE is averaged over all athletes for () and over all seasons
and athletes for hi (). For n;, we calculate the average root mean squared error (AMRSE),

M Si+1

AMRSE = NS Z Z(n, . ;1) ;

t=1 =1 s=

where 7, , is the posterior mean of 7, ;. We would like to use 77 as a proxy for the squared difference

between the individual and population within-season trajectory ((h* — h*)?). To understand the
strength of this relationship, we calculate Spearman’s rank correlation coefficients between the
posterior median of 73, ..., 73, and |a1], ..., |aum| as defined in (6) since these are not directly com-

parable. Similarly, to understand the relationship between 27 and the squared difference between
the seasonal and individual within-season trajectory, we calculate Spearman’s correlation between

b; i=3 ZS 1 1bis| where b; is given in (7) and /12

The results for the functional parameters are shown in Figure 3. A larger number of athlete, M,
leads to lower RMISE’s for each of these functions. The values of o2 and o7 have only a small effect
on the estimation accuracy of the population performance trajectory. Conversely, 0% and o7 have a
large effect on the estimation accuracy for all three within-season trajectories.

The results for the other three parameters of interest are shown in Figure 4. The estimation of 7 is
most strongly affected by the number of athletes M. The two correlation measures increase with
level of variation in the within-season trajectories but the other factors do not have a strong effect.
We find that there is a stronger correlation between a; and 77 than b; and /1,2. In fact, for the within-
season correlation, the correlation is close to zero with the lower level of variation but is around
0.7 for the higher level of variation. Therefore, these are useful summaries of the variation in these
trajectories if there is sufficient variation in the data.

6 Application to elite swimming

We applied our model to performances for both female and male swimmers in the 100 and 200 m
freestyle. We fitted the model separately to each combination of gender and distance, and included
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Figure 5. Estimated population performance trajectory g(-) for both females and males in the 100 and 200 m
freestyle. The trajectories are shown as posterior median (black line) and 95% credible interval (grey shading).

pool length as a confounder. Some additional results are provided in online supplementary
material Section 5 (Griffin et al., 2026). Two samplers were run for a total 50,000 iterations.
The first 30,000 iterations were used as a burn-in and the subsequent 20,000 iterations were
thinned every 20th value to 1,000 posterior samples. This took about ten hours to run with R using
an Apple Mac with M4 chip. Some MCMC diagnostics for each data set are given in online
supplementary material Section 4 (Griffin et al., 2026).

Figure 5 shows the estimated population performance trajectories, which all have a reverse
J-shape, as in Griffin et al. (2022), with performance rapidly improving between 15 and 20, peak-
ing around 22 (in both men and women), and subsequently decreasing. There is a clear difference
between men and women. Men show a much greater improvement in performance between 15
and 20 (for example, in the 100 m, females improve by 1.5 s between 15 and 20 whereas males
improve by 2.6s. Men are also better able to maintain their performance in their late twenties
(for example, female performance decreases by 2 s by 25 and 30 whereas men’s performance de-
creases by 0.7's).

The population-level within-season trajectories are shown in Figure 6. The trajectories have
very similar shapes across gender and distance with the within-season performance improvement
peaking around July. The posterior median improvement is around 0.17 s in the 100 m and around
0.39 s in the 200 m for both males and females. The error distributions were found to be positively
skewed with evidence of a large difference in the heaviness of the left-hand and right-hand tails.
Results are presented in online supplementary material Section 5 (Griffin et al., 2026).

Figure 7 shows within-season performance trajectories for six individuals in the 100 metres
(three female and three male) with their average within-season performance trajectory. The ath-
letes were chosen to show a range of behaviours where some individuals have a substantial differ-
ence between their best and worst performance level within-season (Swimmer 1, 4, and 6) and
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Figure 6. Estimated population within-season performance trajectory h*(-) for both females and males in the 100
and 200 m freestyle. The trajectories are shown as posterior median (black line) and 95% credible interval (grey
shading).
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Figure 7. Estimated within-season trajectories. Posterior median athlete-level (black line) and within-season
performance trajectories for each career season (grey lines).

others show much less variation over the season (Swimmers 2 and 5). There are also some clear
differences in the shape of the curve. Swimmers 1, 3, and 6 peak in October, whereas
Swimmers 2 and 5 peak in July and Swimmer 4 in May. This reflects differences in the aims of ath-
letes. Some athletes will target events such as the Olympics whereas other athletes will target the
winter rather than summer season. We can use the posterior median of 77 to understand how these
individual trajectories relate to the population trajectory. Swimmers S (77 = 0.029), 2 (z7 = 0.089),
and 3 (2 =0.175) are closest to the population trajectory with a similar shape and level of per-
formance improvement. There are larger differences for Swimmers 1 (7 = 0.288), who shows a
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Figure 8. Empirical distribution function of the posterior median values of the within-season variability (A;) and the
average effect size (I';) for all swimmers (divided by gender) in the 100 and 200 metre freestyle.

different shape, and 4 (2 =0.274), who shows a larger level of improvement. Swimmer 6
(c2 =0.803) shows differences in both the shape of trajectory and the level of performance im-
provement. There are also clear differences in the consistency of the trajectories across seasons.
Swimmers 2 (47 = 0.064), 5 (4 =0.077), and 4 (2 = 0.086) show the lowest level of variation
in the seasonal trajectory. Swimmers 3 (if =0.1243) and 6 show (/11-2 = 0.154) show more variation
and Swimmer 1 (A7 = 1.083) shows the most variation in trajectory. This may reflect several fac-
tors including changing priorities over an swimmer’s career or injury problems.

Figure 8 shows the empirical distribution function of the posterior median values of the individ-
ual within-season variability (4;) and the individual between-season variability (z;) for both females
and males and the two distances. The distribution is similar for both females and males and so we
concentrate on the results for female. Both distributions have a very heavy right-tail so that a few
effects have much larger values of 7; and /; than others. The distribution of 7; is shifted to the left of
the distribution of /; indicating that the within-season variability tends to be smaller than the aver-
age effect size. In other words, the season-on-season variability within a swimmer tends to be
smaller than the variability between swimmers. This indicates that swimmers have some ability
to control how their performance levels evolve over a season through the training process and
are able to replicate that improvement in different seasons.

7 Discussion

In this work, we have developed a Bayesian longitudinal model which can account for the vari-
ation in performance change within a season across population-level, athlete-level, and within-
season (i.e. within athletes). An application to freestyle swimming data shows that there is substan-
tial variation between swimmers and between seasons with some having a clear pattern of peaking
for major events (e.g. Olympics Games and World Championships) which usually occur during
the summer months (July—August). We use a dth degree of polynomial to model the population-
level effect of age and an error distribution which allows for skewness and different heaviness of
the left and right tail. We find that the population-level effect of age follows the expected reverse |
shape in freestyle swimming with a difference between the improvement in performance of females
and males in years 15-23. We find that the error distribution has a much lighter left tail than right
tail. The result suggests that swimmers are much less likely to have a performance that is substan-
tially worse than expected, rather than one that is substantially better than expected. One explan-
ation is that elite athletes generally perform close to their optimal level and so improvements are
much harder to achieve than poor performances (which can be due to many factors including
things such as poor race execution, illness, and injury).

The model provides some interesting insights about athlete performance but there are some lim-
itations. An individual’s trend excess performance trajectory is assumed to follow a random walk,
which is appropriate for retrospective analysis. This approach may also be able to provide short-
term prediction but the lack of structure will struggle to provide good long-term prediction per-
formance. This would need additional structure to explain the evolution of career trajectories,
which could include additional covariates. The model is currently restricted to a single discipline
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but athletes compete in multiple disciplines in some sports (across different distances in track run-
ning or distances and styles in swimming). It would be interesting to extend this model to better
understand differences in performance trajectories across disciplines for a single athlete. The mod-
el also assumes a single season but the results show that athletes may follow different seasonal pat-
terns. For example, Australian swimmers have different seasons to European swimmers. Our
model is able to capture these differences but a more complicated model allowing for different sea-
sonal patterns could provide better estimates. The model also assumes independence across ath-
letes conditional on the population performance trajectory and population within-season
performance trajectory. However, there could be further sharing of information across athletes
at other levels of the hierarchy, such as the individual average within-season performance trajec-
tories. Colombi et al. (2025) present an interesting Bayesian nonparametric approach to achieve
this goal, which they use to stratify athletes by performance whilst allowing for difference between
athletes and seasons.
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