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Abstract
We present an interpreter for Erlang in Haskell, derived from

a formal semantics for Core Erlang mechanised in Coq. The

interpreter function is derived from the Coq inductive defini-

tions that make up the semantics by extracting Haskell code

from Gallina functions provably equivalent to the inductive

definitions, and optimising the result. The semantics is in-

herently non-deterministic, and it is made deterministic by

introducing a scheduler component; we also present a com-

putation graph that shows all the non-deterministic choices

that arise during computation. The paper concludes with an

evaluation of the work and preliminary performance data.

CCS Concepts: • Theory of computation→ Operational
semantics; Functional constructs; Concurrency; • Soft-
ware and its engineering → Interpreters.

Keywords: Erlang, Core Erlang, Formal semantics, Formally

based interpreter, Scheduling, Coq, Rocq, Haskell
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1 Introduction
Programming language implementations are crucial pieces

of computing infrastructure, and their correct behaviour

underpins any argument about the trustworthiness of any

particular program. Compilers and interpreters are subject

to thorough testing in practice, but testing alone is post hoc
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and necessarily incomplete. An alternative is offered by veri-

fication of an implementation against a formal
1
semantics

for the language, and a tractable mechanism to do this is

to derive an implementation from such a semantics. This

paper presents an interpreter for Erlang developed in that

way,
2
and can be seen as a reference interpreter that gives a

formal standard an executable form. This allows potential

changes to the language—including Erlang Enhancement

Proposals
3
—to be modelled formally and tried out before

being accepted.

We build on a formal semantics for Core Erlang [3–6]

mechanised in the Coq proof assistant,
4
deriving a Haskell

interpreter from the semantics. The mechanised semantics

takes the form of a series of inductive definitions of reduction

relations over configurations that represent the state of a

node as a set of concurrent processes and a communication

‘ether’. The first stage of the extraction is to define a set

of total functions in Coq that implement single reduction

steps in the semantics, and to prove their equivalence to the

relational semantics. The functions can then automatically be

extracted into equivalent Haskell definitions using existing

tooling within Coq [11], and then be optimised, replacing

data type definitions by efficient equivalents, and making

some operations (such as substitution) strict instead of lazy.

To interpret the full Erlang language we translate it to Core

Erlang using the standard Erlang compiler.

The semantics of Erlang is inherently non-deterministic,

and it is made deterministic by introducing a parametric

scheduler component that ensures that all processes are able

to progress during evaluation, with the specific choice being

provided by an instance of a scheduler typeclass. Comple-

menting this we also design and prototype a computation

graph that shows all the choices that arise during the course

of a computation.

1
Weuse the term “formal” for themathematical semantics, and “mechanised”

for the embodiment of that semantics in Coq.

2
The interpreter is available on GitHub [21].

3https://www.erlang.org/eep
4
Coq was renamed to Rocq in 2025; however, this project still uses version

8.20 of the proof assistant, which is called Coq.
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What is the assurance argument for an interpreter ex-

tracted in this way? The computation rules that it uses are

guaranteed to be correct by the construction process that

has been used, and so overall correctness depends only on

the correctness of the code extraction process, the optimisa-

tions made, and the translation function from Erlang to Core

Erlang, each of which is considerably simpler than writing

a complete interpreter. Directly executing the rules of the

formal semantics comes at a performance cost, but this is a

reasonable trade-off for the correctness guarantees it gives.

The rest of the paper is structured as follows. Section 2

summarises the semantics of Core Erlang on which we build

our interpreter. Our formally based interpreter is presented

in Section 3, and the prototype computation graph regard-

ing the non-deterministic decisions made during program

evaluation is discussed in Section 4. Section 5 presents an

evaluation of the work. Section 6 summarises related work,

and Section 7 concludes and identifies future directions.

2 Mechanised Formal Semantics for Erlang
“Formal semantics models the computational meaning of

programs”, utilising mathematically precise and rigorous

descriptions [33]. There is a body of work that describes a

series of semantics for Erlang, formalised in the Coq proof

assistant (in big-step [3, 5] and in frame stack definition

styles [4, 6]). In this work, we build on the frame stack-style

definition because it also addresses concurrency.

2.1 Overview of the Formal Operational Semantics

Table 1. Layers of the semantics

Layer name Notation Description

Inter-process

𝜄:𝑎−−→ System-level reductions

Process-local

𝑎−→ Process-level reductions

Sequential −→ Computational reductions

The frame stack semantics consists of three layers. Re-

ductions denoted with −→ are computational steps done by

the sequential semantics. Reductions denoted with 𝑝
𝑎−→ 𝑝′

are the process-local steps, which involve one single pro-

cess and coordinate with the inter-process semantics with

semantic actions (𝑎). The inter-process semantics (denoted

with 𝑁
𝜄:𝑎−−→ 𝑁 ′

) describes how communication is carried

out among processes inside a node. Here, we provide a brief

overview of each layer, and refer to [4, 6] for further details.

Abstract Syntax of Core Erlang. A Core Erlang expres-

sion (Figure 1) is either a value or a non-value. The following

expressions represent values: integers (denoted 𝑖), atoms (𝑎),

variables (𝑥), function identifiers (𝑓 /𝑛), process identifiers
(PIDs, 𝜄), function closures (clos), empty and nonempty lists

(square brackets), tuples (braces), and maps (tilde-braces).

𝑝 ∈ Pattern ::= 𝑖 | 𝑎 | 𝑥 | [] | [𝑝1|𝑝2] | {𝑝1, . . . , 𝑝𝑛}

| ∼{𝑝𝑘
1
⇒ 𝑝𝑣

1
, . . . , 𝑝𝑘𝑛 ⇒ 𝑝𝑣𝑛}∼

ps ∈ PatternList ::= <𝑝1, . . . , 𝑝𝑛>

cli ∈ ClosItem ::= 𝑓 /𝑛 = fun(𝑥1, . . . , 𝑥𝑛) → 𝑒

ext ∈ ClosItemList ::= cli1, . . . , cli𝑛

cl ∈ Clause ::= 𝑝𝑠 when 𝑒𝑔 → 𝑒𝑏

𝑣 ∈ Val ::= 𝑖 | 𝑎 | 𝑥 | 𝑓 /𝑛 | 𝜄 | clos(ext, [𝑥1, . . . , 𝑥𝑛], 𝑒)

| [𝑣1|𝑣2] | [] | {𝑣1, . . . , 𝑣𝑛} | ∼{𝑣𝑘
1
⇒ 𝑣𝑣

1
, . . . , 𝑣𝑘𝑛 ⇒ 𝑣𝑣𝑛}∼

nv ∈ NonVal ::= fun(𝑥1, . . . , 𝑥𝑛) → 𝑒 | <𝑒1, . . . , 𝑒𝑛> | [𝑒1|𝑒2]

| {𝑒1, . . . , 𝑒𝑛} | ∼{𝑒𝑘
1
⇒ 𝑒𝑣

1
, . . . , 𝑒𝑘𝑛 ⇒ 𝑒𝑣𝑛}∼

| call 𝑒𝑚 :𝑒 𝑓 (𝑒1, . . . , 𝑒𝑛) | primop 𝑎(𝑒1, . . . , 𝑒𝑛)
| apply 𝑒 (𝑒1, . . . , 𝑒𝑛) | case 𝑒1 of cl1; . . . ; cl𝑛 end

| let <𝑥1, . . . , 𝑥𝑛> = 𝑒1 in 𝑒2 | do 𝑒1 𝑒2 | letrec ext in 𝑒

| try 𝑒1 of <𝑥1, . . . , 𝑥𝑛> → 𝑒2 catch <𝑥𝑛+1, . . . , 𝑥𝑛+𝑚> → 𝑒3

𝑒 ∈ Exp ::= nv | 𝑣

Figure 1.Mutually defined syntax of Core Erlang

Core Erlang has Erlang-like expressions, such as fun, ap-
plication, pattern matching with case and exception han-

dling with try. Moreover, Core Erlang also features let
and letrec binders, sequencing (do) expressions, and there

are primitive operations (primop) expressing low-level be-

haviour, such as mailbox operations.

Free variables (and function identifiers) can be substituted.

Substitutions are denoted by 𝑒 [𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛], mean-

ing that variables 𝑥1, . . . , 𝑥𝑛 are syntactically replaced by

values 𝑣1, . . . , 𝑣𝑛 in the expression 𝑒 .

In Figure 2 we present a running example, which con-

sists of two variants of mapping a function over the list

elements in Core Erlang: ’map’/2 is the textbook definition

of this operation, while ’pmap’/3 delegates some computa-

tion (specified by the index I) to a child process. Note that

the receive expression shown in the figure is in fact im-

plemented as a combination of primitive operations as of

OTP version 23.0 [19], which is also reflected in the formal

semantics [6] we use in this work.

Sequential Frame Stack Semantics. The sequential se-
mantics of Core Erlang defines how a process executes com-

putational steps, expressing how a single expression evalu-

ates, independent of the process state. The evaluation result

is either a sequence of values (value sequence) or an excep-

tion (represented with a triple of an exception class atom,

and two values about the exception’s reason and details).

Value sequences are used to express simultaneous variable

bindings in let, try, case expressions, and only value list

expressions (<𝑒1, . . . , 𝑒𝑛>) evaluate to non-singleton value

sequences.
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'map'/2 = fun(F, L) -> case L of
<[]> when 'true' -> []
<[H|T]> when 'true' ->

[apply F(H) | apply 'map'/2(F, T)]
end

'pmap'/3 = fun(F, I, L) ->
case call 'lists':'split'(I, L) of
<{L1, L2}> when 'true' ->
let <S> = call 'erlang':'self'() in
do call 'erlang':'spawn'(fun() ->

call 'erlang':'!'(S, apply 'map'/2(F,L1)))
let <M2> = apply 'map'/2(F,L2) in
receive <M1> when 'true' ->
call 'erlang':'++'(M1, M2)

after 'infinity' -> []
end

Figure 2. Sequential and concurrent list transformation

We also introduce redexes, which are either expressions,

exceptions, value sequences, or the box (□) that is used in

the semantics of empty parameter lists.

exc ∈ Exception ::= {𝑎, 𝑣𝑟 , 𝑣𝑑 }𝑋

𝑟 ∈ Redex ::= 𝑒 | exc | <𝑣1, . . . , 𝑣𝑛> | □

The frame stack semantics [35] is reduction-style [13]: it

represents the reduction context as a stack (𝐾 ) of elementary

frames (𝐹 ); we use the infix notation 𝐹 :: 𝐾 to put a frame

onto the stack. These frames are essentially non-values with

one of their subexpressions replaced by □, which denotes

the position of the subexpression being currently evaluated.

We do not quote the entire semantics definition of Core

Erlang [4] in this paper, but we show a representative
5
exam-

ple recalling the reduction rules for try redexes (Figure 3).
First, STry is used to evaluate the head expression of try
to a value sequence or an exception. If the result is a value

sequence, PTry is used to evaluate the first clause of try
after substituting the results to the given variables. If the

head expression evaluated to an exception, ExcTry is used to

evaluate the catch clause, after substituting the exception to

the specified variables. Finally, ExcProp expresses exception

propagation. For the complete definition, see [4] and [21].

Process-local Semantics. The process-local semantics

extends the sequential configuration into a process state. A

live process is represented by a quintuple (𝐾, 𝑟, 𝑞, 𝐿, 𝑏) where
𝐾 and 𝑟 denote a sequential configuration (a frame stack and

a redex), 𝑞 is the message queue (mailbox), 𝐿 denotes the

set of linked process identifiers, and 𝑏 is the status of the

’trap_exit’ process flag. Dead processes (denoted by 𝑇 )

map linked PIDs to values to be sent to the linked processes.

5
We quote rules that show the principles behind frame stack semantics, as

well as highlight how the substitution operation appears in the semantics.

The process-local steps are annotated by concurrent ac-

tions to emit side effects (which are used to coordinate with

the inter-process semantics); these actions are the following:

• send(𝜄𝑠 , 𝜄𝑑 , 𝑠) the signal 𝑠 is sent from the process iden-

tified by 𝜄𝑠 to the process with PID 𝜄𝑑 .

• arr(𝜄𝑠 , 𝜄𝑑 , 𝑠) the signal 𝑠 arrived at the process identified
by 𝜄𝑑 , sent from the process with PID 𝜄𝑠 .

• self(𝜄) is used to retrieve a process’s own identifier

from the inter-process semantics.

• 𝜏 denotes silent reduction steps, such as steps of the

sequential semantics and message receipts.

• spawn(𝜄, 𝑣 𝑓 , 𝑣1, . . . , 𝑣𝑘 , 𝑏) spawns a process that evalu-
ates 𝑣 𝑓 applied to the arguments 𝑣1, . . . , 𝑣𝑘 ; the flag 𝑏

says whether the process is to be linked to its parent.

We present a few rules from the semantics on Figure 4.

Seq lifts the sequential semantics to the process level. Exit

describes sending an exit signal by calling exit/2. ExitDrop,
ExitTerm, and ExitConv handle the various cases of exit
signal arrival. Dead shows a dead process emitting an exit
signal (chosen non-deterministically) to one of its links. For

the rest of the process-local rules, see [6].
6

The process-local semantics is nondeterministic; however,

in any state a live process can only reduce in two different

ways: either a computational step is made (e.g., Seq, Exit),

or a signal arrives at the process (e.g., ExitDrop, ExitTerm,

ExitConv). Dead process evaluation is non-deterministic

too, due to the lack of ordering of the linked PIDs.

Inter-process Semantics. An Erlang node consists of a

number of processes that run concurrently, and communicate

by signals. Inter-process semantics describes this communi-

cation, formalising messages, exit and (un-)link signals.

Faithful to the language documentation, signal passing is

not atomic: sent but undelivered signals reside in an ether

(in order of arrival, to comply with the “signal ordering

guarantee”); therefore, an Erlang node is formalised as a pair:

(E,Π), where E denotes the ether and Π denotes a process

pool. We use the following operations for pools and ethers:

• 𝜄 : 𝑝 ∥ Π adds process 𝑝 identified by 𝜄 to the pool Π;
• E[(𝜄𝑠 , 𝜄𝑑 ) ↦→+ 𝑠] adds the signal 𝑠 to the ether E with

source 𝜄𝑠 and destination 𝜄𝑑 ;

• E \1st (𝜄𝑠 , 𝜄𝑑 ) removes the first signal from the ether

which targets 𝜄𝑑 originating from 𝜄𝑠 ;

• PIDs(Π) (and PIDs(E)) denote all PIDs that syntacti-
cally occur in a pool Π (or ether E).

Inter-process reductions are annotated by 𝜄 : 𝑎, which

means that the process identified by 𝜄 makes a process-local

reduction step based on action 𝑎. The entire semantics con-

sists of only 4 rules, which we present in Figure 5. Essentially,

all 4 rules propagate a reduction step to the process-local

semantics, while making adjustments to the node’s state.

6
The formalisation does not include receive timeouts in full generality,

only 0 and ’infinity’ are modelled.
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⟨𝐾, try 𝑒1 of <𝑥1, . . . , 𝑥𝑛> → 𝑒2 catch <𝑥𝑛+1, . . . , 𝑥𝑛+𝑘> → 𝑒3⟩ −→
⟨try □ of <𝑥1, . . . , 𝑥𝑛> → 𝑒2 catch <𝑥𝑛+1, . . . , 𝑥𝑛+𝑘> → 𝑒3 :: 𝐾, 𝑒1⟩ (STry)

⟨try □ of <𝑥1, . . . , 𝑥𝑛> → 𝑒2 catch <𝑥𝑛+1, . . . , 𝑥𝑛+𝑘> → 𝑒3 :: 𝐾, <𝑣1, . . . , 𝑣𝑛>⟩ −→ ⟨𝐾, 𝑒2 [𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛]⟩ (PTry)

⟨try □ of <𝑥1, . . . , 𝑥𝑛> → 𝑒2 catch <𝑥𝑛+1, . . . , 𝑥𝑛+3> → 𝑒3 :: 𝐾, {𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋 ⟩ −→ ⟨𝐾, 𝑒3 [𝑥𝑛+1 ↦→ 𝑐, 𝑥𝑛+2 ↦→ 𝑣𝑟 , 𝑥𝑛+3 ↦→ 𝑣𝑑 ]⟩ (ExcTry)

⟨𝐹 :: 𝐾, {𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋 ⟩ −→ ⟨𝐾, {𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋 ⟩ (if F ≠ try □ of . . . ) (ExcProp)

Figure 3. Sequential semantics of exception handling

⟨𝐾, 𝑟 ⟩ −→ ⟨𝐾 ′, 𝑟 ′⟩

(𝐾, 𝑟, 𝑞, 𝐿, 𝑏) 𝜏−→ (𝐾 ′, 𝑟 ′, 𝑞, 𝐿, 𝑏)
(Seq)

(call(’erlang’, ’exit’) (𝜄𝑑 ,□) :: 𝐾, <𝑣>, 𝑞, 𝐿, 𝑏)
send(𝜄𝑠 ,𝜄𝑑 ,exit(𝑣,false) )
−−−−−−−−−−−−−−−−−−−→ (𝐾, <’true’>, 𝑞, 𝐿, 𝑏)

(Exit)

𝜄𝑠 ≠ 𝜄𝑑 ∧ ((𝑏 = false ∧ 𝑣 = ’normal’) ∨ (𝜄𝑠 ∉ 𝐿 ∧ 𝑏𝑒 = true))

(𝐾, 𝑟, 𝑞, 𝐿, 𝑏)
arr(𝜄𝑠 ,𝜄𝑑 ,exit(𝑣,𝑏𝑒 ) )
−−−−−−−−−−−−−−−−→ (𝐾, 𝑟, 𝑞, 𝐿, 𝑏)

(ExitDrop)

(𝑣 = ’kill’ ∧ 𝑏𝑒 = false ∧ 𝑣 ′ = ’killed’)∨
(𝑏 = false ∧ 𝑣 = ’normal’ = 𝑣 ′ ∧ 𝜄𝑠 = 𝜄𝑑 )∨

(𝑏 = false ∧ 𝑣 ≠ ’normal’ ∧ 𝑣 ′ = 𝑣 ∧
(𝑏𝑒 = true → 𝜄𝑠 ∈ 𝐿) ∧ (𝑏𝑒 = false → 𝑣 ≠ ’kill’))

(𝐾, 𝑟, 𝑞, 𝐿, 𝑏)
arr(𝜄𝑠 ,𝜄𝑑 ,exit(𝑣,𝑏𝑒 ) )
−−−−−−−−−−−−−−−−→ (𝜆𝜄 ⇒ (𝜄, 𝑣 ′)) <$> 𝐿

(ExitTerm)

𝑏 = true ∧ ((𝑏𝑒 = false ∧ 𝑣 ≠ ’kill’) ∨ (𝑏𝑒 = true ∧ 𝜄𝑠 ∈ 𝐿))

(𝐾, 𝑟, 𝑞, 𝐿, 𝑏)
arr(𝜄𝑠 ,𝜄𝑑 ,exit(𝑣,𝑏𝑒 ) )
−−−−−−−−−−−−−−−−→ (𝐾, 𝑟, push(𝑞, {’EXIT’, 𝜄𝑠 , 𝑣}), 𝐿, 𝑏)

(ExitConv)

𝑇 [𝜄𝑑 ] = Some(𝑣)

𝑇
send(𝜄𝑠 ,𝜄𝑑 ,exit(𝑣,true) )
−−−−−−−−−−−−−−−−−−→ 𝑇 \ {𝜄𝑑 }

(Dead)

We used two auxiliary notations: 𝜆𝜄 ⇒ (𝜄, 𝑣′ ) <$> 𝐿 transforms the set of

links 𝐿 into a finite map by associating the PIDs in 𝐿 with the value 𝑣′ .
𝑇 [𝜄 ] denotes the reason value associated with 𝜄 in the dead process𝑇 .

Figure 4. Selected rules of the process-local semantics

NSend adds the signal sent by process with PID 𝜄𝑠 to

the ether E. NArrive removes a signal from the ether, and

forwards it to process with PID 𝜄𝑑 . NLocal makes an internal

computation step (or evaluates a self call) with process

identified by 𝜄. Finally, NSpawn spawns a new process with

an unused PID 𝜄2. This step is a side effect of evaluating

a spawn (or spawn_link, denoted by the flag 𝑏) call in the

process 𝜄1. The new process’s initial configuration consists of

an empty frame stack, mailbox, set of links, the trap_exit
flag is set to false, and the expression to evaluate is the result

𝑝
send(𝜄𝑠 ,𝜄𝑑 ,𝑠 )
−−−−−−−−−−→ 𝑝′

(E, 𝜄𝑠 : 𝑝 ∥ Π)
𝜄𝑠 :send(𝜄𝑠 ,𝜄𝑑 ,𝑠 )
−−−−−−−−−−−−→ (E[(𝜄𝑠 , 𝜄𝑑 ) ↦→+ 𝑠], 𝜄𝑠 : 𝑝′ ∥ Π)

(NSend)

𝑝
arr(𝜄𝑠 ,𝜄𝑑 ,𝑠 )
−−−−−−−−−→ 𝑝′ E \1st (𝜄𝑠 , 𝜄𝑑 ) = Some(𝑠, E′)

(E, 𝜄𝑑 : 𝑝 ∥ Π)
𝜄𝑑 :arr(𝜄𝑠 ,𝜄𝑑 ,𝑠 )
−−−−−−−−−−−→ (E′, 𝜄𝑑 : 𝑝′ ∥ Π)

(NArrive)

𝑝
𝛼−→ 𝑝′ 𝛼 ∈ {self(𝜄), 𝜏}

(E, 𝜄 : 𝑝 ∥ Π) 𝜄:𝛼−−→ (E, 𝜄 : 𝑝′ ∥ Π)
(NLocal)

𝑝
spawn(𝜄2,𝑣𝑓 ,𝑣𝑙 ,𝑏 )−−−−−−−−−−−−−−→ 𝑝′

𝜄2 ∉ 𝑂 ∪ PIDs(E) ∪ PIDs(𝜄1 : 𝑝 ∥ Π)
𝐿 = if 𝑏 then {𝜄1} else ∅
𝑟 = apply 𝑣 𝑓 (𝑣1, . . . , 𝑣𝑘 )

(E, 𝜄1 : 𝑝 ∥ Π)
𝜄1:spawn(𝜄2,𝑣𝑓 ,[𝑣1,...,𝑣𝑘],𝑏 )−−−−−−−−−−−−−−−−−−−−−−→

(E, 𝜄2 : (𝜀, 𝑟, ∅, 𝐿, false) ∥ 𝜄1 : 𝑝′ ∥ Π)
(NSpawn)

Figure 5. Semantics of communication between processes

of applying the closure 𝑣 𝑓 to the arguments 𝑣1, . . . , 𝑣𝑘 . Both

the closure and the arguments are communicated from the

process-local semantics: they appear inside the spawn action.
We note that this layer of the semantics is also non-deter-

ministic as it captures all possible interleavings of processes.

Technically, any process can be selected from a process pool

(e.g., by a scheduler) for making a reduction step at any node

state. Program execution is essentially a sequence of such

reduction steps.

This summary hides several details of the semantics: for

the full formalisation, see [6] and the implementation [21].

2.2 Mechanising the Formal Semantics
The formal semantics of Core Erlang are mechanised in

Coq [21]. The syntax and semantics are implemented with

proof simplicity in mind: the syntax is expressed as mu-

tually inductive types with a nameless variable represen-

tation [10, 39], enabling general definitions and proofs for

capture-avoiding substitution, which is used when evaluat-

ing binders, pattern matching, and function application.
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Function definitions

Inductive definitions

sequentialStepFunc processLocalStepFunc interProcessStepFunc

nodeSimpleStepFunc

Sequential Process-local Inter-process

≈ ≈ ≈

Extracted

semantics

Extracted

Core Erlang
program.vPretty-printerprogram.erl

Scheduler

Interpreter

Note: Colors indicate implementation languages: beige for Coq, red for Erlang, and blue for Haskell.

Figure 6. System components and their relationships

The semantics was expressed as inductively defined re-

lations. Inductive relations in Coq are not inherently exe-

cutable: to automatically evaluate a program with the se-

mantics, either a proof tactic (known to be inefficient [2]) or

an equivalent function-based semantics is required [2]; we

employ the latter approach in the following section.

3 The Derived Interpreter
Turning inductive relations defined in Coq into an executable

interpreter takes several steps. The relations describe single

evaluation steps between nodes, while an interpreter needs

to deterministically choose from these steps, repeatedly.

The interpreter itself cannot be constructed entirely in

Coq. Gallina, Coq’s specification language only allows total,

terminating functions. This is because the main use of the

language is proving theorems, and allowing non-termination

would lead to logical inconsistencies. Since many Erlang

programs rely on infinite recursion, it is impossible to make

an interpreter for the language entirely in Coq. Therefore,

in this work, we used the following approach:

1. We construct functions in Coq that are equivalent to

the three layers of the semantics (Section 3.1);

2. We extract these functions into Haskell using the ex-

traction mechanism in Coq (Section 3.2) and optimise

the code for performance and pragmatic reasons;

3. We define a process scheduler in Haskell (Section 3.3);

4. To execute concrete Erlang programs, we build a com-

ponent to translate Erlang code into a Core Erlang

abstract syntax tree in Haskell via Coq (Section 3.4).

Figure 6 displays the components of the system, whichwill

be discussed each in more detail in the following subsections.

3.1 Adapting the Semantics
First, we need to transform the three, inductively defined

semantics layers (Table 1) into computable functions. Defin-

ing these functions also serves as a validation step for the

sequentialStepFunc : FrameStack -> Redex
-> option (FrameStack * Redex)

processLocalStepFunc : Process -> Action
-> option Process

interProcessStepFunc : Node -> Action -> PID
-> option Node

Figure 7. Signature of the step functions

semantics: due to their totality, unspecified behaviour in the

semantics has to be explicitly handled.

All layers define reduction steps between configurations.

In the sequential semantics, the configuration contains a

frame stack and a redex, the process-local layer reduces

processes, while the inter-process semantics handles nodes.

These configurations are reflected in the function-based

definitions too (Figure 7). The functions implementing the

process-local and inter-process rules have an action (and a

PID) argument, which determines the reduction step to take,

and since the inductively defined semantics is not total, we

use option in the return types.

We defined these functions in Coq, with one minor con-

ceptual change in the original definition: closedness
7
precon-

ditions from the inductive semantics were omitted. However,

we proved that our functions preserve closedness, and based

on this property, we also showed the equivalence between

the function-based and the inductive semantics for closed

constructs (such as concrete Erlang programs).

Sequential Step Function. The sequential step function

implements the sequential layer of the semantics. To mini-

mize the number of pattern matches, the function matches

on the redex first, and only matches on the frame stack if

needed. If the semantic rules have other preconditions, they

are checked after the pattern matching. An excerpt is given

in Figure 8, showing the four rules for exception handling (in-

dicated by STry, PTry, ExcTry, and ExcProp in comments).

7
A value, expression, or process is closed if it does not contain free variables.
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Definition sequentialStepFunc
(K : FrameStack) (r : Redex) :=

match r with
...
| ETry e1 vl1 e2 vl2 e3 => (* STry *)

Some ((FTry vl1 e2 vl2 e3)::K, RExp e1)
| RValSeq vs =>

match K with
...
| (FTry vl1 e2 vl2 e3)::K' => (* PTry *)

match vl1 =? length vs with
| true =>
Some (K', RExp e2.[list_subst vs idsubst])

| _ => None
end

| RExc (cl, rn, dt) =>
match K with
| (FTry vl1 e2 3 e3)::K' => (* ExcTry *)

Some (K', RExp e3.[list_subst
[exclass_to_value cl; rn; dt] idsubst])

| F::K' => (* ExcProp *)
match isPropagatable F with
| true => Some (K', RExc (cl, rn, dt))
| _ => None
end

| _ => None
end

end

Figure 8. Exception handling rules (sequential step function)

Process-local Step Function. The function-based process-
local semantics is the most complex of the three functions.

While the sequential semantics is deterministic, the process-

local semantics is not. For all processes, two kinds of reduc-

tions can be performed (based on the concurrent action):

• A computation step (i.e., a non-arrival step), which is

deterministic for live processes (e.g., Seq, Exit). It is

possible that no non-arrival action could be performed

on a living process, if it is waiting for a message to ar-

rive. On the other hand, the only action dead processes

can perform involves the Dead rule, which is nonde-

terministic, due to the unspecified order in which exit

signals should be sent to the linked processes.

• A signal can arrive, if the destination process of the

signal is alive (e.g., ExitDrop, ExitTerm, ExitConv).

The step that a process should take is determined by

the concurrent action, which is propagated from the inter-

process semantics. The scheduling of these actions will be

discussed in the following paragraphs. Furthermore, to de-

fine exit signal arrival in the function, a complex nested

case separation was needed to express the preconditions of

ExitDrop, ExitTerm, and ExitConv.

Worth mentioning that due to the totality of the function-

based semantics, a handful of edge cases were discovered

that were not covered by the three exit rules. However, in all

these cases, the destination of the signal matched its source,

and the link flag of the exit signal was set. Processes cannot

be linked to themselves, therefore, they cannot send signals

to themselves via links, and thus these configurations cannot

occur in an Erlang system. For this reason, the function-based

definition returns the value None of Coq’s option type in

these cases.

Inter-process Step Function. As mentioned before, the

inter-process semantics (Figure 5) selects a process from

the process pool, and reduces it with a process-local step,

while potentially modifying the ether or the process pool

of the node. However, the semantics does not specify the

order in which processes should evaluate, nor the order of

signal arrival. In the case of NSpawn, the PID of the spawned

process is also required to be unused.

We designed the equivalent, function-based variant of this

semantics to match the behaviour of the inductive relation;

so the function also takes an action and a PID as parameters

(interProcessStepFunc in Figure 7). However, for an inter-

preter, using this function directly is cumbersome because

the action parameter needs to be constructed for every step.

To have a better interface with the inter-process step func-

tion, we wrapped it into another function that only takes

the PID (or PIDs), and the action itself is determined from

these parameters and the state of the node (see Figure 9). In

particular, if this function is applied with a single PID, the

process identified by it makes a non-arrival reduction step

(either NSend, NLocal, or NSpawn). When spawning new

processes, a fresh PID is assigned to them that does not exist

in the process pool or the ether. If the function gets called

with a source-destination PID pair, a signal from the ether

arrives to the process identified by the destination PID from

the source PID (as in NArrive).

nodeSimpleStep: Node -> PID + (PID * PID)
-> option (Node * Action)

Figure 9. Declaration of the node’s simple step function

With this simplified function for the inter-process seman-

tics, only a scheduler is needed to execute it for a concrete

program, and the scheduler only needs to generate these PID

or PID pair values, which we discuss in Section 3.3.

3.2 Extracting the Code
The Coq proof assistant has a built-in mechanism for extract-

ing function definitions into Haskell, OCaml or Scheme [11].
8

We chose extraction to Haskell not only because it offers

a rich ecosystem of libraries and profiling tools, but also

because lazy evaluation is generally advantageous for us.

8
Even though the extraction mechanism is trustworthy, semantics-

preservation is not formally guaranteed.
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Definition pool_lookup (pid : PID) (prs : ProcessPool)
: option Process := lookup pid prs.

pool_lookup :: PID -> ProcessPool
-> Prelude.Maybe Process

pool_lookup pid prs =
lookup (gmap_lookup eq_dec1 nat_countable) pid prs

pool_lookup :: PID -> ProcessPool
-> Prelude.Maybe Process

pool_lookup = Data.HashMap.lookup

Figure 10.Wrapper function for lookups in the process pool

Although Haskell extraction is unverified and it is not as

mature as it is to OCaml, all the features we use are simple

enough to be handled correctly. On the other hand, we may

consider verified extraction into OCaml [14] in the future.

During extraction, if a definition depends on other def-

initions, those will also get extracted automatically. Data

type definitions can be swapped for preexisting definitions

in the target language. Similarly, function definitions can be

replaced with constants and functions can also be inlined.

Using definitions extracted from Coq without utilising

the abovementioned extraction customisation features is un-

likely to yield the desired result. The generated codewill have

redundant definitions for existing types and functions in the

target language that have been implemented in a more effi-

cient way. The Coq standard library provides some extraction

options for basic types such as booleans, natural numbers, in-

tegers, and strings. While types do get replaced, the Haskell

imports for these need to be included in a post-processing

step alongside missing Eq and Show instance derivations.

Extracting Maps and Sets. The semantics functions we

designed in Coq utilised gmaps and gsets from the std++
library [41]. These are map and set representations, imple-

mented using extensional binary tries.While these data types

behave correctly after extraction, they are not as efficient as

Haskell’s map and set alternatives. We fine-tuned the extrac-

tion of gmaps into HashMaps, and gsets into HashSets.
However, these data types are implemented quite differ-

ently in Coq and Haskell. The gmap implementation uses im-

plicit arguments, which are turned into explicit arguments

during the extraction. Haskell’s HashMap implementation

uses type classes instead. This makes the interfaces of the

operations incompatible. To mitigate this issue, we use wrap-

pers around std++ functions; they can still be evaluated in

Coq, but during extraction they get replaced and inlined

with their Haskell counterparts. These replacements are not

proved correct; instead we use property-based testing in

QuickCheck [9] for the map and set functions in the differ-

ent implementations to verify that they give equal results.

As an example, Figure 10 presents pool_lookup, a wrap-
per function for looking up processes inside the process

pool. The top of the figure is the Coq implementation, where

lookup is the lookup function of std++ maps. The middle

code segment is the extracted Haskell version without any

replacements during extraction. Since implicit arguments are

turned explicit during extraction, lookup has an additional

argument, which contains information about the countability

of natural numbers and the decidability of equality between

them. Haskell’s HashMap.lookup does not need these, since

it is implemented using type classes. Only pid and prs is

needed. The bottom of the figure presents the function after

the constant replacement during extraction: The type sig-

nature of pool_lookup matches that of HashMap.lookup.
Note that functions replaced with constants are eta-reduced.

For even more efficiency, definitions can also be inlined.

One caveat with this approach is the type definitions. Since

gmaps and gsets are used in some declarations, the type

definitions themselves need to be replaced with aliases to

Haskell’s HashMaps and HashSets. Unlike with functions,

Coq’s inductive types cannot be freely replaced with con-

stants in the extraction mechanism. Therefore, these changes

had to be done during the post-processing step.

Strict Evaluation of Substitutions. One of the key prop-
erties of Haskell is lazy evaluation. Evaluating expressions

only when they are needed comes with many advantages,

such as performance improvements or infinite data struc-

tures. There are however some disadvantages to lazy evalua-

tion. Unevaluated expressions are kept in memory as thunks,

and these thunks can easily cause issues with space leaks
9
.

Substitutions in the sequential layer of the semantics cause

memory management issues with lazy evaluation. Substi-

tutions traverse the entire structure of the program, and

evaluating them using lazy evaluation caused exponential

thunk build-up in the memory, consuming as much as a

gigabyte in 10 seconds. To overcome this, our interpreter

can evaluate substitutions strictly using Haskell’s DeepSeq
library: the function deepseq forces the full evaluation of

its first argument before its second. Unfortunately, this is a

major step backwards in terms of runtime, as is shown in Sec-

tion 5; however, without this change, the interpreter would

be incapable of operating on a standard personal computer.

Figure 11 presents how the subst function wasmade strict

using DeepSeq. Since all other substitution functions are

called by subst or a descendant of subst, only this function
needs to be made strict.

Simplified Substitutions. Another performance limi-

tation originated from the general definition of capture-

avoiding parallel substitution. To ensure capture-avoidance,

the substitution relies on renaming of free variables in the

substituted values. However, if the substituted values are

closed (i.e., they do not contain variables), this renaming

is an unnecessary traversal of the value’s syntax tree. In

9
Unlike other forms of memory leaks, space leaks can get resolved after the

evaluation of thunks, given enough memory.
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subst :: Substitution -> Exp -> Exp
subst xi base =
case base of { VVal v -> VVal (substVal xi v);

EExp e -> EExp (substNonVal xi e)}

subst :: Substitution -> Exp -> Exp
subst = (\xi base ->

case base of {
VVal v -> let v' = (substVal xi v)

in v' `deepseq` VVal v';
EExp e -> let e' = (substNonVal xi e)

in e' `deepseq` EExp e'})

Figure 11. Strict evaluation of substitutions

the evaluation of concrete programs, due to the strictness

of (Core) Erlang, substituted expressions are always fully

evaluated, which could not be done if there are free variables.

Therefore, we specialised substitutions for closed values by

eliminating the unnecessary renaming operations.

3.3 Deterministic Scheduling
As explained already, Erlang program behaviour is nonde-

terministic: the runtime system schedules processes’ com-

putation steps, and external factors determine whether and

when signals get sent or delivered. This nondeterminism ap-

pears in the formal semantics as either multiple rules being

applicable to the current node configuration, or particular

rules being applicable with different arguments.

For instance, when multiple processes can make local com-

putation steps, they race for the NLocal rule to be applied

with their PIDs; similarly, if a dead process is sending exit sig-

nals to its links (where the notification order is not defined),

the pending messages are racing for NSend to emit them

into the ether. Processes may also be eligible to progress

with multiple node semantics rules: they may be waiting for

messages to be delivered with NArrive, at the same time of

awaiting local computations to be executed by NLocal.

Building the interpreter on top of the formal semantics,

we designed it to run programs under an arbitrary but deter-

ministic scheduling strategy; this ensures that running the

program multiple times using the same scheduling will give

consistent results. To this end, choices were abstracted from

the semantic functions into a so-called scheduler component,

which only has to specify the PID (identifying the process

that takes computation steps) or a pair of PIDs (identifying

the processes between which communication action will be

carried out) to take action with.

Interpretation Cycles. Execution happens in cycles. Each
cycle activates a process, allows it to take local steps, then

the node delivers signals awaiting arrival. More precisely,

1. The active process is allowed to take at most 𝑘 non-

arrival steps (local computation, signal sending or pro-

cess spawning, determined by the state of the process),

and if at any point a non-arrival step is not possible

(e.g., because the process is waiting for a message to

arrive), the interpreter moves to the next point.

2. If the active process terminates, all its links get notified

immediately (signals are sent).

3. All signals floating in the ether are delivered to their

destination (making arrival actions).
10

With this strategy, we uniquely define a sort of action for

every node state, eliminating the nondeterminism stemming

from themultiple semantic rules applicable in the operational

semantics. Note that in this setting, the node state includes

the semantic configuration (describing the entire state of the

Erlang node) along with the identifier of the active process.

However, even if the rule to be applied is determined by

the above strategy, the parameterisation may vary: in (2) the

notification order of the dead process’s links is not defined

and therefore nondeterministic, as well as in (3) the order of

signal arrivals (across the entire system) is not defined and

an arbitrary order can be applied as long as it respects the

signal ordering guarantee.

Scheduling Signal Sending in Dead Processes. When

processing dead processes, we transform the links into a list

from their original map representation, and the exit signals

are sent to the links based on their order in this list.While this

is not ideal, as nondeterminism for dead processes cannot

be resolved in a custom way, since the interpreter sends

out all the exit signals from a dead process and then in a

subsequent step all these signals are delivered, the order of

them becomes irrelevant.

Scheduling Signal Arrival. During signal arrival, non-
determinism is caused by two or more processes having sent

signals to the same process, since the order in which these

signals arrive at the destination process is not specified. Note,

however, that the order of multiple signals from the same

process must be the same during arrival, so in this scenario

the order is defined. Now observe that in our solution, only

the latter scenario can happen, the signals in the ether after

the 𝑘 non-arrival steps fall into two categories:

• Signals with destination PIDs not present in the pro-

cess pool. These signals will never arrive, as processes

will not spawn with these destination PIDs.

• Signals with source PIDs that match the current pro-

cess in focus. Note that this category is not necessarily

distinct from the previous one.

When the interpreter tries to deliver all signals from the

ether, all signals that can be delivered will have the same

source PID. The same can also be said for the exit signals from

dead processes. Since no arrivals are happening between the

same destination and different sources, nondeterministic

behaviour is simply ruled out.

10
Signals that cannot be delivered remain in the ether.
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Scheduling Processes for Non-arrival Steps. Since the
interpreter runs on a single thread, there is always exactly

one active process in our simulated Erlang system. To choose

the next process in focus, a Scheduler typeclass was devel-
oped in Haskell, making schedules parametric. A scheduler

needs to be able to provide PIDs for non-arrival steps or

pairs of PIDs for arrival steps; it also needs to adjust its in-

ner state based on the action taken (e.g. process spawning).

Note that the separation of the scheduler facilitates formal

reasoning about its properties (such as starvation-freedom)

in the theorem prover, and integration after extraction.

By default, our interpreter uses basic round-robin sched-

uling [24] to choose the next active process. The scheduler

tracks PIDs of processes in a list and uses an index to point

to the currently evaluating PID. This index gets decreased by

1 at process termination, increased by 1 at spawning a new

process, and increased by 1 when moving along to the next

process (after the last element of the list, the index gets reset

to 0). When a new process is spawned, the PID of the new

process gets added to the start of the list. When a process

terminates, after all the exit signals get sent out to the linked

processes, the PID of said process gets removed from the

list. An empty scheduler list means that all processes have

terminated and thus the computation is finished.

3.4 Integration
For our formally based interpreter to execute Erlang pro-

grams we had to implement a gluing component that trans-

lates Erlang program text into Core Erlang abstract syntax

tree (AST) expressed in Coq. Similarly to previous work [2],

we did not implement a parser in Coq for Core Erlang, but

rather exploited the standard compiler’s features: namely,

we translated Erlang into Core Erlang, and implemented a

pretty-printer (based on the abstract syntax of Core Erlang in

Erlang). In contrast to previous work [2], this pretty-printing

is not only translating Core Erlang AST in Erlang into an

AST in Coq: the Coq formalisation uses a nameless variable

representation [10], so erasure of (variable) names from the

syntax trees was also necessary.

To start the evaluation of the translated Erlang program,

we extract the program and the step functions to Haskell.

We then initialize a node with a single process that evaluates

the main/1 function of the extracted program; the semantics

can then be executed on this node by the scheduler.

4 The Computation Graph
The interpreter presented in the previous section explores

only a single execution path per program run, employing

a flexible but deterministic scheduling policy. As a result,

running a program consisting of deterministic processes will

show deterministic behaviour. However, sometimes what we

need is not to execute a particular scheduling but to have an

overview of all the possible interleavings.

The observable behaviour of a concurrent program is de-

termined by the order in which key concurrency and com-

munication operations occur, such as process creation, signal

sending and arrival. Our semantics explicitly models these

points of nondeterminism, allowing us to formally capture

and analyse the range of possible execution paths; this has

already been demonstrated in a case study [6, Figure 13].

To better support this kind of program comprehension,

we made an alternate interpreter that, rather than following

a single deterministic scheduling, enumerates every possible

execution path. Building on this formal semantics-based state

exploration technique, we present a tool that visualises the

execution paths of concurrent Erlang programs concisely,

allowing developers to analyse and understand program

behaviour under different schedulings.

4.1 Design
The various execution paths are captured in a computation
graph, whose nodes correspond to system states (configura-

tions in the formal semantics) and whose edges represent

the application of semantic rules to transition system states.

In general the number of potential node states is infinite,

and the number of reduction steps, even in terminating sys-

tems, may be vast. Therefore, the computation graph we

present does not directly mirror each individual interpreter

step; rather, to ensure clarity and scalability, we apply a

number of principles in the construction of these graphs.

We compress 𝜏- (and self ) reductions. The vast majority

of steps occurring within the sequential layer of the seman-

tics are 𝜏-reductions. Representing each such step explicitly

would lead to an overwhelming number of nodes without

contributing to the comprehension of concurrent behaviour.

Where appropriate, these reductions are grouped together.
Since such reductions are deterministic and confluent ([6,

Theorem 4]) we do not risk missing any graph forks.

The computation graph is not necessarily a tree: nodes

may be shared between different execution paths. That is, if

multiple paths lead to the same semantic configuration, we

represent this convergence explicitly by reusing the corre-

sponding node, rather than duplicating it. This allows the

graph to reflect where execution paths diverge and merge,
which is essential for understanding non-deterministic con-

current computation.

Building the Graph. The graph builder component uses

the following process, based on the rules discussed above.

(1) Constructing the initial configuration: A graph correspond-

ing to a particular program is built iteratively: initially it

contains only a root node depicting the starting configura-

tion, which is selected for further processing.

(2) Executing local computation steps: Next, every process

in its configuration’s process pool needs to be “advanced”

further in their evaluation through 𝜏 and self actions. To

prevent infinite evaluation of non-communicating processes,
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at most k steps can be performed at each stage per process

in the pool. If no further 𝜏 or self steps can be made for

particular process, then it either a) has finished its execution;

b) is blocked; c) has run out of the above limit of steps; or d)

can take a step with an action other than 𝜏 or self.
(3) Merging with existing states: In any of the cases, once all

the possible processes have been “advanced”, a new node is

formed, depicting a configuration state before performing a

critical Erlang-node-level reduction, which is also a poten-

tial point of non-deterministic path divergence. However,

before deriving the outgoing edges of the new node, it is

checked against all existing nodes: if two nodes contain the

same semantic configurations then they are merged and the

building function for the current graph path stops.

(4) Forking new execution paths: Otherwise, the graph builder

examines which path forks are possible from the newly con-

structed node. The options correspond to the possible reduc-

tion steps for the processes in the pool. Each of these steps,

represented by the tuple of a targeted PID and an action

taken, marks a separate outgoing edge from the graph node.

Based on the computed map of such PID-action values, the

next path continuations can be constructed. If the map is

empty, then construction below this node is terminated.

(5) Executing the forks recursively: Next, for every option in

the map, the path’s continuations are built in a recursive

manner. First, the chosen reduction step needs to be applied

to the semantic configuration. Afterwards, the instructions

starting from Step (2) are repeated until the graph path is

concluded or the depth-bound provided, m, is reached.

Conceptual Optimisations. A potential optimisation

concerns Step (2). When a new node is formed, all the pro-

cesses in the process pool are advanced up to their “limit”

within the context of 𝜏-related actions (if a process actually

exceeds the k step limit, it is assumed to be infinitely run-

ning and non-communicating). Therefore, after performing

system-level configuration reduction from Step (5), the only

processes that would be able to “advance” with Step (2) fur-

ther are the ones transformed by the action taken. Thus, only

those processed affected by the transformation performed

at Step (5) need to be examined each time.

Another improvement concerns Step (4). The possible

system-level reduction steps do not have to be recomputed

each time a new node is formed for the processes that have

not been advanced in Step (2). In other words, recomputing

the PID-action map in Step (4) should happen only for the

processes targeted by the system-level reduction performed

at the start of the graph subpath. The rest of the values can

be reused from the previous iteration.

4.2 Implementation
The implementation of the computation graph constructor

is made up of three components: an abstract graph builder,

a data translator to JSON-format, and a graph displayer.

Figure 12. The computation graph of pmap example (WIP).

The Graph Builder. The abstract graph builder is imple-

mented in Haskell and reuses the extracted functions from

Section 3.2. It follows the workflow described in Section 4.1,

with the following architectural approach.

The graph node structure includes the following fields: a
node depth limit, an optional PID-action tuple representing

the preceding system level reduction step, a map of PID-

action tuples representing “pending” system-level reductions

computed at earlier steps,
11
a list of PIDs that exceeded the

step limit for 𝜏 reductions at the previous step, and a semantic

node configuration along with its hash.

The hash node field is present to identify the nodes and

facilitate their “symbolic” merging. This decision also allows

the use of tree-like data structures to store the graph itself.

Despite the approach being general, there are still scenar-

ios where the computation graph does not depict all possible
execution paths. This issue stems from the implementation

not supporting non-deterministic notification of links; in-

stead, the links are always sent signals in a particular order.

In addition, many system-level reductions as well as 𝜏-steps

are recomputed several times while being on different exe-

cution paths; this can be mitigated using memoization.

Data Translation and Graph Display. The data transla-
tor transforms and outputs the internal graph data structure

to the format processable by the graph display component

to the file, which can be later passed to the display module.

The display component is the one virtually responsible

for showing the computation graph. The graph visualisa-

tion problem in general is not new, and there are multiple

software solutions addressing it: for instance, Graphviz [18]

and its DOT language have been in use since the 1990’s.

We chose instead to adopt a solution that supports dynamic

display and inspection of information, including configura-

tions: Cytoscape.js [15] allows importing graph data from

JSON format, making it a suitable option for representing the

graph, and it provides a smooth, intuitive node rearrange-

ment, which is essential for displaying large, dense graphs.

11
Excluding message arrivals. Those are derived from the state of the ether.
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Figure 12 displays a capture of the computation graph

constructed from the pmap example (Figure 2). We note that

receive expressions in Core Erlang consist of several primi-

tive operations, which are denoted by “epsilon”. The different

paths on the graph show all possible orders in which primi-

tive operations of receive andmessage sending (and arrival)

from process 2 can happen. For example, in the topmost path

process 1 tries to receive a message that has not been sent,

and gets stuck on the infinity timeout until that message

arrives from process 2 (by “2 : send” and “1 : arrive”). Then

process 1 receives the message (“1 : epsilon”) and concate-

nates the two list segments. The final step (“2 : epsilon”)

denotes the termination of process 2.

5 Evaluation
The semantics itself covers a significant subset of Core Erlang.

Since both the interpreter and the graph drawer build on

functions equivalent to the semantics, they cover the same

subset of the language. Notable features not covered include

floating-point numbers, binaries, and the module system.

The ErLLVM Benchmarking Suite was used [42] for test-

ing the interpreter. The pretty-printer (Section 3.4) gives

warnings for features not implemented in the semantics; if

it produces no warnings, then the interpreter can run the

program. The semantics defined in [6, 21] uses 2-parameter

variants of spawn and spawn_link due to the lack of a for-

malised module system: applications of these functions in

our tests had to be rewritten into this format manually.

The machine used for evaluation has an 11th Gen Intel

Core i5-1135G7 processor, with a clock speed of 2.4GHz and

16GB of RAM. Since the interpreter runs on a single thread,

the number of CPU cores is irrelevant. Haskell modules were

compiled with GHC 9.6.7, using the -O2 flag.

Tests were conducted for three example programs using

different optimisations. The first is an evaluation of pmap
(Figure 2); a long list of zeros is transformed by adding one to

each element. The second and third are modified programs

from the ErLLVM Suite. length constructs a 20 thousand

element long list and calculates its length 500 times. life
is an implementation of John Conway’s Game of Life, on

a 10 × 10 board for 10,000 iterations. pmap use 2 processes,
length only 1, and life spawns 100, one per cell.
The four tests for each program were:

1. Running the extracted program untransformed.

2. Evaluating substitutions strictly.

3. Replacing the extracted gmaps and gsets with Haskell

HashMaps and HashSets.
4. Replacing substitutions with a simplified counterpart.

Each of these transformations subsumes the preceding

ones. Table 2 shows the data collected during the evaluation.

The execution time and memory usage figures for substitu-

tions, map and set operations, and scheduler operations are

broken down by percentages. A runtime estimate is given

for each test, along with a maximum memory usage figure

in 2 minutes of runtime. Note that in the highlighted rows,

substitutions are evaluated lazily, resulting in a space leak.

The maximum memory consumed in 2 minutes therefore

does not reflect the true maximum of memory usage.

These tests revealed that substitution is by far the most

significant bottleneck; this should be no surprise, since sub-

stitutions traverse the entire structure of the program every

time a binder (e.g., let, try, case) is evaluated. As discussed
in Section 3.2, this traversal cannot be avoided with lazy

evaluation due to the accumulation of unevaluated thunks.

Not counting evaluations with space leaks, substitutions

accounted for almost all the execution time and memory

usage in the tests. This reflects earlier work on interpreter

performance, as discussed in Section 6.

6 Related Work
The first interpreters were built in the 1950s, and they con-

tinue to be developed now, as evidenced by books like Craft-
ing Interpreters [34]. Reynolds’ work on definitional inter-

preters [37] takes a more rigorous approach where higher-

order functions in the interpreter are systematically replaced

by closures. Language workbenches, e.g. Spoofax [23], offer

a different approach by providing toolsets for building tools,

including interpreters, for domain-specific languages.

The approach taken in this paper is to extract a program
from an artefact that has been mechanised in a theorem

prover. Many theorem provers support this, including Is-

abelle and Coq [11], from which it is possible to derive code

in OCaml (the default), Haskell and Scheme.

Mechanised meta-theoretic proofs about language prop-

erties can be the basis for extracting interpreters from those

proofs. Early work [7] extracts code from normalization

proofs: formalisations of Tait’s normalization proof for the

simply typed 𝜆-calculus are developed in the proof assis-

tants Minlog, Coq and Isabelle/HOL, and normalization-by-

evaluation algorithms are extracted from each of these. More

recently, Wadler et al. [25] extracted an evaluator from a

constructive proof of preservation and progress in Agda.

Using intrinsically-typed definitional interpreters [44], it is

possible to build “progressful” interpreters whose types cer-

tify their own soundness and progress [36]. Complementary

work shows how a formally verified compiler for a subset

of Java (rather than an interpreter) can be extracted from

a proof assistant [8]. The CakeML [27] and CompCert [32]

projects show that formalised language processing scales to

practical, real-world languages, namely ML and C.

Finally, the K framework [38] can automatically generate

interpreters directly from a language’s small-step semantics

rules. Moreover, the derived interpreters achieve decent per-

formance by compiling the rewrite rules’ pattern matching

into optimized decision trees, which are subsequently trans-

lated into low-level code through K’s LLVM-based backend.
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Table 2. Summary of data gathered during evaluation tests

Execution time (%) Memory usage (%) Max mem. runtime

subst map/set sched other subst map/set sched other in 2 min. (est.)

pmap
(100000 list)

raw Coq extraction 25.2 42.3 1.3 30.2 30.0 26.1 1.2 42.7 1.5GB * 3 s

strict substitutions 96.8 1.2 0.0 2.0 48.7 14.3 0.8 36.2 48MB * 44 s

maps/sets replaced 98.3 0.1 0.0 1.6 55.2 6.3 0.9 37.6 49MB * 44 s

improved substitution 98.1 0.2 0.0 1.7 38.8 8.4 1.3 51.5 46MB * 44 s

length
(20000 list,

500 iters)

raw Coq extraction 89.3 5.5 0.2 5.0 91.3 2.9 0.1 5.7 >16GB ** (killed)
strict substitutions 98.4 0.9 0.0 0.7 95.8 1.4 0.1 2.7 12MB 87min

maps/sets replaced 99.2 0.1 0.0 0.7 96.5 0.5 0.1 2.9 12MB 87min

improved substitution 98.8 0.1 0.0 1.1 91.9 1.1 0.2 6.8 11MB 56min

life
(10x10 board,

10000 iters)

raw Coq extraction 33.6 40.8 5.8 19.8 38.5 49.5 5.0 7.0 984MB 1.4 h

strict substitutions 92.1 6.1 0.5 1.3 90.5 8.1 0.7 0.7 84MB 16.2 h

maps/sets replaced 97.3 1.2 0.5 1.0 97.5 1.0 0.7 0.8 83MB 15.8 h

improved substitution 96.2 1.1 0.9 1.8 85.2 4.3 4.8 5.7 64MB 6.6 h

Note: Executions highlighted with red have space leak issues

* The program terminated before the 2 minute mark

** The machine used for evaluation ran out of memory before the 2 minute mark

Interpreter Performance. Wadsworth’s PhD thesis [45]

builds an interpreter for the 𝜆-calculus based on expression

substitution (as we do). Interpreter performance was im-

proved by compiling to combinators [43] and supercom-

binators [12], and culminating in the spineless, tagless, G-

machine [22] that underlies the current implementation of

Haskell. These improved the efficiency of evaluating (lazy)

functional programs bymoving away from directly rewriting

expressions, thus no longer reflecting a direct interpretation

of a high-level semantics.

Formal Semantics of Erlang. The semantics of Core Er-

lang [4, 6] used for this project is not the first formalisation of

this language. The most well-known formalisation of Erlang

(including sequential, concurrent, and distributed semantics

too) was created by Fredlund [16, 40], which served as a

basis for the McErlang [17] model checker. There is exten-

sive research conducted by Lanese et al. [26, 28–31] about

reversible semantics of Core Erlang and casual debugging.

Furthermore, there are also machine-checked formalisations

of subsets of Core Erlang in Isabelle [1, 20]. Our interpreter is

based on the semantics made by Bereczky et al.[6] because it

defines a recent version of the language (e.g., it implements a

change about receive expressions from Erlang/OTP 23 [19]),

and is fully mechanised, including a set of theorems.

7 Conclusion
We have presented an interpreter for Erlang derived from

a mechanised formal semantics for Core Erlang in Coq. We

have described the ecosystem needed to build an optimised

version of the tool that covers the Erlang language, using a

scheduler to present a deterministic semantics. We have also

built a rendering of the computation graph that shows the

non-deterministic choice points that arise during computa-

tion of concurrent programs in Erlang.

This work has delivered a working, high-assurance ref-

erence interpreter for Erlang with less than a person-year

of work. The tool is correct by construction as it is derived

from the semantics, relying only on the correctness of the

extraction tooling, the code optimisations and the standard

translation from Erlang to Core Erlang.

Future Work. We have presented a minimal viable inter-

preter for Erlang, based on the semantics mechanised in Coq.

Beyond the discussion in the paper, We will investigate fur-

ther ways of improving the interpreter performance while

preserving the trustworthiness of the code.

We aim to extend the coverage of the interpreter to fea-

tures of Erlang not yet covered, including floating-point

numbers, bitstrings, further signals (e.g., monitor, demoni-
tor) and process dictionaries. Incorporating these requires

changes to the formal semantics, with consequent revisions

of proofs about the semantics. However, these changes are

expected not to affect all three semantics layers and proofs.

For example, adding binaries and floats needs additions on

the sequential level, while formalising further signals and

process dictionaries has to be done on the process-local level.

We will also fully develop the graph construction to a

functional state, and address its behavioural issues discussed

previously. Beyond this we will explore ways of making the

(presentation of the) computation graph interactive.
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