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ABSTRACT Accurate cone-beam CT (CBCT)-to-synthetic CT (sCT) translation is essential for image-
guided adaptive radiotherapy (IGART), where Hounsfield unit (HU) fidelity and structural accuracy directly
affect dose calculation. We propose a conditional 3D Latent Diffusion Model (3DLDFM) for volumetric
CBCT-to-sCT synthesis. The framework comprises two stages: 1) a 3D variational autoencoder with KL
regularization that compresses CBCT volumes into a three-channel latent representation, trained with a
composite loss combining L1 reconstruction, perceptual, KL, and adversarial terms; and 2) a conditional
3D U-Net diffusion model that performs iterative denoising in latent space using a DDPM-style noise
schedule, conditioned on the input CBCT. We evaluated 3DLDFM on the multi-center SynthRAD2023
dataset comprising 955 paired CBCT/CT volumes spanning head-and-neck, thorax, and abdominal sites.
Performance is benchmarked against SwinUNETR, nnUNet, CycleGAN, and Pix2Pix using Mean Absolute
Error (MAE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM) within
body masks. Across all regions, 3DLDFM achieves the lowest overall MAE (51.40 HU) and the highest
overall SSIM (0.9124), while maintaining competitive PSNR (30.60 dB), surpassing all baselines in HU
accuracy and structural fidelity. These results demonstrate that the proposed latent diffusion framework
provides a robust and generalizable solution for CBCT-to-CT synthesis and strengthens the feasibility of
simulation-free adaptive radiotherapy workflows.

INDEX TERMS Cone-beam CT, synthetic CT, latent diffusion model, image-guided adaptive radiotherapy,
image-to-image translation, deep learning.

I. INTRODUCTION

Image-Guided Adaptive Radiotherapy (IGART) represents
the current frontier in precision oncology, offering the abil-
ity to dynamically modify a patient’s treatment plan in
response to daily anatomical changes, thereby maximizing
therapeutic dose to the target volume while minimizing
toxicity to organs-at-risk [1], [2], [3], [4]. A foundational
challenge in implementing IGART is the accurate and rapid
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recalculation of the radiation dose on a daily basis [5], [6].
While Cone Beam Computed Tomography (CBCT) is the
standard on-board imaging modality, providing essential
high-resolution geometric information for daily patient setup
and tracking, its clinical utility for quantitative dose calcula-
tion is severely limited [7], [8], [9]. CBCT scans inherently
suffer from significant artifacts due to scatter, image noise,
and beam hardening, resulting in substantial Hounsfield Unit
(HU) inaccuracies that can lead to dosimetric errors of up to
5-10%—a margin unacceptable for high-precision adaptive
planning [10]. Consequently, the clinical workflow demands

© 2026 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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a robust method to synthesize a high-quality, planning syn-
thetic CT (sCT) image from the daily CBCT scan, effectively
correcting the HU values to enable accurate dose accumula-
tion and real-time adaptation [11], [12].

The critical need for high-fidelity CBCT-to-sCT genera-
tion has spurred extensive research, particularly leveraging
advancements in Deep Learning (DL) [5], [13], [14]. Early
approaches based on deformable image registration (DIR)
struggle with complex tissue interfaces and large anatomical
shifts [15], [16]. The field quickly transitioned to Convo-
lutional Neural Networks (CNNs), prominently featuring
U-Net and Generative Adversarial Networks (GANSs) [17],
[18], [19], [20], [21], [22], which model the image-to-image
translation task. While these methods have achieved clinical
feasibility by significantly mitigating artifacts and improv-
ing HU accuracy, they face two key, persistent limitations
that hinder their widespread adoption in high-stakes IGART.
Firstly, models trained with mean-squared error (L1/L2)
loss often yield over-smoothed sCT outputs, sacrificing the
fine textural details and sharp edges critical for distinguish-
ing between soft tissue structures and precisely localizing
heterogeneous bony interfaces [22], [23]. Secondly, their
deterministic nature struggles to capture the inherent condi-
tional image distribution, leading to limited generalization
when encountering novel artifacts or anatomical variances
outside the training distribution, which are common in clini-
cal practice [24], [25].

Despite these advances, current CBCT-to-sCT methods
still face a fundamental tension between HU fidelity, struc-
tural sharpness, and robustness across scanners, anatomies,
and institutions. In the context of IGART, where inaccurate
HUs can propagate directly into erroneous dose calculations
and suboptimal plan adaptations, there is a pressing need
for generative models that (i) explicitly model the full 3D
volumetric structure, (ii) remain resilient to CBCT-specific
noise and artifacts, and (iii) are computationally tractable
for routine, daily clinical use. These requirements motivate
the development of a principled, probabilistic framework that
can better capture the underlying conditional distribution of
sCT given CBCT, rather than relying solely on deterministic
pixel-space mappings.

To address these shortcomings and elevate the quality
and reliability of sCT generation, this paper introduces an
approach based on the Three-Dimensional Latent Diffu-
sion Model (3D LDM). Diffusion Models, characterized by
an iterative denoising process, have demonstrated unparal-
leled performance in generating high-quality, photorealistic
images by accurately modeling complex data distribu-
tions [24]. By implementing the diffusion process in a
compressed latent space, the 3D LDM architecture efficiently
handles the substantial computational requirements of vol-
umetric medical data (CBCT and sCT) while effectively
conditioning the generation on the CBCT volume. This strate-
gic use of 3D architecture ensures that cross-slice anatomical
consistency and full volumetric context are preserved dur-
ing the translation, a crucial factor often compromised by
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slice-by-slice 2D methods. The main contributions of this
study are summarized as follows:

e We propose a conditional Three-Dimensional Latent
Diffusion Model (3DLDFM) for CBCT-to-sCT synthe-
sis that operates in a compressed latent space, enabling
computationally efficient, fully volumetric genera-
tive modeling while preserving cross-slice anatomical
consistency.

e We designed a composite training objective for the
autoencoder that combines L1 reconstruction, percep-
tual, KL divergence, and adversarial losses, explicitly
targeting HU fidelity, structural sharpness, and percep-
tual realism in the reconstructed sCT volumes.

e We conduct a comprehensive evaluation on the Syn-
thRAD2023 dataset comprising 955 paired CBCT/CT
volumes across head-and-neck, thorax, abdominal
sites, and benchmark 3DLDFM against strong base-
lines (SwinUNETR, nnUNet, CycleGAN, Pix2Pix)
using MAE, PSNR, and SSIM.

e We demonstrate that 3DLDFM consistently improves
HU accuracy and structural similarity over all baseline
models and anatomical regions while maintaining com-
petitive PSNR, thereby providing a robust and general-
izable solution for simulation-free IGART workflows.

The structure of this paper is as follows: Section II reviews
the background of image-to-image translation in radiotherapy
and the emergence of diffusion models. Section III elaborates
on the technical details of the proposed 3D Latent Diffusion
Model architecture. Section IV describes the experimen-
tal methodology, dataset, and training protocol. Section V
presents and discusses the superior performance achieved
in both image quality and dosimetry accuracy. Finally,
Section VI concludes the paper and outlines future research
directions.

Il. RELATED WORK

Generating sCT from CBCT has become a central enabler
for image-guided adaptive radiotherapy, where accurate HU
fidelity and robust artifact suppression are prerequisites for
daily dose recalculation and replanning [3], [26]. Recent
surveys emphasize that sCT pipelines have matured substan-
tially and are increasingly integrated into adaptive workflows.
However, unresolved challenges remain, including scanner-
and anatomy-specific domain shifts, HU accuracy for reliable
dose computation, and generalization under limited paired
data availability [7], [24].

Early deep-learning approaches were dominated by super-
vised convolutional encoder—decoder architectures, most
prominently 2D and 3D U-Nets, which leveraged paired
CBCT-planning CT (pCT) volumes to reduce HU errors
and improve image similarity metrics such as PSNR and
SSIM [22], [27], [28]. These models consistently outper-
formed raw CBCT in both image quality and dosimetric
accuracy, with reports documenting improved organ-at-risk
sparing and tumor dose coverage on recalculated treatment
plans [5], [27]. Despite these successes, their sensitivity to
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acquisition-specific artifacts, such as scatter, motion, and
truncation, as well as the need for large, curated datasets,
limited their robustness in clinical deployment.

To address the limitations of paired training, unpaired
adversarial models, particularly CycleGAN and its deriva-
tives, were rapidly adapted for CBCT-to-sCT translation.
These approaches achieved encouraging gains in structural
fidelity and artifact suppression without requiring paired
training, including applications in head-and-neck and pedi-
atric cohorts [11]. More recent work has introduced Vision
Transformer components into adversarial pipelines, over-
coming CycleGAN’s local-context bias and enabling better
HU stability and structural consistency [17], [29]. Unified
multi-site frameworks have also been proposed to improve
generalizability across anatomies and scanners, a prerequisite
for routine IGART deployment [30]. Yet, despite advances in
perceptual realism, these architectures remain constrained by
adversarial training instabilities and limited HU calibration,
both of which restrict their reliability for downstream dose
evaluation.

More recently, denoising diffusion probabilistic models
(DDPMs) have emerged as a state-of-the-art alternative for
medical image translation and CBCT enhancement. Diffu-
sion models iteratively refine noisy inputs, offering stronger
mode coverage, superior edge preservation, and reduced risk
of hallucinated structures compared to adversarial meth-
ods. Applied to CBCT-to-CT synthesis, conditional diffusion
models have demonstrated marked improvements in HU
fidelity and structural preservation relative to CNN- and
GAN-based baselines [22]. Landmark studies in 2023-2024
validated diffusion methods on thoracic and multi-site
datasets, confirming their ability to generalize across
anatomies while retaining voxel-wise accuracy [31], [32].
Advanced diffusion variants have further introduced adaptive
high-frequency optimization and hybrid U-Net—ViT back-
bones, enabling recovery of fine trabecular details essential
for dose recalculation and contouring [33], [34]. Other exten-
sions address sparse-view or limited-angle CBCT using
frequency-guided priors, illustrating the flexibility of diffu-
sion frameworks for diverse IGART acquisition regimes [35].

Progress in this field has been accelerated by the release
of large-scale benchmarks such as SynthRAD2023, which
provided harmonized evaluation protocols across MRI-CT
and CBCT-CT tracks, spanning over a thousand subjects
[7]1, [8]. Standard evaluation metrics, HU-MAE/RMSE,
PSNR, SSIM, and clinical endpoints such as y-pass rates and
dose—volume indices have enabled transparent comparisons
across methods. Recent reviews show consistent improve-
ments for CBCT-derived sCT, with diffusion-based methods
increasingly leading quantitative benchmarks [5], [27].

From a translational perspective, clinical studies under-
score the need to balance image quality with workflow effi-
ciency and imaging dose. Simulation-free or CBCT-driven
replanning pipelines now demonstrate reduced margins and
improved organ-at-risk protection, provided that image qual-
ity and HU fidelity are sufficient [1], [2], [3]. Diffusion-based
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synthesis is particularly well aligned with these requirements,
as its stable training dynamics, fine-detail recovery, and linear
HU fidelity directly support daily replanning.

ill. METHODOLOGY

The proposed framework employs a two-stage three-
dimensional latent diffusion model to generate sCT volumes
from input CBCT scans, as depicted in Figure 1. By operating
in a compressed latent space, the model substantially reduces
computational overhead while preserving fine structural and
intensity details critical for IGART. The pipeline encom-
passes data preprocessing, latent diffusion-based translation,
and rigorous evaluation against state-of-the-art baselines,
each described in detail in the subsequent sections.

A. DATASET

This study makes use of a multi-center CBCT-CT dataset
collected from three academic hospitals: UMC Utrecht,
UMC Groningen, and Radboud University Medical Center
(Nijmegen, The Netherlands) as reported by [7]. The dataset
comprising a total of 955 paired volumes acquired from
patients undergoing radiotherapy. It includes three anatom-
ical regions frequently encountered in adaptive radiotherapy
workflows: head and neck (325 cases), thorax (321 cases),
and abdomen (309 cases). Each patient record contains a
CBCT acquired during treatment and a corresponding plan-
ning CT that has been rigidly aligned to the CBCT frame,
enabling voxel-level supervision for synthetic CT genera-
tion. The dataset was divided into training and test cohorts
on a patient basis to prevent data leakage across splits.
Specifically, the training set consists of 765 CBCT-CT pairs
(260 head and neck, 257 thorax, 248 abdomen), while the
test set includes 190 pairs (65 head and neck, 64 thorax,
61 abdomen). This yields an approximate 80%—-20% split
between training and test data. No patient overlap exists
between the splits, ensuring unbiased evaluation.

TABLE 1. Summary of the dataset by anatomical site and split.

Task Head and Neck Thorax Abdominal All
Train 260 257 248 765
Test 65 64 61 190
All 325 321 309 955

B. PREPROCESSING

To ensure reproducibility and optimize downstream learn-
ing, all CBCT and CT volumes underwent a standardized
preprocessing pipeline, extending beyond the baseline steps
provided in the SynthRAD2023 challenge (file conversion,
resampling, image registration, and anonymization). Our
pipeline was specifically designed to reduce inter-patient
variability, stabilize intensity distributions, and minimize
computational overhead during training. First, anatomical
orientation was standardized to the radiological RAS con-
vention, ensuring spatial consistency across all datasets.

VOLUME 14, 2026
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FIGURE 1. Schematic representation of the proposed 3DLDFM for CBCT-to-CT synthesis.

Intensity normalization was then performed by clipping voxel
values to each volume, thereby suppressing extreme outliers
from scatter or truncation artifacts. The resulting intensities
were subsequently rescaled to a fixed [0, 1] range to har-
monize voxel intensities across patients. To achieve spatial
uniformity, all volumes were resampled to an isotropic reso-
lution of (2.4 x 2.4 x 2.2) mm using bilinear interpolation.
This step balanced computational efficiency with sufficient
preservation of anatomical detail for accurate synthesis.
Finally, a center crop of (96 x 96 x 64) voxels was applied,
focusing the model’s attention on the relevant anatomical
field of view while discarding redundant background regions.
This tailored preprocessing ensured that the latent diffusion
model operated on a consistent and computationally tractable
representation, while retaining the structural and intensity
fidelity necessary for robust CBCT-to-sCT translation.

C. PROPOSED MODEL
Our proposed framework employs a 3D Latent Diffusion
Model (3D-LDM) to synthesize high-quality synthetic CT
(sCT) volumes from daily CBCT scans. The pipeline is
designed to address two key challenges in adaptive radio-
therapy: (i) the need for computationally efficient volumetric
modeling, and (ii) the preservation of HU fidelity and
anatomical detail in the presence of CBCT-specific artifacts.
To this end, the architecture integrates two synergistic com-
ponents: (1) a variational autoencoder with KL regularization
(AutoencoderKL) for latent space compression, and (2) a
DiffusionModelUNet that operates exclusively in the com-
pressed representation to model the conditional distribution
of CT from CBCT input. The overall workflow is illustrated
in Figure 1 and a more detailed architecture of the proposed
model shown in Figure 2.

In our implementation, each rigidly aligned CBCT/CT pair
is resampled to a uniform voxel spacing and center-cropped
to a 3D volume of size 96 x 96x64. The AutoencoderKL
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then compresses this volume into a latent tensor with three
channels, which is used as the working space for the
latent diffusion process. All 3D convolutions in both the
AutoencoderKL and the DiffusionModelUNet use 3 x 3x3
kernels; downsampling in the encoder path is implemented
with stride 2, while all other convolutions use stride 1.
We employ the SiLU (Swish) activation function in all
intermediate layers and omit the activation in the final out-
put layer of the decoder to allow direct regression of HU
values.

1) LATENT SPACE COMPRESSION VIA AUTOENCODERKL
The AutoencoderKL module converts the high-dimensional
volumetric data into a low-dimensional latent representa-
tion. This reduces the computational burden of 3D diffusion
modeling while retaining the anatomical fidelity required for
dose calculations. The autoencoder consists of a 3D encoder-
decoder architecture with input/output channels of size one,
and internal feature maps configured at [32, 64, 64]. The
encoder (E) maps the CBCT into a latent tensor z, while
the decoder (D) reconstructs the sCT from this latent space.
The key hyperparameters of the proposed 3D LDM listed in
Table 2.

The latent distribution is parameterized by a mean u
and variance o2, enabling stochastic sampling of z through
the reparameterization trick. This VAE-style formulation
prevents degenerate representations and improves general-
ization. By compressing volumetric scans into a compact
latent space, the model achieves a favorable trade-off between
fidelity and efficiency, enabling the subsequent diffusion
stage to be trained on full 3D volumes. In particular, the
encoder applies three successive stride-2 3D convolutions
to reduce the spatial resolution, while the decoder mirrors
this structure with transposed 3D convolutions to recover
the original volume size, ensuring that cross-slice anatomical
context is propagated through the latent representation.
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FIGURE 2. A details architecture of the of the proposed 3DLDFM.

2) DIFFUSION MODEL IN LATENT SPACE

The generative core of our framework is a Diffusion-
ModelUNet, which reverses the gradual noising process
characteristic of diffusion models. Unlike pixel-space diffu-
sion, the model operates entirely in the compressed latent
space, dramatically improving computational tractability for
volumetric CBCT data.

The UNet accepts three input and three output chan-
nels corresponding to the latent dimensionality, with con-
volutional filters of size [32, 64, 64]. Self-attention is
incorporated at deeper layers to enhance global context
modeling [36]. During training, a forward diffusion process
iteratively corrupts the latent vector with Gaussian noise
over 1,000 steps, governed by a scaled linear beta schedule
(Bstart = 0.0015, Bena = 0.0195). During inference, the pro-
cess is reversed, allowing the model to denoise from pure
Gaussian noise to generate realistic SCT volumes conditioned
on CBCT input.

3) LOSS FUNCTIONS AND TRAINING STRATEGY

The training procedure for the proposed framework consists
of two complementary stages, each designed with objectives
suited to its role in the pipeline. In the first stage, the autoen-
coder is trained to compress CBCT volumes into a compact
yet information-preserving latent space. To achieve this,
we employ a composite objective that balances pixel-level
accuracy, perceptual fidelity, latent regularization, and adver-
sarial realism. The reconstruction loss enforces voxel-wise
fidelity between the original CBCT and its reconstruction
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using an L1 distance as in (1):
Lrecon = ||lx — DEE) 1, (1)

where x is the original image, and D(E(x)) is its reconstruc-
tion through the encoder-decoder pathway, and ||-||; is again
the voxel-wise L1 norm applied to feature maps. To fur-
ther encourage preservation of high-level structural features,
a perceptual loss is introduced as in (2):

Ly = 1Y (x) = ¢ (DE@NI, ()

where Y denotes a pretrained SqueezeNet feature extractor.
The L1 norm was deliberately chosen over the L2 norm as it
offers greater robustness against severe CBCT artifacts (out-
liers) and is known to produce sharper images by avoiding
the over-smoothing tendency inherent to L.2-based optimiza-
tion, thereby preserving the fine structural details critical for
accurate tissue segmentation. To regularize the latent repre-
sentation, a KL divergence term aligns the encoded latent
distribution with a unit Gaussian as in (3):

Ly = % zi (/’L12 + al.z —log (gi2) — 1) R 3)

where © and o2 represent the mean and variance of the
latent distribution, the index i runs over all latent channels
and spatial locations. Finally, an adversarial loss based on
the least-squares objective encourages perceptual realism as
in (4):

Latv = E[(DG) = 17] )
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TABLE 2. Key hyperparameters of the proposed 3D LDM.

Component Hyperparameter Value / Setting
Input Data Spatial size (cropped) 96*96*64 voxels
Batch size 2
AutoencoderKL  Feature channels [32, 64, 64]
Latent channels 3
Reconstruction loss L1 Loss
Perceptual loss weight (W) 0.001
KL loss weight (W) 10
Adversarial loss weight
W) & 0.01
Optimizer Adam
Learning rate 10*
Training epochs 100 (5 warmup epochs)
Discriminator Architecture };e;;tecgl))lscrlmlnator G
Base channels 32
Optimizer Adam
Learning rate 10*
Diffusion Model  Architecture DiffusionModelUNet
Feature channels [32, 64, 64]

Attention levels
Num. ResNet blocks

[False, True, True]
1

Activation function SiLU (Swish)
Optimizer Adam
Learning rate 10*
Training epochs 150

Noise Scheduler  Type DDPMScheduler
Timesteps (T) 1000
Schedule type Scaled linear beta
Beta start / end 0.0015/0.0195

where D(x) is the discriminator’s prediction for a recon-
structed image. Here, E[-] denotes expectation over the
mini-batch of reconstructed samples x = D(E(x)). The total

autoencoder loss is then expressed as in (5):

Lautoencoder = Lrecon + WikiLpi + Wpr + WaavLaav,

with weights wy = 10_6, wp = 0.001, and wgs = 0.01.
In the second stage, the diffusion UNet is trained to model the
conditional distribution of CT given CBCT inputs by progres-
sively denoising latent vectors corrupted with Gaussian noise.
The objective function minimizes the mean squared error
(MSE) between the predicted noise €y and the ground-truth
noise € as in (6):

Laitr = lle — €p (z, D113, (©6)

where z; is the nois latent representation at timestep ¢. This
formulation enables the network to learn the iterative denois-
ing process central to diffusion modeling. In our inference,
the denoising block in Fig. 1 follows the standard DDPM
latent diffusion formulation. Given a clean latent zg, the for-
ward process adds Gaussian noise using a linear beta schedule
Bstart = 0.0015, Beng = 0.0195:

2 = Vazo+ 1 —ae, e ~N©O, D, %)
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t
where o;= 1—p; and @; = [] ;. The diffusion UNet &g is

=1

trained to predict & from (z,f t) via the MSE loss in Eq. (6).
During sampling, we start from zz ~ N/(0,]) and iteratively
apply the reverse update

1 ( T r)) ®)
1 = —— —_ —¢ s ,
RV GV e

This reverse update maps the noisy latent z; at timestep ¢ to
a less noisy latent z;_1, using the predicted noise &g (z;, t, ¢)
and the same diffusion schedule {«;, o} as in Eq. (7), and
is iterated from + = T down to t = 1 to obtain the clean
latent zo. The training stages are optimized with the Adam
optimizer at a learning rate of 1 x 10™*. This two-stage train-
ing paradigm ensures that the autoencoder produces robust
latent embedding, while the diffusion UNet effectively learns
to generate anatomically accurate and HU-consistent sCT
volumes from noisy latent inputs.

D. IMPLEMENTATION PLATFORM

The proposed 3D-LDFM was implemented using the The
proposed 3DLDFM was implemented in Python using the
PyTorch deep learning framework, with MONAI providing
utilities for volumetric medical image processing. Training
and inference were performed on NVIDIA A100 GPUs
with 40 GB of VRAM. To efficiently handle the memory
demands of full 3D volumes, we enabled automatic mixed
precision (AMP), which reduced GPU memory usage and
accelerated training without degrading numerical stability.

E. EVALUATION STRATEGY AND METRICS

To rigorously evaluate the effectiveness of the proposed 3D
latent diffusion model (3D-LDM) for CBCT-to-CT synthesis,
we conducted a comprehensive quantitative assessment of the
generated synthetic CT (sCT) volumes against ground-truth
planning CTs. Following the evaluation protocol established
in the SynthRAD2023 challenge, all similarity metrics were
computed within the dilated body contour masks B, ensuring
that performance was measured in clinically relevant anatom-
ical regions while excluding background noise.

Three complementary metrics were employed to character-
ize image fidelity: Mean Absolute Error (MAE), Peak Signal-
to-Noise Ratio (PSNR), and Structural Similarity Index
Measure (SSIM). Together, these metrics capture voxel-
level intensity accuracy, noise robustness, and perceptual/
structural fidelity. The masked MAE quantifies the average
voxel-wise absolute difference between the generated sCT
and the reference CT, normalized by the number of voxels
within the anatomical mask as in (9):

1
MAE(CT, sCT) =5 ZieB ICT; —sCTi|.  (9)

Lower MAE values indicate closer correspondence in
Hounsfield units (HU), a critical factor for dose calculation
in adaptive radiotherapy. To assess the ability of the model to
preserve signal quality relative to image noise, we computed
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the masked PSNR, defined as in (10):

2
PSNR (CT, sCT) = 101og; ] o > |-
@ ZieB (CT,‘ — SCT,’)
(10)

where Q denotes the dynamic range of voxel intensities,
clipped to [—1024, 3000] HU in our experiments. A higher
PSNR value reflects improved preservation of intensity con-
trast and lower noise variance in the synthesized images.

Finally, to evaluate perceptual similarity and structural
integrity, we used the masked SSIM, which jointly considers
luminance, contrast, and structural information between the
sCT and CT. For each voxel i, SSIM is computed over a local
7 x 7 x 7 neighborhood as in (11):

SSIM; (CT, sCT)
_ (2ucrpser + 1) (2ocrser + €2) (11
(MéTi +nuier, +e 1) (“(2:T, +okr, + 02)

where © and o are the local means and standard deviations,
oct.sct denotes the local covariance, and the constants are
defined as ¢; = (0.01L)2, ¢ = (0.03L)%, with L representing
the intensity dynamic range. The final SSIM score is obtained
by averaging over all voxels within the mask:

1

SSIM(CT, sCT) = B Z SSIM; (CT, sCT) (12)
ieB

This metric emphasizes structural preservation and is par-
ticularly sensitive to blurring, misalignment, and contrast
inconsistencies-factors that strongly impact organ delineation
and adaptive treatment planning.

To sum up, this multi-metric evaluation protocol provides
a robust and multifaceted assessment of our model’s perfor-
mance. By jointly analyzing voxel-level HU fidelity, intensity
quality relative to noise, and perceptual structural consis-
tency, we ensure that the proposed 3D-LDM is validated not
only in terms of numerical accuracy but also with respect to
clinically meaningful imaging quality essential for safe and
effective IGART.

F. BENCHMARK MODELS

To establish a rigorous comparative baseline, our proposed
3D Latent Diffusion Model was benchmarked against four
widely recognized state-of-the-art approaches representing
both transformer-based and generative approaches namely
Swin Transformer with UNet Regularization (Swin UNETR),
nnU-Net (no-new-Net), Cycle-Consistent Generative Adver-
sarial Network (CycleGAN), and Conditional Generative
Adversarial Network (Pix2PixGAN).

Swin UNETR integrates the hierarchical Swin Trans-
former as an encoder with a UNet-like decoder connected
via skip connections [37], [38]. This architecture has been
shown to capture long-range dependencies and multi-scale
contextual information in volumetric medical imaging tasks,
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making it a strong candidate for CBCT-to-CT synthesis where
global anatomical consistency is critical.

nnU-Net [39] is a self-configuring deep learning frame-
work that automatically adapts preprocessing, architecture,
and training schedules to the dataset at hand. It has consis-
tently served as a robust baseline across numerous medical
imaging challenges, demonstrating strong generalization
without extensive manual tuning [40]. For CBCT-to-CT
translation, nnU-Net provides a powerful CNN-based com-
parator that establishes the effectiveness of automated,
task-adaptive network design.

CycleGAN enables unpaired image-to-image translation
by enforcing forward and backward cycle-consistency con-
straints between two domains [41]. This property has
made CycleGAN widely adopted in medical image synthe-
sis scenarios, particularly where paired CBCT-CT datasets
are limited or imperfectly aligned [20], [42]. Its inclu-
sion as a benchmark highlights the relative advantage of
diffusion-based approaches in handling domain shifts and
artifact-rich CBCT data.

Pix2PixGAN directly learns a mapping between paired
input and target images under supervised conditions. While
effective in scenarios with well-curated paired datasets,
Pix2Pix is prone to over-smoothing and can be sensitive
to patient misalignments. Nevertheless, it remains a widely
recognized baseline for supervised synthesis tasks in radio-
therapy imaging [43]. Together, these four baselines span
transformer-driven architectures, adaptive CNN frameworks,
and GAN-based paired/unpaired synthesis methods. Bench-
marking against them provides a comprehensive and fair
assessment of our proposed diffusion-based approach, ensur-
ing that improvements in HU fidelity, structural preservation,
and robustness are established relative to the best available
alternatives.

IV. RESULTS

We comprehensively evaluated the proposed 3D-LDM
against state-of-the-art baselines across multiple anatomical
sites, using standardized metrics (MAE, PSNR, and SSIM)
on the SynthRAD?2023 dataset. The results demonstrate con-
sistent improvements in voxel-level fidelity, noise robustness,
and structural preservation, validating the clinical readi-
ness of our approach for CBCT-to-CT synthesis in adaptive
radiotherapy workflows.

A. QUANTITATIVE RESULTS AND BENCHMARKING

Figure 3-5 summarize the quantitative performance of
3D-LDM compared to SwinUNeTr, nnUNet, CycleGAN,
and Pix2Pix across head-and-neck (HN), thorax (TH), and
abdominal (AB) sites. For PSNR (Figure 3), 3D-LDM
consistently achieved higher values, indicating improved
signal-to-noise ratios and enhanced robustness against
CBCT-specific artifacts such as scatter and streaking.
Notably, these performance gains were sustained across
thoracic and abdominal regions, underscoring the general-
izability of the diffusion framework. With respect to SSIM
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(Figure 4), the results confirm that 3D-LDM preserves fine
structural and contrast details more effectively than com-
peting models. Elevated SSIM scores, particularly in the
head-and-neck and thorax datasets, demonstrate the ability
of latent diffusion to balance global anatomical consistency
with local texture fidelity, a critical requirement for organ
delineation and dose recalculation in IGART. Collectively,
these findings establish 3D-LDM as a new benchmark in
quantitative performance, achieving reduced noise propaga-
tion and superior structural similarity compared with leading
CNN and GAN architectures. Finally, for MAE (Figure 5),
the proposed 3D-LDM attained the lowest error distributions
across all anatomical regions, reflecting superior HU fidelity
relative to CNN- and GAN-based approaches. This advantage
was most pronounced in the head-and-neck cohort.

36 o0
34 T~
32
o
30
4 v =
o
28
26 ke Models
=3 30LDFM
' = =3 SwinUNeTr
24 EE NNUnet
B CycleGAN
22 — . Pix2Pix

HN AB

T
Anatomical Site

FIGURE 3. Boxplot comparison of PSNR across anatomical sites. 3D-LDM
demonstrates higher PSNR values across HN, TH, and AB, indicating
improved robustness to noise and preservation of signal intensity
compared to baseline methods.

B. COMPARATIVE ANALYSIS WITH STATE-OF-THE-ART
To further validate the effectiveness of our proposed
3DLDFM, we compared its performance with leading state-
of-the-art baselines, including SwinUNeTr, nnUNet, Cycle-
GAN, and Pix2Pix. Quantitative results across anatomical
regions are summarized in Tables 3-5, reporting mean abso-
lute error, peak signal-to-noise ratio, and structural similarity
index measure.

MAE results (Table 3) demonstrate that 3DLDFM
achieves the lowest voxel-wise error across all anatomical
sites, with an overall average of 51.40 £ 11.91, compared

Models
1 30LOFM
=1 SwinUNeTr
@R NNUnet
B CycleGAN
e . Pix2Pix

HN TH AB
Anatomical Site

FIGURE 4. Boxplot comparison of SSIM across anatomical sites. The
proposed 3D-LDM achieves consistently higher SSIM scores, particularly
in HN and TH, highlighting its ability to preserve anatomical structure and
contrast detail essential for adaptive radiotherapy.
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FIGURE 5. Boxplot comparison of MAE across HN, TH, and AB sites. The
proposed 3D-LDM consistently achieves the lowest error distributions.

to 66.91 + 19.68 for SwinUNeTr and 53.11 + 13.04 for
CycleGAN. This consistent reduction in error highlights the
superior HU fidelity of diffusion-based synthesis, a critical
factor for accurate dose calculation.

For PSNR (Table 4), 3DLDFM achieved the highest over-
all score (30.60 =+ 2.00), outperforming both CNN and GAN
models. The improvement was especially pronounced in
head-and-neck and abdominal cohorts, where CBCT images
typically suffer from high levels of scatter and streaking
artifacts. This finding underscores the robustness of the latent
diffusion framework in preserving signal intensity while
mitigating CBCT-specific noise.

TABLE 3. Benchmarking based on MAE across anatomical regions. lower values indicate better HU.

Region SwinUNetR NNUNet CycleGAN Pix2Pix 3D LDM (Ours)
AB 70.56+19.87 57.12+10.46 54.12+11.66 62.35+12.78 51.66+£10.97
HN 62.90+20.27 54.48+12.52 52.81+13.59 58.47+10.60 50.83£11.48
TH 67.45+18.42 55.85+10.54 52.45+11.97 59.63+13.78 51.73+13.30
All 66.91+19.69 55.80+11.22 53.11+13.04 60.12+12.49 51.40+11.91
VOLUME 14, 2026 12687
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TABLE 4. Benchmarking based on PSNR across anatomical regions. Higher values indicate superior image quality.

Region SwinUNetR NNUNet CycleGAN Pix2Pix 3D LDM (Ours)
AB 29.64+2.71 30.06£1.40 30.99+£2.21 29.65+1.86 30.35+1.84
HN 29.29+2.64 30.35+£1.96 30.90+1.95 29.46+1.80 30.79+£2.38
TH 29.44+2.90 29.93+1.86 30.18+£2.08 29.40+1.66 30.65+1.72
All 29.45+2.74 30.11x1.76 30.69£2.10 29.50£1.77 30.60£2.00

TABLE 5. Benchmarking based on SSIM across anatomical regions. Higher values indicate improved structural fidelity.

Region SwinUNetR NNUNet CycleGAN Pix2Pix 3D LDM (Ours)
AB 0.8817+0.0353 0.9040+0.0298 0.9024+0.0408 0.8818+0.0392 0.9103+0.0332
HN 0.8791+0.0398 0.9015+0.0373 0.8987+0.0352 0.8772+0.0349 0.9089+0.0340
TH 0.8838+0.0395 0.8990+0.0304 0.9060+0.0356 0.8795+0.0369 0.9181+0.0338
All 0.8815+0.0382 0.9015+0.0327 0.9024+0.0372 0.8795+0.0369 0.9124+0.0338

CBCT 30-LOFM SWinUMETR nnl-Net CycleGAN Pix2Pix

HN 30-LDFM SwinUNETR nnU-Net CycleGAN
(P1)
SWIinUNETR
HN
{pz) 3D-LOFM SwinUNETR nnb-Net CycleGAN Pix2Pix

4 EYON
-,.‘j ;* mﬂ N’ rah

FIGURE 6. Qualitative comparison of sCT generation for head-and-neck cases. Top rows show CBCT inputs and corresponding sCT reconstructions
across models; bottom rows depict error maps against ground truth CT. 3D-LDFM achieves sharper reconstructions with reduced HU deviations
compared to SWinUNETR, nnU-Net, CycleGAN, and Pix2Pix.

Finally, SSIM results (Table 5) confirm that 3DLDFM
provides the best structural fidelity, with an average score
of 0.912 £ 0.033, surpassing nnUNet (0.902 £ 0.032) and

CycleGAN (0.902 £ 0.037). Notably, 3DLDFM maintained
high SSIM across all anatomical regions, with the high-
est structural preservation observed in the thoracic dataset
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FIGURE 7. Thoracic sCT synthesis results. The proposed 3D-LDFM effectively reduces scatter and streak artifacts, yielding
improved fidelity in lung and mediastinal regions relative to CNN- and GAN-based baselines. Error maps confirm lower

voxel-wise deviations and superior HU accuracy.

(0.918 + 0.034). This demonstrates the model’s ability to
balance global anatomical accuracy with local texture detail,
an essential requirement for contour propagation and adaptive
radiotherapy planning. Collectively, these results establish
3DLDFM as a new benchmark for CBCT-to-CT synthesis,
outperforming both CNN and GAN architectures in terms of
HU accuracy, noise robustness, and structural similarity.

C. PERFORMANCE ACROSS ANATOMICAL SITES

To further elucidate the robustness of the proposed 3D-
LDFM across different anatomical regions, we conducted
a qualitative comparison with state-of-the-art architectures
including SwinUNETR, nnU-Net, CycleGAN, and Pix2Pix.
This section analyzes the performance of the 3D LDM against
benchmark models using visual comparisons of sCT volumes
and their corresponding absolute error maps (|sCT—CT])
across the Head and Neck (HN), Thorax (TH), and Abdomen
(AB) regions. The error maps are displayed on a window of
[—200,200] HU, with colors indicating the magnitude of the
HU deviation from the ground truth CT. Across all anatomical
sites, 3D-LDFM demonstrates superior capacity to suppress
CBCT-specific artifacts, preserve fine structural details, and
maintain Hounsfield Unit accuracy, underscoring its clinical
viability for image-guided adaptive radiotherapy.

1) HEAD AND NECK SYNTHESIS
Figure 6 illustrates the performance comparison for two
representative HN patients (P1 and P2). The HN region is
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anatomically complex, featuring small, high-density struc-
tures (bone, dental fillings) adjacent to low-density air
cavities, which typically induces significant streaking arti-
facts in CBCT (P2 CBCT). In the error maps, the U-Net
and GAN-based models (SwinUNetR, nNU-Net, CycleGAN,
Pix2Pix) exhibit widespread large HU deviations (deep red
and blue) particularly at the air-tissue interfaces and within
bony structures (vertebrae, mandible). This indicates an
inability to accurately correct partial volume effects and scat-
ter. In contrast, the 3D-LDFM error maps show significantly
less intense and more localized errors, primarily restricted to
the thin bone cortex or sharp tissue edges. For P2, where the
CBCT noise is severe, 3D-LDFM effectively suppresses the
widespread noise while maintaining the clear demarcation
of the spinal cord and soft tissues, demonstrating its robust
noise-to-signal generation capacity derived from the diffusion
process.

2) THORAX SYNTHESIS

The Thorax region presents unique challenges due to low-
density lung tissue and motion-induced artifacts around the
diaphragm and heart. Figure 7 shows that the benchmark
models, particularly the GANs and SwinUNetR, struggle
with the low-density environment, displaying large areas
of error within the lung fields and surrounding the medi-
astinum (P1 and P2). The red/blue error accumulation
around the ribs and vertebrae in competitor models signifies
poor bone-soft tissue boundary reconstruction. Conversely,
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FIGURE 8. Abdominal sCT synthesis results. 3D-LDFM demonstrates enhanced HU fidelity and structural preservation in liver and
bowel regions, while baseline models exhibit texture blurring or intensity shifts. Error maps highlight the superior artifact

suppression and robustness of the diffusion framework.

the 3D-LDFM consistently exhibits the cleanest error maps in
the low-density lung parenchyma, validating the quantitative
superiority in SSIM by accurately preserving the complex
vascular structures and soft tissue textures in the lung. The
3D-LDFM’s error is minimized and confined primarily to the
pleural and pericardial interfaces, confirming its architectural
advantage in handling low-contrast, heterogeneous regions
common in the thoracic cavity.

3) THORAX SYNTHESIS

The Abdomen is challenging due to the large presence
of heterogeneous soft tissues, variable fat content, and
patient motion leading to truncation and cupping artifacts
(P2 CBCT). As depicted in Figure 8, the benchmark models
show extensive HU errors in the periphery and within deep
abdominal organs (liver, kidneys, spleen). The nNU-Net and
SwinUNetR demonstrate structural blurring, and the GANs
show pronounced boundary errors. The 3D-LDFM sCT, how-
ever, visually appears closest to the ground truth CT. The
corresponding error maps show significantly less saturated
and less widespread errors across both P1 and P2. Notably,
for the severe truncation artifacts in P2, the 3D-LDFM suc-
cessfully provides a much smoother and more accurate HU
profile throughout the entire cross-section than the competi-
tors, affirming its ability to generalize and correct complex,
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non-local CBCT artifacts. This qualitative consistency across
all three sites provides robust visual evidence supporting the
statistical significance of the quantitative results.

V. DISCUSSION

The findings of this study demonstrate that the proposed
3DLDFM achieves superior performance over established
CNN-based and GAN-based methods for CBCT-to-CT syn-
thesis across multiple anatomical regions. By integrating a
variational autoencoder for latent space compression with
a diffusion-based generative process, the framework con-
sistently delivered lower voxel-wise errors (MAE), higher
signal fidelity (PSNR), and improved structural preservation
(SSIM). These improvements highlight the advantages of
diffusion models in capturing the conditional distribution of
medical imaging data, thereby overcoming key limitations
of deterministic CNNs and adversarial networks.

A critical strength of 3DLDFM lies in its ability to balance
HU accuracy and structural fidelity, both of which have the
potential for IGART, it validated in external in large cohort.
Lower MAE values translate directly into more accurate
HU calibration, which underpins reliable dose recalculation
and adaptive treatment planning. At the same time, higher
SSIM scores reflect superior structural consistency, ensuring
that fine anatomical details such as organ boundaries and

VOLUME 14, 2026



M. Al-Shalabi et al.: CBCT to Synthetic CT Translation Using Conditional 3D Latent Diffusion-Based Model

IEEE Access

bony landmarks are faithfully preserved. These dual gains are
particularly relevant in head-and-neck cases, where complex
anatomical variability and the presence of dental artifacts
have historically challenged existing synthesis models.

Compared with GAN-based approaches such as Cycle-
GAN and Pix2Pix, which often suffer from training instabil-
ity and hallucinated features, diffusion models provide a more
stable and principled generative framework. The iterative
denoising process enables robust reconstruction of clinically
meaningful features while mitigating the over-smoothing
commonly observed in CNN-based regression models.
Furthermore, by operating in a compressed latent space,
3DLDFM achieves computational feasibility for volumetric
data without sacrificing accurate essential requirement for
time-sensitive online ART workflows [24].

From a clinical standpoint, the proposed model advances
the feasibility of simulation-free adaptive workflows, where
daily CBCT could serve as the sole imaging modality for
replanning [1], [2], [3]. This shift has the potential to reduce
patient burden, streamline treatment pipelines, and mini-
mize the dependency on frequent planning CT acquisitions.
Importantly, the multi-site evaluation confirms that the model
generalizes across diverse anatomical regions and acquisition
protocols, suggesting robustness against domain shifts that
frequently hinder real-world adoption.

Nevertheless, several limitations warrant discussion. First,
while quantitative metrics (MAE, PSNR, SSIM) provide
strong evidence of performance, clinical validation through
dose recalculation studies and contour propagation accuracy
remains necessary to establish direct therapeutic benefits.
Second, the current framework relies on paired CBCT-CT
training data; extending to semi-supervised or unpaired set-
tings would further improve scalability. Finally, although
latent diffusion significantly reduces computational cost rel-
ative to pixel-space diffusion, real-time inference speed
remains a practical barrier for widespread clinical integra-
tion and could benefit from optimized sampling strategies or
model distillation.

Looking forward, future work should focus on three direc-
tions: (i) integrating clinical endpoints such as dose—volume
histogram (DVH) comparisons and y-index analysis into
the evaluation pipeline; (ii) extending the framework to
multi-modal synthesis tasks, including MRI-to-CT and
CBCT artifact correction; and (iii) developing lightweight,
accelerated diffusion architectures suitable for deployment in
radiotherapy treatment rooms. Finally, this study establishes
3DLDFM as a state-of-the-art solution for CBCT-to-CT syn-
thesis, combining high HU fidelity, structural accuracy, and
cross-site generalizability.

VI. CONCLUSION

In this work, we introduced a 3DLDFM for CBCT-to-CT
synthesis, designed to address the persistent challenges of
HU inaccuracy, structural degradation, and poor generaliza-
tion that limit existing CNN- and GAN-based solutions in
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image-guided adaptive radiotherapy. By combining latent
space compression with a diffusion-driven generative pro-
cess, the framework explicitly models the conditional
distribution of CT given CBCT while remaining compu-
tationally tractable for full 3D volumes. From an imaging
standpoint, the proposed 3DLDFM achieves consistent and
substantial gains across multiple, well-established objective
metrics. Quantitative evaluations on the SynthRAD2023
dataset demonstrate that 3DLDFM yields the lowest voxel-
wise error, the highest peak signal-to-noise ratio, and the best
structural similarity index across head-and-neck, thorax, and
abdominal cohorts when compared with strong CNN- and
GAN-based baselines (SwinUNETR, nnUNet, CycleGAN,
Pix2Pix).

These improvements indicate that the model not only cor-
rects HU values more accurately but also better preserves
global anatomy and local texture, setting a new benchmark
for CBCT-to-CT translation in terms of HU fidelity, noise
robustness, and structural preservation. The necessity of such
improvements is directly linked to clinical decision-making
in IGART. More accurate HU calibration (reflected in lower
MAE and higher PSNR) underpins reliable dose recalcu-
lation and adaptive plan optimization, while higher SSIM
supports faithful reproduction of organ boundaries and bony
landmarks, which are crucial for contour propagation and
daily plan adaptation. Although the present study evalu-
ates performance using image-based metrics, these quantities
are closely related to downstream dosimetric endpoints and
provide strong evidence that diffusion-based synthesis can
reduce the uncertainty inherent in CBCT-driven workflows.
Finally, this study establishes latent diffusion modeling as
a promising and practically viable direction for simulation-
free, CBCT-driven adaptive radiotherapy. Future work will
extend the evaluation to direct clinical endpoints, including
DVH analysis, and will explore domain adaptation and accel-
erated sampling strategies to ensure robust image translation.
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