University of

'Sl Kent Academic Repository

Hurley-Smith, Darren, Droop, Alastair, Lyon, Remy and Teodor, Roxana (2024)
Extracting Randomness from Nucleotide Sequencers for use in a Decentralised
Randomness Beacon. In: ARES '24: Proceedings of the 19th International Conference
on Availability, Reliability and Security. . pp. 1-12. ACM ISBN 979-8-4007-1718-5.

Downloaded from
https://kar.kent.ac.uk/112634/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3664476.3664480

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) ‘Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/112634/
https://doi.org/10.1145/3664476.3664480
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Extracting Randomness from Nucleotide Sequencers
for use in a Decentralised Randomness Beacon

Darren Hurley-Smith
Royal Holloway, University of London
United Kingdom

Remy Lyon
Veiovia Ltd.
United Kingdom

ABSTRACT

This paper presents an investigation of nucleotide sequenc-
ing based random number generators, refutation of naive
approaches to this problem, and a novel random number
generator design based on the characteristics of nucleotide
sequencers such as the Oxford Nanopore Technologies (ONT)
MinION. Common issues include misunderstanding the sta-
tistical properties of nucleotide sequences and the prove-
nance of entropy observed in post-processed sequences ex-
tracted from such data. We identify that the use of sequences,
expressed as base-pair (ATCG) sequences, for random num-
ber generation is not possible. The process by which such
sequences are observed and reported by scientific instrumen-
tation, provide a means by which entropy associated with
nucleotide sequences (or more correctly the act of observ-
ing and recording them) can be observed. We report a novel
method of extracting entropy from the process of reading nu-
cleotide sequences, as opposed to the nucleotide sequences
themselves. We overcome the limitations and inherent bias
of nucleotide sequences, to provide a source of randomness
decoupled from biological data and records. A novel ran-
dom number generator drawing on entropy extracted from
nucleotide sequencing is presented with validation of its
performance and characteristics.

ACM Reference Format:
Darren Hurley-Smith ®, Alastair Droop ®, Remy Lyon ©, and Rox-
ana I. Teodor ®. 2024. Extracting Randomness from Nucleotide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ARES 2024, July 30-August 02, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3664480

Alastair Droop
University of York
United Kingdom

Roxana I. Teodor
Veiovia Ltd.
United Kingdom

Sequencers for use in a Decentralised Randomness Beacon. In The
19th International Conference on Availability, Reliability and Security
(ARES 2024), July 30-August 02, 2024, Vienna, Austria. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3664476.3664480

1 INTRODUCTION

Random number generator design is a highly varied field,

with many approaches, misconceptions, and specific require-

ments. Random number generators can be divided into two

broad categories: Pseudo random number generators (PRNGs),
and ‘true’ random number generators (TRNGs).

PRNGs rely on algorithms and system-supplied entropy
to generate random numbers by an unpredictable process,
though some researcher identify that seed material is there-
fore crucial to robustness [5, 9]. Random (and its non-blocking
variant urandom), the Linux staple PRNG service, is a good
example of this. It is a PRNG that uses a locally stored en-
tropy pool to seed random number generation through a
process of cryptographically secure hashing.

TRNGs exploit naturally unpredictable processes, which
supplies entropy for use in either direct conversion to bi-
nary values or as raw material for a cryptographic or hash
function.

ID Quantique has developed a range of NIST-certified secu-
rity products incorporating optical quantum TRNGs [10, 20].
Nuclear decay is also a source of entropy: Americium and
unstable Nickel isotopes are used in a variety of genera-
tors [17]. TRNGs always have some hardware element to
them to harness and process the raw entropy, though this
hardware may not be specifically designed for the purposes
of random number generation.

We present an example of this latter class of TRNG. Us-
ing statistical tests of randomness, we have identified that
nanopore-based DNA sequencing devices have unpredictable
properties associated with the duration of signal events pro-
duced by ONT nanopore nucleotide sequencers. Further, we
have developed a method for extracting entropy from log
and data files generated by such devices, which may then be
used to either seed a PRNG or as random output in its own

https://orcid.org/0000-0002-9896-9308
https://orcid.org/0000-0001-7695-7480
https://orcid.org/0009-0006-2155-5613
https://orcid.org/0000-0003-2652-1894
https://orcid.org/0000-0002-9896-9308
https://orcid.org/0000-0001-7695-7480
https://orcid.org/0009-0006-2155-5613
https://orcid.org/0000-0003-2652-1894
https://doi.org/10.1145/3664476.3664480
https://doi.org/10.1145/3664476.3664480

ARES 2024, July 30-August 02, 2024, Vienna, Austria

right. Our long-term aim is to utilise high quality entropy
from large numbers of ONT sequencers to provide viable
inputs to a Decentralised Randomness Beacon (DRB).

1.1 Contributions

In this work, we contribute a thorough statistical analysis of
nucleotide sequences, focusing on base-call data. We chal-
lenge previous claims regarding the randomness of encoded
or hashed nucleotide sequences. We provide the first rigorous
statistical analysis of nucleotide sequences and claims regard-
ing their randomness. We aim to guide future researchers in
avoiding unwarranted assumptions when using biological
data as a source of randomness. Crucially, we propose a novel
method for extracting randomness from the raw data out-
put of nanopore-based sequencing technology, conducting
a statistical analysis to confirm its suitability as a potential
candidate for further development as a Random Number
Generator (RNG). Our RNG design satisfies the following
novel criteria:

o The proposed RNG uses real sequencing data, ensuring
that no additional expensive and/or wasteful work is
required to generate input sequences;

o It passes lightweight statistical tests of randomness,
proving initial fitness for use and identifying required
post-processing techniques to achieve randomness
suitable for cryptographic applications;

e Demonstrates the viability of extracting noise from
commercial sequencing technologies (ONT MinION,
PromethION and GridION) as well as the general con-
cept of nanopore-based sequencing technology, with-
out reverse engineering or modification of hardware.

Our novel entropy extraction method, though tested with
small output bitstreams and lightweight statistical tests, pro-
vides a valid proof of concept. It demonstrates that, despite
flaws in many existing approaches, viable methods exist to
extract useful noise from sequencing hardware. Additionally,
our method breaks the link between extracted entropy and
input data, preventing the derivation of sensitive genetic
sequences from the output bitstream.

2 RANDOMNESS FROM NUCLEOTIDE
DATA

Cryptographic applications demand high-quality random-
ness for unpredictable cryptographic key generation. One-
time pads (OTPs) are particularly valuable due to their time-
limited confidentiality features, enhancing confidentiality
guarantees when keys match message lengths [15].

DNA and RNA have been explored as potential data sources
for OTP cryptosystems [8]. Common encoding techniques
convert base pair characters (A, T, G, and C) into 2-bit tuples.

Darren Hurley-Smith ®, Alastair Droop @, Remy Lyon ®, and Roxana I. Teodor

Li et al. [13] propose encoding each nucleic acid as a 2-bit
tuple.

Researchers initially inject randomness by pseudoran-
domly selecting files and sequences for key mixing and ex-
pansion in DNA-based cryptosystems [7, 13]. Gearheart et
al.[7] assume a uniformly distributed mix of free-floating
nucleotides. Balanici et al.[2] enhance Li et al’s proposal by
mixing randomly selected nucleic-acids from many different
files, further distancing output data from source material,
particularly when sequences are from different species/gen-
era.

A common misconception in the literature is that DNA and
RNA are incompressible, likely stemming from misunder-
standings of the incompressibility properties of proteins at
the macro scale [16]. Many proposed cryptosystems leverag-
ing nucleotide data assume incompressibility after shuffling
nucleotide files, but we challenge these claims:

C1: DNA sequences are random and cannot be compressed.

C2: The large number of sequenced organisms ensures a
great diversity of nucleotide sequences.

C3: By randomly selecting individual nucleic-acids at ran-
dom indices within sequencing data, randomness of
keys can be assured.

Researchers employing key mixing and matrix expansion
on nucleotide sequences often observe results seemingly
validating these assumptions. Li et al. [13] note that their
outputs meet the Avalanche criterion, primarily due to post-
processing nucleotide sequences. We posit that it is the mix-
ing, shuffling, and hashing of sequences that provides the
majority of observed randomness, and that nucleic acid se-
quences have little inherent randomness.

We challenge prevailing assumptions about the random-
ness of nucleotide sequences, identifying errors in prior
works and emphasizing that observed randomness is a prod-
uct of specific techniques. Nucleotide sequences are not in-
herently incompressible, and achieving uniformly distributed
samples is challenging. Our study demonstrates that nu-
cleotide sequences make a minimal entropy contribution to
random number generation algorithms.

2.1 Statistical properties of nucleotide
sequences

In this subsection, we explore the properties of 6 DNA-based
randomness extractors. Each extractor produces an output se-
quence resulting from some combination of encoding, source-
file mixing, and hashing. We do not perform matrix expan-
sion or other methods of post-processing, to better identify
how the assumptions stated in section 2 break down under
scrutiny. We make the following assumptions: Nucleotide
sequences are provided in the form of char representations
of nucleic acids (ACGT); Random numbers generated must

https://orcid.org/0000-0002-9896-9308
https://orcid.org/0000-0001-7695-7480
https://orcid.org/0009-0006-2155-5613
https://orcid.org/0000-0003-2652-1894

Extracting Randomness from Nucleotide Sequencers for use in a Decentralised Randomness Beacon ARES 2024, July 30-August 02, 2024, Vienna, Austria

be primarily derived from these sequences - merging, shuf-
fling, and hashing of data is allowed, but salting or other
forms of entropy injection are out of scope; Researchers can
only access the results of base-calling, no in-line process is
considered at this stage.

Sample preparation for our DNA-based experiments is an
involved process:

(1) Eukaryotic genome sequencing projects in the Short
Read Archive (SRA) are identified;

(2) The first 1350 of 12,950 fast5 file IDs were extracted;

(3) Cutadapt v2.3 was used to trim adapter sequences to
ensure only sample nucleotides of unpredictable length
and composition are used in our extractor;

(4) Fast5 files were concatenated and split into 100 parts,
then converted to text files containing ~ 768 million
char representations of nucleotide bases.

Prior to processing and testing nucleotide sequences, we
first challenge the assumption that nucleotide sequences
are random and incompressible. A simple statistical analysis
of the appearance of specific nucleotides over our dataset
reveals a substantial AT bias over CG. Specifically, the pro-
portion of individual nucleic-acids over 10 unique sequences
comprised of 1 million nucleic-acids each was: A = 0.28822,
T =0.29120, C = 0.21033, and G = 0.21025

This partially refutes the first claim (C1), that nucleotide
sequences are inherently random. Unless biological samples
are thoroughly screened and mixed for the specific purpose
of providing uniformly distributed bases, adenine (A) and
thymine (T) biases are expected. This is because in DNA, A
always pairs with T and G always pairs with C. As a result,
DNA-based sequences will express a bias with a correlated
base. Nucleotide sequences, which include both DNA and
RNA, express a variety of biases, with different species/gen-
era expressing different ratios of A-T(U) and C-G [6]. The
imbalance between A and T (above) is caused by random
sampling when selecting indices from multiple base-call files
in step 4 (above). This stage is identical to those observed in
works by both Balanici et al. and Li et al. [2, 13]

To balance samples in such a way to offset the biases of
individual sequences would require a sophisticated statis-
tical analysis of the candidate dataset - a time-consuming
and costly process when more effective sources of entropy
exist [10]. Furthermore, the processes required to generate
samples that meet the conditions required by Gearheart et
al. [7] are prohibitively expensive, unless one uses only vir-
tual DNA sequences. This is due to the highly variable bias
expression of GC within samples [3].

To challenge claims C1, C2, and C3, we establish the follow-
ing parameters by which a suitably random output derived
from such data may be identified:

a) Outputs should not be predictable, even if the order in
which the DNA sequences are used is known;

b) Produced numbers should reliably pass commonly ac-
cepted statistical tests of randomness in the published
literature [4, 12, 19];

First, we generate a variety of RNG outputs based on 48
samples of Sheep DNA. Figure 1 demonstrates how tech-
niques are progressively applied over samples, to better un-
derstand the points at which entropy is derived from, or
injected into, nucleotide sequences.

DNA

sequence

Random

C encoding

Hashing

Figure 1: Encoding and hashing techniques applied
over RNG permutations

Six RNG designs were trialled, aiming to generate out-
put sequences that could pass statistical tests as rigorous as
Dieharder, TestU01 Crush, and NIST SP800-22.

Figure 2 demonstrates the encoding and hashing opera-
tions performed over our dataset.

DNA
1 ATTCGATA o | eecenr| sequence
2. ATITIC/G A[T[A] | «— system time in ns
3. «+— system time in ns
lhashing
4. e65v99kh | «—— hash from user
Source of entropy

Figure 2: Stages of random number generation and
sources of entropy

RNG-A utilizes DNA sequences without random nucleotide
selection or further processing. RNG-B and F employ system

ARES 2024, July 30-August 02, 2024, Vienna, Austria

1.00

=)
—

Proportion of tests passed
g

o

ha
o

NIST SPBOO-22 Disharder TestU01 - Smal Crush

Test suite

Darren Hurley-Smith ©, Alastair Droop @, Remy Lyon ®, and Roxana I. Teodor

RNG

B -

B

) c
D

E

B

] l

TestUD1 - Crush TestU01 - Rabhit TestUD1 - Alphabit

Figure 3: Pass rate of statistical tests over RNG outputs

time for random nucleotide selection and may randomize the
encoding scheme per nucleotide using system time. RNG-D,
E, and F apply hashing (SHA2-256) at any previous stage.
RNG C and E uniquely use only randomly assigned 2-bit
tuples from a pool, without employing DNA data. This es-
tablishes a set of control RNGs, enabling observations of the
impact of encoding and hashing on both PRNG sequences
and DNA. These RNGs generate 32-bit sequences after en-
coding but before hashing, represented as a uint32 product
of stages 1-3 (exit stage depending on RNG classification).

It is crucial to note that our prior criticisms of using DNA
as a source of randomness are evident here. Attempts to
extract randomness from DNA often result in its injection
instead, even in contemporary works [18]. Shuffled outputs
inherit entropy from the pseudorandom function used for
selection, and hashing stretches this entropy by obfuscat-
ing the chaotic input data, assuming sufficiently long input
strings to resist trivial Time Memory Trade-Off (TMTO) at-
tacks. While DNA RNGs using hashing could be enhanced
with pseudorandom salts, we do not explore this, as inject-
ing more entropy does not contribute to the study of DNA’s
inherent properties as a source of randomness.

Figure 3 shows the results of 6 statistical test batteries
performed over our 6 RNG designs.

2.1.1 NISTSP800-22 [19]. Each RNG underwent testing with
a single 10Mb output for each of the 100 samples. RNG-D and
E successfully passed all tests for every sample. RNG-F expe-
rienced notable failures in approximately 10% of the tested
samples, primarily in the Monobits and Non-Overlapping

Template Matching tests. These failures indicated a bias lead-
ing to correlations between 32-bit sequences in RNG-F out-
puts, possibly stemming from the acknowledged A-T bias in
the DNA samples within our dataset. The intriguing obser-
vation is the failure of SHA2-256 to eliminate this bias for
RNG-F, whereas RNG-D passes. This is due to biases in the
32-bit sequences used as input restricting the output domain
of SHA2-256. In the more egregious cases, this leads to hash
collisions, though the primary cause of failure in these tests
was due to poor Hamming Distance test results, indicating
repetitious structures within 32-bit sub-sequences.

The attributes of RNG-C that lead to failure are likely
mitigated by hashing, elucidating why RNG-E performs ex-
ceptionally well despite utilizing the same randomized tuple
selection method prior to hashing.

2.1.2 Dieharder [4]. All RNG designs exhibit failures, with
RNG-D, E, and F displaying resilience despite an increased
failure rate compared to NIST SP800-22 for D and E. RNG-
F consistently fails the dab_bytedistribution and diehard
birthdays tests, indicating an inherited bias and subsequent
correlation from the source data.

Failures in RNG-D and E are caused by repetition of values
(32-bit words) on an aperiodic, but structured, basis within
sample files. While arbitrarily large sequences can be ex-
tracted using the proposed RNG designs, the limited pool of
data available may result in biased or correlated sequences
over repeated iterations of Dieharder.

https://orcid.org/0000-0002-9896-9308
https://orcid.org/0000-0001-7695-7480
https://orcid.org/0009-0006-2155-5613
https://orcid.org/0000-0003-2652-1894

Extracting Randomness from Nucleotide Sequencers for use in a Decentralised Randomness Beacon ARES 2024, July 30-August 02, 2024, Vienna, Austria

For RNG-D, these failures arise from hash collisions when
identical data is passed into the hashing algorithm, highlight-
ing sensitivity to the complexity of DNA sequences. This
aligns with our assertion that the structured nature of DNA
necessitates careful shuffle and, ideally, source file mixing
operations for suitability. DNA contributes minimal random-
ness, as illustrated by the consistent performance of RNG-A
across all tests; it serves as a canvas for encoding and hashing
operations to produce sequences inheriting entropy from
those methods.

2.1.3 TestU01 [12]. TestU01 batteries of varied complexity
assess our RNG designs, ordered by increasing rigour: Al-
phabits, Rabbit, Small Crush, and Crush. Due to the substan-
tial data requirement of 84GB for Crush tests (and 0.8GB
for Small Crush) additional samples were processed specifi-
cally for TestU01 Small Crush and Crush. The repetition of
underlying DNA sequences, and bias inherited from the doc-
umented AT-pair bias, leads to repeated failures in all Crush
test runs, with slight variations in the nature and proportion
of failures. RNG E and F report a 0.74 pass rate, but fail tests
of correlation and hamming distance. As RNG F is unsalted,
hash collisions are observed in larger (Crush) test sequences.

A consistent failure in every run is observed in the Lem-
pelZiv test by RNG-A and D, indicating compressibility and
challenging the notion of DNA’s incompressibility and ran-
domness presented in prior literature. RNG-D, characterized
by hash collisions due to repeated identical inputs to SHA2-
256, also fails this test.

Small Crush, a less demanding battery requiring only
0.84GB of data, sees RNG-E and F passing, highlighting the
positive impact of hashing on the outputs of both DNA and
PRNG-selected 2-bit tuples.

RNG-A performs as expected, displaying poor performance
due to the compressibility of test sequences and a high degree
of correlation between 2-bit tuples due to A-T and G-C pair-
wise biases. Surprisingly, RNG-B exhibits exceptionally poor
performance due to biases amplified by the bias-agnostic
encoding scheme used. RNG-C shares this issue to a lesser
extent, experiencing periodic runs of 2-bit tuples caused by
the PRNG itself.

Alphabits and Rabbit, lightweight tests suitable for hard-
ware implementation, demonstrate RNG-D and F passing
every test for all sequences, underscoring the effectiveness
of hashing in stretching entropy given sufficient diversity
between provided subsequences.

RNG-A, B, and D consistently fail every iteration of the
randomwalk1 test, indicating a bit-level bias, specifically a
trend towards 0 or 1, as observed in both Rabbit and Al-
phabits.

2.2 Refutation of prior claims.

We can refute the previous claims regarding the suitability
of data representing sequences of nucleic-acids for random
number generation as follows:

C1: DNA sequences are random and cannot be com-
pressed. RNG-A consistently highlights the high com-
pressibility of raw DNA sequences, which can be at-
tributed to the inherent biases of DNA biochemistry.
RNG-D, demonstrates that hashing improves the ran-
domness of nucleic-acid sequences, but rigorous tests
(Dieharder, NIST-SP800-22, and Crush) identify repeti-
tions in the 32-bit sequences used as input to SHA2-256.
RNG-F exhibits identical issues, demonstrating that
the output of such methods is unsuitable for use as a
seed to a PRNG or input to a hash function fulfilling a
similar role.

C2: The large number of sequenced organisms en-
sures a great diversity of nucleotide sequences.
Despite generating 100 outputs from 1350 randomly
selected fast5 files, DNA-based RNGs (A, B, D, and F)
exhibit suboptimal performance in rigorous test batter-
ies (Crush, NIST, Dieharder). Consequently, authentic
DNA and RNA cannot substantiate this claim. The
inherent bias of nucleotides is expressed among suffi-
cient genii that it is impractical to expect that it will not
influence the randomness of even shuffled sequences.

C3: By randomly selecting individual nucleic-acids at
random indices within sequencing data, random-
ness of keys can be assured. This claim is refuted by
the failure of RNG-B, D, and F in stringent test batteries.
The application of encoding and hashing techniques
fails to guarantee the elimination of inherent biases in
tested sequences. We find that nucleotide data exhibits
excessive correlation and bias, rendering it unsuitable
for cryptographic key material without the infusion of
substantial entropy through supplementary processes.

We demonstrate that use of DNA is deleterious to the sub-
sequent use of hashing to produce apparently random num-
bers. DNA is wholly unsuitable as a source of randomness,
even when shuffled using a PRNG. However, the process of
sequencing DNA using nanopore sequencers does produce
usable entropy in the form of pico-amp signal noise, and
temporal characteristics of nanopore signal outputs.

Privacy is crucial when handling sensitive genetic se-
quences, which may contain intellectual property or per-
sonal data. Even mixing base-called data and hashing output
binary sequences may not prevent attacks, such as using
Rainbow Tables to reverse less sophisticated hashing algo-
rithms like MD5. Inversion of mixing functions would then
allow the derivation of binary-encoded bases, potentially

ARES 2024, July 30-August 02, 2024, Vienna, Austria

revealing input genetic data. This could lead to the recov-
ery of the original genetic sequences. While cryptographic
methods exist to prevent this, it is safer to decouple entropy
extraction from meaningful data entirely.

The inherent bias and privacy issues surrounding the use
of DNA itself as a source of randomness undermine any
perceived utility in currently proposed methods of extracting
entropy from base-called sequences. We propose a method
that extracts noise inherent in the sequencing process, which
is separate and uncorrelated with base-called sequences. This
ensures that genetic data cannot be recovered even if the
entropy extraction function is inverted.

3 NANOPORE-SEQUENCING HARDWARE
BASED RNG

Based on our refutation of claims that one can use nucleotide
sequences as a direct source of randomness, we have devel-
oped a novel technique to extract randomness from useful
sequencing activities. Instead of proposing that sequencing is
performed specifically for the purposes of generating banks
of genetic data suitable for use as a source of randomness,
we proposed a design that:

e Draws on underlying electro-chemical, optical, or elec-
trical properties of nucleotide sequencing hardware;

e Requires no reverse engineering of software or hard-
ware, utilizing diagnostic or pre-processed data to iden-
tify sources of entropy;

e Discards biological data (which is too highly struc-
tured to be of use) and instead focuses on the use of
jitter, noise, and other unpredictable phenomena that
manifest in raw signal outputs from sequencing tech-
nologies.

We focus on leveraging the electrical signal (charge ex-
pressed as pA) of nanopore-based sequencing hardware, as
a source of randomness. By focusing on extracting entropy
from useful sequencing tasks, our generator design can be
used as an in-line process, allowing for generation of random
numbers alongside usable biological data, while severing all
informational links between the two outputs if required.

3.1 Data collection

We use fast5 files derived from ONT nanopore-based se-
quencers in this work. Nanopore-based nucleotide sequencers
work by reading a change in ionic flux across a membrane as
anucleic acid is passed through a protein channel in the mem-
brane [14]. This methodology directly "reads" the molecule
rather than relying on observation of strand-complimentary
synthesis of strands. This difference provides a great advan-
tage in terms of speed and possible sequence length, although
the resulting signal is more complex to interpret than tra-
ditional sequencing methodologies. Most such devices are

Darren Hurley-Smith ®, Alastair Droop @, Remy Lyon ®, and Roxana I. Teodor

comprised of an array of nanopores, each under potentially
different thermal, electro-osmotic pressure, or electronic re-
sistance conditions. Furthermore, the duration for which a
nanopore remains functional in any device is variable. These
are all factors that may contribute hypothetically random
elements to the raw signal output produced by such devices.

The raw data produced by such devices consists of current
(pA) measurements across the membrane as the polymer of
interest moves through the pore. Analysis of these raw signal
values provides two possible sources of randomness: the time
taken for a single polymer (a single read) to pass through
the channel, and the idle duration between two successive
reads passing through the same channel. We refer to these
two times as the read time and the gap time respectively. Gap
time is a function of both the underlying (real) gap observed
by the nanopore-based sequencing hardware, and combined
hardware/software attempts to identify the presence of a
read. This may introduce error, possibly manifesting as a
fuzzy bound, to the gap time calculation. Other sources of
randomness, such as jitter in the current-read, or the dwell-
time of specific states in the signal output, are potential
sources of entropy. However, we defer such investigations
to a subsequent body of work.

Raw signal data is collected on the device during a se-
quencing run, and is subjected to initial preprocessing. This
identifies the start and end of each read, allowing the device
to output time-stamped raw data traces for each individual
read. Reads are tagged with the channel through which they
travelled, thus allowing extraction of both the read and gap
times (expressed in milliseconds with a resolution of 0.2 ms)
for the device channels.

We take the fast5 output of ONT devices, and reformat
the output to produce a space-delimited list of integers ex-
pressing intervals differentiated as gaps or reads to simplify
processing data during the entropy extraction process. Our
post-processed files begin with a gap at index 0 followed by
aread at index 1.

3.2 Randomness extraction from
nucleotide sequencing timing data

The data produced by the method detailed in sub-section 3.1
requires further processing to produce a hypothetically ran-
dom bitstream. We separate gaps from reads to create two
sub-files for each sample, as reads trend towards consistent
duration (ms) throughout the majority of a sample. This
leads to highly correlated output, while gap-only sub-files
demonstrated significantly higher variance. We do not ex-
plore the characteristics of read data in this work, due to its
poor performance in basic tests of randomness (FIPS 140-2)
regardless of extraction method applied. These characteris-
tics are discussed further in Section 4.

https://orcid.org/0000-0002-9896-9308
https://orcid.org/0000-0001-7695-7480
https://orcid.org/0009-0006-2155-5613
https://orcid.org/0000-0003-2652-1894

Extracting Randomness from Nucleotide Sequencers for use in a Decentralised Randomness Beacon ARES 2024, July 30-August 02, 2024, Vienna, Austria

Table 1: ent test results for lag extraction.

’ File ‘ Bytes ‘ Entropy ‘ X

‘ p-value ‘ Arith. Mean ‘ MC z

‘ Serial Corr. ‘

S1 | 218435 | 7.999146 | 259.00 | 0.4185
S2 | 242148 | 7.998887 | 374.37 | < 0.01
S3 | 259698 | 7.998931 | 384.18 | < 0.01
S4 | 427693 | 7.999054 | 560.88 | < 0.01
S5 | 426143 | 7.999090 | 537.41 | < 0.01

127.0573 3.154951243 | -0.002844
126.4569 3.162594777 | -0.000639
126.3946 3.171314373 | 0.002524
126.3828 3.161920260 | -0.001976
126.3069 3.175478366 | 0.000073

Two methods of extracting randomness were tested:

e Compare lags between events in the sample data to
produce an output bitstream.

e Compute modulo 2 over each scalar value associated
with an event, and uses the output integer as the basis
for bitstream generation.

Extracting lags was the original prototype approach, using
timing data from nanopore-based sequencing as an array,
over which a sliding window of gap length comparisons was
performed. However, this method was found to preserve
underlying biases. Specifically, the increasing size of gaps to-
wards the end of a sample file (due to depletion of nucleotide
materials in the fluid suspension) led to runs of 1 in excess of
tolerable limits. This is amply demonstrated by the ent test
suite, as shown in Table 1. y? scores in excess of 310, high
error in montecarlo 7 results, and serial correlation in the
order of between 10 and 1072 indicate underlying structure
that precludes this extractors output being considered ran-
dom. As a result, the lag-extractor was rejected in the early
experimental stage.

By simply computing modulo 2 over an array of integers
representing event durations, a marked improvement in ef-
ficiency and output quality can be observed. It avoids the
correlation issues between reads and gaps by instead check-
ing whether event durations are odd or even (I modulo 2),
as shown in Algorithm 1:

Algorithm 1 Nucleotide sequence Modulo Extraction Algo-
rithm
foric fdo
if (x[i] mod 2) == 0 then
b—o
else if (x[i] mod 2) # 0 then
be1
end if
v.append(b)
end for

This method discards distinctions between discrete event
definitions, as discrete events (x) are not compared based
on magnitude, but by the output of d mod 2. Even timings
result in a 0 and odd results in a 1. This binary bit is then

appended to an output vector (v) which is written to a binary
file once all lengths have been processed. Output data must
be trimmed to the nearest whole byte if it doesn’t conform
to a file where (f mod 8) == 0. This culling of trailing bits
prevents the introduction of bias through padding of the
output data with arbitrary bits.

Algorithm 1 yields 418KB in output bits from a 9.4MB
source file (itself derived from fast5 files that may be several
GB in size). This represents an approximate compression
rate of 20:1.

To verify the suitability of modulo extraction over gaps
as a basis for use in a random number generator drawing
on nucleotide sequencing methods as an entropy source, sta-
tistical tests of randomness were used as an initial check of
output quality. We test 24 binary files, generated using the
modulo extractor method, and a further file, which is the
concatenation of the previous sample files. The concatena-
tion of all outputs is intended to help determine whether
individual samples, with variable lengths, can be combined
to produce larger output sequences without loss of entropy.
Section 4 details the statistical test results for a selection of
gap files.

4 ANALYSIS AND DISCUSSION

4.1 Statistical tests of randomness

To identify whether the methods proposed in 3 are suffi-
ciently random, the following statistical tests were applied:

e ent. [1]
e FIPS 140-2.
e TestUO01: Alphabits and Rabbit batteries. [12]

More sophisticated tests of randomness, such as Dieharder [4]
and NIST SP800-22 tests [19] require more data than in-
dividual runs (fast5 files) can provide. As this work repre-
sents an initial exploration of the properties of single runs
of nanopore-based sequencers as a potential source of ran-
domness, such tests are deemed out of scope for this paper.

4.2 FIPS 140-2

Table 2 shows the failed tests for FIPS140-2. We test against
a confidence interval of a > 0.99, considering any pass rate
below this threshold a failure. Modulo extraction over the

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Table 2: FIPS140-2 Number of failed tests per Modulo
Extracted Sample.

File \ Pass \ Mono. \ Poker \ Runs \ L. Run \ C. Run ‘
S7 099 |0 0 1 0 0
S10 099 |0 0 0 1 0
S14 099 | 0 0 1 0 0
S15 099 | 0 0 0 1 0
S17 099 |0 0 1 0 0
S19 099 |1 0 0 0 0
S21 099 |0 0 0 1 0
S22 0.99 | 10 2 1 0 0
S23 090 |1 0 0 0 0
S _concat | 0.99 | 15 2 0 3 0

listed samples passed FIPS 140-2 with one exception: S23. Out
of 25 samples, 10 fail at least 1 test, though for 8 of these (all
except S23 and S_concat) only one 20,000-bit subsequence
fails in each case. S23 has an excess of 1’s relative to 0’s
in tested bitstreams. As a result, it fails the monobits test
repeatedly, with 1 overlong run of 1’s. It also fails the Poker
test twice, indicating a weighted distribution of 4-bit tuples
in 2 of the tested 20,000-bit sequences for this file. S_concat,
being a concatenation of all sequences, inherits these failing
sequences and accumulates further borderline failures from
the dataset, but does not fail the proportional test.

As previously noted, these are very simplistic tests, and
are only recommended as a test for total failure. We use ent
and TestUO01 to further explore the characteristics of these
sequences.

4.3 ent

Ent allows us to observe specific characteristics of each sam-
ple. Shannon entropy, a simple measure of entropy based
on the expression of symbols within a set, is > 7.99 for all
samples. However, a counter increasing monotonically to its
maximum value, and looping in excess of [= ¢ times will
report perfect Shannon entropy, so it is not a reliable means
of determining randomness [11]. Compressibility, the degree
to which a file’s size can be reduced using common compres-
sion algorithms, is 0 for all files. This is a vast improvement
over highly compressible nucleotide sequence encoding.
Arithmetic mean is a statistic that should represent the
central tendencies of a sample. However, it is highly sensitive
to outliers, which makes it an ideal test to identify whether
values in a set are identically distributed. The degree of error
from the expected mean (127.5 for 256 symbols - which repre-
sents single-byte encoding) indicates the degree of deviation
from an identical distribution. A limitation of this test is that
it cannot be used to observe whether values are indepen-
dently distributed as it merely observes the mean value of

Darren Hurley-Smith

, Alastair Droop ®, Remy Lyon ®, and Roxana |. Teodor

a set, not its composition. The maximum error among our
samples was 1.01% for S23. This sample was notable for it’s
failure of the FIPS 140-2 battery. All other samples pass the
Arithmetic mean test.

Table 3: y* and Serial Correlation results for modulo
extraction.

’ File \ Bytes \ X \ p-value \ Serial Corr. ‘
S1 218869 237.52 0.7772 -0.003336
S2 242162 284.71 0.09 0.001745
S3 259711 257.18 0.45 -0.000688
S4 427740 292.22 0.05 0.000127
S5 426186 286.87 0.08 -0.001448
S6 983538 320.51 < 0.01 -0.001830
S7 1055980 281.69 0.12 -0.000614
S8 1127814 239.80 0.74 -0.001270
S9 438116 298.69 0.03 -0.000912
S10 1095264 225.64 0.91 0.000395
S11 202285 290.52 0.06 -0.001985
S12 573411 271.45 0.23 -0.001473
S13 613767 209.17 0.98 0.000952
S14 1758005 24743 0.62 0.000357
S15 1525114 258.87 0.42 0.001267
S16 196847 249.02 0.59 0.001099
S17 509225 288.71 0.07 -0.003296
S18 134953 229.17 0.88 0.000348
S19 221714 309.56 0.01 0.000040
S$20 267490 392.50 < 0.01 -0.001308
S21 491693 246.58 0.64 0.001561
S22 204288 321.10 < 0.01 -0.000517
S23 261631 557.864164 | < 0.01 0.001425
S$24 264387 338.626479 | < 0.01 -0.000795
S concat | 11925522 | 230.58 0.86 -0.000213

Table 3 shows the y? and serial correlation results for our
samples. The majority of files (75%) pass ent, but 4 of those
files which fail, do so due to the y? test. All 5 failing files
do so due to an over-representation of specific bytes. There
is no discernible bias shared between the 5 files, however
all failing files exhibit a bias towards 1’s (0.506 of bits in
each file) during bit-level y2. This indicates that some sam-
ples will inherit a bias from the signal-to-timings stage of
processing. Further analysis of the software used to produce
these timings will be required to establish a specific cause. In
this case, gaps tend towards odd rather than even values. A
second notable observation is that serial correlation appears
completely decoupled from y? and other statistics produced
by ent. All serial correlation statistics are within tolerance
(+/-0.5 would indicate non-randomness analogous to prose
or C code).

https://orcid.org/0000-0002-9896-9308
https://orcid.org/0000-0001-7695-7480
https://orcid.org/0009-0006-2155-5613
https://orcid.org/0000-0003-2652-1894

Extracting Randomness from Nucleotide Sequencers for use in a Decentralised Randomness Beacon ARES 2024, July 30-August 02, 2024, Vienna, Austria

Monte Carlo 7 plots successive 24-bit values as X and Y
coordinates on a square grid. Every coordinate ‘hit’ by a
value, within a circle defined within the grid, increments a
counter used to count the proportion of hits. In a randomly
distributed sample, the percentage of hits can be used to
calculate 7. The degree of error indicates the deviation from
identical distribution. The largest error in our sample set is
0.6%, well within tolerance. The mean error is 0.2% and the
media in 0.25%.

These results demonstrate the modulo extractor is a sub-
stantial improvement over both the methods explored in
Section 2, and the lag extractor rejected in the early experi-
mental stage. Having completed testing using basic tests for
total failure, and having analysed basic sequence properties
through ent, TestU01 was used to test the outputs with a
more robust set of statistical tests.

4.4 TestUO1

Table 4 shows the failed tests for the alphabits battery of
TestUO01. This lightweight test battery includes 9 tests over
the first 1,000,000 bits of each file. As this would result in the
concatenation of all files reporting the same results as S6,
we omit the concatenated file from these results. The same
principles apply to our Rabbit test results.

Table 4: Failed Alphabits Tests

’ File \ Num Fails \ Failed Test IDs

S6 |1 6

S19 | 9 1,2,3,5,8,9
S20 | 11 1,2,3,5,6,8,9
S21 | 8 1,2,5,8,9

S22 | 11 1,2,3,5,6,8,9
523 | 11 1,2,3,5,6,8,9

Of the 25 tested files, 4 files identified as weak by ent con-
tinue fail multiple tests. One borderline file, S19, also fails
by a significant margin (a total of 9 test failures over 6 of
the 9 test categories). In total, 6 out of 25 files fail the Al-
phabits battery on at least 1 test. The most commonly failed
tests are Multinomial BitsOver, Hamming Independence, and
RandomWalk tests. The latter of these is an intuitive failure.
Failure of the)(2 test indicates that a bit-level bias is present,
which these results confirm. Furthermore, Hamming Inde-
pendence failures indicate that both 16 and 32-bit sequences
have dependencies that indicate underlying structure, rein-
forcing both the ent and RandomWalk observations. The
failure of specific Multinomial tests (1) by all failing samples
further indicates an underlying bias in the distribution of
2-bit tuples.

Table 5 shows the failed tests identified for Rabbit. This
battery is more intensive than Alphabits, applying 26 cate-
gories of test with multiple parameters per test. All samples
which fail Alphabits appear in these results, but are joined
by a further 6 samples (a total of 12 failing samples).

Table 5: Failed Rabbit Tests

’ File \ Num Fails \ Failed Test IDs

S1 [1 24

S2 |1 24

S2 |1 20

S6 |1 16

S11 |1 1

S15 | 1 1

S19 | 12 11, 15, 20, 24, 25, 26

S20 | 16 11, 15, 16, 17, 20, 24, 25, 26
S21 | 1 1

S22 | 10 1, 11, 15, 20, 24, 25, 26

S23 | 17 11, 14, 15, 16, 17, 20, 24, 25, 26
S24 | 14 11, 14, 15, 16, 20, 24, 25, 26

Though the specific test failures are different, the underly-
ing cause remains the same as that observed when evaluating
Alphabits results. Failing samples tend to fail RandomWalk,
Run, Multinomial, and Hamming Independence tests.

These failures indicate that further development of the
post-processing method applied over device outputs is re-
quired. As the modulo extractor does not enforce Indepen-
dent and Identical Distribution (IID), but instead observes
it as an emergent property of the randomness of I mod 2
within the timings of gaps and reads in DNA reader outputs,
it is likely that it is sensitive to default outputs or steady
states in the nucleotide sequencer’s output (as expressed in
fast5 files).

Table 6 shows the proportion of test battery passes (all
tests passed) for Alphabits and Rabbit. RNGs A, B, D, and F
are compared with raw, hashed, and salted & hashed output
from the modulo extractor proposed in this work.

Raw modulo extractor output outperforms both encoded
(A) and randomly encoded (B) nucleotide data by a substan-
tial margin, demonstrating the higher inherent entropy of
nanopore-based sequencing timing data. RNGs D and F, as
well as hashed (unsalted and salted) modulo extractor out-
puts, report perfect pass rates for Alphabits. The modulo
extractor outputs infrequently fail the Multinomial BitsOver
test (Rabbit).

We identify that a small subset of sample files generated
using the modulo extractor retain highly predictable tim-
ings, likely from device initialisation and residual adapter se-
quences. Removing the first 4,092 bytes from hashed modulo

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Table 6: Comparison of TestU01 Alphabits and Rabbit
results for selected RNGs

’ Generator \ Type \ Alpha \ Rabbit ‘
RNG-A nucleotide data 0 0.25
Mod_raw raw mod data 0.75 0.5
RNG-B random nucleotides | 0 0.05
RNG-D hash RNG-A 1 1
RNG-F hash RNG-B 1 1
Mod_hash hash mod data 1 0.88

4KB pruned data 1 1
Mod_salt_hash | hash + salt mod data | 1 0.92
4KB pruned data 1 1

outputs results in a 100% pass rate for hashed modulo out-
puts. This informs us that in the case of real-time generation
of random numbers from nanopore-based sequencing tim-
ings, initialisation data must be discarded, even if it appears
random in over 80% of cases. This prevents the introduction
of biases caused by device and/or sample state. This pruning
process does not benefit raw modulo outputs, though failure
rates for samples reports in Tables 4 and 5 are reduced.

4.5 Discussion

It must be noted that the samples presented in this work are
the unfiltered output of ONT nanopore-based sequencing
devices, with a naive entropy extraction method applied to
them. It is expected that they will not demonstrate ideal
properties of randomness, but 8 of 24 tested samples show
promising characteristics regardless of these limitations.

Modulo extractor outputs over gap values dictated by the
sequencing software may inherit some underlying bias, but
the method consistently outperforms nucleotide encoding
methods, with the exception of randomly shuffled, encoded
and hashed nucleotide sequences. Passing 32-bit words from
our sample files, into SHA3-256 (with or without the addition
of a timestamp-based salt), results in the modulo extractor
surpassing even hashed and shuffled nucleotide sequences
for FIPS 140-2, ent, and TestU01 Rabbit and Alphabits. This
demonstrates the viability of our approach as a superior
method of utilising useful work (nucleotide sequencing) as a
source of entropy for random number generation.

When concatenating a 32-bit modulo-derived sequence
and a timestamp, then hashing with SHA3-256, only S21
and S22 show any issues. Specifically, they both report a
borderline failure of Rabbit’s Multinomial test 1. All other
test results, for FIPS 140-2, ent, and TestU01 pass for all
modulo extractor derived samples. This further reinforces
the benefits of our approach over previously documented
methods of utilizing nucleotide sequences as a source of
randomness.

Darren Hurley-Smith ®, Alastair Droop @, Remy Lyon ®, and Roxana I. Teodor

Considering the sensitive nature of some nucleotide data,
particularly human or patented genetic data, we must con-
sider privacy. Our method, unlike the use of nucleotide se-
quences, ensures that one cannot reverse engineer genetic
data from either raw, hashed, or salted and hashed output
streams. Only salted and hashed raw nucleotide RNGs can
make this same claim, and then only with a sufficiently ran-
dom salt. Also, as our method does not utilise useful biologi-
cal data that will be stored as a matter of record in the same
manner as nucleotide sequences, it is not possible to use
repositories of genetic data to gain a frontrunning advantage
should the source of a nucleotide-based RNG be identified
by attackers. This will be further reinforced as our modulo
extractor is improved to operate over streamed output from
nanopore-based devices instead of raw signal files.

5 CONCLUSION

In this paper we have introduced a novel method of extract-
ing entropy from the process of sequencing nucleotides using
commercial ONT devices. We have identified usable entropy
in the processes of nanopore-based sequencers, and con-
tinue to refine methods of accessing the inherent noise of
nucleotide sequencing processes in such devices. We demon-
strate that modulo extractors provide superior output com-
pared to previous works [2, 7, 13] prior to hashing. We show
that not only does our extractor provide appropriate levels of
entropy to feed a SHA2-based RNG, but that the bitstreams
generated by the extractor over fast5 files themselves show
promisingly robust properties of randomness, despite low
level correlations inherited from the means by which a gap
is defined in such files.

Extractors that rely on time-lag observations share weak-
nesses with RNG-F by failing to remove correlations between
output data and the underlying structure of nucleotide se-
quence timing data. We demonstrate that modulo extraction
does not share this weakness, and provide initial proofs of
randomness for the modulo method of extracting random-
ness from nanopore-based sequencer timing data. Statistical
randomness tests identify that post-processing of modulo ex-
tracted sequences derived from fast5 files is required, but that
the modulo extraction of bitstreams from gap data doesn’t ex-
hibit egregious bias or correlations for the majority of tested
samples. A simple salt and hash method of post-processing
eliminates observed bias in all raw modulo outputs.

We identify that base-call data, expressing specific DNA
or RNA sequences as strings of chars, has too much inherent
structure to be used as a stand-alone source of randomness.
Even after a mixing multiple sources, base-pair data remains
highly correlated and biased. Hashing, especially if the data
is salted with high entropy sequences from another source,
can improve the quality of this data. However, this doesn’t

https://orcid.org/0000-0002-9896-9308
https://orcid.org/0000-0001-7695-7480
https://orcid.org/0009-0006-2155-5613
https://orcid.org/0000-0003-2652-1894

Extracting Randomness from Nucleotide Sequencers for use in a Decentralised Randomness Beacon ARES 2024, July 30-August 02, 2024, Vienna, Austria

resolve the underlying bias - it only complicates observa-
tion, an issue overcome by more robust tests of randomness.
Modulo extraction of randomness from temporal data (gaps)
expressed in fast5 files does not share this weakness, but a
much larger dataset is required to identify the actual entropy
inherent in such systems, the degree of variance between
individual biological samples, and to identify methods that
more generally harness to inherent entropy of a wider range
of nucleotide sequencers. Our current work provides a viable
proof of concept, but requires further analysis to demonstrate
that entropy produced in this manner is of use to cryptogra-
phers and systems experts.

Sequences produced by our method cannot be used to
derive any meaningful nucleotide data, as we rely only on the
temporal data from a given sequencing operation. Such data
has no relationship with nucleotides or any other identifying
data.

5.1 Future work

Our research demonstrates the feasibility of entropy extrac-
tion from genetic sequencers. However, the Gaps extractor is
currently limited by its relatively low throughput in relation
to the input size. The high compression rate between nu-
cleotide sequencer timing outputs and the final bitstream is
significant, approximately 10° : 1 from raw signal to final bit-
stream. This limitation arises from the necessity to remove
reads entirely to mitigate the highly correlated nature of
processed fast5 and fastq pore occupancy data. The need to
prune files to prevent initialisation biases, further decreases
signal utilization.

Building on the promising results provided by the Gaps
methodology, future work will explore whether additional
sources of entropy can be extracted directly from sequencing
hardware. One promising area of development involves ASIC
noise as observed in raw signal files. These advancements
will enable us to produce sufficient output to conduct more
sophisticated tests, such as NIST SP800-22 and SP800-90B.
Our ongoing and future work will focus on implementing
a more efficient version of our sequencer-based entropy ex-
tractor, subjecting it to the same rigorous standards applied
in our review of DNA-based RNG literature.

ACKNOWLEDGMENTS

This work has been funded by Veiovia Ltd., a University
of York spin-out company, operating with investment from
Oxford Nanopore Technologies Plc (ONT). Darren Hurley-
Smith (DHS) has worked as an independent consultant for
Veiovia Limited, to develop and validate methods of extract-
ing entropy from nucleotide sequencing hardware. DHS,
Remy Lyon (RL), and Roxana L. Teodor (RIT) were hosted by

University of York as Visiting Associates of Prof. Ian Ban-
croft’s group in the Centre for Novel Agricultural Products,
Department of Biology. The authors would like to thank Dr.
Stuart Reid of ONT for helpful advice on the biophysical
processes involved in nanopore sequencing, the properties
of nanopore data and review of the manuscript. RL and RIT
gratefully acknowledge Dr. James Peter Willcocks of ONT
for his input on publication strategy and review of the man-
uscript. The authors would also like to thank Dr. Saqib Kakvi
(ISG, Royal Holloway) for their independent critical review
of the manuscript.

ARES 2024, July 30-August 02, 2024, Vienna, Austria

REFERENCES

[1] Elena Almaraz Luengo, Bittor Alafia Olivares, Luis Javier Garcia Vil-

—

[t

=

=

—

lalba, Julio Hernandez-Castro, and Darren Hurley-Smith. 2023. Strin-
gENT test suite: ENT battery revisited for efficient P value computation.
Journal of Cryptographic Engineering (2023), 1-15.

Dumitru Balanici, Vlad Tomsa, Monica Borda, and Raul Malutan. 2015.
Full duplex OTP cryptosystem based on DNA Key for text transmis-
sions. In Innovative Security Solutions for Information Technology and
Communications: 8th International Conference, SECITC 2015, Bucharest,
Romania, June 11-12, 2015. Revised Selected Papers 8. Springer, 39-48.
Yuval Benjamini and Terence P. Speed. 2012. Summarizing and
correcting the GC content bias in high-throughput sequencing.
Nucleic Acids Research 40, 10 (02 2012), e72-e72. https://doi.
org/10.1093/nar/gks001 arXiv:https://academic.oup.com/nar/article-
pdf/40/10/¢72/25335311/gks001.pdf

Robert G Brown, Dirk Eddelbuettel, and David Bauer. 2013. Dieharder:
A random number test suite. Open Source software library, under
development (2013).

Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Verg-
niaud, and Daniel Wichs. 2013. Security analysis of pseudo-random
number generators with input: /dev/random is not robust. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications
security. 647-658.

N Galtier, G Piganeau, D Mouchiroud, and L Duret. 2001. GC-Content
Evolution in Mammalian Genomes: The Biased Gene Conversion Hy-
pothesis. Genetics 159, 2 (10 2001), 907-911. https://doi.org/10.1093/
genetics/159.2.907 arXiv:https://academic.oup.com/genetics/article-
pdf/159/2/907/42035117/genetics0907.pdf

Christy M Gearheart, Benjamin Arazi, and Eric C Rouchka. 2010. DNA-
based random number generation in security circuitry. Biosystems 100,
3(2010), 208-214.

Ashish Gehani, Thomas LaBean, and John Reif. 2004. DNA-based
cryptography. Aspects of molecular computing: essays dedicated to tom
head, on the occasion of his 70th birthday (2004), 167-188.

Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. 2006. Analysis
of the linux random number generator. In 2006 IEEE Symposium on
Security and Privacy (S&P’06). IEEE, 15-pp.

Darren Hurley-Smith

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

, Alastair Droop ®, Remy Lyon ®, and Roxana |. Teodor

Darren Hurley-Smith and Julio Hernandez-Castro. 2020. Quantum
leap and crash: Searching and finding bias in quantum random number
generators. ACM Transactions on Privacy and Security (TOPS) 23, 3
(2020), 1-25.

Darren Hurley-Smith, Constantinos Patsakis, and Julio Hernandez-
Castro. 2020. On the unbearable lightness of FIPS 140-2 randomness
tests. IEEE Transactions on Information Forensics and Security 17 (2020),
3946-3958.

Pierre L’ecuyer and Richard Simard. 2007. TestU01: AC library for
empirical testing of random number generators. ACM Transactions on
Mathematical Software (TOMS) 33, 4 (2007), 1-40.

Xin-she Li, Lei Zhang, and Yu-pu Hu. 2008. A novel generation key
scheme based on DNA. In 2008 International Conference on Computa-
tional Intelligence and Security, Vol. 1. IEEE, 264-266.

Hengyun Lu, Francesca Giordano, and Zemin Ning. 2016. Oxford
Nanopore MinION sequencing and genome assembly. Genomics, pro-
teomics & bioinformatics 14, 5 (2016), 265-279.

Christian Matt and Ueli Maurer. 2013. The one-time pad revisited.
In 2013 IEEE International Symposium on Information Theory. IEEE,
2706-2710.

Craig G Nevill-Manning and Ian H Witten. 1999. Protein is incom-
pressible. In Proceedings DCC’99 Data Compression Conference (Cat.

No. PR00096). IEEE, 257-266.
Kyung Hwan Park, Seong Mo Park, Byoung Gun Choi, Jong Bum Kim,

and Kwang Jae Son. 2020. High rate true random number generator
using beta radiation. In AIP Conference Proceedings, Vol. 2295. AIP
Publishing LLC, 020020.

Pramod Pavithran, Sheena Mathew, Suyel Namasudra, and Ashish
Singh. 2023. Enhancing randomness of the ciphertext generated by
DNA-based cryptosystem and finite state machine. Cluster Computing
26, 2 (2023), 1035-1051.

Andrew Rukhin, Juan Soto, and James Nechvatal. 2010. A statisti-
cal test suite for random and pseudorandom number generators for
cryptographic applications. NIST DTIC Document. NIST SP800-22
(2010).

Marek Zyczkowski, Grzegorz Kwasnik, Mieczystaw Szustakowski,
Mateusz Karol, Lukasz Olszewski, and Konrad Dominik Brewczynski.
2017. Encryption key generator based on passive optical elements. In
Optical Fibers and Their Applications 2017, Vol. 10325. SPIE, 210-215.

https://orcid.org/0000-0002-9896-9308
https://orcid.org/0000-0001-7695-7480
https://orcid.org/0009-0006-2155-5613
https://orcid.org/0000-0003-2652-1894
https://doi.org/10.1093/nar/gks001
https://doi.org/10.1093/nar/gks001
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/40/10/e72/25335311/gks001.pdf
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/40/10/e72/25335311/gks001.pdf
https://doi.org/10.1093/genetics/159.2.907
https://doi.org/10.1093/genetics/159.2.907
https://arxiv.org/abs/https://academic.oup.com/genetics/article-pdf/159/2/907/42035117/genetics0907.pdf
https://arxiv.org/abs/https://academic.oup.com/genetics/article-pdf/159/2/907/42035117/genetics0907.pdf

