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Abstract. Recent research has shown the viability of ransomware at-
tacks on Ethereum Proof-of-Stake (PoS) validators, whereby an attacker
that compromises a validator can threaten to perform slashable actions
unless a ransom is paid. Given the size of Ethereum validator stakes, val-
idators could become an attractive target for future ransomware. How-
ever, there are currently no practical mechanisms to recover from ran-
somware since even validators that attempt to exit the network are ret-
rospectively slashable during the withdrawal period.
We propose Revoke, an extension of Ethereum that mitigates the im-
pact of ransomware attacks on validators. Revoke introduces a new de-
centralised key revocation mechanism that enables validators to change
their signing key without withdrawing their stake. A challenge for Re-
voke is balancing the utility of the revocation mechanism for individual
validators against potential reductions in overall chain security. Revoke
exposes a trade-off whereby validators cannot propose or attest to blocks
during the revocation process, and hence incur inactivity penalties, but
are not susceptible to much larger slashing penalties. Our design extends
the Ethereum specification to capture the impact of Revoke’s core key-
change mechanism on both the beacon-chain state transition function
and fork-choice decisions. We also adapt the existing safety and liveness
proofs of Ethereum to incorporate the effects of Revoke.

1 Introduction
Proof-of-Stake (PoS) blockchains are garnering increased attention among the
blockchain community [2, 14, 23, 26, 32, 36]. Most prominently, Ethereum tran-
sitioned to a new design (Ethereum 2.0) based on PoS in 2022. In Ethereum,
committees of randomly chosen validator nodes propose and validate blocks of
transactions as part of a new ‘beacon-chain’ consensus protocol. To participate,
validators must deposit a stake of 32 ETH (approx. USD $95k1). As of April
2024, there are over 900,000 active validators with a total stake of over 28,800,000
ETH (approx. USD $2.74 Billion).

A major concern for PoS validators is to ensure their stake cannot be stolen
if a validator node is compromised by an attacker. In Ethereum, validator se-
curity is enhanced by separating the withdrawal key that controls access to the
1 ETH-USD valuation 17/04/2024
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staked deposit from the signing key, used to sign any messages sent as part of
the protocol. The withdrawal key can be kept offline in cold storage, as it is
not required for regular operations performed by the validator. The signing key,
needed to sign all validator operations, must be kept online and hence is vul-
nerable if the validator node is compromised. However, access to the signing key
does not provide an attacker direct access to the validator’s stake.

Although separate withdrawal and signing keys provide a valuable layer of
defence, recent work has shown how ransomware attacks can still indirectly
extort a compromised validator’s stake even without direct access to the with-
drawal key [6, 7]. The idea behind such attacks is to threaten compromised
validators that unless a ransom is paid, the attacker will misbehave using their
signing key (e.g. by signing conflicting blocks or attestations). In Ethereum,
misbehaving validators are punished heavily through the deduction of slashing
penalties from their stake. As a result, validators are incentivised to comply with
a ransomware attacker’s demands. Furthermore, it has been shown that a smart
contract can guarantee a validator will be safe from any further slashing on pay-
ment of the ransom, minimising the need for a compromised validator to trust
the ransomware attacker. Given the size of validator stakes, they could become
a lucrative target for future ransomware attacks.

We observe that while key revocation would potentially support post-compro-
mise security in the event of a ransomware attack, it is currently unsupported
in Ethereum. Unlike in centralised settings, signing key revocation in a decen-
tralised PoS blockchain is non-trivial since validators must agree on each other’s
signing keys in order to check the correctness of consensus protocol messages
(e.g. block proposals and attestations). This requires the key revocation mech-
anism itself to be decentralised. Such a mechanism must additionally consider
that an attacker may monitor messages exchanged over the blockchain peer-to-
peer network and cause the validator to be slashed if any attempt to revoke a
compromised key is observed. Finally, revocation must not provide an avenue for
large-scale attacks to undermine the security of the blockchain by sidestepping
slashing penalties.

To overcome these challenges, we propose Revoke, a new decentralised key
revocation protocol for the Ethereum blockchain. Revoke enables a validator to
recover from an ongoing ransomware attack by submitting a revocation request
containing a new signing key to the blockchain. Once a block containing the
revocation request is finalised, the new signing key becomes operational. In the
intervening period, the validator is temporarily disabled, and any block proposals
or attestations it signs using either key will be ignored by other validators.
Although the validator is subject to inactivity penalties while disabled, any
slashable behaviour using the old key that is not finalised before the revocation
request will be ignored.

Revoke’s design addresses several other subtle issues that arise due to in-
teractions between revocation and the existing consensus protocol. For example,
votes by disabled validators using either their old or new key are not considered
as part of Ethereum’s LMD-GHOST fork-choice rule [11]. This ensures a val-
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idator cannot ‘double-vote’ for different branches of the block-tree. In addition,
validator revocation requests are rate-limited to avoid facilitating long-range at-
tacks. We adapt the existing safety proofs of Gasper [12], the consensus protocol
underpinning the Ethereum beacon chain, to incorporate the effects of Revoke.
We also implement Revoke as an extension to the Ethereum executable speci-
fication, and evaluate its correctness with respect to an expanded version of the
existing Ethereum test suite.

The rest of the paper is organised as follows. We first give background on
Ethereum ransomware attacks and introduce our system model (§2). We then
outline the high-level design of our revocation protocol (§3), before describing
in detail its key algorithms and their integration into the Ethereum consensus
protocol (§4). Next, we sketch a proof of correctness (§5), discuss incentives for
proposers to include revocation requests (§6) and summarise the changes we
made to the Ethereum formal specification (§4.3). We finish with a discussion of
related work (§7) and conclusions (§8).

2 Background and Motivation

Ethereum Proof-of-Stake. Ethereum’s core ‘beacon-chain’ consensus proto-
col [23] is based on Gasper [12], which itself is a combination of ideas from the
Casper FFG finality gadget [11] and a hybrid form of the LMD-GHOST fork-
choice rule [11, 40]. The Casper ‘gadget’ is a sub-protocol for deciding which
blocks in a blockchain should be considered finalised, i.e. blocks that everyone
will eventually think of as part of the consensus history. More formally, given a
view G containing the set of messages observed by a validator, a finality gadget
returns the set F (G) of finalised blocks.

The LMD-GHOST fork-choice rule gives a validator a law to follow when
deciding what the right block should be in the event of conflicting blocks. More
formally, the fork-choice rule is a function fork() that, when given a view G iden-
tifies a single leaf block B that produces a unique chain fork(G) = chain(B) from
Bgenesis to B called the canonical chain. B is referred to as the head of the chain
in view G. In Ethereum, new blocks are proposed once per slot, where a slot
is defined as a constant number of seconds (currently 12s [23]). For efficiency
reasons, finalisation considers only a subtree of checkpoint blocks. Checkpoints
occur at the granularity of epochs, where an epoch is some constant number
C of slots (currently 32 [23]). Within an epoch, validators are partitioned into
committees, with one committee per slot. The assignment of validators to com-
mittees is performed at random one epoch in advance.

Within each slot, a single validator from the corresponding committee pro-
poses a block. The other committee members then create an attestation contain-
ing (i) a vote for the block they consider to be the head of the chain according
to the fork-choice rule (ii) a finalisation vote in the form of a checkpoint edge
that indicates what they consider to be the most recent checkpoint.

Accountability. To incentivise good behaviour on the part of validators, Ether-
eum employs two accountability mechanisms in the form of inactivity penalties
and slashing. Inactivity penalties are generally small (3x the base reward ≈21,720
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Gwei per epoch), targeting validators who fail to participate in consensus activ-
ities because they are offline or otherwise unavailable. In contrast, slashing pe-
nalises actions that could jeopardise the integrity of the blockchain, such as sign-
ing contradictory attestations or block proposals. For a validator to be slashed,
evidence of the slashing must be included in a block.

A slashed validator with stake x incurs an initial base slashing penalty b = x
32

e.g. 1 ETH for a typical stake of 32 ETH [3, 24]. b
16

of the base slashing penalty
is rewarded to the proposer of the block containing the slashing, amounting to
0.0625 ETH for a stake of 32 ETH. To incentivise nodes to search for and report
slashable behaviours [8, 20], a whistleblower reward of 1

8
of the proposer reward

was also suggested initially. However, the current implementation disables this
feature since it is trivial for the proposer to claim any slashing evidence for itself.

A slashed validator is also signed to exit, i.e. it can no longer participate in
consensus activities. Furthermore, it is unable to withdraw its remaining stake
for a further 8192 epochs (approx. 36 days). Halfway through the withdrawal
period (4096 epochs), an additional correlation penalty β is calculated for the
validator. The correlation penalty scales with the number of concurrent slashing
events in order to disincentivise large-scale attacks without being overly punitive
for isolated slashing incidents. β is based on the total amount of stake slashed
across all validators during the 4096 epochs before and after the validator was
slashed. Concretely, β is set to 3SB

T
, where T is the total stake of all active

validators, B is the current balance of the slashed validator, and S is the sum
of all balances of slashed validators in the last 36-days. The correlation penalty
can result in a validator losing all of its stake if T

3
of stake is slashed in the same

period. However, for isolated slashing events the correlation penalty is negligible
in comparison to the base penalty. To date, all slashings have been relatively
isolated events with respect to the total number of validators (Figure 1). The
maximum number of correlated slashings observed was 106 in November 2023,
constituting 0.016% of the total validator pool and a maximum observed corre-
lation penalty of around 0.01 ETH. The raw data for these events is taken from
[5] and is available in our repository [38].
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Fig. 1: Monthly Validator Slashings [5]

Blockchain ransomware.
While slashing is intended
to act as a financial dis-
incentive for validators to
misbehave, such incentive
schemes can lead to unin-
tended side effects [16, 26].

Blockchain ransomware
attacks abuse slashing to
extort compromised valida-
tors [6, 7, 8]. Such attacks
target a validator’s online
signing key and threaten to
perform slashable offences
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with it unless a ransom is paid. An attacker can even fabricate slashable of-
fences retrospectively. Withdrawing from the validator pool in response to a
ransomware attack does not help since validators remain slashable during the
minimum withdrawal period for voluntary exits (at least 261 epochs or approx-
imately 1.2 days).

Prior work has explored different strategies a blockchain ransomware at-
tacker can employ from a game-theoretic perspective to maximise their poten-
tial rewards [6, 7, 8]. However, there is little support currently in Ethereum
for post-compromise recovery from blockchain ransomware. The lack of proto-
col level mitigations for ransomware increases the need for operational security
expertise on the part of individual validators. This potentially undermines the
blockchain decentralisation ethos, making revocation mechanisms important for
systemic resilience. Standard techniques for recovering from conventional ran-
somware attacks in other domains (e.g. backups) are inapplicable. Other proof-
of-stake blockchains, such as Tezos and Polkadot [1, 2] provide expiry-based
key rotation mechanisms, but old keys remain slashable for up to 28-days after
rotation.

3 Revoke Design
In this section, we propose Revoke, a novel signing key revocation protocol
that is robust against Ethereum ransomware attacks. We define several design
goals for Revoke (§3.1), state our threat model (§3.2) and give an overview of
Revoke’s design (§3.3).

3.1 Decentralised Key Revocation

Revoke cannot rely on a centralised and trusted key management service [9, 35]
to cope with slashing-based ransomware attacks. Instead, Revoke introduces
a decentralised key revocation mechanism that is integrated into the Ethereum
consensus protocol. Revoke’s decentralised revocation protocol has three key
design goals. First, it must enable a compromised validator to revoke its signing
key without being slashed (G1). This should be possible even when an attacker
has full visibility over the network and can collude with other validators. Second,
key revocation should not undermine the security of the consensus protocol (G2).
For example, attackers should not be able to leverage it to mount large-scale
attacks without incurring slashing penalties. We note that this design goal is
in tension with G1. Finally, to ensure correctness and facilitate adoption, the
protocol must be compatible with the existing beacon-chain protocol (G3). In
particular, it should minimise changes to the existing protocol design (e.g. to
facilitate formal verification) and avoid introducing substantial performance or
storage overheads.

3.2 Threat Model

We consider the standard Ethereum threat model, where Byzantine validators
may misbehave arbitrarily and honest validators will follow the protocol so long
as it is economically rational. This threat model differs from the standard Byzan-
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tine threat model in that honest validators may deviate from the protocol if there
is no economic penalty for doing so (e.g. slashing).

We assume validators have security mechanisms in place to protect their
withdrawal key and that it cannot be compromised by a ransomware attack
(e.g. it is kept offline in cold storage during normal operation). However, a val-
idator’s signing key may be compromised such that an attacker can use it to
sign arbitrary messages. We treat the vector by which validators are compro-
mised as an orthogonal issue. An attacker may control or collude with other
validators, observe all messages broadcast over the network, and see messages
even before they are included in a block (e.g. transactions in the mempool of
a proposer). These are conservative but realistic assumptions given the need
to capture attackers with many validators distributed throughout the network.
Proposers under an attacker’s control (either directly or indirectly via collusion)
may arbitrarily reorder or delay messages within their own mempool.

3.3 Revocation Overview

Figure 2 gives an overview of Revoke revocation processing. Validators wishing
to change their signing key first construct a revocation request containing the
signing key they want to revoke and the new signing key they want to replace
it with (e.g. validator v1 with initial signing key k1 in Figure 2, step 1○). The
validator signs the request using its private withdrawal key, which according to
our threat model, is unknown to the attacker. The validator broadcasts the re-
vocation request to other validators over the beacon-chain peer-to-peer network.
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Fig. 2: Overview of the revocation process

Processing of a revocation request starts when a proposer includes it in a
beacon block 2a○. Before including a request, a proposer performs several validity
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checks (e.g., to check that the request is signed correctly). If the request is
valid, the block containing it initiates the revocation process by temporarily
disabling the validator. While disabled, any block proposals or attestations made
by the validator on chains that descend from the initiating block are ignored.
The validator may incur inactivity penalties on a chain for which it is disabled,
but is not subject to any slashing penalties arising from its revoked signing key.

On receiving a block containing a valid revocation request, other validators
add it to their local store as with any other block 3○. In addition, they mark
the validator as temporarily disabled at the view level, i.e. they ignore any at-
testations of the validator on any branch of the current unfiltered block tree
when making fork-choice decisions. This ensures that validators with ongoing
revocations cannot influence fork-choice decisions while slashing penalties are
suspended on one or more branches.

A revocation operation completes successfully if a checkpoint containing the
revocation is finalised. From this point on, the validator is re-enabled and its
new signing key is activated (e.g. key k1′ of v1 in step 4○). k1′ can now be used
to sign block proposals and attestations. Conversely, if a conflicting chain that
does not include the revocation request is finalised, the revocation operation fails
and must be resubmitted. For example, the revocation request in step 2b○ for
v2 is not finalised. In this scenario, v2 is re-enabled in step 4b○, but its original
signing key k2 remains active.

Revoke also adapts processing of slashing evidence (e.g. conflicting attes-
tations by the same validator) to account for revocations. On a specific chain,
Revoke enforces that each block may only include slashing evidence for keys
that have not already been revoked, since otherwise an attacker can always
fabricate slashing evidence retrospectively. However, a validator is still subject
to slashing penalties for slashing evidence included on a chain in a block that
precedes a revocation request block. At the view level, the situation is more com-
plex, since revocations and slashings may arrive in different orders (or not at all)
on different branches. Revoke therefore temporarily disables a validator at the
view level when slashing evidence is observed on any branch of the block tree,
as with revocations. If the slashing evidence is eventually finalised, the validator
is permanently ignored at the view level. Otherwise, if it can never be finalised
it is re-enabled.

4 Revocation Algorithms
In this section, we describe in detail the algorithms underpinning Revoke’s
decentralised revocation mechanism for Ethereum. We group the algorithms into
two categories: Chain level algorithms that operate on a specific chain and View
level algorithms that operate across all chains in a validator’s current view.

4.1 Chain level

At the chain level, the revocation process consists of two steps: initiation and
completion, both of which only ever modify signing keys. Revocation initiation
happens on a specific chain when a validator’s state transition function processes
a new beacon block containing a revocation request. Revocation only completes
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on a chain if a checkpoint block that descends from the initiating block is even-
tually finalised.

Initiating Revocation. Algorithm 1 describes the revocation initiation al-
gorithm. A revocation (public-key change) request pkc received as part of a
beacon block header is processed by the ProcessPkChange function (line 1).
ProcessPkChange also takes as a parameter a signature sig over pkc created
using the validator’s withdrawal key, and the current beacon chain state bs. The
key tasks when initiating revocation are to (i) ensure each revocation request
is valid given the state of the chain (lines 3-5) and (ii) temporarily disable any
validator(s) requesting revocation (lines 6-11).

Algorithm 1 Revocation Initiation

1: proc ProcessPkChange(pkc, sig, bs)
2: with: v ← bs.vals[pkc.vIdx ]
3: pre: v.pk = pkc.pk ∧ v.pkEnb ∧
4: v.pk ≠ pkc.newPk ∧ (∀ span ∈ v.prevPks, span.key ≠ pkc.newPk) ∧
5: VerifySig(pkc.wKey, pkc, v.wKeyHash, sig)
6: v.pkEnb ← False
7: v.prevPks ← v.prevPks ∥ [PKSpan(v.pk, v.pkInitSlot, v.pkEnbSlot)]
8: v.pk ← pkc.newPk
9: v.pkInitSlot ← bs.slot

10: v.pkEnbSlot ← ⊤

11: v.pkChgEp ← ComputePkChgEp(bs, v)

A public key change request pkc = (vIdx , fromPk , pk ,newPk ), where vIdx is
the index in the current beacon state bs of the validator v = bs.vals[vIdx ] re-
questing the change. To validate pkc, ProcessPkChange first confirms that pkc.pk ,
the current public signing key indicated in the request, matches the public sign-
ing key of v , and that the v .pkEnb flag indicates v’s signing key is not already
disabled due to an ongoing revocation request (line 3).

Next, the uniqueness of the proposed new signing key pkc.newPk is verified
with respect to the validator’s current key v .pk and a history v .prevPks of the
validator’s previous keys (line 4). This simplifies slashing handling at the view
level (Section 4.2), since attestations or blocks signed with a particular key can
be associated with a single contiguous time period. The signing key history is
stored as a sequence of spans. Each span span = (ppk , initSlot , enbSlot ) ∈ PKSpan
records when the request to change to the previous public key ppk was initiated
(initSlot) and when ppk was finally enabled (enbSlot). The slot when ppk was
eventually disabled is inferred from the initiation slot of the key that replaced it.
Finally, VerifySig checks the request signature sig against v’s withdrawal key (line
5). The existing specification only stores a hash of the validator’s withdrawal
public key in v.wKeyHash. To accommodate this, the withdrawal public key
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is explicitly included in the request as pkc.wKey . VerifySig ensures the hash of
pkc.wKey matches the one stored in v.wKeyHash.

If ProcessPkChange’s preconditions hold, it disables v by clearing the v .pkEnb
flag (line 6), and appends a span capturing the activity period of the validator’s
old public signing key v .pk to v .prevPks (line 7). Next, it records the proposed
new public key newPk in the validator’s state as v .pk (line 8), and the slot in
which the request was initiated in v .pkInitSlot (line 9). If revocation is eventually
successful, v .pkEnbSlot will record the slot in which v .pk is re-enabled. However,
when this occurs is not yet known so it is set temporarily to a dummy value (line
10). To support rate limiting of revocation requests, v .pkChgEp is set to the
earliest epoch in which the validator can potentially be re-enabled, as computed
by the ComputePkChgEp function (not shown).

Algorithm 2 Revocation Completion

1: proc EnableFinalisedPkChg(bs)
2: for v ∈ bs.vals,¬v.pkEnb do
3: if v.pkInitSlot < StartSlot(bs.fcp.ep)∧v.pkChgEp < bs.fcp.ep then
4: v.pkEnb ← True
5: v.pkEnbSlot ← bs.slot
6: v.pkChgEp ← ⊥

Completing Revocation. Revocation completion at the chain level is handled
by the EnableFinalisedPkChg procedure, which is triggered whenever a new check-
point is finalised on the chain (Algorithm 2, line 1). For each currently disabled
validator v, as indicated by the flag v .pkEnb (line 2), it checks whether revo-
cation was initiated before the most recently finalised checkpoint block bs.fcp.
In the absence of rate limiting, it does this by comparing v .pkInitSlot and the
starting slot of the finalised checkpoint’s epoch bs.fcp.ep (line 3). Since rate
limiting may have occurred, it also checks that v .pkChgEp is earlier than the
finalised checkpoint epoch (line 3). Finally, the validator is re-enabled (line 4),
the current slot is recorded to facilitate subsequent validation of any slashing
evidence observed for the new key (line 5), and the pkChgEp field used for rate
limiting is reset to a dummy value (line 6).

4.2 View level

We next describe how Revoke impacts on fork-choice and finality decisions at
the view level. Three main components are affected: block processing, attestation
processing, and processing of slashing evidence.

Block Processing. Given a new block b, the OnBlock function processes it and
updates a store object st representing the validator’s current network view (Al-
gorithm 3, line 1). In Revoke, OnBlock must be adapted to (i) record in st any
revocations and slashings in b and temporarily disable the associated validators
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(e.g. ignore their attestations) (ii) re-enable or permanently disable validators in
st as revocations and slashings are finalised as a result of block processing.

Algorithm 3 Block Processing

1: proc OnBlock(st, b)
2: for idx ∣ pkc ∈ b.pkcs ∧ idx = pkc.vIdx ∧ idx ∉ st .equivIdxs do
3: st .pendRevIdxs[idx ] ← st .pendRevIdxs[idx ] ∪ {htr(b)}
4: for idx ∣ as ∈ b.attSlash ∧ idx ∈ as.att1 .idxs ∩ as.att2 .idxs ∧
5: idx ∉ st .equivIdxs do
6: st .pendEquivIdxs[idx ] ← st .pendEquivIdxs[idx ] ∪ {htr(b)}
7: if newFinalization(st) then
8: prune(st)
9: proc prune(st)

10: liveBlks ← getLiveBlks(st )
11: for (idx , revBlks) ∈ st .pendRevIdxs do
12: st .pendRevIdxs[idx ] ← revBlks ∩ liveBlks

13: for (idx , equivBlks) ∈ st .pendEquivIdxs do
14: if ∃b ∈ equivBlks ∣ isFinalized(b, st ) then
15: st .equivIdxs ← st .equivIdxs ∪ {idx }
16: st .pendEquivIdxs[idx ] ← ∅
17: else
18: st .pendEquivIdxs[idx ] ← equivBlks ∩ liveBlks

For each revocation request pkc in b.pkcs, OnBlock extracts the corresponding
validator index idx unless the validator has already been permanently marked as
equivocating in the set st .equivIdxs (line 2). OnBlock then records in st .pendRevI -
dxs that the resulting validators have a pending revocation on the chain for which
b is the head block (line 3), where st .pendRevIdxs is a map that records for each
validator the Merkle hash tree root HTR(b) of any block b containing a pending
revocation for the validator. A validator with index idx is thus considered to
have a pending revocation if st .pendRevIdxs[idx ] is non-empty.

Next, OnBlock checks whether b contains any new slashings. It iterates over
the attester slashings as ∈ b.attSlash and extracts the indices of all potentially
slashable validators, ignoring any that are already recorded as permanently
equivocating (line 5). For each index idx , OnBlock adds the hash HTR(b) to
st .pendEquivIdxs[idx ], where st .pendEquivIdxs is a map recording the set of
pending equivocations for each validator (line 6), i.e. the blocks in the current
view in which slashing evidence has been observed but not yet included in a
finalised block.

The final part of OnBlock is executed when there is a new finalised check-
point in the current view, as indicated by the NewFinalization function (not
shown) (line 7). If so, OnBlock calls the Prune procedure (line 8).
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The Prune procedure first calls the getLiveBlks function (not shown) to com-
pute the set of live blocks liveBlks in the view, i.e. those blocks that can still
potentially be finalised as they do not conflict with the finalised chain (line 10).
It then updates st .pendRevIdxs to remove any pending revocations that are not
in a live block (lines 11–12). Next, it checks whether there are any pending equiv-
ocations in st .pendEquivIdxs such that the block containing the equivocation has
been finalised, as indicated by the isFinalized function (not shown) (line 14). If
so, it adds the index of the corresponding validator to st .equivIdxs, the set of
permanently equivocating (slashed) validators (line 15), and clears all pending
equivocations for the validator (line 16). Otherwise, it updates st .pendEquivIdxs
to remove any pending equivocations (slashings) that are no longer in a live
block (line 18).
Attestation Processing. The OnAttestation procedure processes new attesta-
tions at the view level (Algorithm 4, line 1). OnAttestation is responsible for (i)
validating the well-formedness of each new attestation att = (blkRoot , slot , idxs,
src, tgt) (lines 2–3) and (ii) recording the block att .blkRoot as the validators’
latest vote for the canonical chain’s head if it is more recent than the previous
vote (lines 4–8). In addition to the attestation, OnAttestation takes as parameters
the current store st and an aggregate signature sigAgg over att that combines
the individual signatures of many attesting validators.

Algorithm 4 Attestation Processing

1: proc OnAttestation(st , att , sigAgg)
2: with: pubKeys ← GetAttestKeys(st , att .slot , att .idxs)
3: pre: IsValidIdxAttest(st , att , sigAgg , pubKeys)

4: validAttIdxs ← {idx ∈ att .idxs \ st .equivIdxs ∣
5: (st .pendEquivIdxs[idx ] ∪ st .pendRevIdxs[idx ]) = ∅}
6: for idx ∈ validAttIdxs do
7: if idx ∉ st .latestMsgs ∨ st .latestMsgs[idx ].ep < att .tgt .ep then
8: st .latestMsgs[idx ] ← LatestMsg(att .tgt .ep, att .blkRoot )

The main challenge with validating att in Revoke is that Ethereum signa-
ture verification assumes validator keys do not change. Revoke must instead
verify sigAgg using the specific validator keys for the slot the attestation was cre-
ated (att .slot ). To achieve this, the GetAttestKeys function (not shown) retrieves
from st the signing keys for the validators indicated by att .idxs during att .slot
(line 2). These keys are passed to the isValidIdxAttest function (not shown), which
then verifies sigAgg (line 3). In addition, isValidIdxAttest performs a range of san-
ity checks (e.g. on the src and tgt checkpoints that form the finality vote of att),
but these are unchanged from Ethereum.

Once an attestation is validated, OnAttestation records the votes of the at-
testing validators (lines 4-8). In Ethereum votes from permanently slashed val-
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idators, i.e. those in st .equivIndices, are ignored. In Revoke, the main change
is that votes from validators who are disabled because of a pending revocation
or slashing are also ignored (line 5). The set of validators to update are com-
puted and stored in validAttIdxs. The votes (st .latestMsgs) of these validators
are then updated (lines 6-8) if the epoch of the attestation’s target checkpoint
block (att .tgt .ep) is more recent than the current latest vote.
Standalone Attester Slashing Processing. Standalone evidence of attester
slashings allows validators to handle equivocation immediately at the view level
without waiting for inclusion in a block. This is problematic in Revoke as
receiving slashings and revocations in different orders at different validators can
result in inconsistent decisions on whether a validator should be slashed.

In Revoke, standalone slashing evidence is instead handled by initially clas-
sifying implicated validators as pending equivocators. These validators’ attesta-
tions are temporarily disregarded until two conditions are met: (i) the slashing
evidence is included in a finalised block, and (ii) no revocation by the validator
has been finalised before this block. This ensures more consistent treatment of
slashing evidence at different validators. Due to space constraints, we omit the
detailed description of the algorithmic changes for handling standalone slashings.

4.3 Ethereum Implementation

We implement Revoke based on the Capella version [22] of the Ethereum exe-
cutable Python specification. Our current prototype supports the core revocation
mechanisms outlined in Section 4. In total our implementation adds approxi-
mately 325 LoC to the original 2364 LoC of the specification and approximately
5k LoC of tests and testing infrastructure to the existing Ethereum test suite
and test framework. Our implementation demonstrates the feasibility of incorpo-
rating Revoke into a future upgrade (hard fork) of Ethereum. Finally, we have
backported Revoke to a Dafny based implementation of the Phase 0 version
of Ethereum [15] as a stepping stone towards verifying the correctness of our
implementation (e.g. to prove the absence of runtime errors). We will release our
modified Python specification as open source [38].

5 Correctness
In this section, we sketch a proof for the correctness of Revoke with respect to
safety and plausible liveness properties of Ethereum. Our proof sketch intention-
ally follows closely the existing proof strategy for vanilla Gasper [12], but with
adjustments to allow for the possibility that some bounded fraction of validators
may have changed their key and hence become temporarily immune to slashing.
In effect, Revoke enables a trade off between the benefits of revocation for indi-
vidual compromised validators and the stake required by an attacker to violate
the blockchain protocol without the risk of slashing.

5.1 Preliminaries

Given a chain, Gasper picks certain blocks to play the role of checkpoint blocks.
Ideally one block is chosen per epoch, but if no blocks occur in an epoch a block
from a previous epoch is used instead. To distinguish checkpoints that use the
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same block, Gasper introduces the notion of ordered epoch boundary pairs (B, j)
of a chain, where B is a block and j an epoch. Given a pair (B, j) we define its
attestation epoch aep(B, j) = j, which is not necessarily the same as the epoch
ep(B) of B.

Given a block B its j -th epoch boundary block B
′
= EBB(B , j ) is defined as

the block with the highest slot less than or equal to jC in chain(B ), and LEBB(B )
as the last epoch boundary block of B .

Gasper then defines J(G) and F(G) as the sets of justified and finalized pairs
in view G , respectively. A checkpoint (B, j) is considered justified if it is the
genesis pair (Bgenesis , 0), or a supermajority link of attestations with checkpoint
edge (A, j

′) −→ (B, j) exist having total weight over 2
3

of the total validator stake.
A checkpoint (B, j) is considered finalised if (B, j) is justified and there is a
supermajority link to some pair (B′

, j + 1).
Given an attestation α for block(α) at slot(α), let B = LEBB(block(α)). Then

for the checkpoint edge LJ(α) −→ LE(α), we define LJ(α) as the last justified pair
of the view containing all ancestor blocks of B, and LE(α) as the last epoch
boundary pair of α, i.e. (B, ep(slot(α))).
5.2 Revoke Definitions

To adapt the Gasper proof of correctness for Revoke, we begin by redefining
Gasper’s notion of p-slashability [12] to account for the possibility of revoca-
tion. We also adjust the slashing conditions of Ethereum to explicitly exclude
attestations signed by the same validator with different keys.

(P,R)-Slashability. We define a blockchain running the protocol to be (p, r )-
slashable if validators with a total of max(p−r , 0)N stake can be provably slashed
by a validator with the network view, where r = ∣R∣ is the weight of the fraction
of validators R who have changed their key.

Slashing Conditions. We define the following modified slashing conditions
(differences underlined).
– (S1) No validator makes two distinct attestations α1, α2 with epoch ep(α1) =

ep(α2) using the same validator key. Note this condition is equivalent to aep(LE
(α1)) = aep(LE(α2)).

– (S2) No validator makes two distinct attestations α1, α2 with aep(LJ(α1)) <
aep(LJ(α2)) < aep(LE(α2)) < aep(LE(α1)) using the same validator key.

5.3 Safety

Theorem 1 (Safety). In a view G , if we do not have the following properties,
then G is (1/3,r)-slashable:

1. Any pair in F(G) stays in F(G) as the view is updated.
2. If (B , j ) ∈ F(G), then B is in the canonical chain of G .

Proof. For the proof see Appendix §9.1.
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5.4 Liveness

Ethereum’s proof of plausible liveness requires 2N
3

stake worth of honest valida-
tors in order to justify and finalise checkpoints. However, in Revoke, validators
that initiate a revocation are disabled until it is finalised. If these validators are
otherwise honest, potentially there will be insufficient honest validators remain-
ing to drive the protocol. We therefore define a parameter τ < r as the maximum
fraction of stake for which the corresponding validators attempt to revoke their
key and are hence deactivated at the same time. Hence τ > 0 reduces the secu-
rity margin of Ethereum, but only includes validators who are currently revoking
their keys and only impacts liveness.

Theorem 2 (Plausible Liveness). If at least 2N
3
+τ stake worth of the valida-

tors are honest, then it is always possible for a new block to be finalised with the
honest validators continuing to follow the protocol, no matter what happened
previously to the blockchain.

Proof. For the proof see Appendix §9.2.

6 Revocation Incentives

Atomic Revocation Under the threat model of Revoke an attacker moni-
toring the network that observes a revocation can broadcast slashing evidence.
This lack of atomic revocation results in a race between victim validators and
attackers to have their request included in a block.

This problem is related to order manipulation in blockchains, whereby adver-
saries attempt to gain an advantage by manipulating the ordering and inclusion
of transactions in blocks [4, 17, 27, 43]. To mitigate this, recent work has explored
the design of data-independent ordering protocols [13, 29, 30, 31, 33, 34, 42].
However, these protocols do not take into account the crypto-economic incen-
tives in Ethereum’s threat model, assuming instead a classical BFT setting where
honest nodes follow the protocol independently of whether it is economically ra-
tional. In particular, recent work has demonstrated the impossibility of creating
an incentive-compatible order policy enforcement (OPE) framework where col-
luding parties can be held accountable for violating the ordering protocol [41].
For example, a basic commit-reveal style scheme that allows a validator to first
commit to a revocation privately and then reveal its identity in a later block must
either forgive any slashable behaviour between the commit and reveal or allow
the proposer who receives the reveal transaction to front-run it with slashing
evidence.

Revocation reward To work around this impossibility result, we propose an
approach whereby proposers are incentivised to include revocations ahead of
slashings through the inclusion of a revocation reward. Our key insight is that in
Ethereum, the incentive for a proposer to include slashing evidence is b/16, where
b is the base slashing penalty. In the absence of collusion between a proposer
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and the attacker, a victim validator need only therefore include a small fraction
of the base slashing penalty to incentivise a proposer to include a revocation2.

One concern with this approach is that a dishonest validator caught mis-
behaving can abuse the revocation mechanism to ‘frontrun’ slashing evidence,
e.g. by submitting a revocation request with a slightly higher reward than the
slashing reward (i.e. b/16 + ϵ). To mitigate this, we limit the direct revocation
reward to b/16 to balance the maximum slashing reward. However, this is only
a partial solution, since an attacker can always attempt to pay an additional
reward to a proposer out-of-band.

Conversely, a ransomware attacker may choose to collude with a proposer,
potentially offering to pay an additional reward to the proposer for front-running
a revocation request with slashing evidence. Although in this situation, the ran-
somware attacker will not receive any payment from the victim and hence lose
money, it may be an effective strategy for boosting its credibility for future ran-
somware attacks. Such an increase in costs for mounting a ransomware attack
could be considered a benefit of Revoke.

Finally, we note the increasing importance of MEV and proposer-builder
separation (PBS) in the Ethereum ecosystem [10, 17]. Game theoretic modelling
of revocation incentives and strategies in the context of emerging PBS platforms
is an interesting avenue for future work [37].

7 Related Work

Attacks against PoS. The risks of ransomware attacks against Ethereum PoS
systems have been explored in prior work [6, 7, 8] from a game theoretic mod-
elling perspective. No specific mitigations were proposed for individual validators
to recover from ransomware attacks. Beyond ransomware attacks, Deirment-
zoglou et al. survey [19] long-range attacks against PoS blockchains and poten-
tial mitigations. More recently, Schwarz et al. examined [39] vulnerabilities in
Ethereum’s PoS protocol. However the nature of these vulnerabilities and their
associated mitigation techniques are very different to ransomware attacks.

Table 1: PoS blockchain key revocation features

Blockchain Type Revocation Slashing Separation

Algorand PPoS ✗ / ✓ ✗ ✓

Cardano DPoS ✗ / ✓ ✗ ✓

Polkadot NPoS ✗ / ✓ ✓ ✓

Tezos LPoS ✗ / ✓ ✓ ✓

Ethereum PoS ✗ ✓ ✓

Revoke PoS ✓ ✓ ✓

Blockchain Key-Change Mech-
anisms. Of relevance to Re-
voke, David et al. [18] em-
ployed key evolving cryptog-
raphy [25, 28] to prevent
long-range attacks from re-
using the signing keys of
compromised validators. Key
evolution prevents a ran-
somware attacker from ex-
ploiting deleted signing keys
for retrospective slashing. How-
ever, since a compromised pri-

2 We ignore any increase in Ether’s value from burning the remaining slashing penalty
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vate signing key implicitly gives access to future keys, a ransomware attacker can
simply delay launching an attack to ensure it has a sufficient window of old sign-
ing keys for retrospective slashing.

We analysed several prominent blockchains to understand if they support
key revocation ([1, 2, 26, 32]). We note that all blockchains other than Ethereum
support key rotation mechanisms that allow to change the key(s) used for con-
sensus operations (Table 1, column ‘Revocation’). However, these mechanisms
are not robust against ransomware, since stakers generally remain accountable
for actions performed using an old key for a period after key rotation.
Ransomware in other PoS blockchains. Beyond Ethereum, other PoS block-
chains could potentially benefit from a revocation mechanism such as Revoke.

We consider a blockchain susceptible to ransomware if two conditions hold: (i)
the key used for consensus operations must be separate to the key that control’s
access to stakes, since otherwise an attacker can immediately steal a victim’s
stake (ii) the blockchain must have some form of direct or indirect accountabil-
ity mechanism the attacker can subvert to gain leverage over the victim (e.g.
stake slashing or reputation loss). As can be seen in Table 1, the blockchains
we analysed support key separation. However, only Tezos and Polkadot perform
slashing. Algorand and Cardano do not and so are not directly susceptible to
ransomware attacks.

8 Conclusions
We propose Revoke, a novel decentralised key revocation mechanism for Ethere-
um to mitigate blockchain ransomware attacks. Revoke exposes a trade-off
whereby validators cannot propose or attest to blocks during the revocation
process, and hence incur inactivity penalties, but are not susceptible to much
larger slashing penalties. We implement Revoke as part of the Ethereum ex-
ecutable Python specification and adapt the existing safety and liveness proofs
for Ethereum’s core consensus protocol to model Revoke.
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9 Appendix
9.1 Safety

Lemma 1. In a view G , for every epoch j , there is at most 1 pair (B , j ) in J(G),
or the blockchain is (1/3, r)-slashable. In particular, the latter case means there

must exist 2 subsets V1,V2 of V, each with total weight at least 2N
3

, such that
at least (V1 ∩ V2)/R violate slashing condition (S1).

Proof. Suppose we have 2 distinct pairs (B , j ) and (B ′
, j ) in J(G) (justified blocks

in G). This means in epoch j , more than a total stake of 2N
3
−r attested with a

checkpoint edge to (B , j ) and more than 2N
3
−r stake attested with a checkpoint

edge to (B ′
, j ). These are our desired V1,V2 (validators set).

Lemma 2. In a view G , if (BF , f ) ∈ F(G) and (BJ , j ) ∈ J(G) with j > f , then BF

must be an ancestor of BJ , or the blockchain is (1/3,r)-slashable. Specifically,

there must exist two subsets V1,V2 of V, each with total stake at least 2N
3

, such
that at least V1 ∩ V2/R all violate slashing condition (S1) or all violate slashing
condition (S2).
Proof. Anticipating contradiction, suppose there is a pair (BJ , j ) with j > f
and BJ is not a descendant of BF . By definition of finalisation, in G , we must
have (BF , f ) → J → (Bk , f + k ), where we have a sequence of adjacent epoch
boundary pairs (BF , f ), (B1 , f + 1 ), . . . , (Bk , f + k ). Since (BJ , j ) is justified and
BJ is not a descendant of BF , without loss of generality (by going backwards
with supermajority links), we can assume (BJ , j ) is the earliest such violation,
meaning we can assume (Bl , l ) → J → (BJ , j ) where l < f but j > f .

Here we use Lemma 1, which tells us no two justified blocks have the same
aep(), else we are done already with two validator subsets of weight 2N

3
where

their intersection (excluding validators in R) are violating (S1). This is why we
do not worry about the equality case.

Since B1 , . . . ,Bk are all justified but are descendants of BF , we know BJ

cannot be any of these blocks, so we must have j > f + k . This means the view G
sees some subset V1 of V with total stake more than 2N

3
have made attestations

justifying a checkpoint edge (Bl , l ) → (BJ , j ), so for any such attestation α1 ,
aep(LJ(α1 )) = l and ep(α1 ) = j . Similarly, G also sees more than 2N

3
weight

worth of validators V2 have made attestations justifying (BF , f ) → (Bk , f + k ),
so for any such attestation α2 , aep(LJ(α2 )) = f and ep(α2 ) = f + k . Thus, for
anyone in the intersection V1 ∩V2, they have made two distinct attestations α1

of the former type and α2 of the latter type. Because l < f < f + k < j , we know
aep(LJ(α1 )) < aep(LJ(α2 )) < ep(α2 ) < ep(α1 ), which allows them to be provably
slashed by (S2) unless they are in R and have attested with different keys.
Theorem 1 (Safety). In a view G , if we do not have the following properties,
then G is (1/3,r)-slashable:

1. Any pair in F(G) stays in F(G) as the view is updated.
2. If (B , j ) ∈ F(G), then B is in the canonical chain of G .
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Proof. The first property is straightforward from the definitions of F(G) and
J(G), so we omit the proof.

The definition of the Hybrid LMD GHOST Fork Choice Rule (Algorithm 4.2
in [12]) shows that the canonical chain always goes through the justified pair
with the highest attestation epoch j , so by Lemma 2, it must go through the
highest finalised pair in F(G). Thus, it suffices to show that no two finalised
blocks conflict because then all the finalised blocks must lie on the same chain,
which we just showed must be a subset of the canonical chain.

We now show that if (B1 , f1 ), (B2 , f2 ) ∈ F(G) but B1 and B2 conflict, then G
is (1/3,r)-slashable. Without loss of generality, assume f2 > f1 . Since (B2 , f2 ) is
finalised, it is justified, and we can apply Lemma 2. This shows that either B2

must be a descendant of B1 (assumed to be impossible since they conflict) or G
is (1/3,r)-slashable, as desired.

9.2 Liveness

Theorem 2 (Plausible Liveness). If at least 2N
3
+τ stake worth of the valida-

tors are honest, then it is always possible for a new block to be finalised with the
honest validators continuing to follow the protocol, no matter what happened
previously to the blockchain.
Proof. Suppose we are starting epoch j . Specifically, suppose our current slot
is i = Cj ; then it is plausible (by having good synchrony) for everyone to have
the same view. In particular, the proposer, who is plausibly honest, would then
propose a new block B with slot i , which is a child of the output block of
HLMD() run on the old view. Call this current view (including B) G and define
µ = chain(B ). Keep in mind that LEBB(B ) = B ; we are introducing a new epoch
boundary block.

Now, we claim that it is plausible that µ extends to a stable chain at the
beginning of the next epoch (j + 1). To see this, note that since at least 2N

3
+τ

stake worth of the validators are honest, it is plausible that they all attest for
B or a descendant (for example, if they are all synced with the network view
and vote immediately after B is created). This creates a supermajority link
LJ(B ) → J → (B , j ), justifying B . Now, in the next epoch (j + 1), it is plausible
for the new block B

′ with slot i +C = (j +1)C to include all of these attestations
(which would happen with good synchrony), so LJ(B ′) = (B , j ) and chain(B ′) is
indeed stable at epoch (j + 1). Thus, by assuming good synchrony and honest
validators, it is plausible (possibly having to wait 1 extra epoch) that the chain
of the first epoch boundary block of the new epoch is stable, no matter what the
state of the blockchain was initially.

Thus, we can reduce our analysis to the case that µ was stable to begin with,
meaning that we have a supermajority link (B ′

, j − 1) → J → (B , j ) in ffgview(B ).
Then by the same logic above, it is plausible for the next epoch boundary block
(B ′′) with slot (j +1)C to also be stable, with another supermajority link (B , j ) →
(B ′′

, j + 1). This finalises the pair (B , j ); in particular, it is the special case of
1-finalisation.


