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Theoretical and Mathematical Physics, 224(2): 1359-1397 (2025)

SPECIAL SOLUTIONS OF A DISCRETE PAINLEVE EQUATION
FOR QUANTUM MINIMAL SURFACES

P. A. Clarkson,* A. Dzhamay,! A. N. W. Hone,* and B. Mitchell*

We consider solutions of a discrete Painlevé equation arising from a construction of quantum minimal
surfaces by Arnlind, Hoppe, and Kontsevich, and in earlier work of Cornalba and Taylor on static mem-
branes. While the discrete equation admits a continuum limit to the Painlevé 1 differential equation, we
find that it has the same space of initial values as the Painlevé V equation with certain specific parameter
values. We further explicitly show how each iteration of this discrete Painlevé 1 equation corresponds to
a certain composition of Bécklund transformations for Painlevé V, as was first remarked in a work by
Tokihiro, Grammaticos, and Ramani. In addition, we show that some explicit special function solutions of
Painlevé V, written in terms of modified Bessel functions, yield the unique positive solution of the initial

value problem required for quantum minimal surfaces.

Keywords: quantum minimal surfaces, discrete Painlevé equations, modified Bessel functions

DOL: 10.1134/S0040577925080045

1. Introduction

Minimal surfaces can be characterized as maps x: ¥ — R? that extremize the Schild functional

S[x] = / S {wsw, (1.1)
2 j<k
where ¥ is a surface with symplectic form w and associated Poisson bracket {-,-}, and (j)j=1,..,a are
coordinates on R?. The Euler-Lagrange equations obtained from the action S are
d

S {wi {zj o}l =0,  k=1,....d (1.2)
j=1
In this context, quantization is achieved by replacing the classical observables x; with self-adjoint opera-
tors X; that act on a Hilbert space H and taking the commutator in place of the Poisson bracket. Hence,
following [1], one can say that a quantum minimal surface is a collection of such operators satisfying the
relations
(X, [ X, Xk]] =0, k=1,....d. (1.3)

d
=1

J
System (1.3) appeared previously in string theory as a set of matrix equations, as a large- N matrix model [2],
or as a static membrane equation [3].
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For the case of minimal surfaces in R* = C2, it is a classical result [4] that an arbitrary analytic
function f and the plane curve associated with its graph define a solution of (1.2) by setting

2o = f(21), 21 = x1 +1iT2, 29 = T3+ izy; (1.4)

more generally, one can consider a Riemann surface defined by an arbitrary analytic relation F'(z1, z2) = 0.
The latter relation between the complex coordinates z1, zo implies that

{2z1,22} =0, (1.5)
while imposing the requirement of constant curvature gives the equation
{51,2’1}4—{22,252} =ik, (16)

where, up to rescaling, k € R is the curvature. The real and imaginary parts of (1.5), together with
Eq. (1.6), provide three linear relations between the brackets {z;,zx} for 1 < j < k < 4; these equations
constitute a first-order system, which have second-order Euler-Lagrange equations (1.2) as a consequence
(thus they are analogous to first-order Bogomol’nyi equations in a field theory). The corresponding solution
of Eq. (1.3) has also been considered by Cornalba and Taylor in the context of matrix models [3], taking

Zsy = f(Zy) (1.7)
so that [Z1, Z5] = 0, with
Z1=X141iXs9, Zy=X3+4+iXy, [ZLZI] + [Z;,Zg] =el, (18)

where € € R is a parameter.

In d = 4, the case where (1.7) is the hyperbola Z1 Zs = c1 is the simplest example treated in [5], which
admits an elegant operator-valued solution. The next interesting case considered in [3], and by Arnlind and
company [5], is the parabola, which (after explicitly parametrizing the curve as Z; = W, Zy = W?) leads
to an operator W satisfying

(W W]+ (W2, W?] = e, (1.9)
acting on the Hilbert space H = {|n)|n = 0,1,2,...} according to Win) = wy|n + 1). In terms of the

squared amplitude v, = |w,|?, applying the expectation (n|...|n) to both sides of commutator equa-
tion (1.9) leads to the third-order difference equation

Up — Up—1 + Un+1Un — Un—1Un—2 = €,

which has the form of a total difference. Hence, upon integration (summation) of this discrete equation,
we obtain the second-order nonautonomous equation

Un(Unt1 +Uno1 +1) =en+ ¢, (1.10)

for some constant (.
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Identification of the particular solution of (1.10) required for the quantum minimal surface involves con-
sideration of the semiclassical limit. The classical version of the complex parabola zo = 2% is parametrized
in polar coordinates by z; = rel¥, zo = r2e?¥ and hence Poisson bracket equation (1.6) implies that 7, ¢

are a pair of canonically conjugate (flat) coordinates, where
F=rt4 _ —c (1.11)

Canonical quantization means replacing ¥ — —ih 8‘1, where the latter is the momentum operator conjugate

to U, with ¢/¥|n) = |n + 1), and we identify the states |n) for n > 0 with the nonnegative modes ¢# on the
circle. Comparing with (1.11) gives the requirement that v2 + v,,/2 ~ nh + ¢, leading to the approximate
solution

Uy A i(\/1+8(n+1)6—1), (1.12)

which agrees with the asymptotic behavior of positive solutions of (1.10), both in the limit # — 0 with n
fixed and for n — oo with A fixed, provided that the conditions { = € = 2k and ¢ = h are imposed. Hence,
the second-order difference equation is taken as

1
Ungt + Vn1 + 1= 6(”U+ ) (1.13)
and one should seek a solution with the initial conditions
v_1 =0, v > 0, (114)

with the further requirement that v, > 0 for all n > 0, since v,, is a squared amplitude. (Note that
approximate form (1.12) also satisfies v_1 = 0 and v,, > 0 for all n > 0.)

Equation (1.10) is an example of a discrete Painlevé equation. It is commonly referred to in the
literature as a discrete Painlevé I (dPy) equation [6], because it has a continuum limit to the continuous
Painlevé I equation ‘f;é” = 6w? +t. This dP; equation has been obtained as a reduction of a chain of
discrete dressing transformations [7], while it is also one among a number of discrete Painlevé equations
that were identified by Tokihiro, Grammaticos, and Ramani [8] as arising from compositions of Backlund
transformations for the Painlevé V equation, that is,

d*w 1 1 dw\® ldw (w—1)2(aw?+8) ~yw Sw(w+1)
_ _ . 1.15
dt? <2w+w—1)(dt> tdt+ t2w + t + w—1 (1.15)
(For what follows, only the generic case 0 # 0 is relevant, and thus in that case we can set 6 = —1/2.)

For the sake of completeness, and to avoid confusion, we should remark that Eq. (1.10) is not the only
discrete equation to be called dP;. The “standard” version of dPy is the equation

An 4+ p
T

Un+1 + Up + Up—1 = 1+ (116)

with A and p constants; see, for example, equation (3.2) in [6]. It is known that Eq. (1.16) is associated
with Painlevé IV rather that Painlevé V, cf. [9], [10], and it is also shown in [11], [12] that (1.16) can
be derived from Bécklund transformations of Painlevé IV. (For another approach, via reductions of the
Volterra lattice, see [13].)
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Note that there are various other inequivalent discrete Painlevé equations referred to as dPy, or some-
times as alt. dP; equations. This is best understood using the Sakai classification scheme for Painlevé
equations suggested in the paper [14], which provided a complete classification of possible configuration
spaces on which discrete Painlevé dynamics can occur. Such spaces are families of rational algebraic sur-
faces known as generalized Halphen surfaces (see Fig. 1). For the differential Painlevé equations, these
spaces were introduced earlier by Okamoto [15] as the so-called spaces of initial conditions, in which case
the parameters of the family are essentially the parameters of the differential Painlevé equation, and dis-
crete Painlevé equations are certain compositions of their Backlund transformations, as indicated in Fig. 1.
The arrows here can be understood, on the one hand, as some parameter degenerations of surface fami-
lies, and on the other hand, as a result of taking the continuum limit of some particular discrete Painlevé

dynamics.
AN AD
A (L* A(l) - A(l) . A(U - A(l) A(l) A(l) A(l) Aél)

NN NN \\ RN

AW s A5 g, pl

o \\ Pin \\ Pin \\Pm

Fig. 1. Surface-type classification scheme for Painlevé equations.

)

As we show in Sec. 3 below, Eq. (1.13) describes a very special dynamics on the Dy ’-surface family.

The symmetry group of this family is a fully extended affine Weyl group
W(AY) = W(A5") x Aut(45"),

where Aut(Agl)) ~ D, is the dihedral group of symmetries of the affine Agl) Dynkin diagram, i.e., the group
of symmetries of a square. This symmetry group describes Bécklund transformations of the Painlevé V
differential equation. Standard examples of discrete Painlevé equations on this surface family correspond to
translations in the weight lattice of the usual extended affine Weyl group W(A},)% and are commonly known
as dPryv and dPyy equations. Equation (1.13) is only a quasi-translation, which becomes a translation on
a certain sub-locus of the full family with a smaller symmetry group via so-called projective reduction [16]
(but further discussion of this is outside the scope of the present paper). In contrast, “standard” dPp

equation (1.16) describes dynamics on the Eél)

surface family, in alignment with the fact that it is associated
with Backlund transformations for the Painlevé IV equation.

The purpose of this article is to determine an explicit analytic solution for the initial value prob-
lem (1.13), (1.14) associated with a quantum minimal surface. First of all, we consider the existence and
uniqueness of a positive solution to the initial value problem (1.14) for the dPy equation (thus, v, > 0 for
all n > 0). Next, we use the complex geometry of Eq. (1.13), obtained by blowing up P! x P!, to show
that it corresponds to the same space of initial conditions as Painlevé V equation (1.15) with the specific

parameter values
n+1)2 1 n+1 1
§) = - = - ).
(a7 ﬁ? 7) ) < 18 3 18 ) 3 ) 2
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We then proceed to employ some recent results by two of us (Clarkson and Mitchell, obtained in collabo-
ration with Dunning), giving explicit modified Bessel function formulas for families of classical solutions of
Painlevé V that were previously considered in the literature [17], [18], and use these to determine an exact
analytic expression for the unique solution of the initial value problem (1.13), (1.14) so that v, remains
positive for all n > 0. Our main result is as follows.

Theorem 1.1. For each ¢ > 0, the unique positive solution of dP; equation (1.13) subject to initial
conditions (1.14) is determined by the value of vy = v(€), which is given by a ratio of modified Bessel
functions, that is,

(1.17)

1 <K5/6(t/2)
Vo 36.

1
= —1), where t=
2\ Ki/6(t/2) )

For each n > 0, the corresponding quantities v, > 0 are written explicitly as ratios of Wronskian determi-
nants whose entries are specified in terms of modified Bessel functions.

2. Unique positive solution: cold open

In this section, we present the preliminary steps of the proof that there is a unique solution of dPj
equation (1.13), subject to initial conditions (1.14), that is nonnegative (in fact, positive) for all n > 0.
The precise statement is as follows.

Theorem 2.1. For each value of ¢ > 0 there is a unique value of vy > 0 such that the solution of
second-order difference equation (1.13) with initial data (1.14) satisfies v, > 0 for all n > 0.

In our initial approach to proving the above result, we start by considering the set of real sequences
u = (Un)n>0, which contains the Banach space

& ={ulull < oo},
where || - || denotes the weighted ¢>° norm

u
ol =sup 1%
n)oé(n—f—l)

Then we can define a transformation 7', which acts on real nonnegative sequences u > 0 (that is, u, > 0

for all n > 0), according to
€

Up+1 + ]-’
e(n+1)
Unp+1 + Up—1 + 17

if n=0,

T(up) = (2.1)

if n>0.
By a convenient abuse of notation, we write u — T'u for the action on sequences, while brackets are used

to denote the individual terms 7T'(u,,) of a sequence Tu. Under the action of 7', any nonnegative sequence
is mapped to a subset of the unit ball in £2°, namely

A© = fu> 0] u] <1},

which is a complete set with respect to this norm.
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Fig. 2. Numerical computation of v, (dots) with e = 0.1, for —1 < n < 20, compared with the graph

5 10 15 20

of the approximation (1.12).

(0)
51 by 51 bo
4 41
2
by
3 31
? 00090 Yo (6) 2] {)0 (6)
ooo°°°°oooooow Do (6)
1 1 bg”
9% b‘gl)
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Fig. 3. Numerical computation of vg(€) (dots) in the range 0 < € < 5, plotted against linear bound
béo) = ¢ and approximation 9o(€) as in (2.33) (a). Same computation, but compared with upper
bounds b(()o), béz), lower bounds bél), b((f), and exact formula (1.17) (b).

Numerically, for any fixed € > 0, the repeated application of the mapping 7" to a (truncated) positive
sequence provides a rapid numerical method to obtain the positive solution of the dP; equation to any
desired precision. (See Figs. 2 and 3, obtained from 100 iterations of T" applied to a truncated sequence
with 0 < n < 20, where the approximation (1.12) was used to specify the initial conditions and fix the
boundary values at n = —1 and n = 21.)

The set A is mapped to a subset of itself, and therefore ideally we would want to show that 7' is
a contraction mapping on this set, and hence, by the Banach fixed point theorem, it would follow that it
has a unique fixed point v with 7'(v) = v. From (2.1), such a fixed point v = (v,,)n>0 is a positive sequence
that satisfies dP; equation (1.13) with initial condition v_; = 0. However, basic estimates and numerical
calculations show that 7" is not a contraction mapping on the whole set A(®, and in fact the squared
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mapping 72 behaves better than T, and therefore we need to use some more refined bounds to prove the
uniqueness of the positive solution v. In particular, we adapt some ideas from [3] and [5], where it was
observed that, for each n # 0, the value of the positive solution v,, should be obtained as the intersection
of a sequence of intervals of successively shrinking diameter. Furthermore, at the end of Sec. 4 we proceed
to show that there is only one solution of (1.13) satisfying the required bounds.
We define a set of nonnegative sequences {b(k)} k>1 by successively applying T" to the zero sequence 0,
so that
b=V =0, b® =Tb*V for k>0 (2.2)

The first few steps in the T-orbit of 0 are specified by a formula for their terms, valid for all n > 0:

bO —e(n41), bW = CHED e ey (2:3)
142e(n+1) 1+, 5., + 143:(2%32)

Thereafter, for k > 3, there is no longer a uniform expression for the iterate b(*) as a ratio of polynomials

(k)
Pn "€
b = (k)( ) B e ),
an (€)

valid for all n: due to the fact that Eqgs. (2.1) defining T for n = 0 and n > 0 are different, the coprime

polynomials p,(f) (¢) and q,(f) (¢) have distinct forms for n = 0,1,...,k — 3, while there is another formula

for them that is uniformly valid only for n > k — 2. For instance, when k& = 3, we have

1+ 12¢ + 24¢?) p,(lg)(e)
@ = <l ® — for n>1
O 7 14 14e + 4062 + 24€3” L

where

PP (e) = (n+ 1)e(1 + 6ne + 8(n? — 1)e?) (1 + 6(n + 2)e + 8(n + 1)(n + 3)?),
a4 (€) =1+ 14(n+ 1)e+ 8(9n2 + 18n + 4)e? + 8(n + 1)(21n? + 42n — 11)€® +
+16(n + 1)*(11n? 4 22n — 20)e* + 64(n + 1)3(n — 1)(n + 3)€°.

Nevertheless, for all n there are expressions for b\ as rational functions of ¢ and the variable z = e(n+1),
which are described in Lemma 2.3 below.
If we start with a sequence u € A(®) and apply T once, then we find

e(n+1) . en+1)

< <en+1),
l+en+en+2) 14+ up—1+ Unp1 ( )

or in other words b,(}) < T(up) < b7(10)’ while another application of T gives

e(n+1) o e(n+1) o e(n+1)
Ltenten+2) = 14T (un) +T(Untr) ~ 14,2+ 1f§’§;;2+)2) ’

so that b$}) < T2(un) < b,(f). Continuing in this way, by induction we obtain the following result.
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Lemma 2.1. For each nonnegative integer k, the iterates T*u of u € A() satisfy the inequalities

b2 < T% (u,) <bP)  for all n>0 (2.4)
when k = 27 is even, and
b+ < T2+ (y,,) < b2 for all n>0 (2.5)

when k = 2j + 1 is odd. The sequences of lower/upper bounds in (2.2) satisfy
0 < bFY < b2+ « p@i+2) 12 for all n >0, (2.6)

for each j € N.

For each k > 0 we have the set A% = T5A©) and the preceding result implies that the next set
in the sequence, A**tD < A®) is a proper subset of the previous one. Furthermore, inequalities (2.6)
immediately imply the existence of the limits of upper and lower bounds, that is,

lim b~V = limsup b* Y < liminf b®) = lim b (2.7)

for each n > 0. The problem is then how to show the equality of the upper and lower limits above for
each n, since in that case it immediately follows from (2.4), (2.5) that the iterates T%u converge to the
unique positive fixed point of T'.

Proposition 2.1. For all € > 0 there exists (at least one) vy = vo(€) such that the solution of (1.13)
with initial data (1.14) is positive and satisfies v, > 0 for all n > 0, as well as

v = (vn)nzo € [ | AW,

k>0
so that, for allm > 0,
lim b1 < v, < lim b2, (2.8)
]*}OO j‘)OO

Proof. The existence of a positive solution v is proved in [5], where it shown that for each € > 0 there
is an infinite sequence of open intervals I, = I;(¢) C R, with I; = (0,¢) and I C Ix_1, such that vy € I
implies vy,...,v > 0, and ﬂk>0 I, # @. Hence, if vy € ﬂk>0 I, then the corresponding sequence v is
a positive solution. Then, because T'v = v, it follows from Lemma 2.1 that v € A®) for each k > 0, and
hence (2.8) holds for each n > 0. R

It is instructive to compare the upper and lower bounds for different n, as well as introduce the rescaled

bounds p;’“, which specify the norms:

(k)

b
(k) — n b® | = (k)
= 1) [B™] SUp P
Clearly we have p,(l_l) = 0, while bgloJ)rl > bS’) and p7(10) =1 for all n, and from (2.6) we also see that
0<p <1 forall n=0, k>1. (2.9)
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If we now assume for some k that bfﬁzl > b holds for all n > 0, then from the definition of the map T
we may write

1 1 (k) ®) (k)
U1y~ ey = (L b+ bya) = (L+ b2 b)) =
anrl Pn

k k k
= (b = b)) + (bl = b)) >0,
where we set bgli)l) = 0, so that this makes sense when n = 0, which implies that pglkfll) < pn k+1) " On the
other hand,
by > b = (n+2)pl > (n+1)pP,

and we can calculate

k+1 k+1

AR S
(k+1) (k+1)
n+1 Pn

= e(n+2)(1+b7, + b)) —e(n+ 1)1 + b + b)) =

=e(1+ (n+2)(np) ) + (n+2)pl))) — (n+ 1) ((n+ 1o + (n +3)pk),)).

(k)

If we now assume that p,/; < p%k) holds for all n > 0, then we can replace the term with index n + 2, and

also (for n > 0) replace the term with index n — 1, and thus rearrange the above formula to find the lower

bound (k+1) (k+1)
bn+l bn
k+1 k+1
1(1+1 )91(1 )

> e(1+ ), — PP > 0,
using (2.9) to obtain the final inequality. Thus, by induction on k, we find the following.
Lemma 2.2. For k > 0, the sequences of lower/upper bounds satisfy
b > b for all n >0, (2.10)

while for k > 1 the rescaled bounds satisfy

n+1
n+2

Pk < p,(lk)l <p® for all n>0, (2.11)
and hence for each k the norm of b® is [[b®)|| = p{,

Lemma 2.3. For each j > 0, the rescaled bounds have the asymptotic behavior

(29) ~

1 . i+ 1
ol pZity) o 7 * as n — oo. (2.12)

g+ 2¢(n+1)’

Moreover, the leading part of the Taylor expansion of each of the rescaled bounds at € = 0 is
P =1—2e(n+1)+0(?) for all k>1, (2.13)

while for all € > 0 the first derivatives with respect to € satisfy

dp(k) db'P
0 0 2.14
de <5 de - ( )

for k > 1,n > 0, so that each bound pﬁf’ and bﬂ“’ is monotone decreasing/increasing in €, respectively.
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Proof. As noted above, the action of the map T is such that the components b%k) of the sequences b(*)
are rational functions of € having expression as ratios of coprime polynomials in € that are uniformly valid
for all n when k < 3, while for £k > 3 these polynomials have a uniform structure for n > k — 2 only.
However, if we set z = e(n + 1), then for k£ = 0,1,2 we can write

1
(0) — RO — 1) — pM —
oy =RV (z,€) =1, Py’ =R (z,€): L+ 22
1 (2.15)

(2) — R® -
Pn" = R (276) T zZ—€ z+e
L+ 142(z—¢€) + 1+2E§+5)

and for all n we can similarly express p,(lk) as R (z,¢), a rational function of z and e that is determined
recursively via the finite difference equation

1

R*k+D = :
(z,€) 1+ (z—€)RF (2 —e,€) + (2 + €)RF) (2 + €, ¢)

(2.16)

Therefore, from the definition of the map T, the identity p%k) = R®™(e(n + 1),€) holds for all n. The
result (2.12) thus corresponds to the asymptotics of the rational functions R*)(z,€) as z — oo, which
varies according to the parity of k, and we can proceed by induction on j. For the base case j = 0, we have
RO(z,¢) = 1, RM(z,¢) ~ 1/22, and hence the claim for p’ is trivially true, while for p{) it gives the
correct result by substituting z = €(n + 1). Thus, for the induction, for some fixed j we can assume that

R (z,e) ~1/(j+ 1) as z — oo, and then by applying (2.16) we immediately obtain

-1 .
, - 1
RV (7, ¢) ~ 147 €—|—%+6 ~I T , z — 00,
j+1 541 2z
which, upon setting z = ¢(n + 1) gives the correct leading-order behavior for pS?j ) a5 n — . Apply-

ing (2.16) once again gives

Z — 00,

(z—e><j+1>+(z+e><j+1>)‘1N |
z 2z j+2’

R (2 €) ~ (1 +

and this completes the inductive step.
For the leading-order behavior of the scaled bounds at € = 0, it is convenient to write an equivalent

version of (2.16) in terms of p%k), namely
P = (L4 enpl?, + e(n+2)p0),) (2.17)

which is valid for all n. When k = 1, the leading-order expansion (2.13) is immediately obtained from the
geometric series for
(1) 1
P

= 2.18
" 1+2e(n+1)’ (2.18)

and the general case easily follows via induction on k by applying (2.17) at each step.

To obtain the monotonicity in e of p,(f) and b it is clear from (2.18) and from b = (1—- pq(ll))/2
that inequalities (2.14) hold for k = 1, and we proceed by induction on k. Then, assuming that (for all
n > 0) both dpglk)/de < 0 and dbglk)/de > 0 hold for some k, differentiating (2.17) yields

(k+1) db(k) b(k)
don = (pryp (Pt Pren) g (2.19)
de de de
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implying that p%kﬂ) is monotone decreasing in €. Now differentiating b = e(n+1)

PIRIEE (k+1)
=(n+1) (szkﬂ) + ep ) =

p,ﬁ’““) yields

de de
_ D) pk+D) (1 — ¢pkt+D) n—1 n+1 _
(n + )p’l’b Gpn de + de

(k) (k)

— D) (1 _ (kD) db,”y | dbpiy

- ¥n Pn + )
de de

where we used (2.19). Then we calculate

db(k)l db(?l d (k) d (k)
n— n _ (k) Prn-1 9 (k) Pr+1
de + de n(pnl te de ) +n+ )<p”+1 te de <

k k _ k k
<nply + (n+2)piY, = e, + b)),

using the inductive hypothesis on dpglk) /de, and together with (2.17) this implies that

db%kﬂ) db’({cﬂ) i i b%kﬂ)pglkﬂ)
Lo (A ) = T s,

as required. H
Remark 2.1. Since the sequence (p,(fj ))n;o decreases monotonically with n, as in Lemma 2.2, and
tends to lerlv it follows that p,(fj ) > /(7 + 1) for all n > 0, while the recursion (2.17) with k¥ = 25 shows

that pfjﬂ) < 255:1)7 which is equivalent to bi T < (j+1)/2.

To further address our main assertion about the uniqueness of the positive solution of (1.13), we intro-
duce the differences
Al = (=1)F(p = oY), (2.20)

where the alternating sign is chosen so that A%k) > 0 for all k,n > 0, as is seen directly by dividing the
inequalities in (2.6) by e(n + 1) for each n. Then the coincidence of the lower and upper limits in (2.7),
which yields the desired squeezing argument, is equivalent to the statement that

lim A® =0 for each n >0. (2.21)

k—o0

To see why the latter result is plausible, we consider the behavior of these differences for small e, which will
be needed later.

Lemma 2.4. The leading part of the Taylor expansion of each of the differences (2.20) at e = 0 is
AR — B ek (1 4 0(e)),

where (37(10) =1 for all n, and the leading coefficient is given recursively by

el — ncflk,)l +(n+ 2)07(1]21 for all k,n > 0. (2.22)
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Proof. The result is by induction on k. For the base case k = 0, we have A%O) =1, and hence 9 = 1,

for all n. For the inductive step, we write

plF) — pF) = pl) p(EFL () =1 — (p(R)) 1),

and thus, by using (2.17) and collecting terms inside the round brackets, we obtain the identity
AP = pBpFD (enAl)) + e(n +2)AN,). (2.23)

Upon using the inductive hypothesis and substituting in the leading-order expansion (2.13) for the two
prefactors on the right-hand side of (2.23), we immediately obtain

Aglkﬂ) = cglkﬂ)ekﬂ(l + O(e)),

where (for each n) the leading coefficient S g given in terms of the coefficients with superscript k

by recursion (2.22), as required. B

Note that we have cy) = 2(n+ 1), P = 4(n? + 2n + 2), and it is apparent from (2.22) that these

leading coefficients are monotone increasing with n, that is, cgﬂl > cﬁf’, for £ > 1. This monotonicity is

desirable, since it suggests that, for small enough €, we should have Ag?_l > A,(lk), while from Lemma 2.3

we see that 1
lim AGD = = lim A, (2.24)

thus, if the sequence (Aq(lk)),@o is increasing with n for each k > 1, then the sought after result (2.21)

follows immediately from taking the limit as j — oo in (2.24). However, the monotonicity of c,(f) in n is not

enough, because the convergence of the Taylor series (2.13), and hence the result of Lemma 2.4, does not

(1

hold uniformly in n. For instance, the geometric series for pj, ) has radius of convergence Moreover,

1
2(n+1)
if we introduce the functions

A® (2 e) = (1) (RM(2,¢) — R¥V(2,¢)) (2.25)

in terms of the R™")(z, ) satisfying (2.16), then we might hope to use their behavior in the range z > €
to determine suitable bounds on the discrete set of values AL = A®)((n + 1) € €). However, this turns
out to be tricky for two reasons: first of all, we can show that A®)(z,¢) and the other functions (2.25) are
not monotone in z except for small € < 0.3; and secondly, for k& > 3 these rational functions have poles at
certain points in the range z > ¢, lying in between the discrete values of interest, so they are unbounded

on this range. Figure 4 illustrates these features for £k = 2 and k = 4.

Further numerical investigations suggest that if € is not too large, then the products p,(fj 1) pfj ) and

pfj )p,(fj ~ turn out to be bounded above by their values as n — oo, as in (2.12). This is in spite of
Remark 2.1, which shows that each product consists of an upper bound for one of the factors and a lower
bound for the other. It is easy to see that pq(ll)p,(lo) < 26(nl+1),

product p,(12)p,(11), for which the required bound can be expressed as R (z,e)RM(z,¢) <

and thus the first case of interest is the

1

is for z > e,

and this can be shown to be equivalent to the condition

) (1) 1+ 4e 1

Po PO = (14 26)(1+66) " de
which is satisfied whenever 0 < € < (v/2 4 1)/2. This leads to the following.
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AP (z,¢) AW (z,€)

0.40 | 0.20 -
0.16

0.35 1
0.12 -

0.30 | 0.08
0.04 -

0.25 1 , , , , , , , ,

0 1 2 3 4 z 0 1 2 3 4 z
a b

Fig. 4. (a) Graph of A®(z, ¢) against z for € = 0.5 showing the range 0.5 < z < 4, illustrating the
local minimum in the interval ¢ < z < 2. (b) Graph of A®(z,¢) against z for ¢ = 0.5, showing

vertical asymptotes at two poles, lying in the intervals € < z < 2¢ and 2¢ < z < 3¢, respectively.

Conjecture 2.1. For each value of € in the range 0 < ¢ < €*, where

1
€=, (V2+1) ~ 1.2071, (2.26)
the rescaled bounds satisfy
(251 (25-2) (24) H(25-1) < J 997

for allm > 0 and all j > 1.

The desirability of the bounds in (2.27), and especially the second one, comes from the fact that
it immediately yields an inductive proof that

- - 1
NS AR RN for n>0 (2.28)
j+1
is valid for all j > 1. Indeed, the first inequality in (2.28) is always true (from Lemma 2.1), while for the
second one the inductive step is to use (2.23) to obtain
AE) = )03 (AP 4 -+ 2A%Y) <
< j+1 ( en e(n—|—2))_ 1
2€(n+ )G +2)\j+1 " j+1 ) j+2
as required (where we used (2.27) and the inductive hypothesis to obtain the inequality). Taking j — oo
in (2.28), it then follows that

lim A®D =0 = lim AZ*Y for all n >0,

Jj—o0 Jj—o0
yielding the desired squeezing argument, and thus we have the following.
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Corollary 2.1. If Conjecture 2.1 is valid, then there is a unique positive solution of (1.13) with initial
data (1.14) whenever ¢ lies in the range (2.26).

We have tried in vain to provide a direct proof of Theorem 2.1, based only on the properties of the
mapping T'. The best we have so far is Corollary 2.1, which relies on an unproven assumption. Fortunately,
all is not lost, because in the next section a connection between (1.13) and the space of initial conditions
for Painlevé V will be made manifest. Consequently, this will lead to identifying the initial value prob-
lem (1.13), (1.14) with certain classical solutions of Painlevé V, and resulting not only in a proof that the
positive solution is unique but also in an explicit formula for this solution.

Before switching gears and moving on to consider the geometry of (1.13), we present one more technical
result concerning positive solutions.

Proposition 2.2. For each k > 0, any positive solution of (1.13) satisfies

k
v =Y (=1)'sni €T+ O(?) as e—0, (2.29)
i=0
where the finite sum coincides with the first k + 1 nonzero terms in the Taylor expansion of the rational
function b%k) at € = 0, that is,

(—1)isp, €T+ O(M2), (2.30)

S
=
—~

[0}
S~—

I
M=

where the coefficients s, ; depend only on n. In particular, for alln > 0, sp0 =n+1, sp,1 = 2(n+ 1)2,
$n2 =8(n+1)3+4(n+ 1), independently of k.

Proof. By Lemma 2.4, for all £ > 0 and for each n > 0, the Taylor expansions of pﬁf’ and p;’““)

at € = 0 agree up to and including terms of order €*, which implies that the corresponding Taylor expansions

k+1

of b,(lk) and b,(lkH) agree as far as order €"7' with their first k£ + 1 nonzero terms depending only on n,

as in (2.30). Then, by Proposition 2.1, together with the bounds in Lemma 2.1, a positive solution must

satisfy
k
Up, — Z(—l)isn)ie”l =O0("?) as e —0,
=0
for each k. From (2.13) it follows that

bR = (n+ De(1l—2(n+ L)e+ O(e?))

for k > 1, giving the stated expressions for s, ¢ and s, 1, while s, 2 is obtained from expanding b,(lk) in (2.3)
up to O(e?); but for k > 3 these coefficients do not have a uniform expression in n. B

Expansions (2.29) extend to an asymptotic series
o0
v~ (= 1) st (2.31)
i=0
for each n. In particular, when n = 0, the series is

vo ~ € — 262 4+ 126 — 112¢* 4 13926° — 214726° + -+ as € — 0. (2.32)

This should be compared with the Taylor expansion at € = 0 of (1.12) when n = 0, that is,

1
170(6)24(\/1+8€—1)26—2€2+8€3—4064+"-. (2.33)
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The bounds b,(lk) provide a sequence of rational approximations that alternate between upper/lower
bounds for even/odd k. This is highly reminiscent of the situation for the convergents of Stieltjes-type
continued fractions (S-fractions), which also provide successive upper/lower approximations based on a for-
mal series. Indeed, such a fraction can be associated with series (2.31), which, from the stated expressions
for sy.,0, 8n,1, and s, 2, must begin as

1
v, = (n+De . (2.34)
- 2(n+1)e
2(n+ 1+ (n+1)"Ye
1+
14---
In particular, setting n = 0 gives the continued fraction for vy, of the form
€ €
= = 2'
T + o1 2¢ ’ (2.35)
1+
4e
1+
De
14
1y
14---

whose coefficients will be described explicitly in due course, towards the end of Sec. 4.

In fact, the continued fraction (2.35) will turn out to provide us with the missing step in the proof
of uniqueness of the positive solution. Furthermore, for each ¢ > 0 it will precisely identify this solution
as being the one specified by the initial condition

B 1<K5/6(t/2)
-2\ Ky 6(t/2)

The latter function is plotted against € in Fig. 3b, with a set of numerical computations using the iterated

Vo

1
-1 h t=_ .
>, where 3¢

map T appearing as dots on top of this curve. A key feature of our analysis is to use the fact that this
function vg satisfies the Riccati equation

d
3¢2 ;O = ¢(1 + 2vg) — vo — V2, (2.36)
€
which gives a rapid way to generate the expansion in (2.32) recursively, and similarly v; satisfies
d
3¢? ;1 =e(2+v1) — v — 0% (2.37)
€

These Riccati equations arise as special reductions of the Painlevé V equation, which we proceed to extract
from the geometry of discrete equation (1.13) in the next section.

3. Complex geometry of the dP; equation

In this section, we obtain the space of initial conditions for the dP; equation and show that it corre-
sponds to a particular case of the surface type Dél), with symmetry type Aél), coinciding with that for the
Painlevé V equation.

Our goal is to describe the geometry of Eq. (1.13), and then use it to study some of its special solutions.
This equation is a special case of the more general dP; equation
an + 0 +5

n

Tptl + Tp—1 = (3.1)

for a = B =€ and 4 = —1, and therefore we do the general case and then specialize. Equation (3.1) has
been studied in [6]—[8], [19], [20]; see also [21].
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We first construct the family of Sakai surfaces regularizing the dynamics (3.1). For that, we begin
by rewriting the recurrence as a first-order discrete dynamical system on C! x C! via y,, := x,,.1. Then
Eq. (3.1) can be rewritten as

an + B -
Yn + Tn—1 = +7

n

and we obtain the mapping

&(n+1)+ﬁ+ﬂ7—xn). (3.2)

n

(Pn(xna yn) = (yn7

Using the notation z, = %n+1, ¥, = Tn—1, and same for y,, we can omit the indices and rewrite our
mapping and its inverse as

p(x,y) = (y on +y1)+3 +‘/—x), o w,y) = (dn;B +‘r—y,x>- (33)

Next, we extend the mapping to P! x P! via the introduction of coordinates at infinity, X = 1/z and
Y =1/y, and then rewrite mappings (3.3) from the affine chart (x,y) to three other charts, (X,y), (z,Y),
and (X,Y). It is easy to see that there are four base points where either rational mapping becomes
undefined, which are

(X =0,y =0), (X =0,y=7), (x=0,Y =0), (x=4,Y =0). (3.4)

As usual, these singularities are resolved by using blowups, where blowing up a point ¢;(x;,y;) amounts
to introducing two new coordinate charts (u;,v;) and (U;,V;) via ¢ = x; + v = z; + U;V; and y =
yi + wv; = y; + Vi. We then extend the mapping to these new charts, check for new base points, resolve
them in the same way, and continue this process until the mapping becomes defined everywhere. This
process, for discrete Painlevé equations, terminates in a finite number of steps, and in our case, as usual,
we obtain eight base points, which are organized into four pairs of infinitely close points, or degeneracy

cascades: ) )
ql(X:x_an_Py)<_q2(ul_X_x:Oavl_x(y_ﬁ/)_d>7
1 1 I

q3(X=$:0,y:O><—q4(u3:X:$:0,V3:xy:(n+1)a+ﬁ),

. (3.5)
q5(x_07Y_ :0)<_q6<U5:xy:na+ﬁ7‘/5: = = >7

Yy

1
Q7(33—%Y=y—0)<—Q8<U7=Z/($—7)——047V7=Y— —0)

This point configuration is easily identified as a point configuration for the Dél) Sakai surface family. This
family can also be thought of as the Okamoto space of initial conditions for the Painlevé V differential
equation in (1.15).

From the point of view of geometry, it is convenient to consider the Hamiltonian version of this equation
in the form given in [21], namely

d 1 OH

= (glg-1)2p+1) —alg—1)—asq) = .,

dt t dp 3.6
P o+ (1~ 20) + (@1 + a)p - aat) = - Y
dt_tpp q a1 as)p ag = aqa
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where the Hamiltonian function is

1
H(q,p;t) =

2 (ala = Dp(p +1) = (a1 + as)ap + arp + astq), (3.7)

and the symplectic structure is given by the standard form w = dp Adgq. The parameters a; are the so-called
root variables that are related to the standard Painlevé parameters via

1, 1

1
a=,a, ﬁ:—2a§, v =ay — asy, 5:—2, where ag+ a1 +ag +az = 1. (3.8)

System (3.6) is equivalent to (1.15) for the function w(t) = 1 — 1/¢(¢). The Okamoto space of initial

conditions for this system is obtained by removing the irreducible components of the anticanonical divisor

(the so-called vertical leaves) from the standard realization of the Dél)—surface family. This family

X = Xa:(aO)alxaQ)a?’) = Blpla---):l?n (Pl X Pl)
is obtained by blowing up P! x P! at the points

p1(00, —t) < p2(0, —ao), P3(00,0) < p4a(0, —az),

(3.9)
p5(0,00) < pg(ai,0), p7(1,00) = ps(as,0).

The latter point configuration and the resulting blowup surface are shown in Fig. 5.

q:O q= HQ7E17E3
ps p7
Hp_l b0 4 — | H,— Es — Ex
/ _
Pe pPs D2 Es — Eg / / Ex B
FE7 — Ejg
/
V4
pr| P Blp,.....pn Es — Ea
H, —p=0
P p3| P /
H, H,

Fig. 5. The standard Dél) Sakai surface family (the space of initial conditions for system (3.6)).

Note that configurations (3.5) and (3.9) almost match—geometrically they are the same up to the action
of rescaling on the axes. Thus, let ¢ = Ax and p = py. Then the symplectic form is w = dpAdq = A\udy Adz,
and matching coordinates of the base points results in

,U;y = _t7 A,Ud = —aop, )\,u(nd + B) = as,
A((n+ 1)07—}—3) = —ag, MW=1, Au(—-&)=as.

Thus, A = ¥~! and the root variable normalization ag + a; + az + az = —3a@\u = 1 gives u = —5(3a)~ .
The root variables describing configurations (3.5) then are

1 n B n+l f 1

=g MTTg a5 2T g Tap BT

(3.10)

In particular, we see that we obtain an integer translation in the root variables only after three iterations.
This can also be seen directly by computing the actions on the Picard lattice Pic(X) of the mappings ¢,
and ¢* = (¢4)~! induced by mapping (3.3). Specifying the basis as

Pic(X) = Spany{Hz, Hy, &1, ..., Es}s (3.11)
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(50 54
do = &1 — &a, 03 =Hy — & — &7,
P 3 01 = &3 — &4, 04 = E5 — Eg,
0y = Hy — &1 — &3, 05 = &7 — Es.
1 d5

Fig. 6. Surface root basis for a standard realization of a Sakai surface of type Dél).

Qo a3
Oé[):f}{p—gl—gg, 042:9{1,—83—84,
ozlzﬂ'fq—é'g,—ﬁﬁ, agzﬂ“fq—87—88.
5:a0+0¢1+a2+a3.
aq ()]

Fig. 7. Symmetry root basis for the standard Aél) symmetry sub-lattice.

the corresponding actions of ¢, and ¢* are given by

My <2 Hy 25 Hy +Hy — E — o,
He +Hy —E—E4+— Hy — Ha,
Es +— & — &r,
E +— E3 — &s,
Er +— E3 — Hy — &g, (3.12)
Eg — & — Hay — Es,
Hy — E4 — E — &,
Hy — E3 +— E — &,
&1 — & — &s,
Eoy — Eg —> &4
We initially use the same choice as in [21] for the surface root basis, shown in Fig. 6, and the symmetry
root bases, shown in Fig. 7. Then the action of the mapping (. on the symmetry root basis is

os: a = {ag,a1,as,a3) — (s, a0 + a1, —ag, a1 + ag), (3.13)

which is not a translation on the symmetry sub-lattice. However, it is a quasi-translation, since after three
iterations we obtain a translation, that is,

@3- a:(ao,al,ag,a3)>—>a+<0,1,—1,0>5, §=—Kx=ao+ o1 +as + as. (3.14)

There are two standard and nonconjugate examples of discrete Painlevé equations in the Dél)-family:
the equation given in [21, (8.23)], which acts on the symmetry roots as a translation

Yu: a = {ag, a1, a9, as) '—>a—|—<—1,1,—1,1>5; (3.15)
and the equation in [22, (2.33), (2.34)] that acts on the symmetry roots as a translation

O a = {ag,a1,az,a3) = a+(—1,0,0,1)0. (3.16)

We see that the cube of our mapping is conjugate, by the half-turn rotation of the Dynkin diagrams, to the
dynamics considered by Sakai, also called the dPry equation in the original Sakai paper [14].
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The dynamical system (3.1) is generated by the birational action of the fully extended affine Weyl
group of type Aél), that is,
W(AS) = W (A) = Aut(ALY),

where the above semi-direct product structure is given by the action of o € Aut(Agl)) on W(Agl)) via

1

Wo(a;) = OWq0 . The fully extended affine Weyl group acts on point configurations by elementary

birational maps on (g,p) and root variables a. This is known as a birational representation of this group,
and its action by automorphisms of X is called the Cremona action [14]. We describe this birational
representation in the following lemma [23, Section A.3].

Lemma 3.1. The birational representation of W(Agl)), written in the affine (q, p)-chart and the root
variables a;, is as follows: reflections w; on Pic(X') are induced by the elementary birational mappings, also
denoted by w;, given by

wo <a0 al;t; q)_)(—ao ao—i—al;t;q—i—ao/(p—i—t))’
as az P az ag+asg p

wi s <CL0 al;t; Q)'_><ao+a1 _al;t; q )7
az as p ap+az as p—ai/q

w0y <ao a1;t; q)'_>< ag al—i—ag;t;q—i—az/p)’
as as P —az az+as P

w0 <ao “ q)M<ao+a3 “ q )
as as p az+az —az p—az/(qg—1)

Note that the parameter t can also change when we consider Dynkin diagram automorphisms, and thus

(3.17)

it is convenient to include it among the root variables. The actions of the generators o1, oy of Aut(Agl)),
shown in Fig. 7, as well as 03 = 010201, are given by the following birational mappings:

a a a a —p/t
o <0 1;t;Q)'_>(3 2; —t: P/)7
az az p a1 ag qt

0o <a0 al;t; q)'_>(a2 al;—t' q ), (3.18)

az az p ag a3 ‘p+t

1—
03: <a0 al; t; q)»—)(ao a3; —t; q).
az az p az ax P

Using standard techniques (see, e.g., [24]), mapping (3.1) and its inverse decompose, in terms of

- —p/t
@ = 0201wy <a0 al't;q) %<a1+a2 i y )

as as | p as +as ag tlg+as/p—1)

ap ar q))_}( as ao—|—a1.t.1—|—p/t—a1/(qt))

b t; b b
az az p —a1 a1 +az —qt

generators, as

(3.19)

—1 .
2 = W20102: <

Using w(t) = 1—1/q(t) and (3.6), we can rewrite ¢ and ¢! as Biicklund transformations of a solution w(t)
of the standard Painlevé V equation (1.15), namely

. 1 1 1+t 14 2tw

rw—we=1—- = = )

7 i q p t — ayw? + (a1 — ag — t)w + as
1 t 2t

ol wmw.=1—- =1- 7 =1- v )
q qt +qp — a1 t% 4+ ayw? — (a1 + a3 — t)w + a3

In the next section, these results are rederived using compositions of classical Béacklund transformations for
Painlevé V.
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Note that parameters a, 8,v,6 € C appearing as coefficients in the Painlevé V equation are

_(n&—I—B)Q 1 B né + 1
= e 0 PTTe 7T T g 0 0Ty (3:20)

and further specializing to (1.13) by taking @ = 8 =€ and ¥ = —1 gives A = —1, p = 1/(3¢), and

a—a—l a__n—i—l a_n—|—2
0 — a3 — 5> 1= 3 ) 2 — 3 ) (321)
a_(n+1)2 B__l _ n+1,
T8 T 7T g
where the solution w of (1.15) is related to the iterate v, = x, = A~1q, = Yq, of (1.13) via
=1+ - with t=—pj— (3.22)
e 1 = — = . .
v vn(€) v FT= 3¢

An essential observation to make at this stage is that these values of the root variables, and the
corresponding values of «, 3, 7, fall in a particular region of parameter space where Eq. (1.15) is known to
admit special solutions in terms of classical special functions: see [25, Sec. 32.10(v)], for instance.

Geometrically, we can see this as follows. For n = —1 the root variable a; vanishes, which corresponds
to the appearance of a so-called nodal curve. Indeed, the base point pg in Eq. (3.9) becomes ps(Us = V5 = 0),
which changes the point configuration and the corresponding blow up picture in Fig. 5 to the one in Fig. 8.
The nodal curve is the (—2)-curve H, — E5 — Eg disjoint from the anticanonical divisor. It is important to
note that the existence of nodal curves is preserved by Béacklund transformations, and such nodal curves
define reductions to Riccati equations; see [14], [26].

q:[) q =00 E57E6 Hq—El—Eg
D5 b7
Hp—! p =00 | I 7 | Hy — Es — Er
| / E, — E»
Ps p2 /|
Dé Er — Eg >
7
pr| P Blpi.....pn Es — Ea
H, —p=0
P | p3| p /
H, H, Hq— Es — Es

Fig. 8. Special Dél) Sakai surface with a nodal curve corresponding to a1 = 0.

It is now easy to see that the solution that we are interested in belongs to the Riccati class. Indeed,
the initial condition v_; = 0 corresponds to ¢_; = 0 and vg = 3ep_1 = p_1/t. System (3.6) for n = —1 and
ap = az = ag = 1/3, a1 = 0 becomes

dg-1 _ 91 ((q_l ~1)(2p-1 +1t) - ;)

dt t
p ) ; (3.23)
P—-1 p-1—
= _1(p_ 1—2qg_ .
dt t(p 1(p—1 +6)( q-1) + 3 >

Thus, the flow preserves the nodal curve q_; = 0 and is described by the Riccati equation which, when
written in terms of vy, becomes

2 1
- 1- - 24
g~ ( 3t)“° 3t (8:24)
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The corresponding reduction of Eq. (1.15) follows from the substitution wy =1 + 1 /vy,

dw
3t° 0 = w2 — 3twy — 1. (3.25)

dt
We revisit this reduction in the next section. Solutions of these Riccati equations can be expressed in terms
of classical special functions. This will lead us to the explicit formula for the initial condition, which we

now consider.

4. Classical solutions of dP; from Backlund transformations
for Painlevé V

In this section we present a large family of special solutions for the Painlevé V equation, connected to
one another by Bécklund transformations, and show how this includes a one-parameter family of solutions
for (1.13) corresponding to an explicit orbit of the dynamics whose geometry was revealed in the preceding
section. In Sec. 4.1, we construct explicit Wronskian determinant formulas for these solutions, thus providing
special solutions of 7-function relations that were obtained in [5]. Finally, in Sec. 4.2, we complete the proof
of uniqueness of the positive solution of (1.13), as well as proving Theorem 1.1.

We consider the generic case of Painlevé V (1.15) when 6 # 0, and as usual we set 6 = —1/2, i.e.,
we take 5
Pw (1 N 1 dw\”  1dw (w—l)z(aw2+ﬂ)+’yw_w(w+1) (4.1)
a2 \2w  w—1)\ dt t dt 2w t 2w-1)" '

Suppose that w satisfies this Painlevé equation with parameters (o, 3,v) = (a?/2,—b%*/2,c); then the
Bécklund transformation 7;, ¢, ., is defined by

2e1tw
Tz w)= 1-— , 4.9
ey () 10 _ oo+ (o et exty 4 5 (4.2)
with €; = £1 independently for j = 1,2, 3; and for the parameters,
+e1(1—egzb—¢ —e1(l—esb—¢
Tornos(abyc) = <c 1( ) 3 za)7 c—ei ) 3 QQ)’gl(E:;b - €2a)>, (4.3)

see, for example, [27], [28, Sec. 39], or [25, Sec. 32.7(v)]. Note that the Bécklund transformation 7z, ., , is
usually given for the parameters «, 8, and «y in terms of a, b, and c¢. However, in order to apply a sequence of
Béacklund transformation, it is better to define the effect of the Backlund transformation on the parameters
a, b, and ¢ to avoid any ambiguity in taking a square root. Indeed, the discrete symmetries of Painlevé V,
corresponding to the extended affine Weyl group of type Agl), act naturally on the root variables, as in (3.8),
and the parameters a, b, ¢ here correspond to a1, a3, ag — as in the notation of the previous section.

To derive a discrete equation from Backlund transformation of a Painlevé equation, we use a Backlund
transformation R, which relates a solution w to another solution w,, and the inverse transformation R 1!,
which relates w to a third solution w_. Then eliminating the derivative between the two Béacklund trans-
formations gives an algebraic equation relating w, w,, and w_, which is a discrete equation; cf. [12] for
more details of this procedure, see also [11]. Here we consider the Bécklund transformation R = T_1 11,
which has inverse R =T_11 _1°7T1,—1,-1°7T1,-1.1, then

2tw
t —aquw?+ (a—b—t)w+b’
2tw
_t”llﬁ—l—an—(a—l—b—t)w—l—b

wy = R(w;a,b,c) =1+ (4.4a)

w_ =R Hw;a,b,c)=1 (4.4b)
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and

b -1 b—c—1
(a+,b+,c+):R(a,b,C):<a+ te _at ¢ ,a—b),

2 ’ 2
- 1 a-b— 1
(a—boyer) =R-Mabye)= (470 DT AT ),
2 2
Eliminating dw/dt in (4.4a), (4.4b) gives the algebraic equation relating w, w4, and w_, and comparing
this with (3.22) we set w =1+ 1/v and wx = 1 + 1/vy, which gives
1 1 a(w—1) a

+ = - -1 = vi+v_=-1-

wy —1 w_—1 t tv’

Remark 4.1. In terms of w, transformation (4.4b) is the same as 71 _1,1 (w). However, the parameters
(a,b, c) map differently, since
a—b+c—1 —a+b+c—1
Ti,—1,1(a,b,¢c) = , ,a+b).
£ £l 2 2
Consequently, it is straightforward to show that 71,11 ° T-111(w) = w, but T_111 ° T1,—11(w) # w,
and therefore 71,_1,1 is not the inverse of 71 11.

Under successive iterations of R and its inverse, the parameters evolve as

an +by,+c,—1 ap,+b,—c,—1
(an+1a brt1, Cn+1) = R(anv bn, Cn) = ( - y G — bn)a

2 ’ 2
an —bp+c,+1 a, —b, —c, +1

(an—labn—lacn—l) = R_l(anabnacn) = < 2 I’ 2 70171 + bn) .

From these equations it can be shown that a,, satisfies the third-order difference equation
Gnts —an +1=0, with b, =ant1 — Gnto, Cn = Qpt1 + b1, (4.5)

and thus we obtain the solutions

cos 27 + K si 2m + A L
n = sin — ,
a 1 3 n KS 5 n 3n

2 1
by, = \/35005(2;71) - \/3usin( ;n) + 3 (4.6)

2 2 1
Cp = —2ucos< ;Tn) —2/$sin< ;Tn) + A= 3n,

with p, k, and A arbitrary constants. (Note that (a,)ncz denotes a sequence of values of the root variable a
here, and should not be confused with the indices 0, 1, 2, 3 used in the previous section, as in (3.8),
for instance.)

The solution w,, evolves according to

2tw,
tdzl‘;" — apw? 4 (ay — by — t)w, + b,
2tw,
T 4 w2 — (a4 by — )wn + by

Wpt1 = R(wy) =1+

(4.7)
Wp_1 = R_l(wn) =1
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Eliminating dw, /dt gives the discrete equation

1 1 n(w, — 1
__lon—1) (4.8)
Wn4+1 — 1 Wn—-1 — 1 t
then setting w, = 1+ 1/v,, gives the discrete equation
an
Un41 + Un—1+ 1+ ¢ =0, (49)

which is equivalent to equation (3.23) in [8].
We remark that v, (t) also satisfies the second-order differential equation

d2vn_1 1+ 1 dvuy, 2_1dvn_
a2 2\v, v, +1)\ dt t dt
a(v, +1)2 462 chop(v, +1) n (v, + 1)(2v, + 1)

20y (v + 1)82 t 2

and the differential-difference equations

y n 1 dvy,  (an +bp)vp+an 1 0
T 2 (v + 1) dt 2tv, (vn + 1) 2 (4.10)
N 1 dv,, N (an —bp)on+an 1 0 '
n-t 2up (v, + 1) dt 2tv, (v, + 1) 2 7
as well as discrete equation (4.9).
We are interested in the special case of (4.6) when p=r =0 and A = —1/3, i.e.,
n+1 1 n+1
n — T 5 bn = 5 n — — 5 4.11
¢ 3 3 ¢ 3 (4.11)
and solutions of Painlevé V (4.1) with
az b2 n+1)? 1 n+1
(aﬂﬁﬂl\/)_<27_2acn)_< 18 7_187_ 3 ) (412)

There are special function solutions of Painlevé V (4.1) with (o, 3,7) = (a?/2, —b?/2,¢) if there is some
m € 7 such that either e1a + €20 + €3¢ = 2m + 1, a = m, with ¢; = +1, j = 1,2, 3, independently. For
parameters (4.11), Painlevé V equation (4.1) has special function solutions, since as,, —bsy, +c3n = —2n—1,
asn+1 + b3nt1 + cspy1 = —2n— 1, and azpyo = —n — 1.

Lemma 4.1. The only Riccati equation that is compatible with Painlevé V equation (4.1) with param-
eters (o, 3,7) = (a3 /2, —b%/2,c0) = (1/18,—1/18,—1/3), i.e.,

Puy ( Lt ><dw0>2 Ldwy | (wo —1)*(wg —1) wo _ wo(wo+1) (4.13)

dt? Qwyg  wo—1)\ dt )t dt 18t2wy 3t 2we—1)"
is Eq. (3.25), which has solution

wo(t) ~ C{Tiye(t/2) = 156(/2)} + Co{ K1/6(t/2) + Ks5/6(t/2)} (4.14)
0 Ci{lys(t/2) + 1_5/6(t/2)} + Co{ K1 6(t/2) — K5/6(t/2)} .

where I, (t/2) and K, (t/2) are modified Bessel functions, with C; and Cy arbitrary constants.
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Proof. Using the Riccati equation

dwo

g p2(t)wg + p1(t)wo + po(t),

where po(t), pi(t), and po(t) are functions to be determined, to remove the derivatives in (4.13)
and then equating coefficient of powers of wqy shows that pa(t) = 1/3t, p1(t) = —1, po(t) = —1/3t; hence
we obtain (3.25), as required. Letting wo = —3t {, log gy in (3.25) gives

dpo 1
FHt+1) Cfto — g0 =0, (4.15)

d? ®o

2
dt?

which has solution

[0 Ry [ A ] E

and thus we obtain solution (4.14), as required. B

Remark 4.2. Special function solutions of the Painlevé V equation (4.1) are usually expressed in
terms of the Whittaker functions M, ,(t) and Wy ,(t), or equivalently the Kummer functions M(a,b,t)
and U(a,b,t), cf. 25, Sec. 32.10(v)]. However, if b = 2a + n, with n an integer, then the Kummer functions
M(a,b,t) and U(a,b,t) can be respectively expressed in terms of the modified Bessel functions I, (¢/2)

and K, (t/2), for example
1 B N (Y e
M(l/+2,2u+1,t)—l"(1+u)<4> L,<2>e ,

1 t
U(V+ 2,2V—|— 1,t) = 7r1/2t”K,,<2>et/2,

see [25, Sec. 13.6(iii)]. In terms of Kummer functions, the solution of (4.15) is given by

wo(t):t‘l/g{ClM@,; )+02U(§ ; )}e—t, (4.17)

with Cy and Cy arbitrary constants, which gives the solution of (3.25)

3t depo _ 6C1M(5/3,1/3,1) +8C>U(5/3,1/3,1)

Wl ==y ar = 3T Y T a0 M(5/3,1/3,6) + 3CU(5/3,1/3,1)

(4.18)

The Kummer functions M (2/3,1/3,t), M(5/3,1/3,t), U(2/3,1/3,t), and U(5/3,1/3,¢) can be expressed
in terms of modified Bessel functions as

(33 ) (T el8) s ron())
M< t) ()5/6 <(15){(3t+4””6(;)+(3t+2)15/6<;>}et/2,
3 e () ()

9¢5/6 t t
= L6y { 3t+2)K5/6< ) - (3t+4)K1/6(2)}et/2.
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Solutions (4.17) and (4.18) can be expressed in terms of Whittaker functions, since the relationship between
the Whittaker functions M, , (t), Wy . (t) and the Kummer functions M (a,b,t), U(a,b,t) is given by

1

M, (t) = t“+1/2M<u — K+ o 1+ 2u,t> e t?,
1

Wi (t) = t”+1/2U<u — K+ o 1+ 2u,t>et/2,

and conversely

M(CL, b7 t) = t_l/QMb/2fa7b/271/2 (t)et/27
U(CL7 b7 t) = t71/2Wb/2—a,b/2—1/2 (t)et/27

see [25, Eqgs. 13.14.2-13.14.5]

Hence, using (4.16), we obtain

wolt) = — 3t deo _ Ciiliye(t/2) = Ise(t/2)} + Co{ Ky /6(t/2) + K5 /6(1/2)}
’ po(t) dt Ci{l1/6(t/2) + 1-5/6(t/2)} + Co{K1/6(t/2) — K5/6(t/2)}
which satisfies the Painlevé V equation (4.1) with parameters (o, 3,7) = (1/18,—1/18,—1/3), and thus
w1 = R(wp; —1/3,1/3,—1/3) is given by

2{C1116(t/2) + C2K16(t/2)}

v = (514 2){C111y6(t/2) + CoK1/6(t/2)} + 3t{C11_5/6(t/2) — CaKs5/6(t/2)}

which satisfies Painlevé V (4.1) with parameters (a,fS,7v) = (2/9,—1/18,—2/3).  Therefore, since
vp = 1/(w, — 1), we have

wolt) = L 1 Cilse(t/2) — CoK56(t/2)
0= wo(t) — 1 2 2{01[1/6(t/2) + CgKl/g(t/2)}’
vi(t) = wl(tl) .= —-1- 3275 - (4.19)

B 2{C11_5/6(t/2) — CaK56(t/2)}
3t{C1I1/6(t/2) + Co2 Ky 6(t/2)} + C11_5/6(t/2) — Co2K56(t/2)

Furthermore, if we set a, = —(n + 1)/3 in (4.9), then we obtain

n+1

4.20
o (420)

'Un(vn—i-l + Up_1+ 1) -

which is (1.13) with e = 1/3t, in agreement with (3.22). Hence, if we put n = 0 in (4.20) and use (4.19),
then we see that

1
=0. 4.21
3t110 ( )

MOI‘QOVGI‘, if we let Zl/g(t) = 01]1/6 (t) + CQKl/G(t) and Z75/6(t) = 01]75/6 (t) — 02K5/6(t), then the first
three nonzero iterates of dPy equation (4.20) are given by

v_1=-v1— 14+

() = 1 Zo56(t/2) () = —1— 2 27 _56(t/2)
T T Tz et2) Y T T T 8T BH{Zuy(t/2) + Zos6(t/2))
va(t) = 3(t+2) | Z-55(t/2) 42 _5/6(t/2)

C2(3t+2) T 2Zy16(t/2) (Bt +2){(3t +2)Z1/6(t)2) + 3tZ_56(t/2)}
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Remark 4.3. It was shown in Lemma 4.1 that wo(t) satisfies the Riccati equation (3.25). It follows
that w1 (t) also satisfies a Riccati equation, namely

dw1_2 2 1
tdt = Jui (t+1)w1+3,

and hence vo(t) and v (t) satisfy Riccati equations, namely (3.24) and

P I R P
e~ ¢ 3)7' 3

respectively, which are equivalent to (2.36) and (2.37), after making the change of independent variable
e = 1/3t. The solutions w,, (t) and v, (¢) for n > 2 do not satisfy Riccati equations with simple coefficients.
However, it can be shown that v, for n > 2 does satisfy a Riccati equation with coefficients given by
combinations of v,_o and lower v; [29]; for instance, v, satisfies a Riccati equation that includes vy among
its coefficients (see below).

4.1. Determinantal representation of the solutions. In this subsection we show that the solu-
tions of the dPy equation (4.20) may be written in terms of determinants involving modified Bessel functions.
These determinants can be regarded as particular examples of Painlevé V r-functions. Moreover, in [5] it is
shown that if a 7-function v,, for (1.13) is introduced via

UnUn—4

(4.22)

Up = )
Un—-1Un-3

then it satisfies a trilinear (degree 3 homogeneous) equation of order 6. At the end of this subsection, we
show that the determinants of modified Bessel functions provide special function solutions of this trilinear
equation.

We begin by defining some convenient notation for linear combinations of modified Bessel functions,
and associated Wronskian determinants.

Definition 4.1. Let Z,(t) be defined by

dllj(t)+d2(—1)jKj(t), v=j€EL,
Z,(t) = (4.23)
di1,(t) + dol_, (1), otherwise,

where I,,(t) and K,(t) are modified Bessel functions and d; and ds are arbitrary constants. For m € Z
and n € N, let By, . (t) be the Wronskian determinant

Bmm,l/(t) = W({fmf&qué(t) ?;01)7 (424)

where

N (m j+v , t)
tv . . -1 Z,.; , m €N,
3 (7) gLy 020
fm,u(t) = (4.25)
j — t
t|m\—l/ <|m|) ' J v Z,,_‘( >7 —-m €N,
Z 3 )G =2 7\ 2
whenever the denominators in (4.25) are nonzero; let By, 0., (t) = 1.
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Lemma 4.2. Let By, ,,.(t) be the determinant of modified Bessel functions given in Definition 4.1.
We also define the constants 01[711]7,1,,, and 07[721],”7,, as

1
9~ m— v, m>=n-+2,
My x
— <V +n+ 2) otherwise,
—y—_—m — 1 >
cp, =TTy 2 (4.27)
1 otherwise.
Then
B (t) By — (t)
1] t) = C[l] m,n+1,v m—2,n,v+1 4.98
wm,mu( ) oy Bm,n,u(t)Bm—Z,n+l,u+l(t) ( )
is a solution of Painlevé V for the parameters
2 2 1)2 2 2 2n —1)2
(a7577)=<(y+8n+ ) ,—(U+ m; n-1) ,2u+m—1), (4.29)
" (t) (t)
B t)B t
(2] = m,n,v+1 m,n,v 4,30
’wm,n,u( ) m,n,v Bm,n—l,l/—i—l(t)Bm,n—i-l,u(t) ( )
is a solution of Painlevé V for the parameters
n? 2U4+m+n)?
(0,5,7)2(2,—( 5 ) ,m) (4.31)

Proof. The special function solutions of Painlevé V written in terms of the Kummer function M (a, b, t)
were derived by Masuda [18]; see also Forrester and Witte [17]. Solutions (4.29), (4.31) may be inferred
from the work of Masuda by using [25, Sec. 13.6(iii)]

M<y+ ;,2y+1+n,t) - F(y)et/Q(i)_yi(_nk(Z) (g;ka”:nk)iukG)

k=0

n (4.32)
1 B 2t Y n\ 2v —2n)k(v —n+k) t
M<U+2,21/+1 n,t)—l"(u n)e (4) §<k> (w41 —n) Iovk—n 5 )
If the modified Bessel function K, (¢) with v ¢ Z is desired in the solution, we use [25, Eq. (10.27.4)]
7T(I—l/(t) - Il/(t))
K, (t)= . 4.
®) 2sin(7v) (4:33)
For j € Z, the modified Bessel function Kj(t) is given by [25, Eq. (10.27.5)]
(=1)7=L (OL,(t) oI, (t)

K;(t) = . 4.34
](t) 2 8V v + ay v ( 3 )
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We use the following properties of fy, ., (t) defined in (4.25) to construct identities for By, n . (1).

Lemma 4.3. We have

fm,V(t) - fmfl,VJrl(t) = <m +v+ ;)ferLV(t)v m 21, (4353‘)
<I/ + ;) (fl,z/(t) - ffl)VJrl(t)) = fo)l,(t), m = 0, (435b)
fnp (@) + frng10(t) = —<V + ;)fm_17y+1(t), m < —1. (4.35¢)

The derivatives of fy, ,(t) are given by

1 1
fmp(@) — | m+v+ fm+1,l/(t)7 m =0,
d 2 2
g fmr () = ) (4.36)
2fm,u(t)+fm+l,l/(t)a m < —1.
Furthermore, if v ¢ Z, the following symmetry holds:
t72uim.fm,—m—l/(t; an dl)a m 2 Oa
fm7u(t; di, d2) = (437)

(_1)mt72uimfm,—m—v(t§ d2, dl), m < 0.

Proof. The properties of f,, ,(t) are proved using the properties of the modified Bessel functions given
in [25, Sec. 10.29]. For example, (4.35a) is given by

=0 J) (G +20)ms

m—1 .
e m—1\ Jj+v+1 ; t
— vt § 1) 2,14 . 4.38
j_O( ] )(j+2y+2)m( ) +1+](2) ( )

Zl,1<;> — Z (;) = 4;’2,,(;), (4.39)

to rewrite the second sum in (4.38), we obtain

Using [25, Eq. (10.29.1)]

fm,l/(t) - fmfl7u+1 (t) =t =0 <Zn) (] ‘g;;)ym—i-l (_1)jzy+j <;> -

B e ll) 2ol oo

J=0

Combining like terms in (4.40) gives (4.35a). The remaining identities are proved similarly. B
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Lemma 4.4. When v ¢ Z the Bessel determinant By, . (t) has the following symmetry:

Tm,n,v 1-m—n—2
tn( men V)Bm,n,l—m—n—l/(t; d2; dl)a m 2 n— 17
"m,n,1-m—-n—v

B (t;dy,dg) = S (=1)™" Ty pemen-2g L (dyydy), 1< m<n—2,

Tm,n,1—-m—-n—v

(_1)mn tn(liminizy)Bm,mlfmfnfl/(t; d2a d1)7 m < 07
(4.41)
where 1y, ., is the constant

n—1 1
H(V—l—m+2) , m=2n-—1,

"m,ny = =0 ‘ (442)
H v+n— ,  otherwise.

2/,

=0

Proof. We prove (4.41) when m > n — 1. Subtracting column j + 1 from column j in (4.24)
for j=1,2,...;k, k=n—1,n—2,...,1, and using recurrence relation (4.35a), we obtain

Byt di, d2) = Ton o WH Fmtn—1-2j0+; (¢ di, d2) ?;01)- (4.43)
By applying symmetry (4.37) to (4.43), we have
Bonw(t;di,da) = Ty ) WEE T2 o 1914 m—n—w (t; da, dy) ?:—01). (4.44)
We then use the Wronskian identity [30, Theorem 4.25]

W(g(t) 1), () f2(t), -, 9() fu(t)) = g(&)" W(f1(2), f2(t),- .-, fu(t)), (4.45)

in order to remove the powers of ¢ from the Wronskian in (4.44), thus:

Bm,n,u(t; dla dQ) = Tm,n,v tn(l_m_n_zy)W({fm+n—1—2j,l+j—m—n—l/(t; d27 dl) 7;(31) =

Tm,n,v rmen=2p (i da, dy). (4.46)

"m,n,1—m—n—v

The proofs of the remaining cases are similar. l

Lemma 4.5. Let B, . (t) be the determinant of modified Bessel functions defined in Definition 4.1.
When m < 0, By, n,v(t) satisfies

Bm,n—l,l/+l(t)Bm,n+l,l/(t) + Bm—l,n,u+l(t)3m+l,n,u(t) - Bm,n,l/—i—l(t)Bm,n,u(t)- (447)

Proof. We prove the Lemma using the Jacobi identity [31], sometimes known as the Lewis Carroll
Jformula, for determinants. Let D be an arbitrary determinant, and D[] be the determinant with the ith
row and jth column removed from D. Then we have the Jacobi identity:

o) Ai)41)
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Using the derivative of f,,(t) given in (4.36) we rewrite the Wronskian determinant B, . (¢)

k
A
Z (j) 2R it

=0

when m < 0 as
n—1

Bunnw(t) = det (4.49)

k,0=0

Since we can add a multiple of any row to any other row without changing the determinant in (4.49),
we keep the last term in each sum:

B (t) = det |fm+k7€,u+€|z,zi0' (4.50)

We apply the Jacobi identity (4.48) to the determinant in (4.50), choosing ¢ = 1, j = n for the rows
and k = 1, £ = n for the columns. The relevant minor determinants are

_1,n

1.n = det |fm+k—£,v+1|Z;jQ - Bm,n—Q,u+l;
b

Bm,n,v

1
-2
Bm,n,l/ 1 = det |fm+k—€,u+l|;l)j:0 - Bm,n—l,l/+17

n -2
Bmm,u n = det |fm+k7€7u+€|2j:0 = Bmmflﬂ/a (451)
B e 12 =B
m,n,v n = det |fm+1+k7€7u+€|i)j:0 — Pm+1,n—-1,v,
n _ n—1 __
Bmm,u 1 = det |fm71+k7€,u+l+€|i7j:0 = Bm717n717u+1'

Substituting (4.51) into (4.48) gives (4.47). W

Lemma 4.6. Let B, . (t) be the determinant of modified Bessel functions defined in Definition 4.1.
When m < 0, we have

1
Bm,n+l,l/(t)3m—2,n,v+1(t) + (V +n 4+ 2) Bm—Q,n+l,v+1(t)Bm,n,u(t) =

= _Bmflm,lﬂrl(t)BmenJrl,V(t)- (452)

Proof. In Wronskian determinant (4.24), subtracting v + j — 1/2 times column j + 1 from column j
for j =1,2,...,k, where k decreases from n — 1 to 1, and using recurrence relation (4.35¢), we obtain

B (t) = (1" VW frnsn-1-2j045}j20)- (4.53)

By adding v + j — 1/2 times column j 4+ 1 to column j for j =1,...,n — 1 in (4.53), we have

Bri1,nu(t) = (_1)1+n(n+1)/2W({fm+n7172j7u+j}?;o2a fmt2-npv+n—1)- (4.54)
Adding 1/(v +n — 3/2) times column n — 1 to column n in (4.54) gives

1

Bintanv(t) = v+n-—3/2

(=12 W frnin—1-2j045 Y124 fmta—n.vtn—2)- (4.55)
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Vein and Dale prove three variants of the Jacobi identity (4.48) in [30, Theorem 3.6]. To prove the bilinear
relation (4.52), we use

Anll‘|An+l _An[z‘|An+1
p q

which is identity (B) in [30, Theorem 3.6], where we let
-An+1 = W({fm+n—2j,v+j}?;olv fm+3—n,u+n—l)v -An = W({fm+n—2j,l/+j}?;01)- (4-57)

Setting i =n, p =1, and ¢ = n, we have

n+1 n+1 i,n+1

= Ay Ani , (4.56)

)

n n— n— n—
A, [ 1] = W({fm+n7272j7u+1+j}j:02) = (_1)( 1 2)/2Bm7n*17v+1(t)’

n+1

AnJrl = W({fm+n72j7u+j}?:_027 fm+37n7u+nfl) = (_1)1+n(n+1)/28m7n,u(t)7

n n— n— n—
An[n]:W({fmm2j,u+j}j—02):(—1)( DD, L (0),

-TL + 1 n— 1 n(n
Apt1 1 = W({fm+n—2—2j,l/+1+j}j:027fm+3—n,l/+n—l) = <I/ +n— 2) (-1) ( +1)/2Bm,n,y(t),
-An - (_1)n(n_1)/23m,n,u(t)a

-Tl, n+1 n— n(n—
AnJrl 1.n = W({fm+n72f2j,u+l+j}j:037 fm+37n,1/+n71) = (_1)1+ ( 1)/2Bm,n7u(t)-

Substituting these equations into Jacobi identity (4.56) gives (4.52). B

Theorem 4.1. The solutions of dP; (4.20) are a special case of the modified Bessel function solutions
of Painlevé V given in Lemma 4.2, namely v, (t) = 1/(w,(t) — 1), where w, (t) satisfies

wil ) o1 e(tidy, dy), n=3k keN,

wy(t) = w[f]lc)k)l/ﬁ(t;dg,dl), n=3k+1, keN, (4.58)

w? o e(tidids), n=3k+2, keN.

Proof. When n = 3k, the parameters of Painlevé V (4.12) become
((Bk+1)2 1 1
@i = (P )
which is (4.29) with m =1 —k, n =k, and v = —1/6. The cases where n = 3k + 1 and n = 3k + 2 are
obtained similarly. B

(4.59)

Using the recurrence relations in Lemmas 4.5 and 4.6, the solutions vy, (t) of dPy (4.20) may be written as
0, n=-—1,

<k 1)Blk7k71/6(t§d1;d2)31k,k+1,5/6(t;dlad2)
3) B_iksse(t;di,do)B_g g1, —1/6(t;di,da)

vn(t) = <k+ 2) By ras6(t;de,di)B o g ki1,7/6(t; d2, dr) n—3k+1l keN (4.60)
3) Boi_pr6(tida, di)Bq g 1,176t d2, dy)’ ’ ’

B_1_j k56t di,do) By g py2,—1/6(t; d1, da)
B_o i r+1,5/6(t; d1, d2) By g1, —1/6(t; du, da)’

n=3k keN,

n=3k+2, keN.
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Furthermore, using the symmetry (4.41), we may rewrite vzg41(t) as

3k+2 B_pks/6(t;di, d2)B_g_j k1,576 (t; dr, da)

. 4.61
3t B_i_kks/6(tidi, d2)Boi_g pt1,5/6(t; di, d2) (4.61)

Ugk41(t) = —
Substituting (4.60) into (4.20) gives the trilinear equations

1
Blk7k+175/6{31k,k,S/GBk,k+1,1/6 + </€ + 3)61k7k71/662k7k+175/6} =
= =B rs5/61B-1-kk,5/68-1—kk+2,~1/6 T Bk kt1,-1/6B—2—k,k+1,5/6}»

tB_1 ke okt 1,5/61B-1-k k,5/6B1—k kit 1,-1/6 + Bk k—1,5/6B—k,k+1,-1/6} =
2
=B_kk5/64 Bo1—kk5/6B-kkt1,-16 + | K+ 3 By gk, 17682k k+1,5/6 >
4
tB_1 k56 Bo1—kk+1,5/6B-1—kk+2,—1/6 + [ K+ 3 B_k kt1,—1/6B—2—k kt2,5/6 ¢ =

2
= B—Q—k,k+1,5/6{ </€ + 3)B—l—k,k+2,—1/68—k,k,5/6 + (k+ 1)B—k,k+1,—1/68—1—k,k+1,5/6}-

After a gauge transformation (which depends on n mod 3), to match up the 7-function v,, in (4.22) with
an appropriate Wronskian, each of the latter equations is equivalent to the trilinear equation in [5].

4.2. Unique positive solution: finale. The preceding results on repeated application of Backlund
transformations for Painlevé V show that these generate a solution of dPp in the case that one initial value
v_1 = 0, while vy is arbitrary. Indeed, for any choice of vy there is a value of the ratio A = C1/Cs in (4.19)
that provides a complete solution of the difference equation (4.20) in terms of ratios of modified Bessel
functions, and this is equivalent to (1.13) with ¢ = 1/3e. Note that if we rearrange the formula for v
in (4.19) as

2v0 11— Ks/6(t/2) — /\175/6@/2)’ . ’ (4.62)
Ky/6(t/2) + Myy6(t/2) 3e
then for any choice of vy we can invert the Mobius transformation above to find A in terms of vy and e.
Thus, for each fixed e there is a one-to-one correspondence between the choice of vy and the choice of
parameter \. However, we can characterize one particular solution by its distinct asymptotic behavior.

Proposition 4.1. The function

vo(€) = (4.63)

- L(Httoen )

K1/6(1/(6e))
is the unique initial condition for (1.13) that has the asymptotic behavior (2.32) as ¢ — 0.

Proof. From the leading-order asymptotics of the modified Bessel functions, that is,

t t 1
K, ~ T e t/?, 1, ~ et’? as t— oo,
2 t 2 Vit

we see that the right-hand side of (4.62) tends to 1 as ¢ — oo when A = 0, but otherwise it tends to —1.
Equivalently, if A = 0, then vg — 0 as € — 0, but for all A # 0 this ratio of modified Bessel functions
gives vg — —1 as e — 0. Hence, function (4.63) is the only member of this one-parameter family that is
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compatible with the asymptotic behavior (2.32) as ¢ — 0. Since all of the functions vy given by (4.19)
satisfy the Riccati equation (2.36), the latter series (2.32) can be obtained by substituting in

Vo E 8016

This immediately yields the recursion

S0,i+1 = (3Z + 1)8071' + Z 50,i—550,5 for = 0, with 50,0 = 1,
j=0

producing the sequence 1,2,12,112,1392, etc. B

The computation of quotients of modified Bessel functions is an important problem in numerical
analysis [32], and continued fraction methods provide effective tools for doing this [33], [34]. For the
function (4.63), the continued fraction expansion (2.35) can be calculated directly from the Riccati equa-
tion (2.36), which is one among a family that includes many examples first considered in the pioneering
works of Euler and Lagrange (see Ch. II in [35]).

If we set

Mo =%, =V, N2 =g+, (4.64)

then we see that the iteration of (1.13) with v_; = 0 is consistent with the recursion

T = Sl s, (4.65)

L+ Mg

and this generates a continued fraction representation for vy in the form

o€
1€

&€
14---

Vo =
1+
1+

(4.66)

At the same time, given that v is a solution of (2.36), it follows by induction that each 7, satisfies a Riccati
equation,

dnp,
3¢? ZZ + 74+ (1 =€) —Ene=0,  n>0, (4.67)

provided that (41 = 3 — Cu, &nt1 = & + Cur1. Then we require & = 1 and {p = 2 from (2.36), which
implies & = 2 and ¢; = 1, in agreement with (2.37), and hence continued fraction (4.66) and its associated
sequence of Riccati equations (4.67) are completely specified by

§2m =3m+ ]., C2m =2 and §2m+1 =3m—+ 2, <2m+1 =1 for m 2 0, (468)
which reveals the pattern in (2.35).

Remark 4.4. Upon taking the difference of Egs. (4.67) for n = 0 and n = 2, and using ve = 72 — 70,
we find that vo also satisfies a Riccati equation, that is,

d
32 ;: +v3 + (1 — 2€ + 2vg)v2 — 3e = 0,

which has vy appearing among its coefficients. Similarly, it is possible to use (1.13) to show by induction
that all v, for n > 2 satisfy Riccati equations with v; for j < n — 2 included in their coefficients (cf. [29]).
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The continued fraction (4.66) for ny = vy thus obtained has a sequence of convergents ﬁék) =pP® QW)
k > 0, which correctly approximate the first k£ + 1 nonzero terms in the series expansion, so

k

ﬁ(()k) _ Z(_l)i807i€i+l + O(€k+2)7
i=0

and the numerators P®*) and denominators Q*) are polynomials in e generated by the same three-term

relation
pUtt) — p) 4 ¢ e p—1) QD = QW 4 g 1eQD),

with initial conditions P(-2) = 1, P(-1) =0, Q(-? = 0, Q=Y = 1. Standard theory [35] then implies

that with the coefficients &, as above, the continued fraction is convergent for all € > 0, being equal to the

alternating sum

po = L
Z(_l)kio& Epe™™ lim 7.

"= Qo L QDK pin

However, the continued fraction is formally divergent at ¢ = 0, which corresponds to fact that series (2.32)
is divergent. Thus we see that the continued fraction (2.35) represents the function ny = vg in (4.63) for
all € € (0,00), and hence this function is positive on the whole positive semi-axis. This provides a much
stronger characterization of this function than the asymptotic one in Proposition 4.1, namely the following.

Corollary 4.1. The function (4.63) is the unique solution of the Riccati equation (2.36) that is positive
for all e > 0.

We finally return to the fixed point method considered in Sec. 2, and the upper/lower bounds on the
iterates of the mapping 7. It turns out that the bound bék) and the convergent ﬁ(gk) both approximate
asymptotic series (2.32) correctly to the same order ¢**1, but the former is a better approximant than the
latter in the sense that its coefficient at order ¢¥*2 is closer to the correct value. This leads to a more

precise statement in terms of inequalities, as follows.

Proposition 4.2. The convergents of the continued fraction for the function (4.63) interlace with the
upper/lower bounds obtained for the mapping T in (2.1), according to

[ P N e N P SARUPS N )| B 1} (4.69)

Proof. The middle inequality in (4.69) was already shown as part of Lemma 2.1, so the main new
content of statement (4.69) can be concisely paraphrased as

(—1)"b{ < (=1)F < (=P for k> 1 (4.70)

This is proved by induction on k, via a comparison of two different expressions for vy: the first is the

standard continued fraction (2.35), which generates the sequence of convergents ﬁék); while the second is

the structure of iteration of (1.13), and the action of the mapping T, which generates another sequence of

)

rational approximants bék , obtained from v, given as a kind of branched continued fraction:

€
Vo =
2¢

1
* € e

1+1+ 2¢ +1+ 2e n 4e
14--- T4 14

(4.71)
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For the induction, observe that truncation at level K = 0 in each fraction gives the same approximant
7760) = b((Jk) = ¢, and also at levels k = 1 and k£ = 2 we have

PONNCONISE 7P p@

e(1 + 4e)
T4 M

1+ 6e

)

and therefore by (2.6) with n = 0 it follows that (4.70) holds for the base cases k = 1,2; but for k > 3 all of

the inequalities in (4.70) become strict. For the induction, we can consider the sequence of convergents ﬁ%k)

of the standard S-fraction for vy, that is,

2¢
U1 = )
4
1+ ‘
1+
14---
_(k+1) _(k) . :
so that we have 7 =¢/(1+ 7 ), while from the action of T" we have
D
¢ 14

Hence it follows that (4.70) holds by induction, provided that at the next level we have the analogous
inequalities
(1) b < (—1)Fp% <~ for k> 1 (4.72)

For instance, if (4.72) holds for some even k = 2j, then
€ < € < €
L4+bT2 7 1) 7 )

which is precisely (4.70) for k = 25 + 1; and the reasoning is the same starting from (4.72) with odd &, but
with the inequalities reversed.

Of course, this begs the question of the validity of (4.72), which must be verified by going down one
more level and considering

2¢ 2¢
V1 = = s
Tl 14wt
for which the leading-order truncation gives 7750) = b:(LO) = 2¢, while subsequent truncations require compar-
ison of 4 5
€ € €
Ny = 5e and vy + v = 9 + 9 Ae (4.73)
1+ 1+ 1+ 0
14--- 1T4--- T4-o 14

at the next stage. It is clear that the leading-order truncation in these equations has 4e¢ = ¢ 4 3¢, which
in turn shows that ﬁgl) = bgl), confirming (4.72) for k£ = 1, but for the next order comparison it is required

that
4e € e

< .
1+ 5e 1—|—26+1+66

The latter is just a particular case of the general inequality

(4.74)

A Ay Ao

fi A=A A AB = AB AsB A, A, By, B
1+B<1+B1+1+B2’ or 1+ Ao, 1B1 + A2 B, 1, A2, B1, By > 0,

which holds due to the convexity of the function 1/(1+4x). Then (4.74) implies that 2e = bgo) > 779 > b§2),
establishing (4.72) for k = 2. Subsequent upper/lower bounds follow similarly, by repeatedly applying the
same convexity argument to compare each lower stage of the two continued fractions. l
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We can now present the final steps of the proof of uniqueness of the positive solution, and conclude
with the proof of the main theorem.

Proof of Theorem 2.1. Taking limits of the middle three inequalities in (4.70) gives

lim 7](2J+1) < lim bé2j+l) < lim bé2j+2) < lim 7](2J+2)

j—oo j—oo j—o0 j—oo

Then the convergence of the continued fraction (2.35) gives the equality of limits of the upper and lower
sequences of convergents, that is,

~(2j+1)

lim 7, =y = hm 7](2J+2) (4.75)

]*)OO

which in turn gives

lim b (2+1) lim b(()2j+2) = lim p(2j+1) hm p( N

(2 2j+1)
- hmAJ)—O—hmA(jJr
j‘)OO J*}OO

Now taking the limit & — oo in the n = 0 case of (2.23) produces

lim A(()kJrl) ( hm p( )) lim Agk) = klim Agk) =0,
— 00 — 00

k—o0

and hence, by induction on n, repeated application of (2.23) yields

lim A® =0 for all n>0.

k—o00

From the result of Proposition 2.1 we see that, for each n, the upper and lower bounds in (2.8) coincide,
giving the unique positive solution v = (v, )n>0, as required. W

Proof of Theorem 1.1. It remains to point out that for each € > 0, limit (4.75) obtained from the
continued fraction (2.35) is precisely the function vy () given by (4.63). For the other v, note from (4.32)
that setting A = C1/Cy = 0 in (4.62) is equivalent to taking dy/ds = —1 in (4.60). Thus, without loss of
generality, by fixing d; = 1 = —dz in Theorem 4.1, for each n we obtain the explicit expression for v, (€) > 0
in terms of ratios of Wronskian determinants. B

5. Conclusions

We have shown that the quantum minimal surface obtained from a pair of operators satisfying the
equation for a parabola, Zo = Z7, admits an exact solution in terms of modified Bessel functions, where
the positive solution of the associated discrete Painlevé I equation corresponds to a particular sequence of
classical solutions of the continuous Painlevé V equation with specific parameter values. The key to finding
this exact solution was to use the complex geometry of the discrete Painlevé equation, constructing the
associated Sakai surface, which identified the dP; equation with the action of a quasi-translation on the space
of initial conditions for Painlevé V. Once the appropriate parameters for the Painlevé V equation had been
found, this enabled us to compare with known results on classical solutions, and match these up the initial
conditions for the dPy equation, which identified the unique positive solution. While previous results in the
literature have expressed these classical solutions in terms of Whittaker functions (or equivalently, Kummer
functions), some current work in progress (by two of us in collaboration with Dunning) has allowed the
unique positive solution to be expressed with modified Bessel functions, which are a special case of Kummer
functions and Whittaker functions, cf. [25, Secs. 13.6 and 13.18].
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It is interesting to note that other instances of classical solutions of Painlevé equations have appeared
in the recent literature, providing the unique solutions of discrete Painlevé equations that satisfy positivity
or other special initial boundary value problems [36]—[38]. These particular unique solutions seem to arise in
specific application areas, such as random matrices and orthogonal polynomials, but it would be worthwhile
to see if they can be characterized in some other way (geometrically, for instance). In fact, the asymptotics
of oscillatory solutions of certain dPy equations, including (1.13), were recently considered in [39]. Such
solutions are known to arise from a growth problem defined by a normal random matrix ensemble [40], and
thus it is natural to wonder whether the unique positive solution of (1.13) has an interpretation in that
context.

A recent preprint by Hoppe [29] includes some comments on Whittaker function expressions for vg
and v9, which are equivalent to the ones that we have found. The latter work raises the question of whether
similar results should apply for other quantum minimal surfaces from rational curve equations of the form
Z5 = Zj for positive integers r < s (with ged(r, s) = 1), following a remark made at the end of [5], where
it is suggested that these curves should also give rise to discrete integrable systems. Indeed, condition (1.8)
gives rise to a difference equation for v,, which (after integrating) becomes an equation of order 2(s — 1):
this should be a discrete Painlevé equation of higher order. Some more details of the example (r, s) = (1, 3)
are considered in [29], where the difference equation in question is

Un(Vnt1Vns2 + Un_1Vnt1 + Un2vn1 +1) = e(n +1).

Preliminary investigations show that this equation admits a positive solution with analogous properties to
the case of the quantum parabola considered here: since the initial acceptance of this paper, the preprint [41]
has appeared, which relates the family of quantum (1,s) curves to orthogonal polynomials with complex
densities, recovers our expression for vy when s = 2, and yields formulas for all v,, as a (manifestly positive)
ratio of integrals. This and the other (7, s) curves are an interesting subject for further study: while various
higher order analogues of discrete Painlevé equations have been considered, there is currently no version of
the Sakai theory in dimension greater than two.
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