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Theoretical and Mathematical Physics, 224(2): 1359–1397 (2025)

SPECIAL SOLUTIONS OF A DISCRETE PAINLEVÉ EQUATION

FOR QUANTUM MINIMAL SURFACES

P. A. Clarkson,∗ A. Dzhamay,† A. N. W. Hone,∗ and B. Mitchell∗

We consider solutions of a discrete Painlevé equation arising from a construction of quantum minimal

surfaces by Arnlind, Hoppe, and Kontsevich, and in earlier work of Cornalba and Taylor on static mem-

branes. While the discrete equation admits a continuum limit to the Painlevé I differential equation, we

find that it has the same space of initial values as the Painlevé V equation with certain specific parameter

values. We further explicitly show how each iteration of this discrete Painlevé I equation corresponds to

a certain composition of Bäcklund transformations for Painlevé V, as was first remarked in a work by

Tokihiro, Grammaticos, and Ramani. In addition, we show that some explicit special function solutions of

Painlevé V, written in terms of modified Bessel functions, yield the unique positive solution of the initial

value problem required for quantum minimal surfaces.

Keywords: quantum minimal surfaces, discrete Painlevé equations, modified Bessel functions
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1. Introduction

Minimal surfaces can be characterized as maps x : Σ→ R
d that extremize the Schild functional

S[x] =

∫
Σ

∑
j<k

{xj , xk}2 ω, (1.1)

where Σ is a surface with symplectic form ω and associated Poisson bracket { · , · }, and (xj)j=1,...,d are

coordinates on R
d. The Euler–Lagrange equations obtained from the action S are

d∑
j=1

{xj , {xj , xk}} = 0, k = 1, . . . , d. (1.2)

In this context, quantization is achieved by replacing the classical observables xj with self-adjoint opera-

tors Xj that act on a Hilbert space H and taking the commutator in place of the Poisson bracket. Hence,

following [1], one can say that a quantum minimal surface is a collection of such operators satisfying the

relations
d∑

j=1

[Xj, [Xj , Xk]] = 0, k = 1, . . . , d. (1.3)

System (1.3) appeared previously in string theory as a set of matrix equations, as a large-N matrix model [2],

or as a static membrane equation [3].
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For the case of minimal surfaces in R
4 ∼= C

2, it is a classical result [4] that an arbitrary analytic

function f and the plane curve associated with its graph define a solution of (1.2) by setting

z2 = f(z1), z1 = x1 + ix2, z2 = x3 + ix4; (1.4)

more generally, one can consider a Riemann surface defined by an arbitrary analytic relation F (z1, z2) = 0.

The latter relation between the complex coordinates z1, z2 implies that

{z1, z2} = 0, (1.5)

while imposing the requirement of constant curvature gives the equation

{z̄1, z1}+ {z̄2, z2} = iκ, (1.6)

where, up to rescaling, κ ∈ R is the curvature. The real and imaginary parts of (1.5), together with

Eq. (1.6), provide three linear relations between the brackets {xj , xk} for 1 � j < k � 4; these equations

constitute a first-order system, which have second-order Euler–Lagrange equations (1.2) as a consequence

(thus they are analogous to first-order Bogomol’nyi equations in a field theory). The corresponding solution

of Eq. (1.3) has also been considered by Cornalba and Taylor in the context of matrix models [3], taking

Z2 = f(Z1) (1.7)

so that [Z1, Z2] = 0, with

Z1 = X1 + iX2, Z2 = X3 + iX4, [Z†
1 , Z1] + [Z†

2 , Z2] = ε1, (1.8)

where ε ∈ R is a parameter.

In d = 4, the case where (1.7) is the hyperbola Z1Z2 = c1 is the simplest example treated in [5], which

admits an elegant operator-valued solution. The next interesting case considered in [3], and by Arnlind and

company [5], is the parabola, which (after explicitly parametrizing the curve as Z1 = W , Z2 = W 2) leads

to an operator W satisfying

[W †,W ] + [(W †)2,W 2 ] = ε1, (1.9)

acting on the Hilbert space H = {|n〉 |n = 0, 1, 2, . . .} according to W |n〉 = wn|n + 1〉. In terms of the

squared amplitude vn = |wn|2, applying the expectation 〈n| . . . |n〉 to both sides of commutator equa-

tion (1.9) leads to the third-order difference equation

vn − vn−1 + vn+1vn − vn−1vn−2 = ε,

which has the form of a total difference. Hence, upon integration (summation) of this discrete equation,

we obtain the second-order nonautonomous equation

vn(vn+1 + vn−1 + 1) = εn+ ζ, (1.10)

for some constant ζ.
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Identification of the particular solution of (1.10) required for the quantum minimal surface involves con-

sideration of the semiclassical limit. The classical version of the complex parabola z2 = z21 is parametrized

in polar coordinates by z1 = reiϕ, z2 = r2e2iϕ, and hence Poisson bracket equation (1.6) implies that r̃, ϕ

are a pair of canonically conjugate (flat) coordinates, where

r̃ = r4 +
r2

2
− c. (1.11)

Canonical quantization means replacing r̃ → −i� ∂
∂ϕ , where the latter is the momentum operator conjugate

to Û , with ei
̂U |n〉 = |n+1〉, and we identify the states |n〉 for n � 0 with the nonnegative modes einϕ on the

circle. Comparing with (1.11) gives the requirement that v2n + vn/2 ∼ n�+ c, leading to the approximate

solution

vn ≈
1

4
(
√

1 + 8(n+ 1)ε− 1), (1.12)

which agrees with the asymptotic behavior of positive solutions of (1.10), both in the limit � → 0 with n

fixed and for n→∞ with � fixed, provided that the conditions ζ = ε = 2� and c = � are imposed. Hence,

the second-order difference equation is taken as

vn+1 + vn−1 + 1 =
ε(n+ 1)

vn
, (1.13)

and one should seek a solution with the initial conditions

v−1 = 0, v0 > 0, (1.14)

with the further requirement that vn � 0 for all n > 0, since vn is a squared amplitude. (Note that

approximate form (1.12) also satisfies v−1 = 0 and vn > 0 for all n � 0.)

Equation (1.10) is an example of a discrete Painlevé equation. It is commonly referred to in the

literature as a discrete Painlevé I (dPI) equation [6], because it has a continuum limit to the continuous

Painlevé I equation d2w
dt2 = 6w2 + t. This dPI equation has been obtained as a reduction of a chain of

discrete dressing transformations [7], while it is also one among a number of discrete Painlevé equations

that were identified by Tokihiro, Grammaticos, and Ramani [8] as arising from compositions of Bäcklund

transformations for the Painlevé V equation, that is,

d2w

dt2
=

(
1

2w
+

1

w − 1

)(
dw

dt

)2

− 1

t

dw

dt
+

(w − 1)2(αw2 + β)

t2w
+
γw

t
+
δw(w + 1)

w − 1
. (1.15)

(For what follows, only the generic case δ 	= 0 is relevant, and thus in that case we can set δ = −1/2.)
For the sake of completeness, and to avoid confusion, we should remark that Eq. (1.10) is not the only

discrete equation to be called dPI. The “standard” version of dPI is the equation

un+1 + un + un−1 = 1 +
λn+ μ

un
, (1.16)

with λ and μ constants; see, for example, equation (3.2) in [6]. It is known that Eq. (1.16) is associated

with Painlevé IV rather that Painlevé V, cf. [9], [10], and it is also shown in [11], [12] that (1.16) can

be derived from Bäcklund transformations of Painlevé IV. (For another approach, via reductions of the

Volterra lattice, see [13].)
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Note that there are various other inequivalent discrete Painlevé equations referred to as dPI, or some-

times as alt. dPI equations. This is best understood using the Sakai classification scheme for Painlevé

equations suggested in the paper [14], which provided a complete classification of possible configuration

spaces on which discrete Painlevé dynamics can occur. Such spaces are families of rational algebraic sur-

faces known as generalized Halphen surfaces (see Fig. 1). For the differential Painlevé equations, these

spaces were introduced earlier by Okamoto [15] as the so-called spaces of initial conditions, in which case

the parameters of the family are essentially the parameters of the differential Painlevé equation, and dis-

crete Painlevé equations are certain compositions of their Bäcklund transformations, as indicated in Fig. 1.

The arrows here can be understood, on the one hand, as some parameter degenerations of surface fami-

lies, and on the other hand, as a result of taking the continuum limit of some particular discrete Painlevé

dynamics.

Fig. 1. Surface-type classification scheme for Painlevé equations.

As we show in Sec. 3 below, Eq. (1.13) describes a very special dynamics on the D
(1)
5 -surface family.

The symmetry group of this family is a fully extended affine Weyl group

Ŵ (A
(1)
3 ) =W (A

(1)
3 )�Aut(A

(1)
3 ),

where Aut(A
(1)
3 ) 
 D4 is the dihedral group of symmetries of the affine A

(1)
3 Dynkin diagram, i.e., the group

of symmetries of a square. This symmetry group describes Bäcklund transformations of the Painlevé V

differential equation. Standard examples of discrete Painlevé equations on this surface family correspond to

translations in the weight lattice of the usual extended affine Weyl group W̃ (A1
3), and are commonly known

as dPIV and dPIII equations. Equation (1.13) is only a quasi-translation, which becomes a translation on

a certain sub-locus of the full family with a smaller symmetry group via so-called projective reduction [16]

(but further discussion of this is outside the scope of the present paper). In contrast, “standard” dPI

equation (1.16) describes dynamics on the E
(1)
6 surface family, in alignment with the fact that it is associated

with Bäcklund transformations for the Painlevé IV equation.

The purpose of this article is to determine an explicit analytic solution for the initial value prob-

lem (1.13), (1.14) associated with a quantum minimal surface. First of all, we consider the existence and

uniqueness of a positive solution to the initial value problem (1.14) for the dPI equation (thus, vn > 0 for

all n � 0). Next, we use the complex geometry of Eq. (1.13), obtained by blowing up P
1 × P

1, to show

that it corresponds to the same space of initial conditions as Painlevé V equation (1.15) with the specific

parameter values

(α, β, γ, δ) =

(
(n+ 1)2

18
,− 1

18
,−n+ 1

3
,−1

2

)
.

1362



We then proceed to employ some recent results by two of us (Clarkson and Mitchell, obtained in collabo-

ration with Dunning), giving explicit modified Bessel function formulas for families of classical solutions of

Painlevé V that were previously considered in the literature [17], [18], and use these to determine an exact

analytic expression for the unique solution of the initial value problem (1.13), (1.14) so that vn remains

positive for all n > 0. Our main result is as follows.

Theorem 1.1. For each ε > 0, the unique positive solution of dPI equation (1.13) subject to initial

conditions (1.14) is determined by the value of v0 = v0(ε), which is given by a ratio of modified Bessel

functions, that is,

v0 =
1

2

(
K5/6(t/2)

K1/6(t/2)
− 1

)
, where t =

1

3ε
. (1.17)

For each n � 0, the corresponding quantities vn > 0 are written explicitly as ratios of Wronskian determi-

nants whose entries are specified in terms of modified Bessel functions.

2. Unique positive solution: cold open

In this section, we present the preliminary steps of the proof that there is a unique solution of dPI

equation (1.13), subject to initial conditions (1.14), that is nonnegative (in fact, positive) for all n � 0.

The precise statement is as follows.

Theorem 2.1. For each value of ε > 0 there is a unique value of v0 > 0 such that the solution of

second-order difference equation (1.13) with initial data (1.14) satisfies vn > 0 for all n � 0.

In our initial approach to proving the above result, we start by considering the set of real sequences

u = (un)n�0, which contains the Banach space

�∞ε =
{
u | ‖u‖ <∞

}
,

where ‖ · ‖ denotes the weighted �∞ norm

‖u‖ = sup
n�0

|un|
ε(n+ 1)

.

Then we can define a transformation T , which acts on real nonnegative sequences u � 0 (that is, un � 0

for all n � 0), according to

T (un) =

⎧⎪⎪⎨
⎪⎪⎩

ε

un+1 + 1
, if n = 0,

ε(n+ 1)

un+1 + un−1 + 1
, if n > 0.

(2.1)

By a convenient abuse of notation, we write u �→ Tu for the action on sequences, while brackets are used

to denote the individual terms T (un) of a sequence Tu. Under the action of T , any nonnegative sequence

is mapped to a subset of the unit ball in �∞ε , namely

A(0) =
{
u � 0 | ‖u‖ � 1

}
,

which is a complete set with respect to this norm.
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Fig. 2. Numerical computation of vn (dots) with ε = 0.1, for −1 � n � 20, compared with the graph

of the approximation (1.12).

Fig. 3. Numerical computation of v0(ε) (dots) in the range 0 < ε � 5, plotted against linear bound

b
(0)
0 = ε and approximation v̂0(ε) as in (2.33) (a). Same computation, but compared with upper

bounds b
(0)
0 , b

(2)
0 , lower bounds b

(1)
0 , b

(3)
0 , and exact formula (1.17) (b).

Numerically, for any fixed ε > 0, the repeated application of the mapping T to a (truncated) positive

sequence provides a rapid numerical method to obtain the positive solution of the dPI equation to any

desired precision. (See Figs. 2 and 3, obtained from 100 iterations of T applied to a truncated sequence

with 0 � n � 20, where the approximation (1.12) was used to specify the initial conditions and fix the

boundary values at n = −1 and n = 21.)

The set A(0) is mapped to a subset of itself, and therefore ideally we would want to show that T is

a contraction mapping on this set, and hence, by the Banach fixed point theorem, it would follow that it

has a unique fixed point v with T (v) = v. From (2.1), such a fixed point v = (vn)n�0 is a positive sequence

that satisfies dPI equation (1.13) with initial condition v−1 = 0. However, basic estimates and numerical

calculations show that T is not a contraction mapping on the whole set A(0), and in fact the squared
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mapping T 2 behaves better than T , and therefore we need to use some more refined bounds to prove the

uniqueness of the positive solution v. In particular, we adapt some ideas from [3] and [5], where it was

observed that, for each n 	= 0, the value of the positive solution vn should be obtained as the intersection

of a sequence of intervals of successively shrinking diameter. Furthermore, at the end of Sec. 4 we proceed

to show that there is only one solution of (1.13) satisfying the required bounds.

We define a set of nonnegative sequences {b(k)}k�1 by successively applying T to the zero sequence 0,

so that

b(−1) = 0, b(k) = Tb(k−1) for k � 0. (2.2)

The first few steps in the T -orbit of 0 are specified by a formula for their terms, valid for all n � 0:

b(0)n = ε(n+ 1), b(1)n =
ε(n+ 1)

1 + 2ε(n+ 1)
, b(2)n =

ε(n+ 1)

1 + εn
1+2εn + ε(n+2)

1+2ε(n+2)

. (2.3)

Thereafter, for k � 3, there is no longer a uniform expression for the iterate b(k) as a ratio of polynomials

b(k)n =
p
(k)
n (ε)

q
(k)
n (ε)

, p(k)n , q(k)n ∈ Z[ε],

valid for all n: due to the fact that Eqs. (2.1) defining T for n = 0 and n > 0 are different, the coprime

polynomials p
(k)
n (ε) and q

(k)
n (ε) have distinct forms for n = 0, 1, . . . , k − 3, while there is another formula

for them that is uniformly valid only for n � k − 2. For instance, when k = 3, we have

b
(3)
0 =

ε(1 + 12ε+ 24ε2)

1 + 14ε+ 40ε2 + 24ε3
, b(3)n =

p
(3)
n (ε)

q
(3)
n (ε)

for n � 1,

where

p(3)n (ε) = (n+ 1)ε
(
1 + 6nε+ 8(n2 − 1)ε2

)(
1 + 6(n+ 2)ε+ 8(n+ 1)(n+ 3)ε2

)
,

q(3)n (ε) = 1 + 14(n+ 1)ε+ 8(9n2 + 18n+ 4)ε2 + 8(n+ 1)(21n2 + 42n− 11)ε3 +

+ 16(n+ 1)2(11n2 + 22n− 20)ε4 + 64(n+ 1)3(n− 1)(n+ 3)ε5.

Nevertheless, for all n there are expressions for b
(k)
n as rational functions of ε and the variable z = ε(n+1),

which are described in Lemma 2.3 below.

If we start with a sequence u ∈ A(0) and apply T once, then we find

ε(n+ 1)

1 + εn+ ε(n+ 2)
� ε(n+ 1)

1 + un−1 + un+1
� ε(n+ 1),

or in other words b
(1)
n � T (un) � b

(0)
n , while another application of T gives

ε(n+ 1)

1 + εn+ ε(n+ 2)
� ε(n+ 1)

1 + T (un−1) + T (un+1)
� ε(n+ 1)

1 + εn
1+2εn + ε(n+2)

1+2ε(n+2)

,

so that b
(1)
n � T 2(un) � b

(2)
n . Continuing in this way, by induction we obtain the following result.
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Lemma 2.1. For each nonnegative integer k, the iterates T ku of u ∈ A(0) satisfy the inequalities

b(2j−1)
n � T 2j(un) � b(2j)n for all n � 0 (2.4)

when k = 2j is even, and

b(2j+1)
n � T 2j+1(un) � b(2j)n for all n � 0 (2.5)

when k = 2j + 1 is odd. The sequences of lower/upper bounds in (2.2) satisfy

0 � b(2j−1)
n < b(2j+1)

n < b(2j+2)
n < b(2j)n for all n � 0, (2.6)

for each j ∈ N.

For each k � 0 we have the set A(k) = T kA(0), and the preceding result implies that the next set

in the sequence, A(k+1) ⊂ A(k), is a proper subset of the previous one. Furthermore, inequalities (2.6)

immediately imply the existence of the limits of upper and lower bounds, that is,

lim
j→∞

b(2j−1)
n = lim sup

j�0
b(2j−1)
n � lim inf

j�0
b(2j)n = lim

j→∞
b(2j)n (2.7)

for each n � 0. The problem is then how to show the equality of the upper and lower limits above for

each n, since in that case it immediately follows from (2.4), (2.5) that the iterates T ku converge to the

unique positive fixed point of T .

Proposition 2.1. For all ε > 0 there exists (at least one) v0 = v0(ε) such that the solution of (1.13)

with initial data (1.14) is positive and satisfies vn > 0 for all n � 0, as well as

v = (vn)n�0 ∈
⋂
k�0

A(k),

so that, for all n � 0,

lim
j→∞

b(2j−1)
n � vn � lim

j→∞
b(2j)n . (2.8)

Proof. The existence of a positive solution v is proved in [5], where it shown that for each ε > 0 there

is an infinite sequence of open intervals Ik = Ik(ε) ⊂ R, with I1 = (0, ε) and Ik ⊂ Ik−1, such that v0 ∈ Ik
implies v1, . . . , vk > 0, and

⋂
k�0 Ik 	= ∅. Hence, if v0 ∈

⋂
k�0 Ik, then the corresponding sequence v is

a positive solution. Then, because Tv = v, it follows from Lemma 2.1 that v ∈ A(k) for each k � 0, and

hence (2.8) holds for each n � 0. �

It is instructive to compare the upper and lower bounds for different n, as well as introduce the rescaled

bounds ρ
(k)
n , which specify the norms:

ρ(k)n =
b
(k)
n

ε(n+ 1)
, ‖b(k)‖ = sup

n�0
ρ(k)n .

Clearly we have ρ
(−1)
n = 0, while b

(0)
n+1 > b

(0)
n and ρ

(0)
n = 1 for all n, and from (2.6) we also see that

0 < ρ(k)n < 1 for all n � 0, k � 1. (2.9)
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If we now assume for some k that b
(k)
n+1 > b

(k)
n holds for all n � 0, then from the definition of the map T

we may write

1

ρ
(k+1)
n+1

− 1

ρ
(k+1)
n

= (1 + b(k)n + b
(k)
n+2)− (1 + b

(k)
n−1 + b

(k)
n+1) =

= (b(k)n − b
(k)
n−1) + (b

(k)
n+2 − b

(k)
n+1) > 0,

where we set b
(k)
(−1) = 0, so that this makes sense when n = 0, which implies that ρ

(k+1)
n+1 < ρ

(k+1)
n . On the

other hand,

b
(k)
n+1 > b(k)n ⇐⇒ (n+ 2)ρ

(k)
n+1 > (n+ 1)ρ(k)n ,

and we can calculate

b
(k+1)
n+1 − b

(k+1)
n

ρ
(k+1)
n+1 ρ

(k+1)
n

= ε(n+ 2)(1 + b
(k)
n−1 + b

(k)
n+1)− ε(n+ 1)(1 + b(k)n + b

(k)
n+2) =

= ε
(
1 + (n+ 2)(nρ

(k)
n−1 + (n+ 2)ρ

(k)
n+1)− (n+ 1)((n+ 1)ρ(k)n + (n+ 3)ρ

(k)
n+2)

)
.

If we now assume that ρ
(k)
n+1 < ρ

(k)
n holds for all n � 0, then we can replace the term with index n+ 2, and

also (for n > 0) replace the term with index n− 1, and thus rearrange the above formula to find the lower

bound
b
(k+1)
n+1 − b

(k+1)
n

ρ
(k+1)
n+1 ρ

(k+1)
n

> ε(1 + ρ
(k)
n+1 − ρ(k)n ) > 0,

using (2.9) to obtain the final inequality. Thus, by induction on k, we find the following.

Lemma 2.2. For k � 0, the sequences of lower/upper bounds satisfy

b
(k)
n+1 > b(k)n for all n � 0, (2.10)

while for k � 1 the rescaled bounds satisfy

n+ 1

n+ 2
ρ(k)n < ρ

(k)
n+1 < ρ(k)n for all n � 0, (2.11)

and hence for each k the norm of b(k) is ‖b(k)‖ = ρ
(k)
0 .

Lemma 2.3. For each j � 0, the rescaled bounds have the asymptotic behavior

ρ(2j)n ∼ 1

j + 1
, ρ(2j+1)

n ∼ j + 1

2ε(n+ 1)
, as n→∞. (2.12)

Moreover, the leading part of the Taylor expansion of each of the rescaled bounds at ε = 0 is

ρ(k)n = 1− 2ε(n+ 1) +O(ε2) for all k � 1, (2.13)

while for all ε > 0 the first derivatives with respect to ε satisfy

dρ
(k)
n

dε
< 0,

db
(k)
n

dε
> 0 (2.14)

for k � 1, n � 0, so that each bound ρ
(k)
n and b

(k)
n is monotone decreasing/increasing in ε, respectively.
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Proof. As noted above, the action of the map T is such that the components b
(k)
n of the sequences b(k)

are rational functions of ε having expression as ratios of coprime polynomials in ε that are uniformly valid

for all n when k < 3, while for k � 3 these polynomials have a uniform structure for n � k − 2 only.

However, if we set z = ε(n+ 1), then for k = 0, 1, 2 we can write

ρ(0)n = R(0)(z, ε) := 1, ρ(1)n = R(1)(z, ε) :=
1

1 + 2z
,

ρ(2)n = R(2)(z, ε) :=
1

1 + z−ε
1+2(z−ε) +

z+ε
1+2(z+ε)

(2.15)

and for all n we can similarly express ρ
(k)
n as R(k)(z, ε), a rational function of z and ε that is determined

recursively via the finite difference equation

R(k+1)(z, ε) =
1

1 + (z − ε)R(k)(z − ε, ε) + (z + ε)R(k)(z + ε, ε)
. (2.16)

Therefore, from the definition of the map T , the identity ρ
(k)
n = R(k)(ε(n + 1), ε) holds for all n. The

result (2.12) thus corresponds to the asymptotics of the rational functions R(k)(z, ε) as z → ∞, which

varies according to the parity of k, and we can proceed by induction on j. For the base case j = 0, we have

R(0)(z, ε) = 1, R(1)(z, ε) ∼ 1/2z, and hence the claim for ρ
(0)
n is trivially true, while for ρ

(1)
n it gives the

correct result by substituting z = ε(n + 1). Thus, for the induction, for some fixed j we can assume that

R(2j)(z, ε) ∼ 1/(j + 1) as z →∞, and then by applying (2.16) we immediately obtain

R(2j+1)(z, ε) ∼
(
1 +

z − ε
j + 1

+
z + ε

j + 1

)−1

∼ j + 1

2z
, z →∞,

which, upon setting z = ε(n + 1) gives the correct leading-order behavior for ρ
(2j+1)
n as n → ∞. Apply-

ing (2.16) once again gives

R(2j+2)(z, ε) ∼
(
1 +

(z − ε)(j + 1)

2z
+

(z + ε)(j + 1)

2z

)−1

∼ 1

j + 2
, z →∞,

and this completes the inductive step.

For the leading-order behavior of the scaled bounds at ε = 0, it is convenient to write an equivalent

version of (2.16) in terms of ρ
(k)
n , namely

ρ(k+1)
n =

(
1 + εnρ

(k)
n−1 + ε(n+ 2)ρ

(k)
n+1

)−1
, (2.17)

which is valid for all n. When k = 1, the leading-order expansion (2.13) is immediately obtained from the

geometric series for

ρ(1)n =
1

1 + 2ε(n+ 1)
, (2.18)

and the general case easily follows via induction on k by applying (2.17) at each step.

To obtain the monotonicity in ε of ρ
(k)
n and b

(k)
n , it is clear from (2.18) and from b

(1)
n = (1 − ρ(1)n )/2

that inequalities (2.14) hold for k = 1, and we proceed by induction on k. Then, assuming that (for all

n � 0) both dρ
(k)
n /dε < 0 and db

(k)
n /dε > 0 hold for some k, differentiating (2.17) yields

dρ
(k+1)
n

dε
= −(ρ(k+1)

n )2
(
db

(k)
n−1

dε
+

b
(k)
n+1

dε

)
< 0, (2.19)
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implying that ρ
(k+1)
n is monotone decreasing in ε. Now differentiating b

(k+1)
n = ε(n+ 1)ρ

(k+1)
n yields

db
(k+1)
n

dε
= (n+ 1)

(
ρ(k+1)
n + ε

ρ
(k+1)
n

dε

)
=

= (n+ 1)ρ(k+1)
n

(
1− ερ(k+1)

n

(
db

(k)
n−1

dε
+
db

(k)
n+1

dε

))
=

= b(k+1)
n

(
ε−1 − ρ(k+1)

n

(
db

(k)
n−1

dε
+
db

(k)
n+1

dε

))
,

where we used (2.19). Then we calculate

db
(k)
n−1

dε
+
db

(k)
n+1

dε
= n

(
ρ
(k)
n−1 + ε

dρ
(k)
n−1

dε

)
+ (n+ 2)

(
ρ
(k)
n+1 + ε

dρ
(k)
n+1

dε

)
<

< nρ
(k)
n−1 + (n+ 2)ρ

(k)
n+1 = ε−1(b

(k)
n−1 + b

(k)
n+1),

using the inductive hypothesis on dρ
(k)
n /dε, and together with (2.17) this implies that

db
(k+1)
n

dε
>
db

(k+1)
n

ε

(
1− ρ(k+1)

n (b
(k)
n−1 + b

(k)
n+1)

)
=

b
(k+1)
n ρ

(k+1)
n

ε
> 0,

as required. �

Remark 2.1. Since the sequence (ρ
(2j)
n )n�0 decreases monotonically with n, as in Lemma 2.2, and

tends to 1
j+1 , it follows that ρ

(2j)
n > 1/(j + 1) for all n � 0, while the recursion (2.17) with k = 2j shows

that ρ
(2j+1)
n < j+1

2ε(n+1) , which is equivalent to b
(2j+1)
n < (j + 1)/2.

To further address our main assertion about the uniqueness of the positive solution of (1.13), we intro-

duce the differences

Δ(k)
n = (−1)k(ρ(k)n − ρ(k−1)

n ), (2.20)

where the alternating sign is chosen so that Δ
(k)
n > 0 for all k, n � 0, as is seen directly by dividing the

inequalities in (2.6) by ε(n + 1) for each n. Then the coincidence of the lower and upper limits in (2.7),

which yields the desired squeezing argument, is equivalent to the statement that

lim
k→∞

Δ(k)
n = 0 for each n � 0. (2.21)

To see why the latter result is plausible, we consider the behavior of these differences for small ε, which will

be needed later.

Lemma 2.4. The leading part of the Taylor expansion of each of the differences (2.20) at ε = 0 is

Δ(k)
n = c(k)n εk(1 +O(ε)),

where c
(0)
n = 1 for all n, and the leading coefficient is given recursively by

c(k+1)
n = nc

(k)
n−1 + (n+ 2)c

(k)
n+1 for all k, n � 0. (2.22)
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Proof. The result is by induction on k. For the base case k = 0, we have Δ
(0)
n = 1, and hence c

(0)
n = 1,

for all n. For the inductive step, we write

ρ(k)n − ρ(k+1)
n = ρ(k)n ρ(k+1)

n

(
(ρ(k+1)

n )−1 − (ρ(k)n )−1
)
,

and thus, by using (2.17) and collecting terms inside the round brackets, we obtain the identity

Δ(k+1)
n = ρ(k)n ρ(k+1)

n

(
εnΔ

(k)
n−1 + ε(n+ 2)Δ

(k)
n+1

)
. (2.23)

Upon using the inductive hypothesis and substituting in the leading-order expansion (2.13) for the two

prefactors on the right-hand side of (2.23), we immediately obtain

Δ(k+1)
n = c(k+1)

n εk+1(1 +O(ε)),

where (for each n) the leading coefficient c
(k+1)
n is given in terms of the coefficients with superscript k

by recursion (2.22), as required. �

Note that we have c
(1)
n = 2(n + 1), c

(2)
n = 4(n2 + 2n + 2), and it is apparent from (2.22) that these

leading coefficients are monotone increasing with n, that is, c
(k)
n+1 > c

(k)
n , for k � 1. This monotonicity is

desirable, since it suggests that, for small enough ε, we should have Δ
(k)
n+1 > Δ

(k)
n , while from Lemma 2.3

we see that

lim
n→∞Δ(2j)

n =
1

j + 1
= lim

n→∞Δ(2j+1)
n ; (2.24)

thus, if the sequence (Δ
(k)
n )n�0 is increasing with n for each k � 1, then the sought after result (2.21)

follows immediately from taking the limit as j →∞ in (2.24). However, the monotonicity of c
(k)
n in n is not

enough, because the convergence of the Taylor series (2.13), and hence the result of Lemma 2.4, does not

hold uniformly in n. For instance, the geometric series for ρ
(1)
n has radius of convergence 1

2(n+1) . Moreover,

if we introduce the functions

Δ(k)(z, ε) = (−1)k
(
R(k)(z, ε)−R(k−1)(z, ε)

)
(2.25)

in terms of the R(k)(z, ε) satisfying (2.16), then we might hope to use their behavior in the range z � ε

to determine suitable bounds on the discrete set of values Δ
(k)
n = Δ(k)((n + 1) ε, ε). However, this turns

out to be tricky for two reasons: first of all, we can show that Δ(2)(z, ε) and the other functions (2.25) are

not monotone in z except for small ε � 0.3; and secondly, for k � 3 these rational functions have poles at

certain points in the range z � ε, lying in between the discrete values of interest, so they are unbounded

on this range. Figure 4 illustrates these features for k = 2 and k = 4.

Further numerical investigations suggest that if ε is not too large, then the products ρ
(2j+1)
n ρ

(2j)
n and

ρ
(2j)
n ρ

(2j−1)
n turn out to be bounded above by their values as n → ∞, as in (2.12). This is in spite of

Remark 2.1, which shows that each product consists of an upper bound for one of the factors and a lower

bound for the other. It is easy to see that ρ
(1)
n ρ

(0)
n < 1

2ε(n+1) , and thus the first case of interest is the

product ρ
(2)
n ρ

(1)
n , for which the required bound can be expressed as R(2)(z, ε)R(1)(z, ε) < 1

4z for z � ε,

and this can be shown to be equivalent to the condition

ρ
(2)
0 ρ

(1)
0 =

1 + 4ε

(1 + 2ε)(1 + 6ε)
, <

1

4ε

which is satisfied whenever 0 < ε < (
√
2 + 1)/2. This leads to the following.
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Fig. 4. (a) Graph of Δ(2)(z, ε) against z for ε = 0.5 showing the range 0.5 � z � 4, illustrating the

local minimum in the interval ε < z < 2ε. (b) Graph of Δ(4)(z, ε) against z for ε = 0.5, showing

vertical asymptotes at two poles, lying in the intervals ε < z < 2ε and 2ε < z < 3ε, respectively.

Conjecture 2.1. For each value of ε in the range 0 < ε < ε�, where

ε∗ =
1

2
(
√
2 + 1) ≈ 1.2071, (2.26)

the rescaled bounds satisfy

ρ(2j−1)
n ρ(2j−2)

n <
1

2ε(n+ 1)
, ρ(2j)n ρ(2j−1)

n <
j

2ε(n+ 1)(j + 1)
, (2.27)

for all n � 0 and all j � 1.

The desirability of the bounds in (2.27), and especially the second one, comes from the fact that

it immediately yields an inductive proof that

Δ(2j+1)
n < Δ(2j)

n <
1

j + 1
for n � 0 (2.28)

is valid for all j � 1. Indeed, the first inequality in (2.28) is always true (from Lemma 2.1), while for the

second one the inductive step is to use (2.23) to obtain

Δ(2j+2)
n = ρ(2j+2)

n ρ(2j+1)
n

(
εnΔ

(2j+1)
n−1 + ε(n+ 2)Δ

(2j+1)
n+1

)
<

<
j + 1

2ε(n+ 1)(j + 2)

(
εn

j + 1
+
ε(n+ 2)

j + 1

)
=

1

j + 2
,

as required (where we used (2.27) and the inductive hypothesis to obtain the inequality). Taking j → ∞
in (2.28), it then follows that

lim
j→∞

Δ(2j)
n = 0 = lim

j→∞
Δ(2j+1)

n for all n � 0,

yielding the desired squeezing argument, and thus we have the following.
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Corollary 2.1. If Conjecture 2.1 is valid, then there is a unique positive solution of (1.13) with initial

data (1.14) whenever ε lies in the range (2.26).

We have tried in vain to provide a direct proof of Theorem 2.1, based only on the properties of the

mapping T . The best we have so far is Corollary 2.1, which relies on an unproven assumption. Fortunately,

all is not lost, because in the next section a connection between (1.13) and the space of initial conditions

for Painlevé V will be made manifest. Consequently, this will lead to identifying the initial value prob-

lem (1.13), (1.14) with certain classical solutions of Painlevé V, and resulting not only in a proof that the

positive solution is unique but also in an explicit formula for this solution.

Before switching gears and moving on to consider the geometry of (1.13), we present one more technical

result concerning positive solutions.

Proposition 2.2. For each k � 0, any positive solution of (1.13) satisfies

vn =
k∑

i=0

(−1)isn,i εi+1 +O(εk+2) as ε→ 0, (2.29)

where the finite sum coincides with the first k + 1 nonzero terms in the Taylor expansion of the rational

function b
(k)
n at ε = 0, that is,

b(k)n (ε) =

k∑
i=0

(−1)isn,i εi+1 +O(εk+2), (2.30)

where the coefficients sn,i depend only on n. In particular, for all n � 0, sn,0 = n + 1, sn,1 = 2(n + 1)2,

sn,2 = 8(n+ 1)3 + 4(n+ 1), independently of k.

Proof. By Lemma 2.4, for all k � 0 and for each n � 0, the Taylor expansions of ρ
(k)
n and ρ

(k+1)
n

at ε = 0 agree up to and including terms of order εk, which implies that the corresponding Taylor expansions

of b
(k)
n and b

(k+1)
n agree as far as order εk+1, with their first k + 1 nonzero terms depending only on n,

as in (2.30). Then, by Proposition 2.1, together with the bounds in Lemma 2.1, a positive solution must

satisfy

vn −
k∑

i=0

(−1)isn,iεi+1 = O(εk+2) as ε→ 0,

for each k. From (2.13) it follows that

b(k)n = (n+ 1)ε
(
1− 2(n+ 1)ε+O(ε2)

)

for k � 1, giving the stated expressions for sn,0 and sn,1, while sn,2 is obtained from expanding b
(k)
n in (2.3)

up to O(ε3); but for k � 3 these coefficients do not have a uniform expression in n. �

Expansions (2.29) extend to an asymptotic series

vn ∼
∞∑
i=0

(−1)isn,iεi+1 (2.31)

for each n. In particular, when n = 0, the series is

v0 ∼ ε− 2ε2 + 12ε3 − 112ε4 + 1392ε5 − 21472ε6 + · · · as ε→ 0. (2.32)

This should be compared with the Taylor expansion at ε = 0 of (1.12) when n = 0, that is,

v̂0(ε) =
1

4
(
√
1 + 8ε− 1) = ε− 2ε2 + 8ε3 − 40ε4 + · · · . (2.33)
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The bounds b
(k)
n provide a sequence of rational approximations that alternate between upper/lower

bounds for even/odd k. This is highly reminiscent of the situation for the convergents of Stieltjes-type

continued fractions (S-fractions), which also provide successive upper/lower approximations based on a for-

mal series. Indeed, such a fraction can be associated with series (2.31), which, from the stated expressions

for sn,0, sn,1, and sn,2, must begin as

vn =
(n+ 1)ε

1 +
2(n+ 1)ε

1 +
2(n+ 1 + (n+ 1)−1)ε

1 + · · ·

. (2.34)

In particular, setting n = 0 gives the continued fraction for v0, of the form

v0 =
ε

1 + v1
=

ε

1 +
2ε

1 +
4ε

1 +
5ε

1 +
7ε

1 + · · ·

, (2.35)

whose coefficients will be described explicitly in due course, towards the end of Sec. 4.

In fact, the continued fraction (2.35) will turn out to provide us with the missing step in the proof

of uniqueness of the positive solution. Furthermore, for each ε > 0 it will precisely identify this solution

as being the one specified by the initial condition

v0 =
1

2

(
K5/6(t/2)

K1/6(t/2)
− 1

)
, where t =

1

3ε
.

The latter function is plotted against ε in Fig. 3b, with a set of numerical computations using the iterated

map T appearing as dots on top of this curve. A key feature of our analysis is to use the fact that this

function v0 satisfies the Riccati equation

3ε2
dv0
dε

= ε(1 + 2v0)− v0 − v20 , (2.36)

which gives a rapid way to generate the expansion in (2.32) recursively, and similarly v1 satisfies

3ε2
dv1
dε

= ε(2 + v1)− v1 − v21 . (2.37)

These Riccati equations arise as special reductions of the Painlevé V equation, which we proceed to extract

from the geometry of discrete equation (1.13) in the next section.

3. Complex geometry of the dPI equation

In this section, we obtain the space of initial conditions for the dPI equation and show that it corre-

sponds to a particular case of the surface type D
(1)
5 , with symmetry type A

(1)
3 , coinciding with that for the

Painlevé V equation.

Our goal is to describe the geometry of Eq. (1.13), and then use it to study some of its special solutions.

This equation is a special case of the more general dPI equation

xn+1 + xn−1 =
α̃n+ β̃

xn
+ γ̃ (3.1)

for α̃ = β̃ = ε and γ̃ = −1, and therefore we do the general case and then specialize. Equation (3.1) has

been studied in [6]–[8], [19], [20]; see also [21].
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We first construct the family of Sakai surfaces regularizing the dynamics (3.1). For that, we begin

by rewriting the recurrence as a first-order discrete dynamical system on C
1 × C

1 via yn := xn+1. Then

Eq. (3.1) can be rewritten as

yn + xn−1 =
α̃n+ β̃

xn
+ γ̃

and we obtain the mapping

ϕn(xn, yn) =

(
yn,

α̃(n+ 1) + β̃

yn
+ γ̃ − xn

)
. (3.2)

Using the notation xn = xn+1, xn = xn−1, and same for yn, we can omit the indices and rewrite our

mapping and its inverse as

ϕ(x, y) =

(
y,
α̃(n+ 1) + β̃

y
+ γ̃ − x

)
, ϕ−1(x, y) =

(
α̃n+ β̃

y
+ γ̃ − y, x

)
. (3.3)

Next, we extend the mapping to P
1 × P

1 via the introduction of coordinates at infinity, X = 1/x and

Y = 1/y, and then rewrite mappings (3.3) from the affine chart (x, y) to three other charts, (X, y), (x, Y ),

and (X,Y ). It is easy to see that there are four base points where either rational mapping becomes

undefined, which are

(X = 0, y = 0), (X = 0, y = γ̃), (x = 0, Y = 0), (x = γ̃, Y = 0). (3.4)

As usual, these singularities are resolved by using blowups, where blowing up a point qi(xi, yi) amounts

to introducing two new coordinate charts (ui, vi) and (Ui, Vi) via x = xi + ui = xi + UiVi and y =

yi + uivi = yi + Vi. We then extend the mapping to these new charts, check for new base points, resolve

them in the same way, and continue this process until the mapping becomes defined everywhere. This

process, for discrete Painlevé equations, terminates in a finite number of steps, and in our case, as usual,

we obtain eight base points, which are organized into four pairs of infinitely close points, or degeneracy

cascades:

q1

(
X =

1

x
= 0, y = γ̃

)
← q2

(
u1 = X =

1

x
= 0, v1 = x(y − γ̃) = α̃

)
,

q3

(
X =

1

x
= 0, y = 0

)
← q4

(
u3 = X =

1

x
= 0, v3 = xy = (n+ 1)α̃+ β̃

)
,

q5

(
x = 0, Y =

1

y
= 0

)
← q6

(
U5 = xy = nα̃+ β̃, V5 = Y =

1

y
= 0

)
,

q7

(
x = γ̃, Y =

1

y
= 0

)
← q8

(
U7 = y(x− γ̃) = −α̃, V7 = Y =

1

y
= 0

)
.

(3.5)

This point configuration is easily identified as a point configuration for the D
(1)
5 Sakai surface family. This

family can also be thought of as the Okamoto space of initial conditions for the Painlevé V differential

equation in (1.15).

From the point of view of geometry, it is convenient to consider the Hamiltonian version of this equation

in the form given in [21], namely

⎧⎪⎪⎨
⎪⎪⎩

dq

dt
=

1

t

(
q(q − 1)(2p+ t)− a1(q − 1)− a3q

)
=
∂H

∂p
,

dp

dt
=

1

t

(
p(p+ t)(1− 2q) + (a1 + a3)p− a2t

)
= −∂H

∂q
,

(3.6)
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where the Hamiltonian function is

H(q, p; t) =
1

t

(
q(q − 1)p(p+ t)− (a1 + a3)qp+ a1p+ a2tq

)
, (3.7)

and the symplectic structure is given by the standard form ω = dp∧dq. The parameters ai are the so-called

root variables that are related to the standard Painlevé parameters via

α =
1

2
a21, β = −1

2
a23, γ = a0 − a2, δ = −1

2
, where a0 + a1 + a2 + a3 = 1. (3.8)

System (3.6) is equivalent to (1.15) for the function w(t) = 1 − 1/q(t). The Okamoto space of initial

conditions for this system is obtained by removing the irreducible components of the anticanonical divisor

(the so-called vertical leaves) from the standard realization of the D
(1)
5 -surface family. This family

X = Xa=(a0,a1,a2,a3) = Blp1,...,pn(P
1 × P

1)

is obtained by blowing up P
1 × P

1 at the points

p1(∞,−t)← p2(0,−a0), p3(∞, 0)← p4(0,−a2),
p5(0,∞)← p6(a1, 0), p7(1,∞)← p8(a3, 0).

(3.9)

The latter point configuration and the resulting blowup surface are shown in Fig. 5.

Fig. 5. The standard D
(1)
5 Sakai surface family (the space of initial conditions for system (3.6)).

Note that configurations (3.5) and (3.9) almost match—geometrically they are the same up to the action

of rescaling on the axes. Thus, let q = λx and p = μy. Then the symplectic form is ω = dp∧dq = λμ dy∧dx,
and matching coordinates of the base points results in

μγ̃ = −t, λμα̃ = −a0, λμ(nα̃ + β̃) = a1,

λμ
(
(n+ 1)α̃+ β̃

)
= −a2, λγ̃ = 1, λμ(−α̃) = a3.

Thus, λ = γ̃−1 and the root variable normalization a0 + a1 + a2 + a3 = −3α̃λμ = 1 gives μ = −γ̃(3α̃)−1.

The root variables describing configurations (3.5) then are

a0 =
1

3
, a1 = −n

3
− β̃

3α̃
, a2 =

n+ 1

3
+

β̃

3α̃
, a3 =

1

3
. (3.10)

In particular, we see that we obtain an integer translation in the root variables only after three iterations.

This can also be seen directly by computing the actions on the Picard lattice Pic(X ) of the mappings ϕ∗
and ϕ∗ = (ϕ∗)−1 induced by mapping (3.3). Specifying the basis as

Pic(X ) = Span
Z
{Hx,Hy, E1, . . . , E8}, (3.11)
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Fig. 6. Surface root basis for a standard realization of a Sakai surface of type D
(1)
5 .

Fig. 7. Symmetry root basis for the standard A
(1)
3 symmetry sub-lattice.

the corresponding actions of ϕ∗ and ϕ∗ are given by

Hy
ϕ∗
←− Hx

ϕ∗−→ Hx +Hy − E5 − E6,
Hx +Hy − E3 − E4 ←− Hy −→ Hx,

E5 ←− E1 −→ E7,
E6 ←− E2 −→ E8,
E7 ←− E3 −→ Hx − E6,
E8 ←− E4 −→ Hx − E5,
Hy − E4 ←− E5 −→ E1,
Hy − E3 ←− E6 −→ E2,
E1 ←− E7 −→ E3,
E2 ←− E8 −→ E4.

(3.12)

We initially use the same choice as in [21] for the surface root basis, shown in Fig. 6, and the symmetry

root bases, shown in Fig. 7. Then the action of the mapping ϕ∗ on the symmetry root basis is

ϕ∗ : α = 〈α0, α1, α2, α3〉 �→ 〈α3, α0 + α1,−α1, α1 + α2〉, (3.13)

which is not a translation on the symmetry sub-lattice. However, it is a quasi-translation, since after three

iterations we obtain a translation, that is,

ϕ3
∗ : α = 〈α0, α1, α2, α3〉 �→ α+ 〈0, 1,−1, 0〉δ̂, δ̂ = −KX = α0 + α1 + α2 + α3. (3.14)

There are two standard and nonconjugate examples of discrete Painlevé equations in the D
(1)
5 -family:

the equation given in [21, (8.23)], which acts on the symmetry roots as a translation

ψ∗ : α = 〈α0, α1, α2, α3〉 �→ α+ 〈−1, 1,−1, 1〉δ̂; (3.15)

and the equation in [22, (2.33), (2.34)] that acts on the symmetry roots as a translation

φ∗ : α = 〈α0, α1, α2, α3〉 �→ α+ 〈−1, 0, 0, 1〉δ̂. (3.16)

We see that the cube of our mapping is conjugate, by the half-turn rotation of the Dynkin diagrams, to the

dynamics considered by Sakai, also called the dPIV equation in the original Sakai paper [14].
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The dynamical system (3.1) is generated by the birational action of the fully extended affine Weyl

group of type A
(1)
3 , that is,

Ŵ (A
(1)
3 ) :=W (A

(1)
3 )�Aut(A

(1)
3 ),

where the above semi-direct product structure is given by the action of σ ∈ Aut(A
(1)
3 ) on W (A

(1)
3 ) via

wσ(αi) = σwαiσ
−1. The fully extended affine Weyl group acts on point configurations by elementary

birational maps on (q, p) and root variables a. This is known as a birational representation of this group,

and its action by automorphisms of X is called the Cremona action [14]. We describe this birational

representation in the following lemma [23, Section A.3].

Lemma 3.1. The birational representation of Ŵ (A
(1)
3 ), written in the affine (q, p)-chart and the root

variables ai, is as follows: reflections wi on Pic(X ) are induced by the elementary birational mappings, also

denoted by wi, given by

w0 :

(
a0 a1

a2 a3
; t;

q

p

)
�−→

(
−a0 a0 + a1

a2 a0 + a3
; t;

q + a0/(p+ t)

p

)
,

w1 :

(
a0 a1

a2 a3
; t;

q

p

)
�−→

(
a0 + a1 −a1
a1 + a2 a3

; t;
q

p− a1/q

)
,

w2 :

(
a0 a1

a2 a3
; t;

q

p

)
�−→

(
a0 a1 + a2

−a2 a2 + a3
; t;

q + a2/p

p

)
,

w3 :

(
a0 a1

a2 a3
; t;

q

p

)
�−→

(
a0 + a3 a1

a2 + a3 −a3
; t;

q

p− a3/(q − 1)

)
.

(3.17)

Note that the parameter t can also change when we consider Dynkin diagram automorphisms, and thus

it is convenient to include it among the root variables. The actions of the generators σ1, σ2 of Aut(A
(1)
3 ),

shown in Fig. 7, as well as σ3 = σ1σ2σ1, are given by the following birational mappings:

σ1 :

(
a0 a1

a2 a3
; t;

q

p

)
�−→

(
a3 a2

a1 a0
; −t; −p/t

qt

)
,

σ2 :

(
a0 a1

a2 a3
; t;

q

p

)
�−→

(
a2 a1

a0 a3
; −t; q

p+ t

)
,

σ3 :

(
a0 a1

a2 a3
; t;

q

p

)
�−→

(
a0 a3

a2 a1
; −t; 1− q

−p

)
.

(3.18)

Using standard techniques (see, e.g., [24]), mapping (3.1) and its inverse decompose, in terms of

generators, as

ϕ = σ2σ1w2 :

(
a0 a1

a2 a3
; t;

q

p

)
�−→

(
a1 + a2 −a2
a2 + a3 a0

; t;
−p/t

t(q + a2/p− 1)

)
,

ϕ−1 = w2σ1σ2 :

(
a0 a1

a2 a3
; t;

q

p

)
�−→

(
a3 a0 + a1

−a1 a1 + a2
; t;

1 + p/t− a1/(qt)
−qt

)
.

(3.19)

Using w(t) = 1−1/q(t) and (3.6), we can rewrite ϕ and ϕ−1 as Bäcklund transformations of a solution w(t)

of the standard Painlevé V equation (1.15), namely

ϕ : w �→ w+ = 1− 1

q
= 1 +

t

p
= 1 +

2tw

tdwdt − a1w2 + (a1 − a3 − t)w + a3
,

ϕ−1 : w �→ w− = 1− 1

q
= 1− qt

qt+ qp− a1
= 1− 2tw

tdwdt + a1w2 − (a1 + a3 − t)w + a3
.

In the next section, these results are rederived using compositions of classical Bäcklund transformations for

Painlevé V.
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Note that parameters α, β, γ, δ ∈ C appearing as coefficients in the Painlevé V equation are

α =
(nα̃+ β̃)2

18α̃2
, β = − 1

18
, γ = −nα̃+ β̃

3α̃
, δ = −1

2
, (3.20)

and further specializing to (1.13) by taking α̃ = β̃ = ε and γ̃ = −1 gives λ = −1, μ = 1/(3ε), and

a0 = a3 =
1

3
, a1 = −n+ 1

3
, a2 =

n+ 2

3
,

α =
(n+ 1)2

18
, β = − 1

18
, γ = −n+ 1

3
;

(3.21)

where the solution w of (1.15) is related to the iterate vn = xn = λ−1qn = γ̃qn of (1.13) via

w(t) = 1 +
1

vn(ε)
with t = −μγ̃ =

1

3ε
. (3.22)

An essential observation to make at this stage is that these values of the root variables, and the

corresponding values of α, β, γ, fall in a particular region of parameter space where Eq. (1.15) is known to

admit special solutions in terms of classical special functions: see [25, Sec. 32.10(v)], for instance.

Geometrically, we can see this as follows. For n = −1 the root variable a1 vanishes, which corresponds

to the appearance of a so-called nodal curve. Indeed, the base point p6 in Eq. (3.9) becomes p6(U5 = V5 = 0),

which changes the point configuration and the corresponding blow up picture in Fig. 5 to the one in Fig. 8.

The nodal curve is the (−2)-curve Hq −E5 −E6 disjoint from the anticanonical divisor. It is important to

note that the existence of nodal curves is preserved by Bäcklund transformations, and such nodal curves

define reductions to Riccati equations; see [14], [26].

Fig. 8. Special D
(1)
5 Sakai surface with a nodal curve corresponding to a1 = 0.

It is now easy to see that the solution that we are interested in belongs to the Riccati class. Indeed,

the initial condition v−1 = 0 corresponds to q−1 = 0 and v0 = 3εp−1 = p−1/t. System (3.6) for n = −1 and

a0 = a2 = a3 = 1/3, a1 = 0 becomes

dq−1

dt
=
q−1

t

(
(q−1 − 1)(2p−1 + t)− 1

3

)
,

dp−1

dt
=

1

t

(
p−1(p−1 + t)(1− 2q−1) +

p−1 − t
3

)
.

(3.23)

Thus, the flow preserves the nodal curve q−1 = 0 and is described by the Riccati equation which, when

written in terms of v0, becomes
dv0
dt

= v20 +

(
1− 2

3t

)
v0 −

1

3t
. (3.24)
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The corresponding reduction of Eq. (1.15) follows from the substitution w0 = 1 + 1/v0,

3t
dw0

dt
= w2

0 − 3tw0 − 1. (3.25)

We revisit this reduction in the next section. Solutions of these Riccati equations can be expressed in terms

of classical special functions. This will lead us to the explicit formula for the initial condition, which we

now consider.

4. Classical solutions of dPI from Bäcklund transformations
for Painlevé V

In this section we present a large family of special solutions for the Painlevé V equation, connected to

one another by Bäcklund transformations, and show how this includes a one-parameter family of solutions

for (1.13) corresponding to an explicit orbit of the dynamics whose geometry was revealed in the preceding

section. In Sec. 4.1, we construct explicit Wronskian determinant formulas for these solutions, thus providing

special solutions of τ -function relations that were obtained in [5]. Finally, in Sec. 4.2, we complete the proof

of uniqueness of the positive solution of (1.13), as well as proving Theorem 1.1.

We consider the generic case of Painlevé V (1.15) when δ 	= 0, and as usual we set δ = −1/2, i.e.,
we take

d2w

dt2
=

(
1

2w
+

1

w − 1

)(
dw

dt

)2

− 1

t

dw

dt
+

(w − 1)2(αw2 + β)

t2w
+
γw

t
− w(w + 1)

2(w − 1)
. (4.1)

Suppose that w satisfies this Painlevé equation with parameters (α, β, γ) = (a2/2,−b2/2, c); then the

Bäcklund transformation Tε1,ε2,ε3 is defined by

Tε1,ε2,ε3(w) = 1− 2ε1tw

tdwdt − ε2aw2 + (ε2a− ε3b+ ε1t)w + ε3b
, (4.2)

with εj = ±1 independently for j = 1, 2, 3; and for the parameters,

Tε1,ε2,ε3(a, b, c) =
(
c+ ε1(1− ε3b− ε2a)

2
,
c− ε1(1− ε3b− ε2a)

2
, ε1(ε3b− ε2a)

)
, (4.3)

see, for example, [27], [28, Sec. 39], or [25, Sec. 32.7(v)]. Note that the Bäcklund transformation Tε1,ε2,ε3 is

usually given for the parameters α, β, and γ in terms of a, b, and c. However, in order to apply a sequence of

Bäcklund transformation, it is better to define the effect of the Bäcklund transformation on the parameters

a, b, and c to avoid any ambiguity in taking a square root. Indeed, the discrete symmetries of Painlevé V,

corresponding to the extended affine Weyl group of type A
(1)
3 , act naturally on the root variables, as in (3.8),

and the parameters a, b, c here correspond to a1, a3, a0 − a2 in the notation of the previous section.

To derive a discrete equation from Bäcklund transformation of a Painlevé equation, we use a Bäcklund

transformation R, which relates a solution w to another solution w+, and the inverse transformation R−1,

which relates w to a third solution w−. Then eliminating the derivative between the two Bäcklund trans-

formations gives an algebraic equation relating w, w+, and w−, which is a discrete equation; cf. [12] for

more details of this procedure, see also [11]. Here we consider the Bäcklund transformation R = T−1,1,1,

which has inverse R−1 = T−1,1,−1 ◦ T1,−1,−1 ◦ T1,−1,1, then

w+ = R(w; a, b, c) = 1 +
2tw

tdwdt − aw2 + (a− b− t)w + b
, (4.4a)

w− = R−1(w; a, b, c) = 1− 2tw

tdwdt + aw2 − (a+ b− t)w + b
(4.4b)
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and

(a+, b+, c+) = R(a, b, c) =
(
a+ b+ c− 1

2
,−a+ b− c− 1

2
, a− b

)
,

(a−, b−, c−) = R−1(a, b, c) =

(
a− b+ c+ 1

2
,
a− b− c+ 1

2
, a+ b

)
.

Eliminating dw/dt in (4.4a), (4.4b) gives the algebraic equation relating w, w+, and w−, and comparing

this with (3.22) we set w = 1 + 1/v and w± = 1 + 1/v±, which gives

1

w+ − 1
+

1

w− − 1
= −a(w − 1)

t
− 1 =⇒ v+ + v− = −1− a

tv
.

Remark 4.1. In terms of w, transformation (4.4b) is the same as T1,−1,1(w). However, the parameters

(a, b, c) map differently, since

T1,−1,1(a, b, c) =

(
a− b+ c− 1

2
,
−a+ b+ c− 1

2
, a+ b

)
.

Consequently, it is straightforward to show that T1,−1,1 ◦ T−1,1,1(w) = w, but T−1,1,1 ◦ T1,−1,1(w) 	= w,

and therefore T1,−1,1 is not the inverse of T−1,1,1.

Under successive iterations of R and its inverse, the parameters evolve as

(an+1, bn+1, cn+1) = R(an, bn, cn) =
(
an + bn + cn − 1

2
,−an + bn − cn − 1

2
, an − bn

)
,

(an−1, bn−1, cn−1) = R−1(an, bn, cn) =

(
an − bn + cn + 1

2
,
an − bn − cn + 1

2
, an + bn

)
.

From these equations it can be shown that an satisfies the third-order difference equation

an+3 − an + 1 = 0, with bn = an+1 − an+2, cn = an+1 + bn+1, (4.5)

and thus we obtain the solutions

an = μ cos

(
2π

3
n

)
+ κ sin

(
2π

3
n

)
+ λ− 1

3
n,

bn =
√
3κ cos

(
2π

3
n

)
−
√
3μ sin

(
2π

3
n

)
+

1

3
,

cn = −2μ cos
(
2π

3
n

)
− 2κ sin

(
2π

3
n

)
+ λ− 1

3
n,

(4.6)

with μ, κ, and λ arbitrary constants. (Note that (an)n∈Z denotes a sequence of values of the root variable a

here, and should not be confused with the indices 0, 1, 2, 3 used in the previous section, as in (3.8),

for instance.)

The solution wn evolves according to

wn+1 = R(wn) = 1 +
2twn

tdwn

dt − anw2
n + (an − bn − t)wn + bn

,

wn−1 = R−1(wn) = 1− 2twn

tdwn

dt + anw2
n − (an + bn − t)wn + bn

.

(4.7)
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Eliminating dwn/dt gives the discrete equation

1

wn+1 − 1
+

1

wn−1 − 1
= −an(wn − 1)

t
− 1, (4.8)

then setting wn = 1 + 1/vn gives the discrete equation

vn+1 + vn−1 + 1 +
an
tvn

= 0, (4.9)

which is equivalent to equation (3.23) in [8].

We remark that vn(t) also satisfies the second-order differential equation

d2vn
dt2

=
1

2

(
1

vn
+

1

vn + 1

)(
dvn
dt

)2

− 1

t

dvn
dt
−

− a2n(vn + 1)2 + b2n
2vn(vn + 1)t2

− cnvn(vn + 1)

t
+
vn(vn + 1)(2vn + 1)

2

and the differential-difference equations

vn+1 +
1

2vn(vn + 1)

dvn
dt

+
(an + bn)vn + an
2tvn(vn + 1)

+
1

2
= 0,

vn−1 −
1

2vn(vn + 1)

dvn
dt

+
(an − bn)vn + an
2tvn(vn + 1)

+
1

2
= 0,

(4.10)

as well as discrete equation (4.9).

We are interested in the special case of (4.6) when μ = κ = 0 and λ = −1/3, i.e.,

an = −n+ 1

3
, bn =

1

3
, cn = −n+ 1

3
, (4.11)

and solutions of Painlevé V (4.1) with

(α, β, γ) =

(
a2n
2
,−b

2
n

2
, cn

)
=

(
(n+ 1)2

18
,− 1

18
,−n+ 1

3

)
. (4.12)

There are special function solutions of Painlevé V (4.1) with (α, β, γ) = (a2/2,−b2/2, c) if there is some

m ∈ Z such that either ε1a + ε2b + ε3c = 2m + 1, a = m, with εj = ±1, j = 1, 2, 3, independently. For

parameters (4.11), Painlevé V equation (4.1) has special function solutions, since a3n−b3n+c3n = −2n−1,

a3n+1 + b3n+1 + c3n+1 = −2n− 1, and a3n+2 = −n− 1.

Lemma 4.1. The only Riccati equation that is compatible with PainlevéV equation (4.1) with param-

eters (α, β, γ) = (a20/2,−b20/2, c0) = (1/18,−1/18,−1/3), i.e.,

d2w0

dt2
=

(
1

2w0
+

1

w0 − 1

)(
dw0

dt

)2

− 1

t

dw0

dt
+

(w0 − 1)2(w2
0 − 1)

18t2w0
− w0

3t
− w0(w0 + 1)

2(w0 − 1)
, (4.13)

is Eq. (3.25), which has solution

w0(t) = −
C1{I1/6(t/2)− I−5/6(t/2)}+ C2{K1/6(t/2) +K5/6(t/2)}
C1{I1/6(t/2) + I−5/6(t/2)}+ C2{K1/6(t/2)−K5/6(t/2)}

, (4.14)

where Iν(t/2) and Kν(t/2) are modified Bessel functions, with C1 and C2 arbitrary constants.
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Proof. Using the Riccati equation

dw0

dt
= p2(t)w

2
0 + p1(t)w0 + p0(t),

where p2(t), p1(t), and p0(t) are functions to be determined, to remove the derivatives in (4.13)

and then equating coefficient of powers of w0 shows that p2(t) = 1/3t, p1(t) = −1, p0(t) = −1/3t; hence
we obtain (3.25), as required. Letting w0 = −3t d

dt logϕ0 in (3.25) gives

t2
d2ϕ0

dt2
+ t(t+ 1)

dϕ0

dt
− 1

9
ϕ0 = 0, (4.15)

which has solution

ϕ0(t) =
√
t

{
C1

[
I1/6

(
t

2

)
+ I−5/6

(
t

2

)]
+ C2

[
K1/6

(
t

2

)
−K5/6

(
t

2

)]}
e−t/2, (4.16)

and thus we obtain solution (4.14), as required. �

Remark 4.2. Special function solutions of the Painlevé V equation (4.1) are usually expressed in

terms of the Whittaker functions Mκ,μ(t) and Wκ,μ(t), or equivalently the Kummer functions M(a, b, t)

and U(a, b, t), cf. [25, Sec. 32.10(v)]. However, if b = 2a+n, with n an integer, then the Kummer functions

M(a, b, t) and U(a, b, t) can be respectively expressed in terms of the modified Bessel functions Iν(t/2)

and Kν(t/2), for example

M

(
ν +

1

2
, 2ν + 1, t

)
= Γ(1 + ν)

(
t

4

)−ν

Iν

(
t

2

)
et/2,

U

(
ν +

1

2
, 2ν + 1, t

)
= π−1/2t−νKν

(
t

2

)
et/2,

see [25, Sec. 13.6(iii)]. In terms of Kummer functions, the solution of (4.15) is given by

ϕ0(t) = t−1/3

{
C1M

(
2

3
,
1

3
, t

)
+ C2U

(
2

3
,
1

3
, t

)}
e−t, (4.17)

with C1 and C2 arbitrary constants, which gives the solution of (3.25)

w0(t) = −
3t

ϕ0(t)

dϕ0

dt
= 3(t+ 1)− 6C1M(5/3, 1/3, t) + 8C2U(5/3, 1/3, t)

3C1M(5/3, 1/3, t) + 3C2U(5/3, 1/3, t)
. (4.18)

The Kummer functions M(2/3, 1/3, t), M(5/3, 1/3, t), U(2/3, 1/3, t), and U(5/3, 1/3, t) can be expressed

in terms of modified Bessel functions as

M

(
2

3
,
1

3
, t

)
=

(
t

4

)5/6

Γ

(
1

6

){
I1/6

(
t

2

)
+ I−5/6

(
t

2

)}
et/2,

M

(
5

3
,
1

3
, t

)
=

1

2

(
t

4

)5/6

Γ

(
1

6

){
(3t+ 4)I1/6

(
t

2

)
+ (3t+ 2)I−5/6

(
t

2

)}
et/2,

U

(
2

3
,
1

3
, t

)
=

3t5/6

2
√
π

{
K5/6

(
t

2

)
−K1/6

(
t

2

)}
et/2,

U

(
5

3
,
1

3
, t

)
=

9t5/6

16
√
π

{
(3t+ 2)K5/6

(
t

2

)
− (3t+ 4)K1/6

(
t

2

)}
et/2.
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Solutions (4.17) and (4.18) can be expressed in terms of Whittaker functions, since the relationship between

the Whittaker functions Mκ,ν(t), Wκ,ν(t) and the Kummer functions M(a, b, t), U(a, b, t) is given by

Mκ,ν(t) = tμ+1/2M

(
μ− κ+

1

2
, 1 + 2μ, t

)
e−t/2,

Wκ,ν(t) = tμ+1/2U

(
μ− κ+

1

2
, 1 + 2μ, t

)
e−t/2,

and conversely

M(a, b, t) = t−1/2Mb/2−a,b/2−1/2(t)e
t/2,

U(a, b, t) = t−1/2Wb/2−a,b/2−1/2(t)e
t/2,

see [25, Eqs. 13.14.2–13.14.5]

Hence, using (4.16), we obtain

w0(t) = −
3t

ϕ0(t)

dϕ0

dt
= −

C1{I1/6(t/2)− I−5/6(t/2)}+ C2{K1/6(t/2) +K5/6(t/2)}
C1{I1/6(t/2) + I−5/6(t/2)}+ C2{K1/6(t/2)−K5/6(t/2)}

,

which satisfies the Painlevé V equation (4.1) with parameters (α, β, γ) = (1/18,−1/18,−1/3), and thus

w1 = R(w0;−1/3, 1/3,−1/3) is given by

w1(t) =
2{C1I1/6(t/2) + C2K1/6(t/2)}

(3t+ 2){C1I1/6(t/2) + C2K1/6(t/2)}+ 3t{C1I−5/6(t/2)− C2K5/6(t/2)}
,

which satisfies Painlevé V (4.1) with parameters (α, β, γ) = (2/9,−1/18,−2/3). Therefore, since

vn = 1/(wn − 1), we have

v0(t) =
1

w0(t)− 1
= −1

2
−

C1I−5/6(t/2)− C2K5/6(t/2)

2{C1I1/6(t/2) + C2K1/6(t/2)}
,

v1(t) =
1

w1(t)− 1
= −1− 2

3t
− (4.19)

−
2{C1I−5/6(t/2)− C2K5/6(t/2)}

3t{C1I1/6(t/2) + C2K1/6(t/2)}+ C1I−5/6(t/2)− C2K5/6(t/2)
.

Furthermore, if we set an = −(n+ 1)/3 in (4.9), then we obtain

vn(vn+1 + vn−1 + 1) =
n+ 1

3t
, (4.20)

which is (1.13) with ε = 1/3t, in agreement with (3.22). Hence, if we put n = 0 in (4.20) and use (4.19),

then we see that

v−1 = −v1 − 1 +
1

3tv0
= 0. (4.21)

Moreover, if we let Z1/6(t) = C1I1/6(t) + C2K1/6(t) and Z−5/6(t) = C1I−5/6(t)− C2K5/6(t), then the first

three nonzero iterates of dPI equation (4.20) are given by

v0(t) = −
1

2
−
Z−5/6(t/2)

2Z1/6(t/2)
, v1(t) = −1−

2

3t
−

2Z−5/6(t/2)

3t{Z1/6(t/2) + Z−5/6(t/2)}
,

v2(t) = −
3(t+ 2)

2(3t+ 2)
+
Z−5/6(t/2)

2Z1/6(t/2)
−

4Z−5/6(t/2)

(3t+ 2){(3t+ 2)Z1/6(t/2) + 3tZ−5/6(t/2)}
.
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Remark 4.3. It was shown in Lemma 4.1 that w0(t) satisfies the Riccati equation (3.25). It follows

that w1(t) also satisfies a Riccati equation, namely

t
dw1

dt
=

2

3
w2

1 − (t+ 1)w1 +
1

3
,

and hence v0(t) and v1(t) satisfy Riccati equations, namely (3.24) and

t
dv1
dt

= tv21 +

(
t− 1

3

)
v1 −

2

3
,

respectively, which are equivalent to (2.36) and (2.37), after making the change of independent variable

ε = 1/3t. The solutions wn(t) and vn(t) for n � 2 do not satisfy Riccati equations with simple coefficients.

However, it can be shown that vn for n � 2 does satisfy a Riccati equation with coefficients given by

combinations of vn−2 and lower vj [29]; for instance, v2 satisfies a Riccati equation that includes v0 among

its coefficients (see below).

4.1. Determinantal representation of the solutions. In this subsection we show that the solu-

tions of the dPI equation (4.20) may be written in terms of determinants involving modified Bessel functions.

These determinants can be regarded as particular examples of Painlevé V τ -functions. Moreover, in [5] it is

shown that if a τ -function υn for (1.13) is introduced via

vn =
υnυn−4

υn−1υn−3
, (4.22)

then it satisfies a trilinear (degree 3 homogeneous) equation of order 6. At the end of this subsection, we

show that the determinants of modified Bessel functions provide special function solutions of this trilinear

equation.

We begin by defining some convenient notation for linear combinations of modified Bessel functions,

and associated Wronskian determinants.

Definition 4.1. Let Zν(t) be defined by

Zν(t) =

⎧⎨
⎩
d1Ij(t) + d2(−1)jKj(t), ν = j ∈ Z,

d1Iν(t) + d2I−ν(t), otherwise,
(4.23)

where Iν(t) and Kν(t) are modified Bessel functions and d1 and d2 are arbitrary constants. For m ∈ Z

and n ∈ N, let Bm,n,ν(t) be the Wronskian determinant

Bm,n,ν(t) =W({fm−�,ν+�(t)}n−1
�=0 ), (4.24)

where

fm,ν(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t−ν
m∑
j=0

(
m

j

)
j + ν

(j + 2ν)m+1
(−1)jZν+j

(
t

2

)
, m ∈ N,

t|m|−ν

|m|∑
j=0

(
|m|
j

)
j − ν

(j − 2ν)|m|+1
Zν−j

(
t

2

)
, −m ∈ N,

(4.25)

whenever the denominators in (4.25) are nonzero; let Bm,0,ν(t) = 1.
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Lemma 4.2. Let Bm,n,ν(t) be the determinant of modified Bessel functions given in Definition 4.1.

We also define the constants C
[1]
m,n,ν and C

[2]
m,n,ν as

C [1]
m,n,ν =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
−m− ν, m � n+ 2,

1, m = n+ 1,

−
(
ν + n+

1

2

)−1

otherwise,

(4.26)

C [2]
m,n,ν =

⎧⎨
⎩
−ν −m− 1

2
, m � n,

1 otherwise.
(4.27)

Then

w[1]
m,n,ν(t) = C [1]

m,n,ν

Bm,n+1,ν(t)Bm−2,n,ν+1(t)

Bm,n,ν(t)Bm−2,n+1,ν+1(t)
(4.28)

is a solution of Painlevé V for the parameters

(α, β, γ) =

(
(2ν + 2n+ 1)2

8
,− (2ν + 2m+ 2n− 1)2

8
, 2ν +m− 1

)
, (4.29)

and

w[2]
m,n,ν(t) = C [2]

m,n,ν

Bm,n,ν+1(t)Bm,n,ν(t)

Bm,n−1,ν+1(t)Bm,n+1,ν(t)
(4.30)

is a solution of Painlevé V for the parameters

(α, β, γ) =

(
n2

2
,− (2ν +m+ n)2

2
,m

)
. (4.31)

Proof. The special function solutions of Painlevé V written in terms of the Kummer functionM(a, b, t)

were derived by Masuda [18]; see also Forrester and Witte [17]. Solutions (4.29), (4.31) may be inferred

from the work of Masuda by using [25, Sec. 13.6(iii)]

M

(
ν +

1

2
, 2ν + 1 + n, t

)
= Γ(ν)et/2

(
t

4

)−ν n∑
k=0

(−1)k
(
n

k

)
(2ν)k(ν + k)

(2ν + 1 + n)k
Iν+k

(
t

2

)
,

M

(
ν +

1

2
, 2ν + 1− n, t

)
= Γ(ν − n)et/2

(
t

4

)n−ν n∑
k=0

(
n

k

)
(2ν − 2n)k(ν − n+ k)

(2ν + 1− n)k
Iν+k−n

(
t

2

)
.

(4.32)

If the modified Bessel function Kν(t) with ν /∈ Z is desired in the solution, we use [25, Eq. (10.27.4)]

Kν(t) =
π(I−ν(t)− Iν(t))

2 sin(πν)
. (4.33)

For j ∈ Z, the modified Bessel function Kj(t) is given by [25, Eq. (10.27.5)]

Kj(t) =
(−1)j−1

2

(
∂Iν(t)

∂ν

∣∣∣∣
ν=j

+
∂Iν(t)

∂ν

∣∣∣∣
ν=−j

)
. � (4.34)
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We use the following properties of fm,ν(t) defined in (4.25) to construct identities for Bm,n,ν(t).

Lemma 4.3. We have

fm,ν(t)− fm−1,ν+1(t) =

(
m+ ν +

1

2

)
fm+1,ν(t), m � 1, (4.35a)

(
ν +

1

2

)(
f1,ν(t)− f−1,ν+1(t)

)
= f0,ν(t), m = 0, (4.35b)

fm,ν(t) + fm+1,ν(t) = −
(
ν +

1

2

)
fm−1,ν+1(t), m � −1. (4.35c)

The derivatives of fm,ν(t) are given by

d

dt
fm,ν(t) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
fm,ν(t)−

(
m+ ν +

1

2

)
fm+1,ν(t), m � 0,

1

2
fm,ν(t) + fm+1,ν(t), m � −1.

(4.36)

Furthermore, if ν /∈ Z, the following symmetry holds:

fm,ν(t; d1, d2) =

⎧⎪⎨
⎪⎩
t−2ν−mfm,−m−ν(t; d2, d1), m � 0,

(−1)m t−2ν−mfm,−m−ν(t; d2, d1), m < 0.

(4.37)

Proof. The properties of fm,ν(t) are proved using the properties of the modified Bessel functions given

in [25, Sec. 10.29]. For example, (4.35a) is given by

fm,ν(t)− fm−1,ν+1(t) = t−ν
m∑
j=0

(
m

j

)
j + ν

(j + 2ν)m+1
(−1)jZν+j

(
t

2

)
−

− t−ν−1
m−1∑
j=0

(
m− 1

j

)
j + ν + 1

(j + 2ν + 2)m
(−1)jZν+1+j

(
t

2

)
. (4.38)

Using [25, Eq. (10.29.1)]

Zν−1

(
t

2

)
−Zν+1

(
t

2

)
=

4ν

t
Zν

(
t

2

)
, (4.39)

to rewrite the second sum in (4.38), we obtain

fm,ν(t)− fm−1,ν+1(t) = t−ν
m∑
j=0

(
m

j

)
j + ν

(j + 2ν)m+1
(−1)jZν+j

(
t

2

)
+

+ t−ν
m−1∑
j=0

(
m− 1

j

)
1

4(j + 2ν + 2)m
(−1)j

(
Zν+2+j

(
t

2

)
−Zν+j

(
t

2

))
. (4.40)

Combining like terms in (4.40) gives (4.35a). The remaining identities are proved similarly. �
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Lemma 4.4. When ν /∈ Z the Bessel determinant Bm,n,ν(t) has the following symmetry :

Bm,n,ν(t; d1, d2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

rm,n,ν

rm,n,1−m−n−ν
tn(1−m−n−2ν)Bm,n,1−m−n−ν(t; d2, d1), m � n− 1,

(−1)mn rm,n,ν

rm,n,1−m−n−ν
tn(1−m−n−2ν)Bm,n,1−m−n−ν(t; d2, d1), 1 � m � n− 2,

(−1)mn tn(1−m−n−2ν)Bm,n,1−m−n−ν(t; d2, d1), m � 0,

(4.41)

where rm,n,ν is the constant

rm,n,ν =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n−1∏
�=0

(
ν +m+

1

2

)
�

, m � n− 1,

m∏
�=0

(
ν + n− 1

2

)
�

, otherwise.

(4.42)

Proof. We prove (4.41) when m � n − 1. Subtracting column j + 1 from column j in (4.24)

for j = 1, 2, . . . , k, k = n− 1, n− 2, . . . , 1, and using recurrence relation (4.35a), we obtain

Bm,n,ν(t; d1, d2) = rm,n,νW({fm+n−1−2j,ν+j(t; d1, d2)}n−1
j=0 ). (4.43)

By applying symmetry (4.37) to (4.43), we have

Bm,n,ν(t; d1, d2) = rm,n,νW({t1−m−n−2νfm+n−1−2j,1+j−m−n−ν(t; d2, d1)}n−1
j=0 ). (4.44)

We then use the Wronskian identity [30, Theorem 4.25]

W(g(t)f1(t), g(t)f2(t), . . . , g(t)fn(t)) = g(t)nW(f1(t), f2(t), . . . , fn(t)), (4.45)

in order to remove the powers of t from the Wronskian in (4.44), thus:

Bm,n,ν(t; d1, d2) = rm,n,ν t
n(1−m−n−2ν)W({fm+n−1−2j,1+j−m−n−ν(t; d2, d1)}n−1

j=0 ) =

=
rm,n,ν

rm,n,1−m−n−ν
tn(1−m−n−2ν)Bm,n,1−m−n−ν(t; d2, d1). (4.46)

The proofs of the remaining cases are similar. �

Lemma 4.5. Let Bm,n,ν(t) be the determinant of modified Bessel functions defined in Definition 4.1.

When m < 0, Bm,n,ν(t) satisfies

Bm,n−1,ν+1(t)Bm,n+1,ν(t) + Bm−1,n,ν+1(t)Bm+1,n,ν(t) = Bm,n,ν+1(t)Bm,n,ν(t). (4.47)

Proof. We prove the Lemma using the Jacobi identity [31], sometimes known as the Lewis Carroll

formula, for determinants. Let D be an arbitrary determinant, and D
[
i
j

]
be the determinant with the ith

row and jth column removed from D. Then we have the Jacobi identity:

DD
[
i, j

k, �

]
= D

[
i

k

]
D
[
j

�

]
−D

[
i

�

]
D
[
j

k

]
. (4.48)
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Using the derivative of fm,ν(t) given in (4.36) we rewrite the Wronskian determinant Bm,n,ν(t)

when m < 0 as

Bm,n,ν(t) = det

∣∣∣∣
k∑

j=0

(
k

j

)
2j−kfm+j−�,ν+�

∣∣∣∣
n−1

k,�=0

. (4.49)

Since we can add a multiple of any row to any other row without changing the determinant in (4.49),

we keep the last term in each sum:

Bm,n,ν(t) = det |fm+k−�,ν+�|n−1
k,�=0. (4.50)

We apply the Jacobi identity (4.48) to the determinant in (4.50), choosing i = 1, j = n for the rows

and k = 1, � = n for the columns. The relevant minor determinants are

Bm,n,ν

[
1, n

1, n

]
= det |fm+k−�,ν+1|n−3

i,j=0 = Bm,n−2,ν+1,

Bm,n,ν

[
1

1

]
= det |fm+k−�,ν+1|n−2

i,j=0 = Bm,n−1,ν+1,

Bm,n,ν

[
n

n

]
= det |fm+k−�,ν+�|n−2

i,j=0 = Bm,n−1,ν,

Bm,n,ν

[
1

n

]
= det |fm+1+k−�,ν+�|n−2

i,j=0 = Bm+1,n−1,ν,

Bm,n,ν

[
n

1

]
= det |fm−1+k−�,ν+1+�|n−1

i,j=0 = Bm−1,n−1,ν+1.

(4.51)

Substituting (4.51) into (4.48) gives (4.47). �

Lemma 4.6. Let Bm,n,ν(t) be the determinant of modified Bessel functions defined in Definition 4.1.

When m � 0, we have

Bm,n+1,ν(t)Bm−2,n,ν+1(t) +

(
ν + n+

1

2

)
Bm−2,n+1,ν+1(t)Bm,n,ν(t) =

= −Bm−1,n,ν+1(t)Bm−1,n+1,ν(t). (4.52)

Proof. In Wronskian determinant (4.24), subtracting ν + j − 1/2 times column j + 1 from column j

for j = 1, 2, . . . , k, where k decreases from n− 1 to 1, and using recurrence relation (4.35c), we obtain

Bm,n,ν(t) = (−1)n(n−1)/2W({fm+n−1−2j,ν+j}n−1
j=0 ). (4.53)

By adding ν + j − 1/2 times column j + 1 to column j for j = 1, . . . , n− 1 in (4.53), we have

Bm+1,n,ν(t) = (−1)1+n(n+1)/2W({fm+n−1−2j,ν+j}n−2
j=0 , fm+2−n,ν+n−1). (4.54)

Adding 1/(ν + n− 3/2) times column n− 1 to column n in (4.54) gives

Bm+1,n,ν(t) =
1

ν + n− 3/2
(−1)n(n+1)/2W({fm+n−1−2j,ν+j}n−2

j=0 , fm+4−n,ν+n−2). (4.55)
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Vein and Dale prove three variants of the Jacobi identity (4.48) in [30, Theorem 3.6]. To prove the bilinear

relation (4.52), we use

An

[
i

p

]
An+1

[
n+ 1

q

]
−An

[
i

q

]
An+1

[
n+ 1

p

]
= AnAn+1

[
i, n+ 1

p, q

]
, (4.56)

which is identity (B) in [30, Theorem 3.6], where we let

An+1 =W({fm+n−2j,ν+j}n−1
j=0 , fm+3−n,ν+n−1), An =W({fm+n−2j,ν+j}n−1

j=0 ). (4.57)

Setting i = n, p = 1, and q = n, we have

An

[
n

1

]
=W({fm+n−2−2j,ν+1+j}n−2

j=0 ) = (−1)(n−1)(n−2)/2Bm,n−1,ν+1(t),

An+1

[
n+ 1

n

]
=W({fm+n−2j,ν+j}n−2

j=0 , fm+3−n,ν+n−1) = (−1)1+n(n+1)/2Bm,n,ν(t),

An

[
n

n

]
=W({fm+n−2j,ν+j}n−2

j=0 ) = (−1)(n−1)(n−2)/2Bm,n,ν(t),

An+1

[
n+ 1

1

]
=W({fm+n−2−2j,ν+1+j}n−2

j=0 , fm+3−n,ν+n−1) =

(
ν + n− 1

2

)
(−1)n(n+1)/2Bm,n,ν(t),

An = (−1)n(n−1)/2Bm,n,ν(t),

An+1

[
n, n+ 1

1, n

]
=W({fm+n−2−2j,ν+1+j}n−3

j=0 , fm+3−n,ν+n−1) = (−1)1+n(n−1)/2Bm,n,ν(t).

Substituting these equations into Jacobi identity (4.56) gives (4.52). �

Theorem 4.1. The solutions of dPI (4.20) are a special case of the modified Bessel function solutions

of Painlevé V given in Lemma 4.2, namely vn(t) = 1/(wn(t)− 1), where wn(t) satisfies

wn(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w
[1]
1−k,k,−1/6(t; d1, d2), n = 3k, k ∈ N,

w
[1]
−k,k,1/6(t; d2, d1), n = 3k + 1, k ∈ N,

w
[2]
−1−k,k+1,−1/6(t; d1, d2), n = 3k + 2, k ∈ N.

(4.58)

Proof. When n = 3k, the parameters of Painlevé V (4.12) become

(α, β, γ) =

(
(3k + 1)2

18
,− 1

18
,−k − 1

3

)
, (4.59)

which is (4.29) with m = 1 − k, n = k, and ν = −1/6. The cases where n = 3k + 1 and n = 3k + 2 are

obtained similarly. �

Using the recurrence relations in Lemmas 4.5 and 4.6, the solutions vn(t) of dPI (4.20) may be written as

vn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, n = −1,
(
k +

1

3

)B1−k,k,−1/6(t; d1, d2)B−1−k,k+1,5/6(t; d1, d2)

B−k,k,5/6(t; d1, d2)B−k,k+1,−1/6(t; d1, d2)
, n = 3k, k ∈ N,

(
k +

2

3

) B−k,k,1/6(t; d2, d1)B−2−k,k+1,7/6(t; d2, d1)

B−1−k,k,7/6(t; d2, d1)B−1−k,k+1,1/6(t; d2, d1)
, n = 3k + 1, k ∈ N,

B−1−k,k,5/6(t; d1, d2)B−1−k,k+2,−1/6(t; d1, d2)

B−2−k,k+1,5/6(t; d1, d2)B−k,k+1,−1/6(t; d1, d2)
, n = 3k + 2, k ∈ N.

(4.60)
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Furthermore, using the symmetry (4.41), we may rewrite v3k+1(t) as

v3k+1(t) = −
3k + 2

3t

B−k,k,5/6(t; d1, d2)B−2−k,k+1,5/6(t; d1, d2)

B−1−k,k,5/6(t; d1, d2)B−1−k,k+1,5/6(t; d1, d2)
. (4.61)

Substituting (4.60) into (4.20) gives the trilinear equations

B−1−k,k+1,5/6

{
B−1−k,k,5/6B−k,k+1,−1/6 +

(
k +

1

3

)
B1−k,k,−1/6B−2−k,k+1,5/6

}
=

= −B−k,k,5/6{B−1−k,k,5/6B−1−k,k+2,−1/6 + B−k,k+1,−1/6B−2−k,k+1,5/6},

tB−1−k,k+1,5/6{B−1−k,k,5/6B1−k,k+1,−1/6 + B−k,k−1,5/6B−k,k+1,−1/6} =

= B−k,k,5/6

{
B−1−k,k,5/6B−k,k+1,−1/6 +

(
k +

2

3

)
B1−k,k,−1/6B−2−k,k+1,5/6

}
,

tB−1−k,k,5/6

{
B−1−k,k+1,5/6B−1−k,k+2,−1/6 +

(
k +

4

3

)
B−k,k+1,−1/6B−2−k,k+2,5/6

}
=

= B−2−k,k+1,5/6

{(
k +

2

3

)
B−1−k,k+2,−1/6B−k,k,5/6 + (k + 1)B−k,k+1,−1/6B−1−k,k+1,5/6

}
.

After a gauge transformation (which depends on n mod 3), to match up the τ -function υn in (4.22) with

an appropriate Wronskian, each of the latter equations is equivalent to the trilinear equation in [5].

4.2. Unique positive solution: finale. The preceding results on repeated application of Bäcklund

transformations for Painlevé V show that these generate a solution of dPI in the case that one initial value

v−1 = 0, while v0 is arbitrary. Indeed, for any choice of v0 there is a value of the ratio λ = C1/C2 in (4.19)

that provides a complete solution of the difference equation (4.20) in terms of ratios of modified Bessel

functions, and this is equivalent to (1.13) with t = 1/3ε. Note that if we rearrange the formula for v0

in (4.19) as

2v0 + 1 =
K5/6(t/2)− λI−5/6(t/2)

K1/6(t/2) + λI1/6(t/2)
, t =

1

3ε
, (4.62)

then for any choice of v0 we can invert the Möbius transformation above to find λ in terms of v0 and ε.

Thus, for each fixed ε there is a one-to-one correspondence between the choice of v0 and the choice of

parameter λ. However, we can characterize one particular solution by its distinct asymptotic behavior.

Proposition 4.1. The function

v0(ε) =
1

2

(
K5/6(1/(6ε))

K1/6(1/(6ε))
− 1

)
(4.63)

is the unique initial condition for (1.13) that has the asymptotic behavior (2.32) as ε→ 0.

Proof. From the leading-order asymptotics of the modified Bessel functions, that is,

Kν

(
t

2

)
∼
√
π

t
e−t/2, Iν

(
t

2

)
∼ 1√

πt
et/2 as t→∞,

we see that the right-hand side of (4.62) tends to 1 as t → ∞ when λ = 0, but otherwise it tends to −1.
Equivalently, if λ = 0, then v0 → 0 as ε → 0, but for all λ 	= 0 this ratio of modified Bessel functions

gives v0 → −1 as ε → 0. Hence, function (4.63) is the only member of this one-parameter family that is
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compatible with the asymptotic behavior (2.32) as ε → 0. Since all of the functions v0 given by (4.19)

satisfy the Riccati equation (2.36), the latter series (2.32) can be obtained by substituting in

v0 ∼
∞∑
i=0

(−1)is0,iεi+1.

This immediately yields the recursion

s0,i+1 = (3i+ 1)s0,i +

i∑
j=0

s0,i−js0,j for i � 0, with s0,0 = 1,

producing the sequence 1, 2, 12, 112, 1392, etc. �

The computation of quotients of modified Bessel functions is an important problem in numerical

analysis [32], and continued fraction methods provide effective tools for doing this [33], [34]. For the

function (4.63), the continued fraction expansion (2.35) can be calculated directly from the Riccati equa-

tion (2.36), which is one among a family that includes many examples first considered in the pioneering

works of Euler and Lagrange (see Ch. II in [35]).

If we set

η0 = v0, η1 = v1, η2 = v0 + v2, (4.64)

then we see that the iteration of (1.13) with v−1 = 0 is consistent with the recursion

ηn =
ξnε

1 + ηn+1
, n � 0, (4.65)

and this generates a continued fraction representation for v0 in the form

v0 =
ξ0ε

1 +
ξ1ε

1 +
ξ2ε

1 + · · ·

. (4.66)

At the same time, given that v0 is a solution of (2.36), it follows by induction that each ηn satisfies a Riccati

equation,

3ε2
dηn
dε

+ η2n + (1− ζnε)ηn − ξnε = 0, n � 0, (4.67)

provided that ζn+1 = 3 − ζn, ξn+1 = ξn + ζn+1. Then we require ξ0 = 1 and ζ0 = 2 from (2.36), which

implies ξ1 = 2 and ζ1 = 1, in agreement with (2.37), and hence continued fraction (4.66) and its associated

sequence of Riccati equations (4.67) are completely specified by

ξ2m = 3m+ 1, ζ2m = 2 and ξ2m+1 = 3m+ 2, ζ2m+1 = 1 for m � 0, (4.68)

which reveals the pattern in (2.35).

Remark 4.4. Upon taking the difference of Eqs. (4.67) for n = 0 and n = 2, and using v2 = η2 − η0,
we find that v2 also satisfies a Riccati equation, that is,

3ε2
dv2
dε

+ v22 + (1− 2ε+ 2v0)v2 − 3ε = 0,

which has v0 appearing among its coefficients. Similarly, it is possible to use (1.13) to show by induction

that all vn for n � 2 satisfy Riccati equations with vj for j � n− 2 included in their coefficients (cf. [29]).
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The continued fraction (4.66) for η0 = v0 thus obtained has a sequence of convergents η̄
(k)
0 = P (k)/Q(k),

k � 0, which correctly approximate the first k + 1 nonzero terms in the series expansion, so

η̄
(k)
0 =

k∑
i=0

(−1)is0,iεi+1 +O(εk+2),

and the numerators P (k) and denominators Q(k) are polynomials in ε generated by the same three-term

relation

P (k+1) = P (k) + ξk+1εP
(k−1), Q(k+1) = Q(k) + ξk+1εQ

(k−1),

with initial conditions P (−2) = 1, P (−1) = 0, Q(−2) = 0, Q(−1) = 1. Standard theory [35] then implies

that with the coefficients ξn as above, the continued fraction is convergent for all ε > 0, being equal to the

alternating sum

η0 =
P (0)

Q(0)
+

∞∑
k=1

(−1)k ξ0ξ1 . . . ξk ε
k+1

Q(k−1)Q(k)
= lim

k→∞
η̄
(k)
0 .

However, the continued fraction is formally divergent at ε = 0, which corresponds to fact that series (2.32)

is divergent. Thus we see that the continued fraction (2.35) represents the function η0 = v0 in (4.63) for

all ε ∈ (0,∞), and hence this function is positive on the whole positive semi-axis. This provides a much

stronger characterization of this function than the asymptotic one in Proposition 4.1, namely the following.

Corollary 4.1. The function (4.63) is the unique solution of the Riccati equation (2.36) that is positive

for all ε > 0.

We finally return to the fixed point method considered in Sec. 2, and the upper/lower bounds on the

iterates of the mapping T . It turns out that the bound b
(k)
0 and the convergent η̄

(k)
0 both approximate

asymptotic series (2.32) correctly to the same order εk+1, but the former is a better approximant than the

latter in the sense that its coefficient at order εk+2 is closer to the correct value. This leads to a more

precise statement in terms of inequalities, as follows.

Proposition 4.2. The convergents of the continued fraction for the function (4.63) interlace with the

upper/lower bounds obtained for the mapping T in (2.1), according to

b
(2j−1)
0 < η̄

(2j+1)
0 � b

(2j+1)
0 < b

(2j+2)
0 � η̄

(2j+2)
0 < b

(2j)
0 for all j � 0. (4.69)

Proof. The middle inequality in (4.69) was already shown as part of Lemma 2.1, so the main new

content of statement (4.69) can be concisely paraphrased as

(−1)kb(k)0 � (−1)kη̄(k)0 < (−1)kb(k−2)
0 for k � 1. (4.70)

This is proved by induction on k, via a comparison of two different expressions for v0: the first is the

standard continued fraction (2.35), which generates the sequence of convergents η̄
(k)
0 ; while the second is

the structure of iteration of (1.13), and the action of the mapping T , which generates another sequence of

rational approximants b
(k)
0 , obtained from v0 given as a kind of branched continued fraction:

v0 =
ε

1 +
2ε

1 +
ε

1 +
2ε

1 + · · ·

+
3ε

1 +
2ε

1 + · · · +
4ε

1 + · · ·

. (4.71)
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For the induction, observe that truncation at level k = 0 in each fraction gives the same approximant

η̄
(0)
0 = b

(k)
0 = ε, and also at levels k = 1 and k = 2 we have

η̄
(1)
0 = b

(1)
0 =

ε

1 + 2ε
, η̄

(2)
0 = b

(2)
0 =

ε(1 + 4ε)

1 + 6ε
,

and therefore by (2.6) with n = 0 it follows that (4.70) holds for the base cases k = 1, 2; but for k � 3 all of

the inequalities in (4.70) become strict. For the induction, we can consider the sequence of convergents η̄
(k)
1

of the standard S-fraction for v1, that is,

v1 =
2ε

1 +
4ε

1 +
5ε

1 + · · ·

,

so that we have η̄
(k+1)
0 = ε/(1 + η̄

(k)
1 ), while from the action of T we have

T (b
(k)
0 ) =

ε

1 + b
(k)
1

.

Hence it follows that (4.70) holds by induction, provided that at the next level we have the analogous

inequalities

(−1)kb(k)1 � (−1)kη̄(k)1 < (−1)kb(k−2)
1 for k � 1. (4.72)

For instance, if (4.72) holds for some even k = 2j, then

ε

1 + b
(2j−2)
1

<
ε

1 + η̄
(2j)
1

� ε

1 + b
(2j)
1

,

which is precisely (4.70) for k = 2j + 1; and the reasoning is the same starting from (4.72) with odd k, but

with the inequalities reversed.

Of course, this begs the question of the validity of (4.72), which must be verified by going down one

more level and considering

v1 =
2ε

1 + η2
=

2ε

1 + v0 + v2
,

for which the leading-order truncation gives η̄
(0)
1 = b

(0)
1 = 2ε, while subsequent truncations require compar-

ison of

η2 =
4ε

1 +
5ε

1 + · · ·

and v0 + v2 =
ε

1 +
2ε

1 + · · ·

+
3ε

1 +
2ε

1 + · · · +
4ε

1 + · · ·

(4.73)

at the next stage. It is clear that the leading-order truncation in these equations has 4ε = ε + 3ε, which

in turn shows that η̄
(1)
1 = b

(1)
1 , confirming (4.72) for k = 1, but for the next order comparison it is required

that
4ε

1 + 5ε
<

ε

1 + 2ε
+

3ε

1 + 6ε
. (4.74)

The latter is just a particular case of the general inequality

A

1 +B
<

A1

1 +B1
+

A2

1 +B2
, for A = A1 +A2, AB = A1B1 +A2B2, A1, A2, B1, B2 > 0,

which holds due to the convexity of the function 1/(1+x). Then (4.74) implies that 2ε = b
(0)
1 > η̄

(2)
1 > b

(2)
1 ,

establishing (4.72) for k = 2. Subsequent upper/lower bounds follow similarly, by repeatedly applying the

same convexity argument to compare each lower stage of the two continued fractions. �
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We can now present the final steps of the proof of uniqueness of the positive solution, and conclude

with the proof of the main theorem.

Proof of Theorem 2.1. Taking limits of the middle three inequalities in (4.70) gives

lim
j→∞

η̄
(2j+1)
0 � lim

j→∞
b
(2j+1)
0 � lim

j→∞
b
(2j+2)
0 � lim

j→∞
η̄
(2j+2)
0 .

Then the convergence of the continued fraction (2.35) gives the equality of limits of the upper and lower

sequences of convergents, that is,

lim
j→∞

η̄
(2j+1)
0 = v0 = lim

j→∞
η̄
(2j+2)
0 , (4.75)

which in turn gives

lim
j→∞

b
(2j+1)
0 = lim

j→∞
b
(2j+2)
0 =⇒ lim

j→∞
ρ
(2j+1)
0 = lim

j→∞
ρ
(2j)
0 =⇒

=⇒ lim
j→∞

Δ
(2j)
0 = 0 = lim

j→∞
Δ

(2j+1)
0 .

Now taking the limit k →∞ in the n = 0 case of (2.23) produces

lim
k→∞

Δ
(k+1)
0 = 2ε

(
lim
k→∞

ρ
(k)
0

)2

lim
k→∞

Δ
(k)
1 =⇒ lim

k→∞
Δ

(k)
1 = 0,

and hence, by induction on n, repeated application of (2.23) yields

lim
k→∞

Δ(k)
n = 0 for all n � 0.

From the result of Proposition 2.1 we see that, for each n, the upper and lower bounds in (2.8) coincide,

giving the unique positive solution v = (vn)n�0, as required. �

Proof of Theorem 1.1. It remains to point out that for each ε > 0, limit (4.75) obtained from the

continued fraction (2.35) is precisely the function v0(ε) given by (4.63). For the other vn, note from (4.32)

that setting λ = C1/C2 = 0 in (4.62) is equivalent to taking d1/d2 = −1 in (4.60). Thus, without loss of

generality, by fixing d1 = 1 = −d2 in Theorem 4.1, for each n we obtain the explicit expression for vn(ε) > 0

in terms of ratios of Wronskian determinants. �

5. Conclusions

We have shown that the quantum minimal surface obtained from a pair of operators satisfying the

equation for a parabola, Z2 = Z2
1 , admits an exact solution in terms of modified Bessel functions, where

the positive solution of the associated discrete Painlevé I equation corresponds to a particular sequence of

classical solutions of the continuous Painlevé V equation with specific parameter values. The key to finding

this exact solution was to use the complex geometry of the discrete Painlevé equation, constructing the

associated Sakai surface, which identified the dPI equation with the action of a quasi-translation on the space

of initial conditions for Painlevé V. Once the appropriate parameters for the Painlevé V equation had been

found, this enabled us to compare with known results on classical solutions, and match these up the initial

conditions for the dPI equation, which identified the unique positive solution. While previous results in the

literature have expressed these classical solutions in terms of Whittaker functions (or equivalently, Kummer

functions), some current work in progress (by two of us in collaboration with Dunning) has allowed the

unique positive solution to be expressed with modified Bessel functions, which are a special case of Kummer

functions and Whittaker functions, cf. [25, Secs. 13.6 and 13.18].
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It is interesting to note that other instances of classical solutions of Painlevé equations have appeared

in the recent literature, providing the unique solutions of discrete Painlevé equations that satisfy positivity

or other special initial boundary value problems [36]–[38]. These particular unique solutions seem to arise in

specific application areas, such as random matrices and orthogonal polynomials, but it would be worthwhile

to see if they can be characterized in some other way (geometrically, for instance). In fact, the asymptotics

of oscillatory solutions of certain dPI equations, including (1.13), were recently considered in [39]. Such

solutions are known to arise from a growth problem defined by a normal random matrix ensemble [40], and

thus it is natural to wonder whether the unique positive solution of (1.13) has an interpretation in that

context.

A recent preprint by Hoppe [29] includes some comments on Whittaker function expressions for v0

and v2, which are equivalent to the ones that we have found. The latter work raises the question of whether

similar results should apply for other quantum minimal surfaces from rational curve equations of the form

Zr
2 = Zs

1 for positive integers r < s (with gcd(r, s) = 1), following a remark made at the end of [5], where

it is suggested that these curves should also give rise to discrete integrable systems. Indeed, condition (1.8)

gives rise to a difference equation for vn, which (after integrating) becomes an equation of order 2(s− 1):

this should be a discrete Painlevé equation of higher order. Some more details of the example (r, s) = (1, 3)

are considered in [29], where the difference equation in question is

vn(vn+1vn+2 + vn−1vn+1 + vn−2vn−1 + 1) = ε(n+ 1).

Preliminary investigations show that this equation admits a positive solution with analogous properties to

the case of the quantum parabola considered here: since the initial acceptance of this paper, the preprint [41]

has appeared, which relates the family of quantum (1, s) curves to orthogonal polynomials with complex

densities, recovers our expression for v0 when s = 2, and yields formulas for all vn as a (manifestly positive)

ratio of integrals. This and the other (r, s) curves are an interesting subject for further study: while various

higher order analogues of discrete Painlevé equations have been considered, there is currently no version of

the Sakai theory in dimension greater than two.
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