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Abstract

Terrestrial planet formation occurs within the inner regions of circumstellar

discs. Areas that remain beyond the reach of direct imaging due to current

resolution limitations. However, insights into the physical processes shaping

these regions can be gained by analysing the photometric variability of Young

Stellar Objects. This variability arises from a range of mechanisms, includ-

ing accretion dynamics, variable extinction, and stellar surface inhomogeneities,

each contributing valuable information about the structure and evolution of the

planet-forming environment.

We present a quantitative framework for comparing light curves based on vari-

ability fingerprints. These are two-dimensional histograms encoding the proba-

bility of observing a given increase or decrease in brightness over all timescales.

Applied to a refined subset of 240 highly variable young stellar objects from

our dataset, these fingerprints span variability from ±0.05 to ±2.0mag over

timescales of 1 day to 8.6 years, with > 90% achieving S/N > 3.

Dimensionality reduction via principal component analysis was found to yield

a topologically stable variability landscape, in contrast to the sample-sensitive

output of non-linear dimension reduction. The projections were minimally af-

fected by the addition or removal of individual sources, enabling robust com-

parison between observed and model-generated light curves. Simple sinusoidal

models with the cadence of an observed dataset and random phase occupied a

restricted region of principal component analysis space, indicating that cadence,

observing baseline, and photometric noise do not dominate the global structure.

Although principal component analysis provided a stable low-dimensional

representation, neither it nor t-stochastic neighbour embedding in conjunction
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with clustering algorithms revealed distinct clusters. Instead, the data formed

a continuum, reflecting the overlapping physical processes driving variability of

young stellar objects. Indicating that a continuous, rather than categorical,

framework is more appropriate.

Analysis of the loadings matrices for the two dominant principal components

revealed that the primary axis of variance corresponds to the onset timescale of

significant (∆mag > 0.3) variability, with 1–3 month trends being most influen-

tial. The second component primarily encodes long-term (> 1.5 yr) variability

of either increasing or decreasing brightness. By manually inspecting the light

curves of objects that lie near one another in the principal component analysis

projection, we confirmed that these neighbours display genuinely similar variabil-

ity patterns. This shows that the principal component coordinates successfully

group together stars with comparable light-curve morphology.

These results demonstrate that principle component analysis of variability

fingerprints provides a statistically robust and interpretable landscape for com-

paring observed young stellar object light curves and constraining synthetic vari-

ability models rooted in planet formation scenarios.

3



Contents

1 Introduction 12

1.1 The Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Star Formation - Gas Clouds to YSOs . . . . . . . . . . . . . . . 13

1.2.1 Collapsing Gas Clouds . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Classification of YSOs . . . . . . . . . . . . . . . . . . . . 14

1.3 Circumstellar Discs . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Photometric Variability of YSOs . . . . . . . . . . . . . . . . . . . 19

1.4.1 Accretion Variability . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Circumstellar Disc Extinction . . . . . . . . . . . . . . . . 21

1.4.3 Additional Causes of Variability . . . . . . . . . . . . . . . 22

1.5 Dimension Reduction and Clustering Algorithms an Overview . . 23

2 From Photons to Fingerprints 27

2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The Observatories . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Photometric and Colour Calibration . . . . . . . . . . . . . . . . . 29

2.4 Removing Photometry Outliers . . . . . . . . . . . . . . . . . . . 31

2.5 Identification of a Sample of Variables . . . . . . . . . . . . . . . 34

2.6 From Light Curves to Variability Fingerprints . . . . . . . . . . . 35

3 Comparing Stochastic Light Curves Using Clustering Algorithms 46

3.1 Algorithms and Processes Used in Clustering Workflow . . . . . . 47

3.1.1 Standard Scaler . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Principle Component Analysis (PCA) . . . . . . . . . . . . 48

3.1.3 Variance Maintained After Dimension Reduction . . . . . 52

4



3.2 Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 K-means Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Density Based Clustering with Noise (DBSCAN) . . . . . . . . . 57

3.5 t-Distributed Stochastic Neighbour Embedding (t-SNE) . . . . . . 59

3.6 Clustering Algorithm Parameters . . . . . . . . . . . . . . . . . . 61

3.7 Clustering Using DBSCAN . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Clustering Using K-means . . . . . . . . . . . . . . . . . . . . . . 68

3.8.1 K-Means Stability . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 What do Principal Components Represent? . . . . . . . . . . . . 76

4 Conclusions 82

4.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Appendix 86

5



List of Figures

1 a) A cold, dense region within a molecular cloud, approximately

5000 AU across, begins to collapse under its own gravity. b)

As collapse proceeds, material accretes onto a central protostar

surrounded by a rotating disc. c) Bipolar outflows (orange arrows)

emerge from the protostar, clearing material along the polar axes

while accretion continues through the disc. d) The system evolves

into a more compact configuration, with the disc shrinking to a

radius of around 100 AU, marking the later stages of disc evolution

before planet formation begins. . . . . . . . . . . . . . . . . . . . 14

2 Class system definitions for YSOs showing the circumstellar en-

velopes alongside their Spectral Energy Distribution(SED) (Vo-

gel, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 The evolution of a typical disc. Gas distribution shown in blue

and the dust in red. (Williams & Cieza, 2011) . . . . . . . . . . . 18

4 “Amplitude versus timescale for various flavors of YSO variabil-

ity. Blue indicates the accretion-related events, purple shows the

routine variability, either brightening or fading, that is detected

at longer wavelengths, which can be referred to as ’disk weather’.

In addition, red indicates extinction-related behavior, yellow, stel-

lar phenomena, and green, the variability expected from binary-

related phenomena” (Fischer et al., 2023). . . . . . . . . . . . . . 20

5 Light curve of the young star V350Cep situated in the NGC7129

cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6



6 Left: light curve of V350Cep with outliers highlighted in cyan.

Right: Example V-I vs V CMD plot of the same source. . . . . . 33

7 Welch-Stetson index of our YSO sample determined from all three

filter combinations, IV,R, IV,I , and IR,I from left to right. The

cutoff for highly variable objects used in this study is marked at

I = 2 with a solid line. We also indicate I = 1 and 0.5 with a

dashed and dotted line, respectively. . . . . . . . . . . . . . . . . 35

8 Smoothed variability fingerprint of V350Cep. . . . . . . . . . . . . 36

9 Plot of magnitude differences between light curve points with a

positive time difference of V350Cep, V-band. . . . . . . . . . . . . 38

10 Four variants of fingerprints using V350Cep V-band data. Top

left: 40x40 pixels, top right: 20x20 pixels, bottom left: 20x20

pixels with timescales less than one day excluding, bottom right:

9x16 adaptive pixels over same timescale as bottom left. . . . . . 39

11 Plot of mean fingerprint pixel value against number of fingerprints

in a stack for a randomly chosen pixel. . . . . . . . . . . . . . . . 41

12 Comparison of bootstrapped (left) and Poisson (right) uncertainty

maps for 20x20 pixel configuration (top) and 9x16 pixel configu-

ration (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

13 Comparison of uncertainty values of V350Cep V-band data, slope

value of 0.83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

14 Comparison of uncertainty values of the young star V350Cep for

low uncertainty values, slope value of 1.02. . . . . . . . . . . . . . 44

15 Two directions of greatest variance belonging to a set of data with

three dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7



16 Fraction of total variance captured by components after PCA.

Left: 9x16 fingerprints, Right: 20x20 fingerprints. . . . . . . . . . 53

17 An example of using 2D Euclidian clustering where the intra-

cluster distance is minimized (Murty & Devi, 2016). . . . . . . . . 55

18 Visualization of clustering using DBSCAN with t-SNE, minimum

samples = 20, epsilon = 20, perplexity = 5, on 240 variable 9x16

V-band fingerprints. . . . . . . . . . . . . . . . . . . . . . . . . . 64

19 The light curves of three random pairs of objects taken from clus-

ters shown in figure 18, top: cluster 0, middle: cluster 1, bottom:

outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

20 The light curve (left) and 9x16 fingerprint (right) generated by a

sine wave with a two year period and one magnitude amplitude

overlaid over a random HOYS object cadence. . . . . . . . . . . . 66

21 Left: Clustering using DBSCAN with t-SNE, epsilon = 20, per-

plexity = 5 and minimum number of samples 20, on 240 variable

9x16 V-band fingerprints. Right: Same as left with one fingerprint

added to sample based on a sine wave light curve. . . . . . . . . . 67

22 K-means clustering using 240 9x16 V-band fingerprints with PCA

dimension reduction applied. . . . . . . . . . . . . . . . . . . . . . 69

23 The light curves of three random pairs of objects taken from clus-

ters shown in figure 22, top: cluster 0, middle: cluster 1, bottom:

cluster 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

24 Left: K-means clustering using 240 9x16 V-band fingerprints with

PCA dimension reduction applied. Right:As left panel with one

fingerprint derived from a sine wave light curve added to data. . . 71

8



25 The means (center) and 20 standard deviations (ovals) of K-means

clustering using 240 9x16 V-band fingerprints one of which is boot-

strapped 1000 times (orange) . . . . . . . . . . . . . . . . . . . . 72

26 The means (center) and standard deviation (ovals) of K-means

clustering using 240 9x16 V-band fingerprints plus fingerprints

created from sine wave light curves with varying periods and an

amplitude of one magnitude whose cadence were varied approxi-

mately 960 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

27 The means (center) and standard deviation (ovals) of K-means

clustering using 240 9x16 V-band fingerprints plus fingerprints

created from sine wave light curves with varying periods and an

amplitude of half a magnitude whose cadence were varied approx-

imately 960 times. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

28 Left: Loadings vector heat map for principal component 1. Right:

Loadings vector heat map for principal component 2. . . . . . . . 78

29 Left: The mean fingerprint for all HOYS cadences generated from

a sine wave type light cure with a period on one month and an

amplitude of one magnitude. Right: As left with a period of eight

years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

30 top left: PC1=35.50 PC2=14.04, top right: PC1=32.10 PC2=9.64,

mid left: PC1=-0.19 PC2=0.15, mid right: PC1=-0.85 PC2=0.42,

bottom left: PC1=-7.58 PC2=1.41, bottom right;PC1=2.66 PC2=3.75 79

31 A selection of light curves with a high PC1 value (> 20). . . . . . 87

32 A selection of light curves with a low PC1 value (< −7). . . . . . 88

33 A selection of light curves with a high PC2 value (> 5). . . . . . . 89

9



34 A selection of light curves with a low PC2 value (< −7). . . . . . 90

10



List of Tables

1 Minimum Davies-Bouldin Index across the tested parameter space

of Perplexity and Epsilon, for varying values of minimum samples. 62

2 Multiples of π used to define approximate variability periods. . . . 75

3 Test results for code optimization of normalizing fingerprint columns,

40x40 configuration used 1000 times . . . . . . . . . . . . . . . . . 86

4 Mean slopes of comparison between Poisson and Bootstrapping

error values for every object. . . . . . . . . . . . . . . . . . . . . . 86

11



1 Introduction

1.1 The Project

Young Stellar Objects (YSOs) are stars in the early stages of formation, still

accreting material from their surrounding circumstellar discs and often exhibit-

ing variability due to dynamic processes in their immediate environments (Joy,

1945). The primary objective of this research is to develop a robust method for

comparing the light curves of YSOs with the ultimate goal of evaluating planet

formation simulations. These simulations begin with defined initial conditions

and model the dynamical and physical processes that lead to the formation of

planetary systems around low-mass stars. Of particular interest are terrestrial

planets, rocky Earth-like bodies composed predominantly of silicate materials

or metals. Characteristically, terrestrial planets possess solid surfaces, exhibit

higher densities relative to gas giants, and in our own Solar System, are located

closer to the Sun.

Planet formation occurs within a circumstellar disc of gas and dust surround-

ing the YSO. Terrestrial planets are believed to form within the inner regions

of these discs. However, direct imaging of these inner disc regions remains be-

yond the resolution capabilities of most current telescopes. Instead, variability

in the observed brightness of YSOs, driven by dynamic processes within the

disc, provides an indirect probe of disc structure and evolution. By quantifying

this variability over time, we aim to derive statistical representations of YSO

light curves, which can then be used to construct a comparative framework for

characterizing their behavior (Fischer et al., 2023).

For this framework to be meaningful, objects with similar light curve be-
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haviour should appear proximate in the visual or analytical representation con-

structed from their variability characteristics. The framework must exhibit

structural stability, that is, the overall arrangement of objects should remain

consistent as new data are incorporated or existing entries are modified.

To achieve this, we employ a suite of machine learning techniques, includ-

ing unsupervised dimensionality reduction and clustering algorithms. A brief

overview of these methods is presented in Section 1.5.

1.2 Star Formation - Gas Clouds to YSOs

1.2.1 Collapsing Gas Clouds

The process of star formation differs fundamentally between low- and intermediate-

mass stars (M < 8M⊙) and high-mass stars (M > 8M⊙) (Tan et al., 2014).

The formation of a low-mass star begins in cool molecular clouds often found

near massive, young stars (Lizano & Shu, 1987). These clouds, which can span

more than a hundred parsecs, are shaped by processes such as supernova explo-

sions, stellar winds, or galactic interactions. Star formation is governed by the

balance between self-gravity, which drives collapse, and supersonic turbulence,

which provides support against it. Although molecular clouds are globally sup-

ported against collapse by supersonic turbulence, gravitational collapse proceeds

locally within shock-compressed regions where the density becomes sufficiently

high (Stone et al., 1998; Mac Low et al., 1998).

Figure 1 illustrates a YSO at four distinct stages in its evolution toward

becoming a main sequence star. There is a substantial disparity between the

density of a molecular cloud core and that of the youngest observable stars.

Directly observing the gravitational collapse that bridges this gap remains ex-
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Figure 1: a) A cold, dense region within a molecular cloud, approximately 5000 AU across,
begins to collapse under its own gravity. b) As collapse proceeds, material accretes onto a
central protostar surrounded by a rotating disc. c) Bipolar outflows (orange arrows) emerge
from the protostar, clearing material along the polar axes while accretion continues through
the disc. d) The system evolves into a more compact configuration, with the disc shrinking to
a radius of around 100 AU, marking the later stages of disc evolution before planet formation
begins.

tremely challenging for two primary reasons. First, the interiors of molecular

clouds—where star formation occurs—are heavily obscured by dust, rendering

them opaque to optical wavelengths. Second, the collapse phase is both rapid,

typically lasting only a few thousand years, and rare, meaning only a small

fraction of stars are caught in this transient stage. Despite these observational

limitations, a combination of theoretical models and indirect evidence has al-

lowed astronomers to develop a coherent picture of the earliest phases of star

formation.

1.2.2 Classification of YSOs

As the protostar continues accreting mass, the in-falling gas forms a rotating ac-

cretion disc around it, funneling material onto the growing star. The increasing

pressure and temperature at the core lead to the emission of infrared radiation,

signaling the emergence of a protostar. During this phase, magnetic fields and

strong bipolar outflows help regulate the star’s angular momentum by expelling
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excess material. Eventually the surrounding envelope dissipates. Jets and out-

flows clear part of the envelope. The rest either accreting onto the star or being

blown away by stellar winds, revealing a pre-main-sequence object.

The Spectral Energy Distribution(SED), see figure 2, is used to classify YSOs.

An evolutionary stage of the object can be characterized by the relation of star

to disc emission. Lada (1987) defines three classes(1-3) of YSOs using SEDs in

wavelengths 2 < λ < 25µm using an infrared spectral index:

αSED =
dlog(λFλ)

dlogλ
(1)

Work by André et al. (1993) added an additional precursory stage to the

classification of YSO evolution, class 0. Due to the YSO being entirely shrouded

in its accretion envelope which is spherical at this stage, Class 0 objects are

undetectable at λ < 10µm. This protostellar stage is very short, ≈ 104yr, (Hueso

& Guillot, 2005). Class I objects, αSED > 0, are generally optically obscured

by their envelope. As the cloud continues to collapse, due to the conservation

of angular momentum, the envelope settles into an accretion disc. Class II

objects have cleared their envelope and have −2 < αSED < 0. The protostar

becomes optically visible at this point with the accretion disc contributing to

excess infrared emission. Class III objects have αSED < −2. By this stage most

of the disc has either been accreted onto the star or been dissipated by planet

formation or photo evaporation. These stars have very little excess emission.

Further work on refining the boundaries between classes has been carried out by

Greene et al. (1994). The evolution of a protostar from a Class 0 to a Class III

is in the order of 10Myr. Class II objects with masses below two solar masses

are known as classical T-Tauri Stars (CTTS). The prototype for this star being
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Figure 2: Class system definitions for YSOs showing the circumstellar envelopes alongside their
Spectral Energy Distribution(SED) (Vogel, 2013)
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a young variable star in the Taurus-Aur region (Joy, 1945). Class III objects

due to their lack of strong emission line features are known as Weak-line T Tauri

stars (WTTS).

As the star enters the T-Tauri phase it is characterized by strong magnetic

activity, erratic luminosity variations, and powerful winds that clear out the

remaining circumstellar material. T-Tauri stars are still contracting and gen-

erating energy through gravitational contraction rather than hydrogen fusion,

which has not yet fully ignited in their cores. The surrounding protoplanetary

disc, rich in gas and dust, may give rise to planets over time. Eventually, once

core temperatures exceed 10 million K, stabilizing the star as it reaches the

main sequence and enters a long period of steady nuclear burning. For stars

with masses up to approximately 1.1M⊙, energy generation is dominated by the

proton–proton (PP) chain. In more massive stars, the carbon–nitrogen–oxygen

(CNO) cycle becomes the primary fusion process.

1.3 Circumstellar Discs

After the protostellar stages, the envelope surrounding a YSO collapses into a

circumstellar disc. At the time of formation, the composition of this disc is ap-

proximately that of the interstellar medium (ISM), consisting of approximately

99% gas and 1% dust. Observing gas in circumstellar discs is more challenging,

as gas emits at specific wavelengths and its emission can be obscured by dust.

As a result, direct detection typically requires spectroscopic observations. In

contrast, dust is more readily observed, either through its thermal emission at

long wavelengths or due to its optical thickness at shorter wavelengths.

Disc masses do not increase with time as the core collapses implying a rapid

17



Figure 3: The evolution of a typical disc. Gas distribution shown in blue and the dust in red.
(Williams & Cieza, 2011)

accretion of material from disc to the young star. The low average luminosity

of YSOs, combined with the sudden accretion bursts observed in FU Orionis-

type objects, suggests that young circumstellar discs are gravitationally unstable

(Williams & Cieza, 2011). As a YSO evolves from Class I to Class II, the disc

mass has decreased to just a few percent of the central stellar mass. At this stage,

the disc is considered protoplanetary. For class II YSOs work by Mannings &

Sargent (2000), Natta et al. (2000), Acke et al. (2004) and Scholz et al. (2006)

shows that there is a large scatter, ∼ 0.5 dex, but confirms a ratio of Md

M⋆
∼ 0.1

for low mass stars.

Looking at figure 3 we see the following:

(a) Early in its evolution, the disc loses mass through accretion onto the

central star and far-ultraviolet (FUV) photoevaporation of its outer regions .

The photoevaporation caused by the FUV settles the disc into a truncated form.
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This limits its viscous expansion to a size of roughly several hundred AU in

diameter (Gorti et al., 2009).

(b) Simultaneously dust grains grow into larger bodies. These can begin

to settle towards the mid plane of the disc allowing them to form into rocks,

planetesimals and larger. Hence the flared dusty disc becomes flatter. This

steepens the slope of the mid and far-IR SED as a smaller fraction of the stellar

radiation is intercepted by circumstellar dust (Dullemond & Dominik, 2005).

(c) As the disc mass and accretion rate continue to decline, extreme-ultraviolet

(EUV) photoevaporation becomes more significant. At this point, the outer disc

can no longer replenish the inner disc with material, leading the inner disc to

drain on a viscous timescale (∼ 105 years). This results in the formation of an

inner hole of roughly a few AU in radius. Accretion onto the star halts. This

allows energetic photons from the star to impact the inner disc. The disc rapidly

dissipates from the inside out leading to a rapid transition from a CTTS to a

WTTS (Padgett et al., 2006; Cieza et al., 2007; Wahhaj et al., 2010).

(d) Once the remaining gas is cleared via photoevaporation, small (r < 1µm)

dust grains are removed by radiation pressure. Some of the larger grains spiral

inwards due to Poynting–Robertson drag. Those that reach the dust sublimation

radius are evaporated. What remains is a debris disc composed primarily of large

grains, planetesimals, and/or planets. This disc is of very low mass and may not

always be detectable (Williams & Cieza, 2011).

1.4 Photometric Variability of YSOs

The variability of YSOs led to their first identification (Joy, 1945). Photometric

variability in YSOs arises from several mechanisms, including the accretion of
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material from the surrounding circumstellar disc, extinction caused by the disc

itself, and stellar phenomena linked to the YSO’s rotation. The duration of these

variability events can range from hours to centuries, depending on their physical

scale and underlying cause. Figure 4 illustrates the relationship between the

amplitude of variability and its timescale. This project focuses on investigating

variability driven by the interaction between a YSO and its circumstellar disc

material, with particular emphasis on the inner disc region where terrestrial

planets are thought to form.

Figure 4: “Amplitude versus timescale for various flavors of YSO variability. Blue indicates
the accretion-related events, purple shows the routine variability, either brightening or fading,
that is detected at longer wavelengths, which can be referred to as ’disk weather’. In addition,
red indicates extinction-related behavior, yellow, stellar phenomena, and green, the variability
expected from binary-related phenomena” (Fischer et al., 2023).
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1.4.1 Accretion Variability

As YSOs evolve toward the main sequence, they accrete material from, or other-

wise disperse, their surrounding circumstellar discs. Most of a star’s final mass

is thought to be accumulated during short-lived episodes of high-rate accretion

in the earliest, protostellar stages (Class 0/I). These so-called episodic accretion

events have been proposed to resolve the ‘luminosity problem’.

To form a 1 M⊙ star within the typical 105 year protostellar phase, an av-

erage accretion rate of ∼ 10−5 M⊙ yr−1 is required. However, the luminosities

predicted from continuous accretion at this rate greatly exceed the observed lu-

minosities of most protostars (Kenyon et al., 1990). This discrepancy suggests

that a significant fraction of stellar mass is instead accumulated through brief,

intense bursts of accretion. Supporting this, Evans et al. (2009) found that ap-

proximately half of a star’s final mass is accreted during just 7% of its ∼0.5

Myr Class I lifetime. These episodic accretion events drive variability in YSOs,

increasing both their luminosity and photometric variability (see Figure 4).

1.4.2 Circumstellar Disc Extinction

Extinction caused by dust in the circumstellar disc of a YSO results in the

reddening and dimming of the light observed by telescopes. The circumstellar

disc that surrounds T-Tauri stars consists of mixed dust and gas which is flared

towards the outer edge of the disc (e.g. Kenyon et al., 1990; Greene et al., 1994).

Extinction can occur from warps or prominences in the disc as it rotates. These

events can take place periodically or aperiodically. For periodic events this is

determined by the radius of the warp. Assuming Keplerian rotation this radius

of the rotating material is given by:
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rc =

(
Pkep

2π

) 2
3

(GM⋆)
1
3 . (2)

Inner disc warps or stellar prominences near the corotation radius can lead to

occultations that occur with a period close to the stellar rotation period. The

prototypical object for this behaviour is AA Tau (Bouvier et al., 1999). This

system exhibits periodic dimming of approximately 1.4 magnitudes in the B, V,

R, and I bands, caused by a warped inner disc that regularly moves into the

line of sight. The dimming is nearly achromatic, suggesting that the dust grains

responsible for the extinction are larger than 1 µm.

Photometric variability in YSOs serves as a powerful diagnostic of the dy-

namic processes occurring in and around forming stars. Whether driven by

accretion bursts or variable extinction from circumstellar disc structures, these

fluctuations encode information about the physical environment and evolution-

ary state of the system. By characterizing and comparing such variability, we

gain critical insights into disc evolution, accretion processes, and the early con-

ditions that may influence planet formation.

1.4.3 Additional Causes of Variability

Surface spots on YSOs—regions hotter or cooler than the surrounding photo-

sphere—produce periodic photometric variability as the star rotates, typically

with amplitudes of 0.1–0.8 mag. This rotational modulation is commonly used

to infer stellar rotation periods but is degenerate with spot configuration and

requires multi-band data for accurate interpretation (e.g. Luger et al. (2021)).

Polar spots do not contribute to modulation unless there is asymmetry rela-

tive to the rotation axis. Additional variability in YSOs includes δScuti-type
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pulsations (P ∼ 0.05d, ∼0.01mag) in 1.5–3.5M⊙ stars and X-ray flares lasting

hours to days due to plasma temperatures around 107K (Bedding et al., 2020),

(Kirmizitas, Cavus & Aliçavuş, Kirmizitas et al.).

1.5 Dimension Reduction and Clustering Algorithms an Overview

Dimension reduction is a process used to simplify complex data by reducing the

number of variables or features while retaining essential information. The goal is

to make the data more manageable and easier to analyze without losing critical

patterns or relationships (Murty & Devi, 2016).

In many datasets, especially those with high-dimensional data (where there

are many features or variables), not all features contribute equally to understand-

ing the underlying structure. Dimension reduction techniques aim to identify the

most relevant dimensions or features that capture the majority of the variation

in the data, reducing the noise and irrelevant information.

This can be particularly useful in machine learning, data visualization, and

pattern recognition tasks, where working with fewer, more meaningful variables

can improve performance and make the data easier to interpret.

Clustering algorithms are a type of unsupervised machine learning technique

used to group similar data points together based on certain characteristics or

features. The goal is to organize a dataset into clusters, where each cluster

contains items that are more similar to each other than to those in other clusters

(Scitovski et al., 2021).

Clustering doesn’t require labeled data, as it aims to uncover inherent group-

ings or patterns within the data. These algorithms are widely used in fields like

data mining, pattern recognition, and customer segmentation. They can help
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identify patterns, trends, or outliers that may not be immediately obvious.

There are different types of clustering algorithms, each using different meth-

ods to define ”similarity” and to group data points. Some focus on the distance

between data points, while others might use density, probability distributions,

or other criteria (Murty & Devi, 2016).

Given the scope of this project, a deliberate decision was made to focus on

a limited number of techniques, with alternative clustering and dimensionality-

reduction methods briefly acknowledged to contextualise the chosen approach.

A range of linear and non-linear approaches are commonly applied to high-

dimensional time-series data, including Independent Component Analysis, Uni-

form Manifold Approximation and Projection, hierarchical clustering, and Gaus-

sian mixture models (Scitovski et al., 2021). These methods were considered in

a conceptual sense, but the techniques adopted here were selected to best ad-

dress the specific aim of grouping stars according to similarity in light-curve

morphology.

Two complementary analysis pipelines are therefore employed. The first con-

sists of a standard scaler followed by Principal Component Analysis (PCA) and

k-means clustering. This pipeline represents a conventional, widely used ap-

proach that provides a clear and interpretable baseline, allowing clusters to be

identified in a reduced space that captures the dominant sources of variance

in the fingerprint representations. PCA serves to reduce dimensionality while

mitigating noise and redundancy, and k-means offers a straightforward means

of partitioning the data into a fixed number of groups based on global variance

structure (Murty & Devi, 2016).

However, PCA is a linear technique and does not guarantee that objects with
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similar variability morphology will be well separated in Euclidean distance within

the reduced space. In particular, clusters corresponding to subtly different light-

curve behaviours may remain elongated or overlapping when projected onto the

leading principal components. For this reason, a second pipeline is employed,

consisting of a standard scaler followed by PCA, t-Distributed Stochastic Neigh-

bor Embedding (t-SNE), and Density-Based Clustering with Noise (DBSCAN)

(Hahsler et al., 2019).

In this second pipeline, PCA is again used as an initial step to reduce noise and

compress the data, after which t-SNE is applied as a non-linear dimensionality-

reduction method. t-SNE was chosen specifically for its ability to preserve local

neighbourhood structure in high-dimensional data, rather than for maintaining

global distances or variance. The primary objective of this work is to identify

stars with genuinely similar variability patterns, making local structure more im-

portant than the faithful representation of large-scale geometry. In this context,

t-SNE is well suited to revealing small-scale structure and separating populations

that remain blended in linear projections.

The density-based clustering algorithm DBSCAN is then applied in the non-

linearly reduced space. Although DBSCAN can in principle be applied directly

to PCA outputs, its reliance on distance thresholds and local point density makes

it sensitive to cluster shape and overlap. Applying DBSCAN after non-linear

dimensionality reduction allows density contrasts to be more clearly defined, im-

proving the identification of coherent groups corresponding to similar light-curve

morphology. Together, these two pipelines provide complementary perspectives,

one offering interpretability and a conventional baseline, and the other empha-

sising sensitivity to local structure without assumptions about cluster number
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or geometry (Hahsler et al., 2019). A more detailed description of the individ-

ual components of the two pipelines, along with the associated data analysis,

is intentionally deferred to Section 3, where their application is described in

context.
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2 From Photons to Fingerprints

2.1 Data

The data used are provided by the Hunting Young Outbursting Stars (HOYS)

citizen science project (Froebrich et al., 2018). The project is run by Dr. Dirk

Froebrich (University of Kent) with science co-leads Dr. Aleks Scholz (University

of St Andrews) and Justyn Campbell-White (European Southern Observatory).

The aim of the HOYS project is to provide a long-term, multi-filter photometric

study of young star forming clusters or star forming regions visible from the

northern hemisphere. The project has been running since October 2014 until

present and planned to run until at least 2040. The project observes 25 nearby

star forming clusters which are d<1 kpc and an age of less than 10 Myr. The

data are collected by a mixture of professional, university and amateur observa-

tories. HOYS data are used to conduct surveys of the 25 nearby young clusters

and star forming regions. Gathering statistics on the causes of variability of the

YSO. Including variability caused by inner disc obscuration and disc excess emis-

sion (Froebrich et al., 2024a). By studying the variability of YSOs, it is possible

to infer critical details about the structure and evolution of their circumstellar

discs. Variability in YSOs can arise from several mechanisms, including changes

in accretion rates, extinction due to disc inhomogeneities, and structural mod-

ifications influenced by planet formation processes (Lakeland & Naylor, 2022).

Analyzing these variations across multiple wavelengths allows for the character-

ization of disc morphology, dust distribution, and the presence of substructures

such as gaps and spirals, providing valuable insights into early stellar and plan-

etary system development. The inner disc, within four astronomical units of the
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YSO, cannot be resolved by telescopes for all but a few forming stars within 100

parsecs (Pott et al., 2010). A long term study of the photometric variability of

the YSOs within these clusters can provide the statistics necessary to determine

inner disc properties and insights into terrestrial planet formation.

2.2 The Observatories

The Hoys data are collected from a combination of amateur, university and

professional observatories1. Nearly all are situated in the northern hemisphere

with approximately 75% being in Europe but also some in North America. There

are nine young clusters visible in the winter, nine targets for the summer as

well as seven additional variable objects of interest on the HOYS target list 2.

Roughly 50% of the data are collected by three observatories. The university of

Kent’s Beacon observatory (BEACON), providing data totaling 44% of observing

time and 10% of images. The Astrolab (IRIS) observatory contributing 10% of

images and 3% of observing time and the Remote Observatory Atacama Desert

(ROAD) providing 46% of images and 7% of observing time. The HOYS data

is taken in six filters: Visual (V), Red (R), Infrared (I), Blue (B), Ultraviolet

(U), and Hydrogen Alpha (Ha). The Hoys project is a survey designed to be

carried out by small telescopes such as those used by Beacon, Iris and Road

observatories. The Beacon observatory consists of a 17” Planewave Corrected

Dall-Kirkham (CDK) Astrograph telescope situated at the University of Kent

(51.296633° North, 1.053267° East, 69m elevation). It’s CCD camera has a field

of view of approximately 1° × 1°. The usable field of view of the detector is

a circular area with a diameter of 1°, due to the vignetting of the corners of

1https://hoys.space/
2https://hoys.space/target-lists/
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the detector (Froebrich et al., 2018). Images taken by the observatory for the

HOYS project are currently taken in the following sequence: 180s integration

for V filter, 120s integration for R and I filters repeated eight times. All images

are dark and bias subtracted and flat-fielded using a set of 12 sky-flats. As

well as the three observatories mentioned data are provided by other amateur

astronomers via the HOYS website3. All images provided by the observatories

are subject to photometric and colour calibration which is detailed in the next

section.

2.3 Photometric and Colour Calibration

All images for the project are bias, dark, and flat corrected, uploaded to our

publicly available web server4, and preliminary calibrated. The astrometry in

the images is solved using the Astrometry.net software (Hogg et al., 2008).

Aperture photometry is performed on all images using the Source Extractor

software (Bertin & Arnouts, 1996). A deep image obtained at photometric

conditions is used as a reference for each region. The reference images for B,

V, R & I filters are from the Beacon observatory whilst the U-band reference

images are from the Thüringer Landessternwarte. By fitting a photo-function

and 4th order polynomial (Bacher et al., 2005), (Moffat, 1969) to matching stars

with accurate photometry, the calibrated magnitudes, f(mi), for all images into

the reference frames are obtained.

f(mi) = A · log(10B(mi−C) + 1) + P4(mi) (3)

3https://hoys.space/
4https://astro.kent.ac.uk/HOYS-CAPS/
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where mi is the instrumental magnitude and A,B and C are constants. P4(mi)

denotes a fourth order polynomial and the other term is a photocurve function

proposed by Bacher et al. (2005) and Moffat (1969).

Due to a significant fraction of amateur data using slightly different filters, in

particular from digital single-lens reflex (DSLR) cameras, the calibration of the

photometry needs to consider colour terms. Stars within the target region are

chosen that are known to not vary in colour and brightness. Stars with a Stetson

index I (Welch & Stetson, 1993) of less than 0.1 across the V, R & I filters were

considered to be non-variable (Evitts et al., 2020). For these non-variable stars

the median magnitude and colour is determined for all filters as reference for the

calibration. A unique function WN(m,c) for each image (N) is determined to

correct for any systemic magnitude offset caused by colour terms. Any filter can

be chosen that the star is detectable in. For example, for V-I the functional form

of the correction factor is a simple second order polynomial for both magnitude

and colour with no mixed terms and a common offset P0, i.e:

WN(m,V − I) = p0 + P2(m) + P(V − I) (4)

where P2 represents a second order polynomial without the offset (Evitts et al.,

2020). The five free parameters for the correction function WN(m,c) are then

determined. All non-variable stars detected in an image N are identified and the

difference between their magnitude and real magnitude is determined. Any stars

that have a larger than ± 0.5 mag difference and whose magnitude uncertainty is

greater than 0.2 mag are removed. It is required for at least ten non-variable stars

to be present in the image. The parameters for WN(m,c) are then determined

by performing a least-squares optimization of these magnitude differences. A
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magnitude mi dependent weighting factor wi is introduced for each star i during

the fitting process, due to the fainter non-variable stars far outnumbering the

bright ones.

wi =
1

(mi −min(mi)− 2)2
, (5)

where min(mi) is the magnitude of the brightest star included in the fitting

process. A three sigma clipping is used to ensure the fit is not influenced by

misidentified objects or stars showing previously undetected variability. The

median magnitude in V and I is then determined from all images taken within

±5 days of the observation to estimate a more representative uncertainty for

the photometry after the correction of systematic effects. Where uncertainty is

defined as the RMS scatter of the magnitude offsets of all calibration stars in

the image which have the same magnitude (within ± 0.1 mag) as the star in

question (Evitts et al., 2020).

2.4 Removing Photometry Outliers

Removing photometry outliers was carried out by H. Stokes-Geddes a PhD.

student working alongside myself as part of the larger project (Ryan et al.,

2025). As well as photometric and colour calibration our HOYS requires further

data quality control. This section describes the process developed for cleaning

the light curves of as many outliers as possible before the next stages of the data

analysis were carried out. An example light curve of a variable YSO is shown in

figure 5.

i) Given that the project is based on the statistics of variability of YSOs from

a high-cadence, long-duration survey, we made a preliminary cut of the light

curves with low cadences and insufficient time-series photometry data. B and
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Figure 5: Light curve of the young star V350Cep situated in the NGC7129 cluster.

Hα filter data were discarded within our sample, as both filters do not meet the

requirement for high cadence.

ii) We removed photometry within 5 arcmin of very bright stars (Gmag <

6 mag) at observatories where PSF wings were found to influence the measure-

ments, including the University of Kent’s Beacon Observatory.

iii) Some stars appear to have two brightness measurements within the same

image. This is likely due to either good seeing conditions revealing a binary

system (apparent or real) or tracking issues during image capture. All such

photometry has been removed.

iv) We are not interested in very short-term events such as flares. Thus, for

each light curve and filter, we determine the mean and root mean square (RMS),

see Equation 6, of all magnitude measurements. Any points deviating more than

four times the RMS from the mean are removed.
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Figure 6: Left: light curve of V350Cep with outliers highlighted in cyan. Right: Example V-I
vs V CMD plot of the same source.

RMS =

√√√√1

n

n∑
i=1

(mi − m̄)2 (6)

v) For each light curve, a V vs. R − I colour-magnitude diagram (CMD) is

created. For each V magnitude measurement, the R − I colour is computed as

the difference between the average of all R and I measurements taken within two

days of the V data. A linear perpendicular distance fit to the CMD is obtained,

and the RMS scatter perpendicular to the best-fit line is determined iteratively.

Any points deviating by more than three times this RMS value are removed

from the light curve. This process is repeated for all possible combinations of

the V , R, and I filters in the CMD, resulting in a total of nine iterations.

This process gave us a large set of light curves with filtered photometry data

from which to select a smaller sample of variable YSOs.
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2.5 Identification of a Sample of Variables

The above data extraction (performed on June 18th, 2024), calibration, and

’cleaning’ have been applied to a little over 3,000 light curves of potential HOYS

cluster members identified in (Froebrich et al., 2024b). This includes all clusters,

even if they were not analyzed in detail in that paper. For this study, we focus

on a sample of clearly variable light curves to use in our analysis. We removed

all objects that had fewer than 100 data points in V , R, and I after cleaning.

For each light curve, we computed the Welch-Stetson index, I, (Stetson,

1996). This metric measures the correlation of variability between two different

filters and is defined for the combination of V and I filters in equation 7. It

requires N contemporaneous brightness measurements and their uncertainties

in the two filters. These are calculated similarly to the colors in the CMDs over

a time window of two days.

IV,I =
√

1

N(N − 1)

N∑
i=1

(
Vi − V

σV,i

)(
Ii − I

σI,i

)
(7)

In this work, we focus only on data in the V , R, and I filters. Thus, we

compute three variations of the Welch-Stetson index: IV,I , IV,R, and IR,I . In

figure 7, we show how these values depend on the apparent magnitude of the

sources. Most stars exhibit only low-level variability; however, some objects

reach extreme I values, with the highest observed value being 1323. In our

analysis, we found that 8%, 5%, and 6% of the I values exceeded five for IV,R,

IV,I , and IR,I , respectively. To identify highly variable sources, we selected all

stars with an I value above two in all three filter combinations. This selection

results in a final sample of 240 highly variable sources.
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Figure 7: Welch-Stetson index of our YSO sample determined from all three filter combinations,
IV,R, IV,I , and IR,I from left to right. The cutoff for highly variable objects used in this study
is marked at I = 2 with a solid line. We also indicate I = 1 and 0.5 with a dashed and dotted
line, respectively.

2.6 From Light Curves to Variability Fingerprints

After data reduction, calibration, and the removal of photometric outliers, we

now have a sample suitable for the next stage of our analysis. A light curve is

a visualization of an object’s brightness over time. The x-axis represents time,

typically in days, while the y-axis represents brightness, measured in magnitude

on a logarithmic scale.

While light curves are useful for identifying features of an object’s variability

across multiple filters, they are not directly comparable. They capture an ob-

ject’s behavior over different time spans and at varying cadences. In a project

like HOYS, where data are collected from multiple observatories, observations

occur at irregular cadences due to factors such as target visibility, weather, and

observatory availability.

To directly compare the variability of multiple objects those objects need to

have the statistics of their light curves represented in a standardized way. Work

by Evitts et al. (2020) which improved upon work by Scholz & Eislöffel (2004),

Findeisen et al. (2015) and Rigon et al. (2017) has shown that the statistics of

light curves can be represented using a variability fingerprint. Figure 8 shows
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Figure 8: Smoothed variability fingerprint of V350Cep.

an example of a fingerprint of variability that is used in publications. These fin-

gerprints provide a standardized way to visualize the probability that the object

varies by a given magnitude for a set time period. Unlike figure 5 which shows

the behavior of the object in three filters a fingerprint represents the variability

of an object in just one filter. Although the dataset includes photometric mea-

surements obtained using six filters, the B, U, and Hα filters were excluded at an

early stage, as their low observational cadence was insufficient to provide reliable

long-term statistics on variability. The V, R, and I bands were all suitable for

this study in terms of data availability and cadence. For clarity and consistency,

only results based on the V-band data are presented in this thesis. Preliminary

tests applying the clustering workflows to the V, R, and I bands showed no

significant qualitative or quantitative differences in the resulting groupings.

To create a fingerprint, for every combination of two points in figure 5 with a

positive time difference, the difference between their calibrated magnitude and
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time is recorded and stored. These differences in calibrated magnitude are then

plotted against the differences in time giving a plot with a very large number

of points, see figure 9. Creating a large set of data for a given object allows

statistics to be applied to the objects variability. The HOYS survey is not

aimed at studying the variability of objects on timescales less than one day so

although recorded in figure 9 are excluded from all further stages of creating

the fingerprints. Any points that have a signal to noise ratio less than three are

excluded based upon the recorded uncertainty values recorded at the time of

observation.

A two-dimensional histogram is then created with the bin counts being deter-

mined from the points for that area in figure 9. The columns of the histogram

are then normalized to give a probability for each bin that an object varies by a

magnitude for a given time interval for one filter.

P (x, y) = N(x, y)/
M∑
i=1

N(x, i) (8)

No matter what the observing cadence or the number of observations made for an

object a uniform way of visualizing the variability of that object is now created.

Figure 10 shows how the fingerprints have been changed to attempt to capture as

much of the objects variability across as much of the image area as possible while

maximizing the signal to noise ratio of the fingerprint pixels. Top left is the 40x40

configuration that is usually used as a basis for the smoothed fingerprint released

in previous publications shown in figure 8. Top right is the 20x20 configuration

with the same time axis limits as top left. The bottom two panels in figure

10 both have a lower limit for the time axis of one day with left panel being a
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Figure 9: Plot of magnitude differences between light curve points with a positive time difference
of V350Cep, V-band.

20x20 configuration and the right panel being the 9x16 pixel configuration. The

columns for the 9x16 configuration fingerprint were created by starting with an

interval of 0.05 magnitude either side of zero and then increasing the the amount

of magnitude represented by 0.05 magnitude for each pixel away from the center

of the plot. We will refer to this type of pixel configuration as adaptive pixels.

A measure and representation of the uncertainty value for the fingerprint pixel

was now needed. To create an error value for each pixel the magnitude values

of the original light curve shown in figure 5 would be perturbed a large number

of times to create the same number of fingerprints, sometimes referred to as

’bootstrapping’. These fingerprints would then be stacked so that a mean and

standard deviation could be calculated for each pixel with the standard deviation

being the absolute uncertainty which when divided by the mean would give you

the relative uncertainty for each pixel, thus creating an uncertainty map for each
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Figure 10: Four variants of fingerprints using V350Cep V-band data. Top left: 40x40 pixels,
top right: 20x20 pixels, bottom left: 20x20 pixels with timescales less than one day excluding,
bottom right: 9x16 adaptive pixels over same timescale as bottom left.
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object.

This approach required the generation of a large number of fingerprints for

each object, resulting in a significant computational cost. It was therefore neces-

sary to minimise the number of fingerprints produced per object and to optimise

the fingerprint-generation code. To improve efficiency, the fingerprints and their

associated uncertainty maps were processed and stored directly as numerical

arrays, enabling the workflow to scale to large sample sizes and repeated re-

sampling. A revised, optimised version of the fingerprint-generation code was

developed specifically for use within the bootstrapping pipeline. The resulting

performance improvements are illustrated in Table 3, which demonstrates the

time savings achieved by replacing a loop-based column normalisation with a

vectorised matrix operation. To determine the optimal number of fingerprints

to stack during the bootstrapping process, a test stack of 150,000 fingerprints

was created for a single object. Several pixel positions were randomly selected,

and the mean pixel value was computed for different stack sizes drawn from this

set. The cutoff for the bootstrapping process was set at the point where the

mean pixel value stabilized within one standard deviation of its final value. A

random example of this convergence is shown in Figure 11, with the mean pixel

value for N = 150, 000 indicated by the red dashed line.

Although bootstrapping is a reliable method for finding the uncertainty of the

fingerprint pixel values it places time constraints on producing error maps for the

fingerprint of any given object especially for objects that have a large amount

of data points in their light curves. Working on the assumption that the counts

for each pixel in the original fingerprint before normalization would adhere to

Poisson counting statistics and the uncertainty of the counts could be expressed
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Figure 11: Plot of mean fingerprint pixel value against number of fingerprints in a stack for a
randomly chosen pixel.

as
√
Ni where Ni is the count of a given pixel i. An error propagation could

then be carried out to give an uncertainty value for the normalized values in the

fingerprints which represent the probability that an object varies in brightness

by a certain magnitude for a given time.

The relative uncertainty values for each pixel in the map created using Poisson

counting statistics were calculated using the following equations;

∆P (x, y)

P (x, y)
=

√√√√ 1

N(x, y)
+

( M∑
i=1

N(x, i)

)−1

(9)

Where N(x, y) is the count for any given pixel x, y and the column is given

by i giving an absolute uncertainty of ∆P (x, y) from which we can obtain the

relative uncertainty. Any pixels that return a value of infinity due to a division

of zero are given a value of one for plotting while maintaining its original value
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Figure 12: Comparison of bootstrapped (left) and Poisson (right) uncertainty maps for 20x20
pixel configuration (top) and 9x16 pixel configuration (bottom).

in the array. Figure 12 shows that the uncertainty maps for the Poisson and

bootstrap methods are similar for both pixel configurations. Also by using the

adaptive pixels the uncertainty values have been reduced for large parts of the

fingerprint area with only the left hand top and bottom corners having signifi-

cant uncertainty values. Given that the Poisson method would save considerable

time when producing uncertainty maps it was important to know if the Pois-

son method could be exchanged directly for the bootstrapping method. The

uncertainty value for each pixel using the Poisson method was plotted against

its corresponding pixel using the bootstrapping method. Linear regression was

then applied to give a slope value an example of which can be seen in figure
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Figure 13: Comparison of uncertainty values of V350Cep V-band data, slope value of 0.83.

13. If the slope value was one or very close to one then the error calculation

method described in equation 9 could be exchanged directly for the bootstrap-

ping method. The motivation being to save computation time. As HOYS data

consists of over 3000 objects in multiple filters calculating error maps using the

bootstrapping method requires significant computation time. The comparison

of uncertainty values was made for every object for a given configuration and

filter and a mean slope and its standard deviation were calculated. Any pixel

values with an uncertainty value greater than one third were excluded from the

regression calculation. Any objects that had fewer than two thirds of their pixels

with an uncertainty value less than one third were excluded from the calculation

of the mean slope. The full results of the mean slopes for each pixel and filter

configuration can be found in table 4. Given the values calculated for the av-

erage slopes and their standard deviation substituting the low compute Poisson

method for the higher compute bootstrapping method would depend on the cir-
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cumstances. The values are close enough that under time constraints one could

be substituted for the other but the difference between the values show that the

high compute method is preferable to obtain accurate uncertainty values. There

is also some structure to the difference between the values. Figure 14 shows that

when a plot is made of the uncertainty values below 0.025 the bootstrapped val-

ues are higher than those of the low compute Poisson method but have a slope

of 1.020 which is very close to one. It is worth noting that the line of best fit

does not imply anything about the uncertainty values beyond the range of the

calculated values. The line of best fit is being used to obtain a gradient between

the two methods and highlight this graphically. In figure 14 the line of best

fit intercepts the y-axis above zero this does not imply that the bootstrapping

method has an uncertainty value when the Poisson uncertainty value is zero.

Figure 14: Comparison of uncertainty values of the young star V350Cep for low uncertainty
values, slope value of 1.02.

We have now established a fingerprint configuration that yields a high signal-
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to-noise ratio in each pixel, together with a reliable method for calculating the

corresponding pixel-level uncertainties. The variability of each object can there-

fore be represented using a uniform fingerprint in which a large fraction of the

pixels have low uncertainty. In practice, this means that the vast majority, over

90% of the pixel values in the 9×16 adaptive fingerprints used to describe an

object’s variability are reliable. Constructing fingerprints in this way provides

the best opportunity to apply clustering algorithms effectively, allowing mean-

ingful insight into how changes in the variability of simulated objects influence

their relationship to the observed properties of real objects.
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3 Comparing Stochastic Light Curves Using Clustering

Algorithms

This section presents the methodology and results of applying clustering algo-

rithms to characterize the fingerprints developed in the previous section. The

goal is to use these algorithms to generate a stable visualization of the fingerprint

landscape. If a light curve can be simulated, a corresponding fingerprint can be

produced and compared to the HOYS dataset. To facilitate this comparison,

a model fingerprint will be created using an artificial light curve. This model

fingerprint will then be incorporated into the visualization to assess its relation-

ship to the HOYS data. This approach may be useful for testing the outputs

of simulations related to planet formation and the disc structures surrounding

YSOs. Insights into the HOYS data as a whole or subsets of the data and how

they relate to each other can also be gained.

The two clustering algorithms tested are DBSCAN and K-means. Both are

iterative methods but differ in their approach to cluster membership. K-means

determines cluster membership based on proximity to centroids, whereas DB-

SCAN uses core and border points to define clusters. Principle component analy-

sis (PCA) was used as a dimension reduction tool prior to using both algorithms.

T-Distributed Stochastic Neighbor Embedding (t-SNE) was used as part of the

DBSCAN workflow. See section 1 for details on any algorithms and processes

used in this section. Before the algorithms can be tested some analysis has to

be done to determine which of the fingerprint configuration is most suitable for

use in the clustering process. The most important metric being how much of the

data sets variability can be preserved during the dimension reduction process.
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The clustering algorithms have a number of parameters that need to be deter-

mined. While the parameters can be chosen arbitrarily within a sensible range

there are tests that can be done to determine the optimal value for parameters.

In the case of DBSCAN the tests will return a Davies-Bouldin index which will

help in determining these parameters. This index will also give a measure of

success of the clustering process using DBSCAN which will form part decision

on algorithm selection.

3.1 Algorithms and Processes Used in Clustering Workflow

This subsection outlines the processes and algorithms used in the clustering

workflow, along with the rationale for their selection. While other methods and

configurations were tested, they did not produce significantly different results,

either qualitatively or quantitatively. These tests explored alternative fingerprint

configurations and different sequences of dimensionality reduction during both

the pre-analysis clustering phase and the final workflow.

The methods and results presented here focus on the final workflow, which

employs the optimal fingerprint configuration and clustering algorithm. Addi-

tionally, this subsection includes an example of a workflow that was found to be

unsuitable for comparing YSO variability.

3.1.1 Standard Scaler

Standard scaler is a process used to standardize features by removing the mean

and scaling to unit variance, by transforming each component using the equation:

x =
P (x, y)− µ

σ
(10)
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where x is the component value, µ is the mean of component value, σ is the

standard deviation of component value and z is the new standardized value.

This results in the new component having a mean of zero and standard deviation

of one. Standard scaler is sensitive to outliers with variance more than one order

of magnitude. Given our components are normalized between zero and one this

makes it a suitable tool to scale our components. (Hastie et al., 2009)

3.1.2 Principle Component Analysis (PCA)

The two fingerprint configurations being considered for use in the clustering

workflow are the 20x20 linearly spaced pixels and the 9x16 adaptive pixels,

see figure 10. Both of these configurations have extremely high dimensionality

144 dimensions/features in the case of the 9x16 adaptive pixel and 400 dimen-

sions/features for the 20x20 pixel fingerprint. Without reducing the number of

features down to a small number of components it is not viable to compare our

240 sample of YSOs within a visualization. PCA is an unsupervised dimen-

sionality reduction technique used on data that have high dimensionality but

linear structure. It requires no prior knowledge of the dataset and will reduce

the dimensionality while preserving the variance within the linear structure (Sc-

itovski et al., 2021). It was first developed and introduced by Harold Hotelling

in the September and October issue of the Journal of Educational Psychology

(Hotelling, 1933a), (Hotelling, 1933b). The technique is used in clustering work-

flows and was a key step in the workflow used in this project. For all of the

applications of PCA used in the project the built in function within the SciPy

Python module was used5. The general method of PCA is outlined below for a

5https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html//
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case where there are three dimensions/features reduced to two principal compo-

nents.

The first process is to center the data around zero, in our case this is handled

by the standard scaler described in section 3.1.1. After this variances and covari-

ances of each feature are calculated to construct the covariance matrix. Variance

measures how much a set of values deviates from the mean. The variance of a

random variable X is given by:

Var(X) =
1

n

n∑
i=1

(Xi − X̄)2 (11)

where Xi are the individual data points. X̄ is the mean of X, given by:

X̄ =
1

n

n∑
i=1

Xi (12)

and n is the total number of observations. Covariance measures how two

random variables X and Y vary together. The covariance between X and Y is

given by:

Cov(X, Y ) =
1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) (13)

where Xi and Yi are individual data points for variables X and Y . X̄ and Ȳ

are the respective means:

X̄ =
1

n

n∑
i=1

Xi, Ȳ =
1

n

n∑
i=1

Yi (14)

and n is the total number of observations.

To understand how the variables relate, we calculate the covariance matrix:
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Σ =


Var(x) Cov(x, y) Cov(x, z)

Cov(y, x) Var(y) Cov(y, z)

Cov(z, x) Cov(z, y) Var(z)

 (15)

This symmetric 3× 3 matrix describes the variance along each axis and how

the variables correlate.

To find the principal component directions, we solve the eigenvalue equation:

Σv = λv (16)

where v are the eigenvectors which denote the directions of the principal

components and λ are the eigenvalues which represent the amount of variance

captured by each eigenvector. For data that has three dimensions/features there

will be three orthogonal solutions to equation 16. In PCA eigenvalues come from

the covariance matrix, which is always symmetric and positive semi-definite.

Therefore all eigenvalues in PCA are non-negative. The two solutions with

the largest eigenvalues are selected. These two solutions will have eigenvectors

that indicate the directions of maximum variance in the data (Hotelling, 1933a)

(Hotelling, 1933b). Figure 15 shows data with three dimensions/features with

the principal components as vectors which indicate the directions of maximum

variance across the data. Once the two eigenvectors corresponding to the largest

eigenvalues are selected the loadings matrix is formed:

Vselected =
[
v1 v2

]
(17)

where v1 and v2 are the eigenvectors for PC1 and PC2. Now we have every-
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Figure 15: Two directions of greatest variance belonging to a set of data with three dimensions.

thing necessary to transform our data to a new component space where PC1 and

PC2 are a linear combination of our original pixel values. In the general case of

the three dimensions reduced to two given:

vn =
[
a1 a2 a3

]
and Xn =


x1

x2

x3

 (18)

[
a1 a2 a3

]
·


x1

x2

x3

 = component value (19)

⇒ component value = a1x1 + a2x2 + a3x3 (20)

Through the PCA process we have effectively transformed our coordinate

set, see figure 15, such that one of the axis lie across the largest extent of the

data, this is component one. The orthogonal direction which indicates the next
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largest amount of variation forms component two. This method of dimension

reduction captures the largest amount of variance in the data while preserving

its linear structure (Murty & Devi, 2016). Our data has a high number of

dimensions ranging from 144 for the 9x16 adaptive pixel fingerprints to 1600 for

the 40x40 fingerprints. It is next required to evaluate how much of the variance

can be maintained after reducing the dimensions down to just two. The generally

recommended amount of variance to be captured by the first two components is

0.80-0.95 Jolliffe (2002) of the total variance. If an amount of variance of 0.80

can be maintained after PCA then the clusters should have a good separation

between them and be fairly dense. Given the work outlined in previous sections

regarding analysis of the fingerprints the 40x40 configuration was discarded. The

variance maintained after PCA dimension reduction for the 9x16 adaptive and

20x20 evenly sized configurations is investigated in the next section.

3.1.3 Variance Maintained After Dimension Reduction

Our data set has a high degree of dimensionality. Each fingerprint pixel repre-

sents a dimension, 144 in the case of the 9x16 adaptive pixel configuration and

400 in the case of the 20x20 configuration. Reducing those dimensions prior to

clustering can improve the outcomes and is essential for effective visual repre-

sentation. Dimension reduction can result in more distinct clusters and stable

positions of the objects in the visualizations. Without dimension reduction a

meaningful visualization of our data is not possible as it may not represent the

dimensions upon which the cluster allocations were made correctly. The type

of dimension reduction implemented on our data set was Principle Component

Analysis (PCA), see section 3.1.2 for details on any algorithms and processes
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Figure 16: Fraction of total variance captured by components after PCA. Left: 9x16 fingerprints,
Right: 20x20 fingerprints.

used in this section. Applying PCA to our data set for the 9x16 and 20x20

configurations we are able to determine how much of the variance of the data

set can be represented by two dimensions. The pixel values of the fingerprints

are scaled using the Standard Scaler then the variance captured by each pixel is

calculated. The variance captured can then be plotted on a logarithmic scale,

see figure 16. The first two components of the 9x16 fingerprints capture 0.48

of the total variance and of the 20x20 fingerprints captures 0.47 of the total

variance. As the fraction of the variance is very similar for both configurations

the clustering outcomes should not be affected by choosing one type of pixel

configuration over the other. This allows us to select the pixel configuration

with the lowest uncertainty values, shown in figure 13, the 9x16 adaptive pixel

configuration. This amount of variance captured by the first two components is

lower than would be expected to produce distinct clusters. The generally rec-

ommended amount of variance to be captured by the first two components is

0.80-0.95 Jolliffe (2002) of the total variance. Figure 16 shows the majority of

the variance preserved within that 0.48 of total variance is represented by the
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first component. Figure 16 shows only the first 70 components for clarity of pre-

sentation. The second component preserving around 0.1 of the total variance.

For further components the contribution to preserved variance reduces signifi-

cantly. Using more than two components would not add a significant amount of

variance in either case. Although the clustering algorithms are able to allocate

cluster membership based on any number of dimensions our aim is represent the

data in a 2D visualization.

3.2 Clustering Algorithms

Clustering is a way of separating different patterns into groups based upon the

characteristics of the patterns. Representations or descriptions of the clusters

formed are used in decision making. Clustering is carried out so that the patterns

grouped together in one cluster are similar and different from the other clusters

generated by some quantifiable measure. It is useful to represent patterns in 2D

space to enable the clustering process, it is then possible to use a method such

as the squared Euclidean distance between the points to group in clusters based

on some threshold (Zollanvari, 2023). The squared Euclidean distance between

two points xi and xj is defined as:

d(xi, xj) =
d∑

l=1

(xil − xjl)
2 (21)

where d is the dimensionality of the points. (Murty & Devi, 2016) Figure 17

shows an example of clustering where each pattern is clustered with its nearest

neighbour, this is an example of hard clustering where there are clearly defined

boundaries between the clusters. If a pattern belongs to more than one cluster
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Figure 17: An example of using 2D Euclidian clustering where the intra-cluster distance is
minimized (Murty & Devi, 2016).

then this is known as soft clustering. Clustering is useful for representing large

amounts of data by using representatives of a cluster such as a centroid or a

medoid. The centroid is defined as the sample mean of the points in the cluster

and the medoid is that point in the cluster from which the sum of the distances

from the points in the cluster is the minimum. Points that are far off from any

other points in the cluster should be labeled as outliers. The centroid of the

data can shift without any bound based on the location of an outlier or outliers

whereas the medoid cannot therefore clusters that use medoids are more robust

and less influenced by noisy patterns or outliers (Murty & Devi, 2016).

Clustering is a very important tool as the number of cluster representatives

is smaller than the number of patterns in the original data hence there is data

reduction and clusters and their descriptions can be used in decision making

processes such as classification or prediction.
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3.3 K-means Algorithm

A widely used clustering algorithm which can generate a hard partition of the

data is the k-means algorithm, an outline of the steps involved in this algorithm

are as follows

i) Select k out of the given n patterns as the initial cluster centres. Assign each

of the remaining n-k patterns to one of the clusters by assigning each pattern to

its closest centre.

ii) Compute the cluster centres based on the current assignment of patterns.

iii) Assign each of the n patterns to its closest centre.

iv) If there is no change in the assignment of patterns to clusters during two

successive iterations then stop, else return to the second step. (Murty & Devi,

2016)

The k-means algorithm was first developed by Stuart Lloyd in 1957 for an

internal Bell labs technical report but was not formally published until 1982

Lloyd (1982). Lloyd originally developed it for vector quantization but k-means

was independently described and popularized for clustering by James MacQueen

in 1967 (MacQueen, 1967). For all of the applications of k-means used in the

project the built in function within the SciPy Python module was used6.

K-means aims to partition data into k clusters by minimizing the sum of

squared distances between each point and its assigned cluster centroid:

J =
k∑

i=1

∑
x∈Ci

∥x− µi∥2 (22)

where k is the number of clusters, Ci is the set of points in cluster i, x is a

6https://scikit-learn.org/stable/modules/clustering.html#k-means//
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data point, µi is the centroid (mean) of cluster i, ∥x−µi∥2 represents the squared

Euclidean distance. Each point x is assigned to the cluster whose centroid is

closest:

cj = argmin
i

∥xj − µi∥2 (23)

where cj is the cluster assigned to point xj and µi is the centroid of cluster i.

After assigning all points to clusters, the centroids are updated:

µi =
1

|Ci|
∑
x∈Ci

x (24)

where µi is the new centroid for cluster i and |Ci| is the number of points in

cluster i.

∥µ(t+1)
i − µ

(t)
i ∥ < ϵ (25)

where ϵ is a small threshold and t is the iteration number. K-means stops

when either the centroids do not change position significantly or a maximum

number of iterations is reached (MacQueen, 1967).

3.4 Density Based Clustering with Noise (DBSCAN)

DBSCAN is a clustering algorithm that groups together points that are closely

packed while marking outliers as noise. Unlike k-means, it does not require

specifying the number of clusters beforehand. Instead, it relies on two parameters

ϵ, which defines the radius around a point and the minimum number of points

(MinPts) required to form a relatively dense region. Points within an ϵ radius of a

dense region are added to the same cluster, while isolated points are classified as
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outliers (Zollanvari, 2023). This makes DBSCAN especially useful for detecting

clusters of varying shapes and handling noisy data effectively. DBSCAN was first

introduced in work by Ester et al. (1996). For all of the applications of DBSCAN

used in the project the built in function within the SciPy Python module was

used7. An outline of the general method of DBSCAN follows below. Defining

the Neighborhood DBSCAN relies on a density-based notion of clusters. The

ε-neighborhood of a point x is defined as:

Nε(x) = {y ∈ X | d(x, y) ≤ ε} (26)

where d(x, y) is the distance (usually Euclidean) between points x and y and

ε is the neighborhood radius. Each point in the data is classified based on its

local density as core, border or noise points. A core point must have at least

(MinPts) points including itself in its ε-neighborhood:

|Nε(x)| ≥ MinPts (27)

A border point is classified as a point that has fewer than MinPts points in

its ε-neighborhood but is reachable from a core point. While a noise point is

neither a core nor a border point. A point p is directly density-reachable from q

if:

p ∈ Nε(q) and |Nε(q)| ≥ MinPts (28)

A point p is density-reachable from q if there exists a sequence of points

p1, p2, . . . , pn such that p1 = q, pn = p, and each pi+1 is directly density-reachable

7https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html//
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from pi (Ester et al., 1996).

A cluster is then defined as the set of all points that are density-connected to

at least one core point. DBSCAN clusters are formed as follows:

i) Select an unvisited point p.

ii) If p is a core point, a new cluster is started, and all density-reachable points

are added.

iii) If p is a border point, it is assigned to an existing cluster.

iv) If p is a noise point, it remains unassigned to a cluster.

v) This is repeated until all points are visited with the stopping condition all

points have assigned to clusters (Core or border points) or noise points (outliers)

(Hahsler et al., 2019).

3.5 t-Distributed Stochastic Neighbour Embedding (t-SNE)

t-SNE is a nonlinear dimensionality reduction technique that preserves local

structure in high-dimensional data while embedding it into a lower-dimensional

space. It was first introduced in work by van der Maaten & Hinton (2008).t-SNE

defines a probability distribution over pairs of points in the high-dimensional

space, modeling their similarity using a Gaussian distribution. The probability

that point xj is a neighbor of point xi is given by:

pj|i =
exp

(
− ||xi−xj ||2

2σ2
i

)
∑

k ̸=i exp
(
− ||xi−xk||2

2σ2
i

) (29)

where σi is the perplexity-controlled bandwidth of the Gaussian kernel around

xi, ||xi − xj||2 is the squared Euclidean distance between points xi and xj. The

symmetric joint probability is then defined as:
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pij =
pj|i + pi|j

2N
(30)

where N is the total number of points. In the low-dimensional space, t-SNE

models pairwise similarities using a Student’s t-distribution with one degree of

freedom (which is a Cauchy distribution):

qij =
(1 + ||yi − yj||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

(31)

where ||yi−yj||2 is the squared Euclidean distance between the low-dimensional

embeddings of xi and xj. The heavy-tailed Student’s t-distribution prevents the

”crowding problem.” The objective of t-SNE is to minimize the difference be-

tween the probability distributions P = {pij} and Q = {qij}. This is achieved

by minimizing the Kullback-Leibler (KL) divergence:

C =
∑
i

∑
j

pij log
pij
qij

(32)

This cost function ensures that similar points in the high-dimensional space

remain close in the low-dimensional space. To update the low-dimensional co-

ordinates yi, gradient descent is applied using the following gradient:

dC

dyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj||2)−1 (33)

This gradient ensures that points with high pij (i.e., close neighbors) are

moved closer together in the low-dimensional space.

The optimization process continues until the KL divergence converges (i.e.,

there is little improvement in cost function C). A maximum number of iterations
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is reached van der Maaten & Hinton (2008).

3.6 Clustering Algorithm Parameters

The two clustering algorithms chosen for use with our dataset require the specifi-

cation of parameters prior to execution. For the k -means algorithm, the primary

parameter is the number of clusters. As the k -means algorithm completes in a

relatively short amount of time on our dataset (within minutes), this parameter

can be determined empirically by running the algorithm with a range of clus-

ter values and examining the resulting visualizations and cluster memberships.

Given that the dataset represents variable YSOs with differing variability pro-

files, a value of five clusters was selected to capture the diversity of behaviours,

including those that do not fit neatly into specific categories.

For DBSCAN, three key parameters must be selected. The first is ε, which

defines the radius of the neighbourhood around a point. The second is the min-

imum number of objects required to form a cluster, referred to as minimum

samples. These two parameters are intrinsic to the DBSCAN algorithm. The

third parameter is perplexity, which pertains to the t-SNE dimensionality re-

duction technique used prior to clustering. Low perplexity values emphasize

the preservation of local structure over global relationships in the data (Hahsler

et al., 2019).

Optimization of ε and perplexity was achieved by evaluating the Davies-

Bouldin Index (DBI) across a sensible parameter space. For ε, values between

1 and 20 were tested. The commonly accepted range for perplexity is between

5 and 50. These parameters were evaluated at multiple intervals of minimum

samples, ranging from 5 to 50. The full results, including DBI scores and their
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associated parameters, are shown in Table 1. The DBI provides a quantitative

assessment of clustering quality, with lower values indicating more compact and

well-separated clusters. According to Davies & Bouldin (1979), a DBI greater

than 2 may indicate poorly separated or diffuse clusters, a range of 0.5–1.5 sug-

gests moderately well-separated clusters with some overlap or density variation,

and values between 0.1–0.5 imply highly compact and distinct clusters.

The minimum DBI achieved was just over 0.45, for two distinct values of

minimum samples, 20 and 35. For minimum samples 40–50 the requirement

of forming more than one cluster was not met. This indicates a strong clus-

tering result, with compact and well-separated clusters. However the DBI only

evaluates the quality of the clusters themselves and does not consider outliers.

A high proportion of uniformly distributed outliers between clusters may im-

ply that the overall data distribution forms more of a continuum than distinct

groupings, complicating the interpretation of the clustering structure.

Table 1: Minimum Davies-Bouldin Index across the tested parameter space of Perplexity and
Epsilon, for varying values of minimum samples.

Min. Samples Davies-Bouldin Index Perplexity Epsilon
5 0.607 6 14
10 0.765 13 5
15 0.582 10 7
20 0.460 5 20
25 0.836 6 16
30 0.819 9 7
35 0.463 7 16

In both cases a low value of perplexity was determined indicating there is

a strong priority on the local structure during dimension reduction. This can

make visualizations unstable when introducing an additional object to the data

set. Some analysis was also carried out on the parameter space using a silhou-
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ette score obtaining a maximum silhouette score of 0.4 for an epsilon of 18, a

perplexity of 5, and a number of samples of 20. Generally a silhouette score

of above 0.5 is required for separated distinct clusters (Murty & Devi, 2016).

The low silhouette score could derive from the fingerprints forming a continuum

or that it is not suitable as a metric for concave clusters such as those formed

by DBSCAN (Rousseeuw, 1987). The optimal set of parameters using the sil-

houette score as a metric again derived a low value for perplexity indicating a

landscape that is potentially unstable when fingerprints are added or removed.

3.7 Clustering Using DBSCAN

DBSCAN was chosen for clustering our data set primarily because it is not

sensitive to noise and will still form clusters. If there are outliers present they

will be identified as such and not given cluster membership based on an arbitrary

condition, number of clusters, prior to clustering. Clustering was carried out

using DBSCAN and 240 9x16 V-band fingerprints. The fingerprints were created

from light curves that have been cleaned of outliers using the method outlined in

section 2.4. Scaling was applied using the standard scaler. Dimension reduction

was applied using PCA from 144 down to ten components. The output was then

passed to t-SNE and the dimensions were further reduced to two components.

DBSCAN then applies a cluster label to each object to plot the visualization.

The results of the clustering using DBSCAN can be seen in figure 18 which

shows that clusters have been formed and a number of outliers identified.

By applying clustering algorithms to our data set we have two main objec-

tives. To group together objects that have similar properties and to have stable

landscape of objects that an artificial light curve can be introduced to give a
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Figure 18: Visualization of clustering using DBSCAN with t-SNE, minimum samples = 20,
epsilon = 20, perplexity = 5, on 240 variable 9x16 V-band fingerprints.

comparison against real objects. Figure 19 shows that there is some success in

the clusters containing objects that have light curves with similar properties.

The bottom panel shows in figure 19 shows two objects randomly chosen from

the outliers which do not qualify for cluster membership based on the parame-

ters of DBSCAN. The outliers are not expected to have similar properties and

are rather a collection of objects that do not fit into any cluster. The top and

middle pairs in figure 19 were randomly selected from two clusters and show that

by visual inspection that these two pairs of light curves have partially similar

features.

The main objective of the project is to introduce a light curve generated

by a simulation of a YSO with a planetary disc. For this the landscape of

objects shown in figure 18 should have a high degree of stability. That is to

say if an object is removed or added to the data set the original objects should
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Figure 19: The light curves of three random pairs of objects taken from clusters shown in figure
18, top: cluster 0, middle: cluster 1, bottom: outliers.
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Figure 20: The light curve (left) and 9x16 fingerprint (right) generated by a sine wave with a
two year period and one magnitude amplitude overlaid over a random HOYS object cadence.

maintain their position on the visualization and largely maintain the same cluster

membership. Using the cadence of a random light curve selected from the HOYS

data a sine wave was plotted as a light curve to be used as a simple analogue for

a simulated light curve. A sine wave with a period of two years and an amplitude

of one magnitude was chosen Although some stars would produce similar light

curve as a perfect sine wave a YSO with a surrounding disc would not. The

fingerprint was then created for sine wave light curve and then added to our

HOYS data for clustering.

Using the same DBCSAN Figure 21 shows the visualization of the DBSCAN

clustering after adding one fingerprint generated from a sine wave added to the

HOYS data. The sine wave has been given membership to the outliers which

was expected as its light curve properties are not analogous to those of a variable

YSO. Figure 21 shows that the data as a whole is now visualized very differently

from figure 20. Adding one object has prevented any clusters from being formed

with all objects being assigned as outliers. The structure of the data has also

been altered significantly highlighting the instability of this method of PCA then

t-SNE dimension reduction. The cluster membership is a secondary goal of the
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Figure 21: Left: Clustering using DBSCAN with t-SNE, epsilon = 20, perplexity = 5 and
minimum number of samples 20, on 240 variable 9x16 V-band fingerprints. Right: Same as left
with one fingerprint added to sample based on a sine wave light curve.

project with the stability of the landscape of objects being the primary objective

of the project.

A comparison of of the two clustering attempts, see figure 21 shows that the

landscape of objects has significantly changed. The change in the positions of

the HOYS objects would not allow a simulated light curve to be modified and

then added to the HOYS data to investigate the effects of those changes. The

cause of the instability in the landscape of objects is driven by the low values of

perplexity during the t-SNE process required for successful clustering. Typical

values for perplexity range from 5-50. For low values of perplexity, towards

five the algorithm focuses on preserving the local structure, highlighting small

clusters or local similarities. For high values of perplexity, the algorithm tries

to preserve more of the global structure showing larger clusters or overall data

trends. While DBSCAN has some utility in grouping light curves with similar

properties into clusters the instability driven by the low perplexity necessary for

clustering makes it unsuitable for our purpose of adjusting the properties of a

simulated light curve for comparison with the HOYS data.
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3.8 Clustering Using K-means

K-means is a less sophisticated algorithm than DBSCAN, which converges quickly

often within a few iterations. It has only one parameter that has to be defined

before use which is the number of clusters. This will determine the number of

centroids around which the clusters are formed. K-means is sensitive to outliers

and noisy data. Outliers can skew the clustering results since they pull the out-

liers towards them. These properties make k-means an ideal algorithm to test

if a stable landscape can be created into which an additional fingerprint can be

introduced, possibly an outlier, without disturbing that landscape. Given that

the number of clusters formed is less important for developing a stable landscape

the number of clusters chosen was arbitrarily chosen as five clusters. Clustering

was carried out using k-means and 240 9x16 V-band fingerprints. The finger-

prints were created from light curves that have been cleaned of outliers using the

method outlined in section 2.4. Scaling was applied using the standard scaler.

Dimension reduction was applied using PCA, reducing the dimensions from 144

to two. The k-means algorithm was then applied and the visualization can be

seen in figure 22.
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Figure 22: K-means clustering using 240 9x16 V-band fingerprints with PCA dimension reduc-
tion applied.

K-means does not assign fingerprints to outliers and as shown in figure 22 all

fingerprints have been assigned to one of five clusters based on their cartesian

distance to the cluster centroid. There is no separation between the clusters

although there is increased density on the left hand side of figure 22 with a lower

density of the fingerprints on the right hand side of the visualization.

Unlike the clusters shown in figure 18 those formed by k-means shown in

figure 22 have less separation between the clusters. Again three pairs of light

curves were selected from the most populous clusters zero, one and two. The

light curves shown in figure 23 show that light curves plotted from a particular

cluster do have similarity. This indicates that specific areas of the visualizations

do represent properties of the fingerprints being clustered. The landscape created

by clustering seems to be more of a continuum than distinct clusters. The
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Figure 23: The light curves of three random pairs of objects taken from clusters shown in figure
22, top: cluster 0, middle: cluster 1, bottom: cluster 2.
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Figure 24: Left: K-means clustering using 240 9x16 V-band fingerprints with PCA dimension
reduction applied. Right:As left panel with one fingerprint derived from a sine wave light curve
added to data.

difference in outcomes between DBSCAN and k-means is due to the differences

in the processes between these two algorithms.

K-means is only able to form convex cluster shapes around its centroid. DB-

SCAN also makes use of the t-SNE process as part of its dimension reduction

which helps mitigate the effect of noise in a high dimensional data set. This

process is not compatible with k-means and will lead to an outcome that is not

useful. DBSCAN has used a combination of t-SNE with a low perplexity pa-

rameter and concave cluster shapes to force clusters onto the data. However

the large number of outliers between the clusters in the DBSCAN visualization

and the application of k-means shows it is a continuum. A continuum would

still be useful for the purpose of comparison against a fingerprint derived from a

simulated light curve as it has been shown that different areas of the visualiza-

tion represent fingerprints of a differing profile provided it has stability. To be

considered high stability firstly the landscape of objects should not alter their

positions on the visualization when one object is added.

Figure 24 shows a comparison between two k-means clustering outcomes, the
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Figure 25: The means (center) and 20 standard deviations (ovals) of K-means clustering using
240 9x16 V-band fingerprints one of which is bootstrapped 1000 times (orange)

left with 240 fingerprints from our HOYS data and the right the HOYS data

along with a fingerprint created from a sine wave overlaid on the cadence of a

random HOYS data light curve with a period of two years and an amplitude of

one magnitude. Although this fingerprint represents an object which is unlike

a variable YSO it falls within the set of fingerprints. Its position is shown by

a black cross in the left hand panel of figure 24 in one of the least dense areas

of the the visualization. It can be seen from figure 24 that by adding the extra

fingerprint to the HOYS data does not seem to change the landscape although

a more rigorous test of this was required.

3.8.1 K-Means Stability

Using the bootstrapping process described in section 2.6 the magnitudes of one

light curve were perturbed to create a stack of 1000 fingerprints. K-means
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clustering was then applied to the HOYS data set including one layer of the stack

of perturbed fingerprints each time for 1000 runs. The mean of the principal

components were then plotted against each other along with an oval. The axes of

each oval being 20 standard deviations of the corresponding fingerprints principle

component value. It was necessary to use 20 standard deviations to highlight

that when a fingerprint is perturbed the landscape in blue is many times more

stable than the perturbed fingerprint in orange. Although successful this test

was based on perturbing the magnitude values by small amounts and to test

the stability more rigorously a more significant change to the fingerprints was

needed.

Figure 26: The means (center) and standard deviation (ovals) of K-means clustering using
240 9x16 V-band fingerprints plus fingerprints created from sine wave light curves with varying
periods and an amplitude of one magnitude whose cadence were varied approximately 960 times.

Figure 26 presents a more rigorous test of the stability of the principal com-

ponents, in which no multiplier of the principal component standard deviation

was required. Using the cadences from our HOYS sample of 240 light curves, a
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stack of 960 artificial light curves was generated by randomly shifting the phase

of each cadence four times and applying it to a sine wave of a given period. This

stack was then converted into a corresponding stack of fingerprints.

K-means clustering was applied to the HOYS dataset, including one layer of

the artificially generated fingerprints at a time, across 1000 runs. The mean

principal component values of each fingerprint were plotted against one another,

along with an ellipse whose axes correspond to the standard deviations of the

principal component values of those fingerprints. This procedure was repeated

for each period shown in Figure 26, and the resulting values were recorded.

The main plot in Figure 26 was constructed from a single 960-run process

using one specific period, while additional periods were plotted manually using

their recorded mean and standard deviation values. This manual plotting was

chosen to better represent how a single fingerprint might be compared against

a broader PCA landscape of objects. The periods used in Figure 26 are ap-

proximate and were selected as multiples of π, scaled to 365 days, in order to

avoid resonances with the observing schedule. These periods correspond approx-

imately to one month, six months, two years, four years, and eight years. Using

multiples of π ensures the periods are not harmonics of the typical observing

cadence.

The specific multiples of π used in Figure 26 are summarised in Table 2.

These were chosen to represent approximate values corresponding to familiar

durations while avoiding resonances with the observing schedule.
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Table 2: Multiples of π used to define approximate variability periods.

Approximate period π multiples Period (days)
One month 1

3.8π
× 365 ≈ 30.5

Six months 1
0.66π

× 365 ≈ 176
Two years 1

0.15π
× 365 ≈ 775

Four years 1
0.08π

× 365 ≈ 1450
Eight years 1

0.04π
× 365 ≈ 2900

These selected periods are representative of the range found in the HOYS

survey, although they do not capture the full diversity of variability timescales

observed in YSOs.

Figure 27 shows the same analysis performed using fingerprints generated

from sine wave light curves with an amplitude of 0.5 mag. While some differences

between the two plots are apparent, there is a clear correlation between the

relative positions of the periods in the PCA space. Specifically, shorter-period

signals tend to exhibit lower principal component 1 (PC1) values, while longer-

period signals are associated with higher PC1 values.
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Figure 27: The means (center) and standard deviation (ovals) of K-means clustering using 240
9x16 V-band fingerprints plus fingerprints created from sine wave light curves with varying
periods and an amplitude of half a magnitude whose cadence were varied approximately 960
times.

3.9 What do Principal Components Represent?

As discussed in Section 3.1.2, a principal component is a linear combination of

all input features, given by

Component = a1x1 + a2x2 + . . .+ anxn (34)

where xn is the value of the n-th pixel in a fingerprint, and an is the corre-

sponding coefficient from the loading matrix derived via PCA. These coefficients

are chosen such that the principal components are orthogonal and can be visu-

alized in a two-dimensional space. A principal component does not directly

represent any specific physical property of the fingerprints or the light curves

they are derived from. However, since the fingerprints encode the probability

76



that a YSO varies in brightness by a given amount over a given time period, the

components are influenced by the variability characteristics of the underlying

YSOs—particularly their periods—as demonstrated in Figures 26 and 27.

Figure 28 shows the loading vectors of the first two principal components as

a heat map, where each pixel corresponds directly to a pixel in the fingerprint.

Red pixels contribute positively to the component, while blue pixels contribute

negatively. Figures 31, 32, 33, and 34 show representative light curves with high

and low values for each component, revealing that regions of the PCA space

correspond to distinct light curve properties.

Light curves with low PC1 values tend to be highly stochastic, while those

with high PC1 values are typically long-period, near-constant light curves. These

high-PC1 light curves occupy the sparsest regions of the PCA landscape, corre-

sponding with our initial variability threshold of Stetson J > 2 across all three

filters. PC1 explains a substantial fraction of the variance in the sample (36%),

much more than PC2 (11%), which results in a more pronounced difference be-

tween the light curves in Figures 31 and 32 than between those in Figures 33

and 34.

Light curves with higher PC2 values tend to exhibit a long-term dimming

trend, while those with lower PC2 values tend to brighten over time. The area

with the highest magnitude in the PC2 loading map (Figure 28, right panel)

corresponds to the longest timescales. This aligns with the long-term brightness

trends, although Figure 26 also shows that the central rows of pixels on the y-

axis influence PC2 significantly. For sine-wave fingerprints, the mean PC2 value

increases with period (Figure 26) because longer-period signals exhibit higher

probabilities in the central two rows of pixels. Since these central rows contribute
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Figure 28: Left: Loadings vector heat map for principal component 1. Right: Loadings vector
heat map for principal component 2.

Figure 29: Left: The mean fingerprint for all HOYS cadences generated from a sine wave type
light cure with a period on one month and an amplitude of one magnitude. Right: As left with
a period of eight years.

positively to the PC2 value (as seen in Figure 28, right panel), the overall mean

PC2 increases with period up to roughly 300 days. On short timescales, however,

the sine-wave fingerprints resemble those of non-variable light curves.

An example of the mean fingerprint for the shortest and longest simulated

periods is shown in Figure 29. This illustrates how the higher pixel values within

the fingerprint are transformed by the loading matrix, resulting in fingerprints

associated with highly stochastic light curves exhibiting low PC1 values. As

demonstrated in Figure 29, once the period becomes sufficiently long, the finger-
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Figure 30: top left: PC1=35.50 PC2=14.04, top right: PC1=32.10 PC2=9.64, mid left: PC1=-
0.19 PC2=0.15, mid right: PC1=-0.85 PC2=0.42, bottom left: PC1=-7.58 PC2=1.41, bottom
right;PC1=2.66 PC2=3.75
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print becomes dominated by pixel values concentrated in the central two rows.

This shift leads to higher PC1 values, as those central pixels contribute more

strongly and positively to the first principal component.

A final test was conducted to assess the consistency of light curve morphology

among sources with nearly identical PC values. Figure 30 presents three pairs of

light curves whose corresponding PC1 and PC2 values are as similar as possible

within the dataset. The top pair, originating from the sparsely populated, high-

PC1 region of the PCA space, exhibits the greatest numerical difference between

their PC values among the selected pairs. Despite this, their overall light curve

morphology remains qualitatively consistent.

This comparison highlights that even in regions of PCA space where it is

not possible to select pairs of sources with nearly identical principal compo-

nent values, light curves with relatively close PC coordinates still exhibit strong

morphological resemblance. In the more densely populated areas, where many

sources share similar variability characteristics, the selected light curve pairs

show near-identical PC values and highly consistent morphology. This quan-

titative validation—when combined with the earlier qualitative assessments of

PCA clustering and fingerprint structure—further supports the robustness and

interpretability of the low-dimensional PCA landscape in capturing meaningful

and continuous variability trends among YSOs.

An analysis of the PCA loading matrices, already discussed, reveals that

the primary source of variance among the variability fingerprints is closely tied

to the timescale at which significant photometric variability—defined here as

changes greater than 0.3 mag—begins to manifest. The fingerprints demonstrate

that variability on intermediate timescales, particularly between one and three
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months, contributes most strongly to the first principal component. This finding

is consistent with earlier results linking PC1 to a continuum from stochastic

behaviour to long-period, low-amplitude variation, underscoring the dominant

role played by intermediate-scale variability in shaping the global structure of

the dataset in PCA space.

The second principal component, although accounting for a smaller propor-

tion of the overall variance, encapsulates long-term trends in brightness, typically

spanning periods greater than 1.5 years. These trends include steady dimming

or brightening, which may arise from evolutionary processes in the circumstellar

environment or changes in the accretion regime.

Together, these components offer a compact but powerful summary of the

diversity of variability behaviour within the sample. The PCA framework, com-

bined with the fingerprinting methodology developed in earlier chapters, enables

an efficient mapping of complex light curve morphology onto a low-dimensional

space, where distinct physical regimes and variability mechanisms can be more

easily interpreted and compared.
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4 Conclusions

The photometric treatment of our inhomogeneous HOYS dataset has been re-

fined. Building on the standard calibration established by Froebrich et al. (2018)

and Evitts et al. (2020), unreliable photometry was excluded near bright stars

and from images exhibiting tracking issues. Furthermore, potential photometric

outliers in colour–magnitude space were identified and removed from the analy-

sis. Based on the previously identified sample of approximately 3000 members in

the monitored young clusters (Froebrich et al., 2024b), and using long-term V ,

R, and I-band photometry, a subset of 240 highly variable YSOs was identified

(Ryan et al., 2025).

Variability fingerprints were constructed from the light curves of the sources,

mapping the probability that an object varies by a given amount over a given

timescale. This approach enables a quantitative comparison of the variability

statistics of stochastically varying sources with those derived from randomly

sampled light curves. By quantitatively comparing the uncertainties of finger-

prints at varying resolutions, the 9×16 adaptive fingerprint was identified as

producing pixels with the highest S/N ratio. Variability was probed over a

range from ±0.05mag to ±2.0mag on timescales spanning 1d to 8.6yr. A signal-

to-noise ratio exceeding three was achieved in over 90 percent of the fingerprints,

with low-S/N regions confined to short timescales and large amplitude variations.

Two methods were tested for calculating the uncertainty of fingerprint pixel

values. Bootstrapping of the light curves and uncertainty propagation based on

Poisson counting statistics. The fingerprint uncertainties were found to closely

follow Poisson statistics, with a regression coefficient of approximately 0.9 for the

9×16 fingerprint configuration in the V-band. Although bootstrapping produced
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the most accurate uncertainty estimates, it was computationally intensive and

impractical for generating uncertainty maps across all filters and configurations.

Dimensionality reduction using t-SNE was found to produce an unstable land-

scape, attributable to its non-linear nature. The positions of individual objects

shifted significantly upon modification of the sample, although the overall large-

scale structure remained recognizable. In contrast, PCA generated a highly

stable landscape in which the addition or alteration of a single object led to

only marginal displacements of the remaining points. With their positions rel-

ative to each other remaining almost constant. This stability permitted the

incorporation of model-generated fingerprints and the assessment of their rela-

tive placement with respect to the observed data. A further test demonstrated

positional consistency within the PCA landscape. Pairs of objects with closely

matching principal component values were selected from three distinct regions

of the landscape. Upon comparison, the light curves of each pair were found to

exhibit a strong subjective resemblance.

To evaluate this, simple sinusoidal light curves were simulated using varying

HOYS cadences and randomized phase shifts. These models occupied a limited

region within the observed landscape, indicating that observing time, cadence,

and photometric uncertainties do not strongly influence an object’s position.

Examination of the PCA loadings matrices revealed that the greatest variance

among the fingerprints was associated with the timescale at which significant

(>0.3mag) variability commenced, with timescales of 1–3 months identified as

most influential. The second most prominent factor was associated with long-

term (>1.5yr) trends, such as sustained fading or brightening behaviour in the

light curves.
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Although PCA yielded a stable and interpretable low-dimensional represen-

tation of the fingerprint data, neither PCA nor t-SNE in conjunction with k-

means and DBSCAN resulted in the formation of distinct, well-separated clus-

ters. Instead, the fingerprints formed a continuous distribution in the reduced-

dimensionality space, suggesting that the variability behaviour of YSOs spans a

spectrum rather than falling into discrete categories. This outcome is consistent

with the expectation that multiple overlapping physical mechanisms—such as

accretion variability, variable extinction, and rotational modulation—contribute

to the observed light curves, leading to a continuum of variability characteris-

tics rather than sharply defined classes. Consequently, clustering methods did

not identify statistically significant groupings, underscoring the importance of a

continuous representation for understanding and comparing YSO variability.

These findings demonstrate that PCA applied to variability fingerprints pro-

vides a robust and quantitative framework for comparing the variability charac-

teristics of observed YSO light curves with those derived from theoretical models

of the underlying physical mechanisms.

4.1 Further Work

A natural extension of this study involves the incorporation of more complex

simulated light curves to further refine and validate the fingerprinting and PCA-

based classification methodology. While simple sinusoidal models have proven

useful in tracing broad trends within the PCA landscape, they do not capture

the full diversity of variability observed in YSOs, such as accretion bursts, quasi-

periodic dipping, or complex stochastic behavior. Simulating light curves based

on detailed physical models including magnetospheric accretion and disc occul-
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tation will allow the construction of a library of physically motivated synthetic

fingerprints. These could be used as templates to more rigorously interpret re-

gions of PCA space, allowing a more direct link between observed variability

and underlying physical processes.

In addition, comparing the PCA distributions of fingerprints from multiple

YSO samples—spanning different star-forming regions, ages, or environments

may reveal consistent structural features or key differences in variability behav-

ior. Quantifying the degree of overlap between observed samples and simulated

fingerprints could lead to the development of a variability based index to eval-

uate the realism of planet formation simulations. If a simulation produces light

curves whose fingerprints do not occupy the same PCA regions as real YSOs,

this would suggest a discrepancy in the modeled physical conditions. Ultimately,

this methodology could serve as a diagnostic framework, enabling researchers to

constrain star and planet formation models by comparing their synthetic outputs

to the statistical and structural properties of observed variability.
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5 Appendix

Method Execution Time (s)
Using loop 9.301
Using matrix operation 0.007

Table 3: Test results for code optimization of normalizing fingerprint columns, 40x40 configura-
tion used 1000 times

Configuration / Filter Mean of Slopes Standard Deviation of Slopes
9x16 / V-band 0.864 0.084
9x16 / R-band 0.866 0.111
9x16 / I-band 0.832 0.086
20x20 / V-band 0.830 0.080
20x20 / R-band 0.832 0.128
20x20 / I-band 0.804 0.085

Table 4: Mean slopes of comparison between Poisson and Bootstrapping error values for every
object.
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Figure 31: A selection of light curves with a high PC1 value (> 20).
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Figure 32: A selection of light curves with a low PC1 value (< −7).
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Figure 33: A selection of light curves with a high PC2 value (> 5).
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Figure 34: A selection of light curves with a low PC2 value (< −7).
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