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Abstract

Large image collections generated from camera traps offer valuable insights into

species richness, occupancy, and activity patterns, significantly aiding biodiver-

sity monitoring. However, the manual processing of these data sets is time-

consuming, hindering analytical processes. To address this, deep neural net-

works have been widely adopted to automate image labelling, but the impact of

classification error on key ecological metrics remains unclear. Here, we analyze

data from camera trap collections in an African savannah (82,300 labelled

images, 47 species) and an Asian sub-tropical dry forest (40,308 labelled images,

29 species) to compare ecological metrics derived from expert-generated species

identifications with those generated by deep-learning classification models. We

specifically assess the impact of deep- learning model architecture, the propor-

tion of label noise in the training data, and the size of the training data set on

three key ecological metrics: species richness, occupancy, and activity patterns.

We found that predictions of species richness derived from deep neural net-

works closely match those calculated from expert labels and remained resilient

to up to 10% noise in the training data set (mis-labelled images) and a 50%

reduction in the training data set size. We found that our choice of

deep-learning model architecture (ResNet vs. ConvNext-T) or depth (ResNet18,

50, 101) did not impact predicted ecological metrics. In contrast, species-

specific metrics were more sensitive; less common and visually similar species

were disproportionately affected by a reduction in deep neural network accu-

racy, with consequences for occupancy and diel activity pattern estimates. To

ensure the reliability of their findings, practitioners should prioritize creating

large, clean training sets and account for class imbalance across species over

exploring numerous deep-learning model architectures.
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Introduction

To track progress toward conservation targets (CBD,

2022), there is a pressing need for the intensification of

biodiversity monitoring efforts at a global scale (Affinito

et al., 2025; Gonzalez et al., 2023; Scharlemann

et al., 2020). Steps toward standardized, large-scale moni-

toring are being introduced through the use of passive

monitoring sensors that can scale up data collection

efforts (Pimm et al., 2015; Pringle et al., 2025; Stephen-

son, 2020). Passive biodiversity monitoring sensors like

camera traps (e.g., Lee et al., 2024), acoustic monitoring

devices (e.g., Sethi et al., 2024), and satellite imagery (e.g.,

Wu et al., 2023) have allowed researchers to expand their

ecological surveys both temporally and spatially with

lower field costs and minimal environmental disturbance

(Browning et al., 2017). Furthermore, the use of such

devices provides standardized and reproducible survey

methods and data formats that facilitate collaboration

across projects and a network of sensors, slowly forming

a global monitoring system (Blount et al., 2021; Kays

et al., 2020; Steenweg et al., 2017; Wall et al., 2014).

Specifically, the utilization of camera traps has been

beneficial for monitoring medium to large bodied terres-

trial animals, primarily mammals (Burton et al., 2015;

Fisher, 2023). These autonomous, motion-activated cam-

eras can be used to collect a variety of ecological metrics

such as occupancy (MacKenzie et al., 2002), abundance

(Karanth & Nichols, 1998; Rowcliffe et al., 2008), and

activity levels (Rowcliffe et al., 2014), which can be used

to investigate complex interactions between wildlife, the

environment, and human activity (Barcelos et al., 2022;

Lee et al., 2024; Parsons et al., 2022) and to monitor the

success of conservation interventions (Ferreira

et al., 2020; Ferreira et al., 2023; Tobler et al., 2015).

However, a major limitation of camera trap surveys is the

data processing bottleneck, as millions of images need

labelling (Duggan et al., 2021; Thomson et al., 2018). This

bottleneck causes substantial delays in translating camera

trap images into information that can be used in conser-

vation efforts (Merkle et al., 2019).

Machine learning (ML) can increase the efficiency of

camera trap analysis and speed up the extraction of eco-

logical information. Deep neural networks have been

applied to camera trap and other image data to tackle

wildlife monitoring tasks such as locating and identifying

species (Miao et al., 2021; Tabak et al., 2019; Willi

et al., 2018), counting individuals (Norouzzadeh et al.,

2021), classifying behavior (Kholiavchenko et al., 2024;

Norouzzadeh et al., 2018) and estimating occupancy

(Whytock et al., 2021). The creation of a general animal

detector (MegaDetector) (Beery et al., 2019) has signifi-

cantly improved efficiency by filtering out empty images,

drastically reducing the number of images to be labelled

(Fennell et al., 2022; Penn et al., 2024). Other works

have exploited the context that accompanies camera trap

images to improve species classification directly (Beery

et al., 2020) or to learn representations in an unsuper-

vised manner to reduce the number of labels required

for training (Pantazis et al., 2021). Despite the growing

number of ecological projects that utilize deep neural

networks for image classification, evaluation is typically

performed through metrics such as the total, or species

level, classification accuracy. However, it remains

untested whether classification accuracy of a

deep-learning model is correlated with accuracy of

downstream ecological metrics that the detection data

are used for.

There is some evidence that ecological information

obtained using deep neural networks is comparable to

those generated by expert-labelled data. For example,

Whytock et al. (2021) found that ML-generated species

labels produced similar estimates of species richness, esti-

mated occupancy and activity patterns as expert-labelled

data. However, the data set focused on four species from

central Africa, so the spatial and taxonomic generality of

the findings are unclear. Practitioners developing

deep-learning models for species classification must make

a series of decisions with respect to the classification

model and the training data set, often constrained by lim-

ited compute resources, time to annotate images, or abil-

ity to review existing labels. Therefore, even though it has

been shown that models with deeper architectures with a

higher number of parameters (He et al., 2016), large

training data sets (Deng et al., 2009; Lin et al., 2014), and

a low proportion of noise in the training data set (Rol-

nick et al., 2017; Sukhbaatar et al., 2015) benefit the clas-

sification accuracy of a deep neural network, it is unclear

what the impact of such factors have on downstream eco-

logical metrics.

Here, we analyze camera trap data from two ecosys-

tems, African Savannah (Maasai Mara, Kenya) and Asian

sub-tropical dry forest (Terai region, Nepal) to compare

ecological metrics derived from expert-generated image

labels with those generated by a trained deep neural net-

work. We specifically assess the impact of neural network

model architecture and depth, training data set size, and

proportion of noise in the training data set on producing

three key ecological metrics: species richness, occupancy,

and activity patterns. It is expected that as these manipu-

lations reduce the classification accuracy, the resulting

ecological metrics will deviate further from those pro-

duced from expert-labelled data. We expect there may be

some robustness in species richness and occupancy, as

these only require one positive detection per survey occa-

sion to contribute to the metric. However, activity
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patterns may be impacted more strongly by a reduction

in model accuracy due to the high temporal resolution in

the underlying detections. We also explore the relation-

ship between conventional ML evaluation metrics (Top-1

Accuracy, Precision, Recall, and F1 score) and accuracy of

ecological metrics. Given the shortage of time and

resources typically associated with a conservation project,

it is not realistic for practitioners to optimize for every

parameter. Through our analysis, we aim to shed light on

the corresponding impact such factors have on the accu-

racy of downstream ecological analysis to aid practitioners

in their decision making.

Methods

Camera trap data

We collected camera trap data from two ecosystems, Afri-

can Savannah (Maasai Mara, Kenya) and sup-tropical dry

forest (Terai region, Nepal). The field sites were part of

the Biome Health Project, a field-based study system

investigating the impact of human pressures and conser-

vation interventions on biodiversity (https://www.

biomehealthproject.com/). Each field site covers a gradi-

ent of anthropogenic pressure, but the type of pressure

varies between ecosystems (Ingram et al., 2021). Both sur-

vey sites were set up using the same survey design. At

each field site, un-baited Browning Dark Ops 2017 cam-

eras were deployed evenly across a grid of 2 km2 cells. A

single camera was placed as close as possible to the cen-

troid of each survey grid cell and were not biased towards

trails or roads. Cameras were attached to a tree or a post

at a height of ca. 50 cm, were operational 24 h/day with

a 1 s delay between sequential triggers.

Maasai Mara camera traps (MMCT)

Data were collected from 176 camera traps deployed in

four protected areas in the Maasai Mara, south-western

Kenya: the Mara Triangle (MT), Mara North Conservancy

(MN), Olare-Motorogi Conservancy (OMC), and the

Naboisho Conservancy (NB), which each have different

restrictions on livestock grazing and human activities.

The data were collected throughout October and Novem-

ber 2018 and contains images from 47 species, or groups

of species. The data used in this analysis were collected

between October 5th and November 29th, 2018 and have

previously been published in (Connolly et al., 2025).

Human infrastructure data were obtained from Klaassen

and Broekhuis (2018), and used to calculate the shortest

distance from each camera trap station to human devel-

opment, including settlements, bomas, towns, dams, and

agriculture (Connolly et al., 2025).

Bardia camera traps (BCT)

148 cameras were deployed across three contiguous areas

under different land management regimes in

south-western Nepal: Bardia National Park (NP), the

Buffer Zone (BZ), and outside the Buffer Zone (OBZ).

These three areas vary in the level of restriction of human

activities and development. The survey area therefore

covers a gradient of pressure in the form of increasing

habitat fragmentation, human density and agricultural

activities. The data used in this analysis were collected

between February 13 and April 16, 2019 and have previ-

ously been published in Ferreira et al. (2023).

Data labelling

We labelled both camera trap data sets by identifying spe-

cies in each image using the Visual Object Tagging Tool

(VOTT) (Microsoft, 2023). Before labelling, images were

systematically sampled by using a set time interval of five

minutes for MMCT and one minute for BCT, to avoid

labelling the same event multiple times (Connolly

et al., 2025; Ferreira et al., 2023). The time intervals dif-

fered between data sets due to environmental differences

between the two ecosystems; the Masai Mara is domi-

nated by large herds of herbivores which consistently trig-

gered the camera, creating an image data set an order

magnitude larger than the BCT data set for the same sur-

vey effort. During labelling, bounding boxes were drawn

around each animal, vehicle, or human present in a

photo. Images that were hard to identify were shared

amongst the labelling team for a second opinion. After

labelling, tagging accuracy for each species was checked

by randomly sampling 10% of images per species, and

any species with poor sampling accuracy in the sample

(>3% error rate) were entirely relabelled. This ensured

that both manually labelled data sets are highly accurate

and contained minimal errors. To account for the fact

that some species were under-represented within our col-

lected data, relevant and visually similar species were

grouped together where necessary, resulting in a list of

labels that consists of either species or species groups

(Table S1; Table S2).

For deep neural network training, the labelled images

from each data set were split into subsets for model train-

ing, model validation and testing model performance.

The data set was split temporally, not accounting for

class, to ensure each subset had even spatial coverage

across the survey area. Due to the shorter collection times

of these data sets (2 months for MMCT; 1 month for

BCT), seasonality did not need to be considered when

creating these subsets. The MMCT data set was split into

53,102 images for model training, 5879 images for
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validation, and 23,319 images for testing model perfor-

mance. The BCT data set was split into 28,210 training,

3119 validation, and 8979 test images. For the final eco-

logical analyses, we performed a series of filtering steps by

first applying a minimum threshold of 20 expert labels

per species in the test data set, as this allowed a reason-

able classification accuracy to be quantified. We also

removed domestic species, birds and any species groups

that contained combinations of visually similar species

(e.g., small cat category in BCT contained domestic cat

and jungle cat). This resulted in 20 mammal species from

the MMCT data set and 8 mammal species from the BCT

data set (Table S3).

Ecological analysis

Species richness

Species richness was measured as the count of wild spe-

cies observed at each camera trap location (a single cam-

era trap deployment) over the entire survey period, using

species detections from either the expert-generated labels

or labels predicted by a deep neural network.

Occupancy

We adopted a multi-species occupancy framework to esti-

mate occupancy while accounting for imperfect detection

(Dorazio et al., 2006). Given the differences between the

two study areas, we implemented slightly different occu-

pancy models for the MMCT and BCT data sets (see Sup-

plementary Text 1 and 2 for model specifications). To

quantify the impact of deep neural network-based image

classification on ecological responses, we investigated the

effect of variables that had a strong influence on occu-

pancy according to the model results: shortest distance to

human infrastructure in the MMCT data set and manage-

ment regime in BCT data set (following Ferreira

et al., 2023). We ran both occupancy models on the spe-

cies detections from either expert-generated labels or

labels predicted by a deep neural network and extracted

the species-specific model coefficients with 95% credible

intervals from the posterior distributions.

The model coefficients represent the effect of a variable

on occupancy, i.e., the response of zebra occupancy to

distance from human infrastructure. For the MMCT

occupancy model, we extracted the raw coefficients of dis-

tance to human infrastructure as the response, as this is a

continuous metric. For the BCT occupancy model, “man-

agement regime” is a categorical variable, so we calculated

the difference in occupancy probability between national

park (NP) and outside buffer zone (OBZ) as the response

to changing management regime.

Activity patterns

We estimated the diel activity pattern of each species by

fitting a circular kernel density function using the activity

R package (version 1.3.4) (Rowcliffe, 2023). The kernel

density function calculates the probability a species is

active at each moment over a 24-hour period. To avoid

large biases in estimates, only species that had ≥20 detec-

tions were included in the analysis (Rowcliffe

et al., 2014). For each species, we calculated activity pat-

terns from detections from expert-labelled data and the

deep neural network, and compared them by calculating

the bootstrapped overlap coefficient of the two activity

patterns using the overlap R package (version 0.3.4)

(Meredith & Ridout, 2023). The resulting overlap coeffi-

cient ranges from 0 to 1, where a value of 1 means perfect

overlap between the two activity patterns. In this case, a

higher overlap value indicates high ecological accuracy of

the deep neural network-generated labels when compared

to the expert labelled data.

Deep neural network experiments

To investigate the impact of deep neural networks on

downstream ecological metrics, three experiments were

run, each of which manipulated a different aspect of the

training pipeline. We varied the underlying model archi-

tecture, the size of the training set, and the proportion of

noise (incorrect labels) within the data set. Except for the

model architecture experiment, the baseline model uti-

lized for each experiment is a ResNet50 CNN (He

et al., 2016). This model is commonly used as a baseline

in machine-learning experiments. All experimental deep

neural network models were sourced from the PyTorch

library (Paszke et al., 2019). Across all experiments we

utilized transfer learning (Yosinski et al., 2014), where

neural network models were initialized from weights

obtained via pre-training on ImageNet (Deng

et al., 2009). This approach has demonstrated benefits for

biodiversity monitoring by improving model accuracy

(Willi et al., 2018). The model training was conducted on

crops of each animal image (determined by the bounding

box drawn in the labelling process) given that this

approach has shown to benefit model accuracy (Beery

et al., 2018; Gadot et al., 2024; Norman et al., 2023). We

trained the classifier on all classes from the training set

(Table S1; Table S2), but we only make predictions for

the subset of classes that belong to the list of species on

which the ecological analysis is conducted (Table S3). For

evaluation of trained deep neural networks, we predicted

labels on a held-out test set and applied a 70% confidence

threshold across all experiments, as filtering out uncertain
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labels has been shown to improve the robustness of the

resulting ecological analysis (Whytock et al., 2021). The

deep neural network predictions are then treated in the

same way as expert-labelled data sets and used to calcu-

late the ecological metrics described above as well as con-

ventional ML evaluation metrics.

Impact of deep-learning classification model

To examine the impact that model architecture and depth

have on downstream ecological metrics, four model types

were compared. These were three ResNet (He et al., 2016)

models with varying depth, ResNet18, 50, and 101. We chose

to use the ResNet architecture because of its widespread use

in computer vision research on camera trap data (Beery

et al., 2018; Willi et al., 2018). The inclusion of three ResNet

models at multiple depths allows us to explore the impact of

using deeper models. In addition, a ConvNeXt-T model was

used. This CNN uses a modified version of a ResNet archi-

tecture that takes inspiration from state-of-the-art vision

transformer (ViT) models to achieve a higher performance

with almost half the number of parameters as ResNet101

(Liu et al., 2022). The ConvNeXt-T model has similar per-

formance to many ViT variants with similar parameter

counts (Pucci et al., 2023; Vishniakov et al., 2024).

Impact of training set label noise

To investigate the impact of label noise (incorrect labels)

on downstream ecological metrics, we created six versions

of each training set (MMCT and BCT) with varying levels

of label error, from 1% to 50% of examples mis-labelled.

For a realistic simulation of label errors within each spe-

cies, the iNaturalist citizen science platform (iNatural-

ist, 2023) was used to retrieve the three species that were

most commonly misidentified as the original species that

also exist in our data (Tables S4 and S5). In the case that

three species were not available from iNaturalist, another

species from the data set was randomly selected.

Impact of training set size

To investigate the impact of training set size on downstream

ecological metrics, seven versions of the training set were

created for each data set (MMCT and BCT) where the num-

ber of labels for each species was varied, from 100% of the

original training set to 1% of the original training set.

Correlation between machine-learning
evaluation and ecological metrics

To describe the relationship between deep neural network

accuracy and ecological metric accuracy, we measured the

correlation between classification error and ecological

accuracy. To quantify “ecological accuracy,” we took the

absolute difference between the species-level occupancy

coefficients measured from expert-generated labels and

deep neural network-generated labels. For activity pat-

terns, 1 minus the species-level overlap value was used, so

that for both metrics, a 0 value equates to perfect predic-

tion, i.e., no deviation between expert-labelled data and

classifier prediction. To quantify classification error, we

use four metrics commonly utilized to evaluate deep neu-

ral network classification performance: Top-1 Accuracy.

(proportion of correct classifications among all images),

Precision (proportion of true positives among all positive

predictions), Recall (proportion of true positive predic-

tions out of all actual positives, including false negatives),

and F1 Score (harmonic mean of Precision and Recall).

To test correlation with ecological metrics, we use the

error rates of these metrics, i.e., Top-1 Error, Precision

Error, Recall Error, and F1 Error, which are calculated as

1 � metric.

Results

Species richness

We found that species richness predicted from

DL-generated labels was robust to different model archi-

tectures and model depths but was impacted by high

levels of noise in the training data and reduction in train-

ing set size, particularly in the BCT data set which is rela-

tively smaller (Fig. 1a,d). Each of the four DL models

accurately estimated the number of species present at

each location compared to expert-labelled data. Although

the error was slightly higher in the BCT data set than the

MMCT data set, this did not appear to be driven by any

particular DL model. In contrast, when there is more

than 10% label noise in the data set, species richness is

underestimated (Fig. 1b,e). Reduced training set size also

had an impact on underestimating species richness, but

to different degrees between the data sets. For the MMCT

data set, an impact of reduced training set on predicting

species richness is clear at 10% of the original size

(Fig. 1c). However, for the BCT data set, this impact is

clear from 25% and below (Fig. 1f).

Occupancy modelling

The results of occupancy modelling showed that species’

labels predicted from deep neural networks can recover

some species-specific responses to environmental covari-

ates, even with high levels of manipulation to the training

set (Fig. 2a). However, responses of less common and

visually similar species were not predicted consistently. In
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the MMCT occupancy model derived from

expert-generated labels, four species had posterior esti-

mates indicating higher occupancy at sites further from

human infrastructure, 13 species showed little evidence of

an effect, and three species has estimates suggesting lower

occupancy (Fig. 2a). Posterior distributions for elephant

(n = 549 training images) and zebra (n = 4424 training

images) consistently indicated positive effects across all

DL models, even with up to 10% label noise and 10% of

the original training set size. These effects were not evi-

dent for eland (n = 407 training images) and inconsistent

for topi (n = 1440 training images). Some species had

coefficients with 95% credible intervals overlapping zero

in occupancy models from expert-generated labels (e.g.,

hippopotamus) yet showed strong posterior evidence for

positive effects in many of the DL-predicted data sets.

This pattern was more common for species with negative

coefficients, such as vervet monkey (n = 382 training

images) and Grant’s gazelle (n = 543 training images).

Grant’s gazelle is visually similar to Thomson’s gazelle

(n = 5580 training images), which consistently showed

posterior estimates indicating a negative effect across mul-

tiple manipulations, suggesting detections of these two

species were conflated by our algorithms.

Occupancy results from the BCT data set were slightly

more consistent overall. Posterior estimates from the

expert-generated labels indicated three species had higher

occupancy in NP (chital, grey langur and sambar), four

species had little evidence of a difference between NP and

OBZ, and one species had higher occupancy in OBZ (nil-

gai) (Fig. 2b). The responses of chital (n = 8715 training

images) and grey langur (n = 391 training images) were

consistently recovered in occupancy models from

DL-generated labels, even with high levels of label noise

and up to 5% of the original training set (Fig. 2b). How-

ever, the response of sambar (n = 265 training images)

Figure 1. Observed species richness calculated with a variety of deep neural network architectures and training settings across two data sets. The

Y-axis corresponds to the observed species richness per camera trap location using labels predicted by a deep neural network and the X-axis

corresponds to species richness calculated using labels provided by experts. The lines in each plot correspond to a linear fit of the calculated

richness across camera trap locations and a diagonal line that goes through the origin corresponds to the perfect match between the two axes.

Shaded areas show 95% confidence intervals for the linear regression model.
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Figure 2. Responses of occupancy to environmental pressures predicted from expert-generated (manual) labels and deep neural

network-generated labels with various manipulations in the training pipeline. Plots show results of multi-species occupancy model predicting the

species-specific occupancy response of mammals to (a) distance to human infrastructure in the Masai Mara, Kenya, where a positive effect means

higher occupancy further away from infrastructure and (b) to management regime in Bardia, Nepal, where a positive effect means occupancy is

higher in the National Park (NP) than in unprotected land (OBZ). Each tile shows the direction of the effect indicated by posterior estimates, and

grey tiles show cases where the 95% credible interval overlapped zero, suggesting little evidence of an effect. The X-axis represents a range of

manipulations to model architecture and training set.
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was less consistently recovered, and nilgai (n = 185 train-

ing images), one of the least common species in the data

set, was never correctly recovered. Notably, the posterior

support of a positive response in sambar was missed by

our baseline model (ResNet50) but was occasionally

recovered by our deep neural networks under heavy

manipulation. Further exploration found that these con-

fusing responses were likely to be a false signal: sambar

classification accuracy declined with increasing manipula-

tions and the range of species misclassified as sambar

increased, suggesting false positives were driving spurious

occupancy patterns. Similar effects were seen for barking

deer and wild boar.

Activity patterns

The predictions from all four DL models produced a simi-

lar range of activity pattern overlap with the expert-labelled

data, with most overlap coefficients for the species ranging

between 0.8 and 1 (Fig. 3a,d). Even though ConvNext-T

performs well for most of the species, on the BCT data set

it detected fewer species when compared to the ResNet

models; one species was dropped from analysis due to lack

of detections (Fig. 3d). Average overlap in the MMCT data

set is consistent with changing model architecture, but

there is a clear trend of reducing overlap with model archi-

tecture in the BCT data set, with the ResNet18 performing

worst out of the four models (Fig. 3d). Accuracy of activity

patterns were robust to a certain level of noise, with reduc-

tions in number of species and overall accuracy beyond

10% noise in both data sets (Fig. 3b,e). The activity patterns

were also robust to a 50% drop in training set size (Fig. 3c,

f). Displaying the predicted activity patterns of a subset of

species showed that model manipulations mainly caused an

overestimation of diurnal predictions compared to

expert-labelled data (Fig. S1; Fig S2).

Figure 3. The overlap coefficient of species activity patterns produced from expert-generated labels compared to deep neural network-generated

labels with variety of manipulations in the training pipeline. The box plots describe the mean, upper and lower quartile of the overlap coefficients

calculated for each species in each data set. The Y-axis corresponds to the activity overlap coefficient, where a value of 1 represents perfect

agreement between the activity patterns calculated from expert-generated labels and DL-generated labels. In cases where the deep neural

network did not predict ≥ 20 detections of a species, this overlap calculation was dropped from the aggregate, represented in the n under each

boxplot.
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Correlation between machine-learning
evaluation and ecological metrics

Classification accuracy of each deep neural network

reduced with increasing manipulations, as expected

(Table S6). However, we found that the accuracy of eco-

logical metrics derived from deep neural

network-generated labels is not always directly correlated

with performance of the deep neural network. In most

cases, the error in predicting ecological metrics is quite

low, for example when looking at the impact of model,

the majority of ecological accuracy values are below 0.4

(0 = perfect accuracy) (Fig. 4a,d). Overall, the accuracy of

activity pattern predictions is more strongly correlated

with deep neural network performance than the accuracy

of occupancy (Fig. 4). Classification model and reducing

training set size had a weak positive correlation with

occupancy accuracy, but when looking at the impact of

increasing noise in the data set on occupancy predictions,

there is no correlation with model performance (Fig. 4b,

e).

Discussion

Our study shows that deep neural network species classi-

fiers can serve to estimate ecological metrics with reason-

able accuracy, particularly for community-level measures

like species richness. However, estimates were less reliable

for rarer or visually similar species. The utilization of two

camera trap data sets from two very different biomes,

African savannah (MMCT) and Asian sub-tropical dry

forest (BCT), each with a high diversity of medium and

Figure 4. Correlation between ecological metric accuracy and deep neural network classification accuracy. Ecological metric accuracy is

calculated as the absolute difference between metrics calculated from neural network-generated labels and expert-generated labels. The Y-axis

corresponds to the absolute difference between occupancy coefficient estimate (blue lines) or activity pattern overlap (orange lines). The X-axis

shows the classification error of each neural network. For each experiment, the individual manipulations are pooled together to show the overall

trend, for example, the different DL models used in the Impact of Classification Model experiment are not differentiated. The results cover 20 and

8 species from MMCT data set and BCT data set, respectively.
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large mammals increases the generality of our findings.

Despite differences between ecosystems, background, data

set size, and species composition, our findings were

broadly consistent across data sets. Using two data sets

with standardized survey design and rich metadata

allowed us to control for survey effort and site-specific

context, enabling robust analyses of occupancy and activ-

ity patterns that would have been difficult with bench-

mark data sets such as iWildCam (Beery et al., 2021),

illustrating the value in using real, location-specific data

when testing how machine learning can support biodiver-

sity monitoring.

Deep neural network experiments

We found that that the choice of image classification

model architecture or model depth has very little impact

on the resulting ecological findings. Even though the utili-

zation of deeper (He et al., 2016) or better performing

(Liu et al., 2022) model architectures results in increased

classification performance, we observe that CNN architec-

tures that may be considered lower performing or out-

dated, such as a ResNet50, can still produce accurate

predictions of species richness or occupancy for some

species. Indeed, more advanced neural networks architec-

tures than ResNet or ConvNext-T are now available.

However, the purpose of this study was to assess the rela-

tive influence of model depth and architecture type on

downstream ecological analyses. This insight can help

practitioners to allocate available resources more effi-

ciently, as there may not be a need for large models with

expensive computational needs.

Our experiments show that most ecological metrics cal-

culated from DL-predicted labels maintained a high simi-

larity with expert-labelled data, even with up to 10%

noise in the training set—a pattern that is common for

deep neural network approaches (Drory et al., 2018; Rol-

nick et al., 2017). Above levels of 10% noise, reduced pre-

diction confidence caused by noisy training labels means

that more labels are dropped when a 70% confidence

threshold is applied, resulting in apparent non-detection

of rarer species. This created a bias in the results pre-

sented, as the measure of metric accuracy does not

account for missing species. The loss of rarer or more

cryptic species from a data set represents a wider problem

of class imbalance that is regularly seen in camera trap

data sets and can disproportionately affect detection of

less common species (Schneider et al., 2020). Addition-

ally, CNNs are more resilient to noise that is uniformly

spread across the data set, compared to noise that is con-

centrated (Drory et al., 2018). A potential hindrance to

our experimental design is the choice to mis-label images

uniformly across species, when real labelling error would

likely be focused on a particular species or part of the

data set (e.g., nocturnal images only).

The accuracy of the key ecological metrics generally held

up against reductions in the training set size (e.g., up to

50% of the available data dropped) across both data sets.

We note that we applied a temporal data split to maximize

applicability to this data set, when a spatial split might be

more conventional (Norman et al., 2023). In that scenario,

reducing the training set size could more strongly impact

generalization to new sites. Past research has succeeded in

building accurate classification models when training with

millions of images, a scenario that might not be possible in

most wildlife monitoring projects given the

time-consuming and demanding nature of the manual

image annotation step (Norouzzadeh et al., 2018). Thus,

knowing where to stop within the labelling phase is a cru-

cial decision given the time-consuming nature of camera

trap image annotation. The emergence of efficient methods

within the biodiversity monitoring domain such as active

learning (Norouzzadeh et al., 2021), self-supervised learn-

ing (Pantazis et al., 2021), or large vision-language models

(Pantazis et al., 2022) claim to reduce the need for large

labelled sets. Whilst it is clear from our results that large

training sets will always improve classifier accuracy, using

these cutting-edge methods will further reduce the need for

image labelling.

Even though our results suggest a small amount of

label noise or reduced training set size is acceptable when

predicting community-level metrics such as species rich-

ness, we observed a disproportionate impact on less com-

mon species for species-specific metrics. Our occupancy

model results showed that classification error led to spuri-

ous responses of certain species to human infrastructure

in Kenya or protected area management in Nepal. All

analyses showed that certain species were dropped

completely due to a lack of detections. This demonstrates

how misclassifications caused by lower performing deep

neural networks could obscure ecological patterns and

misinform conservation decisions if interpreted as reliable

signals. Our findings highlight the need to consider class

imbalance when reporting on ecological analysis from

DL-generated labels. Addressing such problems could

involve species-specific confidence thresholds, statistical

methods that account for false positives and false nega-

tives (Katsis et al., 2025; Royle & Link, 2006), or develop-

ing nested classification models that focus on a subsets of

animals (Mulero-P�azm�any et al., 2025).

Correlation between conventional neural
network evaluation and ecological metrics

We observe that the accuracy of deep–learning based eco-

logical analysis does not always correlate strongly with

10 ª 2026 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Deep learning-based ecological analysis of camera trap images P. A. Bevan et al.

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.70052 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [12/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



conventional ML evaluation metrics, but this varied with

model manipulation and ecological metric. For example,

adding noise to training labels degrades ML classification

performance but there is no analogous impact on estimat-

ing species’ occupancy responses to anthropogenic pres-

sure, although a weak correlation appeared when

reducing training set size. Classification error had a

greater impact on activity pattern accuracy. This may be

due to the resolution of detections needed for each analy-

sis. For species richness and occupancy, detection fre-

quency at a CT site within the detection window does

not affect the metric, allowing for a degree of classifica-

tion error. Predicting activity patterns requires several

detections over the 24 h cycle, and any loss, e.g., less

detections at night, strongly affects interpretation. Data

set characteristics will also impact interpretation: the

MMCT data set is dominated by grazers, many of which

are visually similar with overlapping ecology. This could

not be said for the BCT data set, where species show a

diversity of responses to changing management regime

(Ferreira et al., 2023), making accuracy of responses more

sensitive to label accuracy. It is important for practi-

tioners to understand this impact when choosing analysis

tools and to remain transparent in the DL methods used.

Conclusion

This study presents an end-to-end evaluation of

deep-learning models trained under different settings

based on metrics relevant to downstream ecological tasks.

Our results provide clarity on the robustness of such

models against a variety of typical design decisions related

to DL model training and highlight areas where caution

is warranted, for example interpreting species-specific

responses, particularly for rare or visually similar species.

Ultimately, our findings aim to empower practitioners

with limited access to high computing power or specialist

knowledge to build effective tools for conservation. Future

research in this field should focus on enhancing accessi-

bility, ensuring that deep-learning tools can be widely

adopted and applied by the global conservation

community.
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