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Abstract

Large image collections generated from camera traps offer valuable insights into
species richness, occupancy, and activity patterns, significantly aiding biodiver-
sity monitoring. However, the manual processing of these data sets is time-
consuming, hindering analytical processes. To address this, deep neural net-
works have been widely adopted to automate image labelling, but the impact of
classification error on key ecological metrics remains unclear. Here, we analyze
data from camera trap collections in an African savannah (82,300 labelled
images, 47 species) and an Asian sub-tropical dry forest (40,308 labelled images,
29 species) to compare ecological metrics derived from expert-generated species
identifications with those generated by deep-learning classification models. We
specifically assess the impact of deep- learning model architecture, the propor-
tion of label noise in the training data, and the size of the training data set on
three key ecological metrics: species richness, occupancy, and activity patterns.
We found that predictions of species richness derived from deep neural net-
works closely match those calculated from expert labels and remained resilient
to up to 10% noise in the training data set (mis-labelled images) and a 50%
reduction in the training data set size. We found that our choice of
deep-learning model architecture (ResNet vs. ConvNext-T) or depth (ResNet18,
50, 101) did not impact predicted ecological metrics. In contrast, species-
specific metrics were more sensitive; less common and visually similar species
were disproportionately affected by a reduction in deep neural network accu-
racy, with consequences for occupancy and diel activity pattern estimates. To
ensure the reliability of their findings, practitioners should prioritize creating
large, clean training sets and account for class imbalance across species over
exploring numerous deep-learning model architectures.

© 2026 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 1
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Introduction

To track progress toward conservation targets (CBD,
2022), there is a pressing need for the intensification of
biodiversity monitoring efforts at a global scale (Affinito
et al, 2025; Gonzalez et al, 2023; Scharlemann
et al., 2020). Steps toward standardized, large-scale moni-
toring are being introduced through the use of passive
monitoring sensors that can scale up data collection
efforts (Pimm et al., 2015; Pringle et al., 2025; Stephen-
son, 2020). Passive biodiversity monitoring sensors like
camera traps (e.g., Lee et al., 2024), acoustic monitoring
devices (e.g., Sethi et al., 2024), and satellite imagery (e.g.,
Wu et al.,, 2023) have allowed researchers to expand their
ecological surveys both temporally and spatially with
lower field costs and minimal environmental disturbance
(Browning et al., 2017). Furthermore, the use of such
devices provides standardized and reproducible survey
methods and data formats that facilitate collaboration
across projects and a network of sensors, slowly forming
a global monitoring system (Blount et al., 2021; Kays
et al., 2020; Steenweg et al., 2017; Wall et al., 2014).

Specifically, the utilization of camera traps has been
beneficial for monitoring medium to large bodied terres-
trial animals, primarily mammals (Burton et al., 2015;
Fisher, 2023). These autonomous, motion-activated cam-
eras can be used to collect a variety of ecological metrics
such as occupancy (MacKenzie et al., 2002), abundance
(Karanth & Nichols, 1998; Rowcliffe et al., 2008), and
activity levels (Rowcliffe et al., 2014), which can be used
to investigate complex interactions between wildlife, the
environment, and human activity (Barcelos et al., 2022;
Lee et al., 2024; Parsons et al., 2022) and to monitor the
success of  conservation  interventions (Ferreira
et al., 2020; Ferreira et al.,, 2023; Tobler et al., 2015).
However, a major limitation of camera trap surveys is the
data processing bottleneck, as millions of images need
labelling (Duggan et al., 2021; Thomson et al., 2018). This
bottleneck causes substantial delays in translating camera
trap images into information that can be used in conser-
vation efforts (Merkle et al., 2019).

Machine learning (ML) can increase the efficiency of
camera trap analysis and speed up the extraction of eco-
logical information. Deep neural networks have been
applied to camera trap and other image data to tackle
wildlife monitoring tasks such as locating and identifying
species (Miao et al., 2021; Tabak et al, 2019; Willi
et al., 2018), counting individuals (Norouzzadeh et al.,
2021), classifying behavior (Kholiavchenko et al., 2024;
Norouzzadeh et al., 2018) and estimating occupancy
(Whytock et al., 2021). The creation of a general animal
detector (MegaDetector) (Beery et al., 2019) has signifi-
cantly improved efficiency by filtering out empty images,
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drastically reducing the number of images to be labelled
(Fennell et al., 2022; Penn et al., 2024). Other works
have exploited the context that accompanies camera trap
images to improve species classification directly (Beery
et al., 2020) or to learn representations in an unsuper-
vised manner to reduce the number of labels required
for training (Pantazis et al., 2021). Despite the growing
number of ecological projects that utilize deep neural
networks for image classification, evaluation is typically
performed through metrics such as the total, or species
level, classification accuracy. However, it remains
untested  whether classification  accuracy of a
deep-learning model is correlated with accuracy of
downstream ecological metrics that the detection data
are used for.

There is some evidence that ecological information
obtained using deep neural networks is comparable to
those generated by expert-labelled data. For example,
Whytock et al. (2021) found that ML-generated species
labels produced similar estimates of species richness, esti-
mated occupancy and activity patterns as expert-labelled
data. However, the data set focused on four species from
central Africa, so the spatial and taxonomic generality of
the findings are unclear. Practitioners developing
deep-learning models for species classification must make
a series of decisions with respect to the classification
model and the training data set, often constrained by lim-
ited compute resources, time to annotate images, or abil-
ity to review existing labels. Therefore, even though it has
been shown that models with deeper architectures with a
higher number of parameters (He et al, 2016), large
training data sets (Deng et al., 2009; Lin et al., 2014), and
a low proportion of noise in the training data set (Rol-
nick et al., 2017; Sukhbaatar et al., 2015) benefit the clas-
sification accuracy of a deep neural network, it is unclear
what the impact of such factors have on downstream eco-
logical metrics.

Here, we analyze camera trap data from two ecosys-
tems, African Savannah (Maasai Mara, Kenya) and Asian
sub-tropical dry forest (Terai region, Nepal) to compare
ecological metrics derived from expert-generated image
labels with those generated by a trained deep neural net-
work. We specifically assess the impact of neural network
model architecture and depth, training data set size, and
proportion of noise in the training data set on producing
three key ecological metrics: species richness, occupancy,
and activity patterns. It is expected that as these manipu-
lations reduce the classification accuracy, the resulting
ecological metrics will deviate further from those pro-
duced from expert-labelled data. We expect there may be
some robustness in species richness and occupancy, as
these only require one positive detection per survey occa-
sion to contribute to the metric. However, activity

2 © 2026 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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patterns may be impacted more strongly by a reduction
in model accuracy due to the high temporal resolution in
the underlying detections. We also explore the relation-
ship between conventional ML evaluation metrics (Top-1
Accuracy, Precision, Recall, and F1 score) and accuracy of
ecological metrics. Given the shortage of time and
resources typically associated with a conservation project,
it is not realistic for practitioners to optimize for every
parameter. Through our analysis, we aim to shed light on
the corresponding impact such factors have on the accu-
racy of downstream ecological analysis to aid practitioners
in their decision making.

Methods

Camera trap data

We collected camera trap data from two ecosystems, Afri-
can Savannah (Maasai Mara, Kenya) and sup-tropical dry
forest (Terai region, Nepal). The field sites were part of
the Biome Health Project, a field-based study system
investigating the impact of human pressures and conser-
vation interventions on biodiversity  (https://www.
biomehealthproject.com/). Each field site covers a gradi-
ent of anthropogenic pressure, but the type of pressure
varies between ecosystems (Ingram et al., 2021). Both sur-
vey sites were set up using the same survey design. At
each field site, un-baited Browning Dark Ops 2017 cam-
eras were deployed evenly across a grid of 2 km® cells. A
single camera was placed as close as possible to the cen-
troid of each survey grid cell and were not biased towards
trails or roads. Cameras were attached to a tree or a post
at a height of ca. 50 cm, were operational 24 h/day with
a 1 s delay between sequential triggers.

Maasai Mara camera traps (MMCT)

Data were collected from 176 camera traps deployed in
four protected areas in the Maasai Mara, south-western
Kenya: the Mara Triangle (MT), Mara North Conservancy
(MN), Olare-Motorogi Conservancy (OMC), and the
Naboisho Conservancy (NB), which each have different
restrictions on livestock grazing and human activities.
The data were collected throughout October and Novem-
ber 2018 and contains images from 47 species, or groups
of species. The data used in this analysis were collected
between October 5th and November 29th, 2018 and have
previously been published in (Connolly et al., 2025).
Human infrastructure data were obtained from Klaassen
and Broekhuis (2018), and used to calculate the shortest
distance from each camera trap station to human devel-
opment, including settlements, bomas, towns, dams, and
agriculture (Connolly et al., 2025).

Deep learning-based ecological analysis of camera trap images

Bardia camera traps (BCT)

148 cameras were deployed across three contiguous areas
under  different land management regimes in
south-western Nepal: Bardia National Park (NP), the
Buffer Zone (BZ), and outside the Buffer Zone (OBZ).
These three areas vary in the level of restriction of human
activities and development. The survey area therefore
covers a gradient of pressure in the form of increasing
habitat fragmentation, human density and agricultural
activities. The data used in this analysis were collected
between February 13 and April 16, 2019 and have previ-
ously been published in Ferreira et al. (2023).

Data labelling

We labelled both camera trap data sets by identifying spe-
cies in each image using the Visual Object Tagging Tool
(VOTT) (Microsoft, 2023). Before labelling, images were
systematically sampled by using a set time interval of five
minutes for MMCT and one minute for BCT, to avoid
labelling the same event multiple times (Connolly
et al., 2025; Ferreira et al., 2023). The time intervals dif-
fered between data sets due to environmental differences
between the two ecosystems; the Masai Mara is domi-
nated by large herds of herbivores which consistently trig-
gered the camera, creating an image data set an order
magnitude larger than the BCT data set for the same sur-
vey effort. During labelling, bounding boxes were drawn
around each animal, vehicle, or human present in a
photo. Images that were hard to identify were shared
amongst the labelling team for a second opinion. After
labelling, tagging accuracy for each species was checked
by randomly sampling 10% of images per species, and
any species with poor sampling accuracy in the sample
(>3% error rate) were entirely relabelled. This ensured
that both manually labelled data sets are highly accurate
and contained minimal errors. To account for the fact
that some species were under-represented within our col-
lected data, relevant and visually similar species were
grouped together where necessary, resulting in a list of
labels that consists of either species or species groups
(Table S1; Table S2).

For deep neural network training, the labelled images
from each data set were split into subsets for model train-
ing, model validation and testing model performance.
The data set was split temporally, not accounting for
class, to ensure each subset had even spatial coverage
across the survey area. Due to the shorter collection times
of these data sets (2 months for MMCT; 1 month for
BCT), seasonality did not need to be considered when
creating these subsets. The MMCT data set was split into
53,102 images for model training, 5879 images for

© 2026 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3
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validation, and 23,319 images for testing model perfor-
mance. The BCT data set was split into 28,210 training,
3119 validation, and 8979 test images. For the final eco-
logical analyses, we performed a series of filtering steps by
first applying a minimum threshold of 20 expert labels
per species in the test data set, as this allowed a reason-
able classification accuracy to be quantified. We also
removed domestic species, birds and any species groups
that contained combinations of visually similar species
(e.g., small cat category in BCT contained domestic cat
and jungle cat). This resulted in 20 mammal species from
the MMCT data set and 8 mammal species from the BCT
data set (Table S3).

Ecological analysis
Species richness

Species richness was measured as the count of wild spe-
cies observed at each camera trap location (a single cam-
era trap deployment) over the entire survey period, using
species detections from either the expert-generated labels
or labels predicted by a deep neural network.

Occupancy

We adopted a multi-species occupancy framework to esti-
mate occupancy while accounting for imperfect detection
(Dorazio et al., 2006). Given the differences between the
two study areas, we implemented slightly different occu-
pancy models for the MMCT and BCT data sets (see Sup-
plementary Text 1 and 2 for model specifications). To
quantify the impact of deep neural network-based image
classification on ecological responses, we investigated the
effect of variables that had a strong influence on occu-
pancy according to the model results: shortest distance to
human infrastructure in the MMCT data set and manage-
ment regime in BCT data set (following Ferreira
et al.,, 2023). We ran both occupancy models on the spe-
cies detections from either expert-generated labels or
labels predicted by a deep neural network and extracted
the species-specific model coefficients with 95% credible
intervals from the posterior distributions.

The model coefficients represent the effect of a variable
on occupancy, i.e., the response of zebra occupancy to
distance from human infrastructure. For the MMCT
occupancy model, we extracted the raw coefficients of dis-
tance to human infrastructure as the response, as this is a
continuous metric. For the BCT occupancy model, “man-
agement regime” is a categorical variable, so we calculated
the difference in occupancy probability between national
park (NP) and outside buffer zone (OBZ) as the response
to changing management regime.

P. A. Bevan et al.

Activity patterns

We estimated the diel activity pattern of each species by
fitting a circular kernel density function using the activity
R package (version 1.3.4) (Rowcliffe, 2023). The kernel
density function calculates the probability a species is
active at each moment over a 24-hour period. To avoid
large biases in estimates, only species that had >20 detec-
tions were included in the analysis (Rowcliffe
et al., 2014). For each species, we calculated activity pat-
terns from detections from expert-labelled data and the
deep neural network, and compared them by calculating
the bootstrapped overlap coefficient of the two activity
patterns using the overlap R package (version 0.3.4)
(Meredith & Ridout, 2023). The resulting overlap coeffi-
cient ranges from 0 to 1, where a value of 1 means perfect
overlap between the two activity patterns. In this case, a
higher overlap value indicates high ecological accuracy of
the deep neural network-generated labels when compared
to the expert labelled data.

Deep neural network experiments

To investigate the impact of deep neural networks on
downstream ecological metrics, three experiments were
run, each of which manipulated a different aspect of the
training pipeline. We varied the underlying model archi-
tecture, the size of the training set, and the proportion of
noise (incorrect labels) within the data set. Except for the
model architecture experiment, the baseline model uti-
lized for each experiment is a ResNet50 CNN (He
et al., 2016). This model is commonly used as a baseline
in machine-learning experiments. All experimental deep
neural network models were sourced from the PyTorch
library (Paszke et al., 2019). Across all experiments we
utilized transfer learning (Yosinski et al, 2014), where
neural network models were initialized from weights
obtained via pre-training on ImageNet (Deng
et al., 2009). This approach has demonstrated benefits for
biodiversity monitoring by improving model accuracy
(Willi et al., 2018). The model training was conducted on
crops of each animal image (determined by the bounding
box drawn in the labelling process) given that this
approach has shown to benefit model accuracy (Beery
et al., 2018; Gadot et al., 2024; Norman et al., 2023). We
trained the classifier on all classes from the training set
(Table S1; Table S2), but we only make predictions for
the subset of classes that belong to the list of species on
which the ecological analysis is conducted (Table S3). For
evaluation of trained deep neural networks, we predicted
labels on a held-out test set and applied a 70% confidence
threshold across all experiments, as filtering out uncertain

4 © 2026 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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labels has been shown to improve the robustness of the
resulting ecological analysis (Whytock et al., 2021). The
deep neural network predictions are then treated in the
same way as expert-labelled data sets and used to calcu-
late the ecological metrics described above as well as con-
ventional ML evaluation metrics.

Impact of deep-learning classification model

To examine the impact that model architecture and depth
have on downstream ecological metrics, four model types
were compared. These were three ResNet (He et al., 2016)
models with varying depth, ResNet18, 50, and 101. We chose
to use the ResNet architecture because of its widespread use
in computer vision research on camera trap data (Beery
et al., 2018; Willi et al., 2018). The inclusion of three ResNet
models at multiple depths allows us to explore the impact of
using deeper models. In addition, a ConvNeXt-T model was
used. This CNN uses a modified version of a ResNet archi-
tecture that takes inspiration from state-of-the-art vision
transformer (ViT) models to achieve a higher performance
with almost half the number of parameters as ResNet101
(Liu et al., 2022). The ConvNeXt-T model has similar per-
formance to many ViT variants with similar parameter
counts (Pucci et al., 2023; Vishniakov et al., 2024).

Impact of training set label noise

To investigate the impact of label noise (incorrect labels)
on downstream ecological metrics, we created six versions
of each training set (MMCT and BCT) with varying levels
of label error, from 1% to 50% of examples mis-labelled.
For a realistic simulation of label errors within each spe-
cies, the iNaturalist citizen science platform (iNatural-
ist, 2023) was used to retrieve the three species that were
most commonly misidentified as the original species that
also exist in our data (Tables S4 and S5). In the case that
three species were not available from iNaturalist, another
species from the data set was randomly selected.

Impact of training set size

To investigate the impact of training set size on downstream
ecological metrics, seven versions of the training set were
created for each data set (MMCT and BCT) where the num-
ber of labels for each species was varied, from 100% of the
original training set to 1% of the original training set.

Correlation between machine-learning
evaluation and ecological metrics

To describe the relationship between deep neural network
accuracy and ecological metric accuracy, we measured the

Deep learning-based ecological analysis of camera trap images

correlation between classification error and ecological
accuracy. To quantify “ecological accuracy,” we took the
absolute difference between the species-level occupancy
coefficients measured from expert-generated labels and
deep neural network-generated labels. For activity pat-
terns, 1 minus the species-level overlap value was used, so
that for both metrics, a 0 value equates to perfect predic-
tion, i.e., no deviation between expert-labelled data and
classifier prediction. To quantify classification error, we
use four metrics commonly utilized to evaluate deep neu-
ral network classification performance: Top-1 Accuracy.

(proportion of correct classifications among all images),
Precision (proportion of true positives among all positive
predictions), Recall (proportion of true positive predic-
tions out of all actual positives, including false negatives),
and F1 Score (harmonic mean of Precision and Recall).
To test correlation with ecological metrics, we use the
error rates of these metrics, i.e., Top-1 Error, Precision
Error, Recall Error, and F1 Error, which are calculated as
1 — metric.

Results

Species richness

We found that species richness predicted from
DL-generated labels was robust to different model archi-
tectures and model depths but was impacted by high
levels of noise in the training data and reduction in train-
ing set size, particularly in the BCT data set which is rela-
tively smaller (Fig. la,d). Each of the four DL models
accurately estimated the number of species present at
each location compared to expert-labelled data. Although
the error was slightly higher in the BCT data set than the
MMCT data set, this did not appear to be driven by any
particular DL model. In contrast, when there is more
than 10% label noise in the data set, species richness is
underestimated (Fig. 1b,e). Reduced training set size also
had an impact on underestimating species richness, but
to different degrees between the data sets. For the MMCT
data set, an impact of reduced training set on predicting
species richness is clear at 10% of the original size
(Fig. 1c). However, for the BCT data set, this impact is
clear from 25% and below (Fig. 1f).

Occupancy modelling

The results of occupancy modelling showed that species’
labels predicted from deep neural networks can recover
some species-specific responses to environmental covari-
ates, even with high levels of manipulation to the training
set (Fig. 2a). However, responses of less common and
visually similar species were not predicted consistently. In

© 2026 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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Maasai Mara Camera Traps
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Figure 1. Observed species richness calculated with a variety of deep neural network architectures and training settings across two data sets. The
Y-axis corresponds to the observed species richness per camera trap location using labels predicted by a deep neural network and the X-axis
corresponds to species richness calculated using labels provided by experts. The lines in each plot correspond to a linear fit of the calculated
richness across camera trap locations and a diagonal line that goes through the origin corresponds to the perfect match between the two axes.
Shaded areas show 95% confidence intervals for the linear regression model.

the MMCT  occupancy model derived from
expert-generated labels, four species had posterior esti-
mates indicating higher occupancy at sites further from
human infrastructure, 13 species showed little evidence of
an effect, and three species has estimates suggesting lower
occupancy (Fig. 2a). Posterior distributions for elephant
(n = 549 training images) and zebra (n = 4424 training
images) consistently indicated positive effects across all
DL models, even with up to 10% label noise and 10% of
the original training set size. These effects were not evi-
dent for eland (n = 407 training images) and inconsistent
for topi (n = 1440 training images). Some species had
coefficients with 95% credible intervals overlapping zero
in occupancy models from expert-generated labels (e.g.,
hippopotamus) yet showed strong posterior evidence for
positive effects in many of the DL-predicted data sets.
This pattern was more common for species with negative
coefficients, such as vervet monkey (n = 382 training

images) and Grant’s gazelle (n = 543 training images).
Grant’s gazelle is visually similar to Thomson’s gazelle
(n = 5580 training images), which consistently showed
posterior estimates indicating a negative effect across mul-
tiple manipulations, suggesting detections of these two
species were conflated by our algorithms.

Occupancy results from the BCT data set were slightly
more consistent overall. Posterior estimates from the
expert-generated labels indicated three species had higher
occupancy in NP (chital, grey langur and sambar), four
species had little evidence of a difference between NP and
OBZ, and one species had higher occupancy in OBZ (nil-
gai) (Fig. 2b). The responses of chital (n = 8715 training
images) and grey langur (n = 391 training images) were
consistently recovered in occupancy models from
DL-generated labels, even with high levels of label noise
and up to 5% of the original training set (Fig. 2b). How-
ever, the response of sambar (n = 265 training images)

6 © 2026 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Figure 2. Responses of occupancy to environmental pressures predicted from expert-generated (manual) labels and deep neural
network-generated labels with various manipulations in the training pipeline. Plots show results of multi-species occupancy model predicting the
species-specific occupancy response of mammals to (a) distance to human infrastructure in the Masai Mara, Kenya, where a positive effect means
higher occupancy further away from infrastructure and (b) to management regime in Bardia, Nepal, where a positive effect means occupancy is
higher in the National Park (NP) than in unprotected land (OBZ). Each tile shows the direction of the effect indicated by posterior estimates, and
grey tiles show cases where the 95% credible interval overlapped zero, suggesting little evidence of an effect. The X-axis represents a range of
manipulations to model architecture and training set.
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Deep learning-based ecological analysis of camera trap images

was less consistently recovered, and nilgai (n = 185 train-
ing images), one of the least common species in the data
set, was never correctly recovered. Notably, the posterior
support of a positive response in sambar was missed by
our baseline model (ResNet50) but was occasionally
recovered by our deep neural networks under heavy
manipulation. Further exploration found that these con-
fusing responses were likely to be a false signal: sambar
classification accuracy declined with increasing manipula-
tions and the range of species misclassified as sambar
increased, suggesting false positives were driving spurious
occupancy patterns. Similar effects were seen for barking
deer and wild boar.

Activity patterns

The predictions from all four DL models produced a simi-
lar range of activity pattern overlap with the expert-labelled

P. A. Bevan et al.

data, with most overlap coefficients for the species ranging
between 0.8 and 1 (Fig. 3a,d). Even though ConvNext-T
performs well for most of the species, on the BCT data set
it detected fewer species when compared to the ResNet
models; one species was dropped from analysis due to lack
of detections (Fig. 3d). Average overlap in the MMCT data
set is consistent with changing model architecture, but
there is a clear trend of reducing overlap with model archi-
tecture in the BCT data set, with the ResNet18 performing
worst out of the four models (Fig. 3d). Accuracy of activity
patterns were robust to a certain level of noise, with reduc-
tions in number of species and overall accuracy beyond
10% noise in both data sets (Fig. 3b,e). The activity patterns
were also robust to a 50% drop in training set size (Fig. 3c,
f). Displaying the predicted activity patterns of a subset of
species showed that model manipulations mainly caused an
overestimation of diurnal predictions compared to
expert-labelled data (Fig. S1; Fig S2).

Maasai Mara Camera Traps

(A) Impact of Classification Model (B)  Impact of Label Noise (C) Impact of Training Set Size
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Figure 3. The overlap coefficient of species activity patterns produced from expert-generated labels compared to deep neural network-generated
labels with variety of manipulations in the training pipeline. The box plots describe the mean, upper and lower quartile of the overlap coefficients
calculated for each species in each data set. The Y-axis corresponds to the activity overlap coefficient, where a value of 1 represents perfect
agreement between the activity patterns calculated from expert-generated labels and DL-generated labels. In cases where the deep neural
network did not predict > 20 detections of a species, this overlap calculation was dropped from the aggregate, represented in the n under each

boxplot.
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Correlation between machine-learning
evaluation and ecological metrics

Classification accuracy of each deep neural network
reduced with increasing manipulations, as expected
(Table S6). However, we found that the accuracy of eco-
logical ~ metrics  derived  from  deep
network-generated labels is not always directly correlated
with performance of the deep neural network. In most
cases, the error in predicting ecological metrics is quite
low, for example when looking at the impact of model,
the majority of ecological accuracy values are below 0.4
(0 = perfect accuracy) (Fig. 4a,d). Overall, the accuracy of
activity pattern predictions is more strongly correlated
with deep neural network performance than the accuracy
of occupancy (Fig. 4). Classification model and reducing

neural

Deep learning-based ecological analysis of camera trap images

training set size had a weak positive correlation with
occupancy accuracy, but when looking at the impact of
increasing noise in the data set on occupancy predictions,
there is no correlation with model performance (Fig. 4b,

e).

Discussion

Our study shows that deep neural network species classi-
fiers can serve to estimate ecological metrics with reason-
able accuracy, particularly for community-level measures
like species richness. However, estimates were less reliable
for rarer or visually similar species. The utilization of two
camera trap data sets from two very different biomes,
African savannah (MMCT) and Asian sub-tropical dry
forest (BCT), each with a high diversity of medium and

Impact Of Classification Model

Maasai Mara Camera Traps
Impact Of Label Noise

Impact Of Training Set Size

Occupancy Deviation | r=0.32, p=0.027
Activity Pattern Overlap Deviation | r=0.92, p=6.4e-32
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Occupancy Deviation | r=0.44, p=9.8e-05
Activity Pattern Overlap Deviation | r=0.81, p=6.6e-30
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Occupancy Deviation | r=0.51, p=0.003
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Figure 4. Correlation between ecological metric accuracy and deep neural network classification accuracy. Ecological metric accuracy is
calculated as the absolute difference between metrics calculated from neural network-generated labels and expert-generated labels. The Y-axis
corresponds to the absolute difference between occupancy coefficient estimate (blue lines) or activity pattern overlap (orange lines). The X-axis
shows the classification error of each neural network. For each experiment, the individual manipulations are pooled together to show the overall
trend, for example, the different DL models used in the Impact of Classification Model experiment are not differentiated. The results cover 20 and

8 species from MMCT data set and BCT data set, respectively.
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large mammals increases the generality of our findings.
Despite differences between ecosystems, background, data
set size, and species composition, our findings were
broadly consistent across data sets. Using two data sets
with standardized survey design and rich metadata
allowed us to control for survey effort and site-specific
context, enabling robust analyses of occupancy and activ-
ity patterns that would have been difficult with bench-
mark data sets such as iWildCam (Beery et al., 2021),
illustrating the value in using real, location-specific data
when testing how machine learning can support biodiver-
sity monitoring.

Deep neural network experiments

We found that that the choice of image classification
model architecture or model depth has very little impact
on the resulting ecological findings. Even though the utili-
zation of deeper (He et al., 2016) or better performing
(Liu et al., 2022) model architectures results in increased
classification performance, we observe that CNN architec-
tures that may be considered lower performing or out-
dated, such as a ResNet50, can still produce accurate
predictions of species richness or occupancy for some
species. Indeed, more advanced neural networks architec-
tures than ResNet or ConvNext-T are now available.
However, the purpose of this study was to assess the rela-
tive influence of model depth and architecture type on
downstream ecological analyses. This insight can help
practitioners to allocate available resources more effi-
ciently, as there may not be a need for large models with
expensive computational needs.

Our experiments show that most ecological metrics cal-
culated from DL-predicted labels maintained a high simi-
larity with expert-labelled data, even with up to 10%
noise in the training set—a pattern that is common for
deep neural network approaches (Drory et al., 2018; Rol-
nick et al., 2017). Above levels of 10% noise, reduced pre-
diction confidence caused by noisy training labels means
that more labels are dropped when a 70% confidence
threshold is applied, resulting in apparent non-detection
of rarer species. This created a bias in the results pre-
sented, as the measure of metric accuracy does not
account for missing species. The loss of rarer or more
cryptic species from a data set represents a wider problem
of class imbalance that is regularly seen in camera trap
data sets and can disproportionately affect detection of
less common species (Schneider et al., 2020). Addition-
ally, CNNs are more resilient to noise that is uniformly
spread across the data set, compared to noise that is con-
centrated (Drory et al, 2018). A potential hindrance to
our experimental design is the choice to mis-label images
uniformly across species, when real labelling error would

P. A. Bevan et al.

likely be focused on a particular species or part of the
data set (e.g., nocturnal images only).

The accuracy of the key ecological metrics generally held
up against reductions in the training set size (e.g., up to
50% of the available data dropped) across both data sets.
We note that we applied a temporal data split to maximize
applicability to this data set, when a spatial split might be
more conventional (Norman et al., 2023). In that scenario,
reducing the training set size could more strongly impact
generalization to new sites. Past research has succeeded in
building accurate classification models when training with
millions of images, a scenario that might not be possible in
most  wildlife  monitoring  projects  given the
time-consuming and demanding nature of the manual
image annotation step (Norouzzadeh et al., 2018). Thus,
knowing where to stop within the labelling phase is a cru-
cial decision given the time-consuming nature of camera
trap image annotation. The emergence of efficient methods
within the biodiversity monitoring domain such as active
learning (Norouzzadeh et al., 2021), self-supervised learn-
ing (Pantazis et al., 2021), or large vision-language models
(Pantazis et al., 2022) claim to reduce the need for large
labelled sets. Whilst it is clear from our results that large
training sets will always improve classifier accuracy, using
these cutting-edge methods will further reduce the need for
image labelling.

Even though our results suggest a small amount of
label noise or reduced training set size is acceptable when
predicting community-level metrics such as species rich-
ness, we observed a disproportionate impact on less com-
mon species for species-specific metrics. Our occupancy
model results showed that classification error led to spuri-
ous responses of certain species to human infrastructure
in Kenya or protected area management in Nepal. All
analyses showed that certain species were dropped
completely due to a lack of detections. This demonstrates
how misclassifications caused by lower performing deep
neural networks could obscure ecological patterns and
misinform conservation decisions if interpreted as reliable
signals. Our findings highlight the need to consider class
imbalance when reporting on ecological analysis from
DL-generated labels. Addressing such problems could
involve species-specific confidence thresholds, statistical
methods that account for false positives and false nega-
tives (Katsis et al., 2025; Royle & Link, 2006), or develop-
ing nested classification models that focus on a subsets of
animals (Mulero-Pdazmany et al., 2025).

Correlation between conventional neural
network evaluation and ecological metrics

We observe that the accuracy of deep—learning based eco-
logical analysis does not always correlate strongly with
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conventional ML evaluation metrics, but this varied with
model manipulation and ecological metric. For example,
adding noise to training labels degrades ML classification
performance but there is no analogous impact on estimat-
ing species’ occupancy responses to anthropogenic pres-
sure, although a weak correlation appeared when
reducing training set size. Classification error had a
greater impact on activity pattern accuracy. This may be
due to the resolution of detections needed for each analy-
sis. For species richness and occupancy, detection fre-
quency at a CT site within the detection window does
not affect the metric, allowing for a degree of classifica-
tion error. Predicting activity patterns requires several
detections over the 24 h cycle, and any loss, e.g., less
detections at night, strongly affects interpretation. Data
set characteristics will also impact interpretation: the
MMCT data set is dominated by grazers, many of which
are visually similar with overlapping ecology. This could
not be said for the BCT data set, where species show a
diversity of responses to changing management regime
(Ferreira et al., 2023), making accuracy of responses more
sensitive to label accuracy. It is important for practi-
tioners to understand this impact when choosing analysis
tools and to remain transparent in the DL methods used.

Conclusion

This study presents an end-to-end evaluation of
deep-learning models trained under different settings
based on metrics relevant to downstream ecological tasks.
Our results provide clarity on the robustness of such
models against a variety of typical design decisions related
to DL model training and highlight areas where caution
is warranted, for example interpreting species-specific
responses, particularly for rare or visually similar species.
Ultimately, our findings aim to empower practitioners
with limited access to high computing power or specialist
knowledge to build effective tools for conservation. Future
research in this field should focus on enhancing accessi-
bility, ensuring that deep-learning tools can be widely
adopted and applied by the global conservation
community.
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