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Abstract
Approaches integrating geospatial “big data” and machine learning will likely be increasingly used to predict conservation-related human behaviour, such as patterns of local engagement, in socio-ecological systems. Yet, few studies evaluate both the technical and ethical aspects of such applications. Here, we provide a nation-scale worked example that combines machine learning and publicly available data to predict spatial patterns of Community Forestry establishment among 539,221 settlements across Zambia. Our model accurately predicted out-of-sample spatial establishment patterns three-quarters of the time (balanced accuracy = 76.5%, sensitivity = 64.0%, specificity = 89.1%), though it had a high false positive rate (precision = 24.3%). Accurately forecasting conservation establishment patterns for effective resource allocation requires better data on local preferences and programmatic decision-making, among other factors. Furthermore, such artificial intelligence applications risk making decision-making more technocratic, top-down, and opaque; therefore, they should only inform deliberation over possible future scenarios within wider, multistakeholder governance processes.
[bookmark: _Toc94542274]Introduction 
Although the success of community-based conservation has been mixed (Blaikie 2006; Dressler et al. 2010; Brooks et al. 2013; Galvin et al. 2018), more equitable and devolved conservation governance systems tend to be associated with better social and ecological outcomes (Schreckenberg et al. 2016; Dawson et al. 2024; Clark et al. 2025). Scaling out well-designed community-based conservation models may help achieve conservation goals (e.g., Target 3 of the Kunming–Montreal Global Biodiversity Framework) in more socially equitable and beneficial ways (Dudley et al. 2018; UN 2022). Here, scaling out means expanding an initiative to reach more people or locations (see SI: Defining scaling) (Moore et al. 2015). 
Growing research explores the characteristics that facilitate adoption and scaling in conservation and restoration efforts (e.g., Abernethy et al. 2014; Battista et al. 2017; Romero-de-Diego et al. 2021; Clark et al. 2022, 2024b; Jørgensen et al. 2024; Pienkowski et al. 2024b, 2025; Tavares et al. 2024; Jagadish et al. 2024; Hounkpati et al. 2024; Mills et al. 2025). Much of this research has been retrospective (but see Clark et al. (2024b) and Jørgensen et al. (2024) for exceptions), but predictive conservation science approaches can help forecast changing socio-ecological systems and with designing, implementing, and evaluating initiatives in ways that anticipate and adapt to those changes (Travers et al. 2019). 
A promising application of predictive science is forecasting geographic locations where conservation efforts are likely to be established. If sufficiently accurate, these approaches could enable forecasting of initiative emergence under plausible future scenarios, helping anticipate their context-dependent social and ecological impacts. For example, landowners in areas with more roads, higher populations, and greater wealth were more likely to engage in restoration of the Brazilian Atlantic Forest (Pienkowski et al. 2024b). Forecasting engagement patterns could, therefore, help predict the additionality of future conservation and restoration efforts. 
Existing attempts at this (e.g., Jørgensen et al. (2024), who used an agent-based modelling approach) have relied on data collected through intensive fieldwork and collaboration with local practitioners, which provides valuable insights but can be prohibitively costly and time-consuming. In contrast, there is a growing abundance of geospatial “big data” on social, economic, and ecological features (often derived from remote sensing) that might be associated with conservation establishment. Moreover, data-led modelling approaches designed specifically for prediction may help forecast spatially explicit establishment patterns and explore underlying mechanisms driving involvement. In particular, nonparametric, nonstatistical machine learning algorithms (henceforth “machine learning methods”, see SI: Defining machine learning) often outperform inferential methods in predictive accuracy (van Cranenburgh et al. 2022; Pichler & Hartig 2023). Machine learning methods are increasingly popular in ecological research (Tuia et al. 2022; Pichler & Hartig 2023; Han et al. 2023). However, their application to understanding patterns in the social dimensions of natural resource management remains comparatively uncommon (but see Rocha et al. (2020), Epstein et al. (2021), and Reynolds et al. (2025)). 
Processes shaping conservation establishment are inherently complex and context-dependent, influenced by local relationships, politics, power dynamics, and chance occurrences (Sterling et al. 2017). These complexities, embedded in adaptive socio-ecological systems, may pose fundamental barriers to predicting patterns of conservation establishment (Hofman et al. 2017; Preiser et al. 2018). Furthermore, the potential ethical consequences of using novel data sources and artificial intelligence have been extensively discussed in other fields (e.g., Hanna et al. 2025) and are increasingly addressed within conservation (e.g., Sandbrook et al. 2018, 2021; Wearn et al. 2019, 2019; Adams 2019; Pritchard et al. 2022; Sandbrook 2025). However, few studies explicitly integrate ethical considerations when combining big data (e.g., from remote sensing (York et al. 2023)) and machine learning to examine social dimensions of natural resource management, especially in the context of scaling. Here, we explore the use of machine learning and publicly available data to predict spatial patterns of Community Forestry establishment in Zambia (see Community Forestry in Zambia). We aim to assess the technical performance of this predictive approach, including its suitability for forecasting future establishment through a hypothetical illustrative scenario. We also aim to evaluate the associated ethical risks and uncertainties inherent to predictive approaches. 
[bookmark: _Ref92360702][bookmark: _Toc94542275]Methods
Community Forestry in Zambia
Our study focused on Community Forestry in Zambia, a model designed to enhance local involvement in managing forests under customary authority or within Local and National Forests (Government of Zambia 2018) (see SI: Legal foundations of Community Forestry). Each Community Forest has been formalised through agreements between a Community Forest Management Group (CFMG) and the Forestry Department. These agreements transfer authority to control access, use, and management of designated forest areas to CFMGs. 
As of August 2024, the CFMG Database – a national repository of registered CFMGs – recorded 146 CFMGs, of which 103 signed Community Forestry Agreements with the government between October 2017 and November 2023 (Government of Zambia & USAID 2024). The CFMG Database is, to our knowledge, among the most comprehensive geospatial datasets on community-based conservation in Africa (though anecdotal evidence suggests significantly more CFMGs have been reported since 2024), with Community Forestry adopted at scale in Zambia, making it an illustrative case study.
Several key stakeholders are typically involved in the Community Forest establishment process (see SI: Community Forestry establishment process), including the Forestry Department, traditional authorities, community members, and civil society and private sector actors (Government of Zambia 2018). Interactions between these groups, partly shaped by power dynamics, are expected to influence where Community Forests are established (e.g., Siangulube et al. 2023). Moreover, the Community Forestry establishment process is often top-down, led by civil society, private sector, and government actors who typically approach communities in areas of greater conservation value (see SI: Community Forestry establishment process). Technical and bureaucratic requirements can deter bottom-up establishment, though some communities do initiate the process themselves by seeking external support. 
[bookmark: _Toc94542276]Variable description 
The units of analysis were rural settlement boundaries identified in the Geo-Referenced Infrastructure and Demographic Data for Development (GRID3) database (version 2.0, CIESIN 2023). The original GRID3 dataset included 635,170 settlements. A series of inclusion criteria were used to define the final sample size of 404,005, excluding 231,165 settlements mostly far from forests (see SI: Settlement exclusion).
The response variable was the presence of a Community Forest within 2,215 m of settlement boundaries (see SI: Response variable for a justification of this distance). This response variable was a coarse indicator of involvement in Community Forest establishment. All Community Forests registered within the CFMG Database were included in the analysis, representing areas that had reached at least the second (i.e., negotiation and signing of maps) of the seven broad steps involved in establishing Community Forests (see SI: Community Forestry establishment process) (Government of Zambia 2018). 
Drawing on Diffusion of Innovations theory, we searched for publicly available geospatial datasets of features with theoretically plausible associations with the response variable (Table 1, see Discussion and SI: Theoretical framework). These data were aggregated at the scale of individual settlements (Table 1). We also expected that landscape and regional-scale socio-ecological characteristics might influence establishment patterns. Therefore, we took the mean of each feature across all settlements within (a) a hexagonal grid with 115 km x 115 km cells (see Gradient boosting analysis and SI: Spatial block cross-validation) and (b) administrative districts (of which there were 116 of highly variable sizes) and included these as additional features (see SI: Excluded features).  


[bookmark: _Ref188532829]Table 1. The features initially identified for inclusion in the statistical analysis drawing on the Diffusion of Innovations theory (see SI: Theoretical framework). Key: (+) = expected positive association; (-) expected negative association; (?) unclear expected direction of association. 
	Feature
	Plausible justification
	Data aggregation notes
	Source

	Forest loss (2000–2015, %)
	(+) Areas with greater recent historic forest cover loss are likely to be prioritised by the Forest Department, carbon credit partners, and non-governmental organisations.  
	Percentage of 1,179 ma buffer of settlements that experienced forest loss
	(Hansen et al. 2013)

	Distance to the nearest airport (km)
	(?) Expected to relate to socio-economic characteristics that might influence the relative costs and benefits of involvement with Community Forestry. For example, airport proximity might be associated with opportunity costs from tourism and other activities.  
	Euclidean distance from settlement centroid
	(OpenStreetMap 2023)

	Distance to the nearest hotel (km)
	(?) See “Distance to the nearest airport (km)”
	Euclidean distance from settlement centroid
	(OpenStreetMap 2023)

	Distance from the nearest protected area (km)
	(-) Promotion of Community Forestry by government, civil society, and private sector actors may be higher within and around protected areas (especially Game Management Areas).
	Euclidean distance from settlement centroid
	(UNEP-WCMC 2025)

	Drought severity score
	(?) Settlements in areas with greater drought severity may prioritise non-crop-related income sources, thus being more likely to be involved. Alternatively, drought risk might motivate extractive forest use as a coping strategy, reducing incentives to be involved in sustainable Community Forestry. 
	Nearest Standardized Precipitation-Evapotranspiration Index score (between 1981–2016 at 5 km2) to settlement centroids
	(Peng et al. 2020)

	Food insecurity score
	(-) Settlements in areas with lower food security might have less capacity to invest in involvement.  
	Mean food stress score within 1,179 ma buffer of settlements (frequency of passing food stress threshold, calculated at ~250 m2 resolution, based on 2009–2019 data)
	(CIESIN 2020)

	Improved water sources (%)
	(?) The same rationale as above for the wealth score, assuming that improved water sources are a proxy for wealth. 
	Mean percentage of households with improved water sources within 1,179 ma buffer of settlements (derived from data at 5 km2 resolution)
	(USAID 2024)

	Mean cattle density (per km2)
	(-) Areas with higher cattle densities may have coupled social (e.g., greater pastoralism and access to cattle markets) and ecological (e.g., lower Tsetse fly populations) conditions misaligned with Community Forestry.  
	Mean cattle density within 1,179 ma buffer of settlements (density is the mean count of sheep per km2 in 2010)
	(Gilbert et al. 2018)

	Mean elevation (m)
	(+) Areas of higher elevation tend to experience less anthropogenic risk, thus potentially being more suitable for Community Forestry.
	Mean elevation (30 m2 resolution) within 1,179 ma buffer of settlements
	(JAXA 2022)

	Mean goat density (per km2)
	(-) See “Mean cattle density (per km2)”
	Mean goat density within 1,179 ma buffer of settlements (density is the mean count of sheep per km2 in 2010)
	(Gilbert et al. 2018)

	Mean sheep density (per km2)
	(-) See “Mean cattle density (per km2)”
	Mean sheep density within 1,179 ma buffer of settlements (density is the mean count of sheep per km2 in 2010)
	(Gilbert et al. 2018)

	Percentage of cropland cover (%)
	(?) Areas with greater cropland cover may have coupled social (e.g., greater dependence on crops to meet needs) and ecological (e.g., less intact forests) conditions misaligned with Community Forestry.  
	Percentage cover within 1,179 ma buffer of settlements
	(Karra et al. 2021)


	Percentage of forest cover (%)
	(+) Areas with greater forest cover may offer greater opportunities for extractive use and income from carbon credits. Thus, settlements in these areas might be more likely to be involved. 
	Percentage cover within 1,179 ma buffer of settlements
	(Karra et al. 2021)


	Population density (per 100 m2)
	(?) Potential mechanisms are unclear, but population density can influence socio-ecological context in multiple ways (e.g., potential land competition), so it should be included.  
	Mean population density within 1,179 ma buffer of settlements (number of people per 100 m2 in 2015)
	(Carioli et al. 2023)

	Road density score
	(-) Settlements in poorly connected areas may have fewer alternative income sources and lower opportunity costs, making them more likely to be involved.  
	Mean road density within 1,179 ma buffer of settlements (density is the total length of roads per km2, within a 10-km search radius around 250 m2 pixels)
	(OpenStreetMap 2023)

	Settlement area (km2)
	(?) Settlement size may interact with other features to influence the probability of involvement. For example, small settlements with disproportionately high forest cover loss might be prioritised by the Forest Department, carbon credit partners, and non-governmental organisations.  
	Settlement area in km2
	(CIESIN 2023)

	Density of African megafauna species ranges (count per 250 m2), see SI: African megafauna species)
	(+) Promotion of Community Forestry by government, civil society, and private sector actors may be higher in areas where megafauna are more prevalent. 
	Mean within 1,179 ma buffer of count (250 m2 resolution)
	(IUCN 2025)

	Topographic ruggedness (SDb)
	(+) More topographically rugged areas tend to experience fewer anthropogenic risks, thus potentially being more suitable for Community Forestry.
	Standard deviation of elevation (30 m2  resolution) within 1,179 ma buffer of settlements
	(JAXA 2022)

	Travel time to population centres (minutes)
	(-) Settlements in these areas may have fewer alternative income sources and lower opportunity costs, making them more likely to be involved in Community Forestry.  
	Mean travel time to population centres (with <50,000 inhabitants) within 1,179 ma buffer of settlements (~1 km2 resolution)
	(Weiss et al. 2018)

	Wealth score
	(?) Wealthier settlements might have a greater capacity – thus being more likely – to invest in establishing Community Forests than poorer ones. Alternatively, poorer settlements might have fewer alternative income sources and lower opportunity costs, making them more likely to engage. 
	Mean estimated wealth index score within 1,179 ma buffer of settlements (derived from data at 1.6 km2 resolution)
	(Lee 2022)



	Women’s literacy (%)
	(+) Settlements in areas where there are higher literacy rates among women might have more technical capacity to engage. 
	Mean percentage of women who are literate within 1,179 ma buffer of settlements (derived from data at 5 km2 resolution)
	(USAID 2024)


a This value (1,179 m) represents a plausible distance over which residents may travel when interacting with their local social and ecological environment. Bosina & Weidmann (2017) conducted an extensive review of studies on walking speeds worldwide, finding that walking speeds generally ranged between 1.0 and 1.6 m/s, with little variability between continents. In one of the few studies of its kind, Cook (2022) evaluated walking patterns among women in South Africa, finding that 75% of steps were accumulated in bouts >15 minutes. Therefore, using an average walking speed of 1.31 m/s, residents may walk approximately 1,179 m from settlements during a typical 15-minute walking bout. This rough approximation was confirmed as reasonable during discussions with experts.   
b Standard deviation (SD).   
Gradient boosting analysis 
Our analysis utilised eXtreme Gradient Boosting (XGBoost) through the ‘xgboost’ package (version 1.7.8.1, Chen et al. 2024) in R (version 4.4.2, R Core Team 2020) (see SI: eXtreme Gradient Boosting). We adjusted for class imbalance (see SI: Class imbalance), and all features were scaled to units of 1 standard deviation and centred at 0. We partitioned the data into training and test sets using spatial blocking (SI: Spatial block cross-validation). Approximately 70% of the blocks (with all associated observations) were randomly selected for the training set, and the remaining blocks (and their observations) were allocated to the test set. Within the training set, we used 7-fold block cross-validation and a grid search approach to tune the XGBoost hyperparameters (see SI: Spatial block cross-validation). We then tested the model’s predictive performance using the remaining test dataset (i.e., all observations within the remaining ~30% of spatial blocks). We illustrated feature importance and accumulated local effects plots (and their associated uncertainty obtained via 1,000 bootstrap iterations, sampling spatial blocks of observations with replacement), which are informative for interpreting machine-learning outputs (Molnar 2019) (see SI: Interpretable machine learning). 
A hallmark of predictive conservation science approaches is that they attempt to make forecasts about the state or outcomes of future socio-ecological systems (Travers et al. 2019). We constructed a hypothetical scenario where cattle densities increased at double the historical rate (from 2000 to 2022) among settlements with the lowest current cattle densities, projected to 2030 (see SI: Scenario analysis). This could occur if, for example, a new control programme were introduced that effectively eradicates populations of Tsetse flies (trypanosome vectors that cause human and animal African trypanosomiasis (Muyobela et al. 2023)). 
[bookmark: _Toc94542279]Results 
Our total sample included 539,221 settlements (Table 2). Of these, 20,675 (5.1%) were considered involved in Community Forest establishment, and 383,330 (94.9%) were considered not involved (but see Variable description for why this is a coarse indicator).
[bookmark: _Ref190357762]Table 2. Descriptive statistics illustrating differences in features between settlements considered involved and not involved in Community Forest establishment. Values in brackets are in standard deviations.
	Variable
	Not involved in establishment
(N = 383,330)
	Involved in establishment
(N = 20,675)

	Forest loss (2000–2015, %) 
	6.1 (6.8)
	4.7 (4.4)

	Distance to the nearest hotel (km)
	609 (248)
	501 (250)

	Distance to the nearest protected area (km)
	94 (61)
	44 (33)

	Drought severity score 
	-0.57 (0.77)
	-0.76 (1.11)

	Food insecurity score
	0.46 (1.11)
	0.23 (0.67)

	Improved water sources (%)
	51 (25)
	61 (26)

	Mean cattle density (per km2)
	4.9 (5.3)
	2.3 (2.1)

	Mean elevation (m)
	1,183 (176)
	1,088 (245)

	Mean goat density (per km2)
	5.4 (6.3)
	4.1 (3.7)

	Mean sheep density (per km2)
	0.27 (0.60)
	0.50 (0.84)

	Percentage of cropland cover (%)
	6 (15)
	6 (13)

	Population density (per 100 m2)
	0.22 (0.45)
	0.20 (0.38)

	Road density score
	0.02 (1.02)
	-0.44 (0.39)

	Settlement area (km2)
	0.024 (0.077)
	0.025 (0.091)

	Density of African megafauna species ranges (count per 250 m2)
	11.96 (1.95)
	13.63 (1.95)

	Topographic ruggedness (SD in m)
	12 (11)
	15 (15)

	Travel time to population centres (minutes)
	119 (94)
	146 (91)

	Wealth score 
	18 (7)
	17 (5)

	Women’s literacy
	53 (11)
	50 (12)



For our test dataset, our gradient-boosting analysis yielded a balanced accuracy of 76.5%, a sensitivity of 64.0%, and a specificity of 89.1%. In other words, our model accurately predicted whether settlements were considered involved in establishing Community Forests (or not) over three-quarters of the time. It correctly identified involved settlements in around two-thirds of cases and was highly accurate in identifying settlements that were considered not involved. However, it also had a precision of only 24.3%, suggesting that only around one in four of the settlements predicted to be involved actually were, indicating a high false positive rate (Figure 1). Settlements predicted as involved were characterised by higher district-level drought risk (at district level), closer proximity to protected areas (local, grid, district), lower cattle densities (local, grid), lower road densities (local), lower distances to hotels (local, though the association is complex), lower women’s literacy (district), and higher topographic ruggedness (district) and megafauna densities (district) (Figure 2).

[image: ]
[bookmark: _Ref194675696]Figure 1. Spatial patterns of settlement involvement with Community Forest establishment in Zambia (mean aggregated at 2.5 km² resolution), showing (a) actual and (b) predicted, and forecast scenarios under increased cattle density (c) with abandonment (where settlements currently classified as ‘involved’ may change to ‘not involved’ if predicted to do so) and (d) without abandonment (where currently ‘involved’ settlements retain that status regardless of predictions). Predictions were generated from the full dataset.
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[bookmark: _Ref205548992]Figure 2. Bootstrap estimated (B = 1,000) (a) feature importance scores and (b–p) accumulated local effects (ALE) plots for features from an eXtreme Gradient Boosting model trained to predict settlement involvement in Community Forestry in Zambia. (a) Higher-ranked features contribute more to the model’s predictive performance. Median score (points), central 50% interval of scores (dark purple), and central 95% interval of scores (light purple) are shown for the 20 most important features. (b–p) ALE values (y-axis, centred at zero, zero = baseline) show the isolated, average effect of a feature value (x-axis) on the predicted probability of involvement: upward slopes indicate that higher feature values increase that probability, flat regions indicate no change, and downward slopes indicate reduced probability. Loess-smoothed (span = 0.3) median of ALE curves (black line), central 50% interval of ALE curves (dark green), and central 95% interval of ALE curves (light green) are shown for the top 12 features. PA = protected area.

In the baseline scenario, predicted settlement involvement with Community Forest establishment (55,447) was approximately 2.7 times the actual observations. Under the increased cattle density scenario, allowing abandonment of Community Forests by settlements modestly reduced the forecasted involvement to 51,252, primarily in Northwestern Province (Figure 1). Without abandonment, the number of forecasted settlements involved was the same as in the baseline (i.e., 55,457). 
[bookmark: _Toc94542283][bookmark: _Toc94542284]Discussion 
Forecasts under changing socio-ecological conditions
Our model’s overprediction and poor differentiation of fine-scale patterns may reflect the omission of features known to be important in influencing establishment (see SI: Interpreting performance metrics) or big dataset limitations (see SI: Feature dataset limitations). Multiple studies suggest that external support and facilitation can play key roles in driving conservation engagement (e.g., Romero-de-Diego et al. 2021; Mills et al. 2025; Pienkowski et al. 2025). Within our study area, the World Bank and Global Environment Facility have funded projects targeted at specific provinces, so external interests likely drive Community Forest establishment. Similarly, prior research shows that local engagement is partly determined by perceptions of an initiative’s relative benefits and costs (e.g., shaped by resource dependence (Gatiso 2019)), equity, and flexibility and alignment with local needs (e.g., Romero-de-Diego et al. 2021; Pienkowski et al. 2024b, 2025; Jagadish et al. 2024; Mills et al. 2025). Other potentially important omitted features include the strength of local leadership and governance systems (e.g., Gutiérrez et al. 2011), secure resource and tenure rights (Joglekar et al. 2025), and social cohesion, cooperation, and participation (Auer et al. 2020) (see SI: Theoretical framework). For instance, settlements with local champions and well-established decision-making structures may have been more likely to engage. Although features in our model might be partial proxies for these factors (e.g., populations in areas with less crop land cover and cattle densities might be more dependent on forest resources), none directly capture them. Consequently, our modelling approach might have yielded more reliable, fine-scale predictions if data on a wider diversity of relevant factors were available. Collecting such data at scale might be costly, indicating trade-offs between predictive performance and study feasibility. This could be overcome through nested approaches, where coarse, large-scale patterns are detected using inexpensive geospatial data, followed by intensive fieldwork to differentiate fine-scale patterns. 
Additionally, we were unable to definitively determine which settlements were directly engaged with Community Forestry, instead having to use a coarse, distance-based rule to approximate involvement (see Variable description). Thus, our precision estimates may be contested. Generally, individual or community engagement with initiatives is often an ambiguous, dynamic process, which can fluctuate in intensity over time (Montes de Oca Munguia et al. 2021). Forecasting these dynamics is feasible, but requires corresponding data on the nature, degree, and variability of engagement.  
Furthermore, much of the promise of predictive conservation science comes from its potential to forecast outcomes under future socio-ecological conditions (Travers et al. 2019). Yet, the reliability and utility of this scenario analysis approach rests on several core considerations (see SI: Scenario analysis reliability). Crucially, it is well established that many socio-ecological systems are complex, adaptive, and historically dependent (Preiser et al. 2018), which may make some outcomes inherently unpredictable (Hofman et al. 2017). For example, cattle densities are driven by and subsequently affect numerous coupled socioeconomic (e.g., cattle market distances), cultural (e.g., pastoralist identities and traditions), historical (e.g., colonial veterinary fences to prevent wildlife-livestock transmission and land allocations for white settlers (Cumming et al. 2015)), and ecological factors (e.g., forest habitat suitability), which likely collectively influence establishment (Clark et al. 2024a). Developing plausible scenarios that centre on features endogenously coupled with others – i.e., where changes in one part of a system have strong, adaptive, non-linear cascading effects on others – is extremely challenging. However, other features might be comparatively more exogenous, allowing for more credible scenarios. For example, some programmatic decisions – such as international investment levels or the spatial allocation of resources by external organisations – may be comparatively less closely coupled with other features influencing establishment. Even in these cases, developing plausible scenarios requires sophisticated domain knowledge generated through, for instance, qualitative (e.g., Brittain et al. 2022; Pienkowski et al. 2022; Booth et al. 2023), participatory (e.g., Oteros-Rozas et al. 2015), or expert-oriented (e.g., Jørgensen et al. 2024) exercises. 
Although our analysis uses cross-sectional data, the availability of time-stamped engagement and feature data would allow for spatio-temporal forecasting. Such forecasting would enable simultaneous prediction of where and over what time horizons adoption might occur under alternative scenarios, as illustrated by Jørgensen et al. (2024).  
Ethical dimensions of scaling prediction 
Recent technological and infrastructural advances have catalysed enthusiasm and funding for artificial intelligence, machine learning, and big data in conservation (Reynolds et al. 2025). For example, the Bezos Earth Fund recently launched a multi-year USD $100 million AI for Climate and Nature Grand Challenge, while Google’s AI for Social Good and Microsoft’s AI for Earth aim to utilise private-sector machine learning resources for conservation (Joppa 2017; Wearn et al. 2019). To date, these techniques have been mostly applied to wildlife monitoring (Tuia et al. 2022; Pichler & Hartig 2023; Han et al. 2023), alongside growing interest in their potential for evidence synthesis and communication (Tyler et al. 2023; Berger-Tal et al. 2024). Correspondingly, much of the emerging scholarship on ethical and social justice risks focuses on wildlife monitoring and related applications (e.g., Sandbrook et al. 2018, 2021; Wearn et al. 2019; Adams 2019; York et al. 2023), with important exceptions (e.g., Sandbrook 2025).
Beyond predictive performance, omitting data on local preferences means overlooking which communities might actively want or oppose Community Forestry (see SI: Data justice framework). Examples from elsewhere show that pressures to scale can combine with state control, rent-seeking, and territoriality to drive the spread of conservation, even in the face of local opposition (Benjaminsen et al. 2013; Bluwstein & Lund 2018; Sungusia et al. 2020; Pienkowski et al. 2024a). Failing to centre local preferences and priorities within this modelling may shift influence away from local people and reinforce top-down decision-making processes. This risk is compounded by the fact that the methods employed here are highly specialised, resulting in an asymmetric understanding that might conflict with data access (Pritchard et al. 2022) and model interpretability (Yousefzadeh & Cao 2022; Cao & Yousefzadeh 2023) principles. Gathering rich contextual data at scale is challenging and costly, and privacy concerns may deter local communities from disclosing their views. These challenges are common across centrally coordinated conservation planning, where ensuring meaningful local participation (Adams et al. 2019; Lécuyer et al. 2024) and appropriately integrating social well-being data (Stephanson & Mascia 2014) are cross-cutting issues. 
Furthermore, the absence of data on programmatic decisions could lead to misguided choices based on modelling results. Rather than approximating factors influencing local establishment decisions, our results may instead reflect where conservation actors have focused their efforts so far. This likely explains why proximity to protected areas emerged as an important feature as conservation actors promoted Community Forests to buffer these areas. Consequently, decisions derived from this analysis may merely mirror historical conservation decisions rather than indicate where “organic” engagement is most likely, undermining the decentralisation of natural resource governance. This is loosely analogous to machine learning models trained on biased crime data that produce predictive policing approaches, perpetuating discriminatory law enforcement (Hung & Yen 2023). Valid concerns have been raised about the emergence of novel big data sources in conservation (e.g., Pritchard et al. 2022; York et al. 2023). Yet, we believe more comprehensive data is needed on the actions of conservation organisations for transparency, collaboration, and research, especially actions carried out on public land and with public funding (Pienkowski et al. 2024a). 
Overall, our “worked example” illustrates the potential benefits and limitations of forecasting spatial patterns of conservation establishment. These approaches risk making conservation decision-making more technocratic, top-down, and opaque, potentially countering the devolution of governance and its associated social and ecological advantages (Schreckenberg et al. 2016; Dawson et al. 2024). Many of these concerns are generalisable to other attempts to predict social dimensions of natural resource management when using big data and quantitative modelling approaches. Yet, such forecasts might be more robust and ethically defensible if they integrate data on programmatic decision-making, local preferences, and the strength of governance institutions, among other factors. Moreover, rather than being treated as reliable predictions, the approaches used here might instead be integrated into broader multistakeholder landscape governance processes, where these maps are discussed and critiqued but do not drive decision-making. Communities in regions where engagement appears most likely might be invited by conservation actors to partner on Community Forestry. The need for meaningful local participation in conservation planning is widely recognised (Adams et al. 2019; Lécuyer et al. 2024), as is the value of using scenarios to help co-produce conservation science, policy, and practice (Bennett et al. 2016; Pereira et al. 2020; Cork et al. 2023). In this context, combining machine learning and big data might most usefully support multistakeholder processes exploring potential futures of conservation-related human behaviour. 
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