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Abstract
Graded modal logics generalise standard modal logics via families of modalities indexed by an
algebraic structure whose operations mediate between the different modalities. The graded “of-
course” modality !r captures how many times a proposition is used and has an analogous interpretation
to the of-course modality from linear logic; the of-course modality from linear logic can be modelled
by a linear exponential comonad and graded of-course can be modelled by a graded linear exponential
comonad. Benton showed in his seminal paper on Linear/Non-Linear logic that the of-course modality
can be split into two modalities connecting intuitionistic logic with linear logic, forming a symmetric
monoidal adjunction. Later, Fujii et al. demonstrated that every graded comonad can be decomposed
into an adjunction and a “strict action”. We give a similar result to Benton, leveraging Fujii et al.’s
decomposition, showing that graded modalities can be split into two modalities connecting a graded
logic with a graded linear logic. We propose a sequent calculus, its proof theory and categorical
model, and a natural deduction system which we show is isomorphic to the sequent calculus system.
Interestingly, our system can also be understood as Linear/Non-Linear logic composed with an
action that adds the grading, further illuminating the shared principles between linear logic and a
class of graded modal logics.
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1 Introduction

Intuitionistic logic has a central role in the foundations of programming language theory,
providing a logical basis for type theories and type systems, and other program reasoning
principles. A significant amount of the expressivity of proof systems for intuitionistic
logic (both natural deduction and sequent calculus forms) lies within the structure of the
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32:2 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

hypotheses – the context. Probing the foundations of this part of the logic has, perhaps
surprisingly, yielded the very fertile field of substructural logics [39] including influential logics
such as linear logic [14] and its variants, and the Lambek calculus [25].

By restricting the manipulation of hypotheses in the context we typically arrive at logics
which align more closely with physical reality, where propositions are instead “resources”
that cannot necessarily be copied, discarded, or reordered. Such restricted logics have been
used to construct type systems for safely manipulating values that should be treated in a
resourceful way, such as file handlers, pointers to mutable memory, or channels [43, 42].

However, such pervasive restrictions often hamper expressivity and thus some substruc-
tural logics then seek to carefully control the reintroduction of structural rules. For example,
linear logic provides the ! modality (“of course”) for reintroducing weakening and contraction
of propositions, which linear logic otherwise prohibits. However, this modality is coarse-
grained: for those propositions under the modality, it re-enables all the structural rules that
have been removed in linear logic. Subexponentials instead aim to be more fine-grained,
offering families of modalities capturing specific structural rules [8, 22]. The related notion
of grading [12, 31] gives an alternate view, providing an indexed family of modalities whose
indices are subject to an algebra which accounts for any structural rules applied: struc-
tural rules are “counted” by the algebra (whose operations mirror the shape of structural
rules). Bounded Linear Logic [15] is a special case where the family of modalities !nA

uses indices n which are natural numbers (or polynomial terms over naturals) counting the
upper bound on usage of the proposition A. Various systems generalise this approach to
arbitrary semirings to capture data-flow properties [1, 2, 5, 12, 13, 24, 28, 31, 33, 34, 36].
Such graded systems annotate hypotheses/variables in the context with elements of the
semiring (“grades”) denoting their usage, e.g., x :0 A ⊢ t : B types a term t which does not
use x and y :1+1 A ⊢ t′ : B types a term t′ in which y is used in two different subterms once
each, accounted for by the semiring addition. A graded modality internalises the semiring
grade, causing a multiplication to the grades of any captured dependencies when the graded
modality is introduced, e.g., y :0∗(1+1) A ⊢ □t′ : □0B.

We seek here to further understand the underlying structure of graded modal logics
by following an “adjoint resolution” approach à la Benton’s seminal “A Mixed Linear and
Non-Linear Logic: Proofs, Terms and Models” at CSL 1994 [3]. Benton showed that the
exponential modality of linear logic (modelled by a comonad) can be decomposed into an
adjunction, defining a pair of “adjoint” logics (a linear logic and a non-linear intuitionistic, or
“Cartesian”, logic) which embed into each other [3]. This provides a beautiful reduction of the
core features of linear logic and its non-linearity modality. Adjoint logic applies the same idea
but to subexponentials [37, 38]. We follow the same scheme, via the adjoint decomposition
of graded modalities which generalise linear logic’s ! and which are traditionally modelled
by graded exponential comonads [5, 6, 12, 13, 24, 34]. Whilst Benton’s work has a pair of
adjoint modalities mediating between the two sublogics, we have a pair of a modality Lin and
a graded modality Grdr . We give a categorical model, showing that these are captured by an
LNL-like adjunction paired with a “strict action” for incorporating the grading, following the
Fujii-Katsumata-Melliès adjoint decomposition of graded (co)monads [10, 24]. The result
is a pair of logics which serve to explain and clarify the relationship between linearity and
grading. We call our system Mixed Graded/Linear (mGL) Logic.

This pair of logics also shines light on a relationship between two styles of graded system
in the literature: those which take linear types as their basis augmented with a graded
modality [6, 12, 31] versus those with no base notion of linearity where grading is pervasive,
tracking all substructurality [1, 2, 4, 7, 28, 30, 34]. Our linear fragment is analogous to the
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former whilst our graded fragment is analogous to the latter. The mutual embedding shows
that these two styles of graded logics have a similar relationship to the adjoint relationship
of intuitionistic logic and linear logic.

Aside from the internal motivation of better understanding the relationship between
grading and linearity, an external motivation for this work is that it can provide a basis
for flexible, safe programming with resources. By separating out the linear fragment from
an intuitionistic graded fragment, one could avoid the strictures of linearity for working
with standard data types which need not be linear, working only in the linear fragment for
handling resources like file handles. The mutual embedding would allow the programmer to
move smoothly between these two subcalculi, as seen also in other adjunction-based calculi,
e.g., for concurrent programming [35]. The focus here however is on the core theory rather
than developing these applications yet.

Since our focus is on the relationship between grading and linearity, we consider the
semiring-graded modalities that generalise linear logic’s !. Other flavours of graded modality
(e.g., graded monads for capturing side effecting behaviour [23, 32]) are not considered here.

Roadmap

Section 2 defines a pair of sequent calculi, the mixed fragment MS, which has both linear
and graded assumptions, and the graded fragment GS, which has only graded assumptions
and no function arrow. As described above, these calculi have a mutual embedding via
modalities between the two. Section 3 considers the categorical model of mGL leveraging
recent work on the adjoint resolution of graded comonads [10, 24]. Section 4 provides the
natural deduction formulation of the calculus, which is proved equivalent to the sequent
calculus version. Section 5 discusses how this work gives a view on the landscape of graded
systems in the literature and considers other related work and future applications.

A version of this paper with the appendices providing full proof details can be found on
the arXiv [40].

2 Mixed Graded/Linear Logic: Proofs and Terms

We present first a sequent calculus for Mixed Graded/Linear logic, which comes in the form
of a term assignment. Figure 1 collects the term syntax for reference; it will also be used in
Section 4 for the natural deduction formulation. The syntax is explained with reference to
its associated proof rules in the next section.

(GS/GT) t ::= x | j | let j = t1 in t2
graded | (t1, t2) | let (x, y) = t1 in t2

| Lin l

(MS/MT) l ::= x | i | let i = l1 in l2
linear | (l1, l2) | let (x, y) = l1 in l2

| λx.l | l1 l2
| Grd r t | let Grd r x = l1 in l2
| Unlin z
| let j = z in l | let (x, y) = z in l

Variables are ranged over by x, y, z in both fragments.
Terms are mostly grouped above with introduction forms followed by elimination forms,

though note that in the last two lines of syntax for l there are additional eliminators: for the
linear modality (Unlin), for units j, and for tensors coming from the graded context.

Figure 1 Collected term syntax.

CSL 2025
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Benton’s approach has two proof systems [3]: one system of linear propositions (the L of
LNL) with two contexts for linear and non-linear propositions respectively, and one system of
non-linear propositions (the NL in LNL). We generalise this approach to the graded setting
by replacing the non-linear parts with graded notions. Thus, our system (mGL) has two
analogous proof systems: one of linear propositions with two contexts for linear and graded
propositions, with judgments subscripted as ⊢MS (for “Mixed (linear/graded) Sequent”), and
one system of graded propositions, with judgments subscripted as ⊢GS (“Graded Sequent”).

The syntax of Benton’s propositions is split into two, “conventional” (i.e., Cartesian /
non-linear) and linear [3]. The syntax of our propositions is analogously split into two, graded
and linear :

(Graded) X , Y , Z ::= J | X ⊠ Y | Lin A
(Linear) A, B, C ::= I | A ⊗ B | A ⊸ B | Grdr X

where J and I are unit types, and ⊠ and ⊗ are tensor (product) operators in their respective
domains. In the case of the linear domain, the product is the standard multiplicative
conjunction. The Lin modality encapsulates a linear proposition as a graded proposition,
and the Grdr modality encapsulates a graded proposition (at grade r, whose structure is
defined below) as a linear proposition. Thus, the two logics are interconnected by Grdr X and
Lin A. Using these two modalities we will later define graded modalities □rA as Grdr (Lin A),
similarly to how the of-course modality !A can be defined in LNL logic as the composition of
two adjoint modalities.

▶ Definition 1. Grades (ranged over by r, s) are drawn from a semiring parameterizing the
system (R, 1, ∗, 0, +, ≤) with preorder (R, ≤) such that both ∗ and + are monotonic wrt ≤.

The semiring governs the structural rules: the additive part of the semiring is involved in
weakening and contraction, and the multiplicative part in usage and composition. Various
concrete examples of interesting semirings are given at the end of Subsection 2.1.

Section 4 develops an equivalent natural deduction formulation of mGL. We then show
that the natural deduction and the sequent calculus are interderivable without modifying
the term witnessing a derivation. Thus, any semantic model of one is a model of the other.
We opt to focus on the sequent calculus form for now without loss of generality.

2.1 Sequent Calculus
We first define contexts used in the judgments:

▶ Definition 2 (Graded contexts). Suppose (R, 1, ∗, 0, +, ≤) is a preordered semiring (Def. 1).
Then grade vectors δ are sequences of R, contexts ∆ are sequences of graded formulas X,
and contexts Γ are sequences of linear formulas:

δ := ∅ | δ, r ∆ := ∅ | ∆, x : X Γ := ∅ | Γ, x : A

The comma operator is overloaded for sequence concatenation, i.e., we can write δ1, δ2 and
∆1, ∆2, which further requires that ∆1 and ∆2 are disjoint contexts.

A graded context δ ⊙ ∆ is a pairing of a grade vector and a context defined as follows:

∅ ⊙ ∅ = ∅ (δ, r) ⊙ (∆, x : X) = (δ ⊙ ∆), x : (r ⊙ X)

where r ⊙ X pairs a formula with a grade r capturing (by the rules of the system) how the
formula X (named x) is used to form a judgment.
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We lift the operations of semirings to grade vectors, forming a semimodule, with the
pointwise addition and scalar multiplication defined in a standard way:

∅ + ∅ = ∅ r ∗ ∅ = ∅
(δ1, r1) + (δ2, r2) = (δ1 + δ2), (r1 + r2) r ∗ (δ, s) = (r ∗ δ), (r ∗ s)

Addition of grade vectors requires the vectors to be of the same length.

The judgment form for our fully graded logic δ ⊙ ∆ ⊢GS t : X captures a concluding
proposition X under the graded context of assumptions δ ⊙ ∆. Mixed graded/linear logic
judgments δ ⊙ ∆; Γ ⊢MS l : A are similar but also have a context Γ of linear assumptions
which, being linear, do not have a corresponding grade vector.

The two judgments ⊢GS and ⊢MS (also called sub-logics or fragments) are defined by
mutual induction. We present conceptually related rules from both systems side-by-side
where possible, or one-after-the-other, in the order GS then MS.

The identity (axiom) rules are:

idGS

1 ⊙ x : X ⊢GS x : X

idMS

∅ ⊙ ∅; x : A ⊢MS x : A

The multiplicative identity 1 is the “default” grade for formulas in the graded logic GS (left),
in the sense that we can think of the right-hand side of the judgment as also implicitly
having grade 1. The graded identity rule says that a graded formula that is used must
have the default grade. For example, in the natural number semiring (N, 1, ∗, 0, +, =) the
multiplicative identity 1 ∈ N captures linear usage. The mixed identity rule types linear
assumption use, requiring just a singleton linear context (forcing a lack of weakening). It
also requires that there are no graded formulas in context – the graded context is empty ∅.

The “cut” rules are:

cutGS
δ2 ⊙ ∆2 ⊢GS t1 : X

(δ1, r , δ3) ⊙ (∆1, x : X , ∆3) ⊢GS t2 : Y
(δ1, r ∗ δ2, δ3) ⊙ (∆1, ∆2, ∆3) ⊢GS [t1/x]t2 : Y
cutMS

δ2 ⊙ ∆2; Γ2 ⊢MS l1 : A
δ1 ⊙ ∆1; (Γ1, x : A, Γ3) ⊢MS l2 : B

(δ1, δ2) ⊙ (∆1, ∆2); (Γ1, Γ2, Γ3) ⊢MS [l1/x]l2 : B

gcutMS
δ2 ⊙ ∆2 ⊢GS t : X

(δ1, r , δ3) ⊙ (∆1, x : X , ∆3); Γ ⊢MS l : B
(δ1, r ∗ δ2, δ3) ⊙ (∆1, ∆2, ∆3); Γ ⊢MS [t/x]l : B

The cutGS rule provides a cut through a graded proposition X of grade r in the receiving
context (second premise). Thus, the resulting term uses semiring multiplication (lifted to
contexts, Def. 2) to capture sequential usage, scaling the grade vector δ2 of the cut term t1
by r . The cutMS rules provides a cut through a linear proposition A and has no effect on
the graded contexts. However, MS has a further cut rule gcutMS for graded propositions in
its graded context, incurring a scaling similarly to cutGS. This pattern occurs throughout:
operations applied to the graded context in GS have a sister rule in MS applying the same
operation in the MS graded context.

CSL 2025



32:6 A Mixed Linear and Graded Logic: Proofs, Terms, and Models

Both sub-logics have free use of exchange:

exGS

(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : Y , ∆2) ⊢GS t : Z
(δ1, r2, r1, δ2) ⊙ (∆1, y : Y , x : X , ∆2) ⊢GS t : Z
exMS

δ ⊙ ∆; (Γ1, x : A, y : B, Γ2) ⊢MS l : C
δ ⊙ ∆; (Γ1, y : B, x : A, Γ2) ⊢MS l : C

gexMS

(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : Y , ∆2); Γ ⊢MS l : B
(δ1, r2, r1, δ2) ⊙ (∆1, x : Y , y : X , ∆2); Γ ⊢MS l : B

Exchanging graded propositions simultaneously exchanges their grades in the grade vector.
We can use weakening and contraction in the graded system and the mixed system within

the graded contexts, with the semiring’s 0 representing weakened hypotheses and the grades
of contracted hypotheses combined via semiring addition +:

weakGS
(δ1, δ2) ⊙ (∆1, ∆2) ⊢GS t : Y

(δ1, 0, δ2) ⊙ (∆1, x : X , ∆2) ⊢GS t : Y

contGS
(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : X , ∆2) ⊢GS t : Y
(δ1, r1 + r2, δ2) ⊙ (∆1, x : X , ∆2) ⊢GS [x/y]t : Y

weakMS
(δ1, δ2) ⊙ (∆1, ∆2); Γ ⊢MS l : B

(δ1, 0, δ2) ⊙ (∆1, x : X , ∆2); Γ ⊢MS l : B

contMS
(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : X , ∆2); Γ ⊢MS l : B
(δ1, r1 + r2, δ2) ⊙ (∆1, x : X , ∆2); Γ ⊢MS [x/y]l : B

The left and right rules for units for the graded and mixed logics are akin to linear logic:

unitJ
L

(δ1, δ2) ⊙ (∆1, ∆2) ⊢GS t : X
(δ1, r , δ2) ⊙ (∆1, x : J, ∆2) ⊢GS let j = x in t : X

unitJ
R

∅ ⊙ ∅ ⊢GS j : J

unitI
L

δ ⊙ ∆; (Γ1, Γ2) ⊢MS l : A
δ ⊙ ∆; (Γ1, x : I, Γ2) ⊢MS let i = x in l : A

unitI
R

∅ ⊙ ∅; ∅ ⊢MS i : I

unitJ−MS
L

(δ1, δ2) ⊙ (∆1, ∆2); Γ ⊢MS l : A
(δ1, r , δ2) ⊙ (∆1, z : J, ∆2); Γ ⊢MS let j = z in l : A

Thus, in GS, we can eliminate a graded unit j at an arbitrary grade r, whereas the linear
unit i in MS gets eliminated from the linear context. The additional left rule (unitJ−MS

L ) for
MS again similarly eliminates graded units J in the graded context.

Tensor products are then eliminated in each fragment as follows:

⊠L

(δ1, r , r , δ2) ⊙ (∆1, x : X , y : Y , ∆2) ⊢GS t : Z
(δ1, r , δ2) ⊙ (∆1, z : X ⊠ Y , ∆2) ⊢GS let (x, y) = z in t : Z

⊠R

δ1 ⊙ ∆1 ⊢GS t1 : X
δ2 ⊙ ∆2 ⊢GS t2 : Y

(δ1, δ2) ⊙ (∆1, ∆2) ⊢GS (t1, t2) : X ⊠ Y

⊗L

δ ⊙ ∆; (Γ1, x : A, y : B, Γ2) ⊢MS l : C
δ ⊙ ∆; (Γ1, z : A ⊗ B, Γ2) ⊢MS let (x, y) = z in l : C

⊗R

δ1 ⊙ ∆1; Γ1 ⊢MS l1 : A
δ2 ⊙ ∆2; Γ2 ⊢MS l2 : B

(δ1, δ2) ⊙ (∆1, ∆2); (Γ1, Γ2) ⊢MS (l1, l2) : A ⊗ B

⊠L−MS

(δ1, r , r , δ2) ⊙ (∆1, x : X , y : Y , ∆2); Γ ⊢MS l : A
(δ1, r , δ2) ⊙ (∆1, z : X ⊠ Y , ∆2); Γ ⊢MS let (x, y) = z in l : A
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The left rule for ⊠ eliminates from the graded context at any grade r, where the components
of the tensor product both inherit this grade in the premise. Reading instead top-down, the
graded tensor product requires that both components are graded with the same grade; this
is similar to linear products, where both components are linear.

Note that Benton has two left rules for (non-linear) tensor products, in the “projection”
style. We instead must use the pattern matching style for the soundness of grading so that
each component is bound to a variable with the same grade.

Only the mixed linear-graded system has implication, and only on linear propositions,
thus we have ⊸ in MS with left and right rules:

⊸L

δ2 ⊙ ∆2; Γ2 ⊢MS l2 : A
δ1 ⊙ ∆1; (Γ1, x : B, Γ3) ⊢MS l1 : C

(δ1, δ2) ⊙ (∆1, ∆2); (Γ1, z : A ⊸ B, Γ2, Γ3) ⊢MS [z l2/x]l1 : C

⊸R

δ ⊙ ∆; (Γ, x : A) ⊢MS l : B
δ ⊙ ∆; Γ ⊢MS λx.l : A ⊸ B

In Lemma 4, we recover a graded implication through the modal operators of the system in
the same way that Melliès did for (ungraded) LNL logic [29].

We now consider the modal operators Lin and Grdr which connect the two sub-logics.
The right rule for the Lin modality transports a linear formula from the linear system

MS into the graded system GS where it can be reasoned with non-linearly as accounted for
by grading. The corresponding left rule is akin to dereliction from linear logic, enabling a
linear assumption x : A to treated as a (renamed) graded assumption z : Lin A at grade 1:

LinL

δ ⊙ ∆; (x : A, Γ) ⊢MS l : B
(δ, 1) ⊙ (∆, z : Lin A); Γ ⊢MS [Unlin z/x]l : B

LinR

δ ⊙ ∆; ∅ ⊢MS l : B
δ ⊙ ∆ ⊢GS Lin l : Lin B

The other modal operator Grd, or rather the family of modal operators Grdr, transports a
graded formula with its grade into the linear system where it can be reasoned with linearly:

GrdL

(δ, r) ⊙ (∆, x : X); Γ ⊢MS l : C
δ ⊙ ∆; (z : Grdr X , Γ) ⊢MS let Grd r x = z in l : C

GrdR

δ ⊙ ∆ ⊢GS t : X
r ∗ δ ⊙ ∆; ∅ ⊢MS Grd r t : Grdr X

The right rule is akin to promotion for Grdr where we subsequently scale the graded context
by the grade r. The left rule “unboxes” a graded modality Grdr X providing access to the X
formula “inside”, graded at r .

Perhaps the most remarkable property of these modal operators is that they decompose
semiring-graded necessity modalities into □rA = Grdr (Lin A) [24] within the mixed system.
In fact, their introduction and elimination rules are derivable:

▶ Lemma 3 (mGL Graded Necessity Modality). The following are derivable:
□E

δ2 ⊙ ∆2; Γ2 ⊢MS l1 : □r A
(δ1, r , δ3) ⊙ (∆1, x : Lin A, ∆3); Γ1 ⊢MS l2 : B

(δ1, δ2, δ3) ⊙ (∆1, ∆2, ∆3); (Γ1, Γ2) ⊢MS let Grd r x = l1 in l2 : B

□i

δ ⊙ ∆; ∅ ⊢MS l : A
(r ∗ δ) ⊙ ∆; ∅ ⊢MS Grd r (Lin l) : □r A

Proof. The elimination rule follows by applying GrdL to the second premise and then applying
cut with the first premise. The introduction rule follows by LinR then GrdR. ◀

CSL 2025
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The previous lemma reveals a lot about the structure of existing graded type systems. First,
graded hypotheses, usually denoted with their grade x :r A in the literature (e.g. [1, 31]), are
graded hypotheses r ⊙ Lin A where the linear formula has been transported into the graded
system. Second, the restriction to only graded variables in the promotion rule is very explicit
in the introduction rule □i above. Third, the elimination rule (here □E) is really the left rule
for Grd followed by a cut. Thus, graded type systems, whilst typically of a natural deduction
form, incorporate a little of the flavour of sequent calculi in the rules for graded modalities
because of the integrated cut.

Using the modal operators we can derive a graded implication of the form Grdr X ⊸ A:

▶ Lemma 4 (mGL Graded Implication). The following rules are derivable:

⊸GL

δ2 ⊙ ∆2 ⊢GS t : X
(δ1, δ3) ⊙ (∆1, ∆3); (Γ1, x : A, Γ2) ⊢MS l : B

(δ1, r ∗ δ2, δ3) ⊙ (∆1, ∆2, ∆3); (Γ1, z : Grdr X ⊸ A, Γ2) ⊢MS [z (Grd r t)/x]l : B
⊸GR

(δ, r) ⊙ (∆, x : X); Γ ⊢MS l : A
δ ⊙ ∆; Γ ⊢MS λy.(let Grd r x = y in l) : Grdr X ⊸ A

Proof. The left rule follows by applying GrdR to the first premise, and then ⊸L using the
second premise. The right rule follows by applying GrdL to the premise and then ⊸R. ◀

The final rules are the approximation rules for grades:
subGS

δ1 ⊙ ∆ ⊢GS t : X δ1 ≤ δ2

δ2 ⊙ ∆ ⊢GS t : X

subMS

δ1 ⊙ ∆; Γ ⊢MS l : B δ1 ≤ δ2

δ2 ⊙ ∆; Γ ⊢MS l : B

Approximation allows for the abstraction of grades along an ordering. For example, in the
semiring (N, 1, ∗, 0, +, ≤) where the order is the usual ordering on natural numbers, then a
grade r stands for “at-most r”, generalising the notion of “affine” usage tracking. Disabling
the ordering by forcing it to be true only in the case of reflexive pairs (i.e., an equality relation)
results in exact usage tracking. This demonstrates that having a notion of approximation
results in a more general usage tracking framework.

▶ Example 5 (Derivation). As an example derivation in the natural numbers semiring
(N, 1, ∗, 0, +, ≤), for “affine” usage tracking, the following copies an assumption to make a
pair in the graded fragment, then uses an approximation, and then transports the pair into
the linear fragment, scaling its grades further:

1 ⊙ x : X ⊢GS x : X
idGS 1 ⊙ y : X ⊢GS y : X

idGS

1, 1 ⊙ x : X , y : X ⊢GS (x, y) : X ⊠ X
2 ⊙ x : X ⊢GS [x/y](x, y) : X ⊠ X 2 ≤ 3

3 ⊙ x : X ⊢GS (x, x) : X ⊠ X
2 ∗ 3 ⊙ x : X ; ∅ ⊢MS Grd 2 (x, x) : Grd2 (X ⊠ X)

GrdR

subGS

contGS

⊠R

▶ Example 6 (None-One-Tons [28]). The semiring over {0, 1, ω} with 0 ≤ ω and 1 ≤ ω,
where + and ∗ are saturating at ω, can be used to distinguish between linear and various
non-linear uses: assigning r = 1 to linear usage, r = 0 to non-usage (when a resource is
discarded), and r = ω to arbitrary usage.
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Note, however, that even with the above semiring we are unable to exactly represent
the exponential modality ! from linear logic via some particular grade r within the graded
logic. This is because no matter which grade we choose, we are able to “push” the grade
into the tensor product using this graded tensor elimination (⊠L), allowing derivation of
Grdr (X ⊠ Y ) ⊸ (Grdr X ⊗ Grdr Y ), and yet in linear logic it is not possible to derive
!(A ⊗ B) ⊸ !A ⊗ !B. Therefore, our logic cannot reduce to Benton’s LNL logic simply by
taking the Cartesian (trivial) semiring, as one might expect at first glance. This quality is
typical of graded base systems, so reconciling these with linear logic requires some additional
structure on the semiring [18] (though this is not the focus here).

On the other hand, notice that we have another way to represent graded products: as
linear products wrapped in the derived graded modality, or □r(A ⊗ B). Importantly, here it
is not possible to “push” the grade “through” the tensor as we can for the graded product;
we cannot derive (□rA) ⊗ (□rB). This representation of graded products thus has behaviour
more typical of a linear base graded type system, with our combined logic again giving us a
clearer understanding of the relationship between these contrasting styles.

▶ Example 7 (Security levels). Information-Flow Control properties can be tracked by instan-
tiating the semiring with a lattice of security levels [12], e.g., with ({Lo ≤ Hi}, Lo, ∧, Hi, ∨)
where Hi-graded inputs are treated as irrelevant: we cannot depend on any high-security
inputs when building a low-security graded output GrdLoA.

▶ Example 8 (Sensitivity). The real number semiring (R, 1, ∗, 0, +, ≤) can be leveraged to
capture a notion of numerical sensitivity in programs/logic [11, 9], where a program is
k-sensitive (for k ∈ R) in a variable if a change ϵ in its inputs to x produces at most a change
of kϵ in the output of the program. This instantiation of the system tracks sensitivities as
grades where additional dependent-type-based mechanisms are needed to lift program values
into the types, e.g., scale : (k : R) → GrdkR → R.

2.2 Metatheory
mGL enjoys a rich metatheory. First, it satisfies cut elimination, for which we give the full
proof. The proof of cut reduction requires a generalization of the graded cut rules to graded
multicut rules in order to accommodate the structural rule of graded contraction.1

Thus, throughout the cut elimination proof we use the following graded multicut rules:

mcut
δ2 ⊙ ∆2 ⊢GS t1 : X

(δ1, δ, δ3) ⊙ (∆1, xn : Xn, ∆3) ⊢GS t2 : Y
(δ1, (δ � [δ2

n]), δ3) ⊙ (∆1, ∆2, ∆3) ⊢GS [t1, . . . , t1/x1, ... , xn]t2 : Y
gmcut

δ2 ⊙ ∆2 ⊢GS t : X
(δ1, δ, δ3) ⊙ (∆1, Xn, ∆3); Γ ⊢MS l : B

(δ1, (δ � [δ2
n]), δ3) ⊙ (∆1, ∆2, ∆3); Γ ⊢MS [t, . . . , t/x1, ... , xn]l : B

Both rules compute the contraction of the n hypotheses involved in the multicut on the
cut-formula X . To do this we use row-vector matrix multiplication. We denote the matrix
consisting of n-copies of the row vector δ2 by [δn

2 ]. Then row-vector multiplication is:

1 Whilst cut reduction can be proved for intuitionistic sequent calculus without multicut [41], we use the
standard multicut approach as it relates well to the categorical models developed later.
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δ � [δ2
n] =

n⊕
k=1

(δ(k) ∗ δ2)

where the ∗ on the right is the scalar multiplication derived from the semiring,
⊕

is the
pointwise addition of vectors, and where δ(k) is the k-th element of the vector δ. This
computes the usages of the hypotheses in ∆2 as the multiplication of a matrix of size 1 × n

with a matrix of size n × |∆2| to yield a matrix of size 1 × |∆2|.
We now proceed with the proof of cut elimination. The rank Rank(X) and Rank(A) of a

formula is the height of the input formula’s syntax tree where constants are of rank 0. The
cut rank CutRank (Π) of a derivation Π of some judgment is defined to be one more than the
maximum rank of the cut formula’s in Π, and 0 if Π is cut free. The depth Depth(Π) of a
derivation Π is the length of the longest path in the proof tree of Π, and hence, the depth of
an axiom is 0. We prove cut-elimination without term annotations on the rules, in keeping
with traditional proofs.

▶ Lemma 9 (Cut Reduction for mGL).
1. (Graded) If Π1 is a proof of δ2⊙∆2 ⊢GS X and Π2 is a proof of (δ1, δ, δ3)⊙(∆1, Xn, ∆3) ⊢GS

Y with CutRank (Π1), CutRank (Π2) ≤ Rank(X), then there exists a proof Π of (δ1, δ �
[δ2

n], δ3) ⊙ (∆1, ∆2, ∆3) ⊢GS Y with CutRank (Π) ≤ Rank(X).
2. (Graded/Mixed) If Π1 is a proof of δ2 ⊙ ∆2 ⊢GS X and Π2 is a proof of (δ1, δ, δ3) ⊙

(∆1, Xn, ∆3); Γ ⊢MS B with CutRank (Π1), CutRank (Π2) ≤ Rank(X), then there exists a
proof Π of (δ1, δ � [δ2

n], δ3) ⊙ (∆1, ∆2, ∆3); Γ ⊢MS B with CutRank (Π) ≤ Rank(X).
3. (Mixed) If Π1 is a proof of δ2⊙∆2; Γ2 ⊢MS A and Π2 is a proof of δ1⊙∆1; (Γ1, A, Γ3) ⊢MS B

with CutRank (Π1), CutRank (Π2) ≤ Rank(A), then there exists a proof Π of (δ1, δ2) ⊙
(∆1, ∆2); (Γ1, Γ2, Γ3) ⊢MS B with CutRank (Π) ≤ Rank(A).

Proof. By mutual induction on Depth(Π1)+Depth(Π2) (see Appendix C.1 [40] for proof). ◀

▶ Lemma 10 (Decreasing Order of mGL). If Π is a proof of δ ⊙ ∆ ⊢GS X or δ ⊙ ∆; Γ ⊢MS A
with CutRank (Π) > 0, then there is a proof Π′ of δ′ ⊙ ∆ ⊢GS X or δ′ ⊙ ∆; Γ ⊢MS A with
δ ≤ δ′ and CutRank (Π′) < CutRank (Π).

Proof. By induction on Depth(Π) (see Appendix C.2 [40] for proof). ◀

▶ Theorem 11 (Cut Elimination of mGL). If Π is a proof of δ⊙∆ ⊢GS X or δ⊙∆; Γ ⊢MS A with
CutRank (Π) > 0, then there is an algorithm which yields a cut-free proof Π′ of δ ⊙ ∆ ⊢GS X
or δ ⊙ ∆; Γ ⊢MS A respectively.

Proof. Follows immediately by induction on CutRank (Π) and the previous lemma. ◀

▶ Lemma 12 (Subformula property).
1. (Graded) Every formula occurring in a cut-free proof Π of a judgment, δ ⊙ ∆ ⊢GS X,

consists of subformulas of the formulas occurring in δ ⊙ ∆ ⊢GS X.
2. (Mixed) Every formula occurring in a cut-free proof Π of a judgment, δ ⊙ ∆; Γ ⊢MS A,

consists of subformulas of the formulas occurring in δ ⊙ ∆; Γ ⊢MS A.

Proof. By induction on Π (See Appendix C.3 [40] for proof). ◀

Lastly, we define an equational theory for mGL:
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▶ Definition 13 (Equational theory ≡, subset). An equational theory on derivations accounts
for equalities between proofs of the same sequent arising from the graded structure (where the
terms are the same but the structure of the proof tree differs), as well as cut elimination, i.e.,
in GS, if cut elimination on derivation Π1 of δ ⊙ ∆ ⊢GS t : X yields the cut-free derivation of
Π2 for δ ⊙ ∆ ⊢GS t′ : X then the equational theory has Π1 ≡ Π2, and similarly for MS.

As a sample of two equations from the GS fragment, the following shows an equation
leveraging the commutativity of contraction, and another on the interaction between weakening
and contraction leveraging the left-unit of semiring addition:

δ1, r , δ2 ⊙ ∆1, X , ∆2 ⊢GS t : Y
δ1, 0, r , δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y

weakGS

δ1, 0 + r , δ2 ⊙ ∆1, X , ∆2 ⊢GS t : Y
contGS

≡ δ1, r , δ2 ⊙ ∆1, X , ∆2 ⊢GS t : Y
(contr-unitL)

δ1, r , s, δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y
δ1, s, r , δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y
δ1, s + r , δ2 ⊙ ∆1, X , ∆2 ⊢GS t : Y

contGS

exGS δ1, r , s, δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y
δ1, r + s, δ2 ⊙ ∆1, X , X , ∆2 ⊢GS t : Y

contGS≡
(contr-sym)

Appendix A.1 [40] gives the full definition of the equational theory.
▶ Remark 14 (“βη-equalities” and “Triangle identities” via cut reduction). One might wonder
where β-equalities are in the above equational theory, e.g., that (λx.l)l′ in MS is equal to the
cut [l′/x]l. Such β-equalities are provided by the cut elimination procedure, which reduces
away interacting pairs of right and left formulas (the principal vs. principal cases).

Similarly, η-equalities are equivalent to the identity expansion part of cut elimination
procedure (where the cut of an identity axiom is transformed into an interacting left and
right pair, with identity axioms expanded towards the leaves).

The internal derivations for the graded equivalent of the “triangle identities’ (that one
usually has associated with an adjunction) are also handled in the cut elimination procedure.
The main feature of the derivations for both identities is that after one step the left and right
rules for the modal operators match up. This leads to consecutive principal vs. principal
cases where rules for the interacting left and right pairs in the two subproofs are removed by
the reduction step.

3 Model

We detail a denotational model for mGL which is based on an adjoint decomposition of
graded comonads. We introduce key definitions as needed.

A graded comonad can be summarised as a colax monoidal functor □ : I // [C, C] where
I is a preordered monoid (I, 1, ∗, ≤) treated as a monoidal category and [C, C] is the category
of endofunctors on C [33, 34]. Colax monoidality of □ means that the laws of a monoidal
functor become 2-cells, providing the graded comonad operations:

1
1
��

Id

��
I

□
//

ε 6>

[C, C]

I × I
∗
��

□×□ // [C, C] × [C, C]
◦
��

I
□

//

δ
2:

[C, C]

which are thus natural transformations εA : □1A → A. and δr,s,A : □(r∗s)A → □r(□sA).
Fujii et al. [10] gave a formal theory for graded monads, which can be easily dualised to

graded comonads, showing that in an analogous way to an ordinary comonad, every graded
comonad can be decomposed into an adjunction Mny ⊣ Lin : M // C and (key to graded
comonads) a monoidal action ⊙ : R × C // C, and thus vice versa:
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▶ Lemma 15. (Resolution of a graded comonad [24, 10]) An adjunction L ⊣ R : M // C
and a strict monoidal action ⊙ : R × C // C together induce a graded comonad over the
family of endofunctors defined by □r = L(r ⊙ (R−)) : M //M.

Along with some additional structure relating to substructurality (see below), this result
provides a model of mGL with C providing a model for GS derivations, M providing a model
for MS derivations, the type constructor Grdr transporting from GS to MS modelled by
L(r ⊙ −) : C → M, and type constructor Lin transporting MS to GS modelled by R : M → C.

However we need additional structure for the (sub)structural behaviour of our logic.
In the literature on graded modal type theories, graded comonads are extended to graded
exponential comonads (sometimes called graded linear exponential comonads [24]) defined as a
colax monoidal functor □ : R // [M, M] where R is a preordered semiring (R, 1, ∗, 0, +, ≤)
(viewed as a category), [M, M] is the category of symmetric lax monoidal endofunctors on a
symmetric monoidal category M, and □ has additional symmetric lax monoidal structure for
the additional monoidality of R and [M, M] [12]. This additional structure provides natural
transformations wA : □0A // 1 and cr,s,A : □(r+s)A // (□rA) ⊗ (□sA) capturing (graded)
weakening and contraction, subject to comonoidal coherence conditions. This additional
structure can be induced by the adjoint decomposition given an exponential action:

▶ Definition 16 (Exponential action). Given a preordered semiring (R, 1, ∗, 0, +, ≤) and a
symmetric monoidal category (C, J,⊠), we say that a bifunctor ⊙ : R × C // C is
1. a strict action (a strict graded comonad), if it satisfies the following equalities:

εX : 1 ⊙ X = X
δX,r,s : (r ∗ s) ⊙ X = r ⊙ (s ⊙ X)

Note that we treat these equalities as strict natural transformations named ε and δ;
2. symmetric lax monoidal in the second argument if it has:

mJ,r : J → r ⊙ J
m⊠,r,X,Y : (r ⊙ X) ⊠ (r ⊙ Y ) → r ⊙ (X ⊠ Y )

where mJ is the unit of m⊠ and m⊠ is associative and commutative up to isomorphism;
3. symmetric colax monoidal between (R, 0, +, ≤) and (C, J,⊠) in the first argument if it

has natural transformations:

weakX : 0 ⊙ X → J
contrr,s,X : (r + s) ⊙ X → (r ⊙ X) ⊠ (s ⊙ X)

where weak is the unit of contr, e.g. ρr⊙X ◦ (id ⊠ weakX) ◦ contrr,0,X = id with right
unitor ρ, and contr is associative and commutative, i.e., that contrr,s,X = c ◦ contrs,r,X .
Furthermore, these natural transformations must be preserved by the strict action and
monoidal structure as described by the standard additional equations in Figure 2.

If we have all of the above properties then we refer to ⊙ as an exponential action. This
terminology recalls the exponential action of Brunel et al. [6] which is the same as the above
but where strictness is instead laxness in their definition. Our definition is also similar
to linear exponential graded comonads (see e.g., [24, 12]), but here the graded comonad
is uncurried (in the form of an action) and has equalities for its natural transformations
(strictness).
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0 ⊙ X

weakX

��

(0 ∗ s) ⊙ X

δX,0,s

0 ⊙ (s ⊙ X)

weaks⊙X

��
J

0 ⊙ X

weakX

��

(s ∗ 0) ⊙ X

δX,s,0

J

mJ,s %%

s ⊙ (0 ⊙ X)

s⊙weakX

��
s ⊙ J

(r ∗ (s1 + s2)) ⊙ X

δr,s1+s2,X

��

((r ∗ s1) + (r ∗ s2)) ⊙ X

contrr∗s1,r∗s2,X

��
r ⊙ ((s1 + s2) ⊙ X)

r⊙contrs1,s2,X

��

(r ∗ s1) ⊙ X ⊠ (r ∗ s2) ⊙ X

δr,s1,X ⊠ δr,s2,X

��
r ⊙ ((s1 ⊙ X) ⊠ (s2 ⊙ X)) r ⊙ (s1 ⊙ X) ⊠ r ⊙ (s2 ⊙ X)

m⊠,r,s1⊙X,s2⊙X
oo

((s1 + s2) ∗ r) ⊙ X

δs1+s2,r,X

��

((s1 ∗ r) + (s2 ∗ r)) ⊙ X

contrs1∗r,s2∗r,X

��
(s1 + s2) ⊙ (r ⊙ X)

contrs1,s2,r⊙X

��

(s1 ∗ r) ⊙ X ⊠ (s2 ∗ r) ⊙ X

δs1,r,X ⊠ δs2,r,X

��
(s1 ⊙ (r ⊙ X)) ⊠ (s2 ⊙ (r ⊙ X)) (s1 ⊙ (r ⊙ X)) ⊠ (s2 ⊙ (r ⊙ X))

Figure 2 Further equations of a strict exponential action, interacting the colax symmetric
monoidal structure, strict action, and (strict) monoidality.

We define a strict exponential action to be an exponential action as above but where
the monoidal structure mJ and m⊠ is also strict, where for clarity (in the appendix) we
sometimes orient the equality as a morphism, where in the opposite direction we denote
these morphisms by nJ,r and n⊠,r,X,Y respectively. Strictness of the monoidal structure is
needed for soundness of our model.

We now give the definition of the model of mGL, where we now use the opposite category
Rop to capture the correct polarity of the approximation rules.

▶ Definition 17 (Mixed Graded/Linear model). Suppose (C, J,⊠) and (M, I, ⊗) are symmetric
monoidal categories, where M is symmetric monoidal closed (with exponents ⊸), and
(R, 1, ∗, 0, +, ≤) is a preordered semiring. Then a Mixed Graded/Linear model is a symmetric
monoidal adjunction Mny ⊣ Lin : M // C along with an exponential action ⊙ : Rop × C // C.

Thus an mGL model is essentially an LNL model with a strict action. However, whilst
Benton’s LNL models are initially stated to require that M is Cartesian closed, he goes on to
show that Cartesian properties are induced for the Eilenberg-Moore category of !-coalgebras
for a symmetric monoidal category [3]. In our setting, the Cartesian structure is not needed
since the MS logic is a mix of graded and linear logic, rather than Cartesian and linear logic.
That is, graded propositions do not have arbitrary weakening and contraction, but instead
these structural rules are controlled by grades (and corresponding underlying categorical
structure [12, 24]). Therefore, a symmetric monoidal closed M suffices.

From Definition 17, we define our denotational model of mGL:
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▶ Definition 18 (Interpretation of Mixed Graded/Linear Logic.). Given a Mixed Graded/Linear
model (Def. 17) (with Mny ⊣ Lin : M // C and ⊙ : Rop × C // C), we interpret by two
mutually defined interpretations J−KGS and J−KMS on types and proofs (derivations):

For every GS type X there is an object JXKGS ∈ C and for every MS type A there is an
object JAKMS ∈ M, mutually defined inductively as:

JJKGS = J
JX ⊠ Y KGS = JXKGS ⊠ JY KGS

JLin AKGS = LinJAKMS

JIKMS = I
JA ⊗ BKMS = JAKMS ⊗ JBKMS

JA ⊸ BKMS = JAKMS ⊸ JBKMS

JGrdr XKMS = Mny(r ⊙ JXKGS)

For every proof Π of a GS sequent (r1, ... , rn) ⊙ (x1 : X1, ... , xn : Xn) ⊢GS t : X there is a
morphism in the category C:

JΠKGS : (r1 ⊙ JX1KGS) ⊠ . . . ⊠ (rn ⊙ JXnKGS) // JXK

(where an empty context is interpreted as ∅GS = J).
For every proof Π of an MS sequent (r1, ... , rn) ⊙ (x1 : X1, ... , xn : Xn); y1 : A1, ... , ym :
Am ⊢MS l : B there is a morphism in the category M:

JΠKMS : Mny(r1 ⊙ JX1KGS) ⊗ . . . ⊗ Mny(rn ⊙ JXnKGS) ⊗ JA1KMS ⊗ . . . ⊗ JAmKMS // JBKMS

(where an empty MS context is interpreted as ∅MS = I).
Appendix C.4 [40] gives the full definition of the interpretation, including intermediate
derivations from the mGL model.

Finally, we have our soundness and completeness theorems:

▶ Theorem 19 (Soundness of Mixed Graded/Linear Logic models). Suppose a mixed graded/-
linear model as above. Then for derivation Π1 of δ ⊙ ∆ ⊢GS t1 : X and derivation Π2 of
δ ⊙ ∆ ⊢GS t2 : X then if Π1 ≡ Π2 then JΠ1K = JΠ2K.

Similarly for Π1 of δ ⊙ ∆; Γ ⊢MS l1 : A and derivation Π2 of δ ⊙ ∆; Γ ⊢MS l2 : A then if
Π1 ≡ Π2 then JΠ1K = JΠ2K.

Proof. This proof holds by mutual induction. For the details see Appendix C.5 [40]. ◀

▶ Theorem 20 (Completeness of Mixed Graded/Linear Logic models). For derivations Π1, Π2
(of either GS or MS) if JΠ1K = JΠ2K in all mixed graded/linear models, then Π1 ≡ Π2.

Proof. This is a standard proof, where we build a generic model based on the syntax and
the equational theory. For the details see Appendix C.6 [40]. ◀

4 Natural Deduction

We now develop a natural deduction formulation of mGL. Whilst sequent calculus judgments
were denoted ⊢MS and ⊢GS, natural deduction judgments are correspondingly ⊢MT and ⊢GT.

The syntax for terms is identical to the sequent calculus, collected in Figure 1. Ap-
pendix B [40] gives the introduction and elimination rules and structural rules for mGL’s
natural deduction formulation. The unit constructors are j and i. Tensor products in both
systems are denoted by pairs of terms with corresponding let-expressions for eliminators. The
graded modal introduction form Lin l operates on mixed terms, dual to Grd r t which operates
on graded terms. The mixed syntax includes abstraction λx.l and function application l1 l2.
The most interesting aspect is the rules for the modal operators:
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LinI

δ ⊙ ∆; ∅ ⊢MT l : B
δ ⊙ ∆ ⊢GT Lin l : Lin B

LinE

δ ⊙ ∆ ⊢GT t : Lin A
δ ⊙ ∆; ∅ ⊢MT Unlin t : A

GrdI

δ ⊙ ∆ ⊢GT t : X
r ∗ δ ⊙ ∆; ∅ ⊢MT Grd r t : Grdr X

GrdE

δ2 ⊙ ∆2; Γ2 ⊢MT l1 : Grdr X
(δ1, r , δ3) ⊙ (∆1, x : X , ∆3); Γ1 ⊢MT l2 : B

(δ1, δ2, δ3) ⊙ (∆1, ∆2, ∆3); (Γ1, Γ2) ⊢MT let Grd r x = l1 in l2 : B

In the sequent calculus presented in Section 2, the right rule for Lin is in the graded subsystem,
but the left rule is in the mixed subsystem. A similar idea arises here, the introduction rule
for Lin (rule LinI) is in the graded subsystem and the elimination rule (rule LinE) is in the
mixed subsystem. Introducing Grdr formulas (rule GrdI) has the effect of scaling the input
grades by r . The elimination rule for Grdr (rule GrdE) is a pattern match on the form of l1.
Since Lin and Grd are the decomposition of graded modalities (Section 3), the form of the
elimination rule for Grdr is defined in a way which resembles that of elimination rules for
graded modalities in other natural deduction-based type systems [31].

This formulation also has explicit graded structural rules:
weak

(δ1, δ2) ⊙ (∆1, ∆2) ⊢GT t : Y
(δ1, 0, δ2) ⊙ (∆1, x : X , ∆2) ⊢GT t : Y

cont
(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : X , ∆2) ⊢GT t : Y
(δ1, r1 + r2, δ2) ⊙ (∆1, x : X , ∆2) ⊢GT [x/y]t : Y

ex
(δ1, r1, r2, δ2) ⊙ (∆1, x : X , y : Y , ∆2) ⊢GT t : Z
(δ1, r2, r1, δ2) ⊙ (∆1, y : Y , x : X , ∆2) ⊢GT t : Z

In the transition from sequent calculus to natural deduction, left rules transform into
elimination rules, and as a result the additional graded left rules in the mixed sequent
calculus are no longer explicitly part of the system, but can be derived. We go on to prove
that the sequent calculus of Section 2.1 is equivalent to the natural deduction system.

We give two main results related to the natural deduction system; the first is substitution
for typing. Note that this reuses the row-vector multiplication operation of Section 2.2.

▶ Lemma 21 (Substitution for ⊢GT and ⊢MT). The following hold by mutual induction:
1. (Graded) If δ2 ⊙ ∆2 ⊢GT t1 : X and (δ1, δ, δ3) ⊙ (∆1, xn : Xn, ∆3) ⊢GT t2 : Y , then

(δ1, δ � [δ2
n], δ3) ⊙ (∆1, ∆2, ∆3) ⊢GT [t1, . . . , t1/x1, ... , xn]t2 : Y .

2. (Graded/Mixed) If δ2 ⊙ ∆2 ⊢GT t : X and (δ1, δ, δ3) ⊙ (∆1, xn : Xn, ∆3); Γ ⊢MT l : B, then
(δ1, δ � [δ2

n], δ3) ⊙ (∆1, ∆2, ∆3); Γ ⊢MT [t, . . . , t/x1, ... , xn]l : B.
3. (Mixed) If δ2 ⊙ ∆2; Γ2 ⊢MT l1 : A and δ1 ⊙ ∆1; (Γ1, x : A, Γ3) ⊢MT l2 : B, then (δ1, δ2) ⊙

(∆1, ∆2); (Γ1, Γ2, Γ3) ⊢MT [l1/x]l2 : B.

Proof. By mutual induction on the second assumed derivation (see Appendix C.7 [40]). ◀

Since we have an explicit structural rule for contraction (above and listed in Appendix B
[40]), the substitution lemma on the graded fragment is formalized as multi-substitution.
Otherwise, its proof is a fairly standard substitution proof for graded systems (e.g., as in [31]).
Lastly, the natural deduction system is interderivable with the sequent calculus, which we
establish such that the term witnessing the derivations does not change between systems:

▶ Theorem 22 (Sequent calculus and natural deduction interderivability). δ ⊙ ∆ ⊢GS t : X ⇔
δ ⊙ ∆ ⊢GT t : X and δ ⊙ ∆; Γ ⊢MS l : A ⇔ δ ⊙ ∆; Γ ⊢MT l : A.
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Proof. By mutual induction on the assumed derivations (Appendix C.8 and C.9 [40]). The
sequent calculus to natural deduction direction requires the substitution lemma above. ◀

The implication of the previous result is that we only need a semantic model of one of the
two systems, and the other can be modelled using the same interpretation of terms. We
chose to model the sequent calculus form directly.

5 Discussion

5.1 Relating linear base vs. graded base calculi
A major thread of graded type systems in the literature starts with a linear logic base and
then generalises the ! modality to a semiring-graded modality atop a linear logic, e.g., the
systems of Brunel et al. [6], Gaboardi et al. [12], Orchard et al. [31], and others [11, 18].
Often these systems are presented with a single context containing both linear and graded
propositions [12, 31]. Overall, these approaches have a common core which is isomorphic to
the natural deduction MT fragment shown here with the (natural deduction analogue of the)
derived □r graded modality of Lemma 3 as part of their definition (i.e., not derived). We
refer to this style of graded type system as the linear base style.

A contrasting approach has no base notion of linearity, but instead has pervasive grading
tracking substructurality, i.e., no linear assumptions, every assumption has a grade, and
function arrows come equipped with a grade describing the usage of their input in the function
(e.g., written A

r−→ B). Such systems include the coeffect calculi of Petricek et al. [33, 34],
the general graded modal system of Bernardy et al. [1], and several others [2, 4, 7, 28, 30].
The GT fragment of our system here corresponds to a common subset of these approaches:
a subset without function arrows and without a graded modality, since there is no graded
modality that lives in the GT side (□i is derived into MT). Hughes et al. also develop a
program synthesis technique for graded base systems, where grades are used to prune the
search space [19]; its synthesis calculus formulation resembles closely GS.

Our work thus shows the relationship between the linear base and graded base style,
namely that there is a mutual embedding between these two approaches which generates the
graded modality in the linear base (Lemma 3). Exploring this in more depth is further work.
For instance, it is unclear what is needed to realise a graded comonadic modality in GT that
arises from the embedding (or a different embedding), and how this could interact with a
graded function arrow in GS or GT. Pursuing this line of work would help to explain the
relationship between the two dominant styles of graded system in the literature, which seem
strongly related, and their relative expressive power. Nonetheless, by following Benton’s
programme and giving it a graded rendering here, we can already see here the close connection
between these two styles of graded system.

5.2 Related work on adjoint logics
Pruiksma et al. formalized a general way to add and remove structural rules from a logic
through adjunctions [37]. Their work is similar to ours as it relates logics through adjoint
decompositions based on modal operators to control structural rules. Their formulation
with “modes of truth” resembles our work with grades; however, modes of truth lack the
algebraic properties graded formulations depend on and instead have a very relational flavor.
Building on this work of Pruiksma et al., Jang et al. develop a natural deduction formulation
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of adjoint logic [21]. They leverage this to give a functional language able to reason about
resource properties like strictness and erasure. Similar reasoning can be developed ontop of
our natural deduction formulation here, though this is left as further work.

A question is whether grading can be unified with the adjoint logic approach. Eades and
Orchard sketched a unification based on generalising semiring operations to relations rather
than functions, with predicates classifying unit values [20]. Hanukaev et al. develop this
idea further, introducing a dependent type system based on a similar structure as the logics
here but using a generalised notion of grading that combines the modes of adjoint logic [16].
They prove that their system is well-formed syntactically, but do not introduce any semantic
model. Our logic mGL can be seen as an instantiation of their system, but the categorical
model given here could potentially be generalised into a model of their system.

5.3 Further work
Practical implementation to leverage linear/grading separation

The separation of the mixed system (MS/MT) from the purely graded fragment (GS/GT)
(which acts more as a standard intuitionistic system) can provide a basis for a programming
language design. In such a language, the restrictions of linearity could be used only for
handling data that needs to be linear, such as file handles or channels. However, for data
types which need not be linear, e.g., primitive types like integers, characters, or structures
over them, the graded fragment could be used without having to confront linearity constraints.
The mutual embedding would allow the programmer to move smoothly between these two
subcalculi. Similar ideas are discussed for the polarized extension of SILL for concurrent
programming [35]. The implementation could borrow ideas from the Granule programming
language, which already provides a mature and feature rich implementation of a linear-base
style graded type system [31]. Instead, an mGL-inspired implementation could be based
on the natural deduction term calculus with the modalities mediating between the two
judgments. Exploring this application, perhaps as an extension to Granule, is future work.

Other generalisations

In LNL, the adjunction can be followed in the opposite direction to derive a monad ?A =
Lin(MnyA). However, in mGL we do not get a graded monad by composing Lin (Grdr X) since
the adjoint resolution of a graded monad has a strict action on the other side (on M in the
model). Exploring a calculus with a pair of actions to allow both graded monads and graded
comonads is further work.

Uniqueness typing

Recent work has demonstrated that uniqueness is a closely related but distinct concept to
linearity [27]; uniqueness logic [17] is substructural in much the same way as linear logic, but
provides a monadic modality for enabling the structural rules in contrast to linear logic’s
comonadic ! modality. Building an adjoint model for uniqueness or a calculus which unifies
uniqueness and linearity [27] would be interesting further work, and this could potentially be
extended to more recent systems which develop graded notions of uniqueness [26].
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