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i

A long, long time ago

I can still remember how that music

Used to make me smile

And I knew if I had my chance

That I could make those people dance

And maybe they’d be happy for a while...

Don McLean



Abstract

This thesis investigates soliton dynamics in non-integrable field theories, with a

primary focus on the Abelian Higgs model for vortices.

In the Baby Skyrme model, we introduce a novel family of solutions exhibiting

nested ring structures with dihedral symmetry. In addition, we examine periodic

solutions in cylindrical domains, enhancing the understanding of soliton solutions

in two dimensions.

For the Abelian Higgs model, we develop robust numerical methods to study

vortex dynamics. Our results reveal rich dynamical phenomena, such as quasi-

bound states in vortex scattering and the emergence of spectral walls; a non-linear

effect arising when internal modes transition to the continuous spectrum, altering

vortex trajectories. Beyond critical coupling, we explore vortex interactions in

Type I and Type II superconductivity, identifying attractive and repulsive regimes,

uncovering non-trivial quasi-stationary states influenced by excited normal modes.

Furthermore, we investigate orbiting vortex solutions, including vortex-antivortex

pairs and 2-vortex systems, demonstrating sustained rotational motion induced by

linear perturbations.

A significant finding is the observation of spectral walls not only in critically cou-

pled vortices but also away from critical coupling, suggesting their broader rele-

vance across topological field theories. These results deepen the understanding of

soliton dynamics, bridging one-dimensional kinks and vortex interactions in gauge

theories. The thesis concludes by proposing future research directions, including

multi-vortex scattering, the role of impurities, and extensions to cosmic strings

and Chern-Simons systems, laying a foundation for further exploration of soliton

phenomena in theoretical and experimental contexts.
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Chapter 1

Introduction

Solitons are stable solutions to nonlinear field equations with finite energy. We are

particularly interested in field theories stabilised by a topological charge. Solitons

are distinguished by their energy density being smoothly varying and localised

around a specific point. An example is vortices in the Abelian Higgs model, which

behave like point-like particles, or skyrmions in nuclear physics.

In this thesis, we focus on non-integrable field theories, specifically the Abelian

Higgs model for vortices, which requires numerical methods to find soliton solu-

tions.

The thesis is structured as follows. In part I we introduce soliton theory, highlight-

ing the role of the topological charge in stabilising nonlinear field configurations.

The discussion begins with one-dimensional solitons, including kinks in ϕ4 the-

ory and sine-Gordon kinks. The existence conditions for solitons are explored,

incorporating key concepts such as topology and Derrick’s theorem.

Part II explores the Baby Skyrme model, a two-dimensional analogue of the

Skyrme model, which serves as a simplified framework for studying solitonic so-

lutions. In chapter 2, we discuss the model and field equations. We discuss the

Bogomolny bound and axially symmetric ring-like solutions. In chapter 3, a new

family of solutions is introduced, characterised by nested ring structures that ex-

hibit dihedral symmetry. These are compared with traditional axially symmetric

ring solutions, and their energy properties are analysed. In section 4.4, we discuss

Baby Skyrmions in cylindrical domains, leading to periodic solitonic structures

2
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and an examination of infinite-charge configurations. Finally, in chapter 4, do-

main walls in the Baby Skyrme model are investigated, focussing on their stability,

symmetry properties, and exact solutions. The findings contribute to a broader

understanding of soliton interactions in non-integrable field theories.

Part III of this thesis focusses on the Abelian Higgs model, which describes vortices

in a two-dimensional gauge field theory. In chapter 6, we introduce the model,

followed by an exploration of the moduli space approximation and static vortex

solutions. Since the field equations governing vortex dynamics are often impossible

to solve analytically, numerical methods are developed and described in chapter 7.

These methods include Lorentz transformations to generate boosted solutions,

numerical time integration schemes for evolving vortex systems, and techniques to

enforce appropriate gauge choices and boundary conditions. Particular emphasis

is placed on ensuring numerical stability and accuracy, comparing results with

predictions from the moduli space approximation to validate the methods.

In chapter 9, we focus on vortex scattering in the presence of excited normal

modes, revealing novel dynamical features beyond the standard geodesic motion

on the moduli space. The existence of quasi-bound states, where vortices undergo

multiple bounces before eventually separating, is demonstrated through numerical

simulations. Additionally, we observe spectral walls, a non-linear effect that alters

vortex trajectories when an internal mode flows to the continuous spectrum. These

results highlight the richness of vortex dynamics beyond the BPS regime and

suggest deeper connections to solitonic interactions in other field theories.

In chapter 10, we move beyond critically coupled vortices, exploring vortex in-

teractions in regimes analogous to Type I and Type II superconductivity. In the

Type I regime (λ < 1), vortices exhibit attractive interactions. In the Type II

regime (λ > 1), repulsive interactions dominate. We explore the impact of non-

zero energy modes on vortex behaviour, finding non-trivial quasi-stationary states.

Furthermore, our findings suggest the presence of spectral walls away from critical

coupling.

Finally, in chapter 11, we focus on orbiting vortex solutions, where vortices undergo

rotational motion around a central point. These orbits arise in various contexts,
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including vortex-antivortex pairs, where mutual attraction can lead to stable ro-

tational states. In addition, orbits are studied in 2-vortex systems, where linear

perturbations induce sustained rotational motion. These findings contribute to the

understanding of vortex interactions in confined geometries and suggest potential

experimental realisations in condensed matter systems.

The thesis concludes in part IV with an overview of the key findings and a discus-

sion of potential future research directions.

1.1 Soliton Theory

1.1.1 Topology

For topological solitons to exist, the solutions to a given energy functional must be

continuous maps between distinct manifolds, classified by a conserved topological

invariant or charge [53].

Consider two compact manifolds X and Y without boundary. If a continuous map

ϕ : X → Y can be continuously deformed into another map ψ : X → Y , then ϕ is

homotopic to ψ. This defines an equivalence relation, partitioning the maps into

homotopy classes.

The set of homotopy classes of maps fromX to Y is denoted [X, Y ]. WhenX = Sn

(the n-sphere), this set is the nth homotopy group πn(Y ), which forms a group

for n ≥ 1.

For example, if Y = Sn with n ≥ 1, then πn(S
n) ∼= Z, the integers.

If ϕ : X → Y is a differentiable map between oriented closed manifolds of the

same dimension, the topological charge is the degree of the map,

Bϕ = deg(ϕ) =

∫
X

ϕ∗(Ω), (1.1.1)

where Ω is the normalised volume form on Y (with
∫
Y
Ω = 1), and ϕ∗ denotes the

pullback.

This degree is a homotopy invariant, taking integer values and often interpreted

as a winding number in field theories.
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Topological solitons arise in theories where field configurations cannot be contin-

uously deformed to the vacuum, belonging to non-trivial homotopy classes. In

flat space Rd, boundary conditions at infinity (e.g., fields approaching vacuum

values) enable compactification, allowing classification via homotopy groups such

as πd−1(V ) for linear target spaces V (vacuum manifold) or πd(Y ) for nonlinear

fields with closed target Y .

Examples include vortices (π1(V )) and Skyrmions (π3(Y )) [53].

1.1.2 Derrick’s Argument

There is an additional constraint for topological solitons to exist, by means of

evading Derrick’s argument. Regarding field theories in flat space, for a given field

configuration to be a stationary point of the energy functional, it must be stable

under spatial rescaling [29].

Derrick’s argument states that a field theory will not admit topological solitons if

the static energy functional has no stationary points under spatial rescaling, apart

from the vacuum solution. To avoid this constraint, the energy functional must

contain terms that scale differently under rescaling; specifically, it must include

both an expanding term (such as a potential or mass term) and a contracting term

(such as a gradient or kinetic term). Without this balance, the solution would

either shrink to a point or expand indefinitely. One way to evaluate an energy

functional E[ϕ] is to consider it on a one-parameter family of field configurations

ϕ(λ), yielding

e(λ) = E[ϕ(λ)]. (1.1.2)

In general, for a critical point of the energy functional, the derivative de/dλ = 0

must hold at λ = 1 (where ϕ(1) = ϕ) for all such one-parameter families. This can

be thought of in terms of a small deformation parameter ϵ, with λ = 1 + ϵ (or

λ = eϵ), and differentiating at ϵ = 0, equivalent to λ = 1.

Derrick’s argument arises from considering a specific one-parameter family induced

by spatial scaling, x 7→ λx with λ > 0, defining the rescaled field configuration as
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ϕ(λ)(x) = ϕ(λx). The energy functional evaluated on this family is

e(λ) = E[ϕ(λ)], (1.1.3)

and the condition for a critical point is de/dλ
∣∣
λ=1

= 0.

To derive e(λ), consider a general static energy functional in d spatial dimensions.

For simplicity, take a scalar field theory with a gradient term and a potential term:

E[ϕ] =

∫
Rd

(
1

2
|∇ϕ|2 + V (ϕ)

)
ddx = E2[ϕ] + E0[ϕ], (1.1.4)

where E2[ϕ] =
∫

1
2
|∇ϕ|2 ddx and E0[ϕ] =

∫
V (ϕ) ddx.

For the energy functional on the rescaled fields, first evaluate the potential term:

E0[ϕ
(λ)] =

∫
Rd

V (ϕ(λx)) ddx. (1.1.5)

Make the change of variables x̃ = λx, so ddx = ddx̃/λd. This gives

E0[ϕ
(λ)] =

1

λd

∫
Rd

V (ϕ(x̃)) ddx̃ = λ−dE0[ϕ]. (1.1.6)

Now for the gradient term:

E2[ϕ
(λ)] =

∫
Rd

1

2
|∇ϕ(λx)|2 ddx. (1.1.7)

Since ∇ϕ(λx) = λ(∇ϕ)(λx), we have |∇ϕ(λx)|2 = λ2 |(∇ϕ)(λx)|2. Substituting

the variable change,

E2[ϕ
(λ)] =

λ2

λd

∫
Rd

1

2
|(∇ϕ)(x̃)|2 ddx̃ = λ2−dE2[ϕ]. (1.1.8)

Thus, the value of the energy functional on the rescaled fields is

e(λ) = λ2−dE2[ϕ] + λ−dE0[ϕ]. (1.1.9)

The existence of a critical point in e(λ) at λ = 1 determines whether stable solitons

are possible. For d = 1, e(λ) = λE2[ϕ] + λ−1E0[ϕ], which has a critical point at
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λ =
√
E0[ϕ]/E2[ϕ], allowing kinks. For d > 1, there is typically no such point

unless additional terms (e.g., higher derivatives or gauge fields) are included to

balance the scaling.

For a solution, the condition de
dλ

∣∣
λ=1

= 0 provides virial relations, such as (2 −

d)E2[ϕ] = dE0[ϕ] in this case.

1.2 Kinks

In this section, we will discuss some of the key concepts of topological solitons by

considering 1-dimensional solitons known as kinks.

The Lagrange density admitting kink solutions is

L =
1

2
∂µϕ∂

µϕ− U(ϕ), (1.2.1)

where ϕ is a real scalar field, and the potential U(ϕ) is a real function with U(ϕ) ≥ 0

and multiple degenerate minima (vacua), ensuring non-trivial homotopy group

π0(V ) for the vacuum manifold V ⊂ R.

To derive the Euler-Lagrange equation, we start from the action S =
∫
L d1+1x.

The principle of least action requires that δS = 0 for variations δϕ. The variation

of L is

δL = ∂µϕ ∂
µ(δϕ)− dU

dϕ
δϕ. (1.2.2)

Integrating by parts on the first term gives

δS =

∫ (
−∂µ∂µϕ− dU

dϕ

)
δϕ d1+1x+ boundary terms, (1.2.3)

assuming boundary terms vanish. Setting δS = 0 for arbitrary δϕ yields the

Euler-Lagrange equation

∂µ∂
µϕ+

dU

dϕ
= 0. (1.2.4)

Kinks are finite-energy solutions to this equation that are topologically distinct

from the vacuum. For finite energy, the field must approach vacua at spatial

infinity, limx→±∞ ϕ(x) = ϕ± where U(ϕ±) = 0. If ϕ+ = ϕ−, the solution can be
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Figure 1.2.1: Potential of ϕ4 kink, V (ϕ) = 1
2(1− ϕ2)2.

continuously deformed to the constant vacuum ϕ(x) = ϕ± everywhere, making it

topologically trivial.

However, if ϕ+ ̸= ϕ−, the solution interpolates between distinct vacua, giving it

topological charge and preventing continuous deformation to the vacuum. Kinks

are classified by elements of π0(V )× π0(V ).

We have a vacuum value when the potential V = 0, which are points forming a

submanifold V ⊂ R, known as the vacuum manifold of the field theory. For the

solution to be topologically stable, there must be multiple vacua, otherwise the

homotopy group π0(V) is trivial.

We consider 1-dimensional ϕ4 kinks as an example, the potential term is V (ϕ) =

1
2
(1− ϕ2)2, see figure 1.2.1. The ϕ4 kink potential can be seen in figure 1.2.1. We

can clearly see that this potential has two minima at −1 and 1 respectively, which

we label as the vacua of the field.

The ϕ4 kink solution interpolates between these vacua, so the kinks are classified

by elements of π0(V)× π0(V). We can then write the topological charge as

Bϕ =
1

2

∫ ∞

−∞

dϕ

dx
dx =

1

2
[ϕ(+∞)− ϕ(−∞)] , (1.2.5)

which fits the general form Bϕ = deg(ϕ) =
∫
X
ϕ∗(Ω) by considering the compacti-

fied real line as X ≃ S1 and the target effectively as the interval between vacua,

with the charge counting the net transitions between distinct components of V .

This charge is an integer. Here, Bϕ can only be one of three values. If Bϕ = 0,

we have the vacuum solution; hence, the kink solution is a straight line at either
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Figure 1.2.2: Exact ϕ4 kink solution in blue, shortest path from the vacua in
cyan, and vacuum values in red.

vacuum value. If Bϕ = 1, then the kink solution interpolates from the negative

vacuum value to the positive one. Finally, if Bϕ = −1, we have an anti-kink that

interpolates from the positive vacuum value to the negative one.

Unlike most topological systems, ϕ4 kinks have the exact static solution of the

field equation (1.2.4) for time-independent configurations,

ϕ(x) = tanh(x− a), (1.2.6)

where a is a constant of integration, representing the translation symmetry of

the system. We can therefore plot this solution; see figure 1.2.2. We interpolate

between the two vacua in figure 1.2.2, whereby we have a non-trivial topology. We

arrive at a solution which appears to be a tanh line. The solution is formulated this

way because the solution is governed by both the potential term and the gradient

of ϕ.

Ignoring the potential, the best solution for the kink would be the straight line from

(−1,−∞) to (+1,+∞), as this would be the shortest path; however, the potential

term also acts on the kink. If we study the potential in the region ϕ ∈ (−1, 1),

then we can see that as ϕ approaches 0, the potential term wants to increase the

slope of ϕ, however, this is battling with the straight line.

Note that ϕ4 kink solutions take the vacuum values at ±∞, which is analogous to

vortices, which are the main focus of this thesis.
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The soliton also evades Derrick’s theorem [29]. As derived in the general case for

d = 1, applying a spatial rescaling to the energy functional, we obtain

e(λ) = λE2 + λ−1E0, (1.2.7)

where the subscripts denote the degree of spatial derivatives for each term, E2 =∫
1
2

(
dϕ
dx

)2
dx and E0 =

∫
V (ϕ)dx.

This has a critical point at λ =
√
E0/E2. For the physical solution, this occurs

at λ = 1, implying the virial relation E2 = E0, which balances the expanding

potential term (minimised by steep interpolation) and the contracting gradient

term (minimised by shallow interpolation), resulting in a finite size for the kink.

Furthermore, the energy can be bounded below using the Bogomolny approach.

Completing the square in the energy functional,

E =

∫ [
1

2

(
dϕ

dx
∓
√
2V (ϕ)

)2

±
√

2V (ϕ)
dϕ

dx

]
dx ≥ ±

∫ ϕ(+∞)

ϕ(−∞)

√
2V (ϕ) dϕ,

(1.2.8)

since the square term is non-negative. For the kink (+ sign), the bound is

E ≥
∫ 1

−1

√
2 · 1

2
(1− ϕ2)2 dϕ =

∫ 1

−1

(1− ϕ2) dϕ =
4

3
, (1.2.9)

with equality when dϕ
dx

=
√

2V (ϕ) = 1−ϕ2, which is satisfied by the exact solution

ϕ = tanh(x − a). Thus, the kink saturates the Bogomolny bound, confirming its

stability and minimal energy for the given topological charge.

1.2.1 Sine-Gordon Kinks

We can also explore another model that admits kink solutions, known as the sine-

Gordon model. Here, we have the potential, visually displayed in figure 1.2.3.

V (ϕ) = 1− cosϕ. (1.2.10)
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Figure 1.2.3: Plot for the potential term of the sine-Gordon kink; V (ϕ) =
1− cosϕ.

Figure 1.2.4: Degree 1 sine-Gordon kink solution.

We are interested in the sine-Gordon system as it provides a clear example of topol-

ogy analogous to vortices. The Euler-Lagrange equation for static configurations

is
d2ϕ

dx2
= sin(ϕ), (1.2.11)

which has the analytical solution

ϕ(x) = 4 arctan(ex−a), (1.2.12)

where a is a translation coordinate.

We can consider the target space as cyclic, where ϕ ∈ [0, 2π), and identify 0 and

2π as the same point, effectively compactifying the target to S1.

In figure 1.2.4, we see a degree 1 solution, where a = 0.
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We can write the topological charge as

Bϕ =
1

2π

∫ ∞

−∞

dϕ

dx
dx

=
1

2π
[ϕ(+∞)− ϕ(−∞)]

=
M∑
k=1

sign

(
dϕ

dx
(xk)

)
,

(1.2.13)

whereM is the number of preimages xk of a regular points in the target space (e.g.,

a point not at vacua). This can be interpreted as counting the signed preimages

of ϕ at these points xk. We can therefore see that the kink solution in figure 1.2.4

is indeed of degree 1 by the use of (1.2.13), and counting the preimages of ϕ.

We impose a one-point compactification by identifying spatial infinities, hence the

domain becomes topologically a circle S1. We can transform our target space

by considering the periodic potential. In the case of the sine-Gordon model, our

potential is periodic, hence we can compactify the target space to the unit 1-sphere

such that, ϕ± = lim|x|→±∞ ϕ(x) = 2πn for integer n.

This gives us a map from a circle to a circle; hence, we can interpret the winding

number as the number of times the domain circle wraps around the target circle.

This leads to the interpretation that the winding number is determined by con-

sidering the homotopy group of the map. Since we have constricted our map to

the circle, we consider the homotopy group π1(S
1) = Z, hence we can interpret

the degree as an integer winding number.

Note that this is analogous to Baby Skyrmions, which we discuss next.
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Baby Skyrmions
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Chapter 2

The Baby Skyrme Model

2.1 Introduction

The Baby Skyrme model is a 2-dimensional analogue of the Skyrme model, which

is a (3+1)-dimensional model for pions, first introduced by T.H. Skyrme [65],

which is a low energy effective model for the high quark colour limit of quantum

chromodynamics (QCD).

The motivation for Baby Skyrmions is as a toy model for the Skyrme model,

whereby calculations and numerical simulations are simplified by dimensional re-

duction. Terms of the model are chosen based on the components of the Lagrangian

in the Skyrme model; however, it is worth noting that the potential term is not

needed in the Skyrme model, and hence its choice is solely based on the stability

of the theory and the solutions it presents.

Another interpretation of the model is as a stabilisation of the O(3) sigma model,

whereby the introduction of a Skyrme term and potential term balance to stop

the soliton from expanding infinitely or shrinking to a localised point. This is

achieved by evading Derrick’s theorem, as the sigma model term is scale-invariant

in two dimensions, while the Skyrme term (quartic in derivatives) scales as λ−2

under rescaling (contracting against shrinkage), and the potential term scales as

λ2 (expanding against growth), providing a stable minimum at finite scale.

In recent years, there has been a growing interest in Baby Skyrmions in condensed

matter systems, where they have been observed in various materials, namely in the

14
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context of magnetic systems. In this case, the model often features an additional

Dzyaloshinskii-Moriya interaction (DMI) term, which can induce topologically sta-

ble spin textures analogous to Skyrmions. The inclusion of the DMI term stabilises

the configuration by breaking the inversion symmetry [24, 32, 43, 82].

In addition, there has been some interest in Baby Skyrmion lattices [52], whereby

the lattice structure formed by Baby Skyrmions under various potential terms is

discussed. It is demonstrated that different potentials lead to distinct crystalline

arrangements, such as hexagonal and square lattices. Alternative potential choices,

such as the easy plane potential, have also been shown to break the residual SO(2)

symmetry and produce solitons with only discrete symmetry [44]. Furthermore,

the study of Baby Skyrmions in curved backgrounds, such as anti-de Sitter space,

has revealed that higher charge solutions form concentric ring-like layered struc-

tures, with transitions between different numbers of layers occurring at specific

topological charges [31, 79]. Similar layered structures have been studied in the

full Skyrme model using rational map methods, whereby multi-shell configurations

can be constructed from multiple rational maps [57].

The particular model under consideration in this part includes the potential term

V (ϕ) = (1−ϕ2
3) [78]. We aim to study a new family of solutions of the Baby Skyrme

model that admits a dihedral symmetry. Historically, solutions of this model have

displayed axial symmetry for all charges. The introduction of dihedral symmetry

could provide new insights into the underlying topological and geometric proper-

ties of Baby Skyrmions, and might have broader implications in the context of

condensed matter systems. Previous work on breaking the global O(3) symmetry

to the dihedral group DN has demonstrated that soliton solutions exhibit a con-

stituent structure composed of topologically confined partons [40, 45]. The statics

and dynamics of such broken symmetry models reveal that multi-soliton solutions

are related to polyform structures, with scattering behaviour governed by parton

interactions [40].
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2.2 The Model

The Baby Skyrme model is given by the Lagrangian density

L =
1

2
∂µϕ · ∂µϕ− 1

4
(∂µϕ× ∂νϕ) · (∂µϕ× ∂νϕ)− V (ϕ), (2.2.1)

where ϕ is the 3-component scalar Baby Skyrme field, and V (ϕ) is the potential

term. The first term is known as the sigma term and contains terms up to second

degree in derivatives, the second term is known as the Skyrme term, motivated by

the Skyrme term of the Skyrme model and contains terms of degree 4 in derivatives.

The Lagrangian functional is L =
∫
L d2x, and the action S =

∫
Ldt.

We seek only static solutions of the equations of motion, which are obtained by

varying the Lagrangian density eq. (2.2.1) with respect to the field ϕ. We obtain

the Euler-Lagrange equations of motion by calculating the variation of (2.2.5).

The resulting field equations, projected orthogonal to ϕ due to the constraint

ϕ · ϕ = 1, are

ϕ×
(
∂µ∂µϕ− ∂µ [(∂

µϕ · ∂νϕ)(∂νϕ)− (∂νϕ · ∂νϕ)(∂µϕ)]− ∂V

∂ϕ

)
= 0. (2.2.2)

The field ϕ is defined on (2+1)-dimensional spacetime, where ϕ is a map ϕ : X → Y

, where the domain X = R2, and the target Y = R3, since we represent ϕ with

a 3 component unit vector. A one point compactification of the domain space

defines a point at ±∞ which is mapped to the vacuum value. By including a

point at infinity, the domain becomes R2 ∪ {∞} which is isomorphic to the unit

2-sphere. We constrain ϕ to the 2-sphere by imposing the normalisation ϕ · ϕ ≡

ϕ2
1 + ϕ2

2 + ϕ2
3 = 1. We hence have that X ∼= R2 ∪ {∞} = S2, and Y = S2, and

ϕ : S2 → S2. dimX = dimY = 2, hence ϕ is classified by the homotopy group

π2(S
2) = Z.

The topological charge is defined by the integral of the pullback of the normalised

volume form on S2

B =

∫
R2

ϕ∗Ω = − 1

4π

∫
R2

ϕ · (∂1ϕ× ∂2ϕ) d
2x, (2.2.3)
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Additionally, we impose that both X and Y are path-connected such that we can

connect any two points with a path that stays in the manifold, i.e. the image of

X always lies on a path-connected component of Y .

We choose a point y ∈ Y , whereby the set of preimages of y is defined by the points

onX mapped to y. We define this as a set of isolated points {x(1), . . . , x(M)}, where

M is the number of preimages x(k), such that at each point, the Jacobian of the

map is non-zero.

The topological charge can also be interpreted as

B = deg(ϕ) =
M∑
k=1

sign(J(x(k))), (2.2.4)

where J is the determinant of the Jacobian matrix of all first-order partial deriva-

tives. We hence count the signs of the Jacobian, that is, we count the preimages

of ϕ including multiplicity.

The energy functional we are interested in is a map E from the space of field

configurations to R E : ϕ→ R defined by the integral

E[ϕ] =

∫ [
1

2
[(∂1ϕ)

2 + (∂2ϕ)
2] +

1

2
(∂1ϕ× ∂2ϕ)

2 +m2V (ϕ)

]
d2x, (2.2.5)

where x1, x2 are spatial coordinates, ϕ is a scalar field, and V [ϕ] is the potential.

In this chapter, we use the potential term introduced by [78]

V (ϕ) = m2(1− ϕ2
3), (2.2.6)

This choice of potential depends only on ϕ3, so we break the O(3) symmetry of

the model to an O(2) symmetry.

For topological solitons to exist, the theory must evade Derrick’s theorem. We can

apply a Derrick’s scaling argument to the energy functional. Consider a spatial

rescaling such that x → λx, with λ > 0, and hence we get the expression for the

rescaled energy as

e(λ) = λ2E0 + E2 + λ−2E4, (2.2.7)

where E0 =
∫
m2(1−ϕ2

3) d
2x is the potential term, E2 =

∫
1
2
(∂iϕ)

2 d2x is the sigma
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term, and E4 =
∫

1
2
(∂1ϕ × ∂2ϕ)

2 d2x is the Skyrme term, with En denoting the

term of the energy functional that is of degree n in its derivatives. We hence have

that
de

dλ

∣∣
λ=1

= λE0 − λ−1E4 = 0, (2.2.8)

leading to the constraint that, in order for the soliton solution to be stable, the

energy contributions of the Skyrme term and potential term must be equal for

λ > 0. This constraint allows us to assess the validity of our numerical calculations,

as we can calculate these energy contributions, and stable solutions only exist for

E0[ϕ] = E4[ϕ].

2.3 Bogomolny Bound

We will study later in Chapter 4.4 a lower bound derived from periodic bound-

ary conditions; however, we can impose another well-studied lower bound on the

energy known as the Bogomolny bound.

We can then rewrite the static energy functional eq. (2.2.5)

E =
1

2

∫
(∂1ϕ)

2 + (∂2ϕ)
2d2x+

1

2

∫
(∂1ϕ× ∂2ϕ)

2d2x+

∫
m2V (ϕ)d2x,

≥ 1

2

∫
(∂1ϕ)

2 + (∂2ϕ)
2d2x. (2.3.1)

We can then write vector ϕ in terms of its components,

E =

∫
1

4

[
(∂iϕa+ϵabcϵijϕb∂jϕc)(∂iϕa+ϵaghϵikϕg∂kϕh)±∂iϕaϵabcϵijϕb∂jϕc−∂iϕaϵaghϵikϕg∂kϕh

]
d2x.

(2.3.2)

where a, b, c, g, h ∈ Z3, and i, j, k ∈ Z2, and ϵij is the 2-dimensional Levi-Civita symbol,

defined as ϵ12 = 1, ϵ21 = −1, and 0 if indices repeat.

To derive a lower bound, we complete the square in the sigma and Skyrme terms:

E =

∫
1

4
[(∂iϕ± ϵijϕ× ∂jϕ) · (∂iϕ± ϵikϕ× ∂kϕ)] d

2x±
∫

1

2
ϵijϕ · (∂iϕ× ∂jϕ) d

2x

≥ 1

2

∫
∂iϕ · (ϵijϕ× ∂jϕ)d

2x

=

∫
ϕ · (∂iϕ× ∂jϕ) d

2x = 4π|B|, (2.3.3)



19

where the Levi-Civita tensor (a× b)i = ϵijkajbk can be written as a cross product on S2

since it is the Lie algebra of SO(3).

The energy of a Baby Skyrmion exceeds this lower bound, tending towards 4π as m→ 0.

It however cannot attain this bound as the mass term is required for stable solutions and

the size of the solution becomes infinite in the limit. We choose m2 = 0.1 throughout

this chapter to stay consistent with the literature.

2.4 Static Solutions

This model was previously studied in [78], whereby the solutions studied admit an axial

symmetry for all charges. These solutions are given by the axially symmetric ansatz

ϕ =


ϕ1

ϕ2

ϕ3

 =


sin f cos(Bθ)

sin f sin(Bθ)

cos f

 , (2.4.1)

where f(ρ) is the monotonically decreasing profile function in polar coordinates (ρ, θ),

with boundary conditions f(0) = π and f(∞) = 0, and B is the topological charge. It

should be noted that this ansatz is stable for all B, as shown in [78] unlike the standard

model with potential with only one vacuum. This ansatz can be substituted into the

energy functional to reduce the dimensionality of the problem. Moreover, we can use

the ansatz as an initial configuration to simulate axially symmetric lumps or rings of

energy in a 2-dimensional space. We then use an arrested Newton flow algorithm, see

chapter 7, to vary the fields using the equations of motion to converge to a solution with

a minimised energy density.

Some examples of minimised energy solutions for two-dimensional axial rings are dis-

played as a heat plot for the energy density in figure 2.4.1.

We observe that the axial rings increase with size as the topological charge increases;

however, the energy decreases per soliton. At higher charges, the axial rings grow larger

and the cost of the curvature of the rings decreases, resulting in an exponential tail in

the energy per soliton values, which can be seen in figure 3.3.5.
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B = 4. B = 5.

B = 10. B = 16.

Figure 2.4.1: Heat plots for the minimised Energy Density for a sample of
topological charges B, found under the axially symmetric ansatz. We find that
the energy per soliton decreases as the total topological charge of the solution
increases, as a result of the increasing size of the solutions, resulting in a lower

energy cost from the curvature of the solution.



Chapter 3

Multi-Layered Rings

3.1 Introduction

In this chapter, we explore a new family of solutions of the Baby Skyrme model with two

vacua. We introduce a configuration with nested layers of rings in which the solutions

appear to admit dihedral symmetry. We compare the previously studied axial solutions

to this new family of solutions.

3.2 Dihedral Solutions

We choose an initial configuration that places N charge 1 lumps in a circle, with the

phase orientated so that they are all facing the origin. This initial configuration allows

our 2-dimensional algorithm to find a critical point of the energy functional that differs

from the axially symmetric solution. For example, see in figure 3.2.1 a new B = 5

solution.

The phase in the 2-dimensional plane, shown in the right of figure 3.2.1 is calculated as

θ = tan−1

(
ϕ2
ϕ1

)
=



tan−1
(
ϕ2

ϕ1

)
, ϕ1 > 0;

tan−1
(
ϕ2

ϕ1

)
+ π, ϕ1 < 0 and ϕ2 ≥ 0;

tan−1
(
ϕ2

ϕ1

)
− π, ϕ1 < 0 and ϕ2 < 0;

π
2 , ϕ1 = 0 and ϕ2 > 0;

−π
2 , ϕ1 = 0 and ϕ2 < 0;

undefined, ϕ1 = 0 and ϕ2 = 0.

(3.2.1)
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Figure 3.2.1: Heat plot for the minimised energy solution (left) of the Euler-
Lagrange equations and phase coloured plots to indicate winding (right) for a

B = 5 solution.

where ϕ1 and ϕ2 are the corresponding components of the vector field ϕ, and undefined

indicates that this computation is not possible. We see that the phase of the solution

is distributed between the different layers, indicating that the topological charge is also

distributed between the layers. This particular solution hence has B = 1 in the centre

and B = 4 in the outer layer.

The energy per soliton of the B = 5 solution, shown on the left of figure 3.2.1 is E =

1.4245 (normalised by the Bogomolny bound), larger than that of the axial ring, hence

this solution is a local minimum of the energy functional.

To confirm that the field ϕ has dihedral symmetry, we must show invariance under a

symmetry pair consisting of a spatial rotation and an isorotation. Specifically, apply a

spatial rotation S: θ → θ+ β, where β = 2π
B , which transforms the ansatz eq. (2.4.1) to

ϕ′ =


sin f cos(B(θ + β))

sin f sin(B(θ + β))

cos f

 .

This is equivalent to the original ϕ after an isorotation Rϕ, where R is the SO(3) rotation

matrix around the ϕ3-axis by −Bβ:

R =


cos(−Bβ) − sin(−Bβ) 0

sin(−Bβ) cos(−Bβ) 0

0 0 1

 =


cos(2π) sin(2π) 0

− sin(2π) cos(2π) 0

0 0 1

 = I,
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since Bβ = 2π. Thus, ϕ′ = Rϕ = ϕ, confirming rotational invariance under the pair

(S,R).

We can plot the field values, see figure 3.2.2, and perform an SO(3) rotation as a linear

combination of the field components. This shows us that the fields are invariant under

a chiral rotation.

Figure 3.2.2: Heat plot for the field values of the minimised solution of the
equations of motion for charge B = 5 solution, admitting a dihedral symmetry.

We can similarly verify that the Baby Skyrme solution to the energy functional allows

for a Z2 symmetry with the spatial reflection θ → −θ, which can be shown by the global

reflection

(ϕ1, ϕ2, ϕ3) → (ϕ1,−ϕ2, ϕ3), (3.2.2)

or alternatively

ϕ̃ =


sin(f) cos(B(−θ))

sin(f) sin(B(−θ))

cos(f)

 =


sin(f) cos(Bθ)

− sin(f) sin(Bθ)

cos(f)

 , (3.2.3)

since sine is anti-symmetric and cosine is symmetric.

Thus we confirm that this solution has dihedral symmetry D5, since the dihedral group

can be expressed as Dn
∼= Cn ⋊ Z2.
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3.2.1 Initial Configuration

We have identified new local minimum solution of the energy functional. In this section,

we aim to generate these dihedral solutions, such that we can choose the charges of the

layers of the solution.

Therefore, let us consider the initial configuration

ϕ = (ϕ1, ϕ2, ϕ3) =


(sin f cos(−B1θ), sin f sin(−B1θ), cos f), ρ < ρ0;

(sin f cos(B2θ), sin f sin(B2θ), cos f), r0 ≤ ρ ≤ ρ1;

(0, 0, 1), ρ > ρ1.

(3.2.4)

We simulate an inner ring of topological charge B1, and an outer ring of topological

charge B2 that winds in the opposite direction. Note that f(ρ) = 0 for ρ > ρ1, hence

here ϕ = (0, 0, 1). (ρ, θ) are polar coordinates, ρ0, ρ1 are constants chosen such that

there is enough space for the ring to exist in the space, and f(ρ) is a profile function,

denoted by the map, f : R → R, such that

f(ρ) =


2π − π ρ

ρ0
, ρ < ρ0;

π − π ρ−ρ0
ρ1−ρ0

, ρ0 ≤ ρ ≤ ρ1;

0, ρ > ρ1,

(3.2.5)

where the profile function, f , winds around the target space for the number of layers.

We denote a charge B solution as a (B1, B2) solution.

This continuous model is discretised using a finite lattice of size 600×600, suitably large

such that the asymptotic energy cutoff is negligible, with a fixed step size in space of

h = 0.2 in both the x1 and x2 directions. A step size of this magnitude was chosen

because it allows for suitable accuracy without significantly increasing the run time of

the simulations. Moreover, the derivatives were approximated using a finite-difference

scheme of 4th order. Note that larger solutions were computed on sufficiently large grids;

however, in all cases, the figures presented have been truncated to provide a clear result.
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Figure 3.3.1: Heat plot for the minimised energy solutions of the equations of
motion and phase coloured plots to indicate winding, respectively of a (2, 3)

solution created using the new initial condition (3.2.4).

3.3 Results

3.3.1 Low charge solutions and Symmetries

In the previous section, we have shown a (1, 4) solution (see figure 3.2.1). Using

eq. (3.2.4) as an initial configuration, we find another B = 5 solution. The solution

is still only a local minimum, but we discover that many configurations of the same

overall topological charge may exist. Figure 3.3.1 shows a (2, 3) solution which has the

highest energy out of all B = 5 solutions, however, it is interesting to study as the energy

density also appears to admit a dihedral symmetry in this case.

The energy per soliton of the (2, 3) solution is E = 1.4693, and the energy per soliton

of the axially symmetric B = 5 solution is E = 1.3737. The axial ring is the global

minimum at this charge, but within the new family of solutions, the (1, 4) ring is the

local minimum.

Next, we consider a charge (2, 4) solution.

We conjecture that we can understand the symmetry of the solution by plotting the

phase (as given in eq. (3.2.1) against the domain angle θ, the angle in the 2D domain

at fixed radius ρ, which determines the angular position along a circle in the Baby

Skyrmion’s domain. We observe this for a charge (2,4) solution in figure 3.3.4.

We see that there are 6crossings. This suggests that there are six localised points

where the energy is minimal, which we can interpret as a reason for the B = 6 solutions
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Figure 3.3.2: Heat plots for the field values for a (2, 3) solution to illustrate the
invariance of the fields under a dihedral symmetry.

Figure 3.3.3: Heat plot for the energy density of a (2, 4) solution with energy
per soliton E = 1.4183. This figure shows the 2 inner layers of the 4 layered
solution figure 5.2, which has a lower energy per soliton than this solution. This
provided promise for the energy being reduced by the attraction of the layers.
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Figure 3.3.4: Plot to illustrate an explanation for the symmetry of a (2, 4)
solution. The phase of the inner ring is shown in blue, and the phase of the
outer ring is shown in red, where the phase is calculated in eq. (3.2.1) and plotted
against the domain angle θ, which determines the angular position along a circle
in the Baby Skyrmion’s domain. This figure shows that there are 6 localised
points where the inner and outer rings are in phase with each other. It follows
that the energy density has lumps of energy at these localised points, whereby

the inner and outer rings pass in and out of phase.

B Eaxial (1, B − 1) (2, B − 2) (3, B − 3) (4, B − 4) (5, B − 5)

4 1.3798 1.4595 N/A N/A N/A N/A

5 1.3737 1.4245 1.4693 N/A N/A N/A

6 1.3703 1.4097 1.4183 N/A N/A N/A

7 1.3683 1.4017 1.3954 1.4335 N/A N/A

8 1.3669 1.3962 1.3859 1.4002 N/A N/A

9 1.3660 1.3919 1.3817 1.3841 1.4135 N/A

10 1.3654 1.3887 1.3792 1.3771 1.3902 N/A

11 1.3649 1.3861 1.3774 1.3743 1.3783 1.4013

12 1.3645 - 1.3758 1.3729 1.3727 1.3841

13 1.3642 - - - 1.3705 1.3746

Table 3.1: Energy per baryon for the historically studied axial solutions versus
new dihedral symmetric solutions for topological charges B = 4 to B = 13.
Italic entries indicate axial solutions, bold entries indicate local minimum of

new solutions.

admitting dihedral D6 symmetry, and similarly for all B.

3.3.2 Energy Comparisons for Different Solutions

We compare the energy per soliton for axially symmetric and dihedral solutions across

various topological charges B. Table 3.1 summarises these results.
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Figure 3.3.5: Energy per baryon of axial configuration vs. multiple nested rings
with 2 layers. This figure plots the data of table 3.1. The dotted red line
indicates a lower bound for the energy per baryon of the axial rings, calculated
using an infinite domain wall on a cylinder, which is synonymous to a ring of

infinite curvature.

We can see from figure 3.3.5 that the global minimum is an axial ring for all charges

studied so far, however, it is interesting that as the charge of the total configuration

increases, the minimum of the nested rings change so that the charge of the inner ring

increases when the difference between the charges of the 2 rings is too great.

3.3.3 B = 9 Family of Solutions

We can also study the charge B = 9 configurations, to give an example of how the same

overall charge configurations differ from each other, see figure 3.3.6.

For the nested ring solutions with two layers, the size of the solution is smaller, hence the

contribution from the curvature is larger than that of an axial solution of the same size.

At low charges, it is clear that the minimised energy is dominated by the contribution

of the curvature. However, we have an attraction between the layers that pull them

together, as a result of the inner and outer layers moving in and out of phase with each

other, creating localised lumps of energy, thus a dihedral symmetry for the solution.

This attraction reduces the total energy of the solution. The smaller the difference

between the charges of the layers, the smaller the solution, and hence the larger the cost

of the curvature of the solution.



29

(B1, B2) = (1, 8) (B1, B2) = (2, 7)

(B1, B2) = (3, 6)
(B1, B2) = (4, 5)

Figure 3.3.6: Heat plots for the minimized energy solutions of the equations
of motion for (1, 8), (2, 7), (3, 6), and (4, 5) solutions. The (2, 7) configuration
has evenly distributed energy density, while (3, 6) shows a higher peak in the
inner ring. Configurations (1, 8) and (4, 5) have the highest energy. The local

minimum for B = 9 occurs at (2, 7), with energy per soliton E = 1.3817.

Since the (2, 7) configuration is the local minimum, we can assume that such minimum

occur when the cost of the curvature is balanced with the attraction between the layers.

Figure 3.3.7 illustrates the phase eq. (3.2.1) of the B = 9 configurations. This helps us

to understand how the topological charge is distributed throughout the solution. In all

cases, the D9 symmetry is preserved, with (2, 7) and (3, 6) being the minimal energy

configurations in this family.
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(B1, B2) = (1, 8) (B1, B2) = (2, 7)

(B1, B2) = (3, 6) (B1, B2) = (4, 5)

Figure 3.3.7: Plots of the phase eq. (3.2.1) for (1, 8), (2, 7), (3, 6), and (4, 5)
solutions.

3.4 Higher Charge Solutions

Next we explore configurations with higher charges by introducing more layers and

analysing their symmetries. Some symmetries might be preserved if the symmetry group

of the inner two rings is a subgroup of the outer layers.

3.4.1 (11, 25) Solution

An example of the breakdown of the layers is the (11, 25) ring, which is expected to

have D36 symmetry, since B = 36. However, numerical simulations suggest that the

solution evolves into a (5, 7, 11, 13) ring with D6 symmetry, as shown in figure 3.4.1.

The inner two rings sum to charge B = 12, and the outer two rings sum to charge
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Figure 3.4.1: Heat plot for a (5, 7, 11, 13) nested ring solution. The energy per
baryon is E = 1.37974. The D6 symmetry results from the balance of charges

across layers.

Figure 3.4.2: Heat plot for the minimised energy solution of the equations of
motion for a (2, 4, 8, 10) nested ring, with energy per baryon E = 1.3901, and
topological winding for the same configuration respectively. We see a clear D6

symmetry, which is verified in figure 3.4.3

B = 24. Although D12 is the largest subgroup, the solution prefers D6 symmetry due

to numerical constraints and lattice limitations.

3.4.2 (2, 4, 8, 10) Solution

The maximum symmetry we would be able to achieve from a multi-layered ring at this

charge would be D24 if the ring only had 2 layers, however, since the rings flow into more
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Figure 3.4.3: Heat plot for the field values of the fields of a (2, 4, 8, 10) nested
ring, and the fields after a D6 rotation, with the space rotated the other way

for comparison.

layers, the highest symmetry we should be able to achieve would be a D12 symmetry, as

this would be the largest subgroup.

A clear hexagonal structure can be seen in the shape of the energy density. Furthermore,

we can verify the D6 symmetry by showing that the fields are invariant under this

rotation. It appears as though the symmetry group of these configurations is the greatest

subgroup of the total charge of the inner two rings compared to the total charge of the

outer two rings. We attempt to validate this symmetry in figure 3.4.3.

Furthermore, the inner 2 layers are a (2, 4) ring, and hence we can compare these 2 D6

solutions. The (2, 4) solution has energy per soliton E = 1.4183, whereas the (2, 4, 8, 10)

solution has energy per soliton E = 1.3901, suggesting that the interaction between

layers has indeed lowered the energy of the solution.



Chapter 4

Domain Walls

4.1 Introduction

A domain wall is a boundary between two vacua. In this case, we use the same Baby

Skyrme model as before, as the potential term allows for two vacua. Hence, we can have

a domain wall interpolating between these two vacua

A domain wall occurs due to the fixation of the vacua at the boundaries. We sim-

ulate space as a cylinder, by parametrising the space as a rectangle, periodic in the

x1-direction, where limx2→∞ ϕ = (0, 0,−1) and limx2→−∞ ϕ = (0, 0, 1). This breaks the

O(3) symmetry into a O(2) symmetry.

For the solution to be a topological soliton, it must evade Derrick’s theorem. Due to the

nature of the solution being on a cylinder, scaling in the x1−direction would result in a

different solution, so in order to check the solution numerically, we must ensure that it

is invariant under scaling in the x2 direction. We hence use a slightly different version of

Derrick’s theorem, where we apply the rescaling [53] x2 → λ2x2. By studying the limit

definition of the derivative, it is clear that

∂2ϕ 7→ 1

µ2
∂2ϕ, (4.1.1)

where we have chosen λ2 to be the scaling parameter in the x2 direction. Applying this

rescaling to eq. (2.2.5),

E =
1

2π
· 1

λ2

∫
1

4

[
λ22(∂1ϕ)

2 + (∂2ϕ)
2
]
+
λ22
4
|∂1ϕ× ∂2ϕ|2 + V (ϕ)d2 x

33
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=
1

2π

∫
1

4

[
1

λ2
(∂1ϕ)

2 + λ2(∂2ϕ)
2

]
+
λ2
2
|∂1ϕ× ∂2ϕ|2 +

1

λ2
V (ϕ) d2x. (4.1.2)

This leads to the transformation for the energy

e(λ2) =
1

λ2
E2,1 + λ2E2,2 + λ2E4 +

E0

λ2
. (4.1.3)

To ensure the stability of the soliton, we apply Derrick’s theorem by requiring the energy

to be stationary with respect to the scaling parameter λ2. Taking the derivative of e(λ2)

with respect to λ2 and evaluating at λ2 = 1, we obtain

de

dλ2

∣∣
λ2=1

= − 1

λ22
E2,1 + E2,2 + E4 −

E0

λ22

∣∣
λ2=1

= −E2,1 + E2,2 + E4 − E0 = 0,

where E2,1 = 1
4

∫
(∂1ϕ)

2, d2x, E2,2 = 1
4

∫
(∂2ϕ)

2, d2x, E4 = 1
2

∫
|∂1ϕ × ∂2ϕ|2, d2x, and

E0 =
∫
V (ϕ), d2x represent the contributions to the energy functional from the respective

terms. For the soliton to be stable, this condition must hold, implying a balance between

the energy contributions. Specifically, stable solutions require E0 + E2,1 = E2,2 + E4.

This constraint allows us to numerically verify the stability of the soliton by computing

these energy terms and ensuring that they satisfy the derived equality, consistent with

the requirements for a topological soliton to evade Derrick’s theorem on a cylindrical

geometry.

We will first reduce the dimensionality of the system to a one-field model, in order to

give some insight into what the optimal length L might be and also to give verification

of the two-field code.

4.2 Symmetry Reduction

We consider the same Lagrangian density eq. (2.2.1). For an initial configuration, we

let

ϕ =


ϕ1

ϕ2

ϕ3

 =


sin f cos(Bθ)

sin f sin(Bθ)

cos f

 , (4.2.1)

where f(ρ) is the monotonically decreasing profile function with polar coordinates (ρ, θ),

with boundary conditions f(0) = π and f(∞) = 0, and B is the topological charge.
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Substituting this ansatz into eq. (2.2.1), we can reduce the dimension of the Lagrangian.

We again choose the mass term m2 = 0.1. We perform a change of variables from the

field ϕ to the one-dimensional scalar field f , where we note that ρ =
√
x21 + x22.

L =
1

2

(
(∂tf)

2 − (∂1f)
2 − (∂2f)

2
)
+

sin2(f)

2
[(∂tf∂1f − ∂1f∂tf)

2

+ (∂tf∂2f − ∂2f∂tf)
2 − (∂1f∂2f − ∂2f∂1f)

2]− m2

2
sin2(f),

If we consider static solutions with θ = 2πx1
L , where L is the size of the unit cell in the

periodic x1 direction, then the Lagrangian density is

L = −1

2
(∂2f)

2 − sin2(f)

2
(∂2f)

2(∂1θ)
2 − m2

2
sin2(f), (4.2.2)

with resulting field equation

−∂22f(1 + sin2(f)(∂1θ)
2)− (∂1θ)

2

2
(∂2f)

2 sin(2f) +
m2

2
sin(2f) = 0. (4.2.3)

We can solve (4.2.3) numerically using an arrested newton flow algorithm and compare

the energy values per soliton for various periodic lengths L to minimise the energy for

this parameter L.

For B = 1, figure 4.2.1 shows that the optimal value for the periodic length is L = 8.43,

with a minimal energy of E = 1.3625539, which we will consider to be a lower bound of

the energy.

4.3 B = 1 Baby Skyrmion on a cylinder

Using our one-field results as guidance, we study the domain wall in two dimensions.

Figure 4.3.2 shows plots for the energy density and topological winding of the charge

B = 1 two-dimensional domain wall of optimal cell size.

We interpret the domain wall as an infinitely large ring with zero curvature, making this

a lower bound for the axially symmetric solution. We find, with less precision, that the

optimal length is L = 8.4 (the optimal cell size), with minimal energy E = 1.362561,

which is within 0.0001% of the one-field result.
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Figure 4.2.1: Comparison of the energy for the one-dimensional charge B = 1
domain wall for each periodic length L, computed using 8000 points, with a
space step of 0.01. We find an optimal periodic length L = 8.43 , with energy

per soliton E = 1.3625, which agrees with the two-dimensional results.

Figure 4.3.1: Energy per soliton against periodic length L for a domain wall on
a cylinder, computed using 2-dimensional numerics. We minimised the fields on
a fixed length L, then varied L to find the optimal cell size. We find that The

optimal L is 8.4, with energy per soliton E = 1.3625
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Figure 4.3.2: Heat plot for the minimised energy solution of the equation of
motion for a B = 1 domain wall in 2 dimensions. This is the solution of the
optimal length L = 8.4, with energy per soliton E = 1.3625. On the right hand
side we have the energy density coloured by the phase. The shows that the

domain wall winds from −π to π across the cell.

4.4 B = 2 Baby Skyrmion on a cylinder

We simulate a B = 2 Baby Skyrmion on a cylinder of periodic length L.

Figure 4.4.1 plots the energy per soliton for different periodic lengths L. We use a

minimisation algorithm whereby we minimise the fields for a fixed L, then vary L to

find the optimal cell size. We gradually increased the lattice, starting with small L, to

find the minimal energy. Moreover, to verify these solutions, we also started the system

with a large L, gradually removing points in the x−direction to reduce the cell size, to

minimise for L.

We find that the optimal configuration for the Baby Skyrmion on a cylinder is a charge

B = 2 configuration with periodic length L = 8.4. This simulated a layered solution

with zero curvature, hence we have a lower bound on the energy of E ≥ 1.3630 for the

dihedral solutions.

We show a heat plot for the minimised energy solution of the equations of motion

for a charge 2 solution on a cylinder with optimal L in figure 4.4.2. We see that the

configuration splits into two B = 1 domain walls ( axial rings with zero curvature).

This could imply that the global minimum would be a compound structure of multiple

rings, which suggests that at some charge the double rings could be the global minimum.

Further studying of these infinite rings suggests that the solution is in fact 2 parallel

domain walls. This could imply that this solution is not stable as 2 parallel charge 1
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Figure 4.4.1: Energy per soliton against periodic length L for a B = 2 Baby
Skyrmion on a cylinder. The optimal periodic length is L = 8.4, with energy

per soliton E = 1.3630.

domain walls will want to infinitely repel because of their relative phase never being in

the attractive channel.

Furthermore, we can study the phase of the solution to ensure that it has the correct

topological winding, and we can clearly see that the phase winds around each wall once,

suggesting that each infinite chain is of charge 1 per unit cell. An illustration of the

phase of the infinite B = 2 solution can be seen in figure 4.4.2. We see in the next

chapter that the minimised energy for the domain wall is found at the same minimised

length L, however, the minimised energy in this case is E = 1.3626, suggesting that

there is indeed a slight energy cost for the 2 parallel domain walls.

The energy minimum found for the domain wall is slightly lower than that of the B = 2

Baby Skyrmion on a cylinder. However, by studying the model, it appears that the

B = 2 solution is indeed two parallel domain walls passing in and out of phase with each

other, suggesting that there is an energy interaction cost between the two walls.

We can confirm the interaction between the walls in two ways: first, by shifting the two

walls apart and observing if they flow back to the original solution or remain where they

are with lower energy (which indeed is the case), and second, by adjusting the phase

of one of the walls. The latter method suggests that the interaction is not influenced

by phase differences but rather by the proximity of the walls. From this we conclude

that the lower bound on the energy is the single domain wall, with energy per soliton
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Figure 4.4.2: Heat plot for the minimised energy density of a topologically
charged B = 2 Baby Skyrmion on a cylinder with periodic lattice in the x-
direction on the left, and the plot for the phase winding of the same solution.
We can see from the energy density that there is a clear interaction between
the 2 walls, which can be interpreted from the topological winding as a result
of the 2 layers being out of phase with each other, resulting in a repulsion. The
result can be interpreted as 2 parallel domain walls, which further supports the

argument of repulsion.

E = 1.3625.

The charge 2 solution on a cylinder is then considered the lower bound for double rings.

Although this bound is higher than that of the domain wall, it is possible that other

solutions on the cylinder could represent global minimum.



Chapter 5

Conclusions

In this part of the thesis, we have investigated families of solutions within the Baby

Skyrme model, employing the potential V (ϕ) = (1 − ϕ23) as introduced in [78]. These

solutions depart from the historically observed axial symmetry, instead exhibiting dihe-

dral symmetry, which was previously unseen in this context. Our exploration reveals a

diverse and intricate space of solutions, particularly pronounced at higher topological

charges, where multi-layered configurations emerge. The introduction of nested rings

demonstrates that interlayer attractions can lower the energy per soliton compared to

isolated layers, as evidenced by comparing the (2, 4) solution (E = 1.4183) with the

(2, 4, 8, 10) configuration (E = 1.3901).

We have also discussed lower bounds on the energy through the analysis of infinite

rings and domain walls. By simulating the model on a cylinder with periodic boundary

conditions, we identified a lower energy bound of E
B ≥ 1.3630 for a charge B = 2 Baby

Skyrmion, while a single domain wall yielded an even lower bound of E
B = 1.3625 at an

optimal periodic length of L = 8.4. These findings suggest that the global minimum

for axial rings may approximate an infinitely large ring with vanishing curvature, while

double-layered rings are bounded by the charge B = 2 cylindrical solution. Intriguingly,

the slight increase in energy of the B = 2 solution on the domain wall hints at a repulsive

interaction between parallel walls, a phenomenon that deserves further investigation.

Our results indicate that the Baby Skyrme model has a richer structure than previously

appreciated, with dihedral solutions offering stable local minimum and axial solutions

retaining their status as global minimum across the charges studied.
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Part III

Vortices
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Chapter 6

Abelian Higgs Vortices

6.1 Introduction

The Abelian Higgs model [38] is a relativistic field theory whose excitations in (2 + 1)-

dimensions take the form of topologically stable solitons known as vortices.

The field theory consists of a complex scalar field ϕ coupled to a U(1) gauge field Aµ.

The static theory is equivalent to the effective Ginzburg-Landau theory [35], describing

a magnetic field penetrating a superconductor, where the total flux is quantised by the

number of vortices. The dynamics of vortex solutions is where these two theories diverge;

the Abelian Higgs model exhibits second-order dynamics with Lorentz invariance [59, 60,

64], whereas the time-dependent Ginzburg-Landau model exhibits first-order dynamics

[30, 55]. It is the former second-order dynamics that we will focus on in this thesis.

Note that in (3 + 1) dimensions vortices appear as string-like objects, known as cosmic

strings, which if they exist, may be detected through the gravitational contribution to

early universe cosmology [77].

Vortex scattering has been well studied for all values of the single parameter λ [18, 28,

59, 60, 64]. This parameter splits the model into two types; type I (λ < 1) where vortices

exhibit long-range attraction and type II (λ > 1) where vortices repel at long-range. In

contrast, at critical coupling (λ = 1), there are no static long-range intervortex forces,

and the N -vortex solutions can be represented by an unordered set of dimension 2N or

MN = CN/SN where SN is the set of permutations. At critical coupling, low-energy

second-order dynamics can then be approximated as free geodesic motion on the moduli

space MN . This moduli space naturally captures the most striking result, namely that

vortices exhibit head-on 90◦ scattering [73].

42
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6.2 The Abelian Higgs model

The (2 + 1)-dimensional Abelian Higgs model [38] is described by the action

S =

∫ ∫
R2

L dt d2x =

∫ ∫
R2

[
−1

4
fµνf

µν +
1

2
DµϕD

µϕ− λ

8
(|ϕ|2 − 1)2

]
dt d2x, (6.2.1)

where ϕ(t, x) = ϕ1(t, x) + iϕ2(t, x) is a complex scalar field (the Higgs field), with

spatial coordinate x ∈ R2, and Aµ(t, x) = (A0, A1, A2) is a real U(1) gauge potential.

The covariant derivative is Dµϕ = (∂µ − iAµ)ϕ, and the field strength tensor is fµν =

∂µAν − ∂νAµ. λ is the coupling constant. We will assume the spacetime R2+1 has the

metric signature (+,−,−). All parameters (e.g., electric charge, vacuum expectation

value) are normalised, leaving λ as the Higgs field mass parameter, and the speed of

light is set to c = 1.

The model is invariant under the gauge transformation

ϕ(x) 7→ eiα(x)ϕ(x), Aµ(x) 7→ Aµ(x) + ∂µα(x). (6.2.2)

The static energy for field configurations is

V =
1

2

∫
R2

[
DiϕDiϕ+B2 +

λ

4
(1− |ϕ|2)2

]
d2x, (6.2.3)

where B = f12 = ∂1A2 − ∂2A1 represents the magnetic field orthogonal to the plane.

For field configurations to have finite energy we require that B → 0 , Dµϕ → 0 and

|ϕ| → 1 as ρ→ ∞ , where ρ = |x|. This fixes the Higgs field on the boundary

ϕ∞ := lim
ρ→∞

ϕ(x)

to take values on the unit circle such that ϕ∞ : S1
∞ → S1, where S1

∞ is the circle on

the boundary of R2. This map is encapsulated by an integer degree or winding number

N ∈ Z. This winding number counts the number of zeros of the continuous Higgs field

ϕ including multiplicity. Since a given field configuration cannot be deformed from one

homotopy class to a different one by a continuous deformation, the field configurations

are separated into infinitely many disjoint components, indexed by the integer degree

N .

Therefore, the dynamic field equations must preserve the integer degree N . To relate



44

the total magnetic flux to N , consider the boundary condition Diϕ → 0 as ρ → ∞,

which implies ∂iϕ = iAiϕ on the boundary circle S1
∞. Writing ϕ = |ϕ|eiθ, where |ϕ| → 1

and θ is the phase, we have ∂iθ = Ai on the boundary. The winding number N is the

number of times θ winds around S1 as one traverses S1
∞, given by

N =
1

2π

∫
S1
∞

dθ =
1

2π

∫
S1
∞

∂iθ dx
i =

1

2π

∫
S1
∞

Ai dx
i. (6.2.4)

By Stokes’ theorem, the line integral of Ai over the boundary S1
∞ equals the integral of

the magnetic field B = f12 = ∂1A2 − ∂2A1 over R2:

∫
S1
∞

Ai dx
i =

∫
R2

(∂1A2 − ∂2A1) d
2x =

∫
R2

f12 d
2x. (6.2.5)

Thus, the magnetic flux is quantised in terms of the winding number:

1

2π

∫
R2

f12 = N. (6.2.6)

To ensure that finite-energy configurations, such as vortices, are stable topological soli-

tons, they must evade Derrick’s theorem [53]. Consider a spatial rescaling

x→ κx, (6.2.7)

with κ > 0, applied to the static energy (6.2.3). Under this rescaling, the Higgs field ϕ

scales as,

ϕ(x) → ϕ(κx), (6.2.8)

the spatial derivatives transform as

∂i →
1

κ
∂i (6.2.9)

, so the covariant derivative transforms as

Diϕ→ 1

κ
Diϕ (6.2.10)
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. We are working in a gauge theory, hence both terms of the covariant derivative must

scale consistently, hence the magnetic field transforms as

B = ∂1A2 − ∂2A1 →
1

κ2
B (6.2.11)

since

Ai →
1

κ
Ai. (6.2.12)

The metric transforms as d2x→ κ2d2x. Thus, the static energy becomes

V (µ) =
1

2

∫
R2

[
1

µ2
DiϕDiϕ+

1

µ4
B2 +

µ2λ

4
(1− |ϕ|2)2

]
d2x. (6.2.13)

This can be written as

V (κ) =
1

κ2
E2 +

1

κ4
E4 + κ2E0, (6.2.14)

where E2 = 1
2

∫
R2 DiϕDiϕd

2x is the kinetic term, E4 = 1
2

∫
R2 B

2 d2x is the magnetic

term, and E0 = 1
2

∫
R2

λ
4 (1 − |ϕ|2)2 d2x is the potential term. For the energy to be

stationary with respect to κ, we compute the derivative and evaluate at κ = 1:

dV

dκ

∣∣
κ=1

= − 2

κ3
E2 −

4

κ5
E4 + 2κE0

∣∣
κ=1

= −2E2 − 4E4 + 2E0 = 0. (6.2.15)

This yields the stability condition

E0 = E2 + 2E4. (6.2.16)

This condition ensures that vortex solutions with non-zero winding number N can be

stable, as it balances the contributions of the potential, kinetic, and magnetic terms,

allowing the Abelian Higgs model to support topological solitons that evade Derrick’s

theorem. This constraint can be used to numerically verify the stability of vortex con-

figurations by computing E0, E2, and E4.

Varying the action with respect to ϕ and Aµ yields the second-order Euler-Lagrange

equations of motion

DµD
µϕ− λ

2
(1− |ϕ|2)ϕ = 0, (6.2.17)

∂µf
µν +

i

2

(
ϕ̄Dνϕ− ϕDνϕ

)
= 0. (6.2.18)
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.

6.3 BPS Equations

We can derive a lower bound on the energy, known as the Bogomolny bound [25].

We complete the square of the integrand of eq. (6.2.3). The covariant derivative term

expands as

DiϕDiϕ = |D1ϕ|2 + |D2ϕ|2 = |D1ϕ± iD2ϕ|2 ∓ i
(
D1ϕD2ϕ−D2ϕD1ϕ

)
.

The magnetic field term and potential term transform together as

B2 +
λ

4
(|ϕ|2 − 1)2 =

(
B ± 1

2
(|ϕ|2 − 1)

)2

∓B(|ϕ|2 − 1).

Hence

V =
1

2

∫
d2x

[(
B − 1

2
(1− |ϕ|2)

)2

+ (D1ϕ+ iD2ϕ)(D1ϕ+ iD2ϕ)

+B − i (∂1(ϕD2ϕ)− ∂2(ϕD1ϕ)) +
λ− 1

4
(1− |ϕ|2)2

]
(6.3.1)

The term i (∂1(ϕD2ϕ)− ∂2(ϕD1ϕ)) represents the divergence of the vector field F⃗ =

i(ϕD2ϕ,−ϕD1ϕ), since ∇ · F⃗ = ∂1(iϕD2ϕ)− ∂2(iϕD1ϕ) = i(∂1(ϕD2ϕ)− ∂2(ϕD1ϕ)). By

Stokes’ theorem, this divergence over R2 can be expressed as a line integral over the

boundary circle at infinity S1
∞

i

∫
R2

(∂1(ϕD2ϕ)− ∂2(ϕD1ϕ)) d
2x = i

∫
S1
∞

(ϕD2ϕ)dx1 − (ϕD1ϕ)dx2, (6.3.2)

where (dx1, dx2) is the line element along S1
∞. The finite energy conditions require

Diϕ → 0 and |ϕ| → 1 as ρ → ∞. Since Diϕ = (∂i − iAi)ϕ, the condition Diϕ → 0

implies ∂iϕ = iAiϕ on the boundary, so ϕDiϕ = ϕ(∂iϕ − iAiϕ) = ϕ(iAiϕ − iAiϕ) = 0.

Thus, the integrand in (6.3.2) vanishes, making the line integral zero [53].

Finally, by evaluating the integral of B using eq. (6.2.6) we have a lower bound on the

energy

V [ϕ,Ai] ≥ π|N |+ λ− 1

8

∫
(1− |ϕ|2)2 d2x. (6.3.3)

where N is the integer degree.
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At critical coupling, we therefore have the Bogomolny bound [25]

V ≥ π|N |, (6.3.4)

which is saturated for solutions of the Bogomolny equations

D1ϕ± iD2ϕ = 0

B ∓ 1

2
(1− |ϕ|2) = 0. (6.3.5)

6.4 Moduli Space Approximation

In the case of N vortices at critical coupling, the solutions to the field equations can be

represented by an unordered set of positions, which form a moduli space of dimension

2N . The moduli space, MN , is the configuration space for the positions of the vortices

and can be written as the quotient,

MN =
R2N

SN
∼=

CN

SN
,

where SN is the symmetric group that accounts for the indistinguishability of the vor-

tices under permutation. This moduli space accounts for the fact that the vortices are

indistinguishable except for their positions. At critical coupling, the moduli space of

the N -vortex system is thus a reduced configuration space that reflects the internal

symmetry of the system.

6.4.1 Geodesic Motion at Critical Coupling

At critical coupling (λ = 1), the low-energy dynamics of N vortices in the Abelian

Higgs model are described by geodesic motion on the moduli space MN [53]. This

approximation holds when vortices move slowly compared to the internal field dynamics,

reducing the field equations to motion on MN . A distinctive feature of this regime is

the head-on 90° scattering of vortices, governed by the geometry of MN [63].

The vortex positions are parametrised by complex coordinates zr ∈ C, r = 1, . . . , N ,

corresponding to points in the plane R2 ∼= C. The metric on MN , derived from the

kinetic energy of field configurations satisfying the Bogomolny equations eq. (6.3.5), is
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given by

ds2 =

N∑
r,s=1

grs̄dzrdz̄s, (6.4.1)

where grs̄ = π
(
δrs + 2∂br

∂z̄s

)
forms an N ×N Hermitian matrix (grs̄ = gsr̄), with br being

coefficients in the expansion of the Higgs field logarithm, as described below [63].

The reduced Lagrangian, capturing the kinetic energy of the fields at critical coupling,

is

Lred =
π

2

N∑
r,s=1

grs̄żr ˙̄zs, (6.4.2)

where żr = dzr/dt denotes the velocity of the r-th vortex, and the factor π/2 normalises

the vortex energy to π|N | for winding number N . Varying (6.4.2) yields the geodesic

equations, describing free motion at constant speed on MN , which accounts for the 90°

scattering observed in head-on vortex collisions [60, 63].

To compute the metric coefficients, we apply Samols’ method [63]. The Higgs field is

expressed as ϕ = e
1
2
(h+iχ), where h = log |ϕ|2 satisfies the Bogomolny equation ∇2h +

1− eh = 4π
∑N

r=1 δ
2(z − zr) away from the vortex positions. Near each vortex at zr, h

expands as h = 2 log |z−zr|+ar+br(z−zr)+b̄r(z̄−z̄r)+. . . , with ar and br depending on

all vortex positions. The kinetic energy T = 1
2

∫
R2(|∂tϕ|2+∂tAi∂tA

i)d2x is evaluated for

slowly moving vortices, using the time derivatives of eq. (6.3.5) and Gauss’ law, yielding

T = π
N∑

r,s=1

(
δrs + 2

∂br
∂z̄s

)
żr ˙̄zs. (6.4.3)

Thus, the metric coefficients are

grs̄ = π

(
δrs + 2

∂br
∂z̄s

)
. (6.4.4)

The Hermitian property follows from ∂br
∂z̄s

= ∂b̄s
∂zr

. For well-separated vortices, br →

0, reducing the metric to ds2 = π
∑N

r=1 dzrdz̄r, corresponding to independent vortex

motion [53, 63].

The metric on MN is Kähler, as the associated 2-form ω = i
2

∑N
r,s=1 grs̄dzr ∧ dz̄s is

closed, due to the symmetry ∂br
∂z̄s

= ∂b̄s
∂zr

[53, 62]. This Kähler structure supports the use

of complex coordinates zr and enables global calculations on MN . The geodesic motion

described by (6.4.2) governs the low-energy dynamics, with the 90° scattering arising

from the geometry of MN , as confirmed by numerical studies [60, 63].
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Figure 6.4.1: Separation of the zeros of the Higgs field (interpreted as the vortex
position) of 2 vortices scattering at various initial velocities against time. Here
the time is rescaled by the velocity such that t 7→ vint, where vin is the initial
velocity of the vortices. The dotted black line is geodesic motion on the moduli

space.

We can solve this 1-dimensional dynamical system, and plot the geodesic path of the

vortices, see figure 6.4.1. To confirm that our numerics are working correctly, we can

simulate the scattering of vortices at critical coupling, using the configuration eq. (9.1.3),

and setting the perturbations to zero. We can then track the zeros of the condensate to

plot the separation for a set of initial velocities.

In the moduli space approximation, the trajectories are independent of the initial veloc-

ity. This leads us to rescale our trajectories to t→ vint, where vin is the initial velocity

of the vortices. Figure 6.4.1 shows the scattering of two N = 1 vortices over a range

of initial velocities. As expected, the trajectories initially lie on the same curve until

t ≈ 8. For small velocities vin < 0.3, our numerics match the expected behaviour from

the moduli space approximation (dotted line) whereby they travel with constant veloc-

ity and scatter at 90◦. For larger velocities, the numerics deviate significantly from the

moduli space approximation, which is only valid for small velocities. For velocities close

to one, the trajectories show new kinds of behaviour which goes beyond the scope of

this thesis.

6.5 Symmetry Reduction

To simulate vortex solutions, we take advantage of the radial symmetry of the soliton.

We can hence reduce the dimensionality of the field theory by exploiting this symmetry
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argument.

Consider polar coordinates, with radial coordinate ρ and angular coordinate θ, related

to Cartesian coordinates by x1 = ρ cos θ, x2 = ρ sin θ [53]. The gauge potential Ai =

(A1, A2) in Cartesian coordinates transforms to polar coordinates as

Aρ = A1 cos θ +A2 sin θ, Aθ = −A1ρ sin θ +A2ρ cos θ, (6.5.1)

where Aρ and Aθ are the radial and angular components of the gauge potential, with

the area element d2x = ρdρdθ. Hence the magnetic field tensor becomes fρθ = ρf12.

The static energy is then

V =
1

2

∫ ∞

0

∫ 2π

0

(
1

ρ2
f2ρθ +DρϕDρϕ+

1

ρ2
DθϕDθϕ+

λ

4
(1− |ϕ|2)2

)
ρ dρ dθ, (6.5.2)

where Dρϕ = ∂ρϕ − iAρϕ and Dθϕ = ∂θϕ − iAθϕ are the covariant derivatives in polar

coordinates. We first consider an axially symmetric static isolated vortex of degree N

at the origin using the ansatz

ϕ = f(ρ) eiNθ, (A0, Aρ, Aθ) = (0, 0, aθ(ρ)), (6.5.3)

where we choose the temporal gauge A0 = 0 and the radial gauge Aρ = 0, with f(ρ) a

radial profile function and aθ(ρ) the angular component of the gauge potential. By the

principle of symmetric criticality, this axially symmetric configuration, which satisfies

the field equations restricted to radial dependence, is also a static solution of the full

field equations [53].

Substituting this radially symmetric ansatz into eq. (6.5.2), we have the reduced static

energy

V = π

∫ ∞

0

(
1

ρ2

(
daθ
dρ

)2

+

(
df

dρ

)2

+
1

ρ2
(N − aθ)

2f2 +
λ

4
(1− f2)2

)
ρ dρ, (6.5.4)

which has the resulting Euler-Lagrange equations of motion

f ′′ +
1

ρ
f ′ − 1

ρ2
f(N − aθ)

2 − λ

2
f(f2 − 1) = 0 ,

a′′θ −
1

ρ
a′θ + (N − aθ)f

2 = 0 . (6.5.5)
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N = 1 N = 2

Figure 6.5.1: Profile functions for critically couple (λ = 1) vortex solutions,
where blue is f(ρ), and red is aθ(ρ).

Regularity gives us the profiles at the origin f(0) = 0 and a(0) = 0 while the boundary

conditions at infinity are,

lim
ρ→∞

f(ρ) = 1 and lim
ρ→∞

aθ(ρ) = N .

The coupled system eq. (6.5.5) is nonlinear and must be solved numerically, which is done

using an arrested Newton flow algorithm, with 4th-order finite difference for derivatives

to minimise the energy.

Although there is no known analytic solution, we can study the asymptotic form of the

solutions for both ρ ∼ 0 and ρ → ∞. First, we will consider f and aθ near the origin,

which admits the expansion

f(ρ) = ρNF (ρ2), aθ(ρ) = ρ2G(ρ2), (6.5.6)

where F and G are power series in ρ2 with a non-zero coefficient for the leading term.

Hence, we can write any general cylindrically symmetric solution of degree N as

Φ = (x1 + ix2)
N F (x21 + x22) ,

Aµ = (A0, A1, A2) =


0

−x2G(x21 + x22)

x1G(x
2
1 + x22)

 ,
(6.5.7)
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N = 1 N = 2

Figure 6.5.2: Profile functions for critically coupled (λ = 1) vortex solutions,
where blue is F (ρ2), and red is G(ρ2).

where F (ρ2) and G(ρ2) are now nonlinear functions across the whole space, but can be

expanded as a power series near zero.

The reduced energy functional is thus

V =

∫ (
2

(
σ
dG

dσ
+G

)2

+

(
2

(
dF

dσ

)2

σ2 + 2NF
dF

dσ
σ

+ F 2

(
σ2G2

2
−NGσ +N2

))
σN−1 +

λ

8

(
σNF 2 − 1

)2)
π dσ,

(6.5.8)

with field equations

8ρ2F ′′ + 8F ′ − λρ2NF 3 + λF − 2ρ2FG2 + 4N(FG+ 2F ′) = 0 ,

4ρ2G′′ + 8G′ + ρ2(N−1)F 2(N − ρ2G) = 0 . (6.5.9)

6.6 Static Interaction

To consider the tails of the solutions, we linearise the system eq. (6.5.5) around the

vacuum (f, aθ) = (1, N) which produces a decoupled system of two ODEs which yield

the solution

f(ρ) ∼ 1− q

2π
K0(

√
λρ) , aθ(ρ) ∼ N − m

2π
ρK1(ρ) . (6.6.1)

We can now understand the long-range static intervortex forces by assuming that a

vortex at long-range acts as a point source [66], each with an associated scalar charge q
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and magnetic dipole moment m.

These point sources must satisfy the linear differential equations with solutions given

in eq. (6.6.1). This leads to the linear interaction energy of two well separated point

sources as

Eint(s) = − q

2π
K0(

√
λs) +

m

2π
K0(s) , (6.6.2)

where s is the separation. The key result is that the contribution from the Higgs field

interaction is negative, while the magnetic contribution is positive. Hence, for λ < 1

the Higgs field dominates at long range, causing vortices to attract, while for λ > 1 the

magnetic field dominates at long range, causing vortices to repel [66].

At critical coupling (λ = 1), where the contributions from the Higgs field and magnetic

field cancel each other out with q = m, which leads to no long-range interaction between

static vortices.

For s→ 0, the interaction energy behaves as a 4th-order polynomial in s [67]

Eint(s) = Eint(0) +
1

2
ω2
λ;2,2(0)

s4

32β(λ)
, (6.6.3)

where Eint(0) is the static force of the radially symmetric 2-vortex and ω2
λ;2,2(0) is the

angular frequency for the 2-vortex splitting mode, see chapter 8. β(λ) is a λ-dependent,

numerically calculated constant.

We calculate the static force per vortex by solving the field equations in 2-dimensions at

fixed separations, using an arrested Newton flow algorithm to find the minimal energy

solutions. Note that we pin the vortices at desired distances d ranging from 0 to 10 in

increments of 0.1. We hence have that the static interaction per vortex is

EStatic(d) =
1

2

(
V λ
2 (d)− 2V λ

1 (0)
)
, (6.6.4)

where V λ
1 (0) is the static energy of the N = 1 vortex, and V λ

2 (s) is the static energy of

the minimised N = 2 solution, where vortices are positioned at ±d.

In figure 6.6.1, we plot the numerically calculated static interaction, eq. (6.6.4). We

overlay the short-range and long-range approximation and plot for different λ.
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λ = 0.8. λ = 0.9.

λ = 1.1. λ = 1.2.

Figure 6.6.1: Static interaction energy per vortex for a 2-vortex system for a
range of λ indicated by colour. The black dashed lines show the asymptotic fit
of the interaction energy eq. (6.6.2). The dashed magenta lines show the fit for

the short range interaction energy eq. (6.6.3)

6.7 Static Solutions

We now explore static vortex solutions in 2−dimensions. We have the initial configura-

tion

ϕ1(x1, x2) = R((x1 + ix2)
N )F (x21 + x22)

ϕ2(x1, x2) = I((x1 + ix2)
N )F (x21 + x22)

Aµ(x1, x2) =


0

−x2G(x21 + x22)

x1G(x
2
1 + x22)

 ,

(6.7.1)

where F and G are the solutions of eq. (6.5.9).

We can simulate eq. (6.7.1) using a lattice of 601 × 601 points. We can then minimise

the solution by numerically solving the gradient flow equations eqs. (6.2.17) and (6.2.18)

using an arrested newton flow algorithm. We show the energy density eq. (6.2.3) and
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condensate |ϕ|2 for a N = 1 vortex in figure 6.7.1 and a N = 2 vortex in figure 6.7.2.

Figure 6.7.1: Static solution for a degree N = 1 vortex at critical coupling
λ = 1). We plot the energy density (left) and the condensate |ϕ2| (right).

Figure 6.7.2: Static solution for a degree N = 2 vortex at critical coupling
λ = 1). We plot the energy density (left) and the condensate |ϕ2| (right).

6.8 Results

In this section, we discuss vortex scattering solutions at critical coupling (λ = 1). We

only have one free parameter, being the separation of the vortices. In this chapter

we consider head on scattering. We can also consider collisions with non-zero impact

parameter. This can indeed be done, but is not the focus of this thesis, and is hence not

presented here.

6.8.1 2-Vortex Solutions

We show snapshots from a simulation regarding BPS 2-vortex scattering, and we plot

the energy density as a heat plot. The vortices are initially positioned at (±10, 0), with
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t = 0 t = 30 t = 60

t = 90 t = 120 t = 150

Figure 6.8.1: Heat plots for the energy density for values of t =
0, 30, 60, 90, 120, 150. We show 2-vortex head on scattering with with vin = 0.1.

initial velocity vin = 0.1. We can see that the vortices scatter at right angles, and pass

through each other remaining unchanged. This is confirmed in figure 6.4.1, whereby we

find this is a key feature of vortex dynamics.

6.8.2 Multi-Vortex Scattering

Here we show snapshots of a head-on collision of two 2-vortices. In the case of scattering

two N = 1 vortices, see figure 6.8.1, the vortices pass through the axially symmetric

N = 2 configuration, before scattering at 90◦. However, note that for N > 1 this is not

the case. In fact, for the scattering of two N = 2 vortices, we observe that the two N = 2

vortices split into a configuration with four N = 1 vortices. An important observation

is that the resulting N = 1 constituent vortices begin to oscillate in shape, suggesting

that a shape mode for the 1-vortices has been naturally excited. This is indeed hard to

see in figure 6.8.2, however, notice that the peaks in the energy density of the inner two

vortices change as the vortices evolve.

We can also scatter two N = 3 vortices, see figure 6.8.3, where we display a heat plot for

the energy density, at snapshots of a dynamical simulation. The vortices scatter head

on, with initial velocity vin = 0.3.
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t = 0 t = 10 t = 20

t = 30 t = 40 t = 50

Figure 6.8.2: Heat plots for the energy density for values of t =
0, 10, 20, 30, 40, 50. We show two N = 2 vortices in a head on scattering with

with vin = 0.3.

We observe that the vortices initially travel as N = 3 radially symmetric solutions.

When the vortices come close, they split into the constituent 1-vortex parts. Two of the

vortices are accelerated towards infinity. Two are sent to infinity with a smaller velocity.

Most interestingly, we notice the inner two vortices, located closest to the origin. During

the scattering process, the kinetic energy from the vortices is transferred to the non-

zero energy shape mode of the constituent vortices. This leads to the vortices at the

centre forming a quasi-bound state, where they appear to scatter multiple times. This

motivates chapter 9, where we aim to reproduce this phenomenon.

6.9 Conclusion

This chapter has explored the dynamics and static properties of vortices within the (2+

1)-dimensional Abelian Higgs model, a relativistic field theory giving rise to topologically

stable solitons. We began by introducing the model’s Lagrangian and its second-order

equations of motion. The single parameter λ was shown to govern vortex interactions,

delineating type I (λ < 1) attractive, type II (λ > 1) repulsive, and critically coupled

(λ = 1) regimes, the latter being our primary focus in this chapter.
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Figure 6.8.3: Heat plots for the energy density for values of t =
0, 10, 20, 30, 40, 50. We show 3-vortex 3-vortex head on scattering with with

vin = 0.3.

At critical coupling, we discussed that the N -vortex system is elegantly described by a

moduli space MN = CN/SN , where low energy dynamics reduce to geodesic motion.

This framework successfully captures the hallmark 90◦ scattering of vortices in head-on

collisions, a result numerically validated by tracking the zeros of the Higgs field across

various initial velocities.

The Bogomolny bound at critical coupling, saturated by the BPS equations, provided a

theoretical foundation for understanding minimal energy configurations, while numerical

simulations of N = 2 vortex, N = 3 vortex, and multi-vortex scattering illuminated the

complexity of their interactions. Notably, head-on collisions of higher-degree vortices

(e.g. N = 2 and N = 3) showcased splitting into constituent N = 1 vortices, with
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kinetic energy exciting shape modes that hint at quasi-bound states, an observation

motivating further investigation in subsequent chapters.

In summary, this chapter has established a comprehensive picture of Abelian Higgs

vortices at critical coupling, blending analytical insights from the moduli space approx-

imation with robust numerical methods to explore their static and dynamic behaviour.

These findings underscore the interplay between topological stability, geodesic motion,

and field interactions, laying the groundwork for deeper studies into vortex scattering

phenomena and their potential cosmological implications.



Chapter 7

Non-Linear Numerical Methods

We seek dynamic solutions of the equations of motion eqs. (6.2.17) and (6.2.18), which

we find by numerically evolving the equations of motion from an initial condition of

well separated Lorentz boosted vortices. We discretise the fields on a regular grid of

n1 × n2 lattice sites with spacing h > 0, where the discretised configuration space is

the manifold C = (C × R3)n1n2 ∼= R5n1n2 . We approximate the first- and second-order

spatial derivatives using central 4th order finite difference operators, generating a discrete

approximation to the equations of motion. We then evolve the discretised fields using a

2nd order leapfrog method with time step ∆t = 0.01 [16]. We typically use n1 = n2 = 601

and h = 0.1 throughout.

7.1 Lorentz Transformation

For dynamical simulations where we require the vortices to have an initial velocity, we

perform a Lorentz transformation to boost the coordinates.

We will first consider a boost in the x1−direction. Our coordinates then transform as

t 7→ t̃ = γ(t+ vx1), x 7→ x̃1 = γ(x1 + vt), x2 7→ x̃2 = x2, (7.1.1)

where γ = 1√
1−v2

is the Lorentz factor. We write this transformation as a vector equation

x̃ = Λx, where

60
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Λ =


γ γv 0

γv γ 0

0 0 1

 , Λ−1 =


γ −γv 0

−γv γ 0

0 0 1

 , (7.1.2)

The Higgs field transforms trivially as

ϕ(x) 7→ ϕ̃(x) = ϕ(Λ−1x), (7.1.3)

and the gauge field transforms the same as the derivative of ϕ, hence

Aµ(x) 7→ Ãµ(x) = ΛAµ(Λ−1x). (7.1.4)

If we wish to boost in any direction, then we can consider the SO(3) rotation matrix

R =


1 0 0

0 cos τ − sin τ

0 sin τ cos τ

 , (7.1.5)

and apply it to the boost such that Λ̂ = RΛ, where τ is angular direction of the boost.

This transformation can be written as one matrix

Λ̂ =


γ γv cos τ γv sin τ

γv cos τ γ cos2 τ + sin2 τ (γ − 1) cos τ sin τ

γv sin τ (γ − 1) cos τ sin τ γ sin2 τ + cos2 τ

 . (7.1.6)

7.2 Arrested Newton Flow

We find energy minimisers to nonlinear systems such as Baby Skyrmions and Abelian

Higgs Vortices, using a gradient descent method. The model is discretised on a grid of

dimension that of the field theory. For the case of vortices, we consider a two-dimensional

grid. This approximates a given energy functional as a discrete approximation.
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We define a vector for the fields such that

ξa = (ϕ1, ϕ2, A1, A2),

where ϕ is the Higgs field and Ai the components of the vector gauge potential.

The time evolution can hence be approximated using a simple Euler method

ξ(n+1)
a = ξ(n)a +∆tξ̇

(n)
a , (7.2.1)

ξ̇(n+1)
a = ξ̇(n)a +∆tξ̈

(n)
a , (7.2.2)

where ξ
(n)
a is the field configurations at a time t, and ξ

(n+1)
a are the field configurations

at the time t + ∆t, given an arbitrary constant such that ∆t ≪ 1. ξ̇ is the first order

time derivatives of the fields, and we start with the initial data ξ̇a = 0. We denote the

second-order time derivatives of the fields as ξ̈a, and we find the solution, that is, the

local minimum, where ξ̈a = 0.

The arrested Newton flow is an evolution-based approach that halts the flow of the gradi-

ent descent by means of an arresting condition to stop the descent from overshooting the

minimum and oscillating indefinitely. Rather than iteratively applying discrete updates,

it defines a flow in phase space that drives an initial guess toward a zero of a vector

field, with an ‘arrest’ mechanism to stabilise convergence near the solution [68, 69, 71].

The arresting condition is as follows. If

ξ̇a · ξ̈a < 0, (7.2.3)

then we force the velocity of the fields to be zero, i.e. ξ̇a = 0, and resume the gradient

descent. This can be interpreted as the acceleration (ξ̈) being in the opposite half-

plane to the velocity (ξ̇). This interpretation arises because the negative dot product in

eq. (7.2.3) indicates that the angle between ξ̇a and ξ̈a exceeds 90 degrees, placing them

in opposite half-planes relative to the origin in phase space, which signals a potential

overshoot of the minimum [68].

7.3 Numerical Time Integration Methods

The leapfrog method [16, 37] is a symplectic, second-order accurate time-stepping algo-

rithm used to solve time-dependent second-order partial differential equations (PDEs).
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It is particularly suited for evolving the equations of motion in the Abelian Higgs model

due to its stability and accuracy for oscillatory systems. True to its name, the leapfrog

method ‘leaps’ over intermediate steps.

For a given second-order ordinary or partial differential equation, let

∂2ξa
∂t2

= fa(ξ,∇ξ, t), (7.3.1)

which can be rewritten as a system of first-order equations

ξ̇a =
∂ξa
∂t

, (7.3.2)

ξ̈a = fa(ξ,∇ξ, t). (7.3.3)

We can iterate these quantities using the velocity Verlet form of the leapfrog method as

ξ(n+1)
a = ξ(n)a +∆tξ̇

(n)
a +

∆2
t

2
fa(ξ

(n),∇ξ(n), tn), (7.3.4)

ξ̇(n+1)
a = ξ̇(n)a +

∆t

2

(
fa(ξ

(n),∇ξ(n), tn) + fa(ξ
(n+1),∇ξ(n+1), tn+1)

)
, (7.3.5)

where ξ
(n)
a is the field configuration at time tn, and ξ

(n+1)
a is the field configuration

at time tn+1 = tn + ∆t. Equation (7.3.4) updates the field ξa using a second-order

Taylor expansion, incorporating the acceleration f evaluated at time tn. Equation (7.3.5)

updates the velocity ξ̇a using a trapezoidal rule, averaging the acceleration at times tn

and tn+1 to achieve second-order accuracy [81].

This second-order method is useful for vortex scattering as it is symplectic, meaning that

geometric quantities are conserved by the integration method. This provides advantages

in maintaining stability and accuracy during large integration times. The method is also

of second-order. As such, it is more efficient in terms of computational resources, which

is essential in our case because of the volume of results.

For longer integration times, higher-order methods can reduce truncation errors. The

6th-order leapfrog method, based on Yoshida’s symplectic integrator [81], achieves this

by composing multiple second-order leapfrog steps with specific weights. For a sixth-

order method, we use seven stages with weights [81]

w0 = w6 =
1

2(1− 3
√
2)
, w1 = w5 =

1− 3
√
2

2(1− 3
√
2) + 3

√
4
,
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w2 = w4 =
3
√
2− 1

2(1− 3
√
2) + 3

√
4
, w3 =

2− 3
√
4

2(1− 3
√
2) + 3

√
4
,

such that
∑6

i=0wi = 1. We define cumulative time fractions d0 = 0, di = di−1+
wi−1+wi

2

for i = 1, . . . , 6, where d6 = 1. The fields are advanced through seven substeps as follows:

ξ(n+di)
a = ξ

(n+di−1)
a + wi∆tξ̇

(n+di−1)
a + · · ·

· · ·+ (wi∆t)
2

2
fa(ξ

(n+di−1),∇ξ(n+di−1), tn + di−1∆t), (7.3.6)

ξ̇(n+di)
a = ξ̇

(n+di−1)
a +

wi∆t

2

(
fa(ξ

(n+di−1),∇ξ(n+di−1), tn + di−1∆t) + · · ·

· · ·+ fa(ξ
(n+di),∇ξ(n+di), tn + di∆t)

)
, (7.3.7)

We advance the fields from time tn to tn+1 through seven substeps, i = 0, . . . , 6, with

intermediate times tn+di∆t. The weights wi scale the time increments such that the total

step satisfies
∑

iwi = 1. The first equation updates the field ξa using a second-order

Taylor expansion with velocity and acceleration at the previous substep tn + di−1∆t.

The second equation updates the velocity ξ̇a using a trapezoidal rule, averaging the

acceleration at substeps tn + di−1∆t and tn + di∆t. The combination of these substeps

with specific weights cancels lower-order error terms, achieving sixth-order accuracy [81].

7.4 Natural Boundary Conditions

We impose natural boundary conditions [69], so that radiation may leave the system

by passing through the boundary. We denote the dynamical fields collectively as ξa,

a = 0, .., 5, consisting of the real and imaginary components of ϕ, as well as the 3

components of the vector gauge potential. We take the variation of the action eq. (6.2.1)

with respect to ξa, so that the action varies as

δS =

∫
Ω

(
∂L
∂ξa

− ∂i

(
∂L

∂(∂iξa)

))
δξa +

∫
∂Ω

(
−ni

∂L
∂(∂iξa)

)
δξa, (7.4.1)

where Ω is the finite domain in space-time that we perform our simulations on, and ∂Ω

is the boundary of the domain. Furthermore, the divergence theorem has been used so

that the flux of the variation of S through the boundary curve ∂Ω is the same as the

surface integral of the divergence of the variation of S across the entire region Ω. It

should be noted that ni is the inward pointing normal to ∂Ω. We require that δS = 0
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be such that ξa satisfies the Euler-Lagrange equations in Ω. Henceforth, we have the

boundary conditions

ni
∂L

∂(∂iξa)
= 0 (7.4.2)

on the boundary ∂Ω. First, we consider the boundary x1 = ±∞. For the energy

eq. (6.2.3), the boundary condition eq. (7.4.2) reduces to

1

0

 ·

∂1ϕ1 +A1ϕ2

∂2ϕ1 +A2ϕ2

 = 0 ⇒ ∂1ϕ1 = −A1ϕ2,

1

0

 ·

∂1ϕ2 −A1ϕ1

∂2ϕ2 −A2ϕ1

 = 0 ⇒ ∂1ϕ2 = A1ϕ1,

1

0

 ·

∂1A2 − ∂2A1

0

 = 0 ⇒ ∂1A2 = ∂2A1

1

0

 ·

∂0A1 − ∂1A0

0

 = 0 ⇒ ∂1A0 = ∂0A1.

(7.4.3)

We must also consider the boundary x2 = ±∞

0

1

 ·

∂1ϕ1 +A1ϕ2

∂2ϕ1 +A2ϕ2

 = 0 ⇒ ∂2ϕ1 = −A2ϕ2,

0

1

 ·

∂1ϕ2 −A1ϕ1

∂2ϕ2 −A2ϕ1

 = 0 ⇒ ∂2ϕ2 = A2ϕ1,

0

1

 ·

∂1A2 − ∂2A1

0

 = 0

0

1

 ·

∂0A2 − ∂2A0

0

 = 0 ⇒ ∂2A0 = ∂0A2.

(7.4.4)

Note that from the finite energy conditions, B → 0 on ∂Ω, so we have that ∂1A2 = ∂2A1.

Furthermore, we are working in a discretised version of a continuous theory, so we must

also discretise our boundary conditions, which give us equations for ghost points, which

are temporary points that exist past the boundary. These allow us to calculate the
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numerical derivatives on the boundary.

These boundary conditions can be summarised such that the covariant derivative tends

to zero normal to the boundary at infinity, as well as the magnetic field, i.e.

n · (∇− iA)Φ = ni ·DiΦ = 0 on ∂Ω

curlA = ∇×A = B = 0 on ∂Ω
(7.4.5)

where A are the spatial components of a 4 component 1-form, with the x3−dependence

set to zero, and B = Bk, which is a 3 vector whose only non-zero component is in the

x3-direction.

We must impose a further constraint on the boundary such that the first-order time

derivative of the electric potential A0 goes to 0 on ∂Ω, i.e. ∂0A0 = 0. This constraint is

necessary for numerical stability.

We can compare the phase θ = arctan(ϕ2

ϕ1
) (although not gauge invariant) of an axially

symmetric N = 2 vortex, at λ = 1, moving with constant velocity in the x1 direction,

both with natural boundary conditions and without; see figure 7.4.1.

We can see from figure 7.4.1 that the natural boundary conditions are essential for

stable vortex dynamics. With fixed boundary conditions (left), we see that the numerics

fail after t = 494 and there is a discontinuity between the phase on the boundary and

the phase in the bulk. This leads to radiation in the fields, likely from planar waves

incoming from the boundary, as a result of the discontinuity between the field values at

the boundary and the bulk.

Alternatively, we see, by implementing natural boundary conditions (right), that the

phase winds smoothly around the boundary as the vortex moves, and the numerical

simulation remains stable.

7.5 Gauge Choices

During the development of the numerics, we considered many gauge choices motivated

by work on vortex scattering [17, 58, 59, 64]. One option is the temporal gauge A0 = 0,

which can be achieved by using a gauge transformation to impose this condition after the

boost. Alternatively, for static solutions we choose A0 = 0. When boosting the solution,

A0 becomes non-zero because of A1, hence we can transform A1 = 0 through a gauge

transformation before a Lorentz boost, such that A0 is still zero after the boost. However,
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t = 0 t = 284

t = 464 t = 494

t = 524 t = 554

t = 584 t = 1304

Figure 7.4.1: We plot the phase θ = arctan(ϕ2

ϕ1
) of a critically coupled N = 2

vortex moving with constant velocity in the x1 direction. We display fixed
boundary conditions (left) and natural boundary conditions (right).
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t = 0 t = 25

t = 55 t = 150

Figure 7.5.1: We show heat plots of the condensate |ϕ|2 of a critically coupled
N = 2 vortex moving with constant velocity in the x1 direction. We impose the

temporal gauge A0 = 0 (left) and the Lorenz gauge ∂µA
µ = 0 (right).

this temporal gauge is not compatible with the natural boundary conditions, as the it

does not provide an equation for the derivatives of the gauge field on the boundary.

Hence, we chose the Lorenz gauge ∂µA
µ = 0, as it is compatible with the natural

boundary conditions (detailed in section 7.4). The Lorenz gauge can be imposed in two

ways. First, we can subsitute the relation ∂µA
µ = 0 into the Euler-Lagrange equations of

motion (eqs. (6.2.17) and (6.2.18)), which results in an independant equation of motion

for A0. Alternatively, we can add the term 1
2∂µA

µ∂µA
µ to the lagrangian density L.

Note that we can check the numerics for a static vortex by checking that the gauge-

invariant quantities remain consistent no matter the gauge choice.

Figure 7.5.1 shows snapshots of a dynamical simulation, in which we display the modulus

of the Higgs field as a heat plot. The simulation on the left-hand side of each time stamp

evolves with the temporal gauge imposed, A0 = 0, whereas on the right, we impose the

Lorenz gauge ∂µA
µ = 0. The simulation in question involves a critically coupled N = 2

vortex, with constant velocity in the x1 direction. We see that with the temporal gauge,

the vortex splits along the x1 axis, which is an artefact of the difficulty to impose the

temporal gauge. On the other hand, we notice that with the Lorenz gauge, the 2-vortex

moves with constant velocity, maintaining its radial symmetry. This supports the choice

of the Lorenz gauge for Abelian Higgs vortex dynamics.
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7.6 Damping Boundary Conditions

Natural boundary conditions have been imposed to allow the phase to wind around

the boundary as the fields evolve. Moreover, since we use a large intensity in exciting

the vortex shape mode, the dynamical solution exhibits radiation. Therefore, we have

implemented damping boundary conditions near the boundary. We subtract the first-

order time derivatives of the fields orthogonal to the gauge orbit, multiplied by a function

K(x) from the equations of motion. Specifically, for the Higgs field, we modify the

equation of motion to δS
δϕ −K(x)D0ϕ, and for the gauge potential, we use δS

δAi
−K(x)ei,

where ei = ∂iA0 − ∂0Ai. K(x) has boundary conditions K(0) = 0 and K(∞) = 1, and

is of the form

K(x) = 1− (1− eα(|x1|−xb
1)

2
)(1− eα(|x2|−xb

2)
2
), (7.6.1)

where xbi is the location of the boundary. This function ensures damping is applied

only near the boundary, with the constant α chosen such that the damping region spans

approximately 10% of the bulk from the boundary, minimising interference with the

interior dynamics [53].

Although natural boundary conditions should allow for the radiation to pass through

the boundary, some is reflected. The damping boundary conditions ensure that most of

the radiation is absorbed so that it is not reflected back toward the bulk, affecting the

behaviour the vortices.

Note that the damping boundary conditions are not perfect and that not all radiation is

absorbed. To provide numerically accurate results, we altered the boundary conditions

for a lattice of size 601 × 601 by varying the constant α, so that the solution matches

that of a solution found in a lattice of size 2001× 2001, whereby the grid is sufficiently

large so that the radiation takes a long time to return to the system. Furthermore,

we fine-tuned the boundary conditions by choosing the best α so that there is as little

radiation as possible.

7.7 Zero Tracking

For analysing vortex dynamics, it is useful to track the zeros of the Higgs field to track

the positions of the vortices. We design a tracking algorithm to identify and follow the

positions of vortices in an Abelian Higgs model over a discretised two-dimensional spatial

grid. We can interpret the vortices as point-like particles, treating the zero of the Higgs
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field as the position of the vortices, |ϕ|2 = 0. The algorithm leverages a combination

of field analysis, polynomial fitting, optimisation techniques, and intersection detection

to locate these zeros with sub-grid precision. This section outlines the key methods

employed in the algorithm.

Initially, we scan the entire grid to locate the vortex position. For each point on the grid

(i, j), the modulus |ϕ|2 is evaluated. A point is considered a zero if |ϕ|2 ≤ 0.1, a threshold

chosen to identify regions near zeros of the field. This criterion is computationally

efficient and ensures that potential vortices are not missed, although it requires further

refinement.

To achieve sub-grid accuracy for the positions of the vortices that are close to each other,

we fit a bivariate quadratic polynomial to the modulus |ϕ|2 in a local neighbourhood

around each candidate point. We choose a 5 × 5 grid of data points to sample around

the zero, centred at (i, j). The fitted polynomial is of the form

f(x) = ax21 + bx22 + cx1 + dx2 + e, (7.7.1)

where a, b, c, d, e are coefficients determined by solving a linear system. The system is

constructed as Ac = b, where A is the design matrix with columns corresponding to

x21, s
2
2, x1, x2, 1, b is the vector of sampled values of |ϕ|2, and c = [a, b, c, d, e]T is solved

using Gaussian elimination. The minimum of this quadratic surface, found analytically

as x1 = −c/(2a) and x2 = −d/(2b), provides an initial estimate of the position of the

vortex, assuming a, b > 0, which indicates a local minimum. To refine this estimate,

we employ two optimisation techniques. First, we consider the Nelder-Mead Simplex

Method. An initial simplex is constructed around the candidate position and we evaluate

the polynomial at the vortex position. The polynomial is minimised using the amoeba

method, adjusting the simplex iteratively to converge on the minimum. If Nelder-Mead

fails and a minimal solution is not found, a coordinate descent algorithm is used as a

fallback, iteratively optimising x1 and x2 while keeping the other coordinate fixed. The

resulting zero is stored as the vortex position if it is sufficiently distinct from previously

identified vortices (checked via a distance threshold of 2 units).

For well separated vortices, it is computationally effective to consider tracking the zero

contours of ϕ1 and ϕ2, the real and imaginary components of the Higgs field. We detect

the zeros of ϕ1 and ϕ2 using linear interpolation between the grid points where ϕ1 or

ϕ2 changes sign. Next, we fit polynomial curves up to second-order to the zero contours
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using the Nelder-Mead method to minimise the sum of squared errors (SSE). To calculate

the vortex zero, we find the intersection of the ϕ1 = 0 and ϕ2 = 0 contours. This method

ensures robustness by directly targeting the field zeros rather than relying solely on the

modulus.

The refined position is accepted only if it is sufficiently distinct from other vortices and it

remains close to the position calculated in the subsequent time step. If these conditions

fail, the algorithm may flip the vortex position across the origin (assuming a head-on

scattering) or revert to the previous position, ensuring continuity.

7.8 Finite Difference Approximation

We employ finite difference approximations to discretise spatial derivatives in the equa-

tions of motion eqs. (6.2.17) and (6.2.18), enabling numerical evolution on a grid. These

approximations replace derivatives with differences based on function values at discrete

points, using Taylor expansions to determine their accuracy, which depends on the step

size ∆x1 = ∆x2 = h. We define f (i,j) as the function value f(x
(i)
1 , x

(j)
2 ) at grid point

(i, j) on the n1 ×n2 lattice. The second-order centred difference approximations for the

first degree derivative in x1 and x2 are

∂1f
(i,j) =

f (i+1,j) − f (i−1,j)

2h
+O(h2), (7.8.1)

∂2f
(i,j) =

f (i,j+1) − f (i,j−1)

2h
+O(h2). (7.8.2)

The second-order centred difference approximations for the second degree derivatives

are given by

∂11f
(i,j) =

f (i+1,j) − 2f (i,j) + f (i−1,j)

h2
+O(h2), (7.8.3)

∂22f
(i,j) =

f (i,j+1) − 2f (i,j) + f (i,j−1)

h2
+O(h2). (7.8.4)

The fourth-order centred difference approximations for the first degree derivatives in x1

and x2 are

∂1f
(i,j) =

−f (i+2,j) + 8f (i+1,j) − 8f (i−1,j) + f (i−2,j)

12h
+O(h4), , (7.8.5)

∂2f
(i,j) =

−f (i,j+2) + 8f (i,j+1) − 8f (i,j−1) + f (i,j−2)

12h
+O(h4). (7.8.6)
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The fourth-order centred difference approximations for the second degree derivatives are

∂11f
(i,j) =

−f (i+2,j) + 16f (i+1,j) − 30f (i,j) + 16f (i−1,j) − f (i−2,j)

12h2
+O(h4), (7.8.7)

∂22f
(i,j) =

−f (i,j+2) + 16f (i,j+1) − 30f (i,j) + 16f (i,j−1) − f (i,j−2)

12h2
+O(h4). (7.8.8)

since our simulations involve a two-dimensional 601× 601 grid, we also require approx-

imations for mixed derivatives. The fourth-order centred difference approximation for

the mixed derivative ∂12f is

∂12f
(i,j) =

f (i+1,j+1) − f (i+1,j−1) − f (i−1,j+1) + f (i−1,j−1)

4h2
+O(h4), (7.8.9)

where h is the uniform grid spacing. These methods, derived from Taylor expansions,

underpin our 4th-order finite difference operators, ensuring accurate spatial derivatives

on the 601× 601 grid.

7.9 Conclusions

This chapter has developed and implemented a variety of nonlinear numerical methods

to investigate the dynamic solutions of the Abelian Higgs field equations, as defined in

eqs. (6.2.17) and (6.2.18), with a focus on vortex scattering from initial conditions of

well-separated, Lorentz-boosted vortices. By discretising the fields on a regular 601×601

grid with spacing h = 0.1, and employing 4th-order finite difference operators for spatial

derivatives, we constructed a discrete Lagrangian Ldis that approximates the continuous

functional L[Φ, A]. The 2nd-order Leapfrog method, with a time step ∆t = 0.01, proves

to be effective for time evolution, balancing computational efficiency with symplectic

conservation properties essential for long-term stability in vortex dynamics.

The incorporation of Lorentz transformations enabled the simulation of vortices with

initial velocities, with the Lorenz gauge ∂µA
µ = 0 emerging as the optimal choice over

the temporal gauge A0 = 0. As demonstrated in figure 7.5.1, the Lorenz gauge preserves

the radial symmetry of a critically coupled N = 2 vortex moving in the x1 direction,

avoiding numerical artefacts observed in the temporal gauge. This compatibility of the

gauge with natural boundary conditions, detailed in (7.4.2), allowed radiation to exit

the system, preventing reflections that destabilise the simulation, as evidenced by the

smooth winding of the phase in figure 7.4.1.
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To further enhance stability, damping boundary conditions with a carefully tuned func-

tion K(x) absorbed residual radiation, aligning results with those of a larger 2001×2001

grid where boundary effects are minimised. The arrested Newton flow method, con-

strained by an arresting condition, provided a robust approach to evolve fields toward

minimal static solutions. For vortex position analysis, we developed a zero-tracking

algorithm, combining polynomial fitting, Nelder-Mead optimisation, and contour in-

tersection, such that we achieved subgrid precision, effectively capturing both closely

spaced and well-separated vortex dynamics.

Collectively, these methods yielded a stable, accurate framework for simulating Abelian

Higgs vortex interactions. We suggest a significant importance of boundary conditions

and gauge choices for maintaining physical stability when exploring complex vortex

behaviours. Future work could extend these methods to higher-order integration schemes

or adaptive grids to further refine resolution and computational efficiency, deepening our

understanding of topological soliton dynamics in field theories.



Chapter 8

Linearisation

8.1 Introduction

This chapter includes work from [11, 13, 47]. In this chapter we will study the normal

modes for vortices. This was first studied for several values of λ by Goodband and

Hindmarsh in [36], and we will take a similar approach here. Recently, these modes

have been studied in more detail using different methods for λ = 1 [8, 9] and all λ

[14, 67].

8.2 One-Dimensional Spectral Flow

To proceed, we consider perturbations of the fields (ϕ,A) around the background of a

static vortex solution (ϕs, a).

It is convenient to rewrite the vector gauge potential in terms of total angular momentum

states

a+ = a1 + ia2 , a− = a1 − ia2, (8.2.1)

and hence consider the quantities

ψ(x) =
ϕ(x)− ϕs(x)

ϵ
, χ±(x) =

A±(x)− a±(x)

ϵ
, (8.2.2)

where a− = a+ and (ϕs(x), a±(x)) is the static solution of eqs. (6.2.17) and (6.2.18).

Hence, the system is close to the static vortex precisely when the perturbations ψ and

74
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χ± are small. This gives a correction to the action eq. (6.2.1) of the form

S = S(ϕs, a±) + ϵ2S2 +O(ϵ3) , (8.2.3)

where ϵ≪ 1 is the magnitude of the perturbation, and

S2 =
1

2

∫
ξ†Dξ d2x , ξ†(x) = (χ−e

iωt, χ+e
−iωt, ψeiωt, ψe−iωt) , (8.2.4)

where ξ is a vector of the perturbations, ω is the angular frequency of the linear mode,

and t denotes time. Note that the linear action term vanishes because (ϕ,Aµ) is a

solution of the Euler-Lagrange equations of motion eqs. (6.2.17) and (6.2.18). Since ϵ is

small we can neglect all terms higher than quadratic, leaving only linear corrections to

the equations of motion.

Then, the total fields are

ϕ(x) = ϕs(x) + ϵψ(x) e−iωt , ϕ(x) = ϕs(x) + ϵψ(x) eiωt ,

A+(x) = a+(x) + ϵχ+(x) e
−iωt , A−(x) = a−(x) + ϵχ−(x) e

iωt . (8.2.5)

In order to set up the eigenvalue problem for the perturbations, we seek to remove the

linear derivative terms by choosing the background gauge condition [27]

∂µχ
µ − (ψϕs − ϕsψ) = 0 . (8.2.6)

This gauge choice removes the gauge degrees of freedom. Moreover, the Lorenz gauge

∂µA
µ = 0 is satisfied by this gauge condition. The Lorenz gauge is chosen for the full

field theory dynamics because we found it to be the most suitable gauge choice for

numerical simulations in chapter 7.

With the above ansatz, we obtain the eigenvalue equation from D by separating the

time derivatives

DBG



χ+

χ−

ψ

ψ


= ω2



χ+

χ−

ψ

ψ


, (8.2.7)
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where

DBG =



D1 0 A B

0 D1 C E

E B D2 V1

C A V2 D3


,

and

D1 = −∆+ |ϕs|2 ,

D2 = −∆− i(a+ + a−)∂1 + (a+ − a+)∂2 +
λ

2
(2|ϕs|2 − 1) + a+a− + |ϕs|2 ,

D3 = −∆+ i(a+ + a−)∂1 − (a+ − a−)∂2 +
λ

2
(2|ϕs|2 − 1) + a+a− + |ϕs|2 ,

A = i∂1ϕs + ∂2ϕs + ϕsa
+
s , B = −i∂1ϕs − ∂2ϕs + ϕsa+ ,

C = i∂1ϕs − ∂yϕs + ϕsa− , E = −i∂1ϕs + ∂2ϕs +Φa− ,

V1 =
λ

2
ϕ2s − ϕ2s , V2 =

λ

2
ϕs

2 − ϕs
2
,

(8.2.8)

with the Laplacian defined as ∆ = ∂xx + ∂yy.

We can use the radially symmetric ansatz (see eq. (6.5.3)) for ϕ, and note that

a+s =
iaθ(ρ)

ρ
e−iθ , a−s = − iaθ(ρ)

ρ
eiθ , (8.2.9)

where aθ(ρ) is a radial profile function found by solving eq. (6.5.5). We choose (A0, Aρ, Aθ) =

(A0, 0, aθ(ρ)), where the radial gauge Aρ = 0 is imposed.

The perturbations are given by [36]

ψ =
∑
k

sk(ρ)e
i(N+k)θ , ψ =

∑
k

s−k(ρ)e
−i(N−k)θ ,

χ+ =
∑
k

iαk(ρ)e
i(k−1)θ , χ− = −

∑
k

iα−k(ρ)e
i(k+1)θ , (8.2.10)

where N is the topological charge, and k ∈ Z is the wave number.

Substituting eq. (8.2.10) for the perturbations, eq. (8.2.9) for a± and eq. (6.5.3) for ϕs,

we can reduce the eigenvalue problem, eq. (8.2.7), to a 1−dimensional problem. We
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hence have the eigenvalue problem

D1 0 A B

0 D2 B A

A B D3 V

B A V D4





α−k

αk

s−k

sk


= ω2



α−k

αk

s−k

sk


, (8.2.11)

where

D1 = −∂ρρ −
1

ρ
∂ρ + f2 +

(k + 1)2

ρ2
,

D2 = −∂ρρ −
1

ρ
∂ρ + f2 +

(k − 1)2

ρ2
,

D3 = −∂ρρ −
1

ρ
∂ρ +

1

ρ2
(aθ − (N − k))2 + f2(λ+ 1)− λ

2
,

D4 = −∂ρρ −
1

ρ
∂ρ +

1

ρ2
(aθ − (N + k))2 + f2(λ+ 1)− λ

2
,

A = f ′ − f

ρ
(N − aθ)

B = −f ′ − f

ρ
(N − aθ)

V =
1

2
(λ− 2)f2. (8.2.12)

We hence have a system of coupled ODEs

ω2ᾱ−k = −∂ρρᾱ−k −
1

ρ
∂ρᾱ−k + ᾱ−k(f

2 +
(k + 1)2

ρ2
) + s̄−k(f

′ − f

ρ
(N − aθ))− sk(f

′ +
f

ρ
(N − aθ))

(8.2.13)

ω2αk = −∂ρραk −
1

ρ
∂ραk + αk(f

2 +
(k − 1)2

ρ2
)− s̄−k(f

′ +
f

ρ
(N − aθ)) + sk(f

′ − f

ρ
(N − aθ))

(8.2.14)

ω2s̄−k = −∂ρρs̄−k −
1

ρ
∂ρs̄−k + s̄−k(

1

ρ2
(aθ − (N − k))2 + f2(λ+ 1)− λ

2
) + · · ·

· · ·+ ᾱ−k(f
′ − f

ρ
(N − aθ))− αk(f

′ +
f

ρ
(N − aθ)) +

1

2
(λ− 2)f2sk (8.2.15)

ω2sk = −∂ρρsk −
1

ρ
∂ρsk + sk(

1

ρ2
(aθ − (N + k))2 + f2(λ+ 1)− λ

2
) + · · ·

· · ·+ αk(f
′ − f

ρ
(N − aθ))− ᾱ−k(f

′ +
f

ρ
(N − aθ)) +

1

2
(λ− 2)f2s̄−k. (8.2.16)

We now employ a central second-order finite-difference scheme to discretise the system

of coupled ODEs eqs. (8.2.13) to (8.2.16), and write the eigenvalue problem as a 4 × 4
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block matrix, with entries of size M ×M . The whole matrix is then of size 4M × 4M .

The set of discretised ordinary differential equations (DODEs) is as follows:

ω2ᾱ
(i)
−k = −

ᾱ
(i+1)
−k − 2ᾱ

(i)
−k + ᾱ

(i−1)
−k

h2
− 1

ih

ᾱ
(i+1)
−k − ᾱ

(i−1)
−k

2h
+

[
(f (i))2 +

(k + 1)2

(ih)2

]
ᾱ
(i)
−k

+

(
f ′(i) −

f (i)(N − a
(i)
θ )

ih

)
s̄
(i)
−k −

(
f ′(i) +

f (i)(N − a
(i)
θ )

ih

)
s
(i)
k ,

ω2α
(i)
k = −

α
(i+1)
k − 2α

(i)
k + α

(i−1)
k

h2
− 1

ih

α
(i+1)
k − α

(i−1)
k

2h
+

[
(f (i))2 +

(k − 1)2

(ih)2

]
α
(i)
k

−

(
f ′(i) +

f (i)(N − a
(i)
θ )

ih

)
s̄
(i)
−k +

(
f ′(i) −

f (i)(N − a
(i)
θ )

ih

)
s
(i)
k ,

ω2s̄
(i)
−k = −

s̄
(i+1)
−k − 2s̄

(i)
−k + s̄

(i−1)
−k

h2
− 1

ih

s̄
(i+1)
−k − s̄

(i−1)
−k

2h

+

[
(a

(i)
θ − (N − k))2

(ih)2
+ (λ+ 1)(f (i))2 − λ

2

]
s̄
(i)
−k

+

(
f ′(i) −

f (i)(N − a
(i)
θ )

ih

)
ᾱ
(i)
−k −

(
f ′(i) +

f (i)(N − a
(i)
θ )

ih

)
α
(i)
k +

1

2
(λ− 2)(f (i))2s

(i)
k ,

ω2s
(i)
k = −

s
(i+1)
k − 2s

(i)
k + s

(i−1)
k

h2
− 1

ih

s
(i+1)
k − s

(i−1)
k

2h

+

[
(a

(i)
θ − (N + k))2

(ih)2
+ (λ+ 1)(f (i))2 − λ

2

]
s
(i)
k

+

(
f ′(i) −

f (i)(N − a
(i)
θ )

ih

)
α
(i)
k −

(
f ′(i) +

f (i)(N − a
(i)
θ )

ih

)
ᾱ
(i)
−k +

1

2
(λ− 2)(f (i))2s̄

(i)
−k,

(8.2.17)

where h is the step size in ρ, and the functions are evaluated at discrete points such

that g(ih) = g(i) for i = 1, 2, . . . ,M + 1. The coupled system of ODE’s (eqs. (8.2.13)

to (8.2.16)) have singular points as ρ → 0. Thus, we must ensure regularity at the

singular point ρ = 0. We do this by using the Frobenius method near the singular point.

The Frobenius method assumes the solution g(ρ) takes the form of a power series

g(ρ) = ρs
∞∑
j=0

u
(g)
j ρj , (8.2.18)

where g ∈ {ᾱ−k, αk, s̄−k, sk}, and u
(g)
0 ̸= 0. Using the asymptotic behaviour f(ρ) ≈ cρN ,

aθ(ρ) ≈ dρ2 near ρ = 0, we derive the indicial equations. For ᾱ−k, substituting
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eq. (8.2.18) into the ODEs eq. (8.2.13) gives the recurrence relation

∞∑
j=0

[
−(s+ j)2 + (k + 1)2

]
ujρ

j +
∞∑
j=2

[
−ω2uj−2ρ

j
]
+O(ρ2N+2) = 0. (8.2.19)

Annihilation of the j = 0 term gives the indical equation

ᾱ−k : − s2 + (k + 1)2 = 0 =⇒ s = ±(k + 1). (8.2.20)

Choosing s = k + 1 (since k ≥ 0) to ensure regularity, the solution is

ᾱ−k(ρ) ≈ u
(ᾱ−k)
0 ρk+1 + u

(ᾱ−k)
2 ρk+3 + · · · . (8.2.21)

The recurrence relation between the odd coefficients of eq. (8.2.19) suggests that these

coefficients vanish, hence we have the recurrence relation between even coefficients

u
(ᾱ−k)
2m = − ω2

−4(m+ k + 1)
u
(ᾱ−k)
2m−2, m = 1, 2, . . . , (8.2.22)

where j = 2m, and m = 1, 2, ....

For αk, substituting eq. (8.2.18) into eq. (8.2.14), the leading terms give

αk : − s2 + (k − 1)2 = 0 =⇒ s = ±(k − 1). (8.2.23)

Choosing s = |k − 1| (since k ∈ Z, adjusting for k < 2 if necessary), the solution is

αk(ρ) ≈ u
(αk)
0 ρ|k−1| + u

(αk)
2 ρ|k−1|+2 + · · · . (8.2.24)

The recurrence relation for αk from eq. (8.2.14) is

[
−(s+ j)2 + (k − 1)2

]
u
(αk)
j + higher-order terms = −ω2u

(αk)
j−2 , (8.2.25)

where for j = 0, s = ±(k − 1), and for j = 2m, even coefficients satisfy

u
(αk)
2m = − ω2

−4(m+ |k − 1|)
u
(αk)
2m−2, m = 1, 2, . . . . (8.2.26)
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For s̄−k, substituting eq. (8.2.18) into eq. (8.2.15), using aθ(ρ) ≈ dρ2, the leading terms

give

s̄−k : − s2 + (N − k)2 = 0 =⇒ s = ±(N − k). (8.2.27)

Choosing s = |N − k| (assuming N > k for regularity, else adjust), the solution is

s̄−k(ρ) ≈ u
(s̄−k)
0 ρ|N−k| + u

(s̄−k)
2 ρ|N−k|+2 + · · · . (8.2.28)

The recurrence relation for s̄−k from eq. (8.2.15) is

[
−(s+ j)2 + (N − k)2

]
u
(s̄−k)
j + higher-order terms = −ω2u

(s̄−k)
j−2 , (8.2.29)

where for j = 0, s = ±(N − k), and for j = 2m, even coefficients satisfy

u
(s̄−k)
2m = − ω2

−4(m+ |N − k|)
u
(s̄−k)
2m−2, m = 1, 2, . . . . (8.2.30)

For sk, substituting eq. (8.2.18) into eq. (8.2.16), the leading terms give

sk : − s2 + (N + k)2 = 0 =⇒ s = ±(N + k). (8.2.31)

Choosing s = N + k for regularity, the solution is

sk(ρ) ≈ u
(sk)
0 ρN+k + u

(sk)
2 ρN+k+2 + · · · . (8.2.32)

The recurrence relation for sk from eq. (8.2.16) is

[
−(s+ j)2 + (N + k)2

]
u
(sk)
j + higher-order terms = −ω2u

(sk)
j−2, (8.2.33)

where for j = 0, s = ±(N + k), and for j = 2m, even coefficients satisfy

u
(sk)
2m = − ω2

−4(m+N + k)
u
(sk)
2m−2, m = 1, 2, . . . . (8.2.34)

For boundary conditions at ρ = 0 (i = 1), if g(0) = 0, we set g1 = 0 for g ∈

{ᾱ−k, αk, s̄−k, sk}. Otherwise, if g(0) is constant, regularity requires g′(0) = 0, so using
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a second-order forward difference formula [9]

g′(0) =
−g(2) + 4g(1) − 3g(0)

2h
= 0 =⇒ g(0) =

4g(1) − g(2)

3
. (8.2.35)

Thus, the boundary conditions at i = 1 are

ω2ᾱ
(1)
−k = −4

3

ᾱ
(2)
−k − ᾱ

(1)
−k

h2
+

[
(f (1))2 +

(k + 1)2

h2

]
ᾱ
(1)
−k +

(
f ′(1) −

f (1)(N − a
(1)
θ )

h

)
s̄
(1)
−k

−

(
f ′(1) +

f (1)(N − a
(1)
θ )

h

)
s
(1)
k , (8.2.36)

ω2α
(1)
k = −4

3

α
(2)
k − α

(1)
k

h2
+

[
(f (1))2 +

(k − 1)2

h2

]
α
(1)
k −

(
f ′(1) +

f (1)(N − a
(1)
θ )

h

)
s̄
(1)
−k

+

(
f ′(1) −

f (1)(N − a
(1)
θ )

h

)
s
(1)
k , (8.2.37)

ω2s̄
(1)
−k = −4

3

s̄
(2)
−k − s̄

(1)
−k

h2
+

[
(a

(1)
θ − (N − k))2

h2
+ (λ+ 1)(f (1))2 − λ

2

]
s̄
(1)
−k

+

(
f ′(1) −

f (1)(N − a
(1)
θ )

h

)
ᾱ
(1)
−k −

(
f ′(1) +

f (1)(N − a
(1)
θ )

h

)
α
(1)
k +

1

2
(λ− 2)(f (1))2s

(1)
k ,

(8.2.38)

ω2s
(1)
k = −4

3

s
(2)
k − s

(1)
k

h2
+

[
(a

(1)
θ − (N + k))2

h2
+ (λ+ 1)(f (1))2 − λ

2

]
s
(1)
k

+

(
f ′(1) −

f (1)(N − a
(1)
θ )

h

)
α
(1)
k −

(
f ′(1) +

f (1)(N − a
(1)
θ )

h

)
ᾱ
(1)
−k +

1

2
(λ− 2)(f (1))2s̄

(1)
−k,

(8.2.39)

where h is sufficiently small, and ᾱ
(0)
−k = α

(0)
k = s̄

(0)
−k = s

(0)
k = 0 if the series starts at a

positive power. At i =M + 1, we impose

ᾱ
(M+1)
−k = α

(M+1)
k = s̄

(M+1)
−k = s

(M+1)
k = 0. (8.2.40)

The eigenfunctions are normalised using the L2 normalisation condition

π

∫ ∞

0

(
αk(ρ)

2 + α−k(ρ)
2 + sk(ρ)

2 + s−k(ρ)
2
)
ρ dρ = 1 . (8.2.41)

If we consider a vortex solution of degree N = 1, and wave number k = 0 for the mode,

then s0 = s−0 and α0 = α−0 and eq. (8.2.10) is simplified, giving the following ansatz
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k = 0 k = 1

Splitting Mode Translation Mode

Figure 8.2.1: Discrete eigenfunctions for all wave number k ≤ N , for a radially
symmetric degree N = 2 vortex

for the perturbations

ψ1(x) = cos (θ) s0(ρ) ,

ψ2(x) = sin (θ) s0(ρ) ,

χ1(x) = − sin (θ) α0(ρ) ,

χ2(x) = cos (θ) α0(ρ) . (8.2.42)

Therefore, the eigenvalue problem becomes

D1 A

A D3


α0

s0

 = ω2

α0

s0

 , (8.2.43)
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k = 0 k = 1

Splitting Mode Translation Mode

Figure 8.2.2: Discrete eigenfunctions for all wave number k ≤ N , for a radially
symmetric degree N = 3 vortex

where

D1 = −
(
∂ρρ +

1

ρ
∂ρ

)
+ f2 +

1

ρ2
,

D3 = −
(
∂ρρ +

1

ρ
∂ρ

)
+
λ

2

(
3f2 − 1

)
+

1

ρ2
(aθ − 1)2 ,

A =
2f

ρ
(aθ − 1) . (8.2.44)

We hence have eigenfunctions of the form ξ = (α0, α0, s0, s0), and the system eq. (8.2.7)

has decoupled into two copies of equation eq. (8.2.44). The boundary conditions are the

same as above for k = 0.

We now employ a central second-order finite-difference scheme to discretise the system

of coupled ODEs eq. (8.2.44), and write the eigenvalue problem as a 2× 2 block matrix,

with entries of size M ×M . We then use MATLAB to find the eigenvalues of the block
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k = 0 Translation Mode

Figure 8.2.3: Discrete eigenfunctions for all wave number k ≤ N , for a radially
symmetric degree N = 1 vortex

matrix.

We find that for N = 1, we have only one normal mode, denoted the shape mode, which

is a radially symmetric mode that causes fluctuations in gauge-invariant quantities. We

find that the mode has the squared frequency ω2
1,0 = 0.77747 and plot the eigenfunctions

in figure 8.2.3. We have normalised the eigenfunctions using the L2 norm

2π

∫ ∞

0
(α0(ρ)

2 + s0(ρ)
2)ρ dρ = 1 . (8.2.45)

Figure 8.2.4 illustrates the resulting spectrum for the range λ ∈ [0.1, 3] for N = 1 . . . 4.

The continuum threshold involves two distinct regions. The first is the mass threshold,

at which point ω2 = λ, and a gauge threshold, where ω2 = 1. These thresholds arise

due to the asymptotic behaviour of the spectral operator, where the fields approach

the vacuum values such that f → 1, and aθ → N as ρ → ∞. Asymptotically, the

perturbations decouple, hence

−∇2ψ +m2
Hψ = ω2ψ, (8.2.46)

hence ω2 = m2
H + k2, where mH =

√
λ is the Higgs mass. The continuous spectrum

starts at the minimum energy with k = 0, hence the mass threshold is ω2 = λ.

Furthermore, we have that

−∇2χ± +m2
Aχ± = ω2χ±, (8.2.47)
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Figure 8.2.4: Plot to show the spectral structure as a function of λ ∈ [0.1, 3] for
N = 1..4 and wave number k ≤ N . The shaded region indicates the continuous

spectrum.

where mA is the mass of the gauge field, which comes from the value of the covariant

derivative at ∞, i.e. |Dµϕ|2 ≈ A2
µ = 1, hence mA = 1. We therefore have the value of

the gauge threshold ω2 = 1. Note that at critical coupling, these two thresholds are the

same.

For the case of N = 1, we have two discrete modes at λ = 1; see table A.1 for frequencies

of the modes. We have the non-zero energy mode, which is the k = 0 shape mode (blue).

We see that this squared frequency enters the continuous spectrum at λ ≈ 1.5. We also

have the zero-energy translation mode (orange), which is zero for all λ.

Next, for N = 2, we have four discrete modes at λ = 1, see table A.2. We have two

non-zero energy modes, the k = 0 mode (blue), which is a radially symmetric shape

mode and the k = 1 mode (yellow), which is a shape mode leading to oscillations from

one half plane to the other, centred around the vortex core. The k = 0 shape mode

enters the continuous spectrum at λ ≈ 3. Furthermore, we see that the k = 1 mode

exists in the discrete spectrum only for a bounded region in λ, that is, λ ∈ [0.8, 1.03].

Again, we have the k = 1 translation mode, which is a zero mode. Finally, we have
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the k = 2 mode, whose excitation leads to a splitting of the vortices. This eigenvalue

is zero at λ = 1, due to the absence of static forces between the vortex. For λ > 1,

the eigenvalue is negative since in this region (type II) the static intervortex force is

repulsive and static solutions for N > 1 are unstable.

The N = 3 spectrum has five discrete modes at critical coupling (λ = 1), see table A.3

for a full description of the frequencies. There exist two shape modes, at k = 0 (blue)

and k = 1 (yellow). In the regions where we have calculated the frequency of the modes,

we do not see where the k = 0 mode enters the continuum. However, we see that the

k = 1 shape mode exists in the discrete spectrum for λ ∈ [0.4, 1.3]. Moreover, we have

the k = 1 translation mode (orange), as well as two splitting modes for k = 2 (purple)

and k = 3 respectively (green).

Finally, the N = 4 vortex has seven modes at critical coupling, see table A.4. In

particular, we have two k = 0 modes, the shape mode (blue) and an upper mode (red).

The shape mode exists for all the values of λ that we have calculated; however, the upper

k = 0 mode exists in the discrete spectrum for λ ∈ [0.9, 1.01]. Furthermore, we have

the k = 1 shape mode (yellow), which exists in the discrete spectrum for λ ∈ [0.18, 1.9].

Again, there is the k = 1 translation mode (orange), but we also have three splitting

modes, that is, k = 2 (purple), k = 3 (green) and k = 4 (cyan). Any form of splitting of

the N = 4 vortex would be a linear combination of these splitting modes, and similarly

for all N .

8.3 2-dimensional Spectral Flow at Critical Cou-

pling

Note that we can calculate the spectral flow of the shape modes for a vortex system in

2−dimensions at critical coupling (λ = 1). To accomplish this, we simulate the full field

theory in 2 dimensions with no excitations, with vortices centred at ±di, where we take

di = [0 : 0.1 : 10]. We perform an arrested Newton flow on this static configuration (see

section 7.2), whereby we have pinned the vortices at the desired separation. We perform

the pinning by setting the fields to zero at the required points.

We seek to numerically solve the eigenvalue problem (see eq. (8.2.7)). Since it is 2-

dimensional, we discretise the spatial domain into a grid. We assume a square domain

discretised into an M × M grid, where we have chosen M = 401, with grid spacing
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Figure 8.3.1: Heat plots for the field values of the perturbations ξ, corresponding
to the ω2,0 shape mode.

h = 0.1. Each point in the grid (i, j) corresponds to a coordinate (x
(i)
1 , x

(j)
2 ) and i, j =

1, ...,M . Let us focus on the perturbation ψ, as the other perturbation can be discretised

in the same way. We map a two-dimensional grid to a one-dimensional vector, where

ψ(k) = ψ(i,j), and k = (j − 1)M + i. We then discretise the PDEs in eq. (8.2.8). The

2-dimensional Laplacian (∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
) can be approximated using a second-order

finite difference scheme, such that at the point (i, j)

∆ψ(i,j) ≈ ψ(i+1,j) + ψ(i−1,j) − 4ψ(i,j) + ψ(i,j+1) + ψ(i,j−1)

h2
(8.3.1)

Dirichlet boundary conditions have been imposed such that the eigenfunctions are zero

at the boundary. For the right boundary, if mod (i,M) = 0, then ψ(i,j) = 0. For the

left boundary, if mod (i,M) = 1, then ψ(i,j) = 0. For the bottom boundary, if i ≤M ,

then we set the perturbation to 0, and finally, for the top boundary, if i ≥M ×M −M ,

the perturbations are also zero.

8.3.1 2-Vortex Spectral Structure

This gives us the eigenfunctions in 2-dimensions. We can plot, for example, the modes

at d = 0 for a 2-vortex system, see figures 8.3.1 and 8.3.2.
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Figure 8.3.2: Heat plots for the field values of the perturbations ξ, corresponding
to the ω2,1 shape mode.

We denote the spectral structure as the structure of the linear perturbations. It is

important to note that although the N -vortex solution is degenerate on the moduli

space, the spectral structure changes as a function of the separation of the vortices. We

hence plot in figure 8.3.3 the flow of the modes as a function of the separation for a

2−vortex system.

For concreteness, we assume that the vortices collide along the x1-axis. Thus, their

positions are z = ±d with d ∈ R+. (d ∈ R− gives identical configurations). After the

collision point, at d = 0, they pass to the x2-axis. Thus, d becomes imaginary. For

convenience, we chose d ∈ iR−. The separation is this |2d|.

In figure 8.3.3, we plot the spectral structure [9, 10, 39] for a 2-vortex system. Interest-

ingly, we see that the number of bound modes changes with the separation.

When the vortices are well separated, we notice that there are two degenerate bound

modes, the lowest mode (blue) denoted ξ1, and the first upper mode, denoted ξ2, (red).

The squared frequency of this bound mode is ω2
1,0 = 0.777476, which is the same as

what we observed in the one-dimensional linearisation.

In terms of asymptotic initial states, there are two possible initial configurations. We

denote the shape mode of the ith single 1−vortex as |i⟩, i = 1, 2.. Here, we may excite two

modes, ξ1 and ξ2. In fact, ξ1 represents the in-phase superposition of the N = 1,k = 0
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Figure 8.3.3: The spectral structure for the 2-vortex solution as a function of
the vortex position parameter d ∈ R+ ∪ iR−

shape mode on the vortices

ξ1 =
I(0)

2
(|1⟩+ |2⟩) , (8.3.2)

and ξ2 represents the out-of-phase superposition

ξ2 =
I(0)

2
(|1⟩ − |2⟩) , (8.3.3)

where I(0) is the initial intensity of the excitation such that I(0) = 1
2(ϵω)

2.

As the vortices come closer together (decrease in d), the degeneracy is broken. In the case

of the lower mode ξ1, the squared frequency decreases monotonically to ω2
2,0 = 0.53859

at d = 0. When the vortices are coincident at the origin (d = 0), the squared frequency

of the lower mode takes a minimum value. In section 9.2, we explore the result of the

decreasing squared frequency of the first mode and notice that we find an attractive

intervortex force.

Alternatively, for the upper mode ξ2, the squared frequency increases to ω2
2,1 = 0.97303

at d = 0. We also notice the green curve in figure 8.3.3. This mode exists only for

small values of |d| < d∗, where d∗ is the value at which the green line, denoted as ξ3,

reaches the continuous spectrum. Furthermore, we have a mode crossing at ω2
2,1, where

the two upper modes take the same value. Note that passing through the origin (d = 0)

changes the vortex locations from x1 to x2-axis. This means that as d decreases further
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to negative imaginary values, the second mode ξ2 of the 2-vortex transitions to the third

mode ξ3, and hence the squared frequency increases further.

In section 9.3, we explore the flow of the upper two modes. Indeed, we find that the

mode increasing induces a repulsive intervortex force. However, for a specific initial

amplitude, explored in section 9.3, we find that the second mode indeed transitions into

the third mode, and the excited vortices reach the point d∗, where the squared frequency

hits the continuous spectrum.

8.3.2 3-Vortex Spectral Structure

We now discuss the spectral structure of the 3-vortex system, namely a superposition

of three excited 1-vortices in the Abelian Higgs model at critical coupling. For N = 1,

we have shown that there exists only one non-zero energy mode with eigenvalue ω2
1,0 =

0.77747, which arises for angular momentum k = 0. This is the radially symmetric

shape mode. For N = 3, the mode structure is more complicated. There are three

shape modes: one radial mode (k = 0) with ω2
30 = 0.402708 and two degenerate modes

for k = 1, with squared angular frequency ω2
31 = 0.83025. There are no possible bound

states for k = 2, since the effective potential is pushed almost up to the continuum.

The analysis of the flow of the shape modes for the N = 3 vortex is performed in a

similar way as for the N = 2 vortex. To study the spectral flow, we consider paths

within two 1-dimensional geodesic submanifolds of the reduced 2-dimensional moduli

space with y → −y symmetry and centre of mass fixed at the origin, denoted N (1)

and N (2). The subspace N (1) consists of configurations where three critically coupled

vortices are equidistant and collinear, aligned along the x-axis (before scattering) or y-

axis (after scattering), with additional x → −x symmetry. The subspace N (2) consists

of configurations where three critically coupled vortices form an equilateral triangle,

satisfying cyclic C3 symmetry (120◦ rotation). These submanifolds describe head-on

collision dynamics, with N (1) corresponding to 90◦ scattering and N (2) to 60◦ scattering.

Both subspaces support zero modes, which are energy-preserving perturbations (e.g.,

translations or rotations) defining the submanifold geometry, and non-zero energy shape

modes, which are vibrational perturbations with frequencies ω2
Nk (e.g., the radial mode

for k = 0 and degenerate modes for k = 1). Both N (1) and N (2) are totally geodesic

submanifolds of the reduced 2-dimensional moduli space for the 3-vortex system, as

their geodesic flows, constrained by reflection symmetries for N (1) and C3 symmetry
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Figure 8.3.4: Spectral flow in the one-dim subspace N (1) of three collinear 1-
vortices. The coordinate d is the distance of the outer vortices from the origin.

for N (2), have vanishing second fundamental forms, ensuring that geodesics starting

tangent to each submanifold remain within it, consistent with the observed 90◦ and

60◦ scattering dynamics, respectively. We present the results in figure 8.3.4. We

study the flow of the shape modes along the paths defined by the zero modes in the

1-dimensional subspaces N (1) and N (2) of the equidistant collinear and the equilateral

triangle solutions, respectively.

8.3.2.1 Spectral flow in the subspace N (1) of the collinear solutions

The first subspace is formed by three collinear vortices (λ = 1) separated by a distance

d, with the centre of mass at the origin. For concreteness, we assume that the vortices

are initially located on the x1-axis.

The spectral flow for a collinear 3-vortex system is shown in figure 8.3.4. Although the

number of discrete modes is the same at the origin, d = 0 (detailing a radially symmetric

N = 3 vortex), and for infinitely separated vortices, (d→ +∞), not all of the eigenvalues

interpolate between them.

Using the 2-dimensional linearisation, we can also plot the d = 0 eigenfunctions for a 3-

vortex system, see figures 8.3.5 and 8.3.6. First, we consider the blue line in figure 8.3.4,

detailing the squared frequency of the lowest mode, denoted ξ1. The squared frequency
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Figure 8.3.5: Heat plots for the field values of the perturbations ξ, corresponding
to the ω2,0 shape mode.

Figure 8.3.6: Heat plots for the field values of the perturbations ξ, corresponding
to the ω2,1 shape mode.
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grows from ω2
3,0 = 0.4027085 at d = 0 to its asymptotic value, which is the value of the

only existing eigenvalue in the discrete N = 1 vortex spectrum, ω2
1,0 = 0.77747.

Next, we study the red line in figure 8.3.4, which shows one of the degenerate eigen-

values, labelled ξ2. The squared frequency interpolates between ω2
3,1 = 0.8302566 and

the asymptotic value mentioned above. Interestingly, we see that there exists a local

minimum in the squared frequency. This could suggest a region in which the vortices

might become trapped in a quasi-stationary state. We discuss how this affects vortices

away from critical coupling in chapter 10.

The third eigenvalue (see the purple line) existing for d = 0 has a surprising behaviour.

The degeneracy of ω2
3,1 at d = 0 is broken immediately at d ̸= 0 and the squared

frequency increases as we move more positive in d, reaching the continuum threshold at

d∗2. We estimate the position in which the discrete mode enters the continuous spectrum

to be in the region d∗2 ∈ (3.5, 4).

Alternatively, the third degenerate eigenvalue associated with the configuration of three

well-separated N = 1 vortices (see the green line in figure 8.3.4, labelled as ξ3) emerges

from the continuous spectrum in the region d∗1 ∈ (2, 2.5) decreasing to the value ω2
10.

This means that for the range d ∈ [2.5, 4] the spectrum involves four discrete eigenmodes.

We note that there is also a value of d in this critical region where a level crossing of

the two higher modes occurs.

The structure of the modes is symmetrically reflected as we go to the second part of

the full subspace N (1) which contains the collinear solutions placed on the x2-axis. This

takes into account the 90◦ scattering of the outer vortices when passing through the

coincident configuration. This can be plotted in one graph assuming that d ∈ iR−∪R+,

where d is the distance of the outer vortices from the origin; see figure 8.3.4. Importantly,

at d = 0 a novel phenomenon occurs. There exists a level crossing where the second

mode ξ2 continues as the third mode for d ∈ iR−. This level crossing will have a very

important effect on the dynamics of the excited N = 3 vortex.

It is important to understand how these shape modes can be excited for asymptotic

states where we have infinitely separated N = 1 vortices. Let us denote the shape mode

of the ith N = 1 vortex as |i⟩, i = 1, 2, 3, where i = 2 is the vortex at the origin (d = 0),

and i = 1, 3 are the outermost vortices. From the point of view of the asymptotic initial

states, we may excite three modes. The lowest mode (blue curve in figure 8.3.4) is the
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in-phase superposition of the shape modes of the 1-vortices

ξ1 =
I(0)√

3
(|1⟩+ |2⟩+ |3⟩). (8.3.4)

The squared frequency of this mode decreases as d goes to 0. Then, for imaginary d it

grows as d→ −i∞, where the N = 1 vortices are infinitely separated along the x2 axis.

The second mode (red curve), which interpolates to ω2
31 at d = 0, is given by the

orthogonal superposition

ξ2 =
I(0)√

2
(|1⟩ − |3⟩), (8.3.5)

The squared frequency of this mode increases as d decreases to 0. As we have already

observed, after passing to imaginary d the squared frequency of this mode increases as d

tends to −id∗2, where it hits the continuous spectrum and disappears into the continuum.

In this case, the mode enters the continuous spectrum after the vortices pass through

the coincident configuration.

Finally, the third asymptotically available mode (green curve in figure 8.3.4) is excited

by another linear superposition of the N = 1 vortex modes.

ξ3 =
I(0)√

6
(|1⟩ − 2|2⟩+ |3⟩). (8.3.6)

This mode enters the continuum spectrum for a positive d∗1, before the constituent N = 1

vortices are on top of each other.

8.3.2.2 Scattering of the subspace N (2) of equilateral triangular con-

figurations

Now we consider three critically coupled vortices located at the vertices of an equilateral

triangle, at a distance d from the origin. The spectral flow for the equilateral triangular

3-vortex system is shown in figure 8.3.7. The spectral flow interpolates between the

discrete spectrum found for the axially symmetric N = 3 vortex, and the eigenmode for

three well separated N = 1 vortices.

The lower mode, labelled ξ1 exhibits a plateau for small d, but monotonically increases

with the separation after d ≈ 2, reaching the asymptotic value, being the N = 1, k = 0

mode. Note that the degeneracy between the k = 1 eigenmodes is preserved for all d,

so we do not see any spectral walls in this case. Furthermore, the squared frequency

of the upper mode, labelled ξ2 changes very little with separation. It decreases from
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Figure 8.3.7: Spectral flow in the one-dimensional subspace N (2) of an equilat-
eral triangular configuration of 1-vortices. The coordinate d is the distance of

the outer vortices from the origin.

ω2
3,1 = 0.83025 for d = 0 to ω2

1,0 = 0.77747. The structure of the modes is symmetric as

the vortices pass the axially symmetric solution at d = 0, and the vortices exhibit a 60◦

scattering.

8.3.3 4-Vortex Spectral Structure

In this section we discuss the spectral structure of a 4-vortex system. At d = 0, we

have the axially symmetric N = 4 vortex. We discuss four subspaces of this configu-

ration space. Two of these subspaces are totally geodesic sub-manifolds of the moduli

space, where the spectral structure is stabilised by symmetry. The first subspace N (1)

considers four vortices on the vertices of a square. The second subspace N (3) considers

an N = 2 vortex at the origin, with two N = 1 vortices centred with their zeros at

±d respectively. The other two subspaces are cross sections of a 2-dimensional space.

Namely, the third subspace N (2) considers two N = 2 vortices along the x1 axis. Finally,

the fourth subspace N (4) considers four N = 1 vortices equidistant along the x1 axis. To

address the spectral structure, we consider paths within these subspaces of the reduced

moduli space with center of mass fixed at the origin. The subspaces N (1) and N (3) are 1-

dimensional totally geodesic submanifolds. The subspace N (1) consists of configurations

where four critically coupled vortices are located at the vertices of a square, satisfying
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cyclic C4 symmetry (90◦ rotation) and dihedral symmetries including reflections. This

submanifold describes head-on collision dynamics, corresponding to 45◦ scattering. The

subspace N (3) consists of configurations where an N = 2 vortex (two coincident vortices)

is at the origin and two N = 1 vortices are equidistant at ±d along the x-axis (before

scattering) or y-axis (after scattering), satisfying cyclic C2 symmetry (180◦ rotation)

and reflection symmetries (x → −x, y → −y). This submanifold corresponds to 90◦

scattering. Both subspaces support zero modes, which are energy-preserving pertur-

bations (e.g., rotations or translations defining the submanifold), and non-zero energy

shape modes, which are vibrational perturbations. The subspaces N (2) and N (4) are

not totally geodesic submanifolds but rather cross sections of 2-dimensional subspaces.

For N (2), the configurations involve two N = 2 vortices aligned along the x1-axis, which

may exhibit C2 and reflection symmetries but do not constrain the geodesic flow to re-

main entirely within a 1-dimensional submanifold due to additional degrees of freedom.

Similarly, N (4) involves four N = 1 vortices collinear and equidistant along the x1-axis,

with reflection symmetries, but it serves as a slice through a higher-dimensional space

without the full symmetry stabilization required for totality geodesic property. N (1)

and N (3) are totally geodesic submanifolds because their strong symmetries (C4 for N (1)

and C2 for N (3)) ensure that geodesics in the moduli space, starting tangent to the sub-

manifold, remain within it, resulting in vanishing second fundamental forms. Note that

for this section, we only discuss the spectral structure calculated from the 2-dimensional

linearisation, and we do not discuss the full field theory numerical simulations.

8.3.3.1 Spectral structure of the subspace N (1)

In figure 8.3.8, we see that asymptotically, we only have one eigenmode, with squared

frequency ω2
1,0. This is a degenerate mode that splits into 3 excitations. At d = 0, we

have two eigenmodes, with squared frequencies ω2
4,0 = 0.31873565 and ω2

4,1 = 0.70092248.

Note that the number of eigenmodes is not constant for all d. In fact, we see that for

|d| > 2, we have three eigenmodes.

First, observe the blue line ξ1 in figure 8.3.8. At d = 0, the squared frequency is

ω2
4,0, which is the radially symmetric shape mode for the N = 4 vortex. This is the

global minimum in terms of the squared frequency as a function of the distance d.

Asymptotically, the squared frequency increases to ω2
1,0, which is the radially symmetric

shape mode of the N = 1 vortex. This means that an excitation of the mode ξ1 will
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Figure 8.3.8: Spectral structure for a 4-vortex system, where the configuration
of N = 1 vortices is the subspace N (1), where the vortices are located on the

vertices of a square, and d is the distance of the vortices from the origin.

introduce an attractive intervortex force. Previous results on 2-vortex systems and 3-

vortex systems would suggest that this would lead to multiple bounces, whereby the

vortices scatter at 90◦, and we would expect to see a phase dependant fractal structure

for the number of bounces.

Next, consider the red line ξ2 in figure 8.3.8. The squared frequency at d = 0 is ω2
4,1,

which is the k = 1, N = 4 mode. Asymptotically, the squared frequency also increases to

ω2
1,0, suggesting that an excitation in this channel is also attractive, but not as strongly

as ξ1.

Finally, we consider the green line ξ3 in figure 8.3.8. We observe with ξ3 that there is a

mode that reaches the continuous spectrum before the vortices scatter, suggesting the

existence of a spectral wall.

8.3.3.2 Spectral structure of the subspace N (2)

Next, we consider the subspace N (3) of four vortices, where we have an N = 2 vortex

at the origin and two N = 1 vortices equidistant on the x1 axis, and d is the distance

from the outer N = 1 vortices to the origin. Interestingly, we see in figure 8.3.9 that we

have the same number of modes at d = 0, and asymptotically (d→ ∞). For the N = 4

coincident configuration, we have three modes, a lower and upper ω2
4,0 mode, as well as
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Figure 8.3.9: Spectral structure for a 4-vortex system, where the configuration
is the subspace N (3), where we have two N = 1 vortices equidistant on the x1
axis, and a N = 2 vortex at the origin, and d is the distance of the vortices from

the origin.

the ω2
4,1 shape mode. Asymptotically, we have the ω2

2,0 mode, the ω2
1,0 mode, and finally

the ω2
2,1 mode.

First, consider the blue line ξ1 in figure 8.3.9 which is the lowest excitation. We see

that this excitation interpolates between the mode with squared frequency ω2
2,0 asymp-

totically, to the mode with squared frequency ω2
4,0 at d = 0. The squared frequency

decreases as the vortices approach the axially symmetric N = 4 configuration, suggest-

ing an attractive intervortex force. Note that this excitation is a global minimum.

Next, consider the red line ξ2 in figure 8.3.9. The asymptotic value of the squared

frequency of this mode is ω2
1,0, which is degenerate. As the vortices come closer together,

the degeneracy is broken. As we decrease in d, the squared frequency decreases to ω2
4,1 at

d = 0, where we have a mode crossing between ξ2 and ξ4 (the purple line in figure 8.3.9).

After the vortices pass the axially symmetric N = 4 configuration, the squared frequency

then increases to ω2
2,1 asymptotically. This suggests that the mode is attractive in d ∈ R+

and then changes to repulsive in d ∈ R−. Furthermore, we see that for small positive

d, there is a local minimum, suggesting that vortices might become trapped in a quasi-

stationary state where the squared frequency takes its minimum value.

Finally, we have the third mode ξ3, see the green line in figure 8.3.9. We see that at
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Figure 8.3.10: Spectral structure for a 4-vortex system, where the configuration
is the subspace N (2), where we have two N = 2 vortices equidistant on the x1

axis, and d is the distance of the vortices from the origin.

d = 0, the excitation takes the value of the upper ω4,0 mode. As the vortices separate,

the squared frequency decreases to ω2
1,0. This suggests a repulsive intervortex force.

Furthermore, we have an additional mode crossing with the ξ4 excitation (purple), which

is the reflection of ξ2.

8.3.3.3 Spectral structure of the subspace N (3)

Consider the subspace of two N = 2 vortices. At d = 0, we see that we have three

modes, the lower ones with squared frequencies ω2
4,0, ω

2
4,1, and the upper one with

squared frequency ω2
4,0. Asymptotically, we have two degenerate modes, which are the

two modes that exist for the N = 2 vortex with squared frequencies ω2
2,0 and ω2

2,1.

First, consider the blue line ξ1 in figure 8.3.10. As in the case of the subspace N (1), at

d = 0 this mode is the global minimum, with squared frequency ω2
4,0. As two N = 2

vortices separate, we see that the squared frequency increases to ω2
2,0, suggesting an

attractive intervortex force.

Next, we discuss the red line ξ2 in figure 8.3.10. Asymptotically, we see that the de-

generacy of the ω2
2,0 mode is broken. The mode increases to ω4,1 at d = 0. Note that

there is a level crossing between ξ2 and ξ3 after the vortices pass through the axially
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symmetric N = 4 configuration. The squared frequency continues to increase, reaching

ω2
2,1. This would suggest a repulsive intervortex force.

There is also a third excitation; see the green line ξ3 in figure 8.3.10. Asymptotically, the

excitation has squared frequency ω2
2,1. This mode is also degenerate. The degeneracy

is broken as the vortices come close together. The squaredfrequency initially decreases,

suggesting an attractive force. There is a mode crossing with ξ4 (the reflection of ξ2).

After this crossing, the squared frequency increases so that at d = 0, the squared fre-

quency is that of the upper mode, with squared frequency ω2
4,0. This mode appears to be

symmetric across the x1 and x2 axes. Hence, the vortices scatter through the upper ω4,0

configuration. Note that this overall increase in squared frequency suggests a repulsive

intervortex force. Therefore, we see that an excitation of the form ξ3 would induce an

attractive-repulsive force as the separation of the vortices varies.

Finally, we observe the cyan line ξ5 in figure 8.3.10. Again, the asymptotic value of

this excitation is ω2
2,1. The degeneracy is broken once again as the vortices come closer

together and the squared frequency quickly reaches the continuous spectrum at a finite

distance d ∈ [2, 3]. This suggests that an excitation of this form could result in the

formation of a spectral wall. Note that this excitation only slightly increases as the

vortices come closer together, suggesting a weakly repulsive intervortex force.

8.3.3.4 Spectral structure of the subspace N (4)

Finally, for 4-vortex configurations, we consider the subspace N (4) of four N = 1 vortices

equidistant along the x1-axis. Here, d is the distance of the outer vortices from the origin.

The spectral structure is indeed quite similar to the spectral structure in the subspace

N (2), however, there are some key differences. We have the same number of modes at

d = 0, however, the number of modes is not constant for all d.

Quite strikingly, notice the purple line ξ4 in figure 8.3.11. Here we see that asymptotically

the value of the excitation is ω2
1,0. As the vortices come closer together, the squared

frequency increases rapidly, reaching the continuous spectrum at d ∈ [5, 6]. The would

suggest the formation of a spectral wall before the vortices scatter.

We note that the lowest excitation ξ1 (see the blue line in figure 8.3.11) is indeed quite

similar to that in figure 8.3.9, hence we expect the same behaviour. Additionally, we

see that the cyan line ξ5 in figure 8.3.11 is in fact the same excitation as ξ3 (green) in

figure 8.3.9.
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Figure 8.3.11: Spectral structure for a 4-vortex system, where the configuration
is the subspace N (4), where we have four N = 1 vortices equidistant on the x1

axis. d is the distance of the vortices from the origin.

Next, consider the second excitation ξ2, the red line in figure 8.3.11. Similarly to the sub-

space N (2), we observe a local minimum where we might expect to see a quasi-stationary

state. Surprisingly, after the vortices pass the axially symmetric d = 0 configuration,

the path of the mode differs from that in the previous subspace. Here, we see that

the squared frequency increases after the level crossing with ξ3 (green), reaches the

continuous spectrum at a position d ∈ [−5i, 6i] after the vortices scatter.

8.4 Conclusions

In this chapter, we have investigated the spectral structure of vortices in the Abelian

Higgs model, focusing on the linear perturbations and normal modes for N = 1, N = 2,

N = 3, and N = 4 vortex configurations.

By employing a radially symmetric ansatz and a central second-order finite-difference

scheme, we reduced the eigenvalue problem to a one-dimensional form, enabling the

identification of discrete modes, including shape, translation, and splitting modes. For

N = 1, we identified a single shape mode with squared frequency ω2
1,0 = 0.77747,

alongside a zero-energy translation mode. The N = 2 system revealed four discrete

modes at critical coupling (λ = 1), with the k = 0 shape mode entering the continuum



102

at λ ≈ 3. For N = 3, five discrete modes were found, with complex spectral flow

indicating potential quasi-stationary states, particularly for the ξ2 mode with a local

minimum. The N = 4 system exhibited seven modes, with spectral walls suggested by

modes reaching the continuum at finite separations.

The two-dimensional spectral flow analysis further showed how mode frequencies vary

with vortex separation, indicating attractive and repulsive intervortex forces. For in-

stance, the ξ1 mode in the 2-vortex system decreases in squared frequency as vortices

approach, suggesting an attractive force, while the ξ2 mode’s increase suggests a repul-

sive force, with mode crossings pointing to possible spectral walls. Similarly, the N = 3

and N = 4 systems displayed complex mode structures, with implications for scattering

dynamics explored in subsequent chapters.

These findings, building on prior work [8, 9, 14, 36, 67], provide a robust foundation for

understanding vortex interactions and their dynamic behaviours in the Abelian Higgs

model.



Chapter 9

Excited Vortex Dynamics at

Critical Coupling

9.1 Introduction

This chapter includes work from [11, 13, 47]. In this chapter, we will consider the

second-order dynamics of vortices away from MN by exciting the normal modes of the

individual vortices. We will demonstrate that vortices do exhibit long-range forces at

critical coupling when their normal modes are excited. We will then consider the effect

of these excited modes on the scattering of vortices.

Several studies have considered the effect of excited normal modes on the scattering

of solitons and antisolitons in 1-dimensional wobbling kinks [15]. The scattering of

wobbling kink/anti-kinks (while exhibiting strong attractive static forces) are shown to

bounce off each other depending on initial velocities and the intensities of the excited

mode. The number of bounces has also been shown to be chaotic in nature. Further

motivation arises during the scattering of N > 1 vortices, see section 6.8.2, where we

observe the natural excitation of N = 1 vortex shape modes.

We explore the numerical techniques used in simulating vortex dynamics. We display

results found from scattering vortices with excited shape modes.

9.1.1 Initial Configuration

We now explore a single vortex solution to the static equations of motion with excited

shape mode. We can hence generalise an initial configuration for the vortex fields when

103
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the shape mode is excited.

ϕ1(t, x1, x2) = R((x1 + ix2)
N )F (x21 + x22) + ϵψ1(x) cos (ωt− σ(0)) ,

ϕ2(t, x1, x2) = I((x1 + ix2)
N )F (x21 + x22) + ϵψ2(x) cos (ωt− σ(0)) ,

Aµ(t, x1, x2) =


0

−x2G(x21 + x22) + ϵχ1(x) cos (ωt− σ(0))

x1G(x
2
1 + x22) + ϵχ2(x) cos (ωt− σ(0))

 , (9.1.1)

where σ(0) is the initial phase of the mode, ψi, χi are the perturbations, F and G are

the solutions of eq. (6.5.9), ω is the angular frequency and ϵ is the magnitude of the

perturbation.

We can now simulate a single vortex of degree N , with excited shape mode. We can

hence study the intensity of the N = 1 excitation over time, by calculating the amplitude

of the static potential energy. Figure 9.1.1 shows how the intensity of the excitation

changes with time. Mathematically, the energy is conserved, however the damping

boundary conditions (see chapter 7) remove radiation from the system that approaches

the boundary. Thus, in a numerical sense, the total energy in the system decreases as

radiation is absorbed.

The solid black line indicates the choice of ϵ used for the majority of our results. We

denote the initial intensity of the excitation I(0), where

I(0) =
1

2
(ϵω)2 . (9.1.2)

We can see that there is an exponential decay by taking a logarithm of the intensity, see

figure 9.1.2, whereby for ϵ < 0.7, the resulting curves are straight lines. Initially, we see

that for larger ϵ, the intensity of the shape mode decays faster. However, changing the

initial intensity is the same as shifting through time, see figure 9.1.1, whereby we can

shift along the time-axis such that all initial intensities can be considered as a decayed

excitation along the same curve.

Figure 9.1.1 gives us a range of suitable intensities for the excitation of the shape mode
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Figure 9.1.1: Change in intensity of the N = 1 vortex shape mode against time,
where the intensity is the amplitude of the fluctuations in the static potential
energy. The black line with ϵ = 0.9 corresponding to I(0) = 0.317 is our default

initial intensity in section section 9.2, where I(0) = 1
2(ϵω)

2

Figure 9.1.2: Log-plot of the intensity of the N = 1 shape mode against time, to
show the exponential decay of the excitation. The black line with ϵ = 0.9 cor-
responding to I(0) = 0.317 is our default initial intensity in section section 9.2.
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to scatter excited vortices. We then boost the vortex eq. (9.1.1) using a Lorentz trans-

formation, see section 7.1

ϕ̃1(t, x1, x2) = R((γ(x1 + vt) + ix2)
N )F (γ2(x1 + vt)2 + x22) + ϵψ1(x̃) cos (ωγ(t+ vx1)− σ(0)) ,

ϕ̃2(t, x1, x2) = I((γ(x1 + vt) + ix2)
N )F (γ2(x1 + vt)2 + x22) + ϵψ2(x̃) cos (ωγ(t+ vx1)− σ(0)) ,

Ãµ(t, x1, x2) =


−γvx2G(γ2(x1 + vt)2 + x22) + γvϵχ1(x̃) cos (ωγ(t+ vx1)− σ(0))

−γx2G(γ2(x1 + vt)2 + x22) + γϵχ1(x̃) cos (ωγ(t+ vx1)− σ(0))

γ(x1 + vt)G(γ2(x1 + vt)2 + x22) + ϵχ2(x̃) cos (ωγ(t+ vx1)− σ(0))

 .

(9.1.3)

For large initial intensities, the nonlinear terms in eq. (8.2.3) become significant, and we

observe that the energy is phase dependent, varying up to order O(ϵ3) for a π−shift.

It is outlined in section 9.2.3 how to excite the same mode using a Derrick scaling.

We find that the mode excitation can be well approximated by a scaling of the fields.

However, this allows less freedom in the choice of the initial phase. To alter the phase

using the Derrick’s method, we must evolve the vortex in time to numerically change

the initial phase of the mode, which results in a small decay in the energy. Using the

method by which we alter the phase in the Derrick’s approximation, we can also alter

the phase the same way for eq. (9.1.3). By changing the phase this way, the intensity

of the shape mode decays by approximately 10−4, which is significantly less than the

contribution to the energy of the higher order terms in the linearisation. Because of

this, we will show in section 9.2 a phase space plot from both methods.

The initial field configurations eq. (9.1.3) are approximations to solutions of the dynamic

equations of motion eqs. (6.2.17) and (6.2.18) and can be used to simulate a single degree

N vortex with excited normal modes. We seek to study the scattering of excited N = 1

vortices; hence we must create multi-vortex field configurations that are also solutions to

the equations of motion eqs. (6.2.17) and (6.2.18). The Abikrosov ansatz [1] allows us to

find field configurations detailing well-separated Lorentz boosted vortices with excited

shape modes. The Abikrosov ansatz for a given vortex solution (ϕ̃(t, x), Ãµ(t, x)) is

ϕ̂ =
∏
i

ϕ̃(x− di) , Âµ =
∑
i

Ãµ(x− di) , (9.1.4)

where di are the positions of the vortex centres. The approximation works well when

the vortices are well separated from each other, such that the separation is much larger
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than the vortex core size, namely 2di ≫ 1.

9.2 Quasi-Bound States

In this section, we study the scattering behaviour of two N = 1 critically coupled vortices

with excited shape modes, following the path of the first mode ξ1; see figure 8.3.3. This

means that we consider an initial excitation of the form eq. (8.3.2).

The excitation leads to an interesting scattering behaviour dependent on initial velocity,

as well as intensity and phase of the shape mode. We look at snapshots of a numerical

simulation which show the scattering of the excited vortices. We also plot different

vortex trajectories, where we vary the initial phase of the shape mode. Furthermore, we

show a plot summarising a sampling of scattering outcomes for a fixed intensity, where

we vary the initial velocity and the phase of the shape mode. We then discuss how this

summary is different if we change the initial intensity of the shape mode. Finally, we

give a brief discussion regarding changing the relative phase of the shape mode between

the two vortices.

For all simulations discussed in this section, the vortices are located at di = ±10, where

di is defined in eq. (9.1.4). This separation was chosen so that the vortices are initially

well separated and the forces between them can be neglected. Unless stated otherwise,

we consider solutions for a fixed initial intensity I(0) = 0.317. This corresponds to

ϵ = 0.9, where ϵ is the magnitude of the perturbation, defined in eq. (8.2.5). We

choose a sufficiently large initial intensity I(0) such that there is enough energy in the

shape mode for a considerable amount of interesting behaviour in the excited-scattering

process. We label the initial phase of the shape mode with σ(0) ∈ [0, 2π), defined in

eq. (9.1.3). Unless stated otherwise, the two vortices are in phase with each other. We

denote the initial velocity of the vortices by vin.

9.2.1 Results

First, we show snapshots of a simulation for a 2-vortex scattering with excited shape

modes in figure 9.2.1. The initial phase of the shape mode for each vortex is σ(0) =

2.2612, and the initial velocity is vin = 0.01. We display the energy density as a heat

plot and overlay the zeros of the Higgs field as black dots. We see that the energy

density fluctuates as a result of the excited shape mode. At critical coupling, there are
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t = 0 t = 270 t = 280 t = 300

t = 360 t = 370 t = 400 t = 450

Figure 9.2.1: Heat plots of the energy density, showing snapshots through time
of an excited vortex scattering, with initial phase σ(0) = 2.2612, initial velocity
vin = 0.01, and initial separation s = 20. The black dots indicate the zeros of
the Higgs field. This figure shows how the vortices accelerate towards each other
and then scatter at 90◦. The vortices then slow before accelerating towards each

other and scattering at 90◦ again, which repeats many times.

no static forces between vortices, and vortices scatter at right angles, in agreement with

the moduli space approximation. We find that this is no longer the case for excited

vortices. We refer to this multi-bounce behaviour as a quasi-bound state.

For a fuller picture of 2-vortex scattering, we can track the zeros of the Higgs field, as

seen in figure 9.2.2. We plot half the separation of the zeros for a set of solutions to show

the trajectories of the vortices as a function of time. We have only varied the initial

phase σ(0) for fixed velocity vin = 0.06725. The solid blue line shows the the position

(d) of the zeros of the Higgs field of the two vortices with excited shape mode from the

origin, and the solid red line is the intensity I(t) of the excitation. The dashed blue

line shows the separation of two vortices with the same initial configuration but without

excitation. The dashed red line indicates the intensity of a single vortex with the same

mode excitation.

Let us begin by discussing the excited vortex scattering in general. We can see that the

trajectories of the vortices with excited shape modes are different from those without

excitation. Initially, there is no deviation between the vortex trajectories with or without

excitation. There is also no curvature in the trajectories before d ≈ 8, showing that the
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(a) σ(0) = 0 (b) σ(0) = 13π
16

(c) σ(0) = 15π
16 (d) σ(0) = 17π

16

(e) σ(0) = 5π
4 (f) σ(0) = 25π

16

Figure 9.2.2: Tracking of position of the vortices with time, plotted in blue.
Red indicates the intensity of the excitation per vortex. We show 6 plots, with
different initial phases, and fixed initial velocity vin = 0.06725. The dashed
blue line indicates the standard scattering process with no excitation but with
the same initial velocity. The dashed red line indicates the intensity of the

excitation in the absence of the scattering.
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Figure 9.2.3: Numerically calculated flow of the squared angular frequency ω2

from a dynamical simulation, as a function of the distance of the vortices to
the origin d (blue), where s = 2d, and spectral flow calculated from the 2-
dimensional linearisation (red). We choose an initial velocity of vin = 0.01, and

initial intensity I(0) = 0.01, where I(0) = 1
2(ϵω)

2.

vortices travel initially at a constant velocity. This is because the length scale of the

mode is approximately the same as the size of the vortices, which fall off exponentially

at approximately d = 8, see figure 8.2.3.

For d < 8, the trajectory of the excited vortices begins to deviate from that of the

standard scattering. We observe an increasing slope in the trajectory of the excited

vortices, and the excited vortices also collide sooner than without excitation. We can

hence see that the vortices begin to accelerate towards each other within this region. This

interaction is similar to the behaviour of type I vortices, where vortices are attractive;

see figure 6.6.1.

In all tracking plots, the intensity of the excitation drops after the vortices collide.

We can see that this is a result of the collision as this is a deviation from the dashed

blue line. This is due to the energy transfer mechanism, where energy from the mode

is transferred to the kinetic energy of the vortex. After the excited vortices scatter,

the intensity increases slightly, suggesting that the kinetic energy from the vortices is

transferred back to the excitation. This is confirmed by studying figure 9.2.3, where we

plot the flow of the angular frequency as a function of the separation of the vortices for

a simulation where the vortices are not trapped in a quasi-bound state. We see that the

frequency drops as the vortices scatter, suggesting that an excitation of this form is in

the attractive channel. This confirms what we see from the lower mode ξ1 in figure 8.3.3.
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Furthermore, if there is more energy in the excitation, the vortices become more at-

tractive, and hence we observe that they scatter again. Near the end of the simulation,

we can see that the intensity of the excitation has decreased significantly, especially for

figures 9.2.2c and 9.2.2d. It is possible that there is not enough energy left in the ex-

citation, as it radiates energy as a result of the fast decay of the intensity. This means

that not enough energy can be transferred to the kinetic energy, and hence the vortices

escape.

There are some slight fluctuations in the intensity after the vortices collide. We believe

this fluctuation to be a result of the Doppler effect as radiation is emitted from the

vortices as they travel, which we have reproduced by studying the Doppler effect. Note

that this is not displayed in this thesis.

Figures 9.2.2c to 9.2.2e display a quasi-bound state, where we have multiple bounces.

Figure 9.2.2e shows a 2-bounce scattering solution, figure 9.2.2c shows a 4-bounce so-

lution, and figure 9.2.2d shows a 13-bounce solution. We can see from the trajectories

that the size of the bounce windows increases with time. This could be argued to be a

result of the decay of the mode. As the mode decays, it loses energy, resulting in a re-

duced attractive quality as time progresses. This behaviour is expected as it is observed

with kinks that we initially have noticeably short bounces that become longer as the

simulation evolves [15].

9.2.2 Fractal Structure

Next, we study a phase space of solutions to help identify any patterns in the behaviour

of the excited 2-vortex scattering. We find solutions for a range of initial phases and

initial velocities, and hence generate a phase space of solutions, detailing the number of

bounces as the number of times the vortices scatter through each other.

Figure 9.2.4b shows a sample of solutions for a set of initial phases σ(0) ∈ [0, 2π), and

initial velocities vin ∈ [0.01, 0.13]. The number of bounces is indicated by the colour.

The y-axis has been extended to be in the range [0, 6π), since the phase coordinate is

cyclic.

As stated above, we can alter the phase of the mode in two different ways. We can

see the phase space of solutions for both these methods in figures 9.2.4a and 9.2.4b.

Figure 9.2.4b shows solutions where the initial phase of the shape mode has been changed
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(a) Initial phase altered by changing σ(0) in eq. (9.1.3).

(b) Initial phase altered numerically using a displacement shift and evolving through
time.

Figure 9.2.4: Phase space of excited vortex scattering solutions. We show solu-
tions for different initial velocity and initial phase for fixed ϵ = 0.9. The dark
blue space indicates solutions that only have one bounce, i.e. the vortices scatter
only once, which is the normal behaviour for vortices at critical coupling. The
number of bounces is represented as a heat plot for the colour of each simula-
tion, shown by the colour bar. The data is plotted three times along the y axis
since the phase coordinate is cyclic, allowing us to get a clearer picture of the
behaviour of the phase space. The purple rectangle corresponds to figure 9.2.5,

where we show the phase space with higher resolution.

by shifting the initial vortex position di, and numerically evolve to alter the initial phase,

and figure 9.2.4a shows solutions where the initial phase is changed using eq. (9.1.3).

Due to the dependence of the energy on ϵ in eq. (9.1.3), which is maximal at a π−shift,

we can see in figure 9.2.4a that the pattern of the results deviates most at this value,

showing that the difference between these plots is an artefact of this phase dependence

on the energy. We can hence assume that the plots should be identical, except that we

have this deviation because of the method used.

We have shown that an in-phase excitation ξ1 introduces an attractive force between
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the single vortices. This, together with the resonant energy transfer mechanism between

the kinetic and vibrational motion, triggers a fractal pattern of multi-bounces, where

depending on the number of collisions the vortices are scattered under 90◦ or 180◦ angle.

Indeed, precisely as in the kink-antikink collisions in ϕ4 model [26, 56, 72], the energy

initially stored in the kinetic motion can be temporarily transferred to the vibration

mode and forces the vortices to collide again.

We observe in figure 9.2.4b regions of solutions that have multi-bounce scattering. We

also observe in-between these regions sets of solutions that only scatter once. We see that

the lines of solutions that have multi-bounces also have a curvature, rather than a fixed

slope. This is quite intuitive, as we have a series of lines of decreasing gradient; however,

we can clearly see that the lines curve. This means that changing the initial phase of

the mode is equivalent to changing the initial velocity, up to a critical value where the

initial velocity dominates the interaction of the vortices and they always escape. We can

see that this critical velocity is around the region of vin = 0.13. However, this is only a

rough approximation. Extending the phase space in the y-direction also allows us to see

more easily that for any given initial velocity below the critical region, you can always

choose an initial phase such that the vortices scatter more than once.

For low velocities, the resolution of the phase space is too small to reveal the full structure

of the phase space, hence the presence of the parabola in the parameter space of solutions

figure 9.2.4b is a result of the resolution of the data. We observe in figure 9.2.5 that

the fractal structure of repeated lines is observed for small velocities, but due to the

increasing slope of this pattern at low velocities, it is difficult to capture the pattern

as the lines become more vertical and narrow, meaning that it is easy to miss when

scanning the parameter space.

We can hence see that the whole phase space shows a fractal structure of regions with

multiple bounces, ranging from 2 to 30 bounces. The number of bounces does not

appear to have any correlation to the phase space at large, but it could be argued that

the resolution of the diagram is too low to give a definitive answer. We now turn to

the question of why this fractal pattern appears. We can surmise that this is a result of

the phase of the shape mode altering the state of the interaction for different velocities.

We see that periodically, there are these dark blue regions (solutions that only scatter

once) and then thin slices of solutions with multiple bounces, increasing in width and

decreasing in slope as the initial velocity increases. Furthermore, these factors appear
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Figure 9.2.5: A higher resolution plot of the phase space plot. We plot the
highlighted region of figure 9.2.4b, but using a smaller step in vin.

to be constant for each region with respect to the phase.

We now discuss other initial intensities of the excitation. Take, for example, ϵ = 0.5,

i.e. I(0) = 0.097. For this initial intensity, the mode decays extremely slowly, and hence

nonlinear effects are smaller. We find that for small velocities the vortices escape after

one bounce. Hence, we can assume that for this intensity, the scattering is dominated

by the velocity, and the mode excitation causes little interaction between the vortices as

they scatter. This gives further evidence to the proposition that the vortices escape the

bound state due to the decay of the excitation, as if the intensity is too small initially,

they do not bounce more than once. Therefore, we examine one more initial intensity

between these two values already discussed and take ϵ = 0.75, such that I(0) = 0.219,

which also decays slowly. We can see in figure 9.1.1 that this choice of ϵ corresponds

to an initial intensity of approximately 60% of the previous intensity discussed, where

ϵ = 0.9 and I(0) = 0.317.

We see in figure 9.2.6 that we have the same fractal structure that dominates the phase

space. There are some key differences between the phase space of solutions with ϵ = 0.9

and ϵ = 0.75. Firstly, we observe in figure 9.2.6 that there are only one bounce windows

after an initial velocity of vin ≈ 0.055. This suggests that the interaction imposed by

the mode is weaker than the strength of the initial velocity, further supporting the con-

jecture that the mode requires a certain amount of energy to dominate the interaction.

We further see that the fractal lines are narrower in figure 9.2.6 than in figure 9.2.4b.

However, they are significantly closer together, which could suggest that this set of so-

lutions is just a scaled set of solutions compared to figure 9.2.4b. Note that for small
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Figure 9.2.6: Parameter Solution space detailing the space of solutions com-
puted using a 2nd order Leapfrog method for time evolution. We show solutions
for different initial velocity and initial phase for fixed ϵ = 0.75. The dark blue
space indicates solutions that only have one bounce, i.e. the vortices scatter
only once, which is the normal behaviour for vortices at critical coupling. The
number of bounces is represented as a heat plot for the colour of each simula-
tion, shown by the colour bar. The data are plotted three times along the y
axis since the phase coordinate is cyclic, allowing us to get a clearer picture of

the behaviour of the phase space.

velocities, the line pattern is more difficult to see. This is due to the resolution of the

phase space. With higher resolution, this part of the diagram would appear to fit the

pattern of the rest of the data.

9.2.3 Derrick Scaling Approximation

This section seeks to show that the shape mode can be well approximated by a Derrick

scaling of the fields.

we have Derrick’s scaling argument in section 6.2. We can hence have the mode in terms

of the Derrick scaling

ψ̃ = ϕ(κx)− ϕ(x), (9.2.1)

χ̃µ =
1

κ
Aµ(κx)−Aµ(x). (9.2.2)
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It is important to perform the Derrick scaling on the fields before applying the Lorentz

transformation, and the resulting initial condition is

ϕ̂(t, x) = (γ(κx1 + vt) + iκx2)
N F (γ2(κx1 + vt)2 + κ2x22),

Âµ(t, x) = (Â0, Â1, Â2) =


Nvγx2G(γ

2(κx1 + vt)2 + κ2x22)

−Nγx2G(γ2(κx1 + vt)2 + κ2x22)

Nγ(κx1+vt)
κ G(γ2(κx1 + vt)2 + κ2x22)

 ,
(9.2.3)

Hence we have an initial configuration for our two-dimensional dynamical simulations,

detailing an axially symmetric vortex with an initial velocity and a Derrick mode exci-

tation.

As stated above, we find the frequency of the shape mode to be ω2
1,0 = 0.777476. By

studying the potential energy of the Derrick scaled solution, we find a frequency of the

approximated mode to be ω2
Derrick = 0.770076, which is within 1% of the frequency

found through the linearisation of the full field theory. This gives us evidence that

Derrick scaling the solution is indeed a good approximation to the shape mode.

We can determine how well the Derrick scaling approximates the mode, by calculating

the 2-dimensional norm of the perturbation for both methods

⟨f ,g⟩ =
∫

f · g d2x, (9.2.4)

where f and g are vectors of the Higgs field and gauge fields for the Derrick scale

perturbation, and the linearisation perturbation respectively, such that

f = (ψ̃1(x, y), ψ̃2(x, y), χ̃1(x, y), χ̃2(x, y))
T ,

g = (ψ1(x, y), ψ2(x, y), χ1(x, y), χ2(x, y))
T . (9.2.5)

We see in figure 9.2.7 that the Derrick scaling mode approximation provides a par-

tial approximation to the linearisation, with the normalised inner product between the

perturbation vectors, representing the how well the Derrick scaling mode covers the

linearisation (⟨f ,g⟩/
√
⟨f , f⟩⟨g,g⟩), ranging from approximately 0.9993 to 0.9753. For

small perturbations around κ = 1, the deviation reaches a maximum of approximately

0.9993 at κ = 0.98, indicating a very close alignment, with the perturbation directions



117

differing by less than 0.07%. As the perturbation grows larger, the mode coverage de-

creases to 0.9753 at κ = 0.5 and 0.9797 at κ = 1.5, suggesting that the Derrick scaling

approximation becomes less aligned with the linear mode, differing by up to 2.47% and

2.03% respectively. This indicates that the scale approximation is most effective near

κ = 1, with alignment degrading as κ deviates, though it remains a reasonable method

for exciting the mode across the tested range.

Figure 9.2.7: The normalised inner product ⟨f ,g⟩/
√

⟨f , f⟩⟨g,g⟩, representing
the deviation from perfect alignment between the Derrick scaling perturbation
vector f and the linearisation perturbation vector g, as a function of the scale
factor κ. The deviation varies from approximately 0.9753 at κ = 0.5 (2.47%
difference) to a maximum of 0.9993 at κ = 0.98 (0.07% difference), and decreases
to 0.9797 at κ = 1.5 (2.03% difference), with an undefined value at κ = 1.0.
These small deviations indicate the closest alignment near κ = 1, though the

match is not as tight as initially expected across all κ.

It is a useful result that the shape mode can be approximated by a Derrick scaling. It

has been shown in [36] and chapter 8 how to find eigenfunctions to excite the linear

mode for all λ. The benefit of exciting the shape mode using a Derrick scaling is not

only a simpler procedure, but it is applicable not only to critical coupling, but also for

all λ, hence this method could be applied for all solitons, including those where the

linearisation is not yet known. By approximating the shape mode by a Derrick scaling,

we also begin to gain an understanding of the properties of interaction of the mode.
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If we consider the spatial rescaling eq. (6.2.7), such that ρ → κρ, then for ρ ≫ 1, the

equations eq. (6.6.1) rescale as

f(ρ) → f̃(ρ) = f(κρ) ≈ 1− q

2π
K0(κρ),

aθ(ρ) → ãθ(ρ) = aθ(κρ) ≈ 1− m

2π
κρK1(κρ). (9.2.6)

The magnetic field transforms under this rescaling. Starting with B = 1
ρ
∂aθ(ρ)
∂ρ ,

B → 1

ρ

∂ãθ(ρ)

∂ρ
=

1

ρ

∂

∂ρ
(aθ(κρ)) =

1

ρ
· κ∂aθ(κρ)

∂(κρ)

=
κ

ρ
· ∂

∂(κρ)

(
1− m

2π
(κρ)K1(κρ)

)
= −κ

ρ
· m
2π

[
K1(κρ) + (κρ)

∂K1(κρ)

∂(κρ)

]
.

(9.2.7)

Using the derivative of the modified Bessel function, ∂K1(z)
∂z = −K0(z)− K1(z)

z , we get

B = −κ
ρ
· m
2π

[
K1(κρ) + (κρ)

(
−K0(κρ)−

K1(κρ)

κρ

)]
= −κ

ρ
· m
2π

[K1(κρ)− (κρ)K0(κρ)−K1(κρ)]

=
κ

ρ
· m
2π

(κρ)K0(κρ) = κ2
m

2π
K0(κρ).

(9.2.8)

Thus, the interaction energy at critical coupling, with s as the separation between two

vortices, becomes

Eint(s) = − q2

2π
K0(κs) + κ2

m2

2π
K0(κs). (9.2.9)

Therefore, we see that when κ < 1 the magnetic interaction is weaker, and hence there

will be an attraction. Moreover, when κ > 1, the magnetic interaction is stronger, and

hence there will be a repulsion between the vortices.

It is important to note that we have also developed the figures to excite the shape mode

by a Derrick scaling of the fields. Indeed, using a Derrick scaling to excite the mode

is only an approximation, and hence there is more radiation in the system when the

excitation is carried out this way. However, it is much easier numerically to include a

mode excitation of this form.

We show the phase space of solutions for a mode excitation of this form, see figure 9.2.8.

Figure 9.2.8 shows that we can observe the same behaviour as in figure 9.2.4, confirming

that using a Derrick scaling to excite the mode is a good approximation.
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Figure 9.2.8: Phase space of scattering solutions. We show solutions for different
initial velocity and initial phase for fixed Derrick factor κ = 0.7. The dark blue
space indicates solutions that only have one bounce, i.e. the vortices scatter
only once, which is the normal behaviour for vortices at critical coupling. The
number of bounces is represented as a heat plot for the colour of each simulation,
shown by the colour bar. The data are plotted three times along the y axis
since the phase coordinate is cyclic, allowing us to get a clearer picture of the

behaviour of the phase space.

9.3 Spectral Walls in 2-Vortex Scattering

We have shown that geodesic dynamics is significantly affected if a bound mode carried

by the vortices is excited. If the lower mode ξ1 is excited in a head-on 2-vortex scattering,

the famous single 90◦ scattering is replaced by a chaotic fractal sequence of multi-

bounces.

In this section, we will consider excitation of an out-of-phase superposition of shape

modes of each of the vortices, which provides a repulsive intervortex force and therefore

cannot lead to multi-bounces. This is an excitation of the form of eq. (8.3.3).

If the upper mode ξ2 (see figure 8.3.3) is initially excited, then the intervortex force

is repulsive. Thus, for a sufficiently large excitation, head-on scattering may occur

without passing through the coincident configuration. In this case, the kinetic energy of

the vortex motion is simply too small to overcome the repulsion triggered by the upper

mode. As a result, there is no bounce and no 90◦ scattering. For a slightly smaller

excitation, the vortices can reach d = 0, but still without 90◦ scattering.

Interestingly, for even smaller initial intensities we get two-bounce scattering. This is

because the vortices pass through the d = 0 point and scatter at right angles. Now,

the second mode changes to the third one, hence the frequency increases after collision.

Consequently, the repulsion changes into an attraction between the vortices, which can

dominate the kinetic motion. As the vortices scatter again, the modes cross once more.
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The frequency drops with the separation, and the interaction becomes repulsive, and

hence the vortices separate indefinitely.

For sufficiently small excitations of the upper mode, the kinetic energy is large enough to

dominate the initial intervortex repulsion, and later attraction after scattering, resulting

in the standard 90◦ scattering.

Moreover, we will show that the excitation of the upper modes in the 2-vortex collision

leads to the existence of another phenomenon in soliton dynamics, which is the spectral

wall [2]. The spectral wall phenomenon is an obstacle (barrier) in the dynamics of

topological solitons because of the transition of a vibrational mode into the continuous

spectrum. If the intensity of this mode is sufficiently large, the soliton is reflected by

the spectral wall, whereas if the excitation is small enough, the soliton can pass through

the spectral wall. For a particular value of the intensity, the soliton forms a long-living

quasi-stationary state at a given spatial point, when the mode enters the continuum

spectrum.

Spectral walls have only previously been observed in (1 + 1)−dimensional systems, see

[4, 5]. In this section, we show that they exist also for vortices in the Abelian Higgs

model. We have shown in figure 8.3.3 that there exists a point where the frequency

reaches the continuum. Now, we seek to reproduce this using the full field theory

dynamics. In our numerical simulations, we scatter two well separated single vortices.

Initially, they are located at x1 = ±10 (d(0) = 10) and are boosted towards each other

along the x1-axis with initial velocity vin. The initial intensity of the normalised mode

is I(0), where I(0) = 1
2ϵ

2ω2. We use the same initial configurations as in section 9.2.

9.3.1 Results

In figure 9.3.1, we present the positions (|d|) of the vortices as a function of time, where

d = s
2 , with s being the separation of the vortices. We vary the initial intensity of the

mode to display the different scattering behaviours in this channel, and choose a fixed

initial velocity of vin = 0.01.

The full field theory dynamics confirms the previous considerations gained from study-

ing the spectral flow figure 8.3.3. For a large initial intensity, (see the purple line in

figure 9.3.1) such that I(0) ≈ 3.8874 × 10−3 the vortices never meet. Note that this is

still a small initial intensity for the excitation; however, since we are at critical coupling

and the vortices are slow moving, it is large enough that the repulsion dominates.
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Figure 9.3.1: Dynamics of excited 2-vortex with vin = 0.01. Time evolution of
|d| (half vortex-vortex separation). The dashed line labelled d∗ indicates the

position of the spectral wall.

Furthermore, if we decrease the intensity of the excitation, we observe the red line in

figure 9.3.1 with I(0) ≈ 1.092 × 10−3, where we get a 2-bounce solution, resulting in a

180◦-scattering of the incoming vortices.

As the initial intensity further decreases, the vortices separate further after the first

bounce. As explained, due to the mode crossing, the second mode ξ2 becomes the

third one ξ3. The frequency tends to the continuous spectrum as the distance between

the vortices along the x2-axis increases. The spatial point at which the mode enters

the continuum spectrum plays the role of a barrier in the solitonic dynamics, and this

barrier is called a spectral wall.

We clearly see such a spectral wall in figure 9.3.1. Observe the green and yellow lines

in figure 9.3.1. We notice that the trajectory flattens after scattering. This means that

for a very long time the vortices almost stop with their centres located at x2 = ±|d|sw,

where |d|sw ≈ 1.7, forming a quasi-stationary state. It should be stressed that they

remain at the same positions for a remarkably long time. That is, t ≈ 3000, which

can be compared with the time scale provided by the oscillation period of the excited

mode. Furthermore, we see that this distance strongly agrees with the value estimated

in figure 8.3.3, where d∗ ∈ [1, 2]

If we further reduce the initial intensity of the mode, then the kinetic energy forces

the vortices to pass through the spectral wall, exactly as in the case of kinks in (1+1)

dimensions. Thus, for smaller initial intensities, we enter an adiabatic regime where
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Figure 9.3.2: Snapshots of a dynamical simulation displaying a contour plot for
the energy density for a critically coupled (λ = 1) two-vortex scattering, with
internal shape modes excited out of phase, with initial velocity vin = 0.01 and

intensity I(0) = 1.0715e− 03, where I(0) = 1
2(ϵω)

2.

the standard geodesic motion of the vortices is only weakly perturbed by the excited

mode. Here we observe the standard one-bounce with 90◦ scattering, see the blue line

in figure 9.3.1 with I(0) = 9.718× 10−4.

We observe in figure 9.3.2 where we plot snapshots of a dynamical simulation, that the

vortices are initially out of phase and well separated (note that the black dots indicate the

zeros of the Higgs field). After the vortices scatter, the excitation enters the continuous

spectrum, and the vortices cease to wobble in space. We can see that the vortices stop

moving, forming a quasi-stationary state, as seen in figure 9.3.1, known as a spectral

wall.

In figure 9.3.3, we plot the time evolution of the frequency of the second mode ξ2. To

numerically track the frequency, we calculate the static potential energy using Simpson’s

3/8 rule at each time step δt. We therefore calculate the angular frequency, ω = π
Ti
, where

Ti denote the periods of oscillations in the static energy. We notice that the frequency

behaves as expected, which is consistent with the behaviour shown in figure 9.3.1.

Note that for higher initial velocities, there is a tendency for the vortices to form a

stationary solution for slightly more negative imaginary d. This is not a surprising effect.

A higher initial velocity vin results in a higher intensity of the mode required to form the
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Figure 9.3.3: Time evolution of the squared angular frequency of the excited
higher mode.

Figure 9.3.4: Frequency of the excited higher mode as a function of the vortex
position parameter d ∈ R+ ∪ iR−.

stationary solution. This means that corrections from higher order perturbation theory

are significant, and some couplings between the modes may be important, affecting the

position of the spectral wall. Similar effects were observed in (1 + 1) dimensions [3, 4].

In figure 9.3.4 we show how the frequency of the mode depends on the position d of

the vortex. We plot the numerically calculated frequency for all the simulations shown

in figure 9.3.1. We observe that the frequency follows precisely the path of the second

mode ξ2 shown in figure 8.3.3. We can see that for the purple line, indicating a repulsive

simulation where the vortices never meet, the frequency increases as they come close
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together, confirming our intuitions about the repulsive force; however, it then decreases

as the vortices escape to infinity. Interestingly, if we observe the yellow and green lines

in figure 9.3.4, we notice that the frequency reaches the continuum at the distance d∗,

where we observe the spectral wall. We also see from the red line, which corresponds

to the two-bounce solution, that the frequency reaches the continuum after the vortices

scatter. This indicates that the vortices are bouncing off the spectral wall in the x2

direction, because the kinetic energy is not large enough to allow the vortices to pass

through the spectral wall, and its energy is too large to allow for a quasi-stationary

state.

9.4 Excited 3-Vortex Scattering

In this section, we aim to confirm the spectral structure shown in section 8.3.2 and study

the full field theory dynamics of excited 3-vortices, namely a superposition of 3 excited

1-vortices. The dynamics are analyzed within the 1-dimensional geodesic submanifolds

N (1) and N (2), defined in section 8.3.2, which are equipped with a Riemannian metric

derived from the kinetic energy terms of the Abelian Higgs model’s Lagrangian. For

these 1-dimensional submanifolds, the metric function is a scalar function g(d), where d

is the coordinate parametrising the distance of the vortices from the origin, appearing

in the metric ds2 = g(d) dd2. This metric governs the geodesic motion of the vortices

along the submanifolds, describing force-free dynamics in the absence of shape mode

excitations [11]. The metric function on the 1-dimensional subspaces N (1) and N (2) can

be computed in two ways. In this thesis, we focus mainly on the numerical computation

of slow-moving vortices, but it is shown in [11] how to find an analytical approximation

to the metric near zero. The analytical method takes advantage of the fact that the

solutions forming the subspaces arise by an action of the appropriate zero modes, namely

the splitting mode. A complete calculation for the metric function is shown in [11]. For

d→ 0, we have the metric function for 3 collinear vortices

gcollinear(d) = 0.984019 d2 + o(d2). (9.4.1)

Similarly, we find for 3 vortices in a triangle orientation, the metric function at d→ 0 is

gtriangle(d) = 0.584678 d4 + o(d4). (9.4.2)
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Figure 9.4.1: Metric on the one-dimensional collinear subspace N (1) (left) and
the equilateral triangle subspace N (2) (right). The blue curve represents the
numerically calculated metric, while the analytical approximation near the ori-

gin is plotted by the red curve.

These metric functions describe the geometry of N (1) and N (2) near the coincident

solution (d = 0), with the quadratic and quartic dependence on d reflecting the distinct

scattering angles (90◦ for collinear, 60◦ for triangular) as derived in [11]. The metric

function can be deduced from the slow motion of vortices along the path defining the

one-dimensional subspaces. In the initial state, we consider well-separated vortices with

velocity vin. The energy is conserved, allowing us to deduce the metric function from

the time evolution of the distance of the vortices from the origin d(t)

g(d) = g∞v2in
1

ḋ2
, (9.4.3)

where we ignore the potential energy which, for the slow motion of the critically coupled

(λ = 1) solutions, is always the same. In figure 9.4.1 we plot the resulting metrics. It is

numerically demanding to compute the metric when the vortices are close to each other,

as the vortex positions are lost due to the accuracy of the discrete lattice. As such,

we plot the numerically computed metric for d > 0.3 (collinear) and d > 0.5 (triangle)

where the position is numerically robust. Otherwise, we are left with the analytical

approximation.

9.4.1 Scattering in the subspace N (1) of the collinear solu-

tions

We have 3 possible scattering behaviours. The first behaviour arising from an excitation

of the lowest mode eq. (8.3.4) introduces an attractive force between the N = 1 vortices.

This triggers the resonant energy transfer mechanism, which results in an appearance
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Figure 9.4.2: Full field theory figures for the scattering of vortices with the lowest
mode excited eq. (8.3.4) in the collinear configurations, detailing distance |d| of
the outer vortices to the origin as a function of time, for a range of intensities,

where I(0) = 1
2(ϵω)

2.

of multi-bounces with a chaotic, and probably fractal, structure of multi-bounce win-

dows. During a collision such that the vortices are coincident at the origin (d = 0), the

energy stored in the kinetic motion can be transferred to the internal mode excitation.

Moreover, it is the balance between the kinetic energy (kinetic motion of the N = 1

vortices) and the internal attractive energy (energy stored in the mode) that decides

if the vortices can separate. If the intensity of the mode is too large, then the N = 1

vortices cannot overcome the attractive force and collide once again. At some point,

the energy stored in the internal mode is transferred back to the kinetic energy, and the

vortices eventually separate. In fact, whenever critically coupled vortices have a shape

mode with the frequency decreasing with the intervortex distance, we find analogous

behaviour, whereby the resonant energy transfer mechanism applies and a chaotic struc-

ture of multi-bounce windows arises. This mechanism explains the fractal structure in

the kink-antikink collisions in the ϕ4 model in (1+1) dimensions [26, 56, 72]. Moreover,

this behaviour has also been identified in the dynamics of an excited critically coupled

2-vortex system, see section 9.2, where the vortices are also subject to chaotic multi-

bounces. Interestingly, depending on the number of bounces, we have 90◦ (odd) or 180◦

(even) scattering.

In figure 9.4.2, we plot the distance |d| between the outer vortices from the origin. Notice

the red line with initial intensity of the excitation, I(0) = 0.011 , where we see that the

motion of the vortices closely resembles geodesic motion, with only one bounce and the

usual 90◦ scattering.
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Figure 9.4.3: Full field theory figures for the scattering of vortices with the
lowest mode excited eq. (8.3.4) in the collinear configurations, detailing the
spectral flow as a function of the distance of the outer vortices from the origin,

for a range of intensities, where I(0) = 1
2(ϵω)

2.

For larger initial intensities, the geodesic approximation fails. We observe the blue

and orange lines in figure 9.4.2 with I(0) = 0.41 and I(0) = 0.47, respectively, 2-bounce

solutions with 180◦ scattering, where the outer vortices are scattered back to their initial

positions.

We study figure 9.4.3, where we also show how the numerically calculated frequency

of the mode varies during the evolution of the vortices. Our results here agree with

the spectral analysis (see figure 8.3.4). We notice higher values for the plateau of ω2

at d = 0 observed for higher initial intensities. This is a numerical artefact related to

a very rapid motion of the vortices while passing the axially symmetric configuration,

where the vortices move faster than the period of the oscillation, making it increasingly

difficult to measure the frequency.

The second scattering behaviour arises from an excitation of the second mode eq. (8.3.5).

An excitation of this form results in a repulsive-attractive force. When the vortices are

initially well separated, we observe that the force is repulsive. If the kinetic energy is

large enough (or the intensity of the mode sufficiently small) such that the vortices pass

through the coincident configuration, the force changes sign and becomes attractive.

This is because of the level crossing.

After passing through the coincident configuration, the frequency continues to increase.
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Figure 9.4.4: Full field theory figures for the scattering of vortices with the
second mode eq. (8.3.5) excited in the collinear configurations, whereby we
display the distance |d| of the outer vortices to the origin as a function of time.

Figure 9.4.5: Full field theory figures for the scattering of vortices with the
second mode eq. (8.3.5) excited in the collinear configurations, whereby we
display the spectral flow as a function of the distance of the outer vortices from

the origin.
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Figure 9.4.6: Snapshots of a dynamical simulation displaying a contour plot
for the energy density for a critically coupled (λ = 1) three-vortex scattering,
with excitation of the second mode eq. (8.3.5), where the initial intensity I(0) =
0.0019, where I(0) = 1

2(ϵω)
2, and we have chosen the initial velocity of the outer
two vortices vin = 0.01.

Therefore, the attractive force can stop the vortices, leading them to backscatter, such

that they are forced to pass through the coincident configuration again. As such, de-

pending on the intensity of the excitation, we have the following possible scattering

scenarios.

For large initial intensities, the vortices may not meet at all. This means no bounces

and 180◦ scattering. For a smaller, fine-tuned intensity they can reach the coincident

configuration. Hence, we have 1-bounce and still 180◦ scattering, see the red line in

figure 9.4.4. For even smaller initial intensities (see the purple line), the vortices pass

through the coincident configuration, but are forced to go back while they are on the x2-

axis. The vortices then pass through the coincident configuration once more, escaping

to infinity along the x1-axis. We therefore have a 2-bounce solution and 180◦ scattering.

For even smaller intensities (see the green and blue lines in figure 9.4.4), the outer

vortices have enough kinetic energy to overcome the repulsive force and pass through

the coincident configuration. In this case, the vortices form a quasi-stationary state after

scattering. By observing figure 9.4.5, we see that indeed, the frequency has entered the

continuum, and hence we observe the formation of a spectral wall.

We show in figure 9.4.6 snapshots of the dynamical simulation corresponding to the blue

line in figure 9.4.4. We indeed see that the outer vortices begin out of phase. After

passing through the coincident configuration, we see that the vortices stop wobbling



130

Figure 9.4.7: Full field theory figures for the scattering of vortices with the last
mode eq. (8.3.6) excited in the collinear configurations, displaying the distance
|d| of the outer vortices to the origin as a function of time, for a range of

intensities, where I(0) = 1
2(ϵω)

2.

in space, as expected since the frequency has entered the continuous spectrum. The

vortices remain at a fixed position in the x2-plane for an extremely long time, namely

dsw ≈ 4, which exactly agrees with the point on the moduli space where the mode hits

the continuum, d∗2 ∈ (3.5, 4), displaying this long-lived quasi-stationary state, known as

the spectral wall.

Finally, we explore the excitation of the third mode, eq. (8.3.6). When we simulate the

vortices in this way, we expect to see a spectral wall before the vortices collide.

We observe in figure 9.4.7 that the intervortex force induced by the excitation is repulsive,

hence we only observe 0 or 1 bounce solutions. If the intensity of the excitation is large

(see the purple line with I(0) = 0.0016), then the vortices repel before meeting the

coincident configuration. Indeed, in figure 9.4.8 we see that the frequency increases as

the vortices draw closer together but then decreases as they separate to infinity.

If we choose an initial intensity of I(0) = 0.0011 (see the orange line in figure 9.4.7),

we observe a quasi-stationary state solution, whereby the vortices stop moving before

the vortices collide. This is confirmed to be a spectral wall by studying figure 9.4.8, by

which we notice that the frequency has entered the continuous spectrum. We note that

the location of this spectral wall is dsw ≈ 2.2, which agrees well with the value found in

the spectral analysis, where d∗1 = (2, 2.5) (see figure 8.3.4).

It is worth noting that if the excitation is too small (see the red, green, and blue lines in

figure 9.4.7), then the vortices will pass through the coincident configuration and scatter
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Figure 9.4.8: Full field theory Figures for the scattering of vortices with the last
mode eq. (8.3.6) excited in the collinear configurations, displaying the spectral
flow as a function of the distance, for a range of intensities, where I(0) = 1

2(ϵω)
2.

Figure 9.4.9: Snapshots of a dynamical simulation displaying a contour plot
for the energy density for a critically coupled (λ = 1) three-vortex scattering,
with excitation of the second mode eq. (8.3.6), where the initial intensity I(0) =
0.0011, with I(0) = 1

2(ϵω)
2, and we have chosen the initial velocity of the outer
two vortices vin = 0.01.

once, and hence we have the standard 90◦ degree scattering. Moreover, from figure 9.4.8

we see that the frequency still passes into the continuous spectrum, but then emerges

at the reflection point of dsw on the x2-plane.

We show in figure 9.4.9 the scattering simulation denoted by the yellow line in fig-

ure 9.4.4.
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Figure 9.4.9 shows the formation of the quasi-stationary state before the vortices collide.

We see that the outer vortices are excited in phase, with the vortex at the origin excited

with twice the excitation but out of phase. As the vortices form the quasi-stationary

state, we observe the excitation entering the continuum, as the vortices stop wobbling

in space. The spectral wall eventually decays and the vortices escape to infinity back

along the x1-axis, whereby they wobble with the same initial excitation.

9.4.2 Scattering of the subspace N (2) of equilateral trian-

gular configurations

Now we consider three critically coupled vortices located at the vertices of an equilateral

triangle, at a distance d from the origin.

Excitation of the lowest mode eq. (8.3.4) (ξ1) in this scenario has the same effect as in

the case of collinear configuration. As they are qualitatively very similar, we do not plot

them.

Excitation of the two upper modes eq. (8.3.5) and eq. (8.3.6) introduces a very weak

repulsive force. If the initial intensity is large, one may expect that the N = 1 vortices

will be backscattered before passing the axially symmetric configuration. Hence, a 180◦

scattering can occur. In figure 9.4.10 (left) we present the time evolution of the vortex

positions with an excitation of the ξ2 mode. Here, the initial intensity is I(0) = 0.0008.

The geodesic motion is practically not affected by the excitation of the mode. In fig-

ure 9.4.10 (right) we track the numerically calculated frequency and find that it exactly

follows the pattern found in the linear perturbation theory.

9.5 Conclusions

In this chapter, we demonstrated that exciting the vortex shape mode in Abelian Higgs

model at critical coupling induces fluctuations in gauge-invariant quantities, driving

scattering behaviours akin to both type I and type II vortices. In-phase vortices predom-

inantly exhibit attraction, as evidenced numerically and analytically, revealing a fractal

phase-space structure tied to initial phase and velocity. This manifests in chaotic, multi-

bounce scattering sensitive to initial conditions, rendering geodesic flow insufficient to

explain excitation-induced attraction. The models in [12] proposed a potential-modified
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Figure 9.4.10: Full field theory figures for the scattering of vortices with the
upper mode eq. (8.3.6) excited in the equilateral triangular configurations: Dis-
tance from the origin of the vortices as a function of time (left), Geodesic paths
of the vortices (right), where the dashed lines are the paths after scattering, and

spectral flow as a function of the distance (bottom).

geodesic flow on M, corroborated by our findings and consistent with [47] for critically

coupled two-vortex systems.

We found spectral walls, barriers that arise when a bound mode transitions to the

continuum in the head-on 2-vortex dynamics, highlighting the pivotal role of internal

modes, a feature well known in (1 + 1) dimensions now extended to physically relevant

models. In 3-vortex systems, the lowest mode induces an attractive intervortex force,

producing multi-bounce solutions that shift 90◦ (collinear) or 60◦ (triangle) scattering to

180◦. Higher modes in collinear cases produce repulsive-then attractive forces, forming

spectral walls at separations dsw.
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These results have significant implications. Excited Abelian Higgs vortices in three di-

mensions, forming cosmic strings, may diverge from unexcited evolution due to spectral

walls, impacting collision rates and gravitational wave signals [19, 20, 23, 39, 50, 51, 76].

In superconductors and Dirac materials such as graphene, mode transitions to the contin-

uum could influence dynamics. We anticipate similar effects in solitons with vibrational

modes, such as vortices with impurities [6, 18, 41, 42, 46, 74] or monopoles with quasi-

normal modes [21, 22, 33, 54], where Feshbach resonances may act analogously [34]. Even

away from critical coupling (e.g., type I and type II vortices), stable modes with slow

energy radiation [7] could reshape interactions. Bridging one and higher-dimensional

soliton dynamics, our work underscores (1 + 1)-dimensional models as vital for under-

standing complex systems, with far-reaching theoretical and applied consequences.



Chapter 10

Vortex Dynamics away from

Critical Coupling

10.1 Introduction

In this chapter, we seek to extend the work we have carried out on excited critically

coupled vortices by discussing vortices away from critical coupling such that λ ̸= 1.

This chapter contains work from [48] We have shown in chapter 9 that the excitation of

internal bound modes introduces attractive or repulsive forces dependent on the relative

phase between the superposition of vortices, which interestingly changes the dynamics

of the vortices. This is because the squared frequency of the mode usually changes with

the intervortex separation. Away from critical coupling, we also have the static force as

described in section 6.6, hence the interaction is more complex.

We will extend the analysis carried out on critically coupled vortices to discuss the

scattering of excited vortices away from critical coupling. We discuss excited scattering

simulations. Note that we cannot calculate the 2-dimensional spectrum as before in

figures 8.3.3 and 8.3.4 due to the presence of the static forces arising from being away

from critical coupling, and hence we rely on the numerically calculated squared frequency

to discuss the mode induced interaction. We discuss the role of the spectral flow in

vortex dynamics when coupled to the static interaction, and we present numerical results

describing how the scattering behaviour is altered.

135
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10.2 Type I Vortex Dynamics

Type I vortices are naturally attractive, hence for this section, we will consider mode ex-

citations leading to a repulsive force. It has recently been shown in [8] and in section 9.3

that spectral walls exist in the critically coupled 2−vortex scattering with excited nor-

mal modes. In this case, the vortices were also excited to be repulsive. The squared

angular frequency increases after the vortices scatter, entering the continuum at some

fixed distance. We expect the same phenomena to occur here, except that because of

the static force, it is unlikely that the vortices will become trapped in the spectral wall.

Instead, we might observe the existence of a spectral wall by a change in velocity of vor-

tices as the squared frequency enters the continuum. We have many regions of interest

to consider. For the case of type I vortices, the excited scattering is not symmetric from

x to y, noting that our initial configuration places the vortices on the x axis.

We can explore some snapshots of a dynamical simulation displaying a heat plot of the

energy density. The simulation shown in figure 10.2.1 displays the scattering of two

N = 1 vortices with λ = 0.9. We have excited the k = 0 shape mode on each vortex,

with a relative phase of π to induce a repulsive force, i.e. an exitation of the from

eq. (8.3.3). We have chosen an initial intensity of I(0) = 0.3, where I(0) = ϵ2ω2

2 , with ω

being the squared angular frequency of the vortex mode, and an initial velocity vin = 0.1.

Figure 10.2.1 shows how the vortices scatter multiple times, which is expected in the

type I regime. It can also be seen that the vortices initially start out of phase, as seen

by the difference in the peaks of the energy density. After the vortices scatter, the peaks

are equivalent, highlighting the asymmetry in the scattering process.

We can gain more insight into the interaction between the vortices by tracking the

squared angular frequency of the numerical simulation and plot it as a function of the

separation; see figure 10.2.2. We calculate the angular frequency

ω(t) =
π

∆t
, (10.2.1)

where ∆t is the time difference between two consecutive peaks or troughs in the static

energy as a function of time t. We also track the positions of the vortices, allowing us

to write ω2 as a function of d, where d is half the separation.

It can be seen in figure 10.2.2 that as the vortices move closer to the origin, the squared

frequency increases. For positive d, the squared frequency interpolates between the
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Figure 10.2.1: Snapshots of energy density for a two-vortex scattering (λ =
0.9, vin = 0.1, I(0) = 0.3), with out-of-phase k = 0 shape modes, as seen in

figure 10.2.3.

asymptotic values ω2
1,0 = 0.7136541, which is the N = 1, k = 0 shape mode, and the

N = 2, k = 1 mode at the coincident configuration, ω2
2,1 = 0.8883169. We see that after

the vortices pass through the coincident configuration, the squared frequency increases

further, hitting the continuous spectrum at d ≈ −1i. This would suggest the presence

of a spectral wall. To confirm this, we can observe the trajectories of the vortices in a

scattering solution, see figures 10.2.3 and 10.2.4.

We observe two interesting phenomena when observing the trajectories in figure 10.2.3.

Note that blue is the position in x, and cyan is the position in y. Firstly, from the blue

line we can see that the vortices initially travel at a near-constant velocity. After the
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Figure 10.2.2: Flow of the squared angular frequency for a 2-vortex system
(blue), with λ = 0.9, as a function of the distance from the origin of the vor-
tices. The green area indicates the mass threshold, and the blue area the gauge

threshold..

Figure 10.2.3: Trajectories of a two-vortex system (λ = 0.9, vin = 0.1, I(0) =
0.3) as a function of time, where I(0) = 1

2(ϵω)
2. The blue line shows the x-

direction distance from the origin, cyan the y-direction, and red the excitation
intensity per vortex. Dashed blue and cyan lines show unexcited scattering with

the same parameters.

vortices scatter, we can see from the cyan line that the vortices hit the spectral wall and

bounce back. This can be seen in the difference in the bounce size between the blue

and cyan bounces. The distance in which the vortices bounce back in y is the same as

the distance where the squared frequency hits the continuous spectrum, which confirms

the presence of a spectral wall. Additionally, we can see that after the vortices have

bounced a number of times, the vortices settle in the x-plane at a fixed distance. This is

not a result of the spectral wall, instead it is due to the net force being zero. We notice

that the intensity of the excitation, displayed as the red line in figure 10.2.3, decreases
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Figure 10.2.4: Trajectories of a 2-vortex system as a function of time, where
λ = 0.9. We choose an initial velocity of vin = 0.05, and initial intensity of
the excitation I(0) = 0.17, where I(0) = 1

2(ϵω)
2. The cyan line indicates the

distance of the vortices from the origin in the y-direction, and the blue line
indicates the x-direction. The red line shows the intensity of the excitation per
vortex. The dashed blue and cyan lines show unexcited scattering in the x1 and

x2-directions, respectively.

overall. This is due to a decay in the excitation as it radiates energy. Additionally, we

observe temporary dips in the intensity as the vortices change direction, as seen at the

peaks of the bounces in the x direction. This is due to the energy transfer mechanism,

where the energy from the excitation is transferred to the kinetic energy. In addition,

we see drops in intensity at the peaks of the bounces in the y-direction. This is because

energy is transferred from the excitation to the spectral wall, and the resulting effect is

that the vortices bounce off the spectral wall.

Figure 10.2.4 shows the scattering of a 2-vortex system at λ = 0.9, whereby the intensity

of the excitation is large enough such that the repulsion from the mode dominates the

scattering process. As such, the vortices never meet and are repelled towards infinity.

Next, we calculate the interaction energy, figure 10.2.5, whereby we have assumed that

the intensity of the excitation is fixed for all d. The static force is calculated numerically;

see section 6.6.

The mode interaction is calculated from the squared frequency displayed in figure 10.2.2,

such that

EMode(d) =
1

2
ϵ2
(
ω2(d)−max

d
ω2(d)

)
, (10.2.2)

where ϵ =

√
I(0)
ω2
1,0

, with I(0) being the intensity of the excitation, and the energy is

normalised such that it is asymptotically zero. We therefore have the total interaction

energy per vortex, EInt = EStatic + EMode.

We show the static force, seen on the left of figure 10.2.5, and the force induced by
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Figure 10.2.5: λ = 0.9 - Static force (left) in blue with d4 approximation in
dashed red for small d, and asymptotic approximation in dashed green. In-
teraction energy contribution from the mode (right) for a range of intensities.

Total interaction energy (bottom) for a range of intensities.

excitation of the shape modes, seen on the right of figure 10.2.5. We are interested in

the total interaction energy, being a sum of the static force and the mode interaction,

as seen at the bottom of figure 10.2.5.

We interpret the interaction energy, seen from figure 10.2.5 as follows. For |d| ≪ 1, the

squared frequency and static force can both be approximated by d4, therefore, if the

coefficient of the interaction of the mode is smaller than that of the static force, then

the two vortices will stay coincident at the origin; otherwise, the mode induced force

will force them to separate. For d > 1, there exists a local extremum in the interaction

energy at precisely the distance observed in figure 10.2.3. This explains the existence

of this quasi-stationary state as the net force F = − ∂
∂dEInt = 0. For d ∈ iR−, we see

that the interaction energy is highly positive due to the existence of the spectral wall.

This makes it extremely difficult for vortices to move past this region. Additionally, for

large d, we see that if the intensity of the perturbation is too large, then the vortices

will never meet and will repel.
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Figure 10.2.6: Trajectories of a 2-vortex system at λ = 0.9 starting near the
local maximum, with initial velocity vin = 0 and intensity I(0) = 0.05, where

I(0) = 1
2(ϵω)

2.

We can further explore the local extremum, by choosing an initial configuration where

the vortices are situated at the local extremum; see figure 10.2.6.

It can be seen in figure 10.2.6 that initially the vortices form a quasi-stationary state,

where they stay at a fixed position for a period of time. This is because the net force

is zero. If the intensity of the excitation is large, the vortices will repel, as seen in

figure 10.2.4, while if the intensity is small, then the static force will dominate and the

vortices will be attracted toward the origin, as seen by the blue line in figure 10.2.6. We

observe that this indeed happens in figure 10.2.6 as the intensity indicated by the red

line decays, the quasi-stationary state decays and the vortices accelerate towards the

origin.

It is important to note that the k = 1 mode exists in the discrete spectrum only for

λ > 0.8, see chapter 8. As such, we must also explore what happens when two vortices

scatter along the x−axis for λ < 0.8. In this regime, the angular squared frequency

of the vortices will hit the continuous spectrum before the vortices collide. This could

suggest the presence of a spectral wall, in which case we should see the vortices slow

down in the region where the squared angular frequency hits the continuum.

We can plot the squared angular frequency as a function of the distance from the origin

for a 2-vortex system with λ = 0.5, see figure 10.2.7.

It can be seen in figure 10.2.7 that as the vortices approach the origin, the squared

frequency increases from the asymptotic value ω2
1,0 = 0.4254454, hitting the continuous

spectrum at d ≈ 2.5. To confirm the existence of a spectral wall, located at d ∈ [2.2, 3],

we will consider the trajectories of the vortices, see figure 10.2.8.

We can see in figure 10.2.8 that the bounces in y, indicated by the cyan lines, are smooth,

which is expected as the squared frequency of the shape mode is in the continuous
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Figure 10.2.7: Flow of the squared angular frequency ω2 for a 2-vortex system
(blue), with λ = 0.5, as a function of the distance from the origin of the vortices.

The green area indicates the mass threshold.

Figure 10.2.8: Trajectories of a 2-vortex system as a function of time, where
λ = 0.5. We choose an initial velocity of vin = 0.05, and initial intensity of
the excitation I(0) = 0.17, where I(0) = 1

2(ϵω)
2. The cyan line indicates the

distance of the vortices from the origin in the y-direction, and the blue line
indicates the x-direction. The intensity of the excitation I(t) is displayed as the

red line.
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Figure 10.2.9: λ = 0.5 - Static force (left) in blue. Interaction energy contribu-
tion from the mode (right) for a range of intensities. Total interaction energy

(bottom) for a range of intensities.

spectrum. More interestingly, the bounces in x, indicated by the blue lines, show some

irregularities near the peak of the bounces. Little effect is noticed when the vortices first

approach each other, due to the high acceleration as a result of the static force, so it is

difficult to confirm the existence of a spectral wall.

Again, to gain insight into the full behaviour of the 2-vortex system with λ = 0.5, we

can calculate the interaction energy; see figure 10.2.9.

We see from figure 10.2.9 that even though the frequency hits the continuous spectrum

before the vortices coincide, there is also a local extremum at d ∈ (3, 4.5), meaning that

the vortices could form a quasi-stationary state at this fixed distance, as the net force is

zero. The irregularities we observe in the blue line in figure 10.2.8 occur approximately

at the the distance of the local extremum, suggesting that the vortices cannot move

past this potential barrier, while the intensity of the excitation is large. For |d| < 3,

that static force is large and hence the vortices want to attract, as seen by the negative

interaction energy. This explains the bounces seen in figure 10.2.8, where the vortices

bounce multiple times.
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Figure 10.3.1: Snapshots of a dynamical simulation displaying a heat map for
the static energy density for a 2-vortex scattering at λ = 1.1, with internal
shape modes excited in phase, with intensity I(0) = 0.3, I(0) = 1

2(ϵω)
2, and

initial velocity vin = 0.1.

10.3 Type II Vortex Dynamics

The static force for type II vortices is repulsive, hence it is natural to consider mode

excitations in the attractive channel. As such, we consider the in-phase superposition

of vortices with excited internal shape modes. Since we only consider the attractive

channel, the spectral flow of the mode structure is symmetric from x to y.

We can explore some snapshots of a dynamical simulation displaying a heat plot of the

energy density. The simulation shown in figure 10.3.1 displays the scattering of two

N = 1 vortices with λ = 1.1. We have excited the k = 0 shape mode on each vortex to

induce an attractive force, where ω2
1,0 = 0.8352168. We have chosen an initial intensity

of I(0) = 0.3 and an initial velocity of vin = 0.1.

We can observe in figure 10.3.1 that the vortices are in phase with excited k = 0 shape

modes. We can see that the vortices move closer together, whilst oscillating in shape.

We also observe the presence of a quasi-bound state where the vortices scatter multiple

times. This is quite interesting because the static force in the II regime is repulsive,

and therefore the vortices naturally want to move apart. We can gain more insight into

the scattering process by discussing the trajectories of the vortices; see figures 10.3.2

and 10.3.3.
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Figure 10.3.2: Trajectories of a 2-vortex system as a function of time, where
λ = 1.1. We choose an initial velocity of vin = 0.1, and initial intensity of
the excitation I(0) = 0.75, where I(0) = 1

2(ϵω)
2. The cyan line indicates the

distance of the vortices from the origin in the y-direction, and the blue line
indicates the x-direction.

Figure 10.3.3: Trajectories of a 2-vortex system as a function of time, where
λ = 1.1. We choose an initial velocity of vin = 0.01, and initial intensity of
the excitation I(0) = 0.05, where I(0) = 1

2(ϵω)
2. The blue line indicates the

distance of the vortices from the origin in the x-direction and dashed blue the
unexcited scattering in the x-direction

We observe in figure 10.3.2 the distance of the vortices from the origin as a function

of time. If the vortices lie on the x−axis, we plot their distance in blue, and if they

lie on the y−axis, we plot the distance in cyan. We can see that initially, the vortices

form a quasi-bound state, where they scatter multiple times. After some time, we see

from the cyan line at t ≈ 500 that the vortices separate significantly more, then move

back towards each other. Interestingly, they do not move all the way to the origin, but

instead slow, until they change direction and escape to infinity.

Figure 10.3.3 shows a simulation with an initial intensity of the excitation I(0) = 0.01,
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Figure 10.3.4: Flow of the angular frequency for a 2-vortex system, with λ = 1.1,
as a function of the distance from the origin of the vortices. The light blue area

indicates the gauge threshold.

and initial velocity vin = 0.05. We see from the blue line indicating the position in the

x-plane that the vortices do not meet the coincident configuration. This is because the

excitation and kinetic motion of the vortices are too small to overcome the static force.

We observe the red line in figure 10.3.3 that describes the intensity of the excitation as

the vortices evolve. We note that the intensity drops as the vortices change direction

and increases once they are moving back towards their initial position. This is because

energy is transferred from the mode to the kinetic energy.

To begin to understand this behaviour, we can measure the squared angular frequency

from the dynamical simulation (see figure 10.3.4). We plot the d4 approximation for d→

0. We see that the squared frequency interpolates between the value for the coincident

N = 2 configuration with ω2
2,0 = 0.5738714, and the asymptotic value describing well

separated N = 1 vortices with ω2
1,0 = 0.8352168. This suggests an attractive intervortex

force induced by the in-phase excitation.

We can then calculate the energy contribution from the excitation (eq. (10.2.2)). This

can be summed with the energy contribution of the static force, to give a space-dependent

measure of the interaction energy for a type II 2-vortex system with excited shape modes,

see figure 10.3.5.

We interpret the interaction energy (see figure 10.3.5) as follows. For small d, the

interaction energy behaves similarly to the static force as d4, hence the 2 vortices will

remain at the origin if the mode is dominating, i.e. the intensity of the excitation is
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Figure 10.3.5: λ = 1.1 - Static force (left) in blue with d4 approximation in
dashed red for small d, and asymptotic approximation in dashed green. In-
teraction energy contribution from the mode (right) for a range of intensities.

Total interaction energy (bottom) for a range of intensities.

large enough such that it is stronger than the static repulsion.

When the vortex separation is large, both the static force and the mode interaction

asymptotically go to zero, hence there is no effect on vortex dynamics in this region.

Alternatively, if we consider the scattering of vortices, when the intensity of the excita-

tion is small, the vortices will back scatter due to the static force; however, if it is large

enough, the vortices will be attracted towards each other.

In-between these two regions, vortex dynamics become highly nonlinear. There exists

a local minimum in the interaction energy at |d| ∈ (2, 4) that depends on the intensity

of the mode. This suggests that vortices can become stuck at a fixed separation where

the net force is zero, resulting in a quasi-stationary state, which explains the latter

part of the trajectories in figure 10.3.2. We can confirm the existence of this bound

state by considering another dynamical solution, see figure 10.3.6. The simulation in

question begins with a saddle point solution, a radially symmetric N = 2 vortex centred

at the origin. We then perturb the solution by adding a linear combination of the

k = 2 splitting mode (ω2
2,2 = −0.0107688) in the x direction and the k = 0 shape mode
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Figure 10.3.6: The solid black parametric curve indicates the path of the inter-
action energy of the simulation shown on the bottom. The solid blue and cyan
lines on the bottom show the trajectories of the vortices in the x and y planes

respectively.

(ω2
2,0 = 0.5738714).

We see from the blue line denoting the distance from the origin of the vortices in the

x-plane (see figure 10.3.6) that the vortex motion is slowed in the region of the local

minimum of the interaction energy. In fact, we see that the vortices begin to oscillate in

space within the region as the forces compete, until escaping as the intensity of the mode

decays. The black parametric curve on the top of figure 10.3.6 can be followed to show

how the intensity of the mode changes as the vortices evolve in time. It also shows that

the vortices do indeed become trapped in this potential well. The colour-map shows the

interaction energy assuming a fixed intensity, however, as seen in the bottom plot, the

solid red line displays the intensity I(t) as the vortices scatter, and it is not constant.

Similarly to figure 10.2.6, we can situate the vortices near the local minimum found in

figure 10.3.5, see figure 10.3.7. Here, the vortices are initially positioned at x = ±2,

with initial intensity I(0) = 0.04. The blue line indicates the position of the vortices
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Figure 10.3.7: Trajectories of a two-vortex system at λ = 1.1 starting near the
local minimum, with initial velocity vin = 0 and intensity I(0) = 0.04, where

I(0) = 1
2(ϵω)

2.

on the x−axis as a function of time. We also show the intensity I(t) in red. We can

see that the vortices oscillate in space, within the potential well shown in figure 10.3.5.

As the intensity of the excitation decays, the position of the potential well shifts to the

right; hence, we see that the turning points of the position move out also. This clearly

confirms the presence of a quasi-stationary state, whereby the vortices become trapped

in the potential well and stay in a fixed region away from the origin, as long as the

excitation is large enough.

We have calculated this interaction energy for a range of λ. It should be noted that the

N = 1 shape mode exists only in the discrete spectrum up to λ ≈ 1.5 (see chapter 8).

The plots are not shown here; however, they show the same behaviour as figure 10.3.5.

It is still of interest to consider the dynamics of vortices above this threshold, for λ > 1.5.

For example, consider an N = 2 vortex at λ = 2, centred at the origin with an excited

k = 0 shape mode, ω2
2,0 = 0.8161198. This mode is still in the discrete spectrum;

however, the N = 1 shape modes are not. As such we can consider the splitting of

an N = 2 vortex, and monitor the dynamics of the constituent N = 1 vortices as

they separate, see figure 10.3.8. One might assume that as the vortices separate, their

frequencies will increase, and at some fixed distance the squared angular frequency will

reach the continuous spectrum. This is a criterion for the existence of spectral walls, so

it could be possible that the motion of the vortices is affected.

We can see from figure 10.3.8 that there exist some irregularities in the position at

|d| ≈ 2. This could suggest the presence of a spectral wall. Note that, due to the static
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Figure 10.3.8: Trajectories of a 2-vortex system as a function of time, where
λ = 2. We choose an initial intensity of the excitation I(0) = 0.75 per vortex,
where I(0) = 1

2(ϵω)
2. The cyan line indicates the distance of the vortices from

the origin in the y-direction, and the dashed blue the unexcited scattering in
the x-direction

Figure 10.3.9: Flow of the squared angular frequency for a two vortex system,
with λ = 2, as a function of the distance from the origin of the vortices. The

light blue area indicates the gauge threshold.

repulsion, the vortices are not expected to form a quasi-stationary state; however, we do

expect to see a change in velocity due to the presence of a spectral wall, which is what

might be observed here. We can confirm that this irregularity is indeed a consequence

of the spectral wall by tracking the squared angular frequency as the vortices separate;

see figure 10.3.9.

We observe in figure 10.3.9 that the squared frequency rapidly increases from the coinci-

dent configuration with ω2
2,0 = 0.8161198, as the vortices separate. We see that at d ≈ 2,

the squared frequency enters the continuous spectrum. This confirms the hypothesis of

the existence of a spectral wall.
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Figure 10.3.10: λ = 2 - Static force (left) in blue with d4 approximation in
dashed red for small d, and asymptotic approximation in dashed green. In-
teraction energy contribution from the mode (right) for a range of intensities,
where I(0) = 1

2(ϵω)
2. Total interaction energy (bottom) for a range of intensi-

ties.

Moreover, to fully understand the dynamics, we can again calculate the interaction

energy, see figure 10.3.10. Firstly, for |d| ≪ 1 there is a critical point in the interaction

energy, suggesting that the N = 2 vortex can remain in the coincident configuration

when excited. However, the excitation will quickly decay, and the vortices will separate.

For well separated vortices, the squared frequency is in the continuous spectrum, hence

all the energy from the excitation goes into the spectral wall, hence if the vortex is

moving slow, it will bounce back towards the origin, or at least be slowed.

In [47] it was found that critically coupled vortices with excited shape modes in the

attractive channel exhibit a chaotic bound structure, which we have shown in chapter 9.

The vortices scatter more than once because of the energy transfer mechanism between

the energy in the mode and the kinetic energy. We can perform the same analysis here.

Although the static force of the type II vortices makes these quasi-bound states less

likely to exist, they can still occur, as observed in figure 10.3.2.

We can vary the initial intensity of the perturbation and initial velocity of the vortices
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to explore the chaotic nature of these multi-bounce solutions. We have done some initial

calculations, but we do not present them here. Exploration of this chaotic multi-bounce

structure is an avenue for future work.

10.4 Conclusion

In this chapter, we have extended our analysis of excited critically coupled vortices, see

chapter 9, exploring the dynamics of vortices away from critical coupling. We have inves-

tigated how the excitation of internal bound modes influences vortex interactions when

coupled with static forces, leading to a richer and more intricate scattering behaviour.

The interplay between mode-induced forces, either attractive or repulsive, dependent on

the relative phase of the excitation, and the inherent static interactions has been shown

to significantly alter the dynamics of vortex scattering, as evidenced by our numerical

simulations.

For type I vortex dynamics, where the static force is attractive, we have demonstrated

that exciting repulsive modes can lead to complex scattering phenomena, including the

presence of spectral walls. The interaction energy, comprising contributions from both

the static force and the mode effects (figure 10.2.5), reveals regions where vortices may

remain coincident, may separate, or may oscillate around a fixed position due to the

presence of a local extremum creating a potential barrier. For λ < 0.8, where the

discrete spectrum of certain modes ceases to exist, we observe that spectral walls still

influence the dynamics, although their effects are subtler due to the dominance of the

static attraction (figure 10.2.8).

In contrast, type II vortex dynamics, characterised by a repulsive static force, presents a

slightly different dynamical landscape when attractive mode excitations are introduced.

Our numerical results, namely, figures 10.3.1 and 10.3.2 showing the same simulation,

highlight the formation of quasi-bound states where vortices scatter multiple times be-

fore separating or stabilising at a fixed distance, as seen in figures 10.3.6 and 10.3.7.

The interaction energy analysis (figures 10.3.5 and 10.3.10) underscores the existence

of critical points, which trap vortices in quasi-stationary configurations until the exci-

tation intensity decays or the static repulsion prevails. For λ > 1.5, where the radially

symmetric shape mode exists only in the continuous spectrum for N = 1, the spectral

walls again play a role, slowing the vortex separation as frequencies reach the continuous

spectrum (figures 10.3.8 and 10.3.9).
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Across both regimes, the spectral flow of mode frequencies, coupled with static inter-

actions, governs the scattering outcomes. The numerical results illustrate a delicate

balance between forces, where initial conditions such as excitation intensity and ini-

tial velocity dictate whether vortices scatter symmetrically, form bound states, or repel

to infinity. This complexity resembles findings at critical coupling, yet the departure

from critical coupling introduces additional layers of nonlinearity, enriching the vortex

dynamics.

We hence provided a comprehensive framework for understanding vortex interactions

away from critical coupling, bridging the gap between theoretical predictions and nu-

merical observations.



Chapter 11

Orbiting Vortices

11.1 Introduction

This chapter contains work from [48]. In this chapter, we discuss the full field theory

dynamics for orbital vortex solutions, whereby the vortices undergo rotational motion

around the origin. These orbits arise in various contexts. We will start to expand on

the work in chapter 10, whereby we will take advantage of the attractive static force in

type I superconductivity, and show that this attraction can lead to long-lived rotational

states. We will discuss the role of the tangential velocity in balancing the centrifugal

force with the mutual attraction of the type I vortices. Next, we will consider type

II vortices. Here, the static intervortex force is repulsive, hence we will rely on the

local minimum found in chapter 10, and discuss solutions with rotational motion inside

this potential well. Moreover, we have studied the role of the mode-induced attractive

force for critically coupled vortices in chapter 9. It is a natural progression to consider

vortex orbits in this regime also, where we will again attempt to balance the attractive

force with the repulsive centrifugal force to obtain long-lived vortex orbits. Finally, it is

known that there is a strong attractive force for vortex-antivortex pairs. We will follow

a similar procedure to that for type I vortices and show that we can achieve long-lived

orbits.

11.2 Type I Vortex Orbits

When considering orbital vortices, it is first natural to consider the case of type I vortices,

without excitation, see figure 11.2.1. Here, the only competing forces are the attractive
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Figure 11.2.1: Trajectories of a 2-vortex system orbiting at λ = 0.9, with vin =
0.01, and I(0) = 0, where I(0) = 1

2(ϵω)
2.

static force and the repulsive centrifugal force. If the tangential velocity is small, then

the vortices will be drawn towards the centre; see figure 11.2.1. If the velocity is large,

the kinetic energy of the vortices will dominate the interaction and they will escape to

infinity. For a fine-tuned velocity, dependent on the orbit size, the vortices may form a

long-lived circular orbit.

In figure 11.2.1, we plot the trajectories of the vortices for a 2-vortex system at λ = 0.9.

The initial velocity is vin = 0.01, and the vortices are centred at din = ±4 in the y-

direction. We can see from figure 11.2.1 that the vortices orbit the origin. Note that the

orbit is not circular because of the magnitude of the static force. The kinetic motion,

that is, the kinetic energy in the vortices, is not large enough to overcome the static

attraction, hence the static force dominates the interaction. Note that the vortices do

not meet the coincident configuration. Instead, they pass each other close to the origin

and are accelerated past each other due to the increasing magnitude of the static force.

Interestingly, the trajectories form peaks at precisely the distances they were initially

configured.

Next, we attempt to approximate the perfect conditions for a circular orbit by studying

the competing forces in the interaction. Consider a 2-vortex system with mass m = V λ
1

per vortex, where the vortices have separation s = |r1 − r2|. We define the relative

separation as r = r1 − r2. The reduced mass is thus µ = m
2 =

V λ
1
2 .
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In polar coordinates, we have that r = (s cos θ, s sin θ). The relative kinetic energy is

then

Trel =
m

4
(ṡ2 + s2θ̇2). (11.2.1)

If we include a radial potential, then the reduced Lagrangian is then

Lred =
m

4
(ṡ2 + s2θ̇2)− V (s). (11.2.2)

Since the angular coordinate θ is cyclic, the angular momentum is then defined as

Lz =
m

4
s2θ̇ =

V λ
1

4
sv, (11.2.3)

where v = sθ̇.

Varying eq. (11.2.3) with respect to s gives

m

4
s̈ =

m

4
sθ̇2 − dV

ds
. (11.2.4)

hence we have that

ms̈ =
16L2

z

ms3
− 4

dV

ds
. (11.2.5)

The centrifugal force is thus

Fcentrifugal =
16L2

z

V λ
1 s

3
. (11.2.6)

We then have that the centrifugal part of the interaction energy per vortex is

Ecentrifugal = − L2
z

V λ
1 d

2
, (11.2.7)

where s = 2d, and Lz =
V λ
1
2 dv

We can hence plot the interaction energy in this case, taking into account only that

static force and centrifugal force, see figure 11.2.2.

We can see from figure 11.2.2 that for d > 4, the net force is asymptotically zero, where

the force is the gradient of the interaction energy. Furthermore, we observe a critical

point of the interaction energy for d ∈ [0.5, 1.5]. We can see from the force that we

should be able to obtain vortex orbits for small d where the net force is zero. If the

velocity is small, the static force will dominate and the vortices will accelerate towards

the origin, see figure 11.2.1. We can predict the initial velocity required for the vortices
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Figure 11.2.2: Sum of the static energy and the centrifugal kinetic energy (left)
and the force (gradient of the interaction energy) (right), varying Lz, where

Lz =
V λ
1
2 dv, for d ∈ [0.5, 6], the position of the vortices from the origin.

Figure 11.2.3: Trajectories of a two-vortex system orbiting at λ = 0.9, with
vin = 0.03230815 and d = 4.

to attempt to achieve a more circular orbit; see figure 11.2.3. We can calculate the

expected tangential velocity of v = 0.038246, at a fixed distance of d = 4.

We see in figure 11.2.3 a long-lived circular orbit in which the vortices orbit the origin

multiple times before escaping to infinity. We can plot snapshots of the corresponding

dynamical simulation to gain a clearer picture of how the vortices orbit. We see in

figure 11.2.4 that the vortices orbit the origin many times, before eventually escaping

to infinity. This is because the net force is still slightly positive at this distance, see

figure 11.2.2.

Furthermore, we can observe vortex orbits at the critical point in the interaction energy,
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t = 0 t = 200 t = 400 t = 600

t = 800 t = 1000 t = 1200 t = 1400

Figure 11.2.4: Snapshots of a dynamical simulation displaying a heat map for
the energy density for a 2-vortex scattering with λ = 0.9 and initial velocity

vin ≈ 0.032.

where d ∈ [0.5, 1.5], see figure 11.2.5. We see that the vortices seem to orbit each other

more than 10 times (up to when the numerics fail). The orbit is not perfectly circular.

This could be due to the vortex oscillating in the potential well around the critical point

in the interaction energy. Additionally, it could be a numerical artefact as a result of

the vortices being initially positioned close together, such that the initial configuration

is not a perfect approximation to the field theory. We can plot dynamical snapshots of

the same simulation figure 11.2.5, displaying the static energy density as a heat plot; see

figure 11.2.6.

11.3 Type II Vortex Orbits

We have shown in figure 10.3.5 that there exists a local minimum whereby the vortices

can form a quasi-stationary state at a fixed distance away from the origin. This motivates

us to consider type II vortices that orbit the origin.

The interaction energy will differ slightly, since not only do we still have the repulsive

static force and the attractive mode interaction, but we will also have the centrifugal

force. We can add the centrifugal force to the interaction energy, and approximate the

ideal velocity for a circular orbit, given a fixed intensity. Let us first consider an intensity

of I(0) = 0.05, see figure 11.3.1. We see in figure 11.3.1 that the net force is zero for
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Figure 11.2.5: Trajectories of a two-vortex system orbiting for λ = 0.9 at d =
0.9, with vin = 0.045

t = 0 t = 15 t = 30 t = 45

t = 55 t = 70 t = 85 t = 100

t = 115 t = 135 t = 165 t = 190

Figure 11.2.6: Snapshots of energy density for a two-vortex scattering (λ = 0.9,
vin = 0.045, I(0) = 0) at d = ±0.9, as seen in figure 11.2.5.
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Figure 11.3.1: Interaction energy (left) and force (right) where F = − ∂
∂dEInt for

a 2-vortex system at λ = 1.1, with intensity I(0) = 0.15, where I(0) = 1
2(ϵω)

2,

and for a range of Lz, where Lz =
V λ
1
2 dv. The interaction energy sums the static

energy, the mode induced energy and the centrifugal energy, as a function of
the radius of the orbit d ∈ [0.5, 6].

d > 4.5, which means that if the vortices drift away, we should still be able to maintain a

long-lived orbit at this distance, assuming that the intensity remains constant. Because

the vortices are not initially well separated, the initial condition is not perfect. As such,

the intensity will drop as the solution flows to the correct solution, which is why we

have chosen an intensity of I(0) = 0.15. Furthermore, we see three critical points in

the interaction energy. A shallow local minimum for d ≪ 1, meaning that it might

be possible to have vortex orbits in this regime. Furthermore, there is a second local

minimum for d ∈ [1.5, 2.5]. This minimum is slightly more pronounced, making this

distance a better candidate for long-lived vortex orbits. The local extremum at d ≈ 1

suggests a potential barrier, that may help in stabilising vortex orbits.

Figure 11.3.2 shows the trajectories of two vortices with λ = 1.1, initial velocity vin =

0.019 and intensity I(0) = 0.1. The blue line indicates the path of one vortex and the

red line the other. The dashed black line displays the circle x2+y2 = d20, where d0 = 4.5.

We see that the orbit starts stable but deviates away from the black line. This is due

to the intensity of the excitation decaying, and as such the static force and centrifugal

force dominate the interaction, and the vortices escape to infinity.

If the initial intensity is large, the vortices will move towards the local minimum and

oscillate back. This breaks the symmetry of the orbit; see figure 11.3.3. Instead, we can

simulate the vortices to be initially located on top of the local minimum, at d ≈ 2. We

can expect the vortices to become trapped in the potential well, even with the additional
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Figure 11.3.2: Trajectories of a 2-vortex system orbiting at λ = 1.1, with initial
velocity vin = 0.019 and intensity I(0) = 0.1, where I(0) = 1

2(ϵω)
2.

Figure 11.3.3: Trajectories of a 2-vortex system orbiting at λ = 1.1, with initial
velocity vin = 0.015 and intensity I(0) = 0.015, where I(0) = 1

2(ϵω)
2.

centrifugal force, especially if the orbit is small. We see an example of this in figure 11.3.4

For λ = 1.1, V λ
1 = 3.204508502, so for a long-lived orbit at d = 1, for I(0) = 0.2,

choosing Lz = 0.07, corresponding to the orange line in figure 11.3.1, we would require

an angular velocity of vin = 0.043688. We see an example of this in figure 11.3.5.

figure 11.3.5 shows a semi-stable orbit for type II vortices. The blue line indicates the

path of one vortex and the red line the other. The dashed black line displays the circle

x21 + x22 = d20, where d0 = 1.

We see in figure 11.3.5 that the vortices orbit twice around the origin before escaping.
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Figure 11.3.4: Trajectories of a 2-vortex system at λ = 1.1 with yin = 2, initial
velocity in the x−direction, vin = 0.01 and initial intensity I(0) = 0.08, where

I(0) = 1
2(ϵω)

2.

Figure 11.3.5: Left: trajectories of a two-vortex system (λ = 1.1, vin = 0.04,
I(0) = 0.2) at x2 = ±1. The blue line shows the (x1, x2) position of one vortex,
red the other. Right: intensity of the excitation per vortex as a function of time
(red), and distance |d| of the vortices from the origin as a function of time.

This is due to the intensity of the excitation decaying, as seen in the right of figure 11.3.4

with the magenta line displaying the intensity of the excitation per vortex as a function

of time, and as such the static force and centrifugal force dominate the interaction, and

the vortices escape to infinity.

11.4 Vortex Orbits at Critical Coupling

It was shown in section 9.2 that we can induce an attractive force to vortex scattering

at critical coupling by including internal shape modes. It is natural to assume that we
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Figure 11.4.1: Interaction energy (left) and total force (right) for a two-vortex
system (λ = 1) with initial intensity I(0) = 0.025 and angular momentum

Lz =
V λ
1
2 dvin, as a function of orbit radius d.

Figure 11.4.2: Left: trajectories of a two-vortex system (λ = 1, vin = 0.05,
I(0) = 0.025) at x2 = ±1. The blue line shows the (x1, x2) position of one
vortex, red the other. Right: intensity of the excitation per vortex as a function
of time (red), and distance |d| of the vortices from the origin as a function of

time.

can hence find an orbital vortex pair at critical coupling.

We can gain some intuition for suitable orbits by studying the interaction energy, and

hence the total force of the system. At critical coupling, the static force is zero, so the

only competing forces are the attractive mode induced force, and the repulsive centrifugal

force. We assume a fixed intensity of the excitation, and calculate the contributions

to the interaction energy, see figure 11.4.1, where we have chosen a fixed intensity of

I(0) = 0.025.

We see from figure 11.4.1 that for I(0) = 0.025, that the force crosses the x-axis at |d| ≈ 1,

i.e. there is a local minimum in the interaction energy (see left of figure 11.4.1). Choosing

Lz = 0.078, we find that vin ≈ 0.05. We can test these parameters in figure 11.4.2.
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We see in figure 11.4.2 that the vortices orbit the origin 6 times. The left plot shows the

positions of the vortices in the x1, x2 plane, where blue shows the path of one vortex, and

red the other vortex. The right plot shows the distance of the vortices from the origin as

a function of time in blue, and the intensity of the excitation per vortex as a function of

time in red. We can see from the distance of the vortices from the origin in the right plot

(blue) that as the intensity of the excitation decreases, the size of the orbit increases,

which is expected by observing figure 11.4.1. It is trivial that as the intensity of the

excitation decreases, the attractive force induced by the mode also decreases, hence since

the centrifugal force stays roughly the same (assuming a circular orbit), hence the local

minimum where the interaction energy is zero, i.e. the force crosses the x1-axis, moves

out (|d| increases).

We can show snapshots of the energy density for the simulation shown in figure 11.4.2.

We see in figure 11.4.3 that the vortices orbit the origin, whilst oscillating in shape, as

well as oscillating about the local minimum in the interaction energy. The vortices orbit

for a significantly long time, up to t = 1500, at which point the vortices escape after the

orbit becomes breaks down and the vortices pass close to the origin.

11.5 Vortex Anti-Vortex Orbits

Finally, we will consider orbital solutions of vortex-antivortex pairs. Here, the static

intervortex force is highly attractive, and if the pair collide, they will annihilate.

We can plot the trajectories of the vortices to observe the orbit. We expect two scenarios.

If the initial velocity is small, the vortices will collide at the origin and annihilate. If the

velocity is larger, the vortices will form a long-lived orbit, before either being pulled to

the origin or escaping to infinity.

Consider a scattering solution with vin = 0.08, see figure 11.5.1. We observe that the

vortices initially form a semi-stable orbit; however, the tangential velocity is slightly too

small and the vortices are drawn to the origin and annihilate before completing a full

orbit. An artefact of this is the interesting yin-yang pattern in the trajectories.

If we increase the initial velocity to a fine-tuned value of vin = 0.08327, we observe in

figure 11.5.2 an orbital solution where a long-lived orbit is formed, and the vortices move

around the origin multiple times before escaping to infinity.

We can also plot snapshots of the relevant dynamical simulation shown in figure 11.5.2,

see figure 11.5.3. We display heat plots for the condensate |ϕ2| and the magnetic field B.
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t = 400 t = 500 t = 600 t = 700

t = 800 t = 900 t = 1000 t = 1100

t = 1200 t = 1300 t = 1400 t = 1500

Figure 11.4.3: Snapshots of energy density for a two-vortex scattering (λ = 1,
vin = 0.05, I(0) = 0.05) at d = ±1, as seen in figure 11.4.2.

We can distinguish between the vortex and antivortex by the sign of the magnetic field.

Note that in the magnetic field plots, red indicates positive and blue indicates negative;

hence, we can see how the vortex and antivortex orbit the origin, before escaping to

infinity.

11.6 Conclusion

In this chapter, we explore the dynamics of orbital vortex solutions across various

regimes, demonstrating the interaction between static forces, centrifugal forces, and

mode-induced interactions. Beginning with type I vortices, we discussed that long-lived
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Figure 11.5.1: Trajectories of a vortex-antivortex pair. Red indicates the path
of the vortex, and blue the antivortex. We see that the pair complete a half

orbit, before being pulled to the origin an annihilating.

Figure 11.5.2: We plot the trajectories of the vortices. Here, the blue line
indicates the path of the antivortex, and the red line shows the path of the

vortex. The pair orbit the origin once, before escaping to infinity.
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Figure 11.5.3: Heat plots for the condensate |ϕ2| and the magnetic field B.
We show a vortex-antivortex scattering with non-zero impact parameter. The
scattering solution displays an orbital behaviour of the (anti)vortices around

the origin.

orbits can be achieved when the tangential velocity precisely counterbalances the at-

tractive static force. Through numerical simulations, we confirmed the existence of such

orbits and identified conditions under which vortices either collapse towards the origin

or escape to infinity, or form long-lived orbits inside a potential well.

For type II vortices, where the static force is repulsive, we examined the role of critical

points in the interaction energy, observed in figure 11.3.1, in sustaining orbital motion.

By introducing an additional mode-induced attraction, we demonstrated that vortex

pairs can remain in bounded orbits within a potential well. However, we observed that

as the excitation decays, the vortices may eventually escape, reinforcing the delicate

balance required for sustained rotational motion.
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Furthermore, we extended our analysis to critically coupled vortices, where shape mode

excitations can introduce an effective attraction. Our simulations illustrated that this

interaction can lead to vortex orbits at critical coupling, although the dynamic nature

of the excitation prevents the formation of long-lived orbits.

Lastly, we considered vortex-antivortex pairs, where the strong attractive interaction

necessitates careful velocity tuning to avoid annihilation. The results indicate that,

under suitable conditions, vortex-antivortex orbits can exist, though their longevity is

highly dependent on the specific initial conditions.

In general, this chapter has provided a comprehensive study of orbiting vortices, high-

lighting the interdependence of forces required to sustain such configurations. These

findings may inform future studies on controlled vortex motion in various physical con-

texts.



Part IV

Conclusions
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Chapter 12

Conclusions

This thesis started with a discussion on baby Skyrmions. Our analysis has primarily

focused on static solutions and their energetic properties. A natural extension of this

work would be to study the dynamical behaviour of baby Skyrmions under various

perturbations. This includes exploring their scattering properties, rotational modes,

and the possibility of quasi-bound states analogous to those found in vortex dynamics.

Furthermore, higher charge solutions warrant further investigation, as they may exhibit

novel structural formations, including global energy minimum that could serve as stable

multi-Skyrmion configurations [61, 78].

In part III, we have conducted an in-depth investigation into the intricate dynamics

of Abelian Higgs vortices, with a particular emphasis on how internal modes influence

their interactions. Through a combination of analytical and numerical techniques, we

have extended existing frameworks by considering vortex scattering, quasi-bound states,

spectral walls, and orbital motion. Our results provide deeper insight into the role of

internal mode excitation and its effect on vortex behaviour, particularly in regimes

beyond critical coupling.

Building on the findings presented in this thesis, several promising avenues for future

research emerge, providing opportunities to extend and deepen our understanding of

vortex dynamics. The work presented here could be extended to study the dynamics

of vortices of higher multiplicity, specifically multi-vortex scattering at critical coupling.

This has many possibilities because higher-degree vortices also have more normal modes

to excite.

An important result of this thesis is the existence of spectral walls in Abelian Higgs
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vortex dynamics. One avenue is the identification of spectral walls in other higher-

dimensional systems. The key requirement for the emergence of spectral walls is the

presence of bound modes that, as they traverse the moduli space, enter the continuous

spectrum. Additionally, we anticipate that spectral walls exist in BPS solitons with

different topologies, with the most exciting candidates being BPS monopoles. If this

effect extends to higher dimensions, it could enable the experimental observation of

spectral walls in more realistic physical systems, including superconductors.

One of the key areas for future investigation involves studying vortex interactions in

the presence of impurities. The introduction of defects in the medium can significantly

alter vortex trajectories, potentially leading to novel bound states or chaotic scattering

behaviour. Previous studies [18, 28] have shown that impurities can act as localised

trapping sites, and incorporating this aspect into our framework could yield new stable

configurations. Furthermore, the dynamics of vortices with magnetic impurities have

been explored, providing insight into how impurities influence vortex motion [28].

Furthermore, an exciting avenue of research lies in the study of vortices within the

Schrödinger-Chern-Simons model [30, 55]. Unlike the Abelian Higgs model, which fea-

tures second-order dynamics, the Schrödinger-Chern-Simons system exhibits first-order

conservative dynamics. The investigation of alternative materials with lower dissipation

could lead to the emergence of additional internal modes, potentially enriching the dy-

namical landscape. Furthermore, the Schrödinger-Chern-Simons dynamics for vortices

was discussed in [49] where it is shown that the vortices circle each other. Mode exci-

tations could be an interesting avenue for future research in Schrödinger-Chern-Simons

dynamics.

An additional avenue for future exploration lies in the study of vortex lattices, which offer

a rich framework for understanding ordered vortex configurations in superconducting

systems. Recent advances in [70, 80] have developed a method to compute minimal-

energy vortex lattices in anisotropic Ginzburg-Landau models, revealing dynamic lattice

structures that evolve with applied magnetic fields. These findings suggest investigating

vortex lattices in the presence of internal mode excitations or impurities could thus

bridge the dynamical phenomena observed in this thesis with macroscopic ordered states,

potentially informing experimental observations in condensed matter systems.

Another promising direction is the extension of our vortex studies to cosmic strings.
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The mathematical similarities between vortices in condensed matter systems and cos-

mic strings in cosmology suggest that many of the techniques developed in this thesis

could be adapted to study string interactions in the early universe. It is shown in

[75] that cosmic strings can form networks and undergo reconnection events, similar

to vortex interactions. Understanding how mode excitations influence these processes

could provide new insights into cosmic string evolution and their potential observational

signatures.

In conclusion, this thesis has provided significant advancements in our understanding

of vortex dynamics, particularly with the inclusion of internal modes for BPS vortices,

as well as in the non-BPS regime. The interplay between mode excitations, intervortex

forces, and orbital motion has been systematically analysed, leading to new insights that

can inform future theoretical and experimental studies. The extensions outlined above

present a rich landscape for further exploration, with potential implications spanning

condensed matter physics, cosmology, and soliton theory.



Appendix A

Vortex Mode Frequencies

The squared angular frequencies ω2
N,k computed by the MATLAB code are reliable to

approximately 6 decimal places, limited primarily by the eigenvalue solver’s tolerance of

10−6 and finite difference errors on the order of h2 = 4× 10−6.
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λ k = 0 k = 1 (T)

0.1 0.0758150 -0.0129376

0.2 0.1633020 -0.0108673

0.3 0.2560929 -0.0054384

0.4 0.3434223 -0.0021344

0.5 0.4254454 -0.0005528

0.6 0.5021804 -0.0005090

0.7 0.5760020 -0.0004885

0.8 0.6466050 -0.0004969

0.9 0.7136541 -0.0004948

1.0 0.7770676 -0.0002291

1.1 0.8352168 -0.0002416

1.2 0.8877518 -0.0002550

1.3 0.9336225 -0.0002596

1.4 0.9713502 -0.0002670

1.5 0.9983252 -0.0002860

1.6 - -0.0002942

1.7 - -0.0003132

1.8 - -0.0003214

1.9 - -0.0003422

2.0 - -0.0003596

2.1 - 0.0000021

2.2 - 0.0000025

2.3 - 0.0000021

2.4 - 0.0000020

2.5 - 0.0000024

2.6 - 0.0000026

2.7 - 0.0000027

2.8 - 0.0000027

2.9 - 0.0000026

3.0 - 0.0000027

Table A.1: Squared angular frequencies ω2
N,k for N = 1, for all k ≤ N . (T)

denotes a translation mode. Both the k = 0 and k = 1 modes here have
degeneracy one.
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λ k = 0 k = 1 (T) k = 1 k = 2 (S)

0.1 0.0789918 -0.0007159 - 0.0512741

0.2 0.1483615 -0.0001025 - 0.0558772

0.3 0.2105808 -0.0000096 - 0.0539602

0.4 0.2677272 -0.0000009 - 0.0493481

0.5 0.3192852 -0.0008482 - 0.0417627

0.6 0.3687888 -0.0007926 - 0.0345898

0.7 0.4149896 -0.0007993 - 0.0264856

0.8 0.4583296 -0.0007870 0.7984443 0.0177572

0.9 0.4989830 -0.0007977 0.8883169 0.0084556

1.0 0.5378953 -0.0004056 0.9724756 -0.0006509

1.1 0.5738714 -0.0004022 - -0.0107688

1.2 0.6077165 -0.0004147 - -0.0212523

1.3 0.6395990 -0.0004264 - -0.0320366

1.4 0.6696357 -0.0004419 - -0.0430984

1.5 0.6979666 -0.0004441 - -0.0543849

1.6 0.7239046 -0.0009180 - -0.0666735

1.7 0.7490566 -0.0009378 - -0.0784261

1.8 0.7727572 -0.0009572 - -0.0903705

1.9 0.7951064 -0.0009595 - -0.1024658

2.0 0.8161198 -0.0009784 - -0.1147567

2.1 0.8359077 -0.0009812 - -0.1271782

2.2 0.8544807 -0.0009980 - -0.1397720

2.3 0.8719014 -0.0010202 - -0.1525159

2.4 0.8882325 -0.0010342 - -0.1653795

2.5 0.9034858 -0.0010601 - -0.1783907

2.6 0.9177515 -0.0010528 - -0.1914653

2.7 0.9309928 -0.0010622 - -0.2046847

2.8 0.9432418 -0.0010810 - -0.2180313

2.9 0.9545307 -0.0010935 - -0.2314733

3.0 0.9648639 -0.0010994 - -0.2450055

Table A.2: Squared angular frequencies ω2
N,k for N = 2, for all k ≤ N .

(T) denotes a translation mode, and (S) denotes a splitting mode. The
k = 0, 1(T), 2(S) all have degeneracy 2, the k = 1 mode has degeneracy 4.
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λ k = 0 k = 1 (T) k = 1 k = 2 (S) k = 3 (S)

0.1 0.0679526 -0.0008217 - 0.0274337 0.0881145

0.2 0.1227128 -0.0002553 - 0.0300880 0.0965833

0.3 0.1697435 -0.0000502 - 0.0291660 0.0941163

0.4 0.2115522 -0.0000094 0.3933655 0.0266270 0.0865239

0.5 0.2495440 -0.0000003 0.4797256 0.0232239 0.0759417

0.6 0.2845064 0.0000001 0.5603710 0.0192495 0.0632930

0.7 0.3169691 0.0000001 0.6354855 0.0148617 0.0490985

0.8 0.3473093 -0.0000001 0.7053603 0.0101529 0.0336815

0.9 0.3758143 -0.0000002 0.7702370 0.0051846 0.0172621

1.0 0.4027085 0.0000001 0.8302565 -0.0000005 -0.0000003

1.1 0.4281722 0.0000000 0.8854024 -0.0053696 -0.0179846

1.2 0.4523529 0.0000000 0.9353421 -0.0108991 -0.0365986

1.3 0.4753740 -0.0000001 0.9786845 -0.0165696 -0.0557680

1.4 0.4973393 -0.0000001 - -0.0223660 -0.0754331

1.5 0.5183373 0.0000000 - -0.0282764 -0.0955450

1.6 0.5384442 0.0000001 - -0.0342903 -0.1160612

1.7 0.5577263 0.0000002 - -0.0403995 -0.1369475

1.8 0.5762415 -0.0000002 - -0.0465968 -0.1581733

1.9 0.5940412 0.0000000 - -0.0528759 -0.1797126

2.0 0.6111707 0.0000001 - -0.0592317 -0.2015431

2.1 0.6276709 0.0000000 - -0.0656591 -0.2236438

2.2 0.6435771 0.0000000 - -0.0721550 -0.2459979

2.3 0.6589224 0.0000002 - -0.0787149 -0.2685889

2.4 0.6737361 0.0000005 - -0.0853360 -0.2914031

2.5 0.6880456 0.0000000 - -0.0920161 -0.3144280

2.6 0.7018746 0.0000000 - -0.0987518 -0.3376510

2.7 0.7152464 -0.0000003 - -0.1055404 -0.3610619

2.8 0.7281795 0.0000005 - -0.1123813 -0.3846526

2.9 0.7406946 0.0000000 - -0.1192708 -0.4084119

3.0 0.7528083 -0.0000003 - -0.1262084 -0.4323327

Table A.3: Angular frequencies ω2
N,k for N = 3, for all k ≤ N . (T) denotes a

translation mode, and (S) denotes a splitting mode. The k = 0, 1(T), 2(S), 3(S)
mode all have degeneracy 2, and the k = 1 mode has degeneracy 4.
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λ k = 0 k = 1 (T) k = 1 k = 2 (S) k = 3 (S) k = 4 (S) k = 0 (U)

0.1 0.0597018 -0.0004676 - 0.0185135 0.0593157 - -

0.2 0.1038126 -0.0001816 0.1972500 0.0199480 0.0644325 0.1237461 -

0.3 0.1407828 -0.0000422 0.2820540 0.0192449 0.0627045 0.1205088 -

0.4 0.1731786 -0.0000056 0.3587430 0.0175188 0.0576237 0.1108280 -

0.5 0.1998225 -0.0016302 0.4250953 0.0129110 0.0471123 0.0922926 -

0.6 0.2260267 -0.0019468 0.4877784 0.0098159 0.0380529 0.0752346 -

0.7 0.2518380 -0.0012650 0.5476264 0.0078877 0.0300327 0.0591256 -

0.8 0.2756647 -0.0008206 0.6027155 0.0054311 0.0206986 0.0407040 -

0.9 0.2978723 -0.0005342 0.6536530 0.0025972 0.0103722 0.0205305 0.8956216

1.0 0.3187357 -0.0003498 0.7009225 -0.0005073 -0.0007217 -0.0010059 0.9882124

1.1 0.3384593 -0.0002311 0.7448956 -0.0038108 -0.0124268 -0.0236312 -

1.2 0.3571987 -0.0001536 0.7858521 -0.0072649 -0.0246350 -0.0471547 -

1.3 0.3750754 -0.0001034 0.8239921 -0.0108365 -0.0372662 -0.0714325 -

1.4 0.3921842 -0.0000701 0.8594451 -0.0145030 -0.0502635 -0.0963607 -

1.5 0.4084210 -0.0001633 0.8919953 -0.0184203 -0.0638229 -0.1221844 -

1.6 0.4242607 -0.0001184 0.9222248 -0.0221884 -0.0773665 -0.1480978 -

1.7 0.4395149 -0.0000861 0.9495784 -0.0260268 -0.0911871 -0.1744864 -

1.8 0.4542315 -0.0000634 0.9735658 -0.0299262 -0.1052569 -0.2012994 -

1.9 0.4684533 -0.0000463 0.9929939 -0.0338783 -0.1195550 -0.2284982 -

2.0 0.4822159 -0.0000345 - -0.0378782 -0.1340618 -0.2560463 -

2.1 0.4955512 -0.0000263 - -0.0419210 -0.1487625 -0.2839159 -

2.2 0.5083785 -0.0000894 - -0.0461107 -0.1637933 -0.3122807 -

2.3 0.5209603 -0.0000702 - -0.0502069 -0.1788142 -0.3406815 -

2.4 0.5331833 -0.0000555 - -0.0543415 -0.1940006 -0.3693471 -

2.5 0.5450684 -0.0000438 - -0.0585109 -0.2093423 -0.3982590 -

2.6 0.5566327 -0.0000343 - -0.0627135 -0.2248316 -0.4274015 -

2.7 0.5678959 -0.0000275 - -0.0669464 -0.2404580 -0.4567581 -

2.8 0.5788705 -0.0000224 - -0.0712086 -0.2562169 -0.4863179 -

2.9 0.5895704 -0.0000180 - -0.0754979 -0.2721016 -0.5160696 -

3.0 0.6000094 -0.0000148 - -0.0798128 -0.2881045 -0.5460005 -

Table A.4: Angular frequencies ω2
N,k for N = 4, for all k ≤ N . (T) denotes

a translation mode, (S) denotes a splitting mode, and (U) denotes the upper
mode. All of the modes here have degeneracy one.
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