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A long, long time ago

I can still remember how that music
Used to make me smile

And I knew if I had my chance

That I could make those people dance

And maybe they’d be happy for a while...

Don McLean



Abstract

This thesis investigates soliton dynamics in non-integrable field theories, with a
primary focus on the Abelian Higgs model for vortices.

In the Baby Skyrme model, we introduce a novel family of solutions exhibiting
nested ring structures with dihedral symmetry. In addition, we examine periodic
solutions in cylindrical domains, enhancing the understanding of soliton solutions
in two dimensions.

For the Abelian Higgs model, we develop robust numerical methods to study
vortex dynamics. Our results reveal rich dynamical phenomena, such as quasi-
bound states in vortex scattering and the emergence of spectral walls; a non-linear
effect arising when internal modes transition to the continuous spectrum, altering
vortex trajectories. Beyond critical coupling, we explore vortex interactions in
Type I and Type II superconductivity, identifying attractive and repulsive regimes,
uncovering non-trivial quasi-stationary states influenced by excited normal modes.
Furthermore, we investigate orbiting vortex solutions, including vortex-antivortex
pairs and 2-vortex systems, demonstrating sustained rotational motion induced by
linear perturbations.

A significant finding is the observation of spectral walls not only in critically cou-
pled vortices but also away from critical coupling, suggesting their broader rele-
vance across topological field theories. These results deepen the understanding of
soliton dynamics, bridging one-dimensional kinks and vortex interactions in gauge
theories. The thesis concludes by proposing future research directions, including
multi-vortex scattering, the role of impurities, and extensions to cosmic strings
and Chern-Simons systems, laying a foundation for further exploration of soliton

phenomena in theoretical and experimental contexts.
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Chapter 1

Introduction

Solitons are stable solutions to nonlinear field equations with finite energy. We are
particularly interested in field theories stabilised by a topological charge. Solitons
are distinguished by their energy density being smoothly varying and localised
around a specific point. An example is vortices in the Abelian Higgs model, which
behave like point-like particles, or skyrmions in nuclear physics.

In this thesis, we focus on non-integrable field theories, specifically the Abelian
Higgs model for vortices, which requires numerical methods to find soliton solu-
tions.

The thesis is structured as follows. In part [ we introduce soliton theory, highlight-
ing the role of the topological charge in stabilising nonlinear field configurations.
The discussion begins with one-dimensional solitons, including kinks in ¢* the-
ory and sine-Gordon kinks. The existence conditions for solitons are explored,
incorporating key concepts such as topology and Derrick’s theorem.

Part Il explores the Baby Skyrme model, a two-dimensional analogue of the
Skyrme model, which serves as a simplified framework for studying solitonic so-
lutions. In chapter 2, we discuss the model and field equations. We discuss the
Bogomolny bound and axially symmetric ring-like solutions. In chapter 3, a new
family of solutions is introduced, characterised by nested ring structures that ex-
hibit dihedral symmetry. These are compared with traditional axially symmetric
ring solutions, and their energy properties are analysed. In section 4.4, we discuss

Baby Skyrmions in cylindrical domains, leading to periodic solitonic structures



and an examination of infinite-charge configurations. Finally, in chapter 4, do-
main walls in the Baby Skyrme model are investigated, focussing on their stability,
symmetry properties, and exact solutions. The findings contribute to a broader
understanding of soliton interactions in non-integrable field theories.

Part I1I of this thesis focusses on the Abelian Higgs model, which describes vortices
in a two-dimensional gauge field theory. In chapter 6, we introduce the model,
followed by an exploration of the moduli space approximation and static vortex
solutions. Since the field equations governing vortex dynamics are often impossible
to solve analytically, numerical methods are developed and described in chapter 7.
These methods include Lorentz transformations to generate boosted solutions,
numerical time integration schemes for evolving vortex systems, and techniques to
enforce appropriate gauge choices and boundary conditions. Particular emphasis
is placed on ensuring numerical stability and accuracy, comparing results with
predictions from the moduli space approximation to validate the methods.

In chapter 9, we focus on vortex scattering in the presence of excited normal
modes, revealing novel dynamical features beyond the standard geodesic motion
on the moduli space. The existence of quasi-bound states, where vortices undergo
multiple bounces before eventually separating, is demonstrated through numerical
simulations. Additionally, we observe spectral walls, a non-linear effect that alters
vortex trajectories when an internal mode flows to the continuous spectrum. These
results highlight the richness of vortex dynamics beyond the BPS regime and
suggest deeper connections to solitonic interactions in other field theories.

In chapter 10, we move beyond critically coupled vortices, exploring vortex in-
teractions in regimes analogous to Type I and Type II superconductivity. In the
Type I regime (A < 1), vortices exhibit attractive interactions. In the Type II
regime (A > 1), repulsive interactions dominate. We explore the impact of non-
zero energy modes on vortex behaviour, finding non-trivial quasi-stationary states.
Furthermore, our findings suggest the presence of spectral walls away from critical
coupling.

Finally, in chapter 11, we focus on orbiting vortex solutions, where vortices undergo

rotational motion around a central point. These orbits arise in various contexts,



including vortex-antivortex pairs, where mutual attraction can lead to stable ro-
tational states. In addition, orbits are studied in 2-vortex systems, where linear
perturbations induce sustained rotational motion. These findings contribute to the
understanding of vortex interactions in confined geometries and suggest potential
experimental realisations in condensed matter systems.

The thesis concludes in part [V with an overview of the key findings and a discus-

sion of potential future research directions.

1.1 Soliton Theory

1.1.1 Topology

For topological solitons to exist, the solutions to a given energy functional must be
continuous maps between distinct manifolds, classified by a conserved topological
invariant or charge [53].

Consider two compact manifolds X and Y without boundary. If a continuous map
¢ : X — Y can be continuously deformed into another map ¢ : X — Y, then ¢ is
homotopic to . This defines an equivalence relation, partitioning the maps into
homotopy classes.

The set of homotopy classes of maps from X to Y is denoted [X,Y]. When X = S™
(the n-sphere), this set is the nth homotopy group 7,(Y’), which forms a group
for n > 1.

For example, if Y = S™ with n > 1, then 7, (S™) = Z, the integers.

If : X — Y is a differentiable map between oriented closed manifolds of the

same dimension, the topological charge is the degree of the map,

By = deg(é) = [ (), (L11)

where § is the normalised volume form on Y (with [, @ = 1), and ¢* denotes the
pullback.
This degree is a homotopy invariant, taking integer values and often interpreted

as a winding number in field theories.



Topological solitons arise in theories where field configurations cannot be contin-
uously deformed to the vacuum, belonging to non-trivial homotopy classes. In
flat space R? boundary conditions at infinity (e.g., fields approaching vacuum
values) enable compactification, allowing classification via homotopy groups such
as mg—1(V') for linear target spaces V' (vacuum manifold) or m4(Y") for nonlinear
fields with closed target Y.

Examples include vortices (m;(V')) and Skyrmions (m3(Y")) [53].

1.1.2 Derrick’s Argument

There is an additional constraint for topological solitons to exist, by means of
evading Derrick’s argument. Regarding field theories in flat space, for a given field
configuration to be a stationary point of the energy functional, it must be stable
under spatial rescaling [29].
Derrick’s argument states that a field theory will not admit topological solitons if
the static energy functional has no stationary points under spatial rescaling, apart
from the vacuum solution. To avoid this constraint, the energy functional must
contain terms that scale differently under rescaling; specifically, it must include
both an expanding term (such as a potential or mass term) and a contracting term
(such as a gradient or kinetic term). Without this balance, the solution would
either shrink to a point or expand indefinitely. One way to evaluate an energy
functional E|[¢| is to consider it on a one-parameter family of field configurations
oW, yielding

e(\) = E[¢pW]. (1.1.2)

In general, for a critical point of the energy functional, the derivative de/d\ = 0
must hold at A = 1 (where ¢(*) = ¢) for all such one-parameter families. This can
be thought of in terms of a small deformation parameter €, with A = 1 + € (or
A =€), and differentiating at € = 0, equivalent to A = 1.

Derrick’s argument arises from considering a specific one-parameter family induced

by spatial scaling, x — Az with A > 0, defining the rescaled field configuration as



¢™N(z) = ¢(Ax). The energy functional evaluated on this family is
e(N) = BlpW], (1.1.3)

and the condition for a critical point is de/d/\|/\:1 =0.
To derive e()), consider a general static energy functional in d spatial dimensions.

For simplicity, take a scalar field theory with a gradient term and a potential term:

sl = [ (5IVoF+v(0)) a'e = Efdl + Bl (1La)

where Fy[¢] = [ 3|Vo|* d?z and Ey[¢] = [V (¢) d*x.

For the energy functional on the rescaled fields, first evaluate the potential term:

Epo™] = /R V(60) d'a. (1.1.5)

Make the change of variables & = Az, so dx = d%z/\?. This gives

1
Eo¢] = /Rd V (6(7)) d = A\ Eo[g)]. (1.1.6)
Now for the gradient term:
Eyo™] = /R d%|v¢(m)|2 d'z. (1.1.7)

Since Vo(Az) = A(Vo)(A\x), we have |[Vo(Az)|> = N2 [(Vo)(Azx)|>. Substituting

the variable change,

Efo™) = 25 |5 I00@F @' = x50l (1.1.8)

Thus, the value of the energy functional on the rescaled fields is
e(N) = N7, [g] + A Eo[o). (1.1.9)

The existence of a critical point in e(A) at A = 1 determines whether stable solitons

are possible. For d = 1, e(\) = AEs[¢] + A1 Ey[¢], which has a critical point at



A = /Ey[é]/Es[¢], allowing kinks. For d > 1, there is typically no such point
unless additional terms (e.g., higher derivatives or gauge fields) are included to
balance the scaling.

For a solution, the condition = 0 provides virial relations, such as (2 —

d) Es[¢] = dEy|¢] in this case.

oy
dXIx=1

1.2 Kinks

In this section, we will discuss some of the key concepts of topological solitons by
considering 1-dimensional solitons known as kinks.

The Lagrange density admitting kink solutions is
1 1
£ = 50,00"6 — U(9), (12.1)

where ¢ is a real scalar field, and the potential U(¢) is a real function with U(¢) > 0
and multiple degenerate minima (vacua), ensuring non-trivial homotopy group
mo(V') for the vacuum manifold V' C R.

To derive the Euler-Lagrange equation, we start from the action S = [ Ld'tta.
The principle of least action requires that 05 = 0 for variations d¢. The variation
of L is

5L = 0,0 0"(5¢) — %w. (1.2.2)

Integrating by parts on the first term gives

dU
58 = / <—8H(9“¢ - %) 8¢ d" 1z 4+ boundary terms, (1.2.3)
assuming boundary terms vanish. Setting 6S = 0 for arbitrary d¢ yields the
Euler-Lagrange equation
aUu
0,,0" — =0. 1.24
Kinks are finite-energy solutions to this equation that are topologically distinct

from the vacuum. For finite energy, the field must approach vacua at spatial

infinity, lim, ,4. ¢(z) = ¢+ where U(¢ps) = 0. If ¢, = ¢_, the solution can be
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Figure 1.2.1: Potential of ¢* kink, V(¢) = 3(1 — ¢%)2.

continuously deformed to the constant vacuum ¢(x) = ¢+ everywhere, making it
topologically trivial.

However, if ¢, # ¢_, the solution interpolates between distinct vacua, giving it
topological charge and preventing continuous deformation to the vacuum. Kinks
are classified by elements of m(V') x mo(V').

We have a vacuum value when the potential V' = 0, which are points forming a
submanifold V C R, known as the vacuum manifold of the field theory. For the
solution to be topologically stable, there must be multiple vacua, otherwise the
homotopy group my(V) is trivial.

We consider 1-dimensional ¢* kinks as an example, the potential term is V(¢) =
%(1 — ¢%)?, see figure 1.2.1. The ¢* kink potential can be seen in figure 1.2.1. We
can clearly see that this potential has two minima at —1 and 1 respectively, which
we label as the vacua of the field.

The ¢* kink solution interpolates between these vacua, so the kinks are classified

by elements of 7y(V) x mo(V). We can then write the topological charge as

Bo= [ G de=j3lotro0) 6(-o0)], (125

which fits the general form By = deg(¢) = [, ¢*(2) by considering the compacti-
fied real line as X ~ S' and the target effectively as the interval between vacua,
with the charge counting the net transitions between distinct components of V.

This charge is an integer. Here, By can only be one of three values. If B, = 0,

we have the vacuum solution; hence, the kink solution is a straight line at either
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Figure 1.2.2: Exact ¢* kink solution in blue, shortest path from the vacua in
cyan, and vacuum values in red.

vacuum value. If By = 1, then the kink solution interpolates from the negative
vacuum value to the positive one. Finally, if By = —1, we have an anti-kink that
interpolates from the positive vacuum value to the negative one.

Unlike most topological systems, ¢* kinks have the exact static solution of the

field equation (1.2.4) for time-independent configurations,

¢(z) = tanh(z — a), (1.2.6)

where a is a constant of integration, representing the translation symmetry of
the system. We can therefore plot this solution; see figure 1.2.2. We interpolate
between the two vacua in figure 1.2.2, whereby we have a non-trivial topology. We
arrive at a solution which appears to be a tanh line. The solution is formulated this
way because the solution is governed by both the potential term and the gradient
of ¢.

Ignoring the potential, the best solution for the kink would be the straight line from
(—1, —00) to (+1, +00), as this would be the shortest path; however, the potential
term also acts on the kink. If we study the potential in the region ¢ € (—1,1),
then we can see that as ¢ approaches 0, the potential term wants to increase the
slope of ¢, however, this is battling with the straight line.

Note that ¢* kink solutions take the vacuum values at 00, which is analogous to

vortices, which are the main focus of this thesis.
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The soliton also evades Derrick’s theorem [29]. As derived in the general case for

d = 1, applying a spatial rescaling to the energy functional, we obtain
6()\) = )\EQ + )\_1E0, (127)

where the subscripts denote the degree of spatial derivatives for each term, Fy =
[2(4)* dz and Ey = [ V(¢)da.

This has a critical point at A = \/m. For the physical solution, this occurs
at A = 1, implying the virial relation F, = Ej,, which balances the expanding
potential term (minimised by steep interpolation) and the contracting gradient
term (minimised by shallow interpolation), resulting in a finite size for the kink.
Furthermore, the energy can be bounded below using the Bogomolny approach.

Completing the square in the energy functional,

o(+

2 o)
E:/E(%¢¢%W0:hﬂwwgrmzié V@),

(—o0
(1.2.8)

since the square term is non-negative. For the kink (4 sign), the bound is

Ez[]méu—wvwzfluw%mzé (1.29)

with equality when Z—j = 1/2V(¢) = 1—¢?, which is satisfied by the exact solution

¢ = tanh(z — a). Thus, the kink saturates the Bogomolny bound, confirming its

stability and minimal energy for the given topological charge.

1.2.1 Sine-Gordon Kinks

We can also explore another model that admits kink solutions, known as the sine-

Gordon model. Here, we have the potential, visually displayed in figure 1.2.3.

V(¢) =1—cos¢. (1.2.10)
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Figure 1.2.4: Degree 1 sine-Gordon kink solution.

We are interested in the sine-Gordon system as it provides a clear example of topol-

ogy analogous to vortices. The Euler-Lagrange equation for static configurations

is
2¢ )
w = Sln(gb), (]_2]_]_)
which has the analytical solution
¢(z) = 4arctan(e” %), (1.2.12)

where a is a translation coordinate.
We can consider the target space as cyclic, where ¢ € [0,27), and identify 0 and
27 as the same point, effectively compactifying the target to S*.

In figure 1.2.4, we see a degree 1 solution, where a = 0.
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We can write the topological charge as

! Oo@daf

By = —
" o oo dx

_ 17T [¢(-+00) — $(—00)] (1.2.13)

where M is the number of preimages x; of a regular points in the target space (e.g.,
a point not at vacua). This can be interpreted as counting the signed preimages
of ¢ at these points x;. We can therefore see that the kink solution in figure 1.2.4
is indeed of degree 1 by the use of (1.2.13), and counting the preimages of ¢.

We impose a one-point compactification by identifying spatial infinities, hence the
domain becomes topologically a circle S*. We can transform our target space
by considering the periodic potential. In the case of the sine-Gordon model, our
potential is periodic, hence we can compactify the target space to the unit 1-sphere
such that, ¢4 = lim,| 100 ¢(x) = 270 for integer n.

This gives us a map from a circle to a circle; hence, we can interpret the winding
number as the number of times the domain circle wraps around the target circle.
This leads to the interpretation that the winding number is determined by con-
sidering the homotopy group of the map. Since we have constricted our map to
the circle, we consider the homotopy group 71(S') = Z, hence we can interpret
the degree as an integer winding number.

Note that this is analogous to Baby Skyrmions, which we discuss next.
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Chapter 2

The Baby Skyrme Model

2.1 Introduction

The Baby Skyrme model is a 2-dimensional analogue of the Skyrme model, which
is a (341)-dimensional model for pions, first introduced by T.H. Skyrme [65],
which is a low energy effective model for the high quark colour limit of quantum
chromodynamics (QCD).

The motivation for Baby Skyrmions is as a toy model for the Skyrme model,
whereby calculations and numerical simulations are simplified by dimensional re-
duction. Terms of the model are chosen based on the components of the Lagrangian
in the Skyrme model; however, it is worth noting that the potential term is not
needed in the Skyrme model, and hence its choice is solely based on the stability
of the theory and the solutions it presents.

Another interpretation of the model is as a stabilisation of the O(3) sigma model,
whereby the introduction of a Skyrme term and potential term balance to stop
the soliton from expanding infinitely or shrinking to a localised point. This is
achieved by evading Derrick’s theorem, as the sigma model term is scale-invariant
in two dimensions, while the Skyrme term (quartic in derivatives) scales as A\~2
under rescaling (contracting against shrinkage), and the potential term scales as
A\? (expanding against growth), providing a stable minimum at finite scale.

In recent years, there has been a growing interest in Baby Skyrmions in condensed

matter systems, where they have been observed in various materials, namely in the

14
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context of magnetic systems. In this case, the model often features an additional
Dzyaloshinskii-Moriya interaction (DMI) term, which can induce topologically sta-
ble spin textures analogous to Skyrmions. The inclusion of the DMI term stabilises
the configuration by breaking the inversion symmetry [24, 32, 43, 82].

In addition, there has been some interest in Baby Skyrmion lattices [52], whereby
the lattice structure formed by Baby Skyrmions under various potential terms is
discussed. It is demonstrated that different potentials lead to distinct crystalline
arrangements, such as hexagonal and square lattices. Alternative potential choices,
such as the easy plane potential, have also been shown to break the residual SO(2)
symmetry and produce solitons with only discrete symmetry [44]. Furthermore,
the study of Baby Skyrmions in curved backgrounds, such as anti-de Sitter space,
has revealed that higher charge solutions form concentric ring-like layered struc-
tures, with transitions between different numbers of layers occurring at specific
topological charges [31, 79]. Similar layered structures have been studied in the
full Skyrme model using rational map methods, whereby multi-shell configurations
can be constructed from multiple rational maps [57].

The particular model under consideration in this part includes the potential term
V(g) = (1—¢32) [78]. We aim to study a new family of solutions of the Baby Skyrme
model that admits a dihedral symmetry. Historically, solutions of this model have
displayed axial symmetry for all charges. The introduction of dihedral symmetry
could provide new insights into the underlying topological and geometric proper-
ties of Baby Skyrmions, and might have broader implications in the context of
condensed matter systems. Previous work on breaking the global O(3) symmetry
to the dihedral group Dy has demonstrated that soliton solutions exhibit a con-
stituent structure composed of topologically confined partons [40, 45]. The statics
and dynamics of such broken symmetry models reveal that multi-soliton solutions
are related to polyform structures, with scattering behaviour governed by parton

interactions [40].
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2.2 The Model

The Baby Skyrme model is given by the Lagrangian density

L= 50,0 00— (0,0 % 0,0)- (6 x )~ V(9),  (221)

where ¢ is the 3-component scalar Baby Skyrme field, and V' (¢) is the potential
term. The first term is known as the sigma term and contains terms up to second
degree in derivatives, the second term is known as the Skyrme term, motivated by
the Skyrme term of the Skyrme model and contains terms of degree 4 in derivatives.
The Lagrangian functional is L = [ £d?z, and the action S = [ Ldt.

We seek only static solutions of the equations of motion, which are obtained by
varying the Lagrangian density eq. (2.2.1) with respect to the field ¢. We obtain
the Euler-Lagrange equations of motion by calculating the variation of (2.2.5).

The resulting field equations, projected orthogonal to ¢ due to the constraint

¢-¢p =1, are

05 (90,0~ 0,10% - 0°6)(0,0) — (0,0 010 - 5 ) =0, (222)

The field ¢ is defined on (241)-dimensional spacetime, where ¢pisamap ¢ : X — Y
, where the domain X = R?, and the target Y = R?, since we represent ¢ with
a 3 component unit vector. A one point compactification of the domain space
defines a point at oo which is mapped to the vacuum value. By including a
point at infinity, the domain becomes R* U {oo} which is isomorphic to the unit
2-sphere. We constrain ¢ to the 2-sphere by imposing the normalisation ¢ - ¢ =
&2 + ¢35 + ¢2 = 1. We hence have that X =2 R*U {co} = 52, and Y = 52, and
¢:S? = 52 dimX = dimY = 2, hence ¢ is classified by the homotopy group
m(S?) = Z.

The topological charge is defined by the integral of the pullback of the normalised

volume form on S?

B= [ ¢0= —i/ - (01 x Do) d?z, (2.2.3)
RZ

R2 47T
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Additionally, we impose that both X and Y are path-connected such that we can
connect any two points with a path that stays in the manifold, i.e. the image of
X always lies on a path-connected component of Y.

We choose a point y € Y, whereby the set of preimages of y is defined by the points
on X mapped to y. We define this as a set of isolated points {z™, ..., 2} where
M is the number of preimages =*), such that at each point, the Jacobian of the
map is non-zero.

The topological charge can also be interpreted as

B =deg(¢) = > _sign(J(z)), (2.2.4)

where J is the determinant of the Jacobian matrix of all first-order partial deriva-
tives. We hence count the signs of the Jacobian, that is, we count the preimages
of ¢ including multiplicity.

The energy functional we are interested in is a map F from the space of field

configurations to R £ : ¢ — R defined by the integral

El¢] = / |:%[(al¢>2 + (020)°] + %(algb X 8h0)? +m?V (¢)| d?x, (2.2.5)

where x1, 25 are spatial coordinates, ¢ is a scalar field, and V[¢] is the potential.

In this chapter, we use the potential term introduced by [78]

V(p) =m*(1 - ¢3), (2.2.6)

This choice of potential depends only on ¢3, so we break the O(3) symmetry of
the model to an O(2) symmetry.

For topological solitons to exist, the theory must evade Derrick’s theorem. We can
apply a Derrick’s scaling argument to the energy functional. Consider a spatial
rescaling such that x — Az, with A > 0, and hence we get the expression for the
rescaled energy as

e(N) = N2Ey + Ey + A 2By, (2.2.7)

where Ey = [ m?(1—¢3) d*x is the potential term, F» = [ $(9;¢)? d* is the sigma
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term, and By = [ %((%gb X Op¢)* d?z is the Skyrme term, with E, denoting the
term of the energy functional that is of degree n in its derivatives. We hence have

that
de

— -1 —
ahzl =\E, — A 'E, =0, (2.2.8)
leading to the constraint that, in order for the soliton solution to be stable, the
energy contributions of the Skyrme term and potential term must be equal for

A > 0. This constraint allows us to assess the validity of our numerical calculations,

as we can calculate these energy contributions, and stable solutions only exist for

Eol¢] = Eu[g].

2.3 Bogomolny Bound

We will study later in Chapter 4.4 a lower bound derived from periodic bound-
ary conditions; however, we can impose another well-studied lower bound on the
energy known as the Bogomolny bound.

We can then rewrite the static energy functional eq. (2.2.5)

1

E=g / (019)° + (920)°d°x + % / (019 x Bp9)*d’x + / m*V(¢)d’x,

1
> 5 [ 00 + @ (231)
We can then write vector ¢ in terms of its components,
1
E= /4 [(3¢¢a+€abc6ij¢b3j¢c)(3i¢a+€agh6¢k¢gak¢h)iaicf)aeabceij¢b3j¢c—5i¢a€agh€z‘k¢g3k¢h] d*z.
(2.3.2)
where a, b, c,g,h € Z3, and 4, j, k € Zs, and ¢;; is the 2-dimensional Levi-Civita symbol,

defined as €13 = 1, €91 = —1, and 0 if indices repeat.

To derive a lower bound, we complete the square in the sigma and Skyrme terms:
1 1
E = / 1 10i0 = €3  0;0) - (916 cind x 0po)] d*r + / 560 (9id x 0;0) d*x

> 5 [ 00 (@0 x o)
— [ 6+ @6 x 0,0 & = amB, (2.33)
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where the Levi-Civita tensor (a x b); = €;j,a;b; can be written as a cross product on 52
since it is the Lie algebra of SO(3).

The energy of a Baby Skyrmion exceeds this lower bound, tending towards 47 as m — 0.
It however cannot attain this bound as the mass term is required for stable solutions and
the size of the solution becomes infinite in the limit. We choose m? = 0.1 throughout

this chapter to stay consistent with the literature.

2.4 Static Solutions

This model was previously studied in [78], whereby the solutions studied admit an axial

symmetry for all charges. These solutions are given by the axially symmetric ansatz

o1 sin f cos(B0)
o= | ¢ | = | sinfsin(B0) |- (2.4.1)
®3 cos f

where f(p) is the monotonically decreasing profile function in polar coordinates (p, ),
with boundary conditions f(0) = 7 and f(oco) = 0, and B is the topological charge. It
should be noted that this ansatz is stable for all B, as shown in [78] unlike the standard
model with potential with only one vacuum. This ansatz can be substituted into the
energy functional to reduce the dimensionality of the problem. Moreover, we can use
the ansatz as an initial configuration to simulate axially symmetric lumps or rings of
energy in a 2-dimensional space. We then use an arrested Newton flow algorithm, see
chapter 7, to vary the fields using the equations of motion to converge to a solution with
a minimised energy density.

Some examples of minimised energy solutions for two-dimensional axial rings are dis-
played as a heat plot for the energy density in figure 2.4.1.

We observe that the axial rings increase with size as the topological charge increases;
however, the energy decreases per soliton. At higher charges, the axial rings grow larger
and the cost of the curvature of the rings decreases, resulting in an exponential tail in

the energy per soliton values, which can be seen in figure 3.3.5.



20

-20
-20

0 20

X X
B =10. B =16.

Figure 2.4.1: Heat plots for the minimised Energy Density for a sample of

topological charges B, found under the axially symmetric ansatz. We find that

the energy per soliton decreases as the total topological charge of the solution

increases, as a result of the increasing size of the solutions, resulting in a lower
energy cost from the curvature of the solution.



Chapter 3

Multi-Layered Rings

3.1 Introduction

In this chapter, we explore a new family of solutions of the Baby Skyrme model with two
vacua. We introduce a configuration with nested layers of rings in which the solutions
appear to admit dihedral symmetry. We compare the previously studied axial solutions

to this new family of solutions.

3.2 Dihedral Solutions

We choose an initial configuration that places N charge 1 lumps in a circle, with the
phase orientated so that they are all facing the origin. This initial configuration allows
our 2-dimensional algorithm to find a critical point of the energy functional that differs
from the axially symmetric solution. For example, see in figure 3.2.1 a new B = 5
solution.

The phase in the 2-dimensional plane, shown in the right of figure 3.2.1 is calculated as

—
2
5|

—

/

N——

1 > 0;

¢1 <0 and ¢9 > 0;

-+

o

B

L
/N

= | = [N =

N—

_|_

A

I
—
/N
N
|
A

¢1 < 0 and ¢9 < 0;

tan
6 =tan~! (?) = (3.2.1)
! o ¢1 =0 and ¢ > 0;
—g, ¢1:0and (Z)2<0;
\undeﬁned, ¢1 =0 and ¢ = 0.
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Figure 3.2.1: Heat plot for the minimised energy solution (left) of the Euler-
Lagrange equations and phase coloured plots to indicate winding (right) for a
B = 5 solution.

where ¢1 and ¢9 are the corresponding components of the vector field ¢, and undefined
indicates that this computation is not possible. We see that the phase of the solution
is distributed between the different layers, indicating that the topological charge is also
distributed between the layers. This particular solution hence has B = 1 in the centre
and B = 4 in the outer layer.

The energy per soliton of the B = 5 solution, shown on the left of figure 3.2.1 is £ =
1.4245 (normalised by the Bogomolny bound), larger than that of the axial ring, hence
this solution is a local minimum of the energy functional.

To confirm that the field ¢ has dihedral symmetry, we must show invariance under a
symmetry pair consisting of a spatial rotation and an isorotation. Specifically, apply a

spatial rotation S: 6 — 6 + 3, where 8 = %”, which transforms the ansatz eq. (2.4.1) to

sin f cos(B(0 + B))
¢' = | sin fsin(B(6 + B))

cos f

This is equivalent to the original ¢ after an isorotation R¢, where R is the SO(3) rotation

matrix around the ¢3-axis by —Bg:

cos(—Bp) —sin(—Bp) 0 cos(2m) sin(2w) 0O
R=|sin(~BB) cos(—BB) 0| =|—sin(2r) cos(2r) 0| =1,

0 0 1 0 0 1
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since B = 2mw. Thus, ¢’ = R¢ = ¢, confirming rotational invariance under the pair
(S, R).

We can plot the field values, see figure 3.2.2, and perform an SO(3) rotation as a linear
combination of the field components. This shows us that the fields are invariant under

a chiral rotation.

¢ ¢ ¢
15 . I 15 - 15 i 1
0.5 0.5 0.5
4% 5
=00 s 0 = 0 M 0 = 0 0
s i-0.5 v 0.5 0.5
-15 -15 -15
-15 0 15 -15 0 15 -15 0 15
X X X
¢ 1 rotated ¢'2 rotated gbs rotated
15 15 1
!0.5

o

-0.5

15
0.5
.
S .‘“ 0 = 0 :’: S
s i s 0.5
_15

-15 0 15 -15 0 15 -15

X

0.5
© N
-0.5
-15 -15
0 15
X

Figure 3.2.2: Heat plot for the field values of the minimised solution of the
equations of motion for charge B = 5 solution, admitting a dihedral symmetry.

We can similarly verify that the Baby Skyrme solution to the energy functional allows

for a Zo symmetry with the spatial reflection § — —60, which can be shown by the global

reflection
(61, B2, ¢3) = (P1, — 2, P3), (3.2.2)
or alternatively
sin(f) cos(B(—0)) sin(f) cos(B0)
¢ = | sin(f)sin(B(—0)) | = | —sin(f)sin(B0) | » (3.2.3)
cos( ) cos( )

since sine is anti-symmetric and cosine is symmetric.
Thus we confirm that this solution has dihedral symmetry Ds, since the dihedral group

can be expressed as D,, = C,, X Zs.
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3.2.1 Initial Configuration

We have identified new local minimum solution of the energy functional. In this section,
we aim to generate these dihedral solutions, such that we can choose the charges of the
layers of the solution.

Therefore, let us consider the initial configuration

(sin f cos(—B10),sin fsin(—B16),cos f), p < po;
¢ = (¢1, P2, $3) = (sin f cos(B26), sin f sin(B2#), cos f), ro<p<p; (324)

(0,0,1), p > p1-

We simulate an inner ring of topological charge Bj, and an outer ring of topological
charge Bs that winds in the opposite direction. Note that f(p) = 0 for p > pi, hence
here ¢ = (0,0,1). (p,0) are polar coordinates, py, p1 are constants chosen such that
there is enough space for the ring to exist in the space, and f(p) is a profile function,

denoted by the map, f : R — R, such that

2m—nl,  p<po;
flp)=qn— prlil),;)07 po < p < pi; (3.2.5)
0, p>p1,

where the profile function, f, winds around the target space for the number of layers.
We denote a charge B solution as a (Bj, Bg) solution.

This continuous model is discretised using a finite lattice of size 600 x 600, suitably large
such that the asymptotic energy cutoff is negligible, with a fixed step size in space of
h = 0.2 in both the x; and xo directions. A step size of this magnitude was chosen
because it allows for suitable accuracy without significantly increasing the run time of
the simulations. Moreover, the derivatives were approximated using a finite-difference

4th

scheme of 4" order. Note that larger solutions were computed on sufficiently large grids;

however, in all cases, the figures presented have been truncated to provide a clear result.
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Figure 3.3.1: Heat plot for the minimised energy solutions of the equations of
motion and phase coloured plots to indicate winding, respectively of a (2,3)
solution created using the new initial condition (3.2.4).

3.3 Results

3.3.1 Low charge solutions and Symmetries

In the previous section, we have shown a (1,4) solution (see figure 3.2.1). Using
eq. (3.2.4) as an initial configuration, we find another B = 5 solution. The solution
is still only a local minimum, but we discover that many configurations of the same
overall topological charge may exist. Figure 3.3.1 shows a (2, 3) solution which has the
highest energy out of all B = 5 solutions, however, it is interesting to study as the energy
density also appears to admit a dihedral symmetry in this case.

The energy per soliton of the (2,3) solution is E = 1.4693, and the energy per soliton
of the axially symmetric B = 5 solution is E = 1.3737. The axial ring is the global
minimum at this charge, but within the new family of solutions, the (1,4) ring is the
local minimum.

Next, we consider a charge (2,4) solution.

We conjecture that we can understand the symmetry of the solution by plotting the
phase (as given in eq. (3.2.1) against the domain angle 6, the angle in the 2D domain
at fixed radius p, which determines the angular position along a circle in the Baby
Skyrmion’s domain. We observe this for a charge (2,4) solution in figure 3.3.4.

We see that there are 6crossings. This suggests that there are six localised points

where the energy is minimal, which we can interpret as a reason for the B = 6 solutions
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Figure 3.3.2: Heat plots for the field values for a (2, 3) solution to illustrate the
invariance of the fields under a dihedral symmetry.

Energy Densit
10 gy y

Figure 3.3.3: Heat plot for the energy density of a (2,4) solution with energy
per soliton £ = 1.4183. This figure shows the 2 inner layers of the 4 layered
solution figure 5.2, which has a lower energy per soliton than this solution. This
provided promise for the energy being reduced by the attraction of the layers.
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Figure 3.3.4: Plot to illustrate an explanation for the symmetry of a (2,4)
solution. The phase of the inner ring is shown in blue, and the phase of the
outer ring is shown in red, where the phase is calculated in eq. (3.2.1) and plotted
against the domain angle 6, which determines the angular position along a circle
in the Baby Skyrmion’s domain. This figure shows that there are 6 localised
points where the inner and outer rings are in phase with each other. It follows
that the energy density has lumps of energy at these localised points, whereby

the inner and outer rings pass in and out of phase.

2

Orientation
3

™

Phase

21

Bl Euw | (1,B=1)|(2,B-2)|(3,B=3)| (4,B—4) | (5,B—5)
4] 1.5798 | 1.4595 N/A N/A N/A N/A
5 | 1.9737 | 1.4245 | 1.4693 N/A N/A N/A
6 | 1.8705 | 1.4097 | 1.4183 N/A N/A N/A
7 | 1.9683 | 14017 | 1.3954 | 1.4335 N/A N/A
8 | 1.9669 | 1.3962 | 1.3859 | 1.4002 N/A N/A
9 | 1.3660 | 1.3919 | 1.3817 | 1.3841 1.4135 N/A
10 | 1.3654 | 1.3887 1.3792 | 1.3771 | 1.3902 N/A
11| 1.3649 | 1.3861 1.3774 | 1.3743 | 1.3783 1.4013
12 | 1.3645 - 1.3758 1.3720 | 1.3727 | 1.3841
13 | 1.3642 - - - 1.3705 | 1.3746

Table 3.1: Energy per baryon for the historically studied axial solutions versus
new dihedral symmetric solutions for topological charges B = 4 to B = 13.
Italic entries indicate axial solutions, bold entries indicate local minimum of

admitting dihedral Dg symmetry, and similarly for all B.

new solutions.

3.3.2 Energy Comparisons for Different Solutions

We compare the energy per soliton for axially symmetric and dihedral solutions across

various topological charges B. Table 3.1 summarises these results.
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—Axial

Figure 3.3.5: Energy per baryon of axial configuration vs. multiple nested rings

with 2 layers. This figure plots the data of table 3.1. The dotted red line

indicates a lower bound for the energy per baryon of the axial rings, calculated

using an infinite domain wall on a cylinder, which is synonymous to a ring of
infinite curvature.

We can see from figure 3.3.5 that the global minimum is an axial ring for all charges
studied so far, however, it is interesting that as the charge of the total configuration
increases, the minimum of the nested rings change so that the charge of the inner ring

increases when the difference between the charges of the 2 rings is too great.

3.3.3 B = 9 Family of Solutions

We can also study the charge B = 9 configurations, to give an example of how the same
overall charge configurations differ from each other, see figure 3.3.6.

For the nested ring solutions with two layers, the size of the solution is smaller, hence the
contribution from the curvature is larger than that of an axial solution of the same size.
At low charges, it is clear that the minimised energy is dominated by the contribution
of the curvature. However, we have an attraction between the layers that pull them
together, as a result of the inner and outer layers moving in and out of phase with each
other, creating localised lumps of energy, thus a dihedral symmetry for the solution.
This attraction reduces the total energy of the solution. The smaller the difference
between the charges of the layers, the smaller the solution, and hence the larger the cost

of the curvature of the solution.
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Figure 3.3.6: Heat plots for the minimized energy solutions of the equations
of motion for (1,8), (2,7), (3,6), and (4,5) solutions. The (2,7) configuration
has evenly distributed energy density, while (3,6) shows a higher peak in the
inner ring. Configurations (1,8) and (4,5) have the highest energy. The local
minimum for B = 9 occurs at (2,7), with energy per soliton F = 1.3817.

Since the (2,7) configuration is the local minimum, we can assume that such minimum
occur when the cost of the curvature is balanced with the attraction between the layers.
Figure 3.3.7 illustrates the phase eq. (3.2.1) of the B = 9 configurations. This helps us
to understand how the topological charge is distributed throughout the solution. In all
cases, the Dg symmetry is preserved, with (2,7) and (3,6) being the minimal energy

configurations in this family.
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Figure 3.3.7: Plots of the phase eq. (3.2.1) for (1,8), (2,7), (3,6), and (4,5)
solutions.

3.4 Higher Charge Solutions

Next we explore configurations with higher charges by introducing more layers and
analysing their symmetries. Some symmetries might be preserved if the symmetry group

of the inner two rings is a subgroup of the outer layers.

3.4.1 (11,25) Solution

An example of the breakdown of the layers is the (11,25) ring, which is expected to
have Dsg symmetry, since B = 36. However, numerical simulations suggest that the
solution evolves into a (5,7,11,13) ring with Dg symmetry, as shown in figure 3.4.1.

The inner two rings sum to charge B = 12, and the outer two rings sum to charge
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Figure 3.4.1: Heat plot for a (5,7,11,13) nested ring solution. The energy per
baryon is F = 1.37974. The Dg symmetry results from the balance of charges
across layers.
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Figure 3.4.2: Heat plot for the minimised energy solution of the equations of

motion for a (2,4,8,10) nested ring, with energy per baryon F = 1.3901, and

topological winding for the same configuration respectively. We see a clear Dg
symmetry, which is verified in figure 3.4.3

B = 24. Although D15 is the largest subgroup, the solution prefers Dg symmetry due

to numerical constraints and lattice limitations.

3.4.2 (2,4,8,10) Solution

The maximum symmetry we would be able to achieve from a multi-layered ring at this

charge would be Dy, if the ring only had 2 layers, however, since the rings flow into more
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Figure 3.4.3: Heat plot for the field values of the fields of a (2,4, 8,10) nested
ring, and the fields after a Dg rotation, with the space rotated the other way
for comparison.

layers, the highest symmetry we should be able to achieve would be a Do symmetry, as
this would be the largest subgroup.

A clear hexagonal structure can be seen in the shape of the energy density. Furthermore,
we can verify the Dg symmetry by showing that the fields are invariant under this
rotation. It appears as though the symmetry group of these configurations is the greatest
subgroup of the total charge of the inner two rings compared to the total charge of the
outer two rings. We attempt to validate this symmetry in figure 3.4.3.

Furthermore, the inner 2 layers are a (2,4) ring, and hence we can compare these 2 Dg
solutions. The (2,4) solution has energy per soliton E = 1.4183, whereas the (2, 4,8, 10)
solution has energy per soliton E = 1.3901, suggesting that the interaction between

layers has indeed lowered the energy of the solution.



Chapter 4

Domain Walls

4.1 Introduction

A domain wall is a boundary between two vacua. In this case, we use the same Baby
Skyrme model as before, as the potential term allows for two vacua. Hence, we can have
a domain wall interpolating between these two vacua

A domain wall occurs due to the fixation of the vacua at the boundaries. We sim-
ulate space as a cylinder, by parametrising the space as a rectangle, periodic in the
x1-direction, where limg, oo ¢ = (0,0, —1) and lim,, ¢ = (0,0, 1). This breaks the
O(3) symmetry into a O(2) symmetry.

For the solution to be a topological soliton, it must evade Derrick’s theorem. Due to the
nature of the solution being on a cylinder, scaling in the z;—direction would result in a
different solution, so in order to check the solution numerically, we must ensure that it
is invariant under scaling in the xy direction. We hence use a slightly different version of
Derrick’s theorem, where we apply the rescaling [53] zo — Aaza. By studying the limit

definition of the derivative, it is clear that
1
020 — — o, (4.1.1)
12

where we have chosen A9 to be the scaling parameter in the o direction. Applying this

rescaling to eq. (2.2.5),

1 1 [1 A3
E=o 5 / 1 3(010)" + (020)°] + 1016 x 020l + V(9)d* &
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R TN R o] e 2, 1 )
- L [AQ(‘W) + Xa(020)%| + 1000 x a0l + -V (9) d. (41.2)

This leads to the transformation for the energy

1 E
e(A2) = EEM + AoBao + Ao by + 72. (4.1.3)

To ensure the stability of the soliton, we apply Derrick’s theorem by requiring the energy
to be stationary with respect to the scaling parameter A\o. Taking the derivative of e(A2)

with respect to Ay and evaluating at Ao = 1, we obtain

de i EO

TM‘A2=1 = )\%EQ,I + E2,2 + Ey — )\7%‘)\2:1 = —E271 + E272 + By — EO — 0’

where Eyy = 1 [(019)?,d’x, Eon = 1 [(820)%, d*x, Eq = % [|01¢ x 029/, d*x, and
Ey = [V(¢),d?z represent the contributions to the energy functional from the respective
terms. For the soliton to be stable, this condition must hold, implying a balance between
the energy contributions. Specifically, stable solutions require Eg + Eo1 = Ea2 + Ejy.
This constraint allows us to numerically verify the stability of the soliton by computing
these energy terms and ensuring that they satisfy the derived equality, consistent with
the requirements for a topological soliton to evade Derrick’s theorem on a cylindrical
geometry.

We will first reduce the dimensionality of the system to a one-field model, in order to
give some insight into what the optimal length L might be and also to give verification

of the two-field code.

4.2 Symmetry Reduction

We consider the same Lagrangian density eq. (2.2.1). For an initial configuration, we

let
01 sin f cos(B#)
o= ¢ | = | sinfsin(BY) | (4.2.1)
¢3 cos f

where f(p) is the monotonically decreasing profile function with polar coordinates (p, 6),

with boundary conditions f(0) = m and f(oco) = 0, and B is the topological charge.
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Substituting this ansatz into eq. (2.2.1), we can reduce the dimension of the Lagrangian.
We again choose the mass term m? = 0.1. We perform a change of variables from the

field ¢ to the one-dimensional scalar field f, where we note that p = /2% + 3.

.92
WD (@rsons - orpons

2
T (OufOuf = 0af0u1)* ~ (O1f0af — Dafor)?] = - sin (),

L= % ((Oef)* = (O1f)” = (021)*) +

If we consider static solutions with 6 = 2”%, where L is the size of the unit cell in the

periodic x; direction, then the Lagrangian density is

2 Sm?f L0000 - ”;2 sin’(/), (422)

L= 300

with resulting field equation

2 m2
(8120) (9o f)?sin(2f) + - sin(2f) = 0. (4.2.3)

—O f(1+sin®(f)(916)*) —

We can solve (4.2.3) numerically using an arrested newton flow algorithm and compare
the energy values per soliton for various periodic lengths L to minimise the energy for
this parameter L.

For B =1, figure 4.2.1 shows that the optimal value for the periodic length is L = 8.43,
with a minimal energy of £ = 1.3625539, which we will consider to be a lower bound of

the energy.

4.3 B =1 Baby Skyrmion on a cylinder

Using our one-field results as guidance, we study the domain wall in two dimensions.
Figure 4.3.2 shows plots for the energy density and topological winding of the charge
B =1 two-dimensional domain wall of optimal cell size.

We interpret the domain wall as an infinitely large ring with zero curvature, making this
a lower bound for the axially symmetric solution. We find, with less precision, that the
optimal length is L = 8.4 (the optimal cell size), with minimal energy F = 1.362561,
which is within 0.0001% of the one-field result.
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Figure 4.2.1: Comparison of the energy for the one-dimensional charge B = 1
domain wall for each periodic length L, computed using 8000 points, with a

space step of 0.01. We find an optimal periodic length L = 8.43 | with energy
per soliton E = 1.3625, which agrees with the two-dimensional results.
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Figure 4.3.1: Energy per soliton against periodic length L for a domain wall on
a cylinder, computed using 2-dimensional numerics. We minimised the fields on

a fixed length L, then varied L to find the optimal cell size. We find that The
optimal L is 8.4, with energy per soliton £ = 1.3625
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Figure 4.3.2: Heat plot for the minimised energy solution of the equation of

motion for a B = 1 domain wall in 2 dimensions. This is the solution of the

optimal length L = 8.4, with energy per soliton £ = 1.3625. On the right hand

side we have the energy density coloured by the phase. The shows that the
domain wall winds from —7 to m across the cell.

4.4 B =2 Baby Skyrmion on a cylinder

We simulate a B = 2 Baby Skyrmion on a cylinder of periodic length L.

Figure 4.4.1 plots the energy per soliton for different periodic lengths L. We use a
minimisation algorithm whereby we minimise the fields for a fixed L, then vary L to
find the optimal cell size. We gradually increased the lattice, starting with small L, to
find the minimal energy. Moreover, to verify these solutions, we also started the system
with a large L, gradually removing points in the x—direction to reduce the cell size, to
minimise for L.

We find that the optimal configuration for the Baby Skyrmion on a cylinder is a charge
B = 2 configuration with periodic length L = 8.4. This simulated a layered solution
with zero curvature, hence we have a lower bound on the energy of £ > 1.3630 for the
dihedral solutions.

We show a heat plot for the minimised energy solution of the equations of motion
for a charge 2 solution on a cylinder with optimal L in figure 4.4.2. We see that the
configuration splits into two B = 1 domain walls ( axial rings with zero curvature).
This could imply that the global minimum would be a compound structure of multiple
rings, which suggests that at some charge the double rings could be the global minimum.
Further studying of these infinite rings suggests that the solution is in fact 2 parallel

domain walls. This could imply that this solution is not stable as 2 parallel charge 1
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Figure 4.4.1: Energy per soliton against periodic length L for a B = 2 Baby
Skyrmion on a cylinder. The optimal periodic length is L. = 8.4, with energy
per soliton E = 1.3630.

domain walls will want to infinitely repel because of their relative phase never being in
the attractive channel.

Furthermore, we can study the phase of the solution to ensure that it has the correct
topological winding, and we can clearly see that the phase winds around each wall once,
suggesting that each infinite chain is of charge 1 per unit cell. An illustration of the
phase of the infinite B = 2 solution can be seen in figure 4.4.2. We see in the next
chapter that the minimised energy for the domain wall is found at the same minimised
length L, however, the minimised energy in this case is £ = 1.3626, suggesting that
there is indeed a slight energy cost for the 2 parallel domain walls.

The energy minimum found for the domain wall is slightly lower than that of the B = 2
Baby Skyrmion on a cylinder. However, by studying the model, it appears that the
B = 2 solution is indeed two parallel domain walls passing in and out of phase with each
other, suggesting that there is an energy interaction cost between the two walls.

We can confirm the interaction between the walls in two ways: first, by shifting the two
walls apart and observing if they flow back to the original solution or remain where they
are with lower energy (which indeed is the case), and second, by adjusting the phase
of one of the walls. The latter method suggests that the interaction is not influenced
by phase differences but rather by the proximity of the walls. From this we conclude

that the lower bound on the energy is the single domain wall, with energy per soliton
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Figure 4.4.2: Heat plot for the minimised energy density of a topologically
charged B = 2 Baby Skyrmion on a cylinder with periodic lattice in the x-
direction on the left, and the plot for the phase winding of the same solution.
We can see from the energy density that there is a clear interaction between
the 2 walls, which can be interpreted from the topological winding as a result
of the 2 layers being out of phase with each other, resulting in a repulsion. The
result can be interpreted as 2 parallel domain walls, which further supports the
argument of repulsion.

E =1.3625.
The charge 2 solution on a cylinder is then considered the lower bound for double rings.
Although this bound is higher than that of the domain wall, it is possible that other

solutions on the cylinder could represent global minimum.



Chapter 5

Conclusions

In this part of the thesis, we have investigated families of solutions within the Baby
Skyrme model, employing the potential V(¢) = (1 — ¢3) as introduced in [78]. These
solutions depart from the historically observed axial symmetry, instead exhibiting dihe-
dral symmetry, which was previously unseen in this context. Our exploration reveals a
diverse and intricate space of solutions, particularly pronounced at higher topological
charges, where multi-layered configurations emerge. The introduction of nested rings
demonstrates that interlayer attractions can lower the energy per soliton compared to
isolated layers, as evidenced by comparing the (2,4) solution (E = 1.4183) with the
(2,4,8,10) configuration (E = 1.3901).

We have also discussed lower bounds on the energy through the analysis of infinite
rings and domain walls. By simulating the model on a cylinder with periodic boundary
conditions, we identified a lower energy bound of % > 1.3630 for a charge B = 2 Baby
Skyrmion, while a single domain wall yielded an even lower bound of % = 1.3625 at an
optimal periodic length of L = 8.4. These findings suggest that the global minimum
for axial rings may approximate an infinitely large ring with vanishing curvature, while
double-layered rings are bounded by the charge B = 2 cylindrical solution. Intriguingly,
the slight increase in energy of the B = 2 solution on the domain wall hints at a repulsive
interaction between parallel walls, a phenomenon that deserves further investigation.
Our results indicate that the Baby Skyrme model has a richer structure than previously
appreciated, with dihedral solutions offering stable local minimum and axial solutions

retaining their status as global minimum across the charges studied.
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Vortices
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Chapter 6

Abelian Higgs Vortices

6.1 Introduction

The Abelian Higgs model [38] is a relativistic field theory whose excitations in (2 4 1)-
dimensions take the form of topologically stable solitons known as vortices.

The field theory consists of a complex scalar field ¢ coupled to a U(1) gauge field A,,.
The static theory is equivalent to the effective Ginzburg-Landau theory [35], describing
a magnetic field penetrating a superconductor, where the total flux is quantised by the
number of vortices. The dynamics of vortex solutions is where these two theories diverge;
the Abelian Higgs model exhibits second-order dynamics with Lorentz invariance [59, 60,
64], whereas the time-dependent Ginzburg-Landau model exhibits first-order dynamics
[30, 55]. It is the former second-order dynamics that we will focus on in this thesis.
Note that in (3 + 1) dimensions vortices appear as string-like objects, known as cosmic
strings, which if they exist, may be detected through the gravitational contribution to
early universe cosmology [77].

Vortex scattering has been well studied for all values of the single parameter \ [18, 28,
59, 60, 64]. This parameter splits the model into two types; type I (A < 1) where vortices
exhibit long-range attraction and type II (A > 1) where vortices repel at long-range. In
contrast, at critical coupling (A = 1), there are no static long-range intervortex forces,
and the N-vortex solutions can be represented by an unordered set of dimension 2N or
My = CV /Sy where Sy is the set of permutations. At critical coupling, low-energy
second-order dynamics can then be approximated as free geodesic motion on the moduli
space M. This moduli space naturally captures the most striking result, namely that
vortices exhibit head-on 90° scattering [73].

42
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6.2 The Abelian Higgs model

The (2 4 1)-dimensional Abelian Higgs model [38] is described by the action

_ 2., _1 v 17 _é 2 2 2
S—/ R2[,dtda:_//Rz[ 1w "+ 5Dud Do — T(|of — 1) | dt d*x, (6.2.1)

where ¢(t,x) = ¢1(t,x) + ig2(t,x) is a complex scalar field (the Higgs field), with
spatial coordinate x € R?, and A, (t,z) = (Ao, A1, A2) is a real U(1) gauge potential.
The covariant derivative is D¢ = (0, —iA,)¢, and the field strength tensor is f,, =
OuAy — 0,A,. X is the coupling constant. We will assume the spacetime R2*! has the
metric signature (+,—, —). All parameters (e.g., electric charge, vacuum expectation
value) are normalised, leaving A as the Higgs field mass parameter, and the speed of
light is set to ¢ = 1.

The model is invariant under the gauge transformation
o(z) — @ (), Ay (z) = Ay(z) + dua(z). (6.2.2)

The static energy for field configurations is

_1 D;oD; 2 Ao 2| g2
V_2/RQ [D1¢DZ¢+B + A=) d7z, (6.2.3)

where B = fi15 = 01As — 02 A1 represents the magnetic field orthogonal to the plane.
For field configurations to have finite energy we require that B — 0, D,¢ — 0 and
|¢| — 1 as p — oo, where p = |z|. This fixes the Higgs field on the boundary

Poo = lim ¢(z)

p—00

to take values on the unit circle such that ¢oo : S — S, where SL is the circle on
the boundary of R%. This map is encapsulated by an integer degree or winding number
N € Z. This winding number counts the number of zeros of the continuous Higgs field
¢ including multiplicity. Since a given field configuration cannot be deformed from one
homotopy class to a different one by a continuous deformation, the field configurations
are separated into infinitely many disjoint components, indexed by the integer degree
N.

Therefore, the dynamic field equations must preserve the integer degree N. To relate
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the total magnetic flux to N, consider the boundary condition D;¢p — 0 as p — oo,
which implies 9;¢ = iA;¢ on the boundary circle S1.. Writing ¢ = |¢|e?, where |¢| — 1
and 6 is the phase, we have 0,60 = A; on the boundary. The winding number N is the

number of times # winds around S' as one traverses S. , given by

1 1 : 1 )
N=o | o= [ ofd’ =~ | Add. (6.2.4)

o 2T Séo T Séo T Séo

By Stokes’ theorem, the line integral of A; over the boundary S. equals the integral of
the magnetic field B = f19 = 91 Ay — 824; over R%:

AZ' dl‘z = / (@1A2 — (92141) d21' = / f12 d213. (6.2.5)
S R2 R2

Thus, the magnetic flux is quantised in terms of the winding number:

% /R2 fio = N. (6.2.6)

To ensure that finite-energy configurations, such as vortices, are stable topological soli-

tons, they must evade Derrick’s theorem [53]. Consider a spatial rescaling
T — KT, (6.2.7)

with £ > 0, applied to the static energy (6.2.3). Under this rescaling, the Higgs field ¢

scales as,
P(z) = ¢(kz), (6.2.8)
the spatial derivatives transform as
1
8Z- — *81' (6.2.9)
K

, so the covariant derivative transforms as
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. We are working in a gauge theory, hence both terms of the covariant derivative must

scale consistently, hence the magnetic field transforms as

1
B =0145 — 9241 — ?B (6.2.11)
since
Ai — 1AZ (6.2.12)
K

The metric transforms as d?z — k?d%z. Thus, the static energy becomes

V(n) {/ 1D¢D¢+1B”+MN1 %)% | d? (6.2.13)
= - —D; i — — (1 - x. 2.
Hr=3 g2 L p2 " pt 4
This can be written as
1 1
V(k)= —=Fy+ —E ’E, 6.2.14
(H’) 2 2 + e 4 + K™ L, ( )

where E» = 3 [, Di¢D;¢d%x is the kinetic term, Ey = L [o. B> d?z is the magnetic
term, and Ey = % [ 2(1 — [¢|*)? d*z is the potential term. For the energy to be
stationary with respect to x, we compute the derivative and evaluate at k = 1:

av 2

%L@:l =73 = —2E; —4E4 +2E; = 0. (6.2.15)

4
Ey — ?E4 + 2/€E0‘
K

k=1

This yields the stability condition
Eg= Es + 2E;. (6.2.16)

This condition ensures that vortex solutions with non-zero winding number N can be
stable, as it balances the contributions of the potential, kinetic, and magnetic terms,
allowing the Abelian Higgs model to support topological solitons that evade Derrick’s
theorem. This constraint can be used to numerically verify the stability of vortex con-
figurations by computing FEy, E3, and Ejy.

Varying the action with respect to ¢ and A, yields the second-order Euler-Lagrange

equations of motion

A
DuD"¢— (1= ¢)¢ =0, (6.2.17)

O™ + % (¢D"¢ — ¢D¥¢) = 0. (6.2.18)
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6.3 BPS Equations

We can derive a lower bound on the energy, known as the Bogomolny bound [25].
We complete the square of the integrand of eq. (6.2.3). The covariant derivative term

expands as

Di¢Di¢ = |D16|* + |Dag|* = |D1¢ £ iDag|* F i (D1pD2¢p — DapD19) -
The magnetic field term and potential term transform together as
B4 (o 1) = (B £ (16 - 1))2 )
Hence

1
V:2/d2w

2
<B - W)) + D16+ D20) (D16 + iD2g)

+ B — i (01(¢D29) — 02(¢D19)) + %(1 — qs\?)?] (6.3.1)

The term i (9y(¢Dag) — Ba(pD1¢)) represents the divergence of the vector field F =
i(¢Dagp, —¢D1¢), since V - F = 0y (i¢pDagp) — 0a(i¢pD1¢) = i(01(¢Dagp) — 0a(¢D16)). By
Stokes’ theorem, this divergence over R? can be expressed as a line integral over the

boundary circle at infinity S}
i / (01(6D20) — By(6D16)) d = i / (6Dsd)dz1 — (6Dy6)daa, (6.3.2)
R2 SL

where (dx1,dzs) is the line element along S.. The finite energy conditions require
Di¢p — 0 and |¢| — 1 as p — oo. Since D;¢p = (0; — i4;)¢, the condition D;¢p — 0
implies 0;¢ = iA;¢ on the boundary, so ¢D;¢p = ¢(0;¢0 — iA;p) = Pp(iA;p —iA;p) = 0.
Thus, the integrand in (6.3.2) vanishes, making the line integral zero [53].

Finally, by evaluating the integral of B using eq. (6.2.6) we have a lower bound on the
energy

Vo, A;] > n|N| + % /(1 — |6]*)? d?z. (6.3.3)

where N is the integer degree.
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At critical coupling, we therefore have the Bogomolny bound [25]
V > 7|N|, (6.3.4)
which is saturated for solutions of the Bogomolny equations

Di¢+iDsdp =0

BF %(1 —|9]?) = 0. (6.3.5)

6.4 Moduli Space Approximation

In the case of N vortices at critical coupling, the solutions to the field equations can be
represented by an unordered set of positions, which form a moduli space of dimension
2N. The moduli space, My, is the configuration space for the positions of the vortices
and can be written as the quotient,

RQN (CN

My ="y = 5w

where Sy is the symmetric group that accounts for the indistinguishability of the vor-
tices under permutation. This moduli space accounts for the fact that the vortices are
indistinguishable except for their positions. At critical coupling, the moduli space of
the N-vortex system is thus a reduced configuration space that reflects the internal

symmetry of the system.

6.4.1 Geodesic Motion at Critical Coupling

At critical coupling (A = 1), the low-energy dynamics of N vortices in the Abelian
Higgs model are described by geodesic motion on the moduli space My [53]. This
approximation holds when vortices move slowly compared to the internal field dynamics,
reducing the field equations to motion on My. A distinctive feature of this regime is
the head-on 90° scattering of vortices, governed by the geometry of My [63].

The vortex positions are parametrised by complex coordinates z. € C, r = 1,..., N,
corresponding to points in the plane R? = C. The metric on My, derived from the

kinetic energy of field configurations satisfying the Bogomolny equations eq. (6.3.5), is
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given by

N
ds® = Z grzdz,-dZs, (6.4.1)

r,s=1

where g, =7 ((5rs + 222;) forms an N x N Hermitian matrix (g5 = gs7), with b, being
coefficients in the expansion of the Higgs field logarithm, as described below [63].
The reduced Lagrangian, capturing the kinetic energy of the fields at critical coupling,
is N

Lyed = ;rz_:l GrstrZs, (6.4.2)
where %, = dz,/dt denotes the velocity of the r-th vortex, and the factor /2 normalises
the vortex energy to m|N| for winding number N. Varying (6.4.2) yields the geodesic
equations, describing free motion at constant speed on My, which accounts for the 90°
scattering observed in head-on vortex collisions [60, 63].
To compute the metric coefficients, we apply Samols’ method [63]. The Higgs field is
expressed as ¢ = e%(h”X), where h = log |¢|? satisfies the Bogomolny equation V2h +
1—el=dr ny: 1 0%(z — z) away from the vortex positions. Near each vortex at z,, h
expands as h = 2log |z— 2|+ a, +b.(2—2.)+b.(2—Z.)+. .., with a, and b, depending on
all vortex positions. The kinetic energy T = 3 [02(|0¢¢|? + 0;A;0; A')d?x is evaluated for

slowly moving vortices, using the time derivatives of eq. (6.3.5) and Gauss’ law, yielding

N
ob.\ | -
T=rY (&S + 28zs> irZs. (6.4.3)

r,s=1

Thus, the metric coefficients are

ob
Grs=T <6m + 28;) : (6.4.4)
S
The Hermitian property follows from gg: = gij. For well-separated vortices, b, —

0, reducing the metric to ds? = WZ,],V: 1 dzydz,, corresponding to independent vortex
motion [53, 63].
The metric on My is Kéahler, as the associated 2-form w = %Zi\;:l grsdzy N\ dZs is

closed, due to the symmetry gz_’; = gZi [53, 62]. This Kéhler structure supports the use

of complex coordinates z, and enables global calculations on M . The geodesic motion
described by (6.4.2) governs the low-energy dynamics, with the 90° scattering arising

from the geometry of My, as confirmed by numerical studies [60, 63].
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Figure 6.4.1: Separation of the zeros of the Higgs field (interpreted as the vortex

position) of 2 vortices scattering at various initial velocities against time. Here

the time is rescaled by the velocity such that ¢ — v, t, where vy, is the initial

velocity of the vortices. The dotted black line is geodesic motion on the moduli
space.

We can solve this 1-dimensional dynamical system, and plot the geodesic path of the
vortices, see figure 6.4.1. To confirm that our numerics are working correctly, we can
simulate the scattering of vortices at critical coupling, using the configuration eq. (9.1.3),
and setting the perturbations to zero. We can then track the zeros of the condensate to
plot the separation for a set of initial velocities.

In the moduli space approximation, the trajectories are independent of the initial veloc-
ity. This leads us to rescale our trajectories to ¢t — viyt, where vi, is the initial velocity
of the vortices. Figure 6.4.1 shows the scattering of two N = 1 vortices over a range
of initial velocities. As expected, the trajectories initially lie on the same curve until
t ~ 8. For small velocities v;, < 0.3, our numerics match the expected behaviour from
the moduli space approximation (dotted line) whereby they travel with constant veloc-
ity and scatter at 90°. For larger velocities, the numerics deviate significantly from the
moduli space approximation, which is only valid for small velocities. For velocities close
to one, the trajectories show new kinds of behaviour which goes beyond the scope of

this thesis.

6.5 Symmetry Reduction

To simulate vortex solutions, we take advantage of the radial symmetry of the soliton.

We can hence reduce the dimensionality of the field theory by exploiting this symmetry
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argument.
Consider polar coordinates, with radial coordinate p and angular coordinate 6, related
to Cartesian coordinates by x1 = pcosf, xa = psinf [53]. The gauge potential A; =

(A1, Ay) in Cartesian coordinates transforms to polar coordinates as
A, =Ajcosf+ Axsinf, Ag=—Aipsinf+ Azpcosb, (6.5.1)

where A, and Ay are the radial and angular components of the gauge potential, with
the area element d’xz = pdpdd. Hence the magnetic field tensor becomes foo = pfi2-

The static energy is then

L[> [ /1 — 1 — A
V= / / — f9 + Dpd Dy + —DygdDyop + = (1 — |¢|*)* | p dp d,  (6.5.2)
2Jo Jo \p p 4
where D,¢ = 0,¢ — iA,¢ and Dgp = Op¢p — iAg¢ are the covariant derivatives in polar

coordinates. We first consider an axially symmetric static isolated vortex of degree N

at the origin using the ansatz

¢ = f(p) eiNO? (A07 Aﬂ? AQ) = (07 0, ae(ﬁ))? (653)

where we choose the temporal gauge Ag = 0 and the radial gauge A, = 0, with f(p) a
radial profile function and ag(p) the angular component of the gauge potential. By the
principle of symmetric criticality, this axially symmetric configuration, which satisfies
the field equations restricted to radial dependence, is also a static solution of the full
field equations [53].

Substituting this radially symmetric ansatz into eq. (6.5.2), we have the reduced static

energy

© (1 [(dap\*® [df\* 1 A
vzw/o <p2 (Cf;) +(dp> +p2(N—a9)2f2+4(1—f2)2>pdp, (6.5.4)

which has the resulting Euler-Lagrange equations of motion

o L 1 A
/ —f—;f—Ef(N—ag)z—gf(fz—l):O,

1
ap — ;ag + (N —ag)f*=0. (6.5.5)
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Figure 6.5.1: Profile functions for critically couple (A = 1) vortex solutions,
where blue is f(p), and red is ag(p).

Regularity gives us the profiles at the origin f(0) = 0 and a(0) = 0 while the boundary

conditions at infinity are,

lim f(p) =1 and lim ag(p)=N.

p—+00 p—r00

The coupled system eq. (6.5.5) is nonlinear and must be solved numerically, which is done
using an arrested Newton flow algorithm, with 4*P-order finite difference for derivatives
to minimise the energy.

Although there is no known analytic solution, we can study the asymptotic form of the
solutions for both p ~ 0 and p — co. First, we will consider f and ay near the origin,

which admits the expansion

fp) = pF(p?), ag(p) = p* G(p%), (6.5.6)

where F' and G are power series in p? with a non-zero coefficient for the leading term.

Hence, we can write any general cylindrically symmetric solution of degree N as

O = (z1+ ixQ)N F(x% + mg) ,
0
(6.5.7)
Ay = (Ao, A1, A2) = | —2, G2 +23) | >

z1 G(2? + 23)
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Figure 6.5.2: Profile functions for critically coupled (A = 1) vortex solutions,
where blue is F(p?), and red is G(p?).

where F(p?) and G(p?) are now nonlinear functions across the whole space, but can be
expanded as a power series near zero.

The reduced energy functional is thus

2 2
V:/ 2 a§+G +12 ar 02+2NFd—Fa
do do do

(6.5.8)
2 o*G? 2 N-1, A ([ N2 2
+ F 5 — NGo+ N o —|—§(a F —1) mdo,
with field equations
8PP F" + 8F — A\p*NF3 4 \F — 2p*FG* + AN (FG +2F') =0,
4p°G" 4+ 8G" + pP* N V(N — p?G) = 0. (6.5.9)

6.6 Static Interaction

To consider the tails of the solutions, we linearise the system eq. (6.5.5) around the
vacuum (f,ag) = (1, N) which produces a decoupled system of two ODEs which yield

the solution

F(p) ~ 1= - Ko(V). a(p) ~ N = Z-pKi(p). (6.6.1)

We can now understand the long-range static intervortex forces by assuming that a

vortex at long-range acts as a point source [66], each with an associated scalar charge ¢
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and magnetic dipole moment m.

These point sources must satisfy the linear differential equations with solutions given
in eq. (6.6.1). This leads to the linear interaction energy of two well separated point
sources as

Bin(s) = —%Kg(\f)\s) + %Ko(s) : (6.6.2)

where s is the separation. The key result is that the contribution from the Higgs field
interaction is negative, while the magnetic contribution is positive. Hence, for A < 1
the Higgs field dominates at long range, causing vortices to attract, while for A > 1 the
magnetic field dominates at long range, causing vortices to repel [66].

At critical coupling (A = 1), where the contributions from the Higgs field and magnetic
field cancel each other out with ¢ = m, which leads to no long-range interaction between

static vortices.

For s — 0, the interaction energy behaves as a 4'"-order polynomial in s [67]
Fi(9) = Bun0) + 0 0(0) = (6.63)
int\S) = Lvint 2(«0)\;272 32ﬁ()\)) -0.

where Fin(0) is the static force of the radially symmetric 2-vortex and wi;m (0) is the
angular frequency for the 2-vortex splitting mode, see chapter 8. S()) is a A-dependent,
numerically calculated constant.

We calculate the static force per vortex by solving the field equations in 2-dimensions at
fixed separations, using an arrested Newton flow algorithm to find the minimal energy
solutions. Note that we pin the vortices at desired distances d ranging from 0 to 10 in

increments of 0.1. We hence have that the static interaction per vortex is
Lo A
Bstatie(d) = 5 (V3 (d) — 217(0)) (6.6.4)

where V{*(0) is the static energy of the N = 1 vortex, and V3'(s) is the static energy of
the minimised N = 2 solution, where vortices are positioned at +d.
In figure 6.6.1, we plot the numerically calculated static interaction, eq. (6.6.4). We

overlay the short-range and long-range approximation and plot for different A.
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Figure 6.6.1: Static interaction energy per vortex for a 2-vortex system for a

range of A indicated by colour. The black dashed lines show the asymptotic fit

of the interaction energy eq. (6.6.2). The dashed magenta lines show the fit for
the short range interaction energy eq. (6.6.3)

6.7 Static Solutions

We now explore static vortex solutions in 2—dimensions. We have the initial configura-
tion

¢1($1, xg) = R(($1 + ng)N)F(I'% + :c%)

(;52(1’1, 1:2) = I((Hfl + 'le)N)F(‘T% + x%)

0 (6.7.1)
Au(@r,m2) = | —20G(23 4+ 23) | -
1G(2? + 23)

where F' and G are the solutions of eq. (6.5.9).
We can simulate eq. (6.7.1) using a lattice of 601 x 601 points. We can then minimise

the solution by numerically solving the gradient flow equations eqgs. (6.2.17) and (6.2.18)

using an arrested newton flow algorithm. We show the energy density eq. (6.2.3) and
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condensate |¢|? for a N = 1 vortex in figure 6.7.1 and a N = 2 vortex in figure 6.7.2.
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Figure 6.7.1: Static solution for a degree N = 1 vortex at critical coupling
A = 1). We plot the energy density (left) and the condensate |$?| (right).
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Figure 6.7.2: Static solution for a degree N = 2 vortex at critical coupling
A = 1). We plot the energy density (left) and the condensate |$?| (right).

6.8 Results

In this section, we discuss vortex scattering solutions at critical coupling (A = 1). We
only have one free parameter, being the separation of the vortices. In this chapter
we consider head on scattering. We can also consider collisions with non-zero impact
parameter. This can indeed be done, but is not the focus of this thesis, and is hence not

presented here.

6.8.1 2-Vortex Solutions

We show snapshots from a simulation regarding BPS 2-vortex scattering, and we plot

the energy density as a heat plot. The vortices are initially positioned at (+10,0), with
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Figure 6.8.1: Heat plots for the energy density for wvalues of ¢t =
0, 30, 60,90, 120, 150. We show 2-vortex head on scattering with with v;n = 0.1.

initial velocity v;; = 0.1. We can see that the vortices scatter at right angles, and pass
through each other remaining unchanged. This is confirmed in figure 6.4.1, whereby we

find this is a key feature of vortex dynamics.

6.8.2 Multi-Vortex Scattering

Here we show snapshots of a head-on collision of two 2-vortices. In the case of scattering
two N = 1 vortices, see figure 6.8.1, the vortices pass through the axially symmetric
N = 2 configuration, before scattering at 90°. However, note that for NV > 1 this is not
the case. In fact, for the scattering of two N = 2 vortices, we observe that the two N = 2
vortices split into a configuration with four N = 1 vortices. An important observation
is that the resulting N = 1 constituent vortices begin to oscillate in shape, suggesting
that a shape mode for the 1-vortices has been naturally excited. This is indeed hard to
see in figure 6.8.2, however, notice that the peaks in the energy density of the inner two
vortices change as the vortices evolve.

We can also scatter two N = 3 vortices, see figure 6.8.3, where we display a heat plot for
the energy density, at snapshots of a dynamical simulation. The vortices scatter head

on, with initial velocity vi, = 0.3.
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Figure 6.8.2: Heat plots for the energy density for wvalues of ¢t =
0,10, 20, 30,40,50. We show two N = 2 vortices in a head on scattering with
with v, = 0.3.

We observe that the vortices initially travel as N = 3 radially symmetric solutions.
When the vortices come close, they split into the constituent 1-vortex parts. Two of the
vortices are accelerated towards infinity. Two are sent to infinity with a smaller velocity.
Most interestingly, we notice the inner two vortices, located closest to the origin. During
the scattering process, the kinetic energy from the vortices is transferred to the non-
zero energy shape mode of the constituent vortices. This leads to the vortices at the
centre forming a quasi-bound state, where they appear to scatter multiple times. This

motivates chapter 9, where we aim to reproduce this phenomenon.

6.9 Conclusion

This chapter has explored the dynamics and static properties of vortices within the (24
1)-dimensional Abelian Higgs model, a relativistic field theory giving rise to topologically
stable solitons. We began by introducing the model’s Lagrangian and its second-order
equations of motion. The single parameter A\ was shown to govern vortex interactions,
delineating type I (A < 1) attractive, type II (A > 1) repulsive, and critically coupled

(A =1) regimes, the latter being our primary focus in this chapter.
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Figure 6.8.3: Heat plots for the energy density for wvalues of ¢t =

0,10, 20, 30,40,50. We show 3-vortex 3-vortex head on scattering with with
Vin = 0.3.

At critical coupling, we discussed that the N-vortex system is elegantly described by a
moduli space My = CV /Sy, where low energy dynamics reduce to geodesic motion.
This framework successfully captures the hallmark 90° scattering of vortices in head-on
collisions, a result numerically validated by tracking the zeros of the Higgs field across
various initial velocities.

The Bogomolny bound at critical coupling, saturated by the BPS equations, provided a
theoretical foundation for understanding minimal energy configurations, while numerical
simulations of N = 2 vortex, N = 3 vortex, and multi-vortex scattering illuminated the
complexity of their interactions. Notably, head-on collisions of higher-degree vortices

(e.g. N =2 and N = 3) showcased splitting into constituent N = 1 vortices, with
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kinetic energy exciting shape modes that hint at quasi-bound states, an observation
motivating further investigation in subsequent chapters.

In summary, this chapter has established a comprehensive picture of Abelian Higgs
vortices at critical coupling, blending analytical insights from the moduli space approx-
imation with robust numerical methods to explore their static and dynamic behaviour.
These findings underscore the interplay between topological stability, geodesic motion,
and field interactions, laying the groundwork for deeper studies into vortex scattering

phenomena and their potential cosmological implications.



Chapter 7

Non-Linear Numerical Methods

We seek dynamic solutions of the equations of motion eqs. (6.2.17) and (6.2.18), which
we find by numerically evolving the equations of motion from an initial condition of
well separated Lorentz boosted vortices. We discretise the fields on a regular grid of
n1 X ng lattice sites with spacing h > 0, where the discretised configuration space is
the manifold C = (C x R3)™"2 = R51"2, We approximate the first- and second-order
spatial derivatives using central 4" order finite difference operators, generating a discrete
approximation to the equations of motion. We then evolve the discretised fields using a
224 order leapfrog method with time step A; = 0.01 [16]. We typically use n; = ny = 601
and h = 0.1 throughout.

7.1 Lorentz Transformation

For dynamical simulations where we require the vortices to have an initial velocity, we
perform a Lorentz transformation to boost the coordinates.

We will first consider a boost in the z1—direction. Our coordinates then transform as

t st =(t+vr), x — 21 = y(z1 + vt), Tg — Ty = T2, (7.1.1)

1
V1—v?2

T = Az, where

is the Lorentz factor. We write this transformation as a vector equation

where v =

60
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v v 0 v —yv 0
0 0 1 0 0 1

The Higgs field transforms trivially as

6(z) = (z) = S(A"a), (7.1.3)
and the gauge field transforms the same as the derivative of ¢, hence
At (z) = Ar(z) = AAM(A o). (7.1.4)
If we wish to boost in any direction, then we can consider the SO(3) rotation matrix

1 0 0
R=10 cost —sint|> (7.1.5)

0 sinTt cosT

and apply it to the boost such that A = RA, where 7 is angular direction of the boost.

This transformation can be written as one matrix

¥ YU COST yvsin T

A= yvecosT ycos’T +sin?7  (y—1)cosTsinT | - (7.1.6)

yusint  (y—1)cosTsinT ysin®7 + cos? T

7.2 Arrested Newton Flow

We find energy minimisers to nonlinear systems such as Baby Skyrmions and Abelian
Higgs Vortices, using a gradient descent method. The model is discretised on a grid of
dimension that of the field theory. For the case of vortices, we consider a two-dimensional

grid. This approximates a given energy functional as a discrete approximation.
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We define a vector for the fields such that

é'a - (¢17 ¢27 Ala A2)7

where ¢ is the Higgs field and A; the components of the vector gauge potential.

The time evolution can hence be approximated using a simple Euler method

f((an) _ g(gn) + Atéén), (7.2.1)
(nt1) = £m) 4 A€l (7.2.2)
where f((ln) is the field configurations at a time ¢, and 5{(;z+1) are the field configurations

at the time ¢t + A, given an arbitrary constant such that A; < 1. € is the first order
time derivatives of the fields, and we start with the initial data éa = 0. We denote the
second-order time derivatives of the fields as &, and we find the solution, that is, the
local minimum, where éa =0.

The arrested Newton flow is an evolution-based approach that halts the flow of the gradi-
ent descent by means of an arresting condition to stop the descent from overshooting the
minimum and oscillating indefinitely. Rather than iteratively applying discrete updates,
it defines a flow in phase space that drives an initial guess toward a zero of a vector
field, with an ‘arrest’ mechanism to stabilise convergence near the solution [68, 69, 71].

The arresting condition is as follows. If
o Ea <0, (7.2.3)

then we force the velocity of the fields to be zero, i.e. & = 0, and resume the gradient

descent. This can be interpreted as the acceleration (£) being in the opposite half-
plane to the velocity (5) This interpretation arises because the negative dot product in
eq. (7.2.3) indicates that the angle between fa and fa exceeds 90 degrees, placing them
in opposite half-planes relative to the origin in phase space, which signals a potential

overshoot of the minimum [68].

7.3 Numerical Time Integration Methods

The leapfrog method [16, 37] is a symplectic, second-order accurate time-stepping algo-

rithm used to solve time-dependent second-order partial differential equations (PDEs).
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It is particularly suited for evolving the equations of motion in the Abelian Higgs model
due to its stability and accuracy for oscillatory systems. True to its name, the leapfrog
method ‘leaps’ over intermediate steps.

For a given second-order ordinary or partial differential equation, let

9%¢,
ot?

= fa(& V& 1), (7.3.1)

which can be rewritten as a system of first-order equations

f_ 8&1
fa="51
€a = fa(&, VE ). (7.3.3)

(7.3.2)

We can iterate these quantities using the velocity Verlet form of the leapfrog method as

) 2
€ = €0+ AL + SL7,(e), Ve, 1), (734
) : A
&0 = €0 4+ S (fal€™, VEM 1) + ful€, VETH, 14) ) (7.3.5)
where &(zn) is the field configuration at time t¢,, and §£n+1) is the field configuration

at time tp,+1 = t, + A;. Equation (7.3.4) updates the field &, using a second-order
Taylor expansion, incorporating the acceleration f evaluated at time ¢,,. Equation (7.3.5)
updates the velocity fa using a trapezoidal rule, averaging the acceleration at times ¢,
and t,4+1 to achieve second-order accuracy [81].

This second-order method is useful for vortex scattering as it is symplectic, meaning that
geometric quantities are conserved by the integration method. This provides advantages
in maintaining stability and accuracy during large integration times. The method is also
of second-order. As such, it is more efficient in terms of computational resources, which
is essential in our case because of the volume of results.

For longer integration times, higher-order methods can reduce truncation errors. The
6th-order leapfrog method, based on Yoshida’s symplectic integrator [81], achieves this
by composing multiple second-order leapfrog steps with specific weights. For a sixth-

order method, we use seven stages with weights [81]

1 o 1-v2
21— 2)’ B R

woy = We —
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v R
21— 32) + V4’ R TE R 7§

Wy = Wy =

such that Z?:O w; = 1. We define cumulative time fractions dy = 0, d; = d;—1 + w’%—kw’

fori=1,...,6, where dg = 1. The fields are advanced through seven substeps as follows:

glrtdi) — g{mhdion) g A £ 4

tSa
iAr)?
-+ (wzﬂfa(s("*d“’, VErth b+ dig Ay, (7.3.6)
glrtd) _ glndio) | Wi cnidin) gelntdin) g 4 A+
a a 9 a ) s In i
o fa (€T et g 4 diAy), (7.3.7)
We advance the fields from time ¢, to t,41 through seven substeps, i = 0,...,6, with

intermediate times t,+d; A;. The weights w; scale the time increments such that the total
step satisfies >, w; = 1. The first equation updates the field &, using a second-order
Taylor expansion with velocity and acceleration at the previous substep ¢, + d;_14:.
The second equation updates the velocity &, using a trapezoidal rule, averaging the
acceleration at substeps t, + d;_14; and t,, + d;A¢. The combination of these substeps

with specific weights cancels lower-order error terms, achieving sixth-order accuracy [81].

7.4 Natural Boundary Conditions

We impose natural boundary conditions [69], so that radiation may leave the system
by passing through the boundary. We denote the dynamical fields collectively as &,,
a = 0,..,5, consisting of the real and imaginary components of ¢, as well as the 3
components of the vector gauge potential. We take the variation of the action eq. (6.2.1)

with respect to &,, so that the action varies as

~Ja 7@_& 8(221) at o0 _ni@(gifa) € 7.4.1
5= [ (5 - () 2 L (rae)? (71)

where 2 is the finite domain in space-time that we perform our simulations on, and 92
is the boundary of the domain. Furthermore, the divergence theorem has been used so
that the flux of the variation of S through the boundary curve 9 is the same as the
surface integral of the divergence of the variation of S across the entire region €. It

should be noted that n; is the inward pointing normal to 0£2. We require that §5 = 0
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be such that &, satisfies the Euler-Lagrange equations in 2. Henceforth, we have the

boundary conditions

S (7.4.2)

a(azga)
on the boundary 0€2. First, we consider the boundary z; = doo. For the energy

eq. (6.2.3), the boundary condition eq. (7.4.2) reduces to

1 0101 + A1¢2
: =0= 0191 = —A1¢2,

0 Oop1 + Ao

1 012 — A1

: = 0= 0192 = A1 61,
0 0202 — Aag

(7.4.3)

1 81/12 — 82/11

. =0= 81A2 = 82141
0 0
1 00A1 — 014y

. =0$81A0:80A1.
0 0

We must also consider the boundary zo = £00

0 0191 + A1p2

: =0= a1 = — Ao,
1 D291 + Aapo
0 012 — A1

: = 0= Oa¢2 = As¢n,
1 a2 — A2

(7.4.4)

0 0145 — 02 A

. -0
1 0
0 0pAs — D2 A

= 0= 04y = JpAs.

1 0

Note that from the finite energy conditions, B — 0 on 9f2, so we have that 9; Ao = Js A;.
Furthermore, we are working in a discretised version of a continuous theory, so we must
also discretise our boundary conditions, which give us equations for ghost points, which

are temporary points that exist past the boundary. These allow us to calculate the
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numerical derivatives on the boundary.
These boundary conditions can be summarised such that the covariant derivative tends

to zero normal to the boundary at infinity, as well as the magnetic field, i.e.

n-(V—-iA)®=n;-D;®=0on o
(7.4.5)
curlA =V x A =B =0 on 0f2

where A are the spatial components of a 4 component 1-form, with the x3—dependence
set to zero, and B = Bk, which is a 3 vector whose only non-zero component is in the
x3-direction.

We must impose a further constraint on the boundary such that the first-order time
derivative of the electric potential Ay goes to 0 on 92, i.e. JyAg = 0. This constraint is
necessary for numerical stability.

We can compare the phase 6 = arctan(%) (although not gauge invariant) of an axially
symmetric N = 2 vortex, at A = 1, moving with constant velocity in the x; direction,
both with natural boundary conditions and without; see figure 7.4.1.

We can see from figure 7.4.1 that the natural boundary conditions are essential for
stable vortex dynamics. With fixed boundary conditions (left), we see that the numerics
fail after t = 494 and there is a discontinuity between the phase on the boundary and
the phase in the bulk. This leads to radiation in the fields, likely from planar waves
incoming from the boundary, as a result of the discontinuity between the field values at
the boundary and the bulk.

Alternatively, we see, by implementing natural boundary conditions (right), that the

phase winds smoothly around the boundary as the vortex moves, and the numerical

simulation remains stable.

7.5 Gauge Choices

During the development of the numerics, we considered many gauge choices motivated
by work on vortex scattering [17, 58, 59, 64]. One option is the temporal gauge Ay = 0,
which can be achieved by using a gauge transformation to impose this condition after the
boost. Alternatively, for static solutions we choose Ag = 0. When boosting the solution,
Ap becomes non-zero because of Aj, hence we can transform A; = 0 through a gauge

transformation before a Lorentz boost, such that Ay is still zero after the boost. However,
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Figure 7.4.1: We plot the phase § = arctan(%) of a critically coupled N = 2
vortex moving with constant velocity in the z; direction. We display fixed
boundary conditions (left) and natural boundary conditions (right).
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Figure 7.5.1: We show heat plots of the condensate |¢|? of a critically coupled
N = 2 vortex moving with constant velocity in the x; direction. We impose the
temporal gauge Ag = 0 (left) and the Lorenz gauge J, A" = 0 (right).

this temporal gauge is not compatible with the natural boundary conditions, as the it
does not provide an equation for the derivatives of the gauge field on the boundary.
Hence, we chose the Lorenz gauge 9,A* = 0, as it is compatible with the natural
boundary conditions (detailed in section 7.4). The Lorenz gauge can be imposed in two
ways. First, we can subsitute the relation 9, A" = 0 into the Euler-Lagrange equations of
motion (egs. (6.2.17) and (6.2.18)), which results in an independant equation of motion
for Ag. Alternatively, we can add the term %OMA‘”@;LA“ to the lagrangian density L.
Note that we can check the numerics for a static vortex by checking that the gauge-
invariant quantities remain consistent no matter the gauge choice.

Figure 7.5.1 shows snapshots of a dynamical simulation, in which we display the modulus
of the Higgs field as a heat plot. The simulation on the left-hand side of each time stamp
evolves with the temporal gauge imposed, Ag = 0, whereas on the right, we impose the
Lorenz gauge 0, A" = 0. The simulation in question involves a critically coupled N = 2
vortex, with constant velocity in the x; direction. We see that with the temporal gauge,
the vortex splits along the x; axis, which is an artefact of the difficulty to impose the
temporal gauge. On the other hand, we notice that with the Lorenz gauge, the 2-vortex
moves with constant velocity, maintaining its radial symmetry. This supports the choice

of the Lorenz gauge for Abelian Higgs vortex dynamics.
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7.6 Damping Boundary Conditions

Natural boundary conditions have been imposed to allow the phase to wind around
the boundary as the fields evolve. Moreover, since we use a large intensity in exciting
the vortex shape mode, the dynamical solution exhibits radiation. Therefore, we have
implemented damping boundary conditions near the boundary. We subtract the first-
order time derivatives of the fields orthogonal to the gauge orbit, multiplied by a function
K (z) from the equations of motion. Specifically, for the Higgs field, we modify the

08

equation of motion to 22 K (x)Do¢, and for the gauge potential, we use 33~ — K()e;,

56
where e; = 0;Ag — 9y A;. K(z) has boundary conditions K(0) = 0 and K(co) = 1, and

is of the form

K(z) =1— (1 — elml=eD?y(q — allzal=23)%) (7.6.1)
where x? is the location of the boundary. This function ensures damping is applied
only near the boundary, with the constant o chosen such that the damping region spans
approximately 10% of the bulk from the boundary, minimising interference with the
interior dynamics [53].

Although natural boundary conditions should allow for the radiation to pass through
the boundary, some is reflected. The damping boundary conditions ensure that most of
the radiation is absorbed so that it is not reflected back toward the bulk, affecting the
behaviour the vortices.

Note that the damping boundary conditions are not perfect and that not all radiation is
absorbed. To provide numerically accurate results, we altered the boundary conditions
for a lattice of size 601 x 601 by varying the constant «, so that the solution matches
that of a solution found in a lattice of size 2001 x 2001, whereby the grid is sufficiently
large so that the radiation takes a long time to return to the system. Furthermore,
we fine-tuned the boundary conditions by choosing the best « so that there is as little

radiation as possible.

7.7 Zero Tracking

For analysing vortex dynamics, it is useful to track the zeros of the Higgs field to track
the positions of the vortices. We design a tracking algorithm to identify and follow the
positions of vortices in an Abelian Higgs model over a discretised two-dimensional spatial

grid. We can interpret the vortices as point-like particles, treating the zero of the Higgs



70

field as the position of the vortices, |¢|> = 0. The algorithm leverages a combination
of field analysis, polynomial fitting, optimisation techniques, and intersection detection
to locate these zeros with sub-grid precision. This section outlines the key methods
employed in the algorithm.

Initially, we scan the entire grid to locate the vortex position. For each point on the grid
(i, ), the modulus |$|? is evaluated. A point is considered a zero if |¢|? < 0.1, a threshold
chosen to identify regions near zeros of the field. This criterion is computationally
efficient and ensures that potential vortices are not missed, although it requires further
refinement.

To achieve sub-grid accuracy for the positions of the vortices that are close to each other,
we fit a bivariate quadratic polynomial to the modulus |¢[? in a local neighbourhood
around each candidate point. We choose a 5 x 5 grid of data points to sample around

the zero, centred at (7, ;). The fitted polynomial is of the form
f(x) = ax? + bas + cxy + dwy + e, (7.7.1)

where a, b, ¢, d, e are coefficients determined by solving a linear system. The system is
constructed as Ac = b, where A is the design matrix with columns corresponding to
22,52, 71,79, 1, b is the vector of sampled values of ||, and ¢ = [a, b, ¢, d, e]T is solved
using Gaussian elimination. The minimum of this quadratic surface, found analytically
as x1 = —c¢/(2a) and x9 = —d/(2b), provides an initial estimate of the position of the
vortex, assuming a,b > 0, which indicates a local minimum. To refine this estimate,
we employ two optimisation techniques. First, we consider the Nelder-Mead Simplex
Method. An initial simplex is constructed around the candidate position and we evaluate
the polynomial at the vortex position. The polynomial is minimised using the amoeba
method, adjusting the simplex iteratively to converge on the minimum. If Nelder-Mead
fails and a minimal solution is not found, a coordinate descent algorithm is used as a
fallback, iteratively optimising x1 and xo while keeping the other coordinate fixed. The
resulting zero is stored as the vortex position if it is sufficiently distinct from previously
identified vortices (checked via a distance threshold of 2 units).

For well separated vortices, it is computationally effective to consider tracking the zero
contours of ¢; and ¢2, the real and imaginary components of the Higgs field. We detect
the zeros of ¢1 and ¢ using linear interpolation between the grid points where ¢ or

¢2 changes sign. Next, we fit polynomial curves up to second-order to the zero contours
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using the Nelder-Mead method to minimise the sum of squared errors (SSE). To calculate
the vortex zero, we find the intersection of the ¢; = 0 and ¢2 = 0 contours. This method
ensures robustness by directly targeting the field zeros rather than relying solely on the
modulus.

The refined position is accepted only if it is sufficiently distinct from other vortices and it
remains close to the position calculated in the subsequent time step. If these conditions
fail, the algorithm may flip the vortex position across the origin (assuming a head-on

scattering) or revert to the previous position, ensuring continuity.

7.8 Finite Difference Approximation

We employ finite difference approximations to discretise spatial derivatives in the equa-
tions of motion egs. (6.2.17) and (6.2.18), enabling numerical evolution on a grid. These
approximations replace derivatives with differences based on function values at discrete
points, using Taylor expansions to determine their accuracy, which depends on the step
size Az = Azy = h. We define f() as the function value f(:cgi),a:éj)) at grid point
(,7) on the ny X ngy lattice. The second-order centred difference approximations for the
first degree derivative in x1 and x5 are

fltLg)  pli=1)

2h
1) _ plid=1)

2h

AL f9) = + O(h?), (7.8.1)

32]0(2}]‘) _

+ O(h?). (7.8.2)

The second-order centred difference approximations for the second degree derivatives

are given by

FlHLD) 9 pd) 4 fli=1)

o f9) = > +0(1?), (7.8.3)
) g fd) 4 plid1)
Do f09) = £ fh2 I L om), (7.8.4)

The fourth-order centred difference approximations for the first degree derivatives in x;

and xo are
o, f) = —IV 81 — ST L oy, (7.8.5)
gy i) = ST A 8T A oY), (7.8.6)

12h
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The fourth-order centred difference approximations for the second degree derivatives are

— fUH29) 4 16 £+ — 30 f00) 4 16 £ 17) — f(i=2.3)

(i) — 4

oi1f e oY),  (187)
C_342) 416 £ 30 £6d) 4 16 Fld—1) _ Fii—2)

dy2 ) = —f7T +16f ?1% T+ 167 7 Lomd).  (7.88)

since our simulations involve a two-dimensional 601 x 601 grid, we also require approx-
imations for mixed derivatives. The fourth-order centred difference approximation for
the mixed derivative 0o f is

FOFLIFD _ plHLi=1) _ pl-Li+1) 4 pli-1i-D)
402

Ao fO9) = +O(hY), (7.8.9)

where h is the uniform grid spacing. These methods, derived from Taylor expansions,

4th

underpin our 4"-order finite difference operators, ensuring accurate spatial derivatives

on the 601 x 601 grid.

7.9 Conclusions

This chapter has developed and implemented a variety of nonlinear numerical methods
to investigate the dynamic solutions of the Abelian Higgs field equations, as defined in
egs. (6.2.17) and (6.2.18), with a focus on vortex scattering from initial conditions of
well-separated, Lorentz-boosted vortices. By discretising the fields on a regular 601 x 601
grid with spacing h = 0.1, and employing 4*"-order finite difference operators for spatial
derivatives, we constructed a discrete Lagrangian L4;s that approximates the continuous
functional £[®, A]. The 2"d-order Leapfrog method, with a time step A; = 0.01, proves
to be effective for time evolution, balancing computational efficiency with symplectic
conservation properties essential for long-term stability in vortex dynamics.

The incorporation of Lorentz transformations enabled the simulation of vortices with
initial velocities, with the Lorenz gauge 9, A" = 0 emerging as the optimal choice over
the temporal gauge Ag = 0. As demonstrated in figure 7.5.1, the Lorenz gauge preserves
the radial symmetry of a critically coupled N = 2 vortex moving in the x; direction,
avoiding numerical artefacts observed in the temporal gauge. This compatibility of the
gauge with natural boundary conditions, detailed in (7.4.2), allowed radiation to exit
the system, preventing reflections that destabilise the simulation, as evidenced by the

smooth winding of the phase in figure 7.4.1.
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To further enhance stability, damping boundary conditions with a carefully tuned func-
tion K (x) absorbed residual radiation, aligning results with those of a larger 2001 x 2001
grid where boundary effects are minimised. The arrested Newton flow method, con-
strained by an arresting condition, provided a robust approach to evolve fields toward
minimal static solutions. For vortex position analysis, we developed a zero-tracking
algorithm, combining polynomial fitting, Nelder-Mead optimisation, and contour in-
tersection, such that we achieved subgrid precision, effectively capturing both closely
spaced and well-separated vortex dynamics.

Collectively, these methods yielded a stable, accurate framework for simulating Abelian
Higgs vortex interactions. We suggest a significant importance of boundary conditions
and gauge choices for maintaining physical stability when exploring complex vortex
behaviours. Future work could extend these methods to higher-order integration schemes
or adaptive grids to further refine resolution and computational efficiency, deepening our

understanding of topological soliton dynamics in field theories.



Chapter 8

Linearisation

8.1 Introduction

This chapter includes work from [11, 13, 47]. In this chapter we will study the normal
modes for vortices. This was first studied for several values of A by Goodband and
Hindmarsh in [36], and we will take a similar approach here. Recently, these modes
have been studied in more detail using different methods for A = 1 [8, 9] and all A

[14, 67].

8.2 Omne-Dimensional Spectral Flow

To proceed, we consider perturbations of the fields (¢, A) around the background of a
static vortex solution (¢s,a).
It is convenient to rewrite the vector gauge potential in terms of total angular momentum

states
ay = ay + iag, a_ = ay — ias, (8.2.1)

and hence consider the quantities

p(z) = 2D = Bel2). yi(a) = 2@ —ax(@) (8.2.2)

€ €

where a_ = a4 and (¢s(z),ax(x)) is the static solution of egs. (6.2.17) and (6.2.18).

Hence, the system is close to the static vortex precisely when the perturbations ¢ and
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X+ are small. This gives a correction to the action eq. (6.2.1) of the form
S = S(¢s,ax) + €255 + O(€%), (8.2.3)
where € < 1 is the magnitude of the perturbation, and

1 ; —twt 7w —iw
Sz = 2/595 &z, §1(x) = (x—e™", xpe ™ et e ) (8.2.4)

where £ is a vector of the perturbations, w is the angular frequency of the linear mode,
and t denotes time. Note that the linear action term vanishes because (¢, A,) is a
solution of the Euler-Lagrange equations of motion egs. (6.2.17) and (6.2.18). Since € is
small we can neglect all terms higher than quadratic, leaving only linear corrections to
the equations of motion.

Then, the total fields are

$(z) = ds(x) + evp(z) e o(z) = ps(2) + ev(z) e,
Ay () = ap(2) +exp(z) e ™, A_(z) = a_(x) + ex_(x) ™", (8.2.5)

In order to set up the eigenvalue problem for the perturbations, we seek to remove the

linear derivative terms by choosing the background gauge condition [27]

X! — (s — dsp) = 0. (8.2.6)

This gauge choice removes the gauge degrees of freedom. Moreover, the Lorenz gauge
O, A" = 0 is satisfied by this gauge condition. The Lorenz gauge is chosen for the full
field theory dynamics because we found it to be the most suitable gauge choice for
numerical simulations in chapter 7.

With the above ansatz, we obtain the eigenvalue equation from D by separating the

time derivatives

X+ X+

Daa o | , (8.2.7)
(& Y
¢ ¥
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where
D 0 A
0 D C
DBG = ;
EFE B Dy Vi
C A Vy Dj
and

Dl =—-A+ ’¢s|27
A
Dy =—-A—i(a+ +a-)01 + (a4 —ay)0 + (2|¢s|2 —1) +ara + o5,

D3 =—-A+i(ar +a-)01 — (ay —a—_)02 + = (2|ng|2 — 1) +ara_ +|bs)?,

(8.2.8)
A = i01¢s + Datps + Psa B = —i01¢s — ags + dsa
C =1i01¢9s — ay(bs +%a7 ) E = —iO¢s + 0205 + Pa_,
A A2 2
Vi=3565— 65, Va=356s —6s
with the Laplacian defined as A = 0,5 + Oyy-
We can use the radially symmetric ansatz (see eq. (6.5.3)) for ¢, and note that
CL;_ — Za@(p) e—i97 as— — _Zae(p) eie, (829)
p p

where ag(p) is a radial profile function found by solving eq. (6.5.5). We choose (Ao, 4,, Ag) =
(Ao,0,ap(p)), where the radial gauge A, = 0 is imposed.
The perturbations are given by [30]

T ST LA B S e
k k

k k

where N is the topological charge, and k € Z is the wave number.
Substituting eq. (8.2.10) for the perturbations, eq. (8.2.9) for ay and eq. (6.5.3) for ¢s,

we can reduce the eigenvalue problem, eq. (8.2.7), to a 1—dimensional problem. We
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hence have the eigenvalue problem

D 0O A B a_g a_g
0 Dy B A o f
=w? : (8.2.11)
A B D3 V S_k S_k
B A V Dy Sk Sk
where
1 5  (E+1)2
1 5 (k—1)2
1 1 0 .o A
Dy = =05 = 0+ 5 (a0 = (N = )* + A +1) = 5,
1 1 0 .o A
D4:_8pp_;ap+ﬁ(a6—(]v+k)) +f ()\4'1)—5,
a=p-Liv_ay
p
B=—f-L(v_ay
p
V= %()\ —2)f% (8.2.12)
We hence have a system of coupled ODEs
_ _ 1. _ E+1)2
o= -Gy~ o+ ana(+ ) s - Lo - o) -+ L v - )
(8.2.13)
1 kE—1)?
Par = =Oyn — e+ an( 2+ EoE) — s L - a) s = Ly - o)
(8.2.14)
2- - Lo . 2 42 A
WS_fp = —0ppS_j — ;8p8_k + S_k(pﬁ(ag —(N=Kk)*"+ f“(A+1) - 5) + e
1
-+ @_k(f/ - i(N — ag)) - ak(fl + i(N — ag)) + 5()\ — 2)f28k (8.2.15)

1 1 A
w?sk, = —Oppsk — —Opsk + sk(—(ag — (N + )+ PN +1) =)+
p p 2
1
-+ Oék(f/ — i(N - ag)) — @,k(f/ + ﬁ(N — ag)) + 5()\ — 2)f2§,k. (8.2.16)
We now employ a central second-order finite-difference scheme to discretise the system

of coupled ODEs egs. (8.2.13) to (8.2.16), and write the eigenvalue problem as a 4 x 4



78

block matrix, with entries of size M x M. The whole matrix is then of size 4M x 4M.

The set of discretised ordinary differential equations (DODEs) is as follows:

_(i+1 _(2 _(i—1 i+1 _(i—1
wQ@Z) :_Oé(_k )—204(_3f+a(_k ) _ia(k ) (—k ) () 2+(k+1) (
—k h? ih 2h
. (N — ') f(Z
) A ) —(z)
+ <f 7 O
1+1 1—1 1+1 i— 1
a2 o) el o o 1P
k h? ih 2h
i (2)
(o SN =4 o (o _ - ae
ih kT
_(2+1 _ i—1 _(i+1 i—1)
w2§“:—8(—k) 25) 4500 Y 50
—k h2 ih 2h
(a)) — (N = k))? oz A o
D(fW)y? = =
‘ (N — ¢D , , (N — oW , 1
gy _ YN —ag )N o) e TN —ag ) 6 (0)2500)
0 () - (H—l) 23;) +8(z 1) - 1 Sg—i—l) _ 35; 1)
Wk T ih 2h
N —l— k))? Al
[ <A+1><f<>>2—2] 5
_ g . , O(N — g . o
< % )> ay - (f’(” W =) % )> 6%+ (- 25059,

(8.2.17)

where h is the step size in p, and the functions are evaluated at discrete points such
that g(ih) = ¢ for i = 1,2,...,M + 1. The coupled system of ODE’s (egs. (8.2.13)
o (8.2.16)) have singular points as p — 0. Thus, we must ensure regularity at the
singular point p = 0. We do this by using the Frobenius method near the singular point.

The Frobenius method assumes the solution g(p) takes the form of a power series
e -
p)=p" > ulpl, (8.2.18)
§=0

where g € {a_g, ag, S_k, sk}, and uég) # 0. Using the asymptotic behaviour f(p) ~ cp',

ag(p) ~ dp* near p = 0, we derive the indicial equations. For a_g, substituting
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eq. (8.2.18) into the ODEs eq. (8.2.13) gives the recurrence relation

[ (s+4)%+ (k+1)? ujp]-i-z —wPuj_op?] + O(p*NF2) = 0. (8.2.19)
7=0

Annihilation of the j = 0 term gives the indical equation
ap: —8+k+1)?=0= s==+(k+1). (8.2.20)
Choosing s = k + 1 (since k > 0) to ensure regularity, the solution is
Go(p) = uf M PP S R (8.2.21)

The recurrence relation between the odd coefficients of eq. (8.2.19) suggests that these

coefficients vanish, hence we have the recurrence relation between even coeflicients

2

(@—k) w (077k)
= =1,2,... 2.22
U, —4(m—|—k:—|—1)u2m*27 m < ’ (8 )

where j = 2m, and m =1,2,....

For ay, substituting eq. (8.2.18) into eq. (8.2.14), the leading terms give
ar: —8+(k-172=0 = s==+(k—1). (8.2.23)
Choosing s = |k — 1] (since k € Z, adjusting for k < 2 if necessary), the solution is
ag(p) ~ u((]ak)p|k_1| + uga’“)p““_l'Jr2 +-e (8.2.24)
The recurrence relation for oy, from eq. (8.2.14) is
[—(s4+4)* + (k — 1)?] ué»a’“) + higher-order terms = —wzuﬁ’g, (8.2.25)
where for j =0, s = £(k — 1), and for j = 2m, even coefficients satisfy

2

(ak) _ w (ak) _
Uom = —4(m+|k—1|) U o, MM 1,2,.... (8.2.26)
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For 5_j, substituting eq. (8.2.18) into eq. (8.2.15), using ag(p) ~ dp?, the leading terms

give

|

g =S+ (N-k)?=0 = s==%(N—k). (8.2.27)
Choosing s = |N — k| (assuming N > k for regularity, else adjust), the solution is
5_n(p) m ul=H) pIN=HI (5=b) pIN=RIF2 (8.2.28)
The recurrence relation for s_j from eq. (8.2.15) is
[—(s4+ )+ (N —k)?] ug-g_k) + higher-order terms = —wQuﬁ‘Q’“), (8.2.29)
where for j =0, s = £(N — k), and for j = 2m, even coefficients satisfy

2

(571@) w (57,6)
=— =12, .... 2.
U, T k‘)u2m72, m=1,2, (8.2.30)

For s, substituting eq. (8.2.18) into eq. (8.2.16), the leading terms give
sp: —82+(N+k)?=0 = s==%(N+k). (8.2.31)
Choosing s = N + k for regularity, the solution is
sp(p) ~ u(()s’“)pNJrk + uésk)pNJrkH 4 (8.2.32)
The recurrence relation for s; from eq. (8.2.16) is
[—(s+5)*+ (N + k)% ug-s’“) + higher-order terms = —w2u§§“2), (8.2.33)

where for j =0, s = £(N + k), and for j = 2m, even coefficients satisfy

(sk) _ w? (s1)

Yom =~ —4(m + N + k) Yom-2>

m=12,.... (8.2.34)

For boundary conditions at p = 0 (i = 1), if g(0) = 0, we set g1 = 0 for g €

{a@_k, ok, 5_k, sg - Otherwise, if ¢(0) is constant, regularity requires g’(0) = 0, so using
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a second-order forward difference formula [9]

0@ 4 490 _ 340 1) _ @
g0 =47 2gh T g = g0 0 (8.2.35)

Thus, the boundary conditions at ¢ = 1 are

~(2) _ -(1) 2 1 (1)
2all) _ Cdal -al N [(f(l))z (k+1) ] d(_lllJr <f,(1) _ FO(N — ay )) 5(_1;1

k3 a2 e h
(1) N — (1)
<ff<1>+f ( . %) st (8.2.36)
2 @ 12 (1) ()
2 (1) 4oy Q, e , (k=1) (1) n o YN —ay)\ o
W = _3 h2 |:(f( )) + h2 Q" — f/( )+ h —k
N 1)
+<f/(1> LAl - %) s, (8.2.37)
(2) (1) 1) 2
_ 487, — 8- (ay’ — (N —k)) A
VI Lo et S ) AT P
fm N —a'V _ (N —a 1
+<f(1> ( . ) a® — (o4 24 % ) of) + S =2,

(N — g® W(N — o 1
N <f/<1> A Gl 10 R DRONES (7 INF A Gl WA PO SO = 2)(s0)2s),

h h -
(8.2.39)
where h is sufficiently small, and 07_0,)€ = a,(fo) = 5(_0,1 = SIE:O) = 0 if the series starts at a

positive power. At i = M + 1, we impose

aMHD) — o (MHD) _ g(MHHD _ ((MAHD _ q, (8.2.40)

The eigenfunctions are normalised using the Lg normalisation condition

> 2 2 2 2
7 [ (o () + sk 5 pdp =1 (8.2.41)
0

If we consider a vortex solution of degree N = 1, and wave number k£ = 0 for the mode,

then sy = S_¢ and ap = @_g and eq. (8.2.10) is simplified, giving the following ansatz
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Figure 8.2.1: Discrete eigenfunctions for all wave number k& < N, for a radially
symmetric degree N = 2 vortex

for the perturbations

Pi(z) = so(p)

Y2(x) = sin (0) so(p)

xi(z) = 0) ao(p),

x2(x) = cos (0) ao(p) (8.2.42)
DA = w? @0 , (8.2.43)
A D3 S0
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Figure 8.2.2: Discrete eigenfunctions for all wave number k& < N, for a radially
symmetric degree N = 3 vortex

where

D= -

A:if(ag—l).

1
Dpp + pap> + 2+

(
D3:—<a,, +;8p)+2(

1
p?’

1
3f2—1)+;<ae—1>2,

(8.2.44)

We hence have eigenfunctions of the form £ = (ag, o, So, o), and the system eq. (8.2.7)

has decoupled into two copies of equation eq. (8.2.44). The boundary conditions are the

same as above for £ = 0.

We now employ a central second-order finite-difference scheme to discretise the system

of coupled ODEs eq. (8.2.44), and write the eigenvalue problem as a 2 x 2 block matrix,
with entries of size M x M. We then use MATLAB to find the eigenvalues of the block
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Figure 8.2.3: Discrete eigenfunctions for all wave number k& < N, for a radially
symmetric degree N = 1 vortex

matrix.

We find that for N = 1, we have only one normal mode, denoted the shape mode, which
is a radially symmetric mode that causes fluctuations in gauge-invariant quantities. We
find that the mode has the squared frequency in = 0.77747 and plot the eigenfunctions

in figure 8.2.3. We have normalised the eigenfunctions using the Lo norm

2 | " (00(p)? + 50(p)2)p dp=1. (8.2.45)
0

Figure 8.2.4 illustrates the resulting spectrum for the range A € [0.1,3] for N =1...4.
The continuum threshold involves two distinct regions. The first is the mass threshold,
at which point w? = A, and a gauge threshold, where w? = 1. These thresholds arise
due to the asymptotic behaviour of the spectral operator, where the fields approach
the vacuum values such that f — 1, and a9 — N as p — oo. Asymptotically, the

perturbations decouple, hence
—V2i + m%ﬂ/) = wy, (8.2.46)

hence w? = m%[ + k2, where mpy = V/\ is the Higgs mass. The continuous spectrum
starts at the minimum energy with k = 0, hence the mass threshold is w? = \.

Furthermore, we have that

—V2xx + mix+ = wiya, (8.2.47)
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Figure 8.2.4: Plot to show the spectral structure as a function of A € [0.1, 3] for
N = 1..4 and wave number k£ < N. The shaded region indicates the continuous
spectrum.

where m 4 is the mass of the gauge field, which comes from the value of the covariant
derivative at oo, i.e. |D,d|* ~ Ai =1, hence my = 1. We therefore have the value of
the gauge threshold w? = 1. Note that at critical coupling, these two thresholds are the
same.

For the case of N = 1, we have two discrete modes at A = 1; see table A.1 for frequencies
of the modes. We have the non-zero energy mode, which is the k¥ = 0 shape mode (blue).
We see that this squared frequency enters the continuous spectrum at A ~ 1.5. We also
have the zero-energy translation mode (orange), which is zero for all A.

Next, for N = 2, we have four discrete modes at A = 1, see table A.2. We have two
non-zero energy modes, the k& = 0 mode (blue), which is a radially symmetric shape
mode and the £ = 1 mode (yellow), which is a shape mode leading to oscillations from
one half plane to the other, centred around the vortex core. The k = 0 shape mode
enters the continuous spectrum at A ~ 3. Furthermore, we see that the k = 1 mode
exists in the discrete spectrum only for a bounded region in A, that is, A € [0.8,1.03].

Again, we have the k = 1 translation mode, which is a zero mode. Finally, we have
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the k = 2 mode, whose excitation leads to a splitting of the vortices. This eigenvalue
is zero at A\ = 1, due to the absence of static forces between the vortex. For A > 1,
the eigenvalue is negative since in this region (type II) the static intervortex force is
repulsive and static solutions for NV > 1 are unstable.

The N = 3 spectrum has five discrete modes at critical coupling (A = 1), see table A.3
for a full description of the frequencies. There exist two shape modes, at k = 0 (blue)
and k = 1 (yellow). In the regions where we have calculated the frequency of the modes,
we do not see where the £ = 0 mode enters the continuum. However, we see that the
k = 1 shape mode exists in the discrete spectrum for A € [0.4,1.3]. Moreover, we have
the k£ = 1 translation mode (orange), as well as two splitting modes for k = 2 (purple)
and k = 3 respectively (green).

Finally, the N = 4 vortex has seven modes at critical coupling, see table A.4. In
particular, we have two k = 0 modes, the shape mode (blue) and an upper mode (red).
The shape mode exists for all the values of A that we have calculated; however, the upper
k = 0 mode exists in the discrete spectrum for A\ € [0.9,1.01]. Furthermore, we have
the k = 1 shape mode (yellow), which exists in the discrete spectrum for A € [0.18, 1.9].
Again, there is the £ = 1 translation mode (orange), but we also have three splitting
modes, that is, k = 2 (purple), kK = 3 (green) and k = 4 (cyan). Any form of splitting of
the N = 4 vortex would be a linear combination of these splitting modes, and similarly

for all N.

8.3 2-dimensional Spectral Flow at Critical Cou-

pling

Note that we can calculate the spectral flow of the shape modes for a vortex system in
2—dimensions at critical coupling (A = 1). To accomplish this, we simulate the full field
theory in 2 dimensions with no excitations, with vortices centred at £d;, where we take
d; =[0:0.1:10]. We perform an arrested Newton flow on this static configuration (see
section 7.2), whereby we have pinned the vortices at the desired separation. We perform
the pinning by setting the fields to zero at the required points.

We seek to numerically solve the eigenvalue problem (see eq. (8.2.7)). Since it is 2-
dimensional, we discretise the spatial domain into a grid. We assume a square domain

discretised into an M x M grid, where we have chosen M = 401, with grid spacing
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Figure 8.3.1: Heat plots for the field values of the perturbations &, corresponding
to the wg o shape mode.

h = 0.1. Each point in the grid (i, j) corresponds to a coordinate (:L‘gi),xgj)) and 7, =

1,..., M. Let us focus on the perturbation 1, as the other perturbation can be discretised
in the same way. We map a two-dimensional grid to a one-dimensional vector, where

(k) = ¢ and k = (j — 1)M + 3. We then discretise the PDEs in eq. (8.2.8). The

2-dimensional Laplacian (A = aa—; + g—;) can be approximated using a second-order
1 2

finite difference scheme, such that at the point (i, j)

h2

A (8.3.1)
Dirichlet boundary conditions have been imposed such that the eigenfunctions are zero
at the boundary. For the right boundary, if mod (i, M) = 0, then (3 = 0. For the
left boundary, if mod (i, M) = 1, then (/) = 0. For the bottom boundary, if i < M,
then we set the perturbation to 0, and finally, for the top boundary, if i > M x M — M,

the perturbations are also zero.

8.3.1 2-Vortex Spectral Structure

This gives us the eigenfunctions in 2-dimensions. We can plot, for example, the modes

at d = 0 for a 2-vortex system, see figures 8.3.1 and 8.3.2.
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Figure 8.3.2: Heat plots for the field values of the perturbations &, corresponding
to the wg 1 shape mode.

We denote the spectral structure as the structure of the linear perturbations. It is
important to note that although the N-vortex solution is degenerate on the moduli
space, the spectral structure changes as a function of the separation of the vortices. We
hence plot in figure 8.3.3 the flow of the modes as a function of the separation for a
2—vortex system.

For concreteness, we assume that the vortices collide along the xj-axis. Thus, their
positions are z = +d with d € R;. (d € R_ gives identical configurations). After the
collision point, at d = 0, they pass to the zs-axis. Thus, d becomes imaginary. For
convenience, we chose d € iR_. The separation is this |2d].

In figure 8.3.3, we plot the spectral structure [9, 10, 39] for a 2-vortex system. Interest-
ingly, we see that the number of bound modes changes with the separation.

When the vortices are well separated, we notice that there are two degenerate bound
modes, the lowest mode (blue) denoted &, and the first upper mode, denoted &o, (red).
The squared frequency of this bound mode is W%,o = 0.777476, which is the same as
what we observed in the one-dimensional linearisation.

In terms of asymptotic initial states, there are two possible initial configurations. We
denote the shape mode of the it single 1—vortex as i), i = 1, 2.. Here, we may excite two

modes, & and &. In fact, £ represents the in-phase superposition of the N = 1,k =0
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Figure 8.3.3: The spectral structure for the 2-vortex solution as a function of
the vortex position parameter d € Ry UiR_

shape mode on the vortices

&= 0+ 12, (832)

and & represents the out-of-phase superposition

1(0)

&= (1) ~12), (533)

where (0) is the initial intensity of the excitation such that I(0) = 1 (ew)?.

As the vortices come closer together (decrease in d), the degeneracy is broken. In the case
of the lower mode &7, the squared frequency decreases monotonically to W%,o = 0.53859
at d = 0. When the vortices are coincident at the origin (d = 0), the squared frequency
of the lower mode takes a minimum value. In section 9.2, we explore the result of the
decreasing squared frequency of the first mode and notice that we find an attractive
intervortex force.

Alternatively, for the upper mode &, the squared frequency increases to wil = 0.97303
at d = 0. We also notice the green curve in figure 8.3.3. This mode exists only for
small values of |d| < d,, where d, is the value at which the green line, denoted as &3,
reaches the continuous spectrum. Furthermore, we have a mode crossing at w%l, where

the two upper modes take the same value. Note that passing through the origin (d = 0)

changes the vortex locations from x; to xo-axis. This means that as d decreases further
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to negative imaginary values, the second mode &2 of the 2-vortex transitions to the third
mode &3, and hence the squared frequency increases further.

In section 9.3, we explore the flow of the upper two modes. Indeed, we find that the
mode increasing induces a repulsive intervortex force. However, for a specific initial
amplitude, explored in section 9.3, we find that the second mode indeed transitions into
the third mode, and the excited vortices reach the point d,, where the squared frequency

hits the continuous spectrum.

8.3.2 3-Vortex Spectral Structure

We now discuss the spectral structure of the 3-vortex system, namely a superposition
of three excited 1-vortices in the Abelian Higgs model at critical coupling. For N = 1,
we have shown that there exists only one non-zero energy mode with eigenvalue W%,o =
0.77747, which arises for angular momentum k£ = 0. This is the radially symmetric
shape mode. For N = 3, the mode structure is more complicated. There are three
shape modes: one radial mode (k = 0) with w2, = 0.402708 and two degenerate modes
for k = 1, with squared angular frequency W§1 = 0.83025. There are no possible bound
states for k = 2, since the effective potential is pushed almost up to the continuum.
The analysis of the flow of the shape modes for the N = 3 vortex is performed in a
similar way as for the N = 2 vortex. To study the spectral flow, we consider paths
within two 1-dimensional geodesic submanifolds of the reduced 2-dimensional moduli
space with y — —y symmetry and centre of mass fixed at the origin, denoted N @
and N'?. The subspace NV consists of configurations where three critically coupled
vortices are equidistant and collinear, aligned along the z-axis (before scattering) or y-
axis (after scattering), with additional  — —xz symmetry. The subspace N @) consists
of configurations where three critically coupled vortices form an equilateral triangle,
satisfying cyclic C3 symmetry (120° rotation). These submanifolds describe head-on
collision dynamics, with A’) corresponding to 90° scattering and N @ to 60° scattering.
Both subspaces support zero modes, which are energy-preserving perturbations (e.g.,
translations or rotations) defining the submanifold geometry, and non-zero energy shape
modes, which are vibrational perturbations with frequencies w%Vk (e.g., the radial mode
for k = 0 and degenerate modes for k = 1). Both N/ M and N@ are totally geodesic
submanifolds of the reduced 2-dimensional moduli space for the 3-vortex system, as

their geodesic flows, constrained by reflection symmetries for AV and C3 symmetry



91

Mass Threshold "L T

Figure 8.3.4: Spectral flow in the one-dim subspace N’ of three collinear 1-
vortices. The coordinate d is the distance of the outer vortices from the origin.

for N® | have vanishing second fundamental forms, ensuring that geodesics starting
tangent to each submanifold remain within it, consistent with the observed 90° and
60° scattering dynamics, respectively. We present the results in figure 8.3.4. We
study the flow of the shape modes along the paths defined by the zero modes in the
1-dimensional subspaces N’ and N®) of the equidistant collinear and the equilateral

triangle solutions, respectively.

8.3.2.1 Spectral flow in the subspace AN of the collinear solutions

The first subspace is formed by three collinear vortices (A = 1) separated by a distance
d, with the centre of mass at the origin. For concreteness, we assume that the vortices
are initially located on the x1-axis.

The spectral flow for a collinear 3-vortex system is shown in figure 8.3.4. Although the
number of discrete modes is the same at the origin, d = 0 (detailing a radially symmetric
N = 3 vortex), and for infinitely separated vortices, (d — +00), not all of the eigenvalues
interpolate between them.

Using the 2-dimensional linearisation, we can also plot the d = 0 eigenfunctions for a 3-
vortex system, see figures 8.3.5 and 8.3.6. First, we consider the blue line in figure 8.3.4,

detailing the squared frequency of the lowest mode, denoted &;. The squared frequency
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Figure 8.3.5: Heat plots for the field values of the perturbations &, corresponding
to the wg o shape mode.
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Figure 8.3.6: Heat plots for the field values of the perturbations &, corresponding
to the wy 1 shape mode.
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grows from W?%,o = 0.4027085 at d = 0 to its asymptotic value, which is the value of the
only existing eigenvalue in the discrete N = 1 vortex spectrum, W%,o = 0.77747.

Next, we study the red line in figure 8.3.4, which shows one of the degenerate eigen-
values, labelled &. The squared frequency interpolates between W?2,,1 = 0.8302566 and
the asymptotic value mentioned above. Interestingly, we see that there exists a local
minimum in the squared frequency. This could suggest a region in which the vortices
might become trapped in a quasi-stationary state. We discuss how this affects vortices
away from critical coupling in chapter 10.

The third eigenvalue (see the purple line) existing for d = 0 has a surprising behaviour.
The degeneracy of wg,l at d = 0 is broken immediately at d # 0 and the squared
frequency increases as we move more positive in d, reaching the continuum threshold at
d5. We estimate the position in which the discrete mode enters the continuous spectrum
to be in the region d} € (3.5,4).

Alternatively, the third degenerate eigenvalue associated with the configuration of three
well-separated N = 1 vortices (see the green line in figure 8.3.4, labelled as £3) emerges
from the continuous spectrum in the region dj € (2,2.5) decreasing to the value W%o-
This means that for the range d € [2.5, 4] the spectrum involves four discrete eigenmodes.
We note that there is also a value of d in this critical region where a level crossing of
the two higher modes occurs.

The structure of the modes is symmetrically reflected as we go to the second part of
the full subspace A’ which contains the collinear solutions placed on the z9-axis. This
takes into account the 90° scattering of the outer vortices when passing through the
coincident configuration. This can be plotted in one graph assuming that d € iR_ UR,,
where d is the distance of the outer vortices from the origin; see figure 8.3.4. Importantly,
at d = 0 a novel phenomenon occurs. There exists a level crossing where the second
mode &5 continues as the third mode for d € iR_. This level crossing will have a very
important effect on the dynamics of the excited N = 3 vortex.

It is important to understand how these shape modes can be excited for asymptotic
states where we have infinitely separated N = 1 vortices. Let us denote the shape mode
of the it N =1 vortex as |i), i = 1,2,3, where i = 2 is the vortex at the origin (d = 0),
and ¢ = 1,3 are the outermost vortices. From the point of view of the asymptotic initial

states, we may excite three modes. The lowest mode (blue curve in figure 8.3.4) is the
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in-phase superposition of the shape modes of the 1-vortices

_ 10
&= "2 (1) +12) +3)). (8.3.4)

The squared frequency of this mode decreases as d goes to 0. Then, for imaginary d it
grows as d — —i00, where the N = 1 vortices are infinitely separated along the xo axis.
The second mode (red curve), which interpolates to w%l at d = 0, is given by the
orthogonal superposition

1(0)

o = W(H) —13)), (8.3.5)

The squared frequency of this mode increases as d decreases to 0. As we have already
observed, after passing to imaginary d the squared frequency of this mode increases as d
tends to —id;, where it hits the continuous spectrum and disappears into the continuum.
In this case, the mode enters the continuous spectrum after the vortices pass through
the coincident configuration.

Finally, the third asymptotically available mode (green curve in figure 8.3.4) is excited

by another linear superposition of the NV = 1 vortex modes.

_ 1O gy
fs—\/g(m 2[2) +3))- (8.3.6)

This mode enters the continuum spectrum for a positive dj, before the constituent N =1

vortices are on top of each other.

8.3.2.2 Scattering of the subspace N? of equilateral triangular con-

figurations

Now we consider three critically coupled vortices located at the vertices of an equilateral
triangle, at a distance d from the origin. The spectral flow for the equilateral triangular
3-vortex system is shown in figure 8.3.7. The spectral flow interpolates between the
discrete spectrum found for the axially symmetric N = 3 vortex, and the eigenmode for
three well separated N = 1 vortices.

The lower mode, labelled &; exhibits a plateau for small d, but monotonically increases
with the separation after d =~ 2, reaching the asymptotic value, being the N =1, k=0
mode. Note that the degeneracy between the k = 1 eigenmodes is preserved for all d,
so we do not see any spectral walls in this case. Furthermore, the squared frequency

of the upper mode, labelled & changes very little with separation. It decreases from
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Figure 8.3.7: Spectral flow in the one-dimensional subspace N of an equilat-
eral triangular configuration of 1-vortices. The coordinate d is the distance of
the outer vortices from the origin.

w;l = 0.83025 for d = 0 to wio = 0.77747. The structure of the modes is symmetric as
the vortices pass the axially symmetric solution at d = 0, and the vortices exhibit a 60°

scattering.

8.3.3 4-Vortex Spectral Structure

In this section we discuss the spectral structure of a 4-vortex system. At d = 0, we
have the axially symmetric N = 4 vortex. We discuss four subspaces of this configu-
ration space. Two of these subspaces are totally geodesic sub-manifolds of the moduli
space, where the spectral structure is stabilised by symmetry. The first subspace N'(})
considers four vortices on the vertices of a square. The second subspace N3 considers
an N = 2 vortex at the origin, with two N = 1 vortices centred with their zeros at
+d respectively. The other two subspaces are cross sections of a 2-dimensional space.
Namely, the third subspace N considers two N = 2 vortices along the z; axis. Finally,
the fourth subspace N considers four N = 1 vortices equidistant along the z; axis. To
address the spectral structure, we consider paths within these subspaces of the reduced
moduli space with center of mass fixed at the origin. The subspaces N1 and N®) are 1-
dimensional totally geodesic submanifolds. The subspace N'(!) consists of configurations

where four critically coupled vortices are located at the vertices of a square, satisfying
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cyclic C4 symmetry (90° rotation) and dihedral symmetries including reflections. This
submanifold describes head-on collision dynamics, corresponding to 45° scattering. The
subspace N'(®) consists of configurations where an N = 2 vortex (two coincident vortices)
is at the origin and two N = 1 vortices are equidistant at +d along the z-axis (before
scattering) or y-axis (after scattering), satisfying cyclic C symmetry (180° rotation)
and reflection symmetries (x — —x, y — —y). This submanifold corresponds to 90°
scattering. Both subspaces support zero modes, which are energy-preserving pertur-
bations (e.g., rotations or translations defining the submanifold), and non-zero energy
shape modes, which are vibrational perturbations. The subspaces N and N@ are
not totally geodesic submanifolds but rather cross sections of 2-dimensional subspaces.
For N @), the configurations involve two N = 2 vortices aligned along the z;-axis, which
may exhibit Co and reflection symmetries but do not constrain the geodesic flow to re-
main entirely within a 1-dimensional submanifold due to additional degrees of freedom.
Similarly, N® involves four N = 1 vortices collinear and equidistant along the x;-axis,
with reflection symmetries, but it serves as a slice through a higher-dimensional space
without the full symmetry stabilization required for totality geodesic property. N()
and N'®) are totally geodesic submanifolds because their strong symmetries (Cy for N )
and Cy for N (3)) ensure that geodesics in the moduli space, starting tangent to the sub-
manifold, remain within it, resulting in vanishing second fundamental forms. Note that
for this section, we only discuss the spectral structure calculated from the 2-dimensional

linearisation, and we do not discuss the full field theory numerical simulations.

8.3.3.1 Spectral structure of the subspace N/

In figure 8.3.8, we see that asymptotically, we only have one eigenmode, with squared
frequency wio. This is a degenerate mode that splits into 3 excitations. At d = 0, we
have two eigenmodes, with squared frequencies Wi,o = 0.31873565 and wil = 0.70092248.
Note that the number of eigenmodes is not constant for all d. In fact, we see that for
|d| > 2, we have three eigenmodes.

First, observe the blue line & in figure 8.3.8. At d = 0, the squared frequency is
wio, which is the radially symmetric shape mode for the N = 4 vortex. This is the
global minimum in terms of the squared frequency as a function of the distance d.
Asymptotically, the squared frequency increases to w%o, which is the radially symmetric

shape mode of the N = 1 vortex. This means that an excitation of the mode & will
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Figure 8.3.8: Spectral structure for a 4-vortex system, where the configuration
of N = 1 vortices is the subspace NV, where the vortices are located on the
vertices of a square, and d is the distance of the vortices from the origin.

introduce an attractive intervortex force. Previous results on 2-vortex systems and 3-
vortex systems would suggest that this would lead to multiple bounces, whereby the
vortices scatter at 90°, and we would expect to see a phase dependant fractal structure
for the number of bounces.

Next, consider the red line & in figure 8.3.8. The squared frequency at d = 0 is wil,
which is the k = 1, N = 4 mode. Asymptotically, the squared frequency also increases to
W%,O’ suggesting that an excitation in this channel is also attractive, but not as strongly
as £1.

Finally, we consider the green line &3 in figure 8.3.8. We observe with &3 that there is a
mode that reaches the continuous spectrum before the vortices scatter, suggesting the

existence of a spectral wall.

8.3.3.2 Spectral structure of the subspace N/

Next, we consider the subspace N'3) of four vortices, where we have an N = 2 vortex
at the origin and two N = 1 vortices equidistant on the x; axis, and d is the distance
from the outer N = 1 vortices to the origin. Interestingly, we see in figure 8.3.9 that we
have the same number of modes at d = 0, and asymptotically (d — o00). For the N =4

coincident configuration, we have three modes, a lower and upper wz o mode, as well as



98

Mass Threshold ' '

Figure 8.3.9: Spectral structure for a 4-vortex system, where the configuration

is the subspace N'®) where we have two N = 1 vortices equidistant on the x;

axis, and a N = 2 vortex at the origin, and d is the distance of the vortices from
the origin.

the wil shape mode. Asymptotically, we have the wS,O mode, the in mode, and finally
the w%jl mode.

First, consider the blue line £; in figure 8.3.9 which is the lowest excitation. We see
that this excitation interpolates between the mode with squared frequency W%,D asymp-
totically, to the mode with squared frequency Wio at d = 0. The squared frequency
decreases as the vortices approach the axially symmetric N = 4 configuration, suggest-
ing an attractive intervortex force. Note that this excitation is a global minimum.
Next, consider the red line & in figure 8.3.9. The asymptotic value of the squared
frequency of this mode is wio, which is degenerate. As the vortices come closer together,
the degeneracy is broken. As we decrease in d, the squared frequency decreases to wil at
d = 0, where we have a mode crossing between &, and & (the purple line in figure 8.3.9).
After the vortices pass the axially symmetric N = 4 configuration, the squared frequency
then increases to W%,l asymptotically. This suggests that the mode is attractive ind € R
and then changes to repulsive in d € R™. Furthermore, we see that for small positive
d, there is a local minimum, suggesting that vortices might become trapped in a quasi-
stationary state where the squared frequency takes its minimum value.

Finally, we have the third mode &3, see the green line in figure 8.3.9. We see that at
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Figure 8.3.10: Spectral structure for a 4-vortex system, where the configuration
is the subspace N, where we have two N = 2 vortices equidistant on the x;
axis, and d is the distance of the vortices from the origin.

d = 0, the excitation takes the value of the upper wso mode. As the vortices separate,
the squared frequency decreases to wio. This suggests a repulsive intervortex force.
Furthermore, we have an additional mode crossing with the &4 excitation (purple), which

is the reflection of &,.

8.3.3.3 Spectral structure of the subspace N

Consider the subspace of two N = 2 vortices. At d = 0, we see that we have three
modes, the lower ones with squared frequencies wio, wil, and the upper one with
squared frequency wio. Asymptotically, we have two degenerate modes, which are the
two modes that exist for the N = 2 vortex with squared frequencies W%,o and w%l.
First, consider the blue line & in figure 8.3.10. As in the case of the subspace N, at
d = 0 this mode is the global minimum, with squared frequency wio. As two N = 2
vortices separate, we see that the squared frequency increases to w%,o» suggesting an
attractive intervortex force.

Next, we discuss the red line & in figure 8.3.10. Asymptotically, we see that the de-
generacy of the W%,o mode is broken. The mode increases to w4, at d = 0. Note that

there is a level crossing between & and &3 after the vortices pass through the axially
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symmetric N = 4 configuration. The squared frequency continues to increase, reaching
w%l. This would suggest a repulsive intervortex force.

There is also a third excitation; see the green line &3 in figure 8.3.10. Asymptotically, the
excitation has squared frequency w%)l. This mode is also degenerate. The degeneracy
is broken as the vortices come close together. The squaredfrequency initially decreases,
suggesting an attractive force. There is a mode crossing with &4 (the reflection of &5).
After this crossing, the squared frequency increases so that at d = 0, the squared fre-
quency is that of the upper mode, with squared frequency Wio- This mode appears to be
symmetric across the x1 and z2 axes. Hence, the vortices scatter through the upper w4 o
configuration. Note that this overall increase in squared frequency suggests a repulsive
intervortex force. Therefore, we see that an excitation of the form &3 would induce an
attractive-repulsive force as the separation of the vortices varies.

Finally, we observe the cyan line &5 in figure 8.3.10. Again, the asymptotic value of
this excitation is W%,r The degeneracy is broken once again as the vortices come closer
together and the squared frequency quickly reaches the continuous spectrum at a finite
distance d € [2,3]. This suggests that an excitation of this form could result in the
formation of a spectral wall. Note that this excitation only slightly increases as the

vortices come closer together, suggesting a weakly repulsive intervortex force.

8.3.3.4 Spectral structure of the subspace N/

Finally, for 4-vortex configurations, we consider the subspace N of four N = 1 vortices
equidistant along the x1-axis. Here, d is the distance of the outer vortices from the origin.
The spectral structure is indeed quite similar to the spectral structure in the subspace
N@) | however, there are some key differences. We have the same number of modes at
d = 0, however, the number of modes is not constant for all d.

Quite strikingly, notice the purple line &4 in figure 8.3.11. Here we see that asymptotically
the value of the excitation is w%’o. As the vortices come closer together, the squared
frequency increases rapidly, reaching the continuous spectrum at d € [5,6]. The would
suggest the formation of a spectral wall before the vortices scatter.

We note that the lowest excitation &; (see the blue line in figure 8.3.11) is indeed quite
similar to that in figure 8.3.9, hence we expect the same behaviour. Additionally, we
see that the cyan line &5 in figure 8.3.11 is in fact the same excitation as &3 (green) in

figure 8.3.9.
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Figure 8.3.11: Spectral structure for a 4-vortex system, where the configuration
is the subspace N, where we have four N = 1 vortices equidistant on the z;
axis. d is the distance of the vortices from the origin.

Next, consider the second excitation &9, the red line in figure 8.3.11. Similarly to the sub-
space N@ | we observe a local minimum where we might expect to see a quasi-stationary
state. Surprisingly, after the vortices pass the axially symmetric d = 0 configuration,
the path of the mode differs from that in the previous subspace. Here, we see that
the squared frequency increases after the level crossing with &3 (green), reaches the

continuous spectrum at a position d € [—5i, 61] after the vortices scatter.

8.4 Conclusions

In this chapter, we have investigated the spectral structure of vortices in the Abelian
Higgs model, focusing on the linear perturbations and normal modes for N =1, N = 2,
N =3, and N = 4 vortex configurations.

By employing a radially symmetric ansatz and a central second-order finite-difference
scheme, we reduced the eigenvalue problem to a one-dimensional form, enabling the
identification of discrete modes, including shape, translation, and splitting modes. For
N = 1, we identified a single shape mode with squared frequency W%,o = 0.77747,
alongside a zero-energy translation mode. The N = 2 system revealed four discrete

modes at critical coupling (A = 1), with the k¥ = 0 shape mode entering the continuum
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at A = 3. For N = 3, five discrete modes were found, with complex spectral flow
indicating potential quasi-stationary states, particularly for the £ mode with a local
minimum. The N = 4 system exhibited seven modes, with spectral walls suggested by
modes reaching the continuum at finite separations.

The two-dimensional spectral flow analysis further showed how mode frequencies vary
with vortex separation, indicating attractive and repulsive intervortex forces. For in-
stance, the & mode in the 2-vortex system decreases in squared frequency as vortices
approach, suggesting an attractive force, while the £&s mode’s increase suggests a repul-
sive force, with mode crossings pointing to possible spectral walls. Similarly, the N = 3
and N = 4 systems displayed complex mode structures, with implications for scattering
dynamics explored in subsequent chapters.

These findings, building on prior work [8, 9, 14, 36, 67], provide a robust foundation for
understanding vortex interactions and their dynamic behaviours in the Abelian Higgs

model.



Chapter 9

Excited Vortex Dynamics at

Critical Coupling

9.1 Introduction

This chapter includes work from [11, 13, 47]. In this chapter, we will consider the
second-order dynamics of vortices away from My by exciting the normal modes of the
individual vortices. We will demonstrate that vortices do exhibit long-range forces at
critical coupling when their normal modes are excited. We will then consider the effect
of these excited modes on the scattering of vortices.

Several studies have considered the effect of excited normal modes on the scattering
of solitons and antisolitons in 1-dimensional wobbling kinks [15]. The scattering of
wobbling kink/anti-kinks (while exhibiting strong attractive static forces) are shown to
bounce off each other depending on initial velocities and the intensities of the excited
mode. The number of bounces has also been shown to be chaotic in nature. Further
motivation arises during the scattering of N > 1 vortices, see section 6.8.2, where we
observe the natural excitation of NV = 1 vortex shape modes.

We explore the numerical techniques used in simulating vortex dynamics. We display

results found from scattering vortices with excited shape modes.

9.1.1 Initial Configuration

We now explore a single vortex solution to the static equations of motion with excited

shape mode. We can hence generalise an initial configuration for the vortex fields when
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the shape mode is excited.

P1(t, 1, x2) = R((x1 + iz2) V) F (22 + 22) + e (z) cos (wt — a(0)),
ba(t, 21, 29) = Z((x1 + ize) V) F (22 + 23) + etha(z) cos (wt — (0)),
0
Au(t,z1,02) = | —29G(a3 + 23) + exa(x) cos (wt — a(0)) | (9.1.1)

171G (22 + 23) + exa() cos (wt — o(0))

where o(0) is the initial phase of the mode, v;, x; are the perturbations, F' and G are
the solutions of eq. (6.5.9), w is the angular frequency and € is the magnitude of the
perturbation.

We can now simulate a single vortex of degree N, with excited shape mode. We can
hence study the intensity of the N = 1 excitation over time, by calculating the amplitude
of the static potential energy. Figure 9.1.1 shows how the intensity of the excitation
changes with time. Mathematically, the energy is conserved, however the damping
boundary conditions (see chapter 7) remove radiation from the system that approaches
the boundary. Thus, in a numerical sense, the total energy in the system decreases as
radiation is absorbed.

The solid black line indicates the choice of € used for the majority of our results. We

denote the initial intensity of the excitation I(0), where
I(0) = = (ew)?. (9.1.2)

We can see that there is an exponential decay by taking a logarithm of the intensity, see
figure 9.1.2, whereby for € < 0.7, the resulting curves are straight lines. Initially, we see
that for larger €, the intensity of the shape mode decays faster. However, changing the
initial intensity is the same as shifting through time, see figure 9.1.1, whereby we can
shift along the time-axis such that all initial intensities can be considered as a decayed
excitation along the same curve.

Figure 9.1.1 gives us a range of suitable intensities for the excitation of the shape mode
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Figure 9.1.1: Change in intensity of the N = 1 vortex shape mode against time,

where the intensity is the amplitude of the fluctuations in the static potential

energy. The black line with € = 0.9 corresponding to 7(0) = 0.317 is our default
initial intensity in section section 9.2, where 1(0) = 3 (ew)?
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Figure 9.1.2: Log-plot of the intensity of the N = 1 shape mode against time, to
show the exponential decay of the excitation. The black line with e = 0.9 cor-
responding to I(0) = 0.317 is our default initial intensity in section section 9.2.
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to scatter excited vortices. We then boost the vortex eq. (9.1.1) using a Lorentz trans-

formation, see section 7.1

O1(t, 21, x2) = R((Y(x1 + vt) +iw2)V)F (72 (@1 + vt)” + 23) + ey (Z) cos (wy(t +va1) — o(0))

Go(t, x1,22) = Z((y(21 + vt) + ix2) V) F (42 (21 + vt)? + 23) + eho(T) cos (wy(t + va1) — 0(0)),

—yvzoG (Y2 (21 + vt)? + 23) + yvex1 () cos (wy(t + vry) — o(0))

Au(t,z,22) = | —yaoG(y2 (1 4 vt)? 4 23) + vex1 (&) cos (wy(t 4 vay) — o(0))
V(@1 +ot)G(y? (w1 + vt)? + 23) + ex2(Z) cos (wy(t +var) — o(0))
(9.1.3)

For large initial intensities, the nonlinear terms in eq. (8.2.3) become significant, and we
observe that the energy is phase dependent, varying up to order O(e?) for a m—shift.
It is outlined in section 9.2.3 how to excite the same mode using a Derrick scaling.
We find that the mode excitation can be well approximated by a scaling of the fields.
However, this allows less freedom in the choice of the initial phase. To alter the phase
using the Derrick’s method, we must evolve the vortex in time to numerically change
the initial phase of the mode, which results in a small decay in the energy. Using the
method by which we alter the phase in the Derrick’s approximation, we can also alter
the phase the same way for eq. (9.1.3). By changing the phase this way, the intensity
of the shape mode decays by approximately 10~%, which is significantly less than the
contribution to the energy of the higher order terms in the linearisation. Because of
this, we will show in section 9.2 a phase space plot from both methods.

The initial field configurations eq. (9.1.3) are approximations to solutions of the dynamic
equations of motion egs. (6.2.17) and (6.2.18) and can be used to simulate a single degree
N vortex with excited normal modes. We seek to study the scattering of excited N =1
vortices; hence we must create multi-vortex field configurations that are also solutions to
the equations of motion egs. (6.2.17) and (6.2.18). The Abikrosov ansatz [1] allows us to
find field configurations detailing well-separated Lorentz boosted vortices with excited

shape modes. The Abikrosov ansatz for a given vortex solution (¢(t,x), A,(t, x)) is
¢ =[] -d), A=Y Au(x—dy), (9.1.4)

where d; are the positions of the vortex centres. The approximation works well when

the vortices are well separated from each other, such that the separation is much larger
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than the vortex core size, namely 2d; > 1.

9.2 Quasi-Bound States

In this section, we study the scattering behaviour of two N = 1 critically coupled vortices
with excited shape modes, following the path of the first mode &;; see figure 8.3.3. This
means that we consider an initial excitation of the form eq. (8.3.2).

The excitation leads to an interesting scattering behaviour dependent on initial velocity,
as well as intensity and phase of the shape mode. We look at snapshots of a numerical
simulation which show the scattering of the excited vortices. We also plot different
vortex trajectories, where we vary the initial phase of the shape mode. Furthermore, we
show a plot summarising a sampling of scattering outcomes for a fixed intensity, where
we vary the initial velocity and the phase of the shape mode. We then discuss how this
summary is different if we change the initial intensity of the shape mode. Finally, we
give a brief discussion regarding changing the relative phase of the shape mode between
the two vortices.

For all simulations discussed in this section, the vortices are located at d; = £10, where
d; is defined in eq. (9.1.4). This separation was chosen so that the vortices are initially
well separated and the forces between them can be neglected. Unless stated otherwise,
we consider solutions for a fixed initial intensity 7(0) = 0.317. This corresponds to
e = 0.9, where € is the magnitude of the perturbation, defined in eq. (8.2.5). We
choose a sufficiently large initial intensity /(0) such that there is enough energy in the
shape mode for a considerable amount of interesting behaviour in the excited-scattering
process. We label the initial phase of the shape mode with ¢(0) € [0,27), defined in
eq. (9.1.3). Unless stated otherwise, the two vortices are in phase with each other. We

denote the initial velocity of the vortices by viy.

9.2.1 Results

First, we show snapshots of a simulation for a 2-vortex scattering with excited shape
modes in figure 9.2.1. The initial phase of the shape mode for each vortex is ¢(0) =
2.2612, and the initial velocity is vjy = 0.01. We display the energy density as a heat
plot and overlay the zeros of the Higgs field as black dots. We see that the energy

density fluctuates as a result of the excited shape mode. At critical coupling, there are
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Figure 9.2.1: Heat plots of the energy density, showing snapshots through time

of an excited vortex scattering, with initial phase o(0) = 2.2612, initial velocity

vip = 0.01, and initial separation s = 20. The black dots indicate the zeros of

the Higgs field. This figure shows how the vortices accelerate towards each other

and then scatter at 90°. The vortices then slow before accelerating towards each
other and scattering at 90° again, which repeats many times.

no static forces between vortices, and vortices scatter at right angles, in agreement with
the moduli space approximation. We find that this is no longer the case for excited
vortices. We refer to this multi-bounce behaviour as a quasi-bound state.

For a fuller picture of 2-vortex scattering, we can track the zeros of the Higgs field, as
seen in figure 9.2.2. We plot half the separation of the zeros for a set of solutions to show
the trajectories of the vortices as a function of time. We have only varied the initial
phase ¢(0) for fixed velocity vy, = 0.06725. The solid blue line shows the the position
(d) of the zeros of the Higgs field of the two vortices with excited shape mode from the
origin, and the solid red line is the intensity I(t) of the excitation. The dashed blue
line shows the separation of two vortices with the same initial configuration but without
excitation. The dashed red line indicates the intensity of a single vortex with the same
mode excitation.

Let us begin by discussing the excited vortex scattering in general. We can see that the
trajectories of the vortices with excited shape modes are different from those without
excitation. Initially, there is no deviation between the vortex trajectories with or without

excitation. There is also no curvature in the trajectories before d ~ 8, showing that the
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Figure 9.2.2: Tracking of position of the vortices with time, plotted in blue.
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Figure 9.2.3: Numerically calculated flow of the squared angular frequency w?

from a dynamical simulation, as a function of the distance of the vortices to

the origin d (blue), where s = 2d, and spectral flow calculated from the 2-

dimensional linearisation (red). We choose an initial velocity of v, = 0.01, and
initial intensity 7(0) = 0.01, where I(0) = 1 (ew)?.

vortices travel initially at a constant velocity. This is because the length scale of the
mode is approximately the same as the size of the vortices, which fall off exponentially
at approximately d = 8, see figure 8.2.3.

For d < 8, the trajectory of the excited vortices begins to deviate from that of the
standard scattering. We observe an increasing slope in the trajectory of the excited
vortices, and the excited vortices also collide sooner than without excitation. We can
hence see that the vortices begin to accelerate towards each other within this region. This
interaction is similar to the behaviour of type I vortices, where vortices are attractive;
see figure 6.6.1.

In all tracking plots, the intensity of the excitation drops after the vortices collide.
We can see that this is a result of the collision as this is a deviation from the dashed
blue line. This is due to the energy transfer mechanism, where energy from the mode
is transferred to the kinetic energy of the vortex. After the excited vortices scatter,
the intensity increases slightly, suggesting that the kinetic energy from the vortices is
transferred back to the excitation. This is confirmed by studying figure 9.2.3, where we
plot the flow of the angular frequency as a function of the separation of the vortices for
a simulation where the vortices are not trapped in a quasi-bound state. We see that the
frequency drops as the vortices scatter, suggesting that an excitation of this form is in

the attractive channel. This confirms what we see from the lower mode £; in figure 8.3.3.
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Furthermore, if there is more energy in the excitation, the vortices become more at-
tractive, and hence we observe that they scatter again. Near the end of the simulation,
we can see that the intensity of the excitation has decreased significantly, especially for
figures 9.2.2c and 9.2.2d. It is possible that there is not enough energy left in the ex-
citation, as it radiates energy as a result of the fast decay of the intensity. This means
that not enough energy can be transferred to the kinetic energy, and hence the vortices
escape.

There are some slight fluctuations in the intensity after the vortices collide. We believe
this fluctuation to be a result of the Doppler effect as radiation is emitted from the
vortices as they travel, which we have reproduced by studying the Doppler effect. Note
that this is not displayed in this thesis.

Figures 9.2.2¢ to 9.2.2e display a quasi-bound state, where we have multiple bounces.
Figure 9.2.2¢ shows a 2-bounce scattering solution, figure 9.2.2c shows a 4-bounce so-
lution, and figure 9.2.2d shows a 13-bounce solution. We can see from the trajectories
that the size of the bounce windows increases with time. This could be argued to be a
result of the decay of the mode. As the mode decays, it loses energy, resulting in a re-
duced attractive quality as time progresses. This behaviour is expected as it is observed
with kinks that we initially have noticeably short bounces that become longer as the

simulation evolves [15].

9.2.2 Fractal Structure

Next, we study a phase space of solutions to help identify any patterns in the behaviour
of the excited 2-vortex scattering. We find solutions for a range of initial phases and
initial velocities, and hence generate a phase space of solutions, detailing the number of
bounces as the number of times the vortices scatter through each other.

Figure 9.2.4b shows a sample of solutions for a set of initial phases (0) € [0,27), and
initial velocities vy, € [0.01,0.13]. The number of bounces is indicated by the colour.
The y-axis has been extended to be in the range [0,67), since the phase coordinate is
cyclic.

As stated above, we can alter the phase of the mode in two different ways. We can
see the phase space of solutions for both these methods in figures 9.2.4a and 9.2.4b.

Figure 9.2.4b shows solutions where the initial phase of the shape mode has been changed
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(a) Initial phase altered by changing ¢(0) in eq. (9.1.3).

Phase

LV AN |

0.02 0.04 0.06 0.08 0.1 0.12
velocity

(b) Initial phase altered numerically using a displacement shift and evolving through
time.

Figure 9.2.4: Phase space of excited vortex scattering solutions. We show solu-
tions for different initial velocity and initial phase for fixed ¢ = 0.9. The dark
blue space indicates solutions that only have one bounce, i.e. the vortices scatter
only once, which is the normal behaviour for vortices at critical coupling. The
number of bounces is represented as a heat plot for the colour of each simula-
tion, shown by the colour bar. The data is plotted three times along the y axis
since the phase coordinate is cyclic, allowing us to get a clearer picture of the
behaviour of the phase space. The purple rectangle corresponds to figure 9.2.5,
where we show the phase space with higher resolution.

by shifting the initial vortex position d;, and numerically evolve to alter the initial phase,
and figure 9.2.4a shows solutions where the initial phase is changed using eq. (9.1.3).
Due to the dependence of the energy on € in eq. (9.1.3), which is maximal at a w—shift,
we can see in figure 9.2.4a that the pattern of the results deviates most at this value,
showing that the difference between these plots is an artefact of this phase dependence
on the energy. We can hence assume that the plots should be identical, except that we
have this deviation because of the method used.

We have shown that an in-phase excitation &; introduces an attractive force between
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the single vortices. This, together with the resonant energy transfer mechanism between
the kinetic and vibrational motion, triggers a fractal pattern of multi-bounces, where
depending on the number of collisions the vortices are scattered under 90° or 180° angle.
Indeed, precisely as in the kink-antikink collisions in ¢* model [26, 56, 72], the energy
initially stored in the kinetic motion can be temporarily transferred to the vibration
mode and forces the vortices to collide again.

We observe in figure 9.2.4b regions of solutions that have multi-bounce scattering. We
also observe in-between these regions sets of solutions that only scatter once. We see that
the lines of solutions that have multi-bounces also have a curvature, rather than a fixed
slope. This is quite intuitive, as we have a series of lines of decreasing gradient; however,
we can clearly see that the lines curve. This means that changing the initial phase of
the mode is equivalent to changing the initial velocity, up to a critical value where the
initial velocity dominates the interaction of the vortices and they always escape. We can
see that this critical velocity is around the region of vy, = 0.13. However, this is only a
rough approximation. Extending the phase space in the y-direction also allows us to see
more easily that for any given initial velocity below the critical region, you can always
choose an initial phase such that the vortices scatter more than once.

For low velocities, the resolution of the phase space is too small to reveal the full structure
of the phase space, hence the presence of the parabola in the parameter space of solutions
figure 9.2.4b is a result of the resolution of the data. We observe in figure 9.2.5 that
the fractal structure of repeated lines is observed for small velocities, but due to the
increasing slope of this pattern at low velocities, it is difficult to capture the pattern
as the lines become more vertical and narrow, meaning that it is easy to miss when
scanning the parameter space.

We can hence see that the whole phase space shows a fractal structure of regions with
multiple bounces, ranging from 2 to 30 bounces. The number of bounces does not
appear to have any correlation to the phase space at large, but it could be argued that
the resolution of the diagram is too low to give a definitive answer. We now turn to
the question of why this fractal pattern appears. We can surmise that this is a result of
the phase of the shape mode altering the state of the interaction for different velocities.
We see that periodically, there are these dark blue regions (solutions that only scatter
once) and then thin slices of solutions with multiple bounces, increasing in width and

decreasing in slope as the initial velocity increases. Furthermore, these factors appear
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Figure 9.2.5: A higher resolution plot of the phase space plot. We plot the
highlighted region of figure 9.2.4b, but using a smaller step in vjy.

to be constant for each region with respect to the phase.

We now discuss other initial intensities of the excitation. Take, for example, ¢ = 0.5,
i.e. I(0) = 0.097. For this initial intensity, the mode decays extremely slowly, and hence
nonlinear effects are smaller. We find that for small velocities the vortices escape after
one bounce. Hence, we can assume that for this intensity, the scattering is dominated
by the velocity, and the mode excitation causes little interaction between the vortices as
they scatter. This gives further evidence to the proposition that the vortices escape the
bound state due to the decay of the excitation, as if the intensity is too small initially,
they do not bounce more than once. Therefore, we examine one more initial intensity
between these two values already discussed and take e = 0.75, such that I(0) = 0.219,
which also decays slowly. We can see in figure 9.1.1 that this choice of € corresponds
to an initial intensity of approximately 60% of the previous intensity discussed, where
e=0.9 and 1(0) = 0.317.

We see in figure 9.2.6 that we have the same fractal structure that dominates the phase
space. There are some key differences between the phase space of solutions with € = 0.9
and € = 0.75. Firstly, we observe in figure 9.2.6 that there are only one bounce windows
after an initial velocity of vi, = 0.055. This suggests that the interaction imposed by
the mode is weaker than the strength of the initial velocity, further supporting the con-
jecture that the mode requires a certain amount of energy to dominate the interaction.
We further see that the fractal lines are narrower in figure 9.2.6 than in figure 9.2.4b.
However, they are significantly closer together, which could suggest that this set of so-

lutions is just a scaled set of solutions compared to figure 9.2.4b. Note that for small
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Figure 9.2.6: Parameter Solution space detailing the space of solutions com-
puted using a 2°¢ order Leapfrog method for time evolution. We show solutions
for different initial velocity and initial phase for fixed ¢ = 0.75. The dark blue
space indicates solutions that only have one bounce, i.e. the vortices scatter
only once, which is the normal behaviour for vortices at critical coupling. The
number of bounces is represented as a heat plot for the colour of each simula-
tion, shown by the colour bar. The data are plotted three times along the y
axis since the phase coordinate is cyclic, allowing us to get a clearer picture of
the behaviour of the phase space.

velocities, the line pattern is more difficult to see. This is due to the resolution of the
phase space. With higher resolution, this part of the diagram would appear to fit the

pattern of the rest of the data.

9.2.3 Derrick Scaling Approximation

This section seeks to show that the shape mode can be well approximated by a Derrick
scaling of the fields.
we have Derrick’s scaling argument in section 6.2. We can hence have the mode in terms

of the Derrick scaling

b = ¢(ra) — Bla), (9.2.1)

Xu = —Au(rz) = Apu(2). (9.2.2)
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It is important to perform the Derrick scaling on the fields before applying the Lorentz

transformation, and the resulting initial condition is

o(t, ) = (y(kay + vt) + iras)Y F(V? (k) + vt)? 4+ k22d),

NoyzaG(v2 (k1 + vt)? + k223)
? (9.2.3)

Au(tv ) = (Ao, A1, As) = —Nyz2G (Vi (k1 + vt)? + k223) |

7N7(ml+m)G(’y2(mx1 + vt)? + K223)

K

Hence we have an initial configuration for our two-dimensional dynamical simulations,
detailing an axially symmetric vortex with an initial velocity and a Derrick mode exci-
tation.

As stated above, we find the frequency of the shape mode to be W%,o = 0.777476. By
studying the potential energy of the Derrick scaled solution, we find a frequency of the
approximated mode to be w%erriek = 0.770076, which is within 1% of the frequency
found through the linearisation of the full field theory. This gives us evidence that
Derrick scaling the solution is indeed a good approximation to the shape mode.

We can determine how well the Derrick scaling approximates the mode, by calculating

the 2-dimensional norm of the perturbation for both methods

(f.g) = /f-g d’z, (9.2.4)

where f and g are vectors of the Higgs field and gauge fields for the Derrick scale

perturbation, and the linearisation perturbation respectively, such that

f= (1;1(:1:73/)71;2(1"3/)’ )Zl(xa y)v )Z?(xﬂ y))T’

g = (?/)1(90, y)a ¢2(x7 y)a Xl(ﬁa y)’ XQ(x’ y))T (9'2'5)

We see in figure 9.2.7 that the Derrick scaling mode approximation provides a par-
tial approximation to the linearisation, with the normalised inner product between the
perturbation vectors, representing the how well the Derrick scaling mode covers the
linearisation ((f,g)/\/(f,f)(g,g)), ranging from approximately 0.9993 to 0.9753. For
small perturbations around x = 1, the deviation reaches a maximum of approximately

0.9993 at k = 0.98, indicating a very close alignment, with the perturbation directions
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differing by less than 0.07%. As the perturbation grows larger, the mode coverage de-
creases to 0.9753 at k = 0.5 and 0.9797 at k = 1.5, suggesting that the Derrick scaling
approximation becomes less aligned with the linear mode, differing by up to 2.47% and
2.03% respectively. This indicates that the scale approximation is most effective near
k = 1, with alignment degrading as s deviates, though it remains a reasonable method

for exciting the mode across the tested range.
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Figure 9.2.7: The normalised inner product (f,g)/+/(f,f)(g,g), representing
the deviation from perfect alignment between the Derrick scaling perturbation

vector f and the linearisation perturbation vector g, as a function of the scale

factor k. The deviation varies from approximately 0.9753 at k = 0.5 (2.47%

difference) to a maximum of 0.9993 at x = 0.98 (0.07% difference), and decreases

to 0.9797 at k = 1.5 (2.03% difference), with an undefined value at k = 1.0.

These small deviations indicate the closest alignment near k = 1, though the
match is not as tight as initially expected across all &.

It is a useful result that the shape mode can be approximated by a Derrick scaling. It
has been shown in [36] and chapter 8 how to find eigenfunctions to excite the linear
mode for all A\. The benefit of exciting the shape mode using a Derrick scaling is not
only a simpler procedure, but it is applicable not only to critical coupling, but also for
all A, hence this method could be applied for all solitons, including those where the
linearisation is not yet known. By approximating the shape mode by a Derrick scaling,

we also begin to gain an understanding of the properties of interaction of the mode.
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If we consider the spatial rescaling eq. (6.2.7), such that p — kp, then for p > 1, the

equations eq. (6.6.1) rescale as

F(0) = J(0) = flsp) = 1 = 5-Kalsp).

ao(p) = dolp) = aglrp) ~ 1 — —rpKi(rp). (9.2.6)

The magnetic field transforms under this rescaling. Starting with B = %&lgép ),

10ag(p) 10 1 Oag(kp)
B— ————= =-—(ag(kp)) = = - k———=
p Op pOp (a0(rp)) p  O(kp)
K 0 m
= ) (1 - g(f;p)m(;{p)) (9.2.7)
__&.m 0K (rp)
=2 2 ) + o) 2 )
Using the derivative of the modified Bessel function, QKTIZ(Z) = —Ko(z) — %@, we get
_rom - _ Kilkp)
5= 2 i) + () (~Kalop) — 220
K m
== gy H(sp) = (5p)Ko(p) — Ko ()] (9.2.8)
_rom ——e
= 5 (FP)Ko(kp) = K°5—Ko(rp).

Thus, the interaction energy at critical coupling, with s as the separation between two
vortices, becomes
e ,m?

Eini(s) = —%Ko(lis) + K %Ko(lis). (9.2.9)
Therefore, we see that when k < 1 the magnetic interaction is weaker, and hence there
will be an attraction. Moreover, when x > 1, the magnetic interaction is stronger, and
hence there will be a repulsion between the vortices.
It is important to note that we have also developed the figures to excite the shape mode
by a Derrick scaling of the fields. Indeed, using a Derrick scaling to excite the mode
is only an approximation, and hence there is more radiation in the system when the
excitation is carried out this way. However, it is much easier numerically to include a
mode excitation of this form.
We show the phase space of solutions for a mode excitation of this form, see figure 9.2.8.
Figure 9.2.8 shows that we can observe the same behaviour as in figure 9.2.4, confirming

that using a Derrick scaling to excite the mode is a good approximation.
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Figure 9.2.8: Phase space of scattering solutions. We show solutions for different
initial velocity and initial phase for fixed Derrick factor £ = 0.7. The dark blue
space indicates solutions that only have one bounce, i.e. the vortices scatter
only once, which is the normal behaviour for vortices at critical coupling. The
number of bounces is represented as a heat plot for the colour of each simulation,
shown by the colour bar. The data are plotted three times along the y axis
since the phase coordinate is cyclic, allowing us to get a clearer picture of the
behaviour of the phase space.

9.3 Spectral Walls in 2-Vortex Scattering

We have shown that geodesic dynamics is significantly affected if a bound mode carried
by the vortices is excited. If the lower mode &; is excited in a head-on 2-vortex scattering,
the famous single 90° scattering is replaced by a chaotic fractal sequence of multi-
bounces.

In this section, we will consider excitation of an out-of-phase superposition of shape
modes of each of the vortices, which provides a repulsive intervortex force and therefore
cannot lead to multi-bounces. This is an excitation of the form of eq. (8.3.3).

If the upper mode &y (see figure 8.3.3) is initially excited, then the intervortex force
is repulsive. Thus, for a sufficiently large excitation, head-on scattering may occur
without passing through the coincident configuration. In this case, the kinetic energy of
the vortex motion is simply too small to overcome the repulsion triggered by the upper
mode. As a result, there is no bounce and no 90° scattering. For a slightly smaller
excitation, the vortices can reach d = 0, but still without 90° scattering.

Interestingly, for even smaller initial intensities we get two-bounce scattering. This is
because the vortices pass through the d = 0 point and scatter at right angles. Now,
the second mode changes to the third one, hence the frequency increases after collision.
Consequently, the repulsion changes into an attraction between the vortices, which can

dominate the kinetic motion. As the vortices scatter again, the modes cross once more.
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The frequency drops with the separation, and the interaction becomes repulsive, and
hence the vortices separate indefinitely.

For sufficiently small excitations of the upper mode, the kinetic energy is large enough to
dominate the initial intervortex repulsion, and later attraction after scattering, resulting
in the standard 90° scattering.

Moreover, we will show that the excitation of the upper modes in the 2-vortex collision
leads to the existence of another phenomenon in soliton dynamics, which is the spectral
wall [2]. The spectral wall phenomenon is an obstacle (barrier) in the dynamics of
topological solitons because of the transition of a vibrational mode into the continuous
spectrum. If the intensity of this mode is sufficiently large, the soliton is reflected by
the spectral wall, whereas if the excitation is small enough, the soliton can pass through
the spectral wall. For a particular value of the intensity, the soliton forms a long-living
quasi-stationary state at a given spatial point, when the mode enters the continuum
spectrum.

Spectral walls have only previously been observed in (1 + 1)—dimensional systems, see
[4, 5]. In this section, we show that they exist also for vortices in the Abelian Higgs
model. We have shown in figure 8.3.3 that there exists a point where the frequency
reaches the continuum. Now, we seek to reproduce this using the full field theory
dynamics. In our numerical simulations, we scatter two well separated single vortices.
Initially, they are located at z; = £10 (d(0) = 10) and are boosted towards each other
along the xi-axis with initial velocity vi,. The initial intensity of the normalised mode

is 1(0), where 1(0) = 3€w?. We use the same initial configurations as in section 9.2.

9.3.1 Results

In figure 9.3.1, we present the positions (|d|) of the vortices as a function of time, where
d = 5, with s being the separation of the vortices. We vary the initial intensity of the
mode to display the different scattering behaviours in this channel, and choose a fixed
initial velocity of vy, = 0.01.

The full field theory dynamics confirms the previous considerations gained from study-
ing the spectral flow figure 8.3.3. For a large initial intensity, (see the purple line in
figure 9.3.1) such that I(0) ~ 3.8874 x 1073 the vortices never meet. Note that this is
still a small initial intensity for the excitation; however, since we are at critical coupling

and the vortices are slow moving, it is large enough that the repulsion dominates.



121

10 .
8 s a
A(0)
6 —3.8874e-03|
= s 1071 56-03
AL 1.0711e-03| _
). 7180c-04
LA . W Y A
d*
0 L 1 L L L 1 L
0 500 1000 1500 2000 2500 3000 3500 4000

t

Figure 9.3.1: Dynamics of excited 2-vortex with v;, = 0.01. Time evolution of
|d| (half vortex-vortex separation). The dashed line labelled d* indicates the
position of the spectral wall.

Furthermore, if we decrease the intensity of the excitation, we observe the red line in
figure 9.3.1 with I(0) =~ 1.092 x 1073, where we get a 2-bounce solution, resulting in a
180°-scattering of the incoming vortices.

As the initial intensity further decreases, the vortices separate further after the first
bounce. As explained, due to the mode crossing, the second mode & becomes the
third one &£3. The frequency tends to the continuous spectrum as the distance between
the vortices along the zs-axis increases. The spatial point at which the mode enters
the continuum spectrum plays the role of a barrier in the solitonic dynamics, and this
barrier is called a spectral wall.

We clearly see such a spectral wall in figure 9.3.1. Observe the green and yellow lines
in figure 9.3.1. We notice that the trajectory flattens after scattering. This means that
for a very long time the vortices almost stop with their centres located at xo = +|d|sy,
where |d|s, &~ 1.7, forming a quasi-stationary state. It should be stressed that they
remain at the same positions for a remarkably long time. That is, ¢ ~ 3000, which
can be compared with the time scale provided by the oscillation period of the excited
mode. Furthermore, we see that this distance strongly agrees with the value estimated
in figure 8.3.3, where d, € [1, 2]

If we further reduce the initial intensity of the mode, then the kinetic energy forces
the vortices to pass through the spectral wall, exactly as in the case of kinks in (141)

dimensions. Thus, for smaller initial intensities, we enter an adiabatic regime where
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Figure 9.3.2: Snapshots of a dynamical simulation displaying a contour plot for

the energy density for a critically coupled (A = 1) two-vortex scattering, with

internal shape modes excited out of phase, with initial velocity vy, = 0.01 and
intensity 1(0) = 1.0715e — 03, where 1(0) = £ (ew)?.

the standard geodesic motion of the vortices is only weakly perturbed by the excited
mode. Here we observe the standard one-bounce with 90° scattering, see the blue line
in figure 9.3.1 with I(0) = 9.718 x 107,

We observe in figure 9.3.2 where we plot snapshots of a dynamical simulation, that the
vortices are initially out of phase and well separated (note that the black dots indicate the
zeros of the Higgs field). After the vortices scatter, the excitation enters the continuous
spectrum, and the vortices cease to wobble in space. We can see that the vortices stop
moving, forming a quasi-stationary state, as seen in figure 9.3.1, known as a spectral
wall.

In figure 9.3.3, we plot the time evolution of the frequency of the second mode &. To
numerically track the frequency, we calculate the static potential energy using Simpson’s
3/8 rule at each time step d;. We therefore calculate the angular frequency, w = %, where
T; denote the periods of oscillations in the static energy. We notice that the frequency
behaves as expected, which is consistent with the behaviour shown in figure 9.3.1.
Note that for higher initial velocities, there is a tendency for the vortices to form a
stationary solution for slightly more negative imaginary d. This is not a surprising effect.

A higher initial velocity vi, results in a higher intensity of the mode required to form the
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Figure 9.3.3: Time evolution of the squared angular frequency of the excited
higher mode.
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Figure 9.3.4: Frequency of the excited higher mode as a function of the vortex
position parameter d € Ry UR_.

stationary solution. This means that corrections from higher order perturbation theory
are significant, and some couplings between the modes may be important, affecting the
position of the spectral wall. Similar effects were observed in (1 + 1) dimensions [3, 4].
In figure 9.3.4 we show how the frequency of the mode depends on the position d of
the vortex. We plot the numerically calculated frequency for all the simulations shown
in figure 9.3.1. We observe that the frequency follows precisely the path of the second
mode &5 shown in figure 8.3.3. We can see that for the purple line, indicating a repulsive

simulation where the vortices never meet, the frequency increases as they come close
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together, confirming our intuitions about the repulsive force; however, it then decreases
as the vortices escape to infinity. Interestingly, if we observe the yellow and green lines
in figure 9.3.4, we notice that the frequency reaches the continuum at the distance d,,
where we observe the spectral wall. We also see from the red line, which corresponds
to the two-bounce solution, that the frequency reaches the continuum after the vortices
scatter. This indicates that the vortices are bouncing off the spectral wall in the xo
direction, because the kinetic energy is not large enough to allow the vortices to pass
through the spectral wall, and its energy is too large to allow for a quasi-stationary

state.

9.4 Excited 3-Vortex Scattering

In this section, we aim to confirm the spectral structure shown in section 8.3.2 and study
the full field theory dynamics of excited 3-vortices, namely a superposition of 3 excited
1-vortices. The dynamics are analyzed within the 1-dimensional geodesic submanifolds
ND and N@ | defined in section 8.3.2, which are equipped with a Riemannian metric
derived from the kinetic energy terms of the Abelian Higgs model’s Lagrangian. For
these 1-dimensional submanifolds, the metric function is a scalar function g(d), where d
is the coordinate parametrising the distance of the vortices from the origin, appearing
in the metric ds®> = g(d) dd?. This metric governs the geodesic motion of the vortices
along the submanifolds, describing force-free dynamics in the absence of shape mode
excitations [11]. The metric function on the 1-dimensional subspaces N and N can
be computed in two ways. In this thesis, we focus mainly on the numerical computation
of slow-moving vortices, but it is shown in [11] how to find an analytical approximation
to the metric near zero. The analytical method takes advantage of the fact that the
solutions forming the subspaces arise by an action of the appropriate zero modes, namely
the splitting mode. A complete calculation for the metric function is shown in [11]. For

d — 0, we have the metric function for 3 collinear vortices
Geollinear (d) = 0.984019 d? + o(d?). (9.4.1)
Similarly, we find for 3 vortices in a triangle orientation, the metric function at d — 0 is

Giriangle(d) = 0.584678 d* + o(d*). (9.4.2)
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Figure 9.4.1: Metric on the one-dimensional collinear subspace N’ (left) and

the equilateral triangle subspace N2 (right). The blue curve represents the

numerically calculated metric, while the analytical approximation near the ori-
gin is plotted by the red curve.

These metric functions describe the geometry of N and N near the coincident
solution (d = 0), with the quadratic and quartic dependence on d reflecting the distinct
scattering angles (90° for collinear, 60° for triangular) as derived in [11]. The metric
function can be deduced from the slow motion of vortices along the path defining the
one-dimensional subspaces. In the initial state, we consider well-separated vortices with
velocity vi,. The energy is conserved, allowing us to deduce the metric function from

the time evolution of the distance of the vortices from the origin d(t)

gld) = g>uhi . (9.43)
where we ignore the potential energy which, for the slow motion of the critically coupled
(A = 1) solutions, is always the same. In figure 9.4.1 we plot the resulting metrics. It is
numerically demanding to compute the metric when the vortices are close to each other,
as the vortex positions are lost due to the accuracy of the discrete lattice. As such,
we plot the numerically computed metric for d > 0.3 (collinear) and d > 0.5 (triangle)
where the position is numerically robust. Otherwise, we are left with the analytical

approximation.

9.4.1 Scattering in the subspace N’V of the collinear solu-
tions

We have 3 possible scattering behaviours. The first behaviour arising from an excitation
of the lowest mode eq. (8.3.4) introduces an attractive force between the N = 1 vortices.

This triggers the resonant energy transfer mechanism, which results in an appearance
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Figure 9.4.2: Full field theory figures for the scattering of vortices with the lowest

mode excited eq. (8.3.4) in the collinear configurations, detailing distance |d| of

the outer vortices to the origin as a function of time, for a range of intensities,
where I(0) = 3 (ew)?.

of multi-bounces with a chaotic, and probably fractal, structure of multi-bounce win-
dows. During a collision such that the vortices are coincident at the origin (d = 0), the
energy stored in the kinetic motion can be transferred to the internal mode excitation.
Moreover, it is the balance between the kinetic energy (kinetic motion of the N = 1
vortices) and the internal attractive energy (energy stored in the mode) that decides
if the vortices can separate. If the intensity of the mode is too large, then the N =1
vortices cannot overcome the attractive force and collide once again. At some point,
the energy stored in the internal mode is transferred back to the kinetic energy, and the
vortices eventually separate. In fact, whenever critically coupled vortices have a shape
mode with the frequency decreasing with the intervortex distance, we find analogous
behaviour, whereby the resonant energy transfer mechanism applies and a chaotic struc-
ture of multi-bounce windows arises. This mechanism explains the fractal structure in
the kink-antikink collisions in the ¢* model in (1+ 1) dimensions [26, 56, 72]. Moreover,
this behaviour has also been identified in the dynamics of an excited critically coupled
2-vortex system, see section 9.2, where the vortices are also subject to chaotic multi-
bounces. Interestingly, depending on the number of bounces, we have 90° (odd) or 180°
(even) scattering.

In figure 9.4.2, we plot the distance |d| between the outer vortices from the origin. Notice
the red line with initial intensity of the excitation, 1(0) = 0.011 , where we see that the
motion of the vortices closely resembles geodesic motion, with only one bounce and the

usual 90° scattering.
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Figure 9.4.3: Full field theory figures for the scattering of vortices with the

lowest mode excited eq. (8.3.4) in the collinear configurations, detailing the

spectral flow as a function of the distance of the outer vortices from the origin,
for a range of intensities, where I(0) = 1 (ew)?.

For larger initial intensities, the geodesic approximation fails. We observe the blue
and orange lines in figure 9.4.2 with I(0) = 0.41 and I(0) = 0.47, respectively, 2-bounce
solutions with 180° scattering, where the outer vortices are scattered back to their initial
positions.

We study figure 9.4.3, where we also show how the numerically calculated frequency
of the mode varies during the evolution of the vortices. Our results here agree with
the spectral analysis (see figure 8.3.4). We notice higher values for the plateau of w?
at d = 0 observed for higher initial intensities. This is a numerical artefact related to
a very rapid motion of the vortices while passing the axially symmetric configuration,
where the vortices move faster than the period of the oscillation, making it increasingly
difficult to measure the frequency.

The second scattering behaviour arises from an excitation of the second mode eq. (8.3.5).
An excitation of this form results in a repulsive-attractive force. When the vortices are
initially well separated, we observe that the force is repulsive. If the kinetic energy is
large enough (or the intensity of the mode sufficiently small) such that the vortices pass
through the coincident configuration, the force changes sign and becomes attractive.
This is because of the level crossing.

After passing through the coincident configuration, the frequency continues to increase.
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Figure 9.4.4: Full field theory figures for the scattering of vortices with the
second mode eq. (8.3.5) excited in the collinear configurations, whereby we
display the distance |d| of the outer vortices to the origin as a function of time.
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Figure 9.4.5: Full field theory figures for the scattering of vortices with the

second mode eq. (8.3.5) excited in the collinear configurations, whereby we

display the spectral flow as a function of the distance of the outer vortices from
the origin.
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Figure 9.4.6: Snapshots of a dynamical simulation displaying a contour plot
for the energy density for a critically coupled (A = 1) three-vortex scattering,
with excitation of the second mode eq. (8.3.5), where the initial intensity 7(0) =
0.0019, where I(0) = %(ew)Q, and we have chosen the initial velocity of the outer
two vortices vy, = 0.01.

Therefore, the attractive force can stop the vortices, leading them to backscatter, such
that they are forced to pass through the coincident configuration again. As such, de-
pending on the intensity of the excitation, we have the following possible scattering
scenarios.

For large initial intensities, the vortices may not meet at all. This means no bounces
and 180° scattering. For a smaller, fine-tuned intensity they can reach the coincident
configuration. Hence, we have 1-bounce and still 180° scattering, see the red line in
figure 9.4.4. For even smaller initial intensities (see the purple line), the vortices pass
through the coincident configuration, but are forced to go back while they are on the xo-
axis. The vortices then pass through the coincident configuration once more, escaping
to infinity along the x1-axis. We therefore have a 2-bounce solution and 180° scattering.
For even smaller intensities (see the green and blue lines in figure 9.4.4), the outer
vortices have enough kinetic energy to overcome the repulsive force and pass through
the coincident configuration. In this case, the vortices form a quasi-stationary state after
scattering. By observing figure 9.4.5, we see that indeed, the frequency has entered the
continuum, and hence we observe the formation of a spectral wall.

We show in figure 9.4.6 snapshots of the dynamical simulation corresponding to the blue
line in figure 9.4.4. We indeed see that the outer vortices begin out of phase. After

passing through the coincident configuration, we see that the vortices stop wobbling
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Figure 9.4.7: Full field theory figures for the scattering of vortices with the last

mode eq. (8.3.6) excited in the collinear configurations, displaying the distance

|d| of the outer vortices to the origin as a function of time, for a range of
intensities, where I(0) = 3(ew)?.

in space, as expected since the frequency has entered the continuous spectrum. The
vortices remain at a fixed position in the xo-plane for an extremely long time, namely
dsw =~ 4, which exactly agrees with the point on the moduli space where the mode hits
the continuum, dj € (3.5,4), displaying this long-lived quasi-stationary state, known as
the spectral wall.

Finally, we explore the excitation of the third mode, eq. (8.3.6). When we simulate the
vortices in this way, we expect to see a spectral wall before the vortices collide.

We observe in figure 9.4.7 that the intervortex force induced by the excitation is repulsive,
hence we only observe 0 or 1 bounce solutions. If the intensity of the excitation is large
(see the purple line with I(0) = 0.0016), then the vortices repel before meeting the
coincident configuration. Indeed, in figure 9.4.8 we see that the frequency increases as
the vortices draw closer together but then decreases as they separate to infinity.

If we choose an initial intensity of 7(0) = 0.0011 (see the orange line in figure 9.4.7),
we observe a quasi-stationary state solution, whereby the vortices stop moving before
the vortices collide. This is confirmed to be a spectral wall by studying figure 9.4.8, by
which we notice that the frequency has entered the continuous spectrum. We note that
the location of this spectral wall is dg,, = 2.2, which agrees well with the value found in
the spectral analysis, where dj = (2,2.5) (see figure 8.3.4).

It is worth noting that if the excitation is too small (see the red, green, and blue lines in

figure 9.4.7), then the vortices will pass through the coincident configuration and scatter
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Figure 9.4.8: Full field theory Figures for the scattering of vortices with the last
mode eq. (8.3.6) excited in the collinear configurations, displaying the spectral

flow as a function of the distance, for a range of intensities, where I(0) = 3 (ew)?.

Figure 9.4.9: Snapshots of a dynamical simulation displaying a contour plot

for the energy density for a critically coupled (A = 1) three-vortex scattering,

with excitation of the second mode eq. (8.3.6), where the initial intensity 7(0) =

0.0011, with 1(0) = 4(ew)?, and we have chosen the initial velocity of the outer
two vortices vi, = 0.01.

once, and hence we have the standard 90° degree scattering. Moreover, from figure 9.4.8
we see that the frequency still passes into the continuous spectrum, but then emerges
at the reflection point of dg, on the xo-plane.

We show in figure 9.4.9 the scattering simulation denoted by the yellow line in fig-
ure 9.4.4.
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Figure 9.4.9 shows the formation of the quasi-stationary state before the vortices collide.
We see that the outer vortices are excited in phase, with the vortex at the origin excited
with twice the excitation but out of phase. As the vortices form the quasi-stationary
state, we observe the excitation entering the continuum, as the vortices stop wobbling
in space. The spectral wall eventually decays and the vortices escape to infinity back

along the x;-axis, whereby they wobble with the same initial excitation.

9.4.2 Scattering of the subspace N'? of equilateral trian-
gular configurations

Now we consider three critically coupled vortices located at the vertices of an equilateral
triangle, at a distance d from the origin.

Excitation of the lowest mode eq. (8.3.4) (§1) in this scenario has the same effect as in
the case of collinear configuration. As they are qualitatively very similar, we do not plot
them.

Excitation of the two upper modes eq. (8.3.5) and eq. (8.3.6) introduces a very weak
repulsive force. If the initial intensity is large, one may expect that the N = 1 vortices
will be backscattered before passing the axially symmetric configuration. Hence, a 180°
scattering can occur. In figure 9.4.10 (left) we present the time evolution of the vortex
positions with an excitation of the £, mode. Here, the initial intensity is I(0) = 0.0008.
The geodesic motion is practically not affected by the excitation of the mode. In fig-
ure 9.4.10 (right) we track the numerically calculated frequency and find that it exactly

follows the pattern found in the linear perturbation theory.

9.5 Conclusions

In this chapter, we demonstrated that exciting the vortex shape mode in Abelian Higgs
model at critical coupling induces fluctuations in gauge-invariant quantities, driving
scattering behaviours akin to both type I and type II vortices. In-phase vortices predom-
inantly exhibit attraction, as evidenced numerically and analytically, revealing a fractal
phase-space structure tied to initial phase and velocity. This manifests in chaotic, multi-
bounce scattering sensitive to initial conditions, rendering geodesic flow insufficient to

explain excitation-induced attraction. The models in [12] proposed a potential-modified
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Figure 9.4.10: Full field theory figures for the scattering of vortices with the

upper mode eq. (8.3.6) excited in the equilateral triangular configurations: Dis-

tance from the origin of the vortices as a function of time (left), Geodesic paths

of the vortices (right), where the dashed lines are the paths after scattering, and
spectral flow as a function of the distance (bottom).

geodesic flow on M, corroborated by our findings and consistent with [47] for critically
coupled two-vortex systems.

We found spectral walls, barriers that arise when a bound mode transitions to the
continuum in the head-on 2-vortex dynamics, highlighting the pivotal role of internal
modes, a feature well known in (1 + 1) dimensions now extended to physically relevant
models. In 3-vortex systems, the lowest mode induces an attractive intervortex force,
producing multi-bounce solutions that shift 90° (collinear) or 60° (triangle) scattering to
180°. Higher modes in collinear cases produce repulsive-then attractive forces, forming

spectral walls at separations dg,,.
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These results have significant implications. Excited Abelian Higgs vortices in three di-
mensions, forming cosmic strings, may diverge from unexcited evolution due to spectral
walls, impacting collision rates and gravitational wave signals [19, 20, 23, 39, 50, 51, 76].
In superconductors and Dirac materials such as graphene, mode transitions to the contin-
uum could influence dynamics. We anticipate similar effects in solitons with vibrational
modes, such as vortices with impurities [6, 18, 41, 42, 46, 74] or monopoles with quasi-
normal modes [21, 22, 33, 54], where Feshbach resonances may act analogously [34]. Even
away from critical coupling (e.g., type I and type II vortices), stable modes with slow
energy radiation [7] could reshape interactions. Bridging one and higher-dimensional
soliton dynamics, our work underscores (1 + 1)-dimensional models as vital for under-

standing complex systems, with far-reaching theoretical and applied consequences.



Chapter 10

Vortex Dynamics away from

Critical Coupling

10.1 Introduction

In this chapter, we seek to extend the work we have carried out on excited critically
coupled vortices by discussing vortices away from critical coupling such that A # 1.
This chapter contains work from [48] We have shown in chapter 9 that the excitation of
internal bound modes introduces attractive or repulsive forces dependent on the relative
phase between the superposition of vortices, which interestingly changes the dynamics
of the vortices. This is because the squared frequency of the mode usually changes with
the intervortex separation. Away from critical coupling, we also have the static force as
described in section 6.6, hence the interaction is more complex.

We will extend the analysis carried out on critically coupled vortices to discuss the
scattering of excited vortices away from critical coupling. We discuss excited scattering
simulations. Note that we cannot calculate the 2-dimensional spectrum as before in
figures 8.3.3 and 8.3.4 due to the presence of the static forces arising from being away
from critical coupling, and hence we rely on the numerically calculated squared frequency
to discuss the mode induced interaction. We discuss the role of the spectral flow in
vortex dynamics when coupled to the static interaction, and we present numerical results

describing how the scattering behaviour is altered.
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10.2 Type I Vortex Dynamics

Type I vortices are naturally attractive, hence for this section, we will consider mode ex-
citations leading to a repulsive force. It has recently been shown in [8] and in section 9.3
that spectral walls exist in the critically coupled 2—vortex scattering with excited nor-
mal modes. In this case, the vortices were also excited to be repulsive. The squared
angular frequency increases after the vortices scatter, entering the continuum at some
fixed distance. We expect the same phenomena to occur here, except that because of
the static force, it is unlikely that the vortices will become trapped in the spectral wall.
Instead, we might observe the existence of a spectral wall by a change in velocity of vor-
tices as the squared frequency enters the continuum. We have many regions of interest
to consider. For the case of type I vortices, the excited scattering is not symmetric from
x to y, noting that our initial configuration places the vortices on the z axis.

We can explore some snapshots of a dynamical simulation displaying a heat plot of the
energy density. The simulation shown in figure 10.2.1 displays the scattering of two
N = 1 vortices with A = 0.9. We have excited the k = 0 shape mode on each vortex,
with a relative phase of 7 to induce a repulsive force, i.e. an exitation of the from

2

eq. (8.3.3). We have chosen an initial intensity of 1(0) = 0.3, where I(0) = € ;’2, with w

being the squared angular frequency of the vortex mode, and an initial velocity v, = 0.1.
Figure 10.2.1 shows how the vortices scatter multiple times, which is expected in the
type I regime. It can also be seen that the vortices initially start out of phase, as seen
by the difference in the peaks of the energy density. After the vortices scatter, the peaks
are equivalent, highlighting the asymmetry in the scattering process.

We can gain more insight into the interaction between the vortices by tracking the
squared angular frequency of the numerical simulation and plot it as a function of the

separation; see figure 10.2.2. We calculate the angular frequency

wlt) = — (10.2.1)

where At is the time difference between two consecutive peaks or troughs in the static
energy as a function of time t. We also track the positions of the vortices, allowing us
to write w? as a function of d, where d is half the separation.

It can be seen in figure 10.2.2 that as the vortices move closer to the origin, the squared

frequency increases. For positive d, the squared frequency interpolates between the
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Figure 10.2.1: Snapshots of energy density for a two-vortex scattering (A =
0.9, vip, = 0.1, I(0) = 0.3), with out-of-phase k = 0 shape modes, as seen in
figure 10.2.3.

asymptotic values Wio = 0.7136541, which is the N = 1, k = 0 shape mode, and the
N =2, k =1 mode at the coincident configuration, wil = 0.8883169. We see that after
the vortices pass through the coincident configuration, the squared frequency increases
further, hitting the continuous spectrum at d =~ —1¢. This would suggest the presence
of a spectral wall. To confirm this, we can observe the trajectories of the vortices in a
scattering solution, see figures 10.2.3 and 10.2.4.

We observe two interesting phenomena when observing the trajectories in figure 10.2.3.
Note that blue is the position in z, and cyan is the position in y. Firstly, from the blue

line we can see that the vortices initially travel at a near-constant velocity. After the
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Figure 10.2.3: Trajectories of a two-vortex system (A = 0.9, vy, = 0.1, I(0) =

0.3) as a function of time, where I(0) = i(ew)?. The blue line shows the -

direction distance from the origin, cyan the y-direction, and red the excitation
intensity per vortex. Dashed blue and cyan lines show unexcited scattering with
the same parameters.

vortices scatter, we can see from the cyan line that the vortices hit the spectral wall and
bounce back. This can be seen in the difference in the bounce size between the blue
and cyan bounces. The distance in which the vortices bounce back in y is the same as
the distance where the squared frequency hits the continuous spectrum, which confirms
the presence of a spectral wall. Additionally, we can see that after the vortices have
bounced a number of times, the vortices settle in the z-plane at a fixed distance. This is
not a result of the spectral wall, instead it is due to the net force being zero. We notice

that the intensity of the excitation, displayed as the red line in figure 10.2.3, decreases
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vortex. The dashed blue and cyan lines show unexcited scattering in the x; and
To-directions, respectively.

overall. This is due to a decay in the excitation as it radiates energy. Additionally, we
observe temporary dips in the intensity as the vortices change direction, as seen at the
peaks of the bounces in the x direction. This is due to the energy transfer mechanism,
where the energy from the excitation is transferred to the kinetic energy. In addition,
we see drops in intensity at the peaks of the bounces in the y-direction. This is because
energy is transferred from the excitation to the spectral wall, and the resulting effect is
that the vortices bounce off the spectral wall.

Figure 10.2.4 shows the scattering of a 2-vortex system at A = 0.9, whereby the intensity
of the excitation is large enough such that the repulsion from the mode dominates the
scattering process. As such, the vortices never meet and are repelled towards infinity.
Next, we calculate the interaction energy, figure 10.2.5, whereby we have assumed that
the intensity of the excitation is fixed for all d. The static force is calculated numerically;
see section 6.6.

The mode interaction is calculated from the squared frequency displayed in figure 10.2.2,

such that
1
Enode(d) = 562 <w2(d) - mgwa(d)) , (10.2.2)

where € = %, with I(0) being the intensity of the excitation, and the energy is
1,0

normalised such that it is asymptotically zero. We therefore have the total interaction
energy per vortex, Emnt = Estatic + EMode-

We show the static force, seen on the left of figure 10.2.5, and the force induced by
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Figure 10.2.5: A = 0.9 - Static force (left) in blue with d* approximation in

dashed red for small d, and asymptotic approximation in dashed green. In-

teraction energy contribution from the mode (right) for a range of intensities.
Total interaction energy (bottom) for a range of intensities.

excitation of the shape modes, seen on the right of figure 10.2.5. We are interested in
the total interaction energy, being a sum of the static force and the mode interaction,
as seen at the bottom of figure 10.2.5.

We interpret the interaction energy, seen from figure 10.2.5 as follows. For |d| < 1, the
squared frequency and static force can both be approximated by d*, therefore, if the
coefficient of the interaction of the mode is smaller than that of the static force, then
the two vortices will stay coincident at the origin; otherwise, the mode induced force
will force them to separate. For d > 1, there exists a local extremum in the interaction
energy at precisely the distance observed in figure 10.2.3. This explains the existence
of this quasi-stationary state as the net force F' = —%Elnt = 0. For d € iR_, we see
that the interaction energy is highly positive due to the existence of the spectral wall.
This makes it extremely difficult for vortices to move past this region. Additionally, for
large d, we see that if the intensity of the perturbation is too large, then the vortices

will never meet and will repel.
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Figure 10.2.6: Trajectories of a 2-vortex system at A = 0.9 starting near the
local maximum, with initial velocity vi, = 0 and intensity 1(0) = 0.05, where
1(0) = %(ew)z.

We can further explore the local extremum, by choosing an initial configuration where
the vortices are situated at the local extremum; see figure 10.2.6.

It can be seen in figure 10.2.6 that initially the vortices form a quasi-stationary state,
where they stay at a fixed position for a period of time. This is because the net force
is zero. If the intensity of the excitation is large, the vortices will repel, as seen in
figure 10.2.4, while if the intensity is small, then the static force will dominate and the
vortices will be attracted toward the origin, as seen by the blue line in figure 10.2.6. We
observe that this indeed happens in figure 10.2.6 as the intensity indicated by the red
line decays, the quasi-stationary state decays and the vortices accelerate towards the
origin.

It is important to note that the K = 1 mode exists in the discrete spectrum only for
A > 0.8, see chapter 8. As such, we must also explore what happens when two vortices
scatter along the x—axis for A < 0.8. In this regime, the angular squared frequency
of the vortices will hit the continuous spectrum before the vortices collide. This could
suggest the presence of a spectral wall, in which case we should see the vortices slow
down in the region where the squared angular frequency hits the continuum.

We can plot the squared angular frequency as a function of the distance from the origin
for a 2-vortex system with A = 0.5, see figure 10.2.7.

It can be seen in figure 10.2.7 that as the vortices approach the origin, the squared
frequency increases from the asymptotic value w%o = 0.4254454, hitting the continuous
spectrum at d ~ 2.5. To confirm the existence of a spectral wall, located at d € [2.2, 3],
we will consider the trajectories of the vortices, see figure 10.2.8.

We can see in figure 10.2.8 that the bounces in y, indicated by the cyan lines, are smooth,

which is expected as the squared frequency of the shape mode is in the continuous
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Figure 10.2.8: Trajectories of a 2-vortex system as a function of time, where

A = 0.5. We choose an initial velocity of vy, = 0.05, and initial intensity of

the excitation I(0) = 0.17, where I(0) = Z(ew)?. The cyan line indicates the

distance of the vortices from the origin in the y-direction, and the blue line

indicates the z-direction. The intensity of the excitation I(¢) is displayed as the
red line.
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tion from the mode (right) for a range of intensities. Total interaction energy
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spectrum. More interestingly, the bounces in z, indicated by the blue lines, show some
irregularities near the peak of the bounces. Little effect is noticed when the vortices first
approach each other, due to the high acceleration as a result of the static force, so it is
difficult to confirm the existence of a spectral wall.

Again, to gain insight into the full behaviour of the 2-vortex system with A = 0.5, we
can calculate the interaction energy; see figure 10.2.9.

We see from figure 10.2.9 that even though the frequency hits the continuous spectrum
before the vortices coincide, there is also a local extremum at d € (3,4.5), meaning that
the vortices could form a quasi-stationary state at this fixed distance, as the net force is
zero. The irregularities we observe in the blue line in figure 10.2.8 occur approximately
at the the distance of the local extremum, suggesting that the vortices cannot move
past this potential barrier, while the intensity of the excitation is large. For |d| < 3,
that static force is large and hence the vortices want to attract, as seen by the negative
interaction energy. This explains the bounces seen in figure 10.2.8, where the vortices

bounce multiple times.
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10.3 Type II Vortex Dynamics

The static force for type II vortices is repulsive, hence it is natural to consider mode
excitations in the attractive channel. As such, we consider the in-phase superposition
of vortices with excited internal shape modes. Since we only consider the attractive
channel, the spectral flow of the mode structure is symmetric from = to y.

We can explore some snapshots of a dynamical simulation displaying a heat plot of the
energy density. The simulation shown in figure 10.3.1 displays the scattering of two
N =1 vortices with A = 1.1. We have excited the &k = 0 shape mode on each vortex to
induce an attractive force, where W%,o = 0.8352168. We have chosen an initial intensity
of I(0) = 0.3 and an initial velocity of v, = 0.1.

We can observe in figure 10.3.1 that the vortices are in phase with excited k = 0 shape
modes. We can see that the vortices move closer together, whilst oscillating in shape.
We also observe the presence of a quasi-bound state where the vortices scatter multiple
times. This is quite interesting because the static force in the II regime is repulsive,
and therefore the vortices naturally want to move apart. We can gain more insight into
the scattering process by discussing the trajectories of the vortices; see figures 10.3.2

and 10.3.3.
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Figure 10.3.2: Trajectories of a 2-vortex system as a function of time, where

A = 1.1. We choose an initial velocity of v, = 0.1, and initial intensity of

the excitation I(0) = 0.75, where I(0) = (ew)?. The cyan line indicates the

distance of the vortices from the origin in the y-direction, and the blue line
indicates the z-direction.
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Figure 10.3.3: Trajectories of a 2-vortex system as a function of time, where

A = 1.1. We choose an initial velocity of v;, = 0.01, and initial intensity of

the excitation I(0) = 0.05, where I(0) = 1(ew)?. The blue line indicates the

distance of the vortices from the origin in the z-direction and dashed blue the
unexcited scattering in the x-direction

We observe in figure 10.3.2 the distance of the vortices from the origin as a function
of time. If the vortices lie on the z—axis, we plot their distance in blue, and if they
lie on the y—axis, we plot the distance in cyan. We can see that initially, the vortices
form a quasi-bound state, where they scatter multiple times. After some time, we see
from the cyan line at ¢ =~ 500 that the vortices separate significantly more, then move
back towards each other. Interestingly, they do not move all the way to the origin, but
instead slow, until they change direction and escape to infinity.

Figure 10.3.3 shows a simulation with an initial intensity of the excitation I(0) = 0.01,
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and initial velocity vy, = 0.05. We see from the blue line indicating the position in the
z-plane that the vortices do not meet the coincident configuration. This is because the
excitation and kinetic motion of the vortices are too small to overcome the static force.
We observe the red line in figure 10.3.3 that describes the intensity of the excitation as
the vortices evolve. We note that the intensity drops as the vortices change direction
and increases once they are moving back towards their initial position. This is because
energy is transferred from the mode to the kinetic energy.

To begin to understand this behaviour, we can measure the squared angular frequency
from the dynamical simulation (see figure 10.3.4). We plot the d* approximation for d —
0. We see that the squared frequency interpolates between the value for the coincident
N = 2 configuration with W%,o = 0.5738714, and the asymptotic value describing well
separated N = 1 vortices with W%,o = 0.8352168. This suggests an attractive intervortex
force induced by the in-phase excitation.

We can then calculate the energy contribution from the excitation (eq. (10.2.2)). This
can be summed with the energy contribution of the static force, to give a space-dependent
measure of the interaction energy for a type II 2-vortex system with excited shape modes,
see figure 10.3.5.

We interpret the interaction energy (see figure 10.3.5) as follows. For small d, the
interaction energy behaves similarly to the static force as d*, hence the 2 vortices will

remain at the origin if the mode is dominating, i.e. the intensity of the excitation is
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Total interaction energy (bottom) for a range of intensities.

large enough such that it is stronger than the static repulsion.

When the vortex separation is large, both the static force and the mode interaction
asymptotically go to zero, hence there is no effect on vortex dynamics in this region.
Alternatively, if we consider the scattering of vortices, when the intensity of the excita-
tion is small, the vortices will back scatter due to the static force; however, if it is large
enough, the vortices will be attracted towards each other.

In-between these two regions, vortex dynamics become highly nonlinear. There exists
a local minimum in the interaction energy at |d| € (2,4) that depends on the intensity
of the mode. This suggests that vortices can become stuck at a fixed separation where
the net force is zero, resulting in a quasi-stationary state, which explains the latter
part of the trajectories in figure 10.3.2. We can confirm the existence of this bound
state by considering another dynamical solution, see figure 10.3.6. The simulation in
question begins with a saddle point solution, a radially symmetric N = 2 vortex centred
at the origin. We then perturb the solution by adding a linear combination of the

k = 2 splitting mode (w%a = —0.0107688) in the x direction and the k = 0 shape mode
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Figure 10.3.6: The solid black parametric curve indicates the path of the inter-

action energy of the simulation shown on the bottom. The solid blue and cyan

lines on the bottom show the trajectories of the vortices in the x and y planes
respectively.

(w3 o = 0.5738714).

We see from the blue line denoting the distance from the origin of the vortices in the
a-plane (see figure 10.3.6) that the vortex motion is slowed in the region of the local
minimum of the interaction energy. In fact, we see that the vortices begin to oscillate in
space within the region as the forces compete, until escaping as the intensity of the mode
decays. The black parametric curve on the top of figure 10.3.6 can be followed to show
how the intensity of the mode changes as the vortices evolve in time. It also shows that
the vortices do indeed become trapped in this potential well. The colour-map shows the
interaction energy assuming a fixed intensity, however, as seen in the bottom plot, the
solid red line displays the intensity I(¢) as the vortices scatter, and it is not constant.
Similarly to figure 10.2.6, we can situate the vortices near the local minimum found in
figure 10.3.5, see figure 10.3.7. Here, the vortices are initially positioned at x = +2,
with initial intensity I(0) = 0.04. The blue line indicates the position of the vortices
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Figure 10.3.7: Trajectories of a two-vortex system at A = 1.1 starting near the
local minimum, with initial velocity v, = 0 and intensity I(0) = 0.04, where
1(0) = 3(ew)?.

on the x—axis as a function of time. We also show the intensity I(¢) in red. We can
see that the vortices oscillate in space, within the potential well shown in figure 10.3.5.
As the intensity of the excitation decays, the position of the potential well shifts to the
right; hence, we see that the turning points of the position move out also. This clearly
confirms the presence of a quasi-stationary state, whereby the vortices become trapped
in the potential well and stay in a fixed region away from the origin, as long as the
excitation is large enough.

We have calculated this interaction energy for a range of A. It should be noted that the
N = 1 shape mode exists only in the discrete spectrum up to A &~ 1.5 (see chapter 8).
The plots are not shown here; however, they show the same behaviour as figure 10.3.5.
It is still of interest to consider the dynamics of vortices above this threshold, for A > 1.5.
For example, consider an N = 2 vortex at A = 2, centred at the origin with an excited
k = 0 shape mode, w%yo = 0.8161198. This mode is still in the discrete spectrum;
however, the N = 1 shape modes are not. As such we can consider the splitting of
an N = 2 vortex, and monitor the dynamics of the constituent N = 1 vortices as
they separate, see figure 10.3.8. One might assume that as the vortices separate, their
frequencies will increase, and at some fixed distance the squared angular frequency will
reach the continuous spectrum. This is a criterion for the existence of spectral walls, so
it could be possible that the motion of the vortices is affected.

We can see from figure 10.3.8 that there exist some irregularities in the position at

|d| ~ 2. This could suggest the presence of a spectral wall. Note that, due to the static
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Figure 10.3.9: Flow of the squared angular frequency for a two vortex system,
with A = 2, as a function of the distance from the origin of the vortices. The
light blue area indicates the gauge threshold.

repulsion, the vortices are not expected to form a quasi-stationary state; however, we do

expect to see a change in velocity due to the presence of a spectral wall, which is what

might be observed here. We can confirm that this irregularity is indeed a consequence

of the spectral wall by tracking the squared angular frequency as the vortices separate;

see figure 10.3.9.

We observe in figure 10.3.9 that the squared frequency rapidly increases from the coinci-

dent configuration with W%,o = 0.8161198, as the vortices separate. We see that at d = 2,

the squared frequency enters the continuous spectrum. This confirms the hypothesis of

the existence of a spectral wall.
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where I(0) = 1 (ew)?. Total interaction energy (bottom) for a range of intensi-
ties.

Moreover, to fully understand the dynamics, we can again calculate the interaction
energy, see figure 10.3.10. Firstly, for |d| < 1 there is a critical point in the interaction
energy, suggesting that the N = 2 vortex can remain in the coincident configuration
when excited. However, the excitation will quickly decay, and the vortices will separate.
For well separated vortices, the squared frequency is in the continuous spectrum, hence
all the energy from the excitation goes into the spectral wall, hence if the vortex is
moving slow, it will bounce back towards the origin, or at least be slowed.

In [47] it was found that critically coupled vortices with excited shape modes in the
attractive channel exhibit a chaotic bound structure, which we have shown in chapter 9.
The vortices scatter more than once because of the energy transfer mechanism between
the energy in the mode and the kinetic energy. We can perform the same analysis here.
Although the static force of the type II vortices makes these quasi-bound states less
likely to exist, they can still occur, as observed in figure 10.3.2.

We can vary the initial intensity of the perturbation and initial velocity of the vortices
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to explore the chaotic nature of these multi-bounce solutions. We have done some initial
calculations, but we do not present them here. Exploration of this chaotic multi-bounce

structure is an avenue for future work.

10.4 Conclusion

In this chapter, we have extended our analysis of excited critically coupled vortices, see
chapter 9, exploring the dynamics of vortices away from critical coupling. We have inves-
tigated how the excitation of internal bound modes influences vortex interactions when
coupled with static forces, leading to a richer and more intricate scattering behaviour.
The interplay between mode-induced forces, either attractive or repulsive, dependent on
the relative phase of the excitation, and the inherent static interactions has been shown
to significantly alter the dynamics of vortex scattering, as evidenced by our numerical
simulations.

For type I vortex dynamics, where the static force is attractive, we have demonstrated
that exciting repulsive modes can lead to complex scattering phenomena, including the
presence of spectral walls. The interaction energy, comprising contributions from both
the static force and the mode effects (figure 10.2.5), reveals regions where vortices may
remain coincident, may separate, or may oscillate around a fixed position due to the
presence of a local extremum creating a potential barrier. For A < 0.8, where the
discrete spectrum of certain modes ceases to exist, we observe that spectral walls still
influence the dynamics, although their effects are subtler due to the dominance of the
static attraction (figure 10.2.8).

In contrast, type II vortex dynamics, characterised by a repulsive static force, presents a
slightly different dynamical landscape when attractive mode excitations are introduced.
Our numerical results, namely, figures 10.3.1 and 10.3.2 showing the same simulation,
highlight the formation of quasi-bound states where vortices scatter multiple times be-
fore separating or stabilising at a fixed distance, as seen in figures 10.3.6 and 10.3.7.
The interaction energy analysis (figures 10.3.5 and 10.3.10) underscores the existence
of critical points, which trap vortices in quasi-stationary configurations until the exci-
tation intensity decays or the static repulsion prevails. For A > 1.5, where the radially
symmetric shape mode exists only in the continuous spectrum for N = 1, the spectral
walls again play a role, slowing the vortex separation as frequencies reach the continuous

spectrum (figures 10.3.8 and 10.3.9).
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Across both regimes, the spectral flow of mode frequencies, coupled with static inter-
actions, governs the scattering outcomes. The numerical results illustrate a delicate
balance between forces, where initial conditions such as excitation intensity and ini-
tial velocity dictate whether vortices scatter symmetrically, form bound states, or repel
to infinity. This complexity resembles findings at critical coupling, yet the departure
from critical coupling introduces additional layers of nonlinearity, enriching the vortex
dynamics.

We hence provided a comprehensive framework for understanding vortex interactions
away from critical coupling, bridging the gap between theoretical predictions and nu-

merical observations.



Chapter 11

Orbiting Vortices

11.1 Introduction

This chapter contains work from [48]. In this chapter, we discuss the full field theory
dynamics for orbital vortex solutions, whereby the vortices undergo rotational motion
around the origin. These orbits arise in various contexts. We will start to expand on
the work in chapter 10, whereby we will take advantage of the attractive static force in
type I superconductivity, and show that this attraction can lead to long-lived rotational
states. We will discuss the role of the tangential velocity in balancing the centrifugal
force with the mutual attraction of the type I vortices. Next, we will consider type
II vortices. Here, the static intervortex force is repulsive, hence we will rely on the
local minimum found in chapter 10, and discuss solutions with rotational motion inside
this potential well. Moreover, we have studied the role of the mode-induced attractive
force for critically coupled vortices in chapter 9. It is a natural progression to consider
vortex orbits in this regime also, where we will again attempt to balance the attractive
force with the repulsive centrifugal force to obtain long-lived vortex orbits. Finally, it is
known that there is a strong attractive force for vortex-antivortex pairs. We will follow
a similar procedure to that for type I vortices and show that we can achieve long-lived

orbits.

11.2 Type I Vortex Orbits

When considering orbital vortices, it is first natural to consider the case of type I vortices,

without excitation, see figure 11.2.1. Here, the only competing forces are the attractive
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Figure 11.2.1: Trajectories of a 2-vortex system orbiting at A = 0.9, with v, =
0.01, and I(0) = 0, where I(0) = 3(ew)?.

static force and the repulsive centrifugal force. If the tangential velocity is small, then
the vortices will be drawn towards the centre; see figure 11.2.1. If the velocity is large,
the kinetic energy of the vortices will dominate the interaction and they will escape to
infinity. For a fine-tuned velocity, dependent on the orbit size, the vortices may form a
long-lived circular orbit.

In figure 11.2.1, we plot the trajectories of the vortices for a 2-vortex system at A = 0.9.
The initial velocity is v;, = 0.01, and the vortices are centred at di, = £4 in the y-
direction. We can see from figure 11.2.1 that the vortices orbit the origin. Note that the
orbit is not circular because of the magnitude of the static force. The kinetic motion,
that is, the kinetic energy in the vortices, is not large enough to overcome the static
attraction, hence the static force dominates the interaction. Note that the vortices do
not meet the coincident configuration. Instead, they pass each other close to the origin
and are accelerated past each other due to the increasing magnitude of the static force.
Interestingly, the trajectories form peaks at precisely the distances they were initially
configured.

Next, we attempt to approximate the perfect conditions for a circular orbit by studying
the competing forces in the interaction. Consider a 2-vortex system with mass m = V;}
per vortex, where the vortices have separation s = |r; — r2|. We define the relative

m _

separation as r = r; — rg. The reduced mass is thus p = 3 = —-.
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In polar coordinates, we have that r = (scosf,ssinf). The relative kinetic energy is
then
Th = %(5‘2 + 5%62). (11.2.1)

If we include a radial potential, then the reduced Lagrangian is then

i

Lyea = - §% 4 520%) — V(). (11.2.2)

Since the angular coordinate 6 is cyclic, the angular momentum is then defined as

L, = %529 = L, (11.2.3)
where v = s6.
Varying eq. (11.2.3) with respect to s gives
m m dVv
—§=—s0* — —. 11.2.4
1774 T s (11.2.4)
hence we have that
16L2  dV
§ = —4—. 11.2.5
[ —— ds ( )
The centrifugal force is thus
16L2
Fcentrifugal = WS?)’ (1126)
We then have that the centrifugal part of the interaction energy per vortex is
L2
z
Ecentrifugal = - Vl)\an (1127)

where s = 2d, and L, = VTﬁdv

We can hence plot the interaction energy in this case, taking into account only that
static force and centrifugal force, see figure 11.2.2.

We can see from figure 11.2.2 that for d > 4, the net force is asymptotically zero, where
the force is the gradient of the interaction energy. Furthermore, we observe a critical
point of the interaction energy for d € [0.5,1.5]. We can see from the force that we
should be able to obtain vortex orbits for small d where the net force is zero. If the
velocity is small, the static force will dominate and the vortices will accelerate towards

the origin, see figure 11.2.1. We can predict the initial velocity required for the vortices
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Figure 11.2.3: Trajectories of a two-vortex system orbiting at A = 0.9, with

vin = 0.03230815 and d = 4.

to attempt to achieve a more circular orbit; see figure 11.2.3. We can calculate the

expected tangential velocity of v = 0.038246, at a fixed distance of d = 4.

We see in figure 11.2.3 a long-lived circular orbit in which the vortices orbit the origin

multiple times before escaping to infinity. We can plot snapshots of the corresponding

dynamical simulation to gain a clearer picture of how the vortices orbit.

We see in

figure 11.2.4 that the vortices orbit the origin many times, before eventually escaping

to infinity. This is because the net force is still slightly positive at this distance, see

figure 11.2.2.

Furthermore, we can observe vortex orbits at the critical point in the interaction energy,
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Figure 11.2.4: Snapshots of a dynamical simulation displaying a heat map for
the energy density for a 2-vortex scattering with A = 0.9 and initial velocity
Vin ~ 0.032.

where d € [0.5,1.5], see figure 11.2.5. We see that the vortices seem to orbit each other
more than 10 times (up to when the numerics fail). The orbit is not perfectly circular.
This could be due to the vortex oscillating in the potential well around the critical point
in the interaction energy. Additionally, it could be a numerical artefact as a result of
the vortices being initially positioned close together, such that the initial configuration
is not a perfect approximation to the field theory. We can plot dynamical snapshots of
the same simulation figure 11.2.5, displaying the static energy density as a heat plot; see

figure 11.2.6.

11.3 Type II Vortex Orbits

We have shown in figure 10.3.5 that there exists a local minimum whereby the vortices
can form a quasi-stationary state at a fixed distance away from the origin. This motivates
us to consider type II vortices that orbit the origin.

The interaction energy will differ slightly, since not only do we still have the repulsive
static force and the attractive mode interaction, but we will also have the centrifugal
force. We can add the centrifugal force to the interaction energy, and approximate the
ideal velocity for a circular orbit, given a fixed intensity. Let us first consider an intensity

of 1(0) = 0.05, see figure 11.3.1. We see in figure 11.3.1 that the net force is zero for
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Figure 11.2.5: Trajectories of a two-vortex system orbiting for A = 0.9 at d =
0.9, with vj, = 0.045
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Figure 11.2.6: Snapshots of energy density for a two-vortex scattering (A = 0.9,
vin = 0.045, I(0) = 0) at d = £0.9, as seen in figure 11.2.5.
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a 2-vortex system at A = 1.1, with intensity I(0) = 0.15, where I(0) = % (ew)?,

A
and for a range of L., where L, = V71dv. The interaction energy sums the static
energy, the mode induced energy and the centrifugal energy, as a function of
the radius of the orbit d € [0.5, 6].

d > 4.5, which means that if the vortices drift away, we should still be able to maintain a
long-lived orbit at this distance, assuming that the intensity remains constant. Because
the vortices are not initially well separated, the initial condition is not perfect. As such,
the intensity will drop as the solution flows to the correct solution, which is why we
have chosen an intensity of I(0) = 0.15. Furthermore, we see three critical points in
the interaction energy. A shallow local minimum for d < 1, meaning that it might
be possible to have vortex orbits in this regime. Furthermore, there is a second local
minimum for d € [1.5,2.5]. This minimum is slightly more pronounced, making this
distance a better candidate for long-lived vortex orbits. The local extremum at d = 1
suggests a potential barrier, that may help in stabilising vortex orbits.

Figure 11.3.2 shows the trajectories of two vortices with A = 1.1, initial velocity vy, =
0.019 and intensity I(0) = 0.1. The blue line indicates the path of one vortex and the
red line the other. The dashed black line displays the circle 2% +y? = d2, where dy = 4.5.
We see that the orbit starts stable but deviates away from the black line. This is due
to the intensity of the excitation decaying, and as such the static force and centrifugal
force dominate the interaction, and the vortices escape to infinity.

If the initial intensity is large, the vortices will move towards the local minimum and
oscillate back. This breaks the symmetry of the orbit; see figure 11.3.3. Instead, we can
simulate the vortices to be initially located on top of the local minimum, at d =~ 2. We

can expect the vortices to become trapped in the potential well, even with the additional
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Figure 11.3.2: Trajectories of a 2-vortex system orbiting at A = 1.1, with initial
velocity vy, = 0.019 and intensity 1(0) = 0.1, where I(0) = 1 (ew)?.
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Figure 11.3.3: Trajectories of a 2-vortex system orbiting at A = 1.1, with initial
velocity vy, = 0.015 and intensity 1(0) = 0.015, where 1(0) = %(ew)?.

centrifugal force, especially if the orbit is small. We see an example of this in figure 11.3.4
For A = 1.1, V}} = 3.204508502, so for a long-lived orbit at d = 1, for 1(0) = 0.2,
choosing L, = 0.07, corresponding to the orange line in figure 11.3.1, we would require
an angular velocity of vy, = 0.043688. We see an example of this in figure 11.3.5.

figure 11.3.5 shows a semi-stable orbit for type II vortices. The blue line indicates the
path of one vortex and the red line the other. The dashed black line displays the circle
23 + 23 = d3, where dy = 1.

We see in figure 11.3.5 that the vortices orbit twice around the origin before escaping.
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Figure 11.3.4: Trajectories of a 2-vortex system at A = 1.1 with y;, = 2, initial
velocity in the z—direction, vy, = 0.01 and initial intensity 1(0) = 0.08, where
1(0) = L (ew)?.
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Figure 11.3.5: Left: trajectories of a two-vortex system (A = 1.1, vy, = 0.04,

I(0) = 0.2) at z3 = £1. The blue line shows the (x1, z2) position of one vortex,

red the other. Right: intensity of the excitation per vortex as a function of time
(red), and distance |d| of the vortices from the origin as a function of time.

This is due to the intensity of the excitation decaying, as seen in the right of figure 11.3.4
with the magenta line displaying the intensity of the excitation per vortex as a function
of time, and as such the static force and centrifugal force dominate the interaction, and

the vortices escape to infinity.

11.4 Vortex Orbits at Critical Coupling

It was shown in section 9.2 that we can induce an attractive force to vortex scattering

at critical coupling by including internal shape modes. It is natural to assume that we
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Figure 11.4.2: Left: trajectories of a two-vortex system (A = 1, v, = 0.05,
I(0) = 0.025) at #p = £1. The blue line shows the (z1,z2) position of one
vortex, red the other. Right: intensity of the excitation per vortex as a function
of time (red), and distance |d| of the vortices from the origin as a function of

time.

can hence find an orbital vortex pair at critical coupling.

We can gain some intuition for suitable orbits by studying the interaction energy, and

hence the total force of the system. At critical coupling, the static force is zero, so the

only competing forces are the attractive mode induced force, and the repulsive centrifugal

force. We assume a fixed intensity of the excitation, and calculate the contributions

to the interaction energy, see figure 11.4.1, where we have chosen a fixed intensity of

1(0) = 0.025

We see from figure 11.4.1 that for 7(0) = 0.025, that the force crosses the z-axis at |d| ~ 1,

i.e. there is a local minimum in the interaction energy (see left of figure 11.4.1). Choosing

L, =0.078, we find that v;, = 0.05. We can test these parameters in figure 11.4.2.
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We see in figure 11.4.2 that the vortices orbit the origin 6 times. The left plot shows the
positions of the vortices in the x1, x2 plane, where blue shows the path of one vortex, and
red the other vortex. The right plot shows the distance of the vortices from the origin as
a function of time in blue, and the intensity of the excitation per vortex as a function of
time in red. We can see from the distance of the vortices from the origin in the right plot
(blue) that as the intensity of the excitation decreases, the size of the orbit increases,
which is expected by observing figure 11.4.1. It is trivial that as the intensity of the
excitation decreases, the attractive force induced by the mode also decreases, hence since
the centrifugal force stays roughly the same (assuming a circular orbit), hence the local
minimum where the interaction energy is zero, i.e. the force crosses the xi-axis, moves
out (|d| increases).

We can show snapshots of the energy density for the simulation shown in figure 11.4.2.
We see in figure 11.4.3 that the vortices orbit the origin, whilst oscillating in shape, as
well as oscillating about the local minimum in the interaction energy. The vortices orbit
for a significantly long time, up to ¢ = 1500, at which point the vortices escape after the

orbit becomes breaks down and the vortices pass close to the origin.

11.5 Vortex Anti-Vortex Orbits

Finally, we will consider orbital solutions of vortex-antivortex pairs. Here, the static
intervortex force is highly attractive, and if the pair collide, they will annihilate.

We can plot the trajectories of the vortices to observe the orbit. We expect two scenarios.
If the initial velocity is small, the vortices will collide at the origin and annihilate. If the
velocity is larger, the vortices will form a long-lived orbit, before either being pulled to
the origin or escaping to infinity.

Consider a scattering solution with vy, = 0.08, see figure 11.5.1. We observe that the
vortices initially form a semi-stable orbit; however, the tangential velocity is slightly too
small and the vortices are drawn to the origin and annihilate before completing a full
orbit. An artefact of this is the interesting yin-yang pattern in the trajectories.

If we increase the initial velocity to a fine-tuned value of vy, = 0.08327, we observe in
figure 11.5.2 an orbital solution where a long-lived orbit is formed, and the vortices move
around the origin multiple times before escaping to infinity.

We can also plot snapshots of the relevant dynamical simulation shown in figure 11.5.2,

see figure 11.5.3. We display heat plots for the condensate |¢?| and the magnetic field B.
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Figure 11.4.3: Snapshots of energy density for a two-vortex scattering (A = 1,
n = 0.05, I(0) = 0.05) at d = %1, as seen in figure 11.4.2.

We can distinguish between the vortex and antivortex by the sign of the magnetic field.

Note that in the magnetic field plots, red indicates positive and blue indicates negative;

hence, we can see how the vortex and antivortex orbit the origin, before escaping to

infinity.

11.6 Conclusion

In this chapter, we explore the dynamics of orbital vortex solutions across various

regimes, demonstrating the interaction between static forces, centrifugal forces, and

mode-induced interactions. Beginning with type I vortices, we discussed that long-lived
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Figure 11.5.1: Trajectories of a vortex-antivortex pair. Red indicates the path
of the vortex, and blue the antivortex. We see that the pair complete a half
orbit, before being pulled to the origin an annihilating.
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Figure 11.5.2: We plot the trajectories of the vortices. Here, the blue line
indicates the path of the antivortex, and the red line shows the path of the
vortex. The pair orbit the origin once, before escaping to infinity.
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Figure 11.5.3: Heat plots for the condensate |¢?| and the magnetic field B.

We show a vortex-antivortex scattering with non-zero impact parameter. The

scattering solution displays an orbital behaviour of the (anti)vortices around
the origin.

orbits can be achieved when the tangential velocity precisely counterbalances the at-
tractive static force. Through numerical simulations, we confirmed the existence of such
orbits and identified conditions under which vortices either collapse towards the origin
or escape to infinity, or form long-lived orbits inside a potential well.

For type II vortices, where the static force is repulsive, we examined the role of critical
points in the interaction energy, observed in figure 11.3.1, in sustaining orbital motion.
By introducing an additional mode-induced attraction, we demonstrated that vortex
pairs can remain in bounded orbits within a potential well. However, we observed that
as the excitation decays, the vortices may eventually escape, reinforcing the delicate

balance required for sustained rotational motion.
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Furthermore, we extended our analysis to critically coupled vortices, where shape mode
excitations can introduce an effective attraction. Our simulations illustrated that this
interaction can lead to vortex orbits at critical coupling, although the dynamic nature
of the excitation prevents the formation of long-lived orbits.

Lastly, we considered vortex-antivortex pairs, where the strong attractive interaction
necessitates careful velocity tuning to avoid annihilation. The results indicate that,
under suitable conditions, vortex-antivortex orbits can exist, though their longevity is
highly dependent on the specific initial conditions.

In general, this chapter has provided a comprehensive study of orbiting vortices, high-
lighting the interdependence of forces required to sustain such configurations. These
findings may inform future studies on controlled vortex motion in various physical con-

texts.
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Chapter 12

Conclusions

This thesis started with a discussion on baby Skyrmions. Our analysis has primarily
focused on static solutions and their energetic properties. A natural extension of this
work would be to study the dynamical behaviour of baby Skyrmions under various
perturbations. This includes exploring their scattering properties, rotational modes,
and the possibility of quasi-bound states analogous to those found in vortex dynamics.
Furthermore, higher charge solutions warrant further investigation, as they may exhibit
novel structural formations, including global energy minimum that could serve as stable
multi-Skyrmion configurations [61, 78].

In part III, we have conducted an in-depth investigation into the intricate dynamics
of Abelian Higgs vortices, with a particular emphasis on how internal modes influence
their interactions. Through a combination of analytical and numerical techniques, we
have extended existing frameworks by considering vortex scattering, quasi-bound states,
spectral walls, and orbital motion. Our results provide deeper insight into the role of
internal mode excitation and its effect on vortex behaviour, particularly in regimes
beyond critical coupling.

Building on the findings presented in this thesis, several promising avenues for future
research emerge, providing opportunities to extend and deepen our understanding of
vortex dynamics. The work presented here could be extended to study the dynamics
of vortices of higher multiplicity, specifically multi-vortex scattering at critical coupling.
This has many possibilities because higher-degree vortices also have more normal modes
to excite.

An important result of this thesis is the existence of spectral walls in Abelian Higgs
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vortex dynamics. One avenue is the identification of spectral walls in other higher-
dimensional systems. The key requirement for the emergence of spectral walls is the
presence of bound modes that, as they traverse the moduli space, enter the continuous
spectrum. Additionally, we anticipate that spectral walls exist in BPS solitons with
different topologies, with the most exciting candidates being BPS monopoles. If this
effect extends to higher dimensions, it could enable the experimental observation of
spectral walls in more realistic physical systems, including superconductors.

One of the key areas for future investigation involves studying vortex interactions in
the presence of impurities. The introduction of defects in the medium can significantly
alter vortex trajectories, potentially leading to novel bound states or chaotic scattering
behaviour. Previous studies [18, 28] have shown that impurities can act as localised
trapping sites, and incorporating this aspect into our framework could yield new stable
configurations. Furthermore, the dynamics of vortices with magnetic impurities have
been explored, providing insight into how impurities influence vortex motion [28].
Furthermore, an exciting avenue of research lies in the study of vortices within the
Schrodinger-Chern-Simons model [30, 55]. Unlike the Abelian Higgs model, which fea-
tures second-order dynamics, the Schrodinger-Chern-Simons system exhibits first-order
conservative dynamics. The investigation of alternative materials with lower dissipation
could lead to the emergence of additional internal modes, potentially enriching the dy-
namical landscape. Furthermore, the Schrodinger-Chern-Simons dynamics for vortices
was discussed in [49] where it is shown that the vortices circle each other. Mode exci-
tations could be an interesting avenue for future research in Schrédinger-Chern-Simons
dynamics.

An additional avenue for future exploration lies in the study of vortex lattices, which offer
a rich framework for understanding ordered vortex configurations in superconducting
systems. Recent advances in [70, 80] have developed a method to compute minimal-
energy vortex lattices in anisotropic Ginzburg-Landau models, revealing dynamic lattice
structures that evolve with applied magnetic fields. These findings suggest investigating
vortex lattices in the presence of internal mode excitations or impurities could thus
bridge the dynamical phenomena observed in this thesis with macroscopic ordered states,
potentially informing experimental observations in condensed matter systems.

Another promising direction is the extension of our vortex studies to cosmic strings.
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The mathematical similarities between vortices in condensed matter systems and cos-
mic strings in cosmology suggest that many of the techniques developed in this thesis
could be adapted to study string interactions in the early universe. It is shown in
[75] that cosmic strings can form networks and undergo reconnection events, similar
to vortex interactions. Understanding how mode excitations influence these processes
could provide new insights into cosmic string evolution and their potential observational
signatures.

In conclusion, this thesis has provided significant advancements in our understanding
of vortex dynamics, particularly with the inclusion of internal modes for BPS vortices,
as well as in the non-BPS regime. The interplay between mode excitations, intervortex
forces, and orbital motion has been systematically analysed, leading to new insights that
can inform future theoretical and experimental studies. The extensions outlined above
present a rich landscape for further exploration, with potential implications spanning

condensed matter physics, cosmology, and soliton theory.



Appendix A

Vortex Mode Frequencies

The squared angular frequencies w]2V i computed by the MATLAB code are reliable to
approximately 6 decimal places, limited primarily by the eigenvalue solver’s tolerance of

1079 and finite difference errors on the order of h2 = 4 x 107.
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A k=0 | k=1(T)
0.1 | 0.0758150 | -0.0129376
0.2 | 0.1633020 | -0.0108673
0.3 | 0.2560929 | -0.0054384
0.4 | 0.3434223 | -0.0021344
0.5 | 0.4254454 | -0.0005528
0.6 | 0.5021804 | -0.0005090
0.7 | 0.5760020 | -0.0004885
0.8 | 0.6466050 | -0.0004969
0.9 | 0.7136541 | -0.0004948
1.0 | 0.7770676 | -0.0002291
1.1 | 0.8352168 | -0.0002416
1.2 | 0.8877518 | -0.0002550
1.3 | 0.9336225 | -0.0002596
1.4 | 0.9713502 | -0.0002670
1.5 | 0.9983252 | -0.0002860
1.6 - -0.0002942
1.7 - -0.0003132
1.8 - -0.0003214
1.9 . -0.0003422
2.0 - -0.0003596
2.1 - 0.0000021
2.2 - 0.0000025
2.3 - 0.0000021
2.4 - 0.0000020
2.5 - 0.0000024
2.6 - 0.0000026
2.7 - 0.0000027
2.8 - 0.0000027
2.9 - 0.0000026
3.0 - 0.0000027

Table A.1: Squared angular frequencies w3;, for N = 1, for all k < N. (T)
Both the ¥ = 0 and £ = 1 modes here have

denotes a translation mode.

degeneracy one.
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A k=0 |k=1(T)| k=1 | k=29
0.1 | 0.0789918 | -0.0007159 - 0.0512741
0.2 | 0.1483615 | -0.0001025 - 0.0558772
0.3 | 0.2105808 | -0.0000096 - 0.0539602
0.4 | 0.2677272 | -0.0000009 - 0.0493481
0.5 | 0.3192852 | -0.0008482 - 0.0417627
0.6 | 0.3687888 | -0.0007926 - 0.0345898
0.7 | 0.4149896 | -0.0007993 - 0.0264856
0.8 | 0.4583296 | -0.0007870 | 0.7984443 | 0.0177572
0.9 | 0.4989830 | -0.0007977 | 0.8883169 | 0.0084556
1.0 | 0.5378953 | -0.0004056 | 0.9724756 | -0.0006509
1.1 | 0.5738714 | -0.0004022 - -0.0107688
1.2 | 0.6077165 | -0.0004147 - -0.0212523
1.3 | 0.6395990 | -0.0004264 - -0.0320366
1.4 | 0.6696357 | -0.0004419 - -0.0430984
1.5 | 0.6979666 | -0.0004441 - -0.0543849
1.6 | 0.7239046 | -0.0009180 - -0.0666735
1.7 | 0.7490566 | -0.0009378 - -0.0784261
1.8 | 0.7727572 | -0.0009572 - -0.0903705
1.9 | 0.7951064 | -0.0009595 - -0.1024658
2.0 | 0.8161198 | -0.0009784 - -0.1147567
2.1 | 0.8359077 | -0.0009812 - -0.1271782
2.2 | 0.8544807 | -0.0009980 - -0.1397720
2.3 | 0.8719014 | -0.0010202 - -0.1525159
2.4 | 0.8882325 | -0.0010342 - -0.1653795
2.5 | 0.9034858 | -0.0010601 - -0.1783907
2.6 | 0.9177515 | -0.0010528 - -0.1914653
2.7 | 0.9309928 | -0.0010622 - -0.2046847
2.8 | 0.9432418 | -0.0010810 - -0.2180313
2.9 | 0.9545307 | -0.0010935 - -0.2314733
3.0 | 0.9648639 | -0.0010994 - -0.2450055

Table A.2: Squared angular frequencies w?\,k for N = 2, for all £k < N.

(T) denotes a translation mode, and (S) denotes a splitting mode.

The

k =0,1(T),2(S) all have degeneracy 2, the k£ = 1 mode has degeneracy 4.
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A k=0 | k=1(T)| k=1 | k=2() | k=3(S)
0.1 | 0.0679526 | -0.0008217 - 0.0274337 | 0.0881145
0.2 | 0.1227128 | -0.0002553 - 0.0300880 | 0.0965833
0.3 | 0.1697435 | -0.0000502 - 0.0291660 | 0.0941163
0.4 | 0.2115522 | -0.0000094 | 0.3933655 | 0.0266270 | 0.0865239
0.5 | 0.2495440 | -0.0000003 | 0.4797256 | 0.0232239 | 0.0759417
0.6 | 0.2845064 | 0.0000001 | 0.5603710 | 0.0192495 | 0.0632930
0.7 | 0.3169691 | 0.0000001 | 0.6354855 | 0.0148617 | 0.0490985
0.8 | 0.3473093 | -0.0000001 | 0.7053603 | 0.0101529 | 0.0336815
0.9 | 0.3758143 | -0.0000002 | 0.7702370 | 0.0051846 | 0.0172621
1.0 | 0.4027085 | 0.0000001 | 0.8302565 | -0.0000005 | -0.0000003
1.1 | 0.4281722 | 0.0000000 | 0.8854024 | -0.0053696 | -0.0179846
1.2 | 0.4523529 | 0.0000000 | 0.9353421 | -0.0108991 | -0.0365986
1.3 | 0.4753740 | -0.0000001 | 0.9786845 | -0.0165696 | -0.0557630
1.4 | 0.4973393 | -0.0000001 - -0.0223660 | -0.0754331
1.5 | 05183373 | 0.0000000 - -0.0282764 | -0.0955450
1.6 | 0.5384442 | 0.0000001 - -0.0342903 | -0.1160612
1.7 | 05577263 | 0.0000002 - -0.0403995 | -0.1369475
1.8 | 0.5762415 | -0.0000002 - -0.0465968 | -0.1581733
1.9 | 0.5940412 | 0.0000000 - -0.0528759 | -0.1797126
2.0 | 0.6111707 | 0.0000001 - -0.0592317 | -0.2015431
2.1 | 0.6276709 | 0.0000000 - -0.0656591 | -0.2236438
2.2 | 0.6435771 | 0.0000000 - -0.0721550 | -0.2459979
2.3 | 0.6589224 | 0.0000002 - -0.0787149 | -0.26853889
2.4 | 0.6737361 | 0.0000005 - -0.0853360 | -0.2914031
2.5 | 0.6880456 | 0.0000000 - -0.0920161 | -0.3144280
2.6 | 0.7018746 | 0.0000000 - -0.0987518 | -0.3376510
2.7 | 0.7152464 | -0.0000003 - -0.1055404 | -0.3610619
2.8 | 0.7281795 | 0.0000005 - -0.1123813 | -0.3846526
2.9 | 0.7406946 | 0.0000000 - -0.1192708 | -0.4084119
3.0 | 0.7528083 | -0.0000003 - -0.1262084 | -0.4323327

Table A.3: Angular frequencies w?\ﬁk for N = 3,
translation mode, and (S) denotes a splitting mode. The k£ = 0, 1(T), 2(S), 3(S)

for all k < N. (T) denotes a

mode all have degeneracy 2, and the £ = 1 mode has degeneracy 4.



177

A k=0 | k=1(T)| k=1 | k=20) | k=3(@6)|k=4() |k=0()
0.1 | 0.0597018 | -0.0004676 - 0.0185135 | 0.0593157 - -
0.2 | 0.1038126 | -0.0001816 | 0.1972500 | 0.0199480 | 0.0644325 | 0.1237461 -
0.3 | 0.1407828 | -0.0000422 | 0.2820540 | 0.0192449 | 0.0627045 | 0.1205088 -
0.4 | 0.1731786 | -0.0000056 | 0.3587430 | 0.0175188 | 0.0576237 | 0.1108280 -
0.5 | 0.1998225 | -0.0016302 | 0.4250953 | 0.0129110 | 0.0471123 | 0.0922926 -
0.6 | 0.2260267 | -0.0019468 | 0.4877784 | 0.0098159 | 0.0380529 | 0.0752346 -
0.7 | 0.2518380 | -0.0012650 | 0.5476264 | 0.0078877 | 0.0300327 | 0.0591256 -
0.8 | 0.2756647 | -0.0008206 | 0.6027155 | 0.0054311 | 0.0206986 | 0.0407040 -
0.9 | 0.2978723 | -0.0005342 | 0.6536530 | 0.0025972 | 0.0103722 | 0.0205305 | 0.8956216
1.0 | 0.3187357 | -0.0003498 | 0.7009225 | -0.0005073 | -0.0007217 | -0.0010059 | 0.9882124
1.1 | 0.3384593 | -0.0002311 | 0.7448956 | -0.0038108 | -0.0124268 | -0.0236312 -
1.2 | 0.3571987 | -0.0001536 | 0.7858521 | -0.0072649 | -0.0246350 | -0.0471547 -
1.3 | 0.3750754 | -0.0001034 | 0.8239921 | -0.0108365 | -0.0372662 | -0.0714325 -
1.4 | 0.3921842 | -0.0000701 | 0.8594451 | -0.0145030 | -0.0502635 | -0.0963607 -
1.5 | 0.4084210 | -0.0001633 | 0.8919953 | -0.0184203 | -0.0638229 | -0.1221844 -
1.6 | 0.4242607 | -0.0001184 | 0.9222248 | -0.0221884 | -0.0773665 | -0.1480978 -
1.7 | 0.4395149 | -0.0000861 | 0.9495784 | -0.0260268 | -0.0911871 | -0.1744864 -
1.8 | 0.4542315 | -0.0000634 | 0.9735658 | -0.0299262 | -0.1052569 | -0.2012994 -
1.9 | 0.4684533 | -0.0000463 | 0.9929939 | -0.0338783 | -0.1195550 | -0.2284982 -
2.0 | 0.4822159 | -0.0000345 - -0.0378782 | -0.1340618 | -0.2560463 -
2.1 | 0.4955512 | -0.0000263 - -0.0419210 | -0.1487625 | -0.2839159 -
2.2 | 0.5083785 | -0.0000894 - -0.0461107 | -0.1637933 | -0.3122807 -
2.3 | 0.5209603 | -0.0000702 - -0.0502069 | -0.1788142 | -0.3406815 -
2.4 | 0.5331833 | -0.0000555 - -0.0543415 | -0.1940006 | -0.3693471 -
2.5 | 0.5450684 | -0.0000438 - -0.0585109 | -0.2093423 | -0.3982590 -
2.6 | 0.5566327 | -0.0000343 - -0.0627135 | -0.2248316 | -0.4274015 -
2.7 | 0.5678959 | -0.0000275 - -0.0669464 | -0.2404580 | -0.4567581 -
2.8 | 0.5788705 | -0.0000224 - -0.0712086 | -0.2562169 | -0.4863179 -
2.9 | 0.5895704 | -0.0000180 - -0.0754979 | -0.2721016 | -0.5160696 -
3.0 | 0.6000094 | -0.0000148 - -0.0798128 | -0.2881045 | -0.5460005 -

Table A.4: Angular frequencies w3;, for N = 4, for all k < N. (T) denotes
a translation mode, (S) denotes a splitting mode, and (U) denotes the upper
mode. All of the modes here have degeneracy one.
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