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CARATHÉODORY DISTANCE-PRESERVING MAPS BETWEEN

BOUNDED SYMMETRIC DOMAINS

BAS LEMMENS AND CORMAC WALSH

Abstract. We study the rigidity of maps between bounded symmetric do-

mains that preserve the Carathéodory/Kobayashi distance. We show that such
maps are only possible when the rank of the co-domain is at least as great as

that of the domain. When the ranks are equal, and the domain is irreducible,

we prove that the map is either holomorphic or antiholomorphic. In the holo-
morphic case, we show that the map is in fact a triple homomorphism, under

the additional assumption that the origin is mapped to the origin. We exploit

the large-scale geometry of the Carathéodory distance and use the horocom-
pactification and Gromov product to obtain these results without requiring

any smoothness assumptions on the maps.

1. Introduction

An interesting problem in the theory of several complex variables is to find
conditions under which every map φ : D → D′ between two complex manifolds
D ⊆ Cm and D′ ⊆ Cn preserving the Carathéodory or Kobayashi distance is either
holomorphic or anti-holomorphic. This problem has been considered in various
settings, often under the assumption that φ is C1-smooth or D = D′; see [4,
10, 12, 17, 26, 29]. Arguably, the most general known case to date is due to
Antonakoudis [2], who showed that it holds for maps between complete disc rigid
domains in Cn; see also [9]. It is generally believed [13, Conjecture 5.2] that as long
as the domains D and D′ are not biholomorphic to a Cartesian product of domains,
the distance-preserving map φ : D → D′ is either holomorphic or anti-holomorphic.

Here, we study the case of Hermitian symmetric spaces of non-compact type, or
equivalently bounded symmetric domains. In these spaces, the Carathéodory and
Kobayashi distances coincide. The work by Antonakoudis [2, Theorem 1.3] implies
that Carathéodory distance-preserving maps between rank one bounded symmetric
domains are either holomorphic or anti-holomorphic. Distance-preserving maps
between higher rank bounded symmetric domains were studied by Kim and Seo [20]
under the additional assumption that the map is C1. They showed that if the
domain is irreducible, the map is C1-smooth, and the rank of the co-domain is
no greater than the rank of the domain, then the map is either holomorphic or
anti-holomorphic. There are examples where the irreducibility or rank conditions
do not hold and the conclusion fails.
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2 BAS LEMMENS AND CORMAC WALSH

We generalise these results to distance-preserving maps between bounded sym-
metric domains of arbitrary rank, without any smoothness condition on the map.
Such a condition was needed in [20] to apply techniques from differential geometry.
Here, instead we exploit the large-scale geometry of bounded symmetric domains
with their Carathéodory distance. Keys tools are the horofunction boundary of this
space, which was described in detail in Chu–Cueto-Avellaneda–Lemmens [7], and
the Gromov product.

Recall that a Hermitian symmetric space is a Riemannian symmetric space with
a compatible complex structure. It was shown by Harish-Chandra that every non-
compact type Hermitian symmetric space can be realised as a bounded symmetric
domain. These are the bounded domains in Cn such that every point in the domain
is an isolated fixed point of a biholomorphic involution from the domain to itself.
It was later shown [18, 21] that every such domain arises as the open unit ball of a
JB*-triple. These triples provide a powerful tool for studying bounded symmetric
domains, one we will use extensively in this paper.

Our first result is a sharpening and extension to the non-smooth case of [20,
Theorem 1.1]. In particular, it shows that there is no distance-preserving map from
a bounded symmetric domain to another one of lower rank.

Theorem 1.1. Let D be a finite dimensional bounded symmetric domain with rank
r and genus p, and D′ be a finite dimensional bounded symmetric domain with rank
r′ and genus p′. If φ : D → D′ is a Carathéodory distance-preserving map, then

r ≤ r′ and rp− dimD ≤ r′p′ − dimD′.

When the rank of the domain and co-domain are the same, one can say more. Our
next theorem states that, in this case, a distance-preserving map respects factors,
that is, each irreducible factor of the domain only influences one irreducible factor
of the co-domain.

If D1, . . . , Dm are sets and I := {i1, . . . , ik} is a subset of {1, . . . ,m}, we use
the notation DI to denote the Cartesian product Di1 × · · · × Dik , where the ij
are taken in increasing order. Also, if x := (x1, . . . , xm) ∈ D1 × · · · × Dm, then
xI := (xi1 , . . . , xik) ∈ DI . If J is a map, then J−1(x) denotes the preimage of a
point x.

Theorem 1.2. Let φ : D → D′ be a Carathéodory distance-preserving map between
two finite-dimensional bounded symmetric domains of equal rank. Let these domains
be expressed in terms of their irreducible factors as follows:

D = D1 × · · · ×Dm and D′ = D′1 × · · · ×D′n.
Then, there exists a surjective map J : {1, . . . ,m} → {1, . . . , n}, and distance-
preserving maps φk; k ∈ {1, . . . , n}, with φk : DJ−1(k) → D′k such that

φ(x1, . . . , xm) =
(
φ1(xJ−1(1)), . . . , φn(xJ−1(n))

)
.

Note that it follows that D has at least as many irreducible factors as D′.

Theorem 1.3. Let φ : D → D′ be a Carathéodory distance-preserving map between
two finite-dimensional bounded symmetric domains of equal rank. Assume that D
is irreducible. Then, φ is either holomorphic or antiholomorphic.

In the case where D and D′ have the same number of irreducible factors, the
component maps φk of Theorem 1.2 map irreducible factors to irreducible factors,
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and so Theorem 1.3 can be applied to obtain that each of them is either holomorphic
or antiholomorphic. In particular, this is true when D′ is identical to D. In this
case we get the following immediate corollary.

Corollary 1.4. If D is a finite-dimensional irreducible bounded symmetric do-
main, then Aut(D) := {φ : D → D | φ biholomorphic} is an index two subgroup of
Isom(D) := {φ : D → D | φ is a bijective Carathéodory distance-preserving map}.

Recalling that every bounded symmetric domain can be realised as the unit ball
of a JB*-triple, we can strengthen the conclusion of Theorem 1.3 to get the following
rigidity result. A triple homomorphism between JB*-triples is a complex-linear map
that preserves the triple product.

Theorem 1.5. Let φ : D → D′ be a Carathéodory distance-preserving map be-
tween two finite-dimensional bounded symmetric domains of equal rank. If φ is
holomorphic and φ(0) = 0, then φ is the restriction to the unit ball of a triple
homomorphism.

As mentioned earlier, we use ideas from metric geometry to prove the results.
In particular, we will we analyse the extension of the distance-preserving map to
the horofunction boundary and the way it behaves on the parts of this boundary.
We will show, for any bounded symmetric domain with its Carathéodory distance,
that each part of the horofunction boundary with the detour metric is isometric to
a Hilbert metric space on a symmetric cone; see Theorem 6.3. This result, which
extends [7, Propositions 8.4 and 8.5], will be used to prove Theorem 1.1.

2. Bounded symmetric domains and JB*-triples

We will recall some results for JB*-triples that are needed in this paper. Most
of them can be found in [5], [6], and [24]. Throughout the paper the bounded
symmetric domains and the JB*-triples will be finite dimensional.

A JB*-triple is a complex Banach space V endowed with a triple product

{·, ·, ·} : V × V × V → V,

satisfying the following axioms, for a, b, x, y, z ∈ V :

(i) {·, ·, ·} is linear and symmetric in the outer variables, and conjugate linear
in the middle variable;

(ii)
{
a, b, {x, y, z}

}
=
{
{a, b, x}, y, z

}
−
{
x, {b, a, y}, z

}
+
{
x, y, {a, b, z}

}
;

(iii) The operator a � a := {a, a, · } from V to V is Hermitian, and has
non-negative spectrum;

(iv) ‖a � a‖ = ‖a‖2.

The box operator a � b : V → V is defined by

a � b(x) := {a, b, x}, for all x ∈ V .

A tripotent of a JB*-triple V is an element e such that {e, e, e} = e. Each tripotent
e induces a decomposition of V into eigenspaces of the box operator e � e. The
eigenvalues of this operator lie in the set {0, 1/2, 1}. Let

Vk(e) :=
{
x ∈ V

e � e(x) =
k

2
x
}
, for k ∈ {0, 1, 2},
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be the corresponding eigenspaces, which are known as the Peirce k-spaces of e. We
have the algebraic direct sum

V = V0(e)⊕ V1(e)⊕ V2(e).

This is the Peirce decomposition associated to e. We have the following Peirce
calculus: {

Vi(e), Vj(e), Vk(e)
}
⊆ Vi−j+k(e), if i− j + k ∈ {0, 1, 2},

and {
Vi(e), Vj(e), Vk(e)

}
= {0}, otherwise.

Moreover, {
V2(e), V0(e), V

}
=
{
V0(e), V2(e), V

}
= {0}.

Each Peirce k-space Vk(e) is the range of the Peirce k-projection Pk(e) : V → V ,
defined by

P2(e) := Q2
e, P1(e) := 2(e � e−Q2

e), P0(e) := B(e, e).

Here, Qa : V → V is, for a ∈ V , the quadratic operator

Qa(x) = {a, x, a}, for all x ∈ V ,

and B(a, b) : V → V , with a, b ∈ V , is the Bergman operator

(1) B(a, b)(x) := x− 2(a � b)(x) +
{
a, {b, x, b}, a

}
, for all x ∈ V .

For each a ∈ D, the Möbius transformation ga : D → D is defined to be

ga(x) := a+B(a, a)1/2(Id +x � a)−1(x), for all x ∈ D.

Here Id denotes the identity operator on V . The inverse operator in this definition
exists because ‖x � a‖ ≤ ‖x‖‖a‖ < 1. Observe that, for each a ∈ D, the Möbius
transformation ga maps 0 to a. Moreover, ga is a bijection from D to itself, and its
inverse is g−a.

It can be shown that, for two elements a and b of V , we have a � b = 0 if and
only if b � a = 0. In this case the two elements are said to be orthogonal. Another
equivalent condition is that {a, a, b} = 0. For orthogonal elements a and b,

‖a+ b‖ = max
{
‖a‖, ‖b‖

}
;

see [5, Corollary 3.1.21].
One can define an ordering on the set of tripotents by writing c ≤ e if e = c+ c′,

where c′ is a tripotent orthogonal to c. A tripotent is minimal if it is non-zero and
minimal with respect to this ordering. This is the case precisely when the tripotent
e satisfies V2(e) = Ce.

An orthogonal set of non-zero tripotents is linearly independent, and every tripo-
tent can be written as a sum of orthogonal minimal tripotents. The maximum
number of mutually orthogonal tripotents in V is called the rank of V . A frame is
a maximal orthogonal system of minimal tripotents. The rank of a tripotent e is
the rank of the sub-triple V2(e), and e is said to be a maximal tripotent if the rank
of V2(e) is equal to the rank of V . If e = e1 + · · ·+ es is a decomposition of e into
a sum of orthogonal minimal tripotents, then the rank of e is s.

The genus p of a JB*-triple V with rank r is defined as

p :=
2

r
Trace(e � e),
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where e is a maximal tripotent. It is known, see [6, p.194], that

rp = dimV2(e) + dimV,

for any maximal tripotent e ∈ V .
Each family e1, . . . , en of orthogonal tripotents defines a decomposition of V as

follows. For i, j ∈ {0, 1, . . . , n}, define the joint Peirce space

Vij(e1, . . . , en) :=
{
z ∈ V | {ek, ek, z} =

1

2
(δik + δjk)z, for all k = 1, . . . , n

}
.

Here δij is the Kronecker delta, which equals 1 if i = j and is zero otherwise. The
joint Peirce decomposition of V is

V =
⊕

0≤i≤j≤n

Vij .

The joint Peirce spaces satisfy the multiplication rules

{Vij , Vjk, Vkl} ⊆ Vil, for all i, j, k, l, and

Vij � Vkl = {0}, for i, j /∈ {k, l}.

For each i and j, there is a contractive projection Pij(e1, . . . , en) from V to Vij(e1, . . . , en)
called the joint Peirce projection. We will occasionally denote these simply by Pij
if it is clear which tripotents e1, . . . , en are involved.

3. The horofunction boundary

In the section we discuss the relevant metric geometry concepts. We will work
in metric spaces (X, d) that are proper, i.e., all closed balls are compact, and (X, d)
is geodesic, meaning that every pair of points can be connected by a geodesic arc.
Associate to each point z ∈ X the function ψz : X → R,

ψz(x) := d(x, z)− d(b, z),

where b ∈ X is some base-point. The map ψ : X → C(X), z 7→ ψz is injective and
continuous. Here, C(X) denotes the space of continuous real-valued functions on
X with the topology of pointwise convergence. The closure clψ(X) is compact. As
(X, d) is proper and geodesic, ψ is a homeomorphism between X and ψ(X), and
hence clψ(X) is a compactification of X. We call it the horofunction compactifi-
cation. As (X, d) is proper, it is also separable, hence the topology of pointwise
convergence on clψ(X) is metrisable. This implies that each horofunction is the
limit of a sequence of points in X.

We define the horofunction boundary of (X, d) to be

X(∞) :=
(

clψ(X)
)
\ψ(X).

The elements of this set are the horofunctions of (X, d). They may be thought
of as “points at infinity” of the metric space. The definition of the horofunction
boundary is essentially due to Gromov [14], although he used a different topology.

Although the definition appears to depend on the choice of base-point, one can
check that horofunction boundaries coming from different base-points are homeo-
morphic, and that corresponding horofunctions differ only by an additive constant.
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3.1. Busemann points and the detour cost. A sequence (zn) in a metric space
is called an almost geodesic if, for all ε > 0,

d(z0, zj) ≥ d(z0, zi) + d(zi, zj)− ε,

for i and j large enough, with i ≤ j. This definition is similar to Rieffel’s [25], except
that here the almost geodesics are unparameterised. Note that any subsequence of
an almost geodesic is also an almost geodesic.

Rieffel [25] showed that every almost-geodesic converges to a limit in the horo-
function boundary. A horofunction is said to be a Busemann point if there is an
almost-geodesic converging to it.

We define the detour cost for any two horofunctions ξ and η in X(∞) to be

H(ξ, η) := lim inf
x→ξ

(
d(b, x) + η(x)

)
= sup
V ∈Uξ

(
inf

x∈V ∩X
d(b, x) + η(x)

)
,

where Uξ is the collection of neighbourhoods of ξ. This concept appeared first in [1].
Intuitively, it is an extension to the boundary of the excess of the triangle inequality
d(b, x) + d(x, y)− d(b, y), where y tends to η, and x tends to ξ. Thus, it measures
the cost of taking a detour close to ξ on the way from b to η.

In the case where ξ is a Busemann point, it suffices to calculate the limit along
any almost-geodesic (zn) converging to it, that is,

H(ξ, η) = lim
n→∞

(
d(b, zn) + η(zn)

)
,

for any horofunction η; see [28, Lemma 2.6].
The Busemann points can be characterised as follows: a horofunction ξ is Buse-

mann if and only if H(ξ, ξ) = 0.
The detour cost is non-negative and satisfies the triangle inequality, but it is not

necessarily symmetric and may take the value zero between two distinct points. We
obtain better properties, however, when we symmetrise. . For Busemann points ξ
and η, define the detour metric

δ(ξ, η) := H(ξ, η) +H(η, ξ).

This function is a (possibly ∞-valued) metric on the set of Busemann points. It
is independent of the choice of basepoint.

We may consider a pair of Busemann points to be related if the distance between
them in the detour metric is finite. This is an equivalence relation, and so partitions
the set of Busemann points into what we call parts; these are the maximal subsets
on which the detour metric is a genuine metric. When a part consists of a single
Busemann point, we call that point a singleton. These are of particular interest
because they tend to be the simplest and most tractable horofunctions.

4. The Gromov product on the horofunction boundary

We define the Gromov product of a pair of points x and y with respect to a
basepoint b as follows:

(x, y)b := d(x, b) + d(b, y)− d(x, y).

This product may be extended to the horofunction boundary:

(ξ, η)b := lim inf
x→ξ, y→η

(x, y)b = sup
V ∈Uξ,W∈Uη

(
inf

x∈V ∩X, y∈W∩X
(x, y)b

)
,
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for all ξ and η in X(∞), where Uξ and Uη are the collections of neighbourhoods of
ξ and η, respectively.

It is similar to the detour cost in that it is an extension to the boundary of the
excess of the triangle inequality; however, the choice of the two points that go to
infinity is different. Like the detour cost, it is invariant under distance-preserving
maps, provided the basepoint is mapped to the basepoint. The two quantities
provide complementary information. The Gromov product can distinguish for ex-
ample between hyperbolic space and Euclidean space: in the former, it is finite for
all pairs of distinct points, whereas in the latter it is infinite for all pairs that are
not opposite one another. In contrast, in both spaces, the detour cost is always
infinite for pairs of distinct points.

When the horofunctions are Busemann points, we have the following alternative
expressions for the Gromov product. Recall that a sequence of real-valued functions
fn : X → R is almost non-increasing if, for every ε > 0, there exists N such that
fj(x) ≤ fi(x) + ε, for all N ≤ i ≤ j and all x ∈ X. Such sequences are closely
related to almost geodesics, as the following proposition shows.

Proposition 4.1 ([28]). A sequence (zn) in a metric space (X, d) is an almost
geodesic if and only if ψzn(·) := d(·, zn) − d(b, zn) is an almost non-increasing
sequence.

Proposition 4.2. Let (xi) and (yj) be two almost-geodesic sequences in a metric
space (X, d), converging respectively to Busemann points ξ and η. Then,

(ξ, η)b = − inf
z∈X

[
ξ(z) + η(z)

]
= lim
i,j→∞

(xi, yj)b.

Proof. First we note that for each x and y in X, we have d(x, y) = infz[d(x, z) +
d(z, y)]. Thus,

(2) (x, y)b = − inf
z∈X

[
d(x, z) + d(z, y)− d(x, b)− d(b, y)

]
.

Let ε > 0 be given, and let z∗ ∈ X be such that

(3) ξ(z∗) + η(z∗) < inf
z∈X

[
ξ(z) + η(z)

]
+ ε.

Taking V ∈ Uξ and W ∈ Uη such that

d(x, z∗)− d(x, b) < ξ(z∗) + ε, for all x ∈ V ∩X,
and d(z∗, y)− d(b, y) < η(z∗) + ε, for all y ∈W ∩X,

we find for x ∈ V ∩X and y ∈W ∩X that

inf
z∈X

[
d(x, z) + d(z, y)− d(x, b)− d(b, y)

]
≤ d(x, z∗) + d(z∗, y)− d(x, b)− d(b, y)

< ξ(z∗) + η(z∗) + 2ε

< inf
z∈X

[
ξ(z) + η(z)

]
+ 3ε.

Using (2), we get

inf
x∈V ∩X, y∈W∩X

(x, y)b ≥ − inf
z∈X

[
ξ(z) + η(z)

]
− 3ε,

and so (ξ, η)b ≥ − infz∈X
[
ξ(z) + η(z)

]
.

Next we show that the second expression is no less than the third. Note that for
each z ∈ X there exists Nz ≥ 1 such that

ψxi(z) ≥ ξ(z)− ε and ψyj (z) ≥ η(z)− ε,
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...

...

...

b1b0 b2 b3 b4 b5 b6

a0 a1 a2 a3 a4 a5 a6

Figure 1. A metric space (bold) embedded in another (bold and
non-bold). Two sequences, along the top and middle respectively,
converge to the same horofunction in the smaller space, but not in
the larger one.

for all i, j ≥ Nz. Thus,

ψxi(z) + ψyj (z) ≥ ξ(z) + η(z)− 2ε ≥ inf
x∈X

[
ξ(x) + η(x)

]
− 2ε,

for all i, j ≥ Nz. As ψxi and ψyj are both almost non-increasing sequences of
functions, there exists an N1 ≥ 1 such that,

ψxk(x)− ε ≤ ψxi(x) and ψyl(x)− ε ≤ ψyj (x),

for all x ∈ X, and for all k ≥ i ≥ N1 and l ≥ j ≥ N1.
For each i, j ≥ N1, let zij ∈ X be such that

inf
x∈X

[
ψxi(x) + ψyj (x)

]
≥ ψxi(zij) + ψyj (zij)− ε.

Using the previous inequalities, we find that

inf
x∈X

[
ψxi(x) + ψyj (x)

]
≥ ψxk(zij) + ψyl(zij)− 3ε,

for each k ≥ i ≥ N1 and each l ≥ j ≥ N1.
Thus, for each k ≥ i ≥ N1 and each l ≥ j ≥ N1 with k, l ≥ Nzij , we have

inf
x∈X

[
ψxi(x) + ψyj (x)

]
≥ inf
x∈X

[
ξ(x) + η(x)

]
− 5ε.

This implies that

lim sup
i,j→∞

(xi, yj)b = lim sup
i,j→∞

(
− inf
x∈X

[
ψxi(x) + ψyj (x)

])
≤ − inf

x∈X

[
ξ(x) + η(x)

]
.

To complete the proof, observe that

(ξ, η)b = lim inf
x→ξ, y→η

(x, y)b ≤ lim inf
i,j→∞

(xi, yj)b. �

5. distance-preserving maps and the horofunction boundary

When there is a surjective distance-preserving map between two metric spaces,
the map extends to a homeomorphism between their horofunction compactifica-
tions. In the absence of surjectivity, however, the situation is more complicated, as
the map does not necessarily extend continuously to a map between the boundaries.

Consider for example the metric spaces depicted in Figure 1. The space in bold
is isometrically embedded in a larger space. The metric in both cases is the path
length metric, where the distance between two points is the Euclidean length of
the shortest path joining the two points that remains within the metric space. The
smaller space has only one horofunction, and both sequences (an), along the top,
and (bn), along the middle, converge to it. On the contrary, the same sequences in
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the larger space converge to different points. Note that (an) is an almost-geodesic
(in fact a geodesic) in both spaces, while (bn) is not an almost-geodesic in either
space.

When we restrict our attention to almost-geodesic sequences, the situation be-
comes more satisfying. Of course, an almost-geodesic is mapped by a distance-
preserving map to an almost-geodesic. We shall see in addition that, if two almost-
geodesics converge to the same Busemann point in the domain, then their images
converge to the same point.

Definition 5.1. A map φ : X → Y between two metric spaces (X, dX) and (Y, dY )
is distance-preserving if dY (φ(x), φ(y)) = dX(x, y), for all x, y ∈ X.

Recall the following [15, Lemma 3.18].

Proposition 5.2. Two almost-geodesic sequences (xn) and (yn) in a metric space
converge to the same Busemann point if and only if there exists an almost-geodesic
sequence (zn) that has infinitely many points in common with both (xn) and (yn).

Corollary 5.3. Let φ : X → Y be a distance-preserving map between metric spaces.
Then, there exists an injective map, which we also denote by φ, from the set of
Busemann points of X to those of Y , with the property that every almost-geodesic
(xn) converging to a Busemann point ξ gets mapped to an almost-geodesic (φ(xn))
converging to the Busemann point φ(ξ).

Proof. Given any Busemann point ξ of X, take an almost-geodesic (xn) converging
to it, and define φ(ξ) to be the limit of φ(xn). That this is independent of the
almost-geodesic chosen follows from Proposition 5.2. For the injectivity, we take
two almost-geodesics (yn) and (zn) in φ(X) converging to the same Busemann
point. We then apply Proposition 5.2 to get an almost-geodesic that has infinitely
many points in common with both; this sequence may furthermore be chosen to
consist entirely of points of (yn) and (zn). As such, it has a preimage, which is also
an almost-geodesic and so converges to a Busemann point of X. This shows that
the preimages of (yn) and (zn) have the same limit. �

As well as this, distance-preserving maps preserve the detour cost of every pair
of Busemann points and their Gromov product, assuming that the basepoint is
mapped to the basepoint. The latter statement follows from Proposition 4.2.

6. The horofunction boundary of bounded symmetric domains

Chu–Cueto-Avellaneda–Lemmens [7] have determined the horofunction bound-
ary of a finite dimensional bounded symmetric domain D under the Carathéodory
distance. Recall that the Carathéodory distance on a domain Ω ⊆ Cn is given by

d(x, y) := sup
{
ω
(
f(x), f(y)

)
| f ∈ H(Ω,D)

}
, for all x, y ∈ Ω,

where H(Ω,D) is the set of all holomorphic functions f : Ω −→ D and ω is the
hyperbolic distance on the unit disc D := {z ∈ C | |z| < 1}, namely

ω(z, w) := tanh−1

(∣∣∣∣ z − w1− zw

∣∣∣∣) =
1

2
log

1 +
∣∣∣ z−w1−zw

∣∣∣
1−

∣∣∣ z−w1−zw

∣∣∣
 .
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In the case of a bounded symmetric domain D, we have the following formula
(see [5, Theorem 3.5.9]):

d(x, y) = tanh−1 ‖g−y(x)‖, for all x, y ∈ D.

. It is known that, for bounded symmetric domains, all the horofunctions are
Busemann points and take the following form.

Theorem 6.1 (Chu–Cueto-Avellaneda–Lemmens). Let D be a finite dimensional
bounded symmetric domain represented as the open unit ball of a JB*-triple of rank
r. Every horofunction ξ is a Busemann point and is of the form

(4) ξ(z) =
1

2
log
∥∥∥ ∑

1≤i≤j≤p

λiλjB(z, z)−1/2B(z, e)Pij

∥∥∥, for all z ∈ D,

where p ∈ {1, . . . , r}, 0 < λ1, . . . , λp ≤ 1 with maxi λi = 1, and e1, . . . , ep are
mutually orthogonal nonzero minimal tripotents with e := e1 + · · · + ep ∈ ∂D and
the Pij : V → V are the corresponding joint Peirce projections.

In [7, Proposition 8.5], it was shown that two horofunctions ξ and η with tripo-
tents e and c, respectively, are in the same part if and only if e = c. In this section,
we will give an explicit formula for the detour cost and the detour metric. In fact,
we shall show that each part with the detour metric is isometric to a Hilbert metric
space on a symmetric cone.

Recall from [24, 3.13] that, given a tripotent e ∈ V , its Peirce 2-space V2(e) is
a JB*-algebra with product x • y = {x, e, y}, involution x∗ = {e, x, e}, and unit e.
Moreover, if we let A = A(e) := {x ∈ V2(e) | {e, x, e} = x} be the self-adjoint part
of V2(e), then A is a real closed subalgebra of the JB*-algebra V2(e) that forms a
JB-algebra with cone of squares A+ = {x2 : x ∈ A}, and V2(e) = A+ iA.

We write De := V2(e)∩D and denote the Cayley transform by ce : De → A+iA◦+,
so

ce(z) := i(e+ z)(e− z)−1, for all z ∈ De.

The Cayley transform is a biholomorphic map; see [6, Example 2.4.18 and Section
3.6], and hence a Carathéodory distance isometry, and it maps De ∩ A onto iA◦+.
Here, A◦+ denotes the interior of the cone A+, and a−1 is the (unique) element in
the JB*-algebra V2(e) such that a • a−1 = e and a2 • a−1 = a.

On the open cone A◦+ in the JB-algebra A, there is a natural metric dT known as
the Thompson metric, which is defined in terms of the partial order on A induced
by A+, namely, x ≤ y if y− x ∈ A+. More specifically, for x ∈ A+ and y ∈ A◦+, let

M(x/y) := inf{λ > 0 | x ≤ λy} = sup

{
ρ(x)

ρ(y)
| ρ ∈ A∗ with ρ(e) = 1

}
,

and define

dT (x, y) := max
{

logM(x/y), logM(y/x)
}
, for all x, y ∈ A◦+.

It was shown by Vesentini [27] that the Thompson distance on A◦+ is related to the
restriction of the Carathéodory distance d on A+ iA◦+ to iA◦+ as follows:

(5) dT (x, y) = 2d(ix, iy), for all x, y ∈ A◦+.

(Note that the factor 2 does not appear in [27], as the factor 1/2 in the hyperbolic
metric on D in the definition of the Carathéodory distance is omitted there.)
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Let ξ and η be two horofunctions, with ξ given by (4) and η given by

(6) η(z) =
1

2
log
∥∥∥ ∑

1≤i≤j≤q

µiµjB(z, z)−1/2B(z, c)P ′ij

∥∥∥, for all z ∈ D,

where q ∈ {1, . . . , r}, c = c1 + · · · + cp is a nonzero tripotent, the P ′ij : V → V are
the joint Peirce projections induced by the mutually orthogonal minimal tripotents
c1, . . . , cq, and 0 < µ1, . . . , µq ≤ 1 with maxi µi = 1. Our next lemma, which
determines the detour cost H(ξ, η), is an extension of [7, Propositions 8.4 and 8.5].
Recall that if c ≤ e, then e− c is a tripotent and (e− c) � c = 0.

Lemma 6.2. Let ξ and η be horofunctions of a bounded symmetric domain, where
ξ is given by (4) and η is given by (6). Then, H(ξ, η) < ∞ if and only if c ≤ e.
Moreover, if c ≤ e, then

(7) H(ξ, η) =
1

2
logM(b/a),

where a :=
∑p
i=1 λ

2
i ei ∈ A◦+ and b :=

∑q
i=1 µ

2
i ci ∈ A+.

Proof. The forward implication appears in the proof of [7, Proposition 8.4]. To
prove the backward implication, it suffices to show (7).

We know from [7, Lemma 8.3] that the path

γ(t) :=

p∑
i=1

tanh(t− αi)ei,

where αi = − log λi, is a geodesic converging to ξ. Likewise,

γ′(t) := tanh(0)(e− c) +

q∑
i=1

tanh(t− βi)ci,

where βi = − logµi, is a geodesic converging to η.

Using the fact that tanh−1(s) = 1
2 log

(
1+s
1−s

)
for −1 < s < 1, we get

ce
(
γ′(t)

)
= i
(

(e− c) +

q∑
i=1

e2t−2βici

)
∈ iA◦+, for all t > 0,

which is a geodesic of the Carathéodory distance. So, by (5) we see that

σ(t) := (e− c) +

q∑
i=1

e2t−2βici

is a geodesic in A◦+ with respect to 1
2dT . It follows that

ψσ(t)(x) =
1

2
dT
(
x, σ(t)

)
− 1

2
dT
(
e, σ(t)

)
converges, as t tends to infinity, to a horofunction, say ηT , in (A◦+,

1
2dT ). These

horofunctions have been analysed in [22]. Following the proof of [22, Theorem 3.2],
we find that

ηT (x) =
1

2
logM(b/x), for all x ∈ A◦+,

where b =
∑q
i=1 e

−2βici =
∑q
i=1 µ

2
i ci. Indeed,

σ̂(t) :=
σ(t)

e2t
→

q∑
i=1

e−2βici = b and ρ̂(t) :=
σ(t)−1

e2t
→ 0, as t→∞.



12 BAS LEMMENS AND CORMAC WALSH

Thus, for x ∈ A◦+,

ψσ(t)(x) =
1

2

(
dT
(
x, σ(t)

)
− 2t

)
=

1

2
max

{
logM

(
σ̂(t)/x

)
, logM

(
ρ̂(t)/x−1

)}
→ 1

2
logM(b/x).

Here, we are using the fact that M(x/y) = M(y−1/x−1), for all x, y ∈ A◦+; see for
instance [23, p. 1518].

Write ce
(
γ(t)

)
=: iτ(t), for t > 0. So,

τ(t) =

p∑
i=1

e2t−2αiei and e−2tτ(t)→
p∑
i=1

e−2αiei = a.

The function x ∈ A◦+ 7→M(y/x) is continuous on A◦+, for each y ∈ A+. Thus,

d
(
0, γ(t)

)
+η
(
γ(t)

)
= t+

1

2
logM

(
b/τ(t)

)
=

1

2
logM

(
b/
(
e−2tτ(t)

))
→ 1

2
logM(b/a),

as t tends to infinity, and hence (7) holds. Note that M(b/a) < ∞, since a ∈ A◦+
and b ∈ A+. �

On A◦+ we also have the Hilbert metric,

dH(x, y) :=
1

2
log
(
M(x/y)M(y/x)

)
, for all x, y ∈ A◦+.

This is a metric between pairs of rays in A◦+, as dH(λx, µy) = dH(x, y), for all
λ, µ > 0 and x, y ∈ A◦+. So, dH is a genuine metric on the cross-section Σe :=
{x ∈ A◦+ |M(x/e) = 1}. As a consequence of the previous lemma, each part of the
horofunction boundary of (D, d) is isometric to a Hilbert metric space on symmetric
cone.

Theorem 6.3. If Pξ is the part containing the Busemann point ξ, where ξ is given
by (4) with tripotent e, then (Pξ, δ) is isometric to (Σe, dH).

Proof. Let η ∈ Pξ be given by (6). Since ξ and η are in the same part, we get from
Lemma 6.2 that c = e. Defining b :=

∑
i µ

2
i ci, we have that M(b/e) = 1, since

maxi µi = 1. So the map defined in this way that sends each η 7→ b is a surjective
isometry between (Pe, δ) and (Σe, dH), using Lemma 6.2 again. �

The singleton Busemann points, that is, the ones having no other point in their
part, have a particularly simple form.

Proposition 6.4. The singleton Busemann points of a bounded symmetric domain
D are the functions of the form

ξ(z) =
1

2
log
∥∥B(z, z)−1/2B(z, e)e

∥∥, for all z ∈ D,

where e is a minimal tripotent.

Proof. From Theorems 6.1 and 6.3, we see that the singletons are exactly the func-
tions of the form

ξ(z) =
1

2
log
∥∥B(z, z)−1/2B(z, e)P2(e)

∥∥, for all z ∈ D,
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where e is a minimal tripotent. Here we are using that P11(e) = P2(e). Recall that
P2(e) is a contractive mapping, that is, ‖P2(e)x‖ ≤ ‖x‖ for all x ∈ V . Hence the
supremum of

‖B(z, z)−1/2B(z, e)P2(e)x‖
‖x‖

is attained in V2(e)\{0}. But each x ∈ V2(e)\{0} can be written x = λe for some
λ ∈ C\{0}, and so the supremum is equal to ‖B(z, z)−1/2B(z, e)e‖. �

So, there is a one-to-one correspondence between the minimal tripotents and
the singleton Busemann points. This correspondence will play a key role in what
follows.

7. Parts of the boundary, and tripotents

In this section, we prove Theorem 1.1. We also show that, if the ranks are
equal, then a distance-preserving map takes singleton Busemann points to singleton
Busemann points. Throughout the section, D is a bounded symmetric domain
represented as the unit ball of a finite-dimensional JB*-triple.

The following lemma is stated in [3, Result 2.4], although no proof or reference
is given.

Lemma 7.1. Let e1 and e2 be orthogonal tripotents of D, and let u ∈ D be orthog-
onal to e = e1 + e2. Then, u is orthogonal to both e1 and e2.

Proof. The orthogonality of u and e is equivalent to u ∈ V0(e). Observe that

{e, e, e1} = {e1, e, e} = {e1, e1, e1}+ {e1, e1, e2}+ {e1, e2, e}.
The first term on the right-hand-side equals e1; the other two terms are zero because
e1 and e2 are orthogonal. So, we see that e1 is in V2(e). Therefore, by the Peirce
calculus, {u, e1, e1} = 0, which implies that u and e1 are orthogonal. That the
same holds for u and e2 can be proved similarly. �

Recall that a chain in a partially ordered set is a subset that is totally ordered
in the sense that every pair x, y of its elements satisfies either x ≤ y or y ≤ x. A
chain is maximal if it is not a subset of any other chain.

Lemma 7.2. Let e1, . . . , es be the elements of a chain of non-zero tripotents,
written in ascending order, and take e0 := 0. Then, the differences ei − ei−1;
i ∈ {1, . . . , s}, form an orthogonal family of tripotents.

Proof. Since e1 ≤ e2, we have that e2−e1 is a tripotent orthogonal to e1. Similarly,
e3 − e2 is a tripotent orthogonal to e2, and hence to both e2 − e1 and e1, by
Lemma 7.1. We continue inductively to get the result. �

Lemma 7.3. Let e1, . . . , es be the elements of a maximal chain, written in ascend-
ing order. Then, the rank of ei is i.

Proof. Fix j ∈ {1, . . . , i − 1}. We can write ej+1 = ej + c, where c is a non-zero
tripotent orthogonal to ej . If c were not minimal, then we could decompose it as
c = c1 + c2, into the sum of two non-zero orthogonal tripotents. By Lemma 7.1, ej
would then be orthogonal to both c1 and c2, and it would follow that ej ≤ ej +c1 ≤
ej + c1 + c2 = ej+1. Thus ej + c1 could be added to the chain, contradicting its
maximality. So, c must be minimal.
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We conclude that each ei can be written as the sum of the minimal tripotents
ej − ej−1; j ∈ {1, . . . , i}. Here, we are taking e0 := 0. These tripotents are
orthogonal, using Lemma 7.2. The conclusion follows. �

Every set of orthogonal tripotents is linearly independent. So, for any finite-
dimensional bounded symmetric domain, there is an upper bound on the number
of mutually orthogonal tripotents. By Lemma 7.2 then, there is the same bound on
the number of elements of a chain. Therefore every chain is a subset of a maximal
chain.

Lemma 7.4. Let V be a JB*-triple of rank r. A chain of non-zero tripotents is
maximal if and only if it contains exactly r elements.

Proof. Let the elements of a maximal chain be e1, . . . , es, written in increasing
order. By Lemma 7.3, the rank of es is s. But es is a maximal tripotent, for
otherwise we could add another tripotent to the end of the sequence. We conclude
that s = r.

Now suppose that a chain e1, . . . , er has r elements. If it were contained in a
larger chain, then the larger chain would itself be contained in a maximal chain
having strictly more than r elements, which is impossible by the first part. �

Proof of Theorem 1.1. We have seen in Section 5 that the map φ induces a map,
which we again denote by φ, from the set of Busemann points of D to those of
D′ in such a way that the image under φ of every almost geodesic converging to
a Busemann point ξ of D converges to φ(ξ). This map preserves the detour cost
in the sense that H(φ(ξ), φ(η)) = H(ξ, η) for all Busemann points ξ and η of D.
Therefore, two Busemann points lie in the same part if and only if their images lie
in the same part. Since there is a one-to-one correspondence between parts of the
horofunction boundary and tripotents, we get a map, again denoted by φ, from the
tripotents of D to those of D′. By Lemma 6.2, the order on the set of tripotents
is preserved; in fact, e ≤ c for two tripotents if and only if φ(e) ≤ φ(c), for any
two tripotents e and c of D. In particular, the map φ on the set of tripotents is
injective.

Let e1, . . . , er be a maximal chain of tripotents in D. Its image φ(e1), . . . , φ(er)
is contained in a maximal chain of tripotents of D′. So, by Lemma 7.4, rankD =
r ≤ rankD′.

To prove the second inequality, we note that if e is a maximal tripotent in V ,
then dimV2(e) = rp− dimV = rp− dimD; see [6, p.194]. As V2(e) = A+ iA◦+, we
have that the dimension of the real vector space A is equal to the dimension of the
complex vector space V2(e). By Theorem 6.1, there exists a horofunction ξ with
tripotent e. The part (Pξ, δ) is isometric to the Hilbert metric space (Σe, dH) by
Theorem 6.3. Consider the horofunction φ(ξ) with tripotent, say c, in V ′. Then,
φ induces a distance-preserving map from (Σe, dH) into (Σc, dH). As dim Σe =
dimV2(e)− 1 and dim Σc = dimV2(c)− 1, it follows from the invariance of domain
theorem that dimV2(e) ≤ dimV2(c). If c′ is a maximal tripotent in V ′, then
dimV2(c) ≤ dimV2(c′), and hence

rp−dimD = rp−dimV = dimV2(e) ≤ dimV2(c′) = r′p′−dimV ′ = r′p′−dimD′.
�

The next lemma will be crucial to studying the equal rank case.
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Lemma 7.5. Assume that we have a Carathéodory distance-preserving map φ : D →
D′ between two finite dimensional bounded symmetric domains, such that rankD =
rankD′. Then, the induced map on the set of Busemann points (see Section 5) takes
singletons to singletons.

Proof. As in the proof of Theorem 1.1, the map φ induces an injective map between
the tripotents of D and those of D′ that preserves the order.

Let e be a tripotent of D of rank s. Then, e is contained in a maximal chain
e1, . . . , er, and by Lemma 7.3, e = es. By Lemma 7.4, the chain φ(e1), . . . , φ(er) is
also maximal, and hence the rank of φ(e) is s. We have shown that φ preserves the
rank of every tripotent.

The conclusion now follows on observing that the singleton parts are precisely
those corresponding to minimal tripotents, that is, tripotents of rank 1. �

8. The Gromov product in a bounded symmetric domain

Recall that singleton Busemann points correspond exactly to the minimal tripo-
tents, and play a central role in our analysis. We introduce the following notation:
given a minimal tripotent e, we denote by Ξe the associated singleton Busemann
point.

We have the following expression, involving the Bergman operator B(·, ·) defined
in (1), for the Gromov product of two singleton Busemann points of a bounded
symmetric domain. We take the origin 0 to be the base point.

Theorem 8.1. Let u and v be minimal tripotents in a JB*-triple V . Then,

(Ξu,Ξv)0 =
1

2
log

4

‖P2(u)B(u, v)v‖
.

Proof. The path t : (0, 1)→ D defined by t 7→ tu is a geodesic in D and converges
to Ξu in the horofunction compactification. The Carathéodory distance between 0
and tu is d(0, tu) = tanh−1 t. Likewise, the path s : (0, 1) → D defined by s 7→ sv
is a geodesic and converges to Ξv. So, by Proposition 6.4, we have the following
expression for the iterated limit

lim
t→1

lim
s→1

(tu, sv)0 = lim
t→1

(
d(0, tu)− Ξv(tu)

)
= lim
t→1

1

2
log

((1 + t

1− t

)∥∥B(tu, tu)−1/2B(tu, v)v
∥∥−1

)
.

Using the fact that

lim
t→1

(1− t2)B(tu, tu)−1/2 = P2(u),

and that B(tu, v) converges to B(u, v) (see the proof of Theorem 4.4 of [7]), we find
that

lim
t→1

lim
s→1

(tu, sv)0 =
1

2
log

4

‖P2(u)B(u, v)v‖
.

As the double limit limt,s→∞ (tu, sv)0 exists in [0,∞] by Proposition 4.2, it is
equal to the iterated limit. �

Lemma 8.2. Let u be a minimal tripotent in a bounded symmetric domain, and
let b ∈ V1(u) be such that {b, b, u} = 0. Then, b = 0.

Proof. The assumption implies that b is orthogonal to u. But the orthogonality
relation is symmetrical, and so b = 2{u, u, b} = 0. �
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In the next lemma, we obtain a useful formula for the Gromov product (Ξu,Ξv)0

by splitting the minimal tripotent v into its Peirce components with respect to u.
Here, we use Reµ to denote the real part of a complex number µ, and µ to denote
its conjugate. Also, recall that if u is a minimal tripotent and b ∈ V1(u), then
{b, b, u} ∈ V2(u) by the Peirce calculus, and so {b, b, u} = λu for some λ ∈ C, since
u is minimal.

Lemma 8.3. Let u and v be minimal tripotents in a bounded symmetric domain.
We decompose v = a+ b+ c into its Peirce components a := P2(u)v, b := P1(u)v,
and c := P0(u)v, and let µ and λ in C be such that a = µu and {b, b, u} = λu.
Then,

(Ξu,Ξv)0 =
1

2
log

2∣∣Reµ− |µ|2 − λ
∣∣ .

Proof. By the Peirce calculus, and the linearity and conjugate-linearity of the triple
product,

P2(u)B(u, v)v = P2(u)
(
v − 2{u, v, v}+ {u, v, u}

)
= a− 2{u, a, a} − 2{u, b, b}+ {u, a, u}
=
(
µ− 2|µ|2 − 2λ+ µ

)
u.

The result now follows upon applying Theorem 8.1. �

It is easy to calculate the Gromov product when one of the minimal tripotents
is a complex multiple of the other.

Lemma 8.4. Let u and v be minimal tripotents in a bounded symmetric domain,
such that v = µu, for some µ ∈ C with |µ| = 1. Then,

(Ξu,Ξv)0 =
1

2
log

2

1− Reµ
.

Proof. This is a simple calculation using Lemma 8.3. �

Our strategy will be to relate algebraic properties of minimal tripotents to the
Gromov product of the associated Busemann points. Since the Gromov product is
preserved by distance-preserving maps, the properties of the tripotents will be as
well.

First, we characterise when two minimal tripotents are opposite one another.

Proposition 8.5. Let u and v be minimal tripotents in a JB*-triple. Then, v = −u
if and only if (Ξu,Ξv)0 = 0.

Proof. When v = −u, it is easy to see from Lemma 8.4 that (Ξu,Ξv)0 = 0.
To prove the converse, assume that the latter equation is true. So, by Theo-

rem 8.1, ‖P2(u)B(u, v)v‖ = 4. We have

P2(u)B(u, v)v = P2(u)
(
v − 2{u, v, v}+ {u, v, u}

)
.

Observe that the projections to the Peirce space V2(u) of each of the terms v,
−{u, v, v}, and {u, v, u} is a complex multiple of u. Moreover, each of these pro-
jections has norm at most 1. It follows that each of them must have norm exactly
1, and in fact must all be equal. Thus, we have P2(u)v = −P2(u){u, v, v} =
P2(u){u, v, u} = µu, for some µ ∈ C with |µ| = 1.
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Write a := P2(u)v, b := P1(u)v, and c := P0(u)v. By the Peirce calculus,

(8) µu = −P2(u){u, v, v} = −{u, a, a} − {u, b, b}.
Since u is an eigenvector of both a � a and b � b, and these operators are Hermitian
with non-negative spectrum, we deduce that µ is negative, and hence equals −1.
So, a = −u. From (8) again, we get {u, b, b} = 0, and hence by Lemma 8.2, that
b = 0.

Observe that, since c is in V0(u), it is orthogonal to u. Using the Peirce calculus
again,

a+ c = v = {v, v, v} = {a, a, a}+ {c, c, c}.
As a = −u, we have {a, a, a} = a, and so c = {c, c, c}. Hence, both a and c are
tripotents. Since v is minimal, only one of them can be non-zero, in the present
case necessarily a. We have shown that v = −u. �

Next we characterise orthogonality of minimal tripotents.

Proposition 8.6. Let u and v be minimal tripotents in a JB*-triple. Then, u and
v are orthogonal if and only if (Ξu,Ξv)0 = (Ξu,Ξ−v)0 =∞.

Proof. First assume that u and v are orthogonal. In this case B(u, v) is the identity
map, and so we get P2(u)B(u, v)v = 0. Using the formula for the Gromov product
in Theorem 8.1, we see that (Ξu,Ξv)0 =∞. The same conclusion also holds when
v is replaced by −v.

Now assume that u and v are minimal tripotents such that the two equations in
the statement of the proposition hold. We use the same notation as in Lemma 8.3.
Since {u, b, b} is in V2(u), it is equal to λu for some λ in C. So, u is an eigenvector
of b � b. Since this operator is Hermitian and has non-negative spectrum, λ must
be non-negative. We also have that a = µu, for some µ ∈ C. So, by Lemma 8.3,
the two equations can be expressed in the form

Reµ− |µ|2 − λ = 0 = −Reµ− |µ|2 − λ.
Taking their difference, we get that Reµ is zero, and hence that |µ|2 and λ are also
zero, since both are non-negative. So, we have that a = 0 and, using Lemma 8.2,
that b = 0. We have shown that v = c, and since c is in V0(u), it is orthogonal to
u. �

Finally, we characterise when two minimal tripotents are related by a multiple
±i. To do this, the following lemma will be useful.

Lemma 8.7. Let u and v be minimal tripotents in a JB*-triple. Assume there
exists a frame with u as one of its elements, such that v is orthogonal to each
element of the frame apart from u. Then, P0(u)v = 0.

Proof. Let e1, . . . , er be the frame, with e1 := u, and set M := {0, 1, . . . , r}. For
each i ∈M with i 6= 0, we have the following chain of equivalences:

v is orthogonal to ei ⇐⇒ P1(ei)v = P2(ei)v = 0

⇐⇒
∑

k∈M\{i}

Pki(e1, . . . , er)v = Pii(e1, . . . , er)v = 0

⇐⇒ Pki(e1, . . . , er)v = 0, for all k ∈M.

Also, since e1, . . . , er is a frame, P00(e1, . . . , er)v = 0.
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Now observe that, as v is orthogonal to each ei with i 6= 1,

P0(u)v = P0(e1)v =
∑

i,j∈M\{1}
i≤j

Pij(e1, . . . , er)v = 0. �

Lemma 8.8. Let u and v be minimal tripotents in a JB*-triple. Then, v = ±iu if
and only if both the following conditions hold:

• there exists a frame with u as one of its elements, such that v is orthog-
onal to each element of the frame apart from u;

• (Ξu,Ξv)0 + (Ξu,Ξ−v)0 = log 2.

Proof. Assume that v = ±iu. Take any frame u1, . . . , ur with u = u1. Since
orthogonality of two elements is preserved when one of them is multiplied by a
complex scalar, v is orthogonal to each of u2, . . . , ur. This establishes the first of
the two conditions. The second follows from Lemma 8.4.

Now assume that u and v satisfy the two conditions in the statement of the
lemma. We decompose v = a + b + c, where a := P2(u)v, b := P1(u)v, and
c := P0(u)v. By Lemma 8.7, the first condition implies that c = 0.

There are complex numbers µ and λ such that a = µu and {b, b, u} = λu, since
these are elements of V2(u) and u is minimal. Moreover, λ must be non-negative
since b � b is Hermitian and has non-negative spectrum. Since v is a tripotent and
c = 0, we have by the Peirce calculus

a = P2(u){a+ b, a+ b, a+ b} = {a, a, a}+ 2{b, b, a} = |µ|2µu+ 2λµu = |µ|2a+ 2λa.

Thus, |µ|2 +2λ = 1. This implies that |µ|2 +λ ≤ 1, with equality only when |µ| = 1
and λ = 0. Moreover, (Reµ)2 ≤ 1.

It can be seen from Lemma 8.3 that the second condition we have imposed on u
and v is equivalent to∣∣Reµ− |µ|2 − λ

∣∣ · ∣∣−Reµ− |µ|2 − λ
∣∣ =

∣∣(|µ|2 + λ)2 − (Reµ)2
∣∣ = 1.

For the expression inside the modulus to take the value −1, one would need that
|µ|2 + λ = 0 and Reµ = 1, which is clearly impossible. On the other hand, for
the value 1 to be obtained, we need that |µ|2 + λ = 1 and Reµ = 0. Combining
this with the fact that |µ|2 + 2λ = 1, gives that λ = 0 and µ is either i or −i. We
conclude that {b, b, u} = 0, which implies that b = 0 by Lemma 8.2. This completes
the proof. �

A flat in a bounded symmetric domain D is a maximal embedded Euclidean
space, when one takes the Bergman distance on D. Every flat has the same dimen-
sion, namely the rank r of D. If one takes the Kobayashi/Carathéodory distance
instead of the Bergman distance, then each flat is isometric to Rr with the `∞-norm,
‖ · ‖∞. Moreover, given a frame e1, . . . , er in D, the set

F :=
{
λ1e1 + · · ·+ λrer | λi ∈ (−1, 1), for all i

}
is a flat. In fact, every flat containing the origin is of this form, and in this case the
isometry is the restriction of the exponential map, z ∈ V 7→ tanh(z), to the linear
span of the flat; see [24, Lemma 4.3 and Corollary 4.8].

For each a ∈ D, the Möbius transformation ga : D → D given by,

ga(x) := a+B(a, a)1/2(Id +x � a)−1(x), for all x ∈ D,
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is a biholomorphic map, and hence an isometry of the Kobayashi/Carathéodory dis-
tance and of the Bergman distance. The derivative of ga at any point b ∈ D has the
following expression in terms of the Bergman operator: g′a(b) = B(a, a)1/2B(b,−a)−1;
see [5, equation (3.2)]. We will see that if a and b are points lying in a common flat
that contains 0, then ga and gb commute, and both maps leave the flat invariant.

Lemma 8.9. Let e1, . . . , er be a frame, and let a := a1e1 + · · · + arer and b :=
b1e1 + · · ·+ brer be two elements of the associated flat, with all coefficients ai and
bi in R. Set a0 := b0 := 0. Then,

B(a, b) =
∑

0≤i≤j≤r

(
1− aibi

)(
1− ajbj

)
Pij(e1, . . . , er).

Proof. Let z ∈ Pij , with i, j ∈ {0, . . . , r}. We use the convention that e0 := 0.
Using the orthogonality of the ek and that z is an eigenvector of each ek � ek, we
get

a � b(z) =
∑
k

akbk{ek, ek, z} =
∑
k

akbk(δik + δjk)z =
1

2

(
aibi + ajbj

)
z.

From the Jordan identity, we have, for k, l,m, n ∈ {1, . . . , r},{
ek, {em, z, en}, el

}
=
{
{z, em, ek}, en, el

}
+
{
ek, en, {z, em, el}

}
−
{
z, em, {ek, en, el}

}
.

So,

QaQb(z) =
∑

m,n,k,l

akalbmbn
{
ek, {em, z, en}, el

}
=

1

4

∑
m,n,k,l

akalbmbn

[
δmkδnl(δim + δjm)(δin + δjn)

+ δmlδnk(δim + δjm)(δin + δjn)− 2δknδnlδlm(δim + δjm)
]
z

=
1

4

[
2(aibi + ajbj)

2 − 2(a2
i b

2
i + a2

jb
2
j )
]
z

= aiajbibjz.

Combining this with the result at the start, we have

B(a, b)z =
(
1− aibi − ajbj + aiajbibj

)
z =

(
1− aibi

)(
1− ajbj

)
z,

and the conclusion follows. �

Lemma 8.10. Let e1, . . . , er be a frame, and let

a :=
∑
i

tanh(αi)ei, b :=
∑
i

tanh(βi)ei, and c =
∑
i

tanh(αi + βi)ei

be elements of the associated flat, with each αi and βi in R. Then, ga ◦ gb = gc.

Proof. For each i, write ai := tanhαi and bi := tanhβi. Let y =
∑
i yiei, with

each yi := bi/(1 + biai). Observe that (Id +b � a)y = b. We conclude that (Id +b �

a)−1b = y.
For any z :=

∑
i ziei, with each zi ∈ R, we have

B(a, a)z =
∑
i

(1− a2
i )

2ziei.
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It follows that

B(a, a)1/2z =
∑
i

(1− a2
i )ziei.

Applying this to y, we get

ga(b) = a+B(a, a)1/2(Id +b � a)−1b

=
∑
i

(
ai +

(1− a2
i )bi

1 + biai

)
ei

=
∑
i

ai + bi
1 + biai

ei

=
∑
i

tanh(αi + βi)ei

= c.

So, the maps ga ◦ gb and gc agree at 0.
Let z be in the joint Peirce space Vij , with i, j ∈ {0, . . . , r}. The derivative of gc

at 0 applied to z is

g′c(0)z = B(c, c)1/2z =

((
1−

( ai + bi
1 + aibi

)2)(
1−

( aj + bj
1 + ajbj

)2))1/2

z,

using Lemma 8.9. Similarly, the derivative of ga ◦ gb at 0 applied to z is

(ga ◦ gb)′(0)z = g′a(b)g′b(0)z

= B(a, a)1/2B(b,−a)−1B(b, b)1/2z

=

(
(1− a2

i )(1− a2
j )(1− b2i )(1− b2j )

(1 + aibi)2(1 + ajbj)2

)1/2

z.

Elementary algebra shows that these two expressions are equal. Using that V
decomposes as the sum of the Peirce spaces, we conclude that ga ◦ gb and gc have
the same derivative at 0.

It now follows by Cartan’s uniqueness theorem that ga ◦ gb = gc. �

We have seen that every frame gives rise to a flat. It also defines a collection of
minimal tripotents and their associated Busemann points. We need to study how
these objects are related. Indeed, we will characterise when a point is in the flat in
terms of values of the Busemann points there.

According to [11, Lemma 1.6], if e is a tripotent in a JB*-triple V , and x is an
element with ‖x‖ = 1 and P2(e)x = e, then P1(e)x = 0. We will also need that if
x and y in V are orthogonal, then

(9) ‖x+ y‖ = max
(
‖x‖, ‖y‖

)
;

see [5, Corollary 3.1.21].

Proposition 8.11. Let e be a minimal tripotent, and let x ∈ D. Then, Ξe(x) =
Ξ−e(x) = 0 if and only if x ∈ V0(e).

Proof. First, assume that x ∈ D is in V0(e). Using the Peirce calculus, we get that

B(x, e)e = e− 2{x, e, e}+ {x, {e, e, e}, x} = e.
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Similarly, B(x, x)e = e, which implies that B(x, x)−1e = e. Since B(x, x)−1 is a
positive Hermitian operator (see [5, Lemma 1.2.22]), it has positive spectrum, and
we deduce that B(x, x)−1/2e = e. Therefore,

Ξe(x) =
1

2
log
∥∥B(x, x)−1/2B(x, e)e

∥∥ = 0.

That Ξ−e(x) is also zero is proved similarly.
Now let x ∈ D be such that Ξe(x) = Ξ−e(x) = 0. So, in particular,∥∥B(x, x)−1/2B(x, e)e

∥∥ = 1.

Recall that ‖B(x, x)1/2‖ ≤ 1; see the discussion before Proposition 3.2.13 of [5].
We deduce that ‖B(x, e)e‖ ≤ 1.

Write x = a+ b+ c, with a ∈ V2(e), b ∈ V1(e), and c ∈ V0(e). Since e is minimal,
we have a = µe, for some µ ∈ C. By the Peirce calculus,

B(x, e)e = e− 2µe− 2{b, e, e}+ µ2e+ 2µ{b, e, e}+ {b, e, b}
= (1− µ)2e− 2(1− µ){b, e, e}+ {b, e, b}.

So, the projection of B(x, e)e onto the Peirce 2-space V2(e) of e is (1− µ)2e. Since
this projection does not increase the norm, we have |1− µ| ≤ 1.

Using similar reasoning, we also get that ‖B(x,−e)e‖ ≤ 1, with

B(x,−e)e = (1 + µ)2e+ 2(1 + µ){b, e, e}+ {b, e, b},
and so |1 + µ| ≤ 1. We conclude that µ is zero, and hence so also is a. So,

B(x, e)e = e− 2{b, e, e}+ {b, e, b}.
The projection of this vector onto V2(e) is e, and hence its norm is at least 1. Com-
bining this with what we had before, its norm is actually equal to 1. Applying [11,
Lemma 1.6], we get that 0 = P1(e)B(x, e)e = −2{b, e, e} = −b. We have shown
that x ∈ V0(e). �

Recall that the inverse hyperbolic tangent function is given by

tanh−1 x =
1

2
log

1 + x

1− x
.

Lemma 8.12. Let e1, . . . , er be a frame of a bounded symmetric domain, and let
x := λ1e1 + · · · + λrer be in the associated flat, with each λi in (−1, 1). Then
Ξei(x) = − tanh−1 λi, for all i.

Proof. Since the ek are mutually orthogonal, from the definition of the Bergman
operator we have

B(x, ei)ei = ei − 2λiei + λ2
i ei = (1− λi)2ei, for all i.

The joint Peirce projection Pjk(e1, . . . , er)ei equals ei when j = k = i, and equals

zero otherwise. So, using Lemma 8.9, we get B(x, x)−1/2ei = (1 − λ2
i )
−1ei. Com-

bining these formulae with Proposition 6.4, we see that

Ξei(x) =
1

2
log

(1− λi)2

1− λ2
i

=
1

2
log

1− λi
1 + λi

= − tanh−1 λi. �

Lemma 8.13. Let e1, . . . , er be a frame of a bounded symmetric domain D, and
let x := λ1e1 + · · ·+ λrer be in the associated flat, with each λi in (−1, 1). Then,

Ξei
(
gx(y)

)
= Ξei(y)− tanh−1 λi, for all y ∈ D and all i.
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Proof. The flat F associated with the frame e1, . . . , er is isometric to the normed
space Rr with the supremum norm || · ||∞. The isometry is the exponential map at
0, namely exp0 : Rr → F , given by

exp0

(
(p1, . . . , pr)

)
= tanh(p1)e1 + · · ·+ tanh(pr)er.

For each i, let µi := tanh−1 λi, and define M := maxi |µi|. The map exp−1
0 ◦gx◦exp0

is a translation by (µ1, . . . , µr).
For simplicity, we consider the case where i = 1; the other cases are similar.

The sequence zn := exp0((2nM, 0, . . . , 0)) is an almost-geodesic converging to Ξe1
in the horofunction boundary. Its image yn := gx(zn) under the map gx is also an
almost-geodesic.

Let wn be the sequence obtained by taking alternate terms of the sequences
zn and yn, that is, wn := zn for n even, and wn := yn for n odd. Let m and
n be elements of N such that m ≤ n. If m and n are either both even or both
odd, then d(wm, wn) = 2(n −m)M . If m is odd and n is even, then d(wm, wn) =
2(n−m)M+µ1, while if m is even and n is odd, then d(wm, wn) = 2(n−m)M−µ1.
So, we see that wn is also an almost-geodesic.

It follows that the three sequences converge to the same horofunction. Therefore,
using that gx preserves the distance,

Ξe1
(
gx(y)

)
= lim
n→∞

(
d
(
gx(y), yn

)
− d(0, yn)

)
= lim
n→∞

(
d(y, zn)− d(0, zn)

)
− lim
n→∞

(
d(g−x(0), zn)− d(0, zn)

)
= Ξe1(y)− Ξe1(−x).

The result now follows upon applying Lemma 8.12. �

Proposition 8.14. Let e1, . . . , er be a frame of a bounded symmetric domain D,
and let x ∈ D. Then Ξei(x) + Ξ−ei(x) = 0, for all i, if and only if x is in the flat
defined by e1, . . . , er.

Proof. Let x := λ1e1 + · · · + λrer be in the flat, with each λi in (−1, 1), and take
j ∈ {1, . . . , r}. By Lemma 8.12, we have Ξej (x) = − tanh−1 λj . But −e1, . . . ,−er
is also a frame, and it gives rise to the same flat. With respect to this frame,
the coordinates of x are (−λ1, . . . ,−λr). Using the same lemma again, we get
Ξ−ej (x) = − tanh−1(−λj). We now use that the inverse hyperbolic tangent is an
odd function to get that the sum of Ξej (x) and Ξ−ej (x) is zero.

To prove the converse, let x ∈ D and assume that Ξej (x) + Ξ−ej (x) = 0 for each
j. For each j, let µj := Ξej (x) = −Ξ−ej (x), and define λj := tanhµj . The maps
{gλjej}; j commute, by Lemma 8.10. From Lemma 8.13 we know that, for z ∈ D
and j, k ∈ {1, . . . , r},

Ξek
(
gλjej (z)

)
=

{
Ξek(z), if j 6= k;

Ξek(z)− µk, if j = k

and Ξ−ek
(
gλjej (z)

)
=

{
Ξ−ek(z), if j 6= k;

Ξ−ek(z) + µk, if j = k.

The point y := gλrer ◦ · · · ◦ gλ1e1(x) satisfies Ξek(y) = Ξ−ek(y) = 0, for all k. From
Proposition 8.11, we get that y is in V0(ek), for each k. Since the ek form a frame,
it follows that y = 0. But 0 is in the flat defined by the frame, and therefore so
also is x = g−λ1e1 ◦ · · · ◦ g−λrer (0). �



CARATHÉODORY DISTANCE-PRESERVING MAPS 23

9. Carathéodory distance-preserving maps

In this section, we use the Gromov product to study Carathéodory distance-
preserving maps between bounded symmetric domains of equal rank. We show
that flats are mapped to flats and the Bergman distance is preserved.

Recall that each Carathéodory distance-preserving map φ between bounded sym-
metric domains of equal rank takes singleton Busemann points to other such points
(see Lemma 7.5) and thus induces a map, which we have also denoted by φ, between
their associated minimal tripotents.

Lemma 9.1. Let φ : D → D′ be a Carathéodory distance-preserving map between
two finite-dimensional bounded symmetric domains of equal rank. Assume that
φ(0) = 0. Then, two tripotents u and v in D are orthogonal if and only if φ(u) and
φ(v) are orthogonal in D′.

Proof. Proposition 8.5 characterises when two minimal tripotents are opposite one
another in terms of the Gromov product of their associated Busemann points. The
latter is preserved by φ, and so φ(−u) = −φ(u) and φ(−v) = −φ(v). The conclusion
now follows from the characterisation of orthogonality in Proposition 8.6, again in
terms of the Gromov product. �

Lemma 9.2. Let φ : D → D′ be a Carathéodory distance-preserving map between
two finite-dimensional bounded symmetric domains of equal rank r. Assume that
φ(0) = 0. Let e1, . . . , er be a frame in D, and let x = λ1e1 + · · ·+ λrer, with each
λi ∈ (−1, 1). Then,

(10) φ(x) = λ1φ(e1) + · · ·+ λrφ(er).

Proof. It follows from Lemma 9.1 that the φ(ei) form a frame of D′.
As φ(0) = 0, we have for each i that

(11) Ξφ(ei)

(
φ(x)

)
= Ξei(x) = − tanh−1 λi,

by Lemma 8.12, and a similar equation holds for the opposite tripotents −ei. In
particular,

Ξφ(ei)

(
φ(x)

)
+ Ξ−φ(ei)

(
φ(x)

)
= 0, for all i.

So, by Proposition 8.14, φ(x) lies in the flat defined by the φ(ei)’s. This means
that φ(x) can be expressed as a real linear combination of the φ(ei). Indeed, using
(11) and Lemma 8.12 again, we see that (10) must hold. �

This lemma has the following consequences.

Lemma 9.3. Let φ : D → D′ be a Carathéodory distance-preserving map between
two finite-dimensional bounded symmetric domains of equal rank. If F is a flat in
D, then φ(F ) is a flat in D′.

Proof. Let x ∈ F . The map ψ := g−φ(x)◦φ◦gx preserves the Carathéodory distance
and satisfies ψ(0) = 0. Moreover, g−x(F ) is a flat containing 0. By Lemma 9.2, this
flat is mapped by ψ to another flat, namely g−φ(x)(φ(F )). We deduce that φ(F ) is
a flat. �

Recall that, if e1, . . . , er is a frame of D and if x ∈ D is given by x = λ1e1 +
· · ·+ λrer, with each λi ∈ (−1, 1), then the Bergman distance between 0 and x is

dB(0, x) =
(
(tanh−1 λ1)2 + · · ·+ (tanh−1 λr)

2
)1/2

.
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Lemma 9.4. Let φ : D → D′ be a Carathéodory distance-preserving map between
two finite-dimensional bounded symmetric domains of equal rank. Then, φ is also
distance-preserving for the Bergman distance.

Proof. Let x and y be points in D. The map ψ := g−φ(x) ◦ φ ◦ gx preserves the
Carathéodory distance and satisfies ψ(0) = 0. Let e1, . . . , er be a frame of D such
that z := g−x(y) = λ1e1+· · ·+λrer, with each λi ∈ (−1, 1). By Lemma 9.2, we have
dB(0, ψ(z)) = dB(0, z). Using that gφ(x) preserves the Bergman distance on D′ and
gx preserves the Bergman distance on D, we get that dB(φ(x), φ(y)) = dB(x, y). �

In Theorem 11.1 of [16], it is shown that a surjective distance-preserving map
from a Riemannian manifold onto itself is automatically a diffeomorphism that pre-
serves the Riemannian structure. Actually, the same proof gives that a distance-
preserving map from one C∞ Riemannian manifold into another is C∞ and pre-
serves the Riemannian structure, even if it is not surjective.

Lemma 9.5. If φ : D → D′ be a Carathéodory distance-preserving map between
two finite-dimensional bounded symmetric domains of equal rank, then φ is a C∞

map.

Proof. By Lemma 9.4, the map φ preserves the Bergman distance. Under this
distance, the bounded symmetric domains are C∞ Riemannian manifolds, and
distance-preserving maps between such manifolds are C∞. �

10. Proof of the main results

To prove Theorem 1.2 we need to capture the structure of a bounded symmetric
domain D as a product irreducible factors, in terms of its minimal tripotents. To
do this we define the following equivalence relation on the set of minimal tripotents
of a JB*-triple. We say that u ∼ v if there is a finite sequence e1, . . . , en of minimal
tripotents such that e1 = u and en = v, and such that no two consecutive elements
are orthogonal. Let Mi, i ∈ I, be the equivalence classes of minimal tripotents,
and let Vi be the real linear span of Mi, for each i. Observe that, if i and j are
distinct, then every element of Vi is orthogonal to every element of Vj , and hence
the number of distinct Vi’s is at most the rank of V .

Recall that the set of minimal tripotents of a product of JB*-triples is the union
of the sets of minimal tripotents of the factors. That is, each minimal tripotent is of
the form (e1, 0) or (0, e2), where e1 and e2 are minimal tripotents of the respective
factors. Minimal tripotents coming from different factors are of course orthogonal.

A subtriple of a JB*-triple is a closed subspace that is also closed with respect
to the triple product.

Lemma 10.1. Let V be a finite-dimensional JB*-triple, and let Vi be the subspaces
defined above. Then, each Vi is an irreducible subtriple of V , and V = V1⊕· · ·⊕Vn.

Proof. If u is a minimal tripotent and λ ∈ C, with |λ| = 1, then u ∼ λu. It follows
that each Vi is a complex linear subspace of V .

Since every element of V can be written as a linear combination of minimal
tripotents, it can also be written as a sum of elements, one from each of the Vi.

To see that each Vi is closed under triple products, fix i and let u, v, w ∈ Vi. We
can write {u, v, w} as a real linear combination of elements of the form {e1, e2, e3},
where each of the ej are minimal tripotents in Mi. Consider such an element, and



CARATHÉODORY DISTANCE-PRESERVING MAPS 25

let c be in Mj , with j 6= i. So, c is orthogonal to each of e1, e2, and e3. Therefore,
by the Jordan identity,{
c, c, {e1, e2, e3}

}
=
{
{c, c, e1}, e2, e3

}
−
{
e1, {c, c, e2}, e3

}
+
{
e1, e2, {c, c, e3}

}
= 0.

So, c is orthogonal to {e1, e2, e3}. We deduce that {u, v, w} is orthogonal to every
minimal tripotent apart from those in Mi, and it follows that {u, v, w} lies in Vi.

If Vi were reducible, for some i, then we could partition its minimal tripotents
into two subsets in such a way that every element of one subset was orthogonal to
every element of the other; however this is clearly impossible. �

Recall that if D = D1×· · ·×Dn is a product of bounded symmetric domains, and
each Di has rank ri, then D has rank r1 + · · ·+rn, and every frame of D has exactly
ri minimal tripotents coming from Di. Let x := (x1, . . . , xn) be in D, with each xi
in Di. The Möbius transformation gx decomposes as gx(y) = (gx1

(y1), . . . , gxn(yn)),
for all y = (y1, . . . , yn) in D.

Proof of Theorem 1.2. We first establish the result for the map ψ := g−φ(0) ◦ φ.
The statement for φ then follows immediately, because Möbius transformations act
on each component separately. Observe that ψ(0) = 0, so ψ preserves the Gromov
product.

Let u and v be minimal tripotents belonging to the same factor Di of D. By
Lemma 10.1, we have u ∼ v, so there exists a sequence u = e1, . . . , en = v of minimal
tripotents such that no two consecutive elements are orthogonal. By Lemma 9.1, no
two consecutive elements of the sequence ψ(e1), . . . , ψ(en) are orthogonal. Hence,
ψ(u) ∼ ψ(v), and it follows from Lemma 10.1 that ψ(u) and ψ(v) are in the same
factor of D′. Define the map J as follows. For each factor Di of D, choose a minimal
tripotent e in Di, and set J(i) = k, where D′k is the factor of D′ containing ψ(e).
From what we have seen in the previous paragraph, this map is well-defined.

To show that J is surjective, let D′k be a factor of D′ and take any frame e1, . . . , er
of D. So, ψ(e1), . . . , ψ(er) is a frame of D′, and hence contains a minimal tripotent
of D′k, say ψ(ej). We then have J(l) = k, where Dl is the factor of D containing
ej .

Fix a factor D′i of D′, and denote by Pi the projection onto this factor. For x ∈
DJ−1(i), define ψi(x) := Piψ(y), where y is any element of D such that yJ−1(i) = x.
To show that this is well-defined, take any such y, and let e1, . . . , er be a frame
such that y = λ1e1 + · · ·+ λrer, with each λi ∈ (−1, 1). We order the elements of
the frame so that e1, . . . , es are the ones contained in DJ−1(i), with s ≤ r. By the
definition of the map J , the minimal tripotents e1, . . . , es are exactly the elements
of the frame that are mapped to tripotents of DJ−1(i). Applying Lemma 9.2, we
have that Piψ(y) = λ1ψ(e1) + · · ·+ λsψ(es). So we see that ψi(y) only depends on
the components in J−1(i). �

Lemma 10.2. Let φ : D → D′ be a Carathéodory distance-preserving map between
two finite-dimensional bounded symmetric domains of equal rank r, contained in
JB*-triples V and V ′, respectively. If φ(0) = 0, then φ is the restriction to D of a
real linear map from V to V ′.

Proof. By Lemma 9.5, the map φ is C∞. Denote by Dφ(0) : V → V ′ its derivative
at 0, which is a real linear map. Let x ∈ D. So, there exists a frame e1, . . . , er such
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that x = λ1e1 + · · ·+ λrer, with each λ ∈ (−1, 1). For each t ∈ [−1, 1], let

γ(t) :=
∑
i

tλiei.

So, γ is a smooth curve such that γ(0) = 0 and γ(1) = x. Its tangent vector at 0
is x. By Lemma 9.2,

φ
(
γ(t)

)
:=
∑
i

tλiφ(ei), for all t ∈ (−1, 1).

The tangent vector of this curve at 0 is φ(x). Therefore, Dφ(0) and φ agree at x.
We conclude that φ is the restriction of Dφ(0) to D. �

Lemma 10.3. Let φ : D → D′ be a Carathéodory distance-preserving map between
two finite dimensional bounded symmetric domains of equal rank. Assume that
φ(0) = 0. Then, the induced map on the set of minimal tripotents is continuous.

Proof. Let e be a minimal tripotent of the JB*-triple V of which D is the open
unit ball, and let λ ∈ (−1, 1). By considering any frame containing e and using
Lemma 9.2, we get that φ(λe) = λφ(e).

Now fix λ ∈ (0, 1), and let en be a sequence of minimal tripotents of V converging
to e in the norm topology of V . So, λen converges to λe. Hence, φ(λen) converges
to φ(λe), since φ is continuous on D. Therefore, by what we have seen above,
λφ(en) converges to λφ(e), and the conclusion follows upon dividing by λ. �

Proof of Theorem 1.3. By composing φ with a Möbius transformation if necessary,
we can assume that φ(0) = 0.

Recall that φ induces a map, also denoted by φ, from the set of Busemann points
of D to those of D′ with the property that every almost geodesic converging to a
Busemann point ξ of D is mapped to an almost-geodesic converging to φ(ξ); see
Section 5. Moreover, by Lemma 7.5, singletons are mapped to singletons. Since the
singletons are in one-to-one correspondence with the minimal tripotents, we get an
induced map from the minimal tripotents of D to those of D′. By Lemma 10.3,
this map, still denoted by φ, is continuous.

Combining Lemma 8.8 with Propositions 8.5 and 8.6, and using that φ preserves
the Gromov product, we see that if u and v are minimal tripotents of D satisfying
u = ±iv, then φ(u) = ±iφ(v). In other words, for each minimal tripotent e of D, we
have that either φ(ie) = iφ(e) or φ(ie) = −iφ(e). Define c(e) to be i in the former
case, and −i in the latter. Thus, we obtain a function c from the set E of minimal
tripotents of D to {i,−i}, This map is continuous since φ is continuous on E.

We have assumed that D is irreducible, and therefore E is connected. We deduce
that the map c is constant, that is, takes either only the value i or only the value −i
on the whole of E. We will treat the former case and show that φ is holomorphic.
In the latter case, it can be shown in the same way that φ is anti-holomorphic.

Let x ∈ D. So, there exists a frame e1, . . . , er such that x = λ1e1 + · · · + λrer,
with each λi ∈ (−1, 1). Hence, ix = λ1ie1 + · · ·+ λrier. Applying Lemma 9.2, and
using that c is identically equal to i, we get

φ(ix) = λ1φ(ie1) + · · ·+ λrφ(ier)

= λ1iφ(e1) + · · ·+ λriφ(er)

= iφ(x).
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From Lemma 10.2, we know that φ on D is the restriction of a real linear map.
We have proved that it is actually the restriction of a complex linear map, and
hence it is holomorphic. �

Kaup [19] showed that every surjective complex linear map between JB*-triples
that preserves the norm is a triple homomorphism. This is not necessarily true
however for maps that are not surjective. Nevertheless, Chu and Mackey [8] have
shown the following.

Theorem 10.4 (Chu—Mackey). Let φ : V → V ′ be a complex linear map between
JB*-triples that preserves the norm. Denote by D and D′ the open unit balls of
V and V ′, respectively. Then, φ is a triple homomorphism if and only if φ(D) is
invariant under the Möbius transformation gφ(x), for all x ∈ D.

For each x ∈ D, denote by Sx the geodesic symmetry in x. This means that, for
each y ∈ D, the points y, x, and Sx(y) lie on a Bergman geodesic, and dB(y, x) =
dB(x, Sx(y)), where dB is the Bergman distance.

Lemma 10.5. If w and z in D are such that z = Sw(0), then gz = Sw ◦ S0.

Proof. Let w = w1e1 + · · ·+wrer be written in terms of some frame e1, . . . , er, with
each wi ∈ (−1, 1). So, z = z1e1 + · · ·+ zrer, where zi = 2wi/(1 + w2

i ) for all i. By
Lemma 8.10, gz = gw ◦ gw. We deduce that gz maps −w to w. Observe that the
same is also true for Sw ◦ S0.

Now we compare the derivatives at −w. Let x be in the joint Peirce space Vij ,
for some i, j ∈ {0, . . . , r}. From Lemma 8.9,

g′z(−w)x = B(z, z)1/2B(−w,−z)−1x =

(
1− z2

i

)1/2(
1− z2

j

)1/2
(1− wizi)(1− wjzj)

x = x.

We deduce that g′z(−w) is the identity map. Since (Sw◦S0)′(−w) is also the identity
map, the two derivatives are equal at −w. The result now follows from Cartan’s
uniqueness theorem. �

Lemma 10.6. Let φ : D → D′ be a Bergman distance-preserving map between two
finite-dimensional bounded symmetric domains. Then, φ(Sx(y)) = Sφ(x)(φ(y)), for
all x and y in D.

Proof. The points y, x, and Sx(y) lie equally spaced along a Bergman geodesic
in D. Therefore their images φ(y), φ(x), and φ(Sx(y)) lie equally spaced along a
Bergman geodesic in D′. The conclusion follows. �

Proof of Theorem 1.5. By Lemma 10.2, the map φ is the restriction of a real linear
map, which we also denote by φ, between V and V ′. So it agrees with its derivative
at the origin, which is a complex linear map since φ is assumed to be holomorphic.

Let x = λ1e1 + · · · + λrer be in D, with e1, . . . , er a frame of D, and each
λi ∈ (−1, 1). The norm of x is ||x|| = max(|λ1|, . . . , |λr|), and a similar expression
holds for the norm in V ′. From Lemma 9.2, we get that the norm is preserved by
φ for elements of D. The same is true for all elements of V , by linearity.

Let z be in D. By Lemma 10.6, we have Sφ(z)(φ(w)) = φ(Sz(w)), for all w ∈ D.
This shows that the set φ(D) is invariant under the point symmetry Sφ(z), for any
z ∈ D.

Let x be in D, and let y be the midpoint of 0 and x along the unique Bergman
geodesic between these two points. So, Sy(0) = x. From Lemma 10.6, we get that
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Sφ(y)(0) = φ(x). By Lemma 10.5, this implies that gφ(x) = Sφ(y) ◦ S0. Since it
is a composition of maps that each leave φ(D) invariant, gφ(x) also leaves φ(D)
invariant.

The conclusion now follows upon applying Theorem 10.4. �
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