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Abstract— A light-field (LF) camera with refocusing
algorithms enables the reconstruction of images at different
depths. Using images of various depths, the intensity
distribution of each image section can then be calculated, which
is particularly useful for analyzing complex scenes such as
flames. However, LF images cannot be refocused in real time
using conventional algorithms due to high computational
demands. In this paper, we present a deep learning (DL)-based
method for real-time refocusing of LF images of a burner flame,
leveraging depth information obtained from the captured LF
images. A Convolutional Neural Network (CNN) model is
developed using a transfer learning approach, where a pre-
trained ResNet-50 model is extended with custom convolutional
layers to perform the refocusing task. Synthetic datasets are
generated using a ray tracing simulation based on the ray
transfer matrix (RTM) method to train the model. The trained
model produces four refocused outputs corresponding to
distinct depth planes. The proposed method eliminates the need
for the computationally intensive shift-and-sum algorithm
traditionally applied to LF images. Simulation results show that
the method accurately refocuses both geometric and flame
structures, preserving depth-aware detail across planes. This
approach has strong potential for enabling real-time, non-
intrusive diagnostics in combustion systems and other dynamic,
depth-varying environments.

Keywords- light-field imaging, refocusing algorithm, deep
learning, flame

I. INTRODUCTION

Understanding the characteristics of flames is crucial for
enhancing energy efficiency and minimizing harmful
emissions in combustion systems. Optical imaging
techniques have become indispensable approaches for non-
intrusive, 2-dimensional (2-D) and 3-dimensional (3-D)
monitoring of the flames [1]. As a result, valuable insight into
flame, such as structure, turbulence, temperature distribution,
and chemical reactions, can be gained [2]. Among optical
approaches, sectioning techniques such as Planar Laser-
Induced Fluorescence (PLIF) [3], Laser Sheet Imaging [4],
and Tomographic Schlieren Imaging [5] are commonly used
to capture 2-D slices of a flame at different depths, which can
then be used to reconstruct the temperature distribution, etc.
Optical Sectioning Tomography (OST) [6] enables the
capture of images at multiple depth layers. This 3-D
distribution of luminosity of the flame can be reconstructed
as a series of 2-D images, each focused on a different depth
of the flame. The 3-D temperature distribution of the flame
can then be reconstructed based on the relationship between
luminosity and temperature. However, these optical
sectioning methods often require complex and costly setups
[7].

To address the above issues, researchers have employed
single LF cameras to reconstruct 3-D flames [8]. By capturing
both the spatial and angular distributions of light rays in a
single exposure [9], LF imaging allows for computationally

refocusing the images after capture [10]. This capability is
especially valuable in flame studies, as it allows for acquiring
3-D characteristics of the flame with minimal physical
intervention. Traditionally, LF refocusing algorithms such as
the shift-and-sum technique [11] and the Fourier Slice
method [10] are used to reconstruct sharp images at different
depths from LF data. Despite their effectiveness, these
traditional methods are constrained by high computational
demands, including intensive memory usage and complex
data handling, rendering them impractical for real-time LF
processing tasks [12].

Recent advances in DL, including the development of
more efficient network architectures, improved training
strategies, and access to high-performance computing
hardware, have the potential to improve both the efficiency
and quality of LF processing tasks such as refocusing through
DL-based methods [13]. DL models can be trained to learn
optimal refocusing from large image datasets, making them
an alternative for faster, more accurate, and real-time LF
refocusing. Hedayati et al. [12] introduced RefNet, a DL-
based technique for real-time LF refocusing, capable of
generating 16 refocused images from a single LF capture.
RefNet processes a 7x7 angular resolution LF input and
predicts refocused images across a range of refocusing slopes
(o =0.125 to 2.0), where a is the refocus parameter used to
adjust the synthetic focal plane distance during digital LF
refocusing. Trained with ground truth data from shift-and-
sum and Fourier slice methods, RefNet achieves mean
Structural Similarity Index Measure (SSIM) values over
92.5% compared to the Fourier slice ground truth, proving
high image quality. Dayan et al. [14] proposed RefocusNet, a
DL model designed for real-time LF refocusing using sparse
sub-aperture views. A RefocusNet operates with four sparse
views arranged in a 2x2 grid, achieving high-quality
refocusing without the need for dense angular data.
Furthermore, Samarakoon et al. [15] demonstrated a method
for arbitrary volumetric refocusing of both dense and sparse
LF. They use pixel-dependent shifts within the shift-and-sum
framework, complemented by a U-Net-based DL model,
enabling simultaneous refocusing of multiple planar or
volumetric regions within a scene. Collectively, these studies
demonstrate that DL can be effectively used to generate
refocused images from LF data.

In this paper, a DL method for real-time LF field
refocusing of burner flames is presented. A transfer learning
strategy using a pretrained ResNet-50[16] followed by
custom convolutional layers is proposed. To train the
network, synthetic datasets were generated using ray tracing
simulations based on the RTM method. The trained model
generates four refocused flame images at distinct depth
planes. The simulation results show that the proposed method
not only accelerates the refocusing process but also
demonstrates the potential for real-time, non-intrusive
diagnostics in flames in combustion systems.



II. METHODOLOGY

The block diagram of the proposed approach for real-time
LF refocusing is illustrated in Fig.1. The approach involves
generating a LF image dataset through a ray tracing
simulation and extracting refocused images at various depths
by the traditional shift-and-sum algorithm. These images
serve as a ground truth for training the DL model. During the
training process, each input LF image is passed through a
pretrained ResNet-50, fine-tuned with custom convolutional
and fully connected layers to predict four images
corresponding to distinct focal planes. This enables the model
to learn depth-aware refocusing from a single LF input.
Supervision is provided using the ground truth images. To
evaluate the model's generalization ability, the model is
trained on synthetically generated LF data and then tested on
a separate test dataset of unseen but similar samples.
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Fig. 1. Block diagram of the proposed DL model for real-time LF
refocusing.

A. Light field imaging

LF imaging theory has been well documented [10]. For
readers’ convenience, only a brief introduction is given here.
To capture an LF image, the LF camera incorporates an MLA
between the main lens and the image sensor, as illustrated in
Fig. 2(a). Each microlens captures a range of angular light
rays arriving from different directions, enabling the camera
to record both spatial and angular components of incoming
light in a single exposure.
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Fig. 2. (a) Principle of LF imaging setup and (b) Digital refocusing of LF.

This captured information is represented by a 4-D LF
function, L(u,v,s,t), where (u,v) are coordinates on the
aperture plane (main lens), and (s,¢) are coordinates on the
sensor plane. In contrast to conventional cameras—which

capture only 2-D spatial intensity images—this richer 4-D
representation preserves directional information. As shown
in Fig.2(b), a light ray is parameterized by its intersections
with two planes: the aperture plane (i, v) and the sensor plane
(s, ©), separated by a reference distance F. This two-plane
parameterization enables synthetic refocusing of the captured
LF by virtually shifting the sensor plane to a new location (s,
¢") along the optical axis. The refocused plane is located at
depth F' = aF, where a controls the position of the virtual
focal plane. Refocusing is implemented using the shift-and-
sum algorithm, in which each sub-aperture image is shifted
by an amount proportional to its angular coordinates (u, v)
and the selected depth parameter a. These shifted views are
then summed to generate a new image that is synthetically
focused at the desired depth. A focused image at the sensor
plane is given by [10]:

E(s,t) = Fisz L(u,v,s,t) A(u,v)cos* Odu dv (1)

where 4 (u, v) is the aperture function and @ is the angle
between a ray and the optical axis. For refocusing to a plane
at aF, the image is computed as [10]:

E(s',t) = %ffL(u,v,u+%,v+ %)dudv )

B. Light field ray tracing

To model light propagation within the LF imaging
system, the RTM method, commonly known as the ABCD
matrix formalism, was employed [17]. This approach models
the behaviour of paraxial rays as they travel through the
optical elements of the system.
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Fig. 3. RTM-based ray propagation in an LF imaging system (a) Geometric
representation of a paraxial ray entering the system at the input plane and
exiting at the output plane (b) Schematic of ray propagation through the
optical system, including the main lens and MLA, with free-space intervals
between components.

As illustrated in Fig.3(a), the diagram shows a single ray
entering the optical setup at the input plane with an initial
height Y; and angle 6, relative to the optical axis. Assuming
a single lens lies between the input and output planes, the ray
exits with an updated height Y> and angle 6,. In the RTM
framework, free space is treated as an optical element, as it
alters the ray’s position over distance without changing its
angle. Each stage of the ray’s propagation is governed by a
2x2 matrix, which updates the ray’s position and angle:

o) -l¢ Bllei) ®



Here, the matrix elements A, B, C, and D represent the optical
properties of each element in the system. Free-space
propagation over a distance d is represented by the RTM:

1 d
[ o 91 )
and the effect of a thin lens with focal length f'is modeled by:
1 0
1y 1] ©)

Each component in the system—free space, the main lens,
and the MLA—is modeled using such matrices. By chaining
them, the full ray path of the LFC is simulated from the object
scene, through the lens and MLA, to the sensor as shown in
Fig.3(b).

C. Deep learning model

In this study, refocusing is treated as a supervised image-
to-image regression task where the goal is to map a single LF
image X € R#xWxCto a set of four refocused outputs:

7= {i(n) Y., [ e Raxwxc, (6)
where, ¥ denotes the set of predicted refocused images, [™
represents the nth image corresponding to a specific refocus
depth, H and W are the spatial dimensions, and C=1 indicates
a single greyscale channel. Each output image I Q)
corresponds to a different focal depth slice, approximating
traditional shift-and-sum refocusing. The network learns a
parametric function f, : X—Y, where ¢ denotes the set of
learnable parameters. This follows the standard function
approximation paradigm in DL [18].
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Fig. 4. Block diagram of the proposed DL model combining a ResNet-50
encoder with a custom decoder for refocused image generation

The proposed DL model uses a ResNet-50 backbone,
pretrained on ImageNet [19], as an encoder to extract
meaningful features from the input data. A lightweight
decoder is subsequently applied to transform the extracted
features into a set of depth-wise refocused outputs. The block
diagram of the DL model, including this decoder, is
illustrated in Fig.4. The decoder consists of a sequence of
layers that transform high-level features into four refocused
images, each corresponding to a distinct depth. It begins with
a 2-D convolutional layer with 512 filters and a 3x3 kernel,
followed by batch normalization to improve training stability
and a Leaky ReLU activation to avoid dead neurons and
preserve gradient flow [20, 21]. A second 2-D convolutional
layer with 256 filters and a 3x3 kernel further refines the
feature maps and captures localized spatial patterns. This is

again followed by batch normalization and Leaky ReLU
activation.

Next, global average pooling (GAP) is applied to
compress the spatial dimensions of the feature maps into a
compact global feature vector [22]. This vector is passed
through a fully connected layer and reshaped into a tensor
with a size of (90x180x%4), where (90x180) represents the
spatial resolution of each image, and the third dimension
corresponds to four grayscale refocused images at different
depths. To reduce overfitting, dropout regularization with a
rate of 0.3 is applied [23]. The final convolutional layer
applies 4 filters with a sigmoid activation to normalize the
output to the range [0,1]. This produces four grayscale feature
maps, each corresponding to a different refocused depth. The
output is then reshaped to the format (4, 90, 100, 1), where 4
represents the number of focal planes, 90 and 100 denote the
image height and width in pixels, respectively, and 1
indicates a single grayscale channel.

III. MODEL CONSTRUCTION
A. Multi-Shape Dataset

To train the DL model for LF refocusing, a synthetic
dataset was generated through a ray tracing simulation. A 2-
D scene template composed of basic geometric shapes (i.e.,
square, circle, rectangle, and triangle) was arranged in
discrete depth layers along the optical axis, with a fixed
10 mm gap between adjacent layers as shown in Fig. 5. In the
simulation, an MLA was used, where each microlens had a
focal length of 0.4 mm and a pitch of 0.112 mm—that is, the
center-to-center spacing between adjacent microlenses. The
main lens had a focal length of 150 mm. The simulated LF
setup achieves a horizontal and vertical field of view (FOV)
of approximately 19.5°. The circular shape of the template is
positioned at the focal plane, while the other shapes are
placed at fixed intervals of 10 mm along the optical axis, both
in front of and behind the focal plane.

Main MLA Sensor
Lens

277 mm 0.4 mm

326 mm

20mm 10mm 0mm -10 mm

Fig. 5. Setup for LF camera simulation using multi-shape 2-D object scene
templates.

Using the shift-and-sum algorithm, a range of slope
values was applied to refocus the images, and sharpness
metrics were used to identify the sharpest image for each
shape. The square produced the sharpest image at a
refocusing slope of —1.25, while the circle—positioned at the
focal plane—was sharpest at a slope of 0.00. The triangle and
rectangle, located behind the focal plane, were sharpest at
slopes of 1.15 and 2.10, respectively.

B. Simulated Flame Dataset

Simulated LF flame images were also generated using the
same approach as the multi-shape template. As illustrated in
Fig.6, four flame images with different heights were



positioned at four different depths along the optical axis,
creating distinct depth layers useful for evaluating the
model’s refocusing capability. In each dataset, the average
flame height ranged from approximately 14.47 mm to
29.48 mm across different depth positions. Each flame
exhibited minimal variation, with standard deviations
between 1.41 mm and 1.48 mm. These values were computed
from known 3-D object-space coordinates defined during the
simulation.

Focdl Main MLA Sensor
plane Lens
Optical (\
277mm_ 0.4mm
| 326 mm
20 mm 10mm 0mm -10 mm

Fig. 6. Setup for LF camera simulation using simulated flame 2-D object
scene templates.

C. Ground Truth

For the multi-shape dataset, a total of 1,600 simulated LF
images were used to generate ground truth data. Each LF
image produced four refocused views using the shift-and-sum
refocusing algorithm, resulting in 6,400 ground truth samples
in total. In contrast, the flame dataset consisted of 200 LF
images, which similarly produced four refocused views each,
yielding 800 ground truth samples. Each sample contains four
grayscale refocused images, one for each depth, with a spatial
resolution of 180%90. This corresponds to a tensor shape of
(4,180,90), where 4 denotes the number of refocused depths.

D. Performance Metrics

Two image quality assessment metrics were used to
evaluate the perceptual fidelity of the refocused images: the
SSIM and the Peak Signal-to-Noise Ratio (PSNR) [24, 25].
The SSIM between two images x and y is calculated as:

(2uxiy+c1)(20xy+c3) (6)
(u3+uj+ci)(of+of+cr)

SSIM(x,y) =

where u, and u, are the mean intensities of images x and y,
o} and o} are the variances, g, is the covariance between x
and y, and c¢; and c; are constants to stabilize the division.

The PSNR is given by:

PSNR = 10log;o ( MAX;] L), (dB) (7)

where MAX; is the maximum possible pixel value (e.g., 255
for an 8-bit image) and MSE is the mean squared error
between the predicted and reference images.

The SSIM assesses the structural similarity between the
predicted and reference images by considering luminance,
contrast, and structural information. The SSIM index usually
has a value that ranges from 0 to 1, where 1 implies that the
reconstructed image perfectly matches the original one. The
PSNR measures the ratio between the maximum pixel
intensity and the power of the distortion. The higher the
PSNR value the better the image quality.

E. Model Construction

The DL model was implemented in Keras with
TensorFlow as the backend [26] using Python. A range of
hyperparameters, including the number of convolutional
layers, learning rates, and batch sizes, was evaluated to
determine the optimal configuration. The finalized model
employed a batch size of 2, a learning rate of 0.0001, and was
trained using the Adam optimizer [27]. Backpropagation was
used to update the trainable layers while keeping the ResNet-
50 parameters fixed. The dataset was partitioned into training
(80%), validation (10%), and testing (10%) subsets. The
model was trained in a supervised manner using mean
squared error as the loss function. All training was conducted
on a Lenovo ThinkStation P620 equipped with an AMD
Ryzen Threadripper PRO 3955WX CPU, 128 GB of RAM,
and an NVIDIA RTX A6000 GPU. The model was trained
separately on the multi-shape and simulated flame datasets.
For the multi-shape dataset, training was performed on a GPU
for 5,000 epochs, taking approximately 10.7 hours. The
model trained on the simulated flame dataset used a CPU for
1,000 epochs and required approximately 6.35 hours. It is
important to note that these training times are not directly
comparable, as the models were trained using different epoch
counts and hardware configurations.

IV. RESULTS AND DISCUSSION

A. Refocused Multi-Shape Images

Refocused images were generated at depths of —10 mm,
0mm, 10 mm, and 20 mm as shown in Fig.7. The model
produced consistently high image quality across all planes,
with SSIM values >0.96 and PSNR exceeding 43 dB, as
shown in Table I. In the focal plane at 0 mm, which contains
a circular object, the highest SSIM of 0.97 was observed. The
PSNR at this depth was 45.31 dB, slightly lower than that of
the square shape at 10 mm, which reached 47.87 dB, this may
reflect the influence of the object’s geometry. Circular edges
are more sensitive to localization variations, which can
impact pixel-level error metrics such as PSNR, as described

in [28].

20 mm 10 mm -10 mm
(b) Ground truth images

image 20 mm 10 mm -10 mm
(c) Refocused images

Fig. 7. (a) Raw LF image of a multi-shape template. (b) Ground truth slices
at different depths. (c) Refocused images generated by the DL model.

TABLE I. PERFORMANCE EVALUATION OF REFOCUSING MULTI-

SHAPE IMAGES
Rectangle | Triangle at Circle at Square
at depth 20 depth 10 depth 0 mm at depth
mm mm (Focal plane) -10 mm
SSIM 0.96 0.96 0.97 0.96
PSNR 45.05dB 43.73dB 45.31dB 47.87dB




B. Refocused Flame Images

Refocused images of a simulated flame were evaluated at
—10 mm, 0 mm, 10 mm, and 20 mm as shown in Fig.8. As
shown in Table I, SSIM values ranged from 0.91 to 0.96,
while PSNR values exceeded 39 dB across all depths for the
DL model. The highest SSIM, 0.96, was achieved at the focal
plane at 0 mm, indicating excellent structural similarity. At
10 mm, the SSIM remained high at 0.94, showing that the
flame structure was well preserved despite the lower PSNR
of 39.41dB. This confirms the model's robustness in
maintaining image quality even when the flame is outside the

focal plane.

20mm 10mm Omm -10mm
(b) Ground truth images

20mm 10mm Omm -10 mm

(c) Refocused images

Fig. 8. (a) Raw LF image of a simulated flame. (b) Ground truth slices at
different depths. (c) Refocused images generated by the DL model.

(a) Raw light field
image

TABLE II. PERFORMANCE EVALUATION OF REFOCUSING

FLAME IMAGES
Flame at Flame at Flame at Flame at
depth 20 depth 10 depth 0 mm depth -
mm mm (Focal plane) 20 mm
SSIM 0.91 0.94 0.96 0.95
PSNR 41.64dB 39.416dB 40.06dB 41.87dB

V. CONCLUSION

In this paper, we presented a DL-based method for LF
refocusing of burner flame images, with the potential for real-
time application. The proposed approach eliminates the need
for the computationally intensive shift-and-sum algorithm
traditionally applied after capture. The key contributions
include the implementation of a ray-tracing simulator based
on the RTM to generate synthetic LF data and the
development of a transfer learning—based DL model using a
ResNet-50 backbone with custom convolutional layers. This
model replaces the traditional shift-and-sum algorithm with
an optimized ResNet-50-based architecture capable of real-
time depth-aware refocusing. The model was evaluated on
both geometric test scenes and simulated flame data.
Geometric samples validated accurate refocusing at known
depths, while flame evaluations demonstrated the model’s
ability to preserve flame structure across multiple focal
planes. The proposed method has the potential to enable real-
time LF refocusing, making it well suited for practical
deployment in combustion diagnostics. Future work will
focus on expanding the training dataset to include a wider
range of flame conditions, incorporating real LF camera data,
and integrating post-processing pipelines for the automated
extraction of radiation-intensity profiles from the refocused
outputs.
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