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Abstract— A light-field (LF) camera with refocusing 

algorithms enables the reconstruction of images at different 

depths. Using images of various depths, the intensity 

distribution of each image section can then be calculated, which 

is particularly useful for analyzing complex scenes such as 

flames. However, LF images cannot be refocused in real time 

using conventional algorithms due to high computational 

demands. In this paper, we present a deep learning (DL)-based 

method for real-time refocusing of LF images of a burner flame, 

leveraging depth information obtained from the captured LF 

images. A Convolutional Neural Network (CNN) model is 

developed using a transfer learning approach, where a pre-

trained ResNet-50 model is extended with custom convolutional 

layers to perform the refocusing task. Synthetic datasets are 

generated using a ray tracing simulation based on the ray 

transfer matrix (RTM) method to train the model. The trained 

model produces four refocused outputs corresponding to 

distinct depth planes. The proposed method eliminates the need 

for the computationally intensive shift-and-sum algorithm 

traditionally applied to LF images. Simulation results show that 

the method accurately refocuses both geometric and flame 

structures, preserving depth-aware detail across planes. This 

approach has strong potential for enabling real-time, non-

intrusive diagnostics in combustion systems and other dynamic, 

depth-varying environments. 

Keywords- light-field imaging, refocusing algorithm, deep 

learning, flame 

I. INTRODUCTION 

Understanding the characteristics of flames is crucial for 

enhancing energy efficiency and minimizing harmful 

emissions in combustion systems. Optical imaging 

techniques have become indispensable approaches for non-

intrusive, 2-dimensional (2-D) and 3-dimensional (3-D) 

monitoring of the flames [1]. As a result, valuable insight into 

flame, such as structure, turbulence, temperature distribution, 

and chemical reactions, can be gained [2]. Among optical 

approaches, sectioning techniques such as Planar Laser-

Induced Fluorescence (PLIF) [3], Laser Sheet Imaging [4], 

and Tomographic Schlieren Imaging [5] are commonly used 

to capture 2-D slices of a flame at different depths, which can 

then be used to reconstruct the temperature distribution, etc. 

Optical Sectioning Tomography (OST) [6] enables the 

capture of images at multiple depth layers. This 3-D 

distribution of luminosity of the flame can be reconstructed 

as a series of 2-D images, each focused on a different depth 

of the flame. The 3-D temperature distribution of the flame 

can then be reconstructed based on the relationship between 

luminosity and temperature. However, these optical 

sectioning methods often require complex and costly setups 

[7].  

To address the above issues, researchers have employed 

single LF cameras to reconstruct 3-D flames [8]. By capturing 

both the spatial and angular distributions of light rays in a 

single exposure [9]， LF imaging allows for computationally 

refocusing the images after capture [10]. This capability is 

especially valuable in flame studies, as it allows for acquiring 

3-D characteristics of the flame with minimal physical 

intervention. Traditionally, LF refocusing algorithms such as 

the shift-and-sum technique [11] and the Fourier Slice 

method [10] are used to reconstruct sharp images at different 

depths from LF data. Despite their effectiveness, these 

traditional methods are constrained by high computational 

demands, including intensive memory usage and complex 

data handling, rendering them impractical for real-time LF 

processing tasks [12].  

Recent advances in DL, including the development of 

more efficient network architectures, improved training 

strategies, and access to high-performance computing 

hardware, have the potential to improve both the efficiency 

and quality of LF processing tasks such as refocusing through 

DL-based methods [13]. DL models can be trained to learn 

optimal refocusing from large image datasets, making them 

an alternative for faster, more accurate, and real-time LF 

refocusing. Hedayati et al. [12] introduced RefNet, a DL-

based technique for real-time LF refocusing, capable of 

generating 16 refocused images from a single LF capture. 

RefNet processes a 7×7 angular resolution LF input and 

predicts refocused images across a range of refocusing slopes 

(α = 0.125 to 2.0), where α is the refocus parameter used to 

adjust the synthetic focal plane distance during digital LF 

refocusing. Trained with ground truth data from shift-and-

sum and Fourier slice methods, RefNet achieves mean 

Structural Similarity Index Measure (SSIM) values over 

92.5% compared to the Fourier slice ground truth, proving 

high image quality. Dayan et al. [14] proposed RefocusNet, a 

DL model designed for real-time LF refocusing using sparse 

sub-aperture views. A RefocusNet operates with four sparse 

views arranged in a 2x2 grid, achieving high-quality 

refocusing without the need for dense angular data. 

Furthermore, Samarakoon et al. [15] demonstrated a method 

for arbitrary volumetric refocusing of both dense and sparse 

LF. They use pixel-dependent shifts within the shift-and-sum 

framework, complemented by a U-Net-based DL model, 

enabling simultaneous refocusing of multiple planar or 

volumetric regions within a scene. Collectively, these studies 

demonstrate that DL can be effectively used to generate 

refocused images from LF data.  

In this paper, a DL method for real-time LF field 

refocusing of burner flames is presented. A transfer learning 

strategy using a pretrained ResNet-50[16] followed by 

custom convolutional layers is proposed. To train the 

network, synthetic datasets were generated using ray tracing 

simulations based on the RTM method. The trained model 

generates four refocused flame images at distinct depth 

planes. The simulation results show that the proposed method 

not only accelerates the refocusing process but also 

demonstrates the potential for real-time, non-intrusive 

diagnostics in flames in combustion systems. 

This full-text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.



II. METHODOLOGY 

The block diagram of the proposed approach for real-time 

LF refocusing is illustrated in Fig.1. The approach involves 

generating a LF image dataset through a ray tracing 

simulation and extracting refocused images at various depths 

by the traditional shift-and-sum algorithm. These images 

serve as a ground truth for training the DL model. During the 

training process, each input LF image is passed through a 

pretrained ResNet-50, fine-tuned with custom convolutional 

and fully connected layers to predict four images 

corresponding to distinct focal planes. This enables the model 

to learn depth-aware refocusing from a single LF input. 

Supervision is provided using the ground truth images. To 

evaluate the model's generalization ability, the model is 

trained on synthetically generated LF data and then tested on 

a separate test dataset of unseen but similar samples.  

 

 
 

Fig. 1. Block diagram of the proposed DL model for real-time LF 
refocusing. 

A. Light field imaging 

LF imaging theory has been well documented [10]. For 

readers’ convenience, only a brief introduction is given here. 

To capture an LF image, the LF camera incorporates an MLA 

between the main lens and the image sensor, as illustrated in 

Fig. 2(a). Each microlens captures a range of angular light 

rays arriving from different directions, enabling the camera 

to record both spatial and angular components of incoming 

light in a single exposure. 

(a)  
 

(b)  
Fig. 2. (a) Principle of LF imaging setup and (b) Digital refocusing of LF. 

 

This captured information is represented by a 4-D LF 

function, L(u,v,s,t), where (u,v) are coordinates on the 

aperture plane (main lens), and (s,t) are coordinates on the 

sensor plane. In contrast to conventional cameras—which 

capture only 2-D spatial intensity images—this richer 4-D 

representation preserves directional information.  As shown 

in Fig.2(b), a light ray is parameterized by its intersections 

with two planes: the aperture plane (u, v) and the sensor plane 

(s, t), separated by a reference distance F. This two-plane 

parameterization enables synthetic refocusing of the captured 

LF by virtually shifting the sensor plane to a new location (s′, 

t′) along the optical axis. The refocused plane is located at 

depth F′ = αF, where α controls the position of the virtual 

focal plane.  Refocusing is implemented using the shift-and-

sum algorithm, in which each sub-aperture image is shifted 

by an amount proportional to its angular coordinates (u, v) 

and the selected depth parameter α. These shifted views are 

then summed to generate a new image that is synthetically 

focused at the desired depth. A focused image at the sensor 

plane is given by [10]: 
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where A (u, v) is the aperture function and θ is the angle 
between a ray and the optical axis. For refocusing to a plane 
at αF, the image is computed as [10]: 
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B. Light field ray tracing  

To model light propagation within the LF imaging 

system, the RTM method, commonly known as the ABCD 

matrix formalism, was employed [17]. This approach models 

the behaviour of paraxial rays as they travel through the 

optical elements of the system. 

 

(a)  
  

(b)  
 

Fig. 3. RTM-based ray propagation in an LF imaging system (a) Geometric 

representation of a paraxial ray entering the system at the input plane and 
exiting at the output plane (b) Schematic of ray propagation through the 

optical system, including the main lens and MLA, with free-space intervals 

between components.  

 

As illustrated in Fig.3(a), the diagram shows a single ray 

entering the optical setup at the input plane with an initial 

height Y1 and angle θ1 relative to the optical axis. Assuming 

a single lens lies between the input and output planes, the ray 

exits with an updated height Y2 and angle θ2. In the RTM 

framework, free space is treated as an optical element, as it 

alters the ray’s position over distance without changing its 

angle. Each stage of the ray’s propagation is governed by a 

2×2 matrix, which updates the ray’s position and angle:  
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Here, the matrix elements A, B, C, and D represent the optical 
properties of each element in the system. Free-space 
propagation over a distance d is represented by the RTM: 

$    1   � 
0 1   (,      (4) 

and the effect of a thin lens with focal length f is modeled by: 

� 1 0
+1/- 1  #      (5) 

Each component in the system—free space, the main lens, 
and the MLA—is modeled using such matrices. By chaining 
them, the full ray path of the LFC is simulated from the object 
scene, through the lens and MLA, to the sensor as shown in 
Fig.3(b).   

C. Deep learning model 

In this study, refocusing is treated as a supervised image-

to-image regression task where the goal is to map a single LF 

image X ∈ ℝH×W×C to a set of four refocused outputs: 

 

 4 � 5 67�8� 98:	�  ,   67�8� ∈ ℝH×W×C ,   (6) 

 

where,   ; denotes the set of predicted refocused images, 67�8� 
represents the nth image corresponding to a specific refocus 

depth, H and W are the spatial dimensions, and C=1 indicates 

a single greyscale channel. Each output image  67�8� 
corresponds to a different focal depth slice, approximating 

traditional shift-and-sum refocusing. The network learns a 

parametric function fφ : X→ 4 , where φ denotes the set of 

learnable parameters. This follows the standard function 

approximation paradigm in DL [18].  

 

 
 

Fig. 4. Block diagram of the proposed DL model combining a ResNet-50 
encoder with a custom decoder for refocused image generation  

 

The proposed DL model uses a ResNet-50 backbone, 

pretrained on ImageNet [19], as an encoder to extract 

meaningful features from the input data. A lightweight 

decoder is subsequently applied to transform the extracted 

features into a set of depth-wise refocused outputs. The block 

diagram of the DL model, including this decoder, is 

illustrated in Fig.4. The decoder consists of a sequence of 

layers that transform high-level features into four refocused 

images, each corresponding to a distinct depth. It begins with 

a 2-D convolutional layer with 512 filters and a 3×3 kernel, 

followed by batch normalization to improve training stability 

and a Leaky ReLU activation to avoid dead neurons and 

preserve gradient flow [20, 21]. A second 2-D convolutional 

layer with 256 filters and a 3×3 kernel further refines the 

feature maps and captures localized spatial patterns. This is 

again followed by batch normalization and Leaky ReLU 

activation. 

Next, global average pooling (GAP) is applied to 

compress the spatial dimensions of the feature maps into a 

compact global feature vector [22]. This vector is passed 

through a fully connected layer and reshaped into a tensor 

with a size of (90×180×4), where (90×180) represents the 

spatial resolution of each image, and the third dimension 

corresponds to four grayscale refocused images at different 

depths. To reduce overfitting, dropout regularization with a 

rate of 0.3 is applied [23]. The final convolutional layer 

applies 4 filters with a sigmoid activation to normalize the 

output to the range [0,1]. This produces four grayscale feature 

maps, each corresponding to a different refocused depth. The 

output is then reshaped to the format (4, 90, 100, 1), where 4 

represents the number of focal planes, 90 and 100 denote the 

image height and width in pixels, respectively, and 1 

indicates a single grayscale channel.  

III. MODEL CONSTRUCTION 

A. Multi-Shape Dataset  

To train the DL model for LF refocusing, a synthetic 

dataset was generated through a ray tracing simulation. A 2-

D scene template composed of basic geometric shapes (i.e., 

square, circle, rectangle, and triangle) was arranged in 

discrete depth layers along the optical axis, with a fixed 

10 mm gap between adjacent layers as shown in Fig. 5. In the 

simulation, an MLA was used, where each microlens had a 

focal length of 0.4 mm and a pitch of 0.112 mm—that is, the 

center-to-center spacing between adjacent microlenses. The 

main lens had a focal length of 150 mm. The simulated LF 

setup achieves a horizontal and vertical field of view (FOV) 

of approximately 19.5°. The circular shape of the template is 

positioned at the focal plane, while the other shapes are 

placed at fixed intervals of 10 mm along the optical axis, both 

in front of and behind the focal plane. 

  

 
 

Fig. 5. Setup for LF camera simulation using multi-shape 2-D object scene 

templates. 

Using the shift-and-sum algorithm, a range of slope 

values was applied to refocus the images, and sharpness 

metrics were used to identify the sharpest image for each 

shape. The square produced the sharpest image at a 

refocusing slope of −1.25, while the circle—positioned at the 

focal plane—was sharpest at a slope of 0.00. The triangle and 

rectangle, located behind the focal plane, were sharpest at 

slopes of 1.15 and 2.10, respectively.  

 

B. Simulated Flame Dataset  

Simulated LF flame images were also generated using the 

same approach as the multi-shape template. As illustrated in 

Fig.6, four flame images with different heights were 



positioned at four different depths along the optical axis, 

creating distinct depth layers useful for evaluating the 

model’s refocusing capability. In each dataset, the average 

flame height ranged from approximately 14.47 mm to 

29.48 mm across different depth positions. Each flame 

exhibited minimal variation, with standard deviations 

between 1.41 mm and 1.48 mm. These values were computed 

from known 3-D object-space coordinates defined during the 

simulation.  

 
 

Fig. 6. Setup for LF camera simulation using simulated flame 2-D object 
scene templates. 

C. Ground Truth 

For the multi-shape dataset, a total of 1,600 simulated LF 

images were used to generate ground truth data. Each LF 

image produced four refocused views using the shift-and-sum 

refocusing algorithm, resulting in 6,400 ground truth samples 

in total. In contrast, the flame dataset consisted of 200 LF 

images, which similarly produced four refocused views each, 

yielding 800 ground truth samples. Each sample contains four 

grayscale refocused images, one for each depth, with a spatial 

resolution of 180×90. This corresponds to a tensor shape of 

(4,180,90), where 4 denotes the number of refocused depths. 

D.  Performance Metrics 

Two image quality assessment metrics were used to 

evaluate the perceptual fidelity of the refocused images: the 

SSIM and the Peak Signal-to-Noise Ratio (PSNR) [24, 25]. 

The SSIM between two images x and y is calculated as: 

 

<<6=�>, ?� � @!ABACDEFG@!HBCDE�G
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where μx and μy are the mean intensities of images x and y, 

IJ! and σL! are the variances, IJM is the covariance between x 

and y, and c1 and c2 are constants to stabilize the division. 

 

The PSNR is given by: 
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where MAXI is the maximum possible pixel value (e.g., 255 

for an 8-bit image) and MSE is the mean squared error 

between the predicted and reference images.  

The SSIM assesses the structural similarity between the 

predicted and reference images by considering luminance, 

contrast, and structural information. The SSIM index usually 

has a value that ranges from 0 to 1, where 1 implies that the 

reconstructed image perfectly matches the original one. The 

PSNR measures the ratio between the maximum pixel 

intensity and the power of the distortion. The higher the 

PSNR value the better the image quality. 

E. Model Construction 

The DL model was implemented in Keras with 

TensorFlow as the backend [26] using Python. A range of 

hyperparameters, including the number of convolutional 

layers, learning rates, and batch sizes, was evaluated to 

determine the optimal configuration. The finalized model 

employed a batch size of 2, a learning rate of 0.0001, and was 

trained using the Adam optimizer [27]. Backpropagation was 

used to update the trainable layers while keeping the ResNet-

50 parameters fixed. The dataset was partitioned into training 

(80%), validation (10%), and testing (10%) subsets. The 

model was trained in a supervised manner using mean 

squared error as the loss function. All training was conducted 

on a Lenovo ThinkStation P620 equipped with an AMD 

Ryzen Threadripper PRO 3955WX CPU, 128 GB of RAM, 

and an NVIDIA RTX A6000 GPU. The model was trained 

separately on the multi-shape and simulated flame datasets. 

For the multi-shape dataset, training was performed on a GPU 

for 5,000 epochs, taking approximately 10.7 hours. The 

model trained on the simulated flame dataset used a CPU for 

1,000 epochs and required approximately 6.35 hours. It is 

important to note that these training times are not directly 

comparable, as the models were trained using different epoch 

counts and hardware configurations. 

IV. RESULTS AND DISCUSSION 

A. Refocused Multi-Shape Images 

Refocused images were generated at depths of −10 mm, 

0 mm, 10 mm, and 20 mm as shown in Fig.7. The model 

produced consistently high image quality across all planes, 

with SSIM values ≥ 0.96 and PSNR exceeding 43 dB, as 

shown in Table I. In the focal plane at 0 mm, which contains 

a circular object, the highest SSIM of 0.97 was observed. The 

PSNR at this depth was 45.31 dB, slightly lower than that of 

the square shape at 10 mm, which reached 47.87 dB, this may 

reflect the influence of the object’s geometry. Circular edges 

are more sensitive to localization variations, which can 

impact pixel-level error metrics such as PSNR, as described 

in [28]. 

 
 

Fig. 7. (a) Raw LF image of a multi-shape template. (b) Ground truth slices 
at different depths. (c) Refocused images generated by the DL model. 

 
TABLE I. PERFORMANCE EVALUATION OF REFOCUSING MULTI-

SHAPE IMAGES 
 Rectangle 

at depth 20 

mm 

Triangle at 

depth 10 

mm  

Circle at 

depth 0 mm 

(Focal plane) 

Square 

at depth 

-10 mm  

SSIM 0.96 0.96 0.97 0.96 

PSNR 45.05dB 43.73dB 45.31dB 47.87dB 

 



B. Refocused Flame Images 

Refocused images of a simulated flame were evaluated at 

−10 mm, 0 mm, 10 mm, and 20 mm as shown in Fig.8.  As 

shown in Table I, SSIM values ranged from 0.91 to 0.96, 

while PSNR values exceeded 39 dB across all depths for the 

DL model. The highest SSIM, 0.96, was achieved at the focal 

plane at 0 mm, indicating excellent structural similarity. At 

10 mm, the SSIM remained high at 0.94, showing that the 

flame structure was well preserved despite the lower PSNR 

of 39.41 dB. This confirms the model's robustness in 

maintaining image quality even when the flame is outside the 

focal plane. 

 
Fig. 8. (a) Raw LF image of a simulated flame. (b) Ground truth slices at 

different depths. (c) Refocused images generated by the DL model. 

 

TABLE II. PERFORMANCE EVALUATION OF REFOCUSING 
FLAME IMAGES 

 Flame at 

depth 20 

mm 

Flame at 

depth 10 

mm  

Flame at 

depth 0 mm 

(Focal plane) 

Flame at 

depth -

20 mm 

SSIM 0.91 0.94 0.96 0.95 

PSNR 41.64dB 39.416dB 40.06dB 41.87dB 

 

V. CONCLUSION  

In this paper, we presented a DL-based method for LF 

refocusing of burner flame images, with the potential for real-

time application. The proposed approach eliminates the need 

for the computationally intensive shift-and-sum algorithm 

traditionally applied after capture. The key contributions 

include the implementation of a ray-tracing simulator based 

on the RTM to generate synthetic LF data and the 

development of a transfer learning–based DL model using a 

ResNet-50 backbone with custom convolutional layers. This 

model replaces the traditional shift-and-sum algorithm with 

an optimized ResNet-50-based architecture capable of real-

time depth-aware refocusing. The model was evaluated on 

both geometric test scenes and simulated flame data. 

Geometric samples validated accurate refocusing at known 

depths, while flame evaluations demonstrated the model’s 

ability to preserve flame structure across multiple focal 

planes. The proposed method has the potential to enable real-

time LF refocusing, making it well suited for practical 

deployment in combustion diagnostics. Future work will 

focus on expanding the training dataset to include a wider 

range of flame conditions, incorporating real LF camera data, 

and integrating post-processing pipelines for the automated 

extraction of radiation-intensity profiles from the refocused 

outputs. 
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