

Lyu, Qi and Wu, Shaomin (2026) *An explainable machine learning framework for recurrent event data analysis*. European Journal of Operational Research, 328 (2). pp. 591-606. ISSN 0377-2217.

Downloaded from

<https://kar.kent.ac.uk/111231/> The University of Kent's Academic Repository KAR

The version of record is available from

<https://doi.org/10.1016/j.ejor.2025.09.005>

This document version

Author's Accepted Manuscript

DOI for this version

Licence for this version

CC BY (Attribution)

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in **Title of Journal**, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our [Take Down policy](https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies) (available from <https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies>).

1 An explainable machine learning framework for recurrent 2 event data analysis

3 Qi Lyu, Shaomin Wu*

4 *Kent Business School, University of Kent, Canterbury, Kent CT2 7FS, UK*

5 **Abstract:** This paper introduces a novel explainable temporal point process (TPP) model, Strat-
6 ified Hawkes Point Process (SHPP), for modelling recurrent event data (RED). Unlike existing ap-
7 proaches that treat temporal influence as a black box or rely on post-hoc explanations, SHPP struc-
8 turally decomposes event intensities into semantically meaningful components for describing self-,
9 Markovian, and joint influences. This decomposition enables direct quantification of how past events
10 contribute to future event risks, termed as influence values. We further provide a sufficient condition for
11 mean-square stability based on kernel decay, ensuring long-term boundedness of intensities and realistic
12 behavioural predictions. Experiments and an e-commerce case study demonstrate SHPP’s ability to
13 deliver accurate, interpretable, and stable modelling of complex event-driven systems.

14 **Keywords:** (R) explainable machine learning; counting process; Hawkes process; stability; explain-
able artificial intelligence

15 1 Introduction

16 1.1 Motivation

17 In many practical applications, events occur in a recurring form. For example, patients with chronic
18 conditions may accept repeated treatments from their hospitals due to recurring illnesses or compli-
19 cations (Watson et al., 2020; Chen et al., 2015); product users may recurrently claim warranty for
20 repairing or replacing a product item under the terms of its warranty (Wu, 2012); social media users
21 repeatedly create and share content like text, images, and videos with others via online platforms, cus-
22 tomers in online shopping applications intermittently pick up items (Hu et al., 2022). These events are
23 referred to as “recurrent events”, and times between the occurrences of recurrent events are therefore
24 called recurrent event data (RED).

25 RED analysis has been a key area of research in survival data analysis. Both statistical models
26 and machine learning models are developed (Cook et al., 2007; Amorim and Cai, 2015; Du et al.,
27 2016). Statistical models are for the scenarios where the size of the datasets is typically not very
28 large. Examples include the Andersen-Gill (AG) model (which is an extension of the proportional
29 hazards model) (Andersen and Gill, 1982), the Prentice-Williams-Peterson (PWP) models (Prentice
30 et al., 1981), the marginal mean/rates model (Cook et al., 2007), the frailty model (Kelly and Lim,
31 2000), and multi-state models (Andersen and Keiding, 2002).

32 While traditional statistical models have laid the foundation for RED analysis, their strict assump-
33 tions—such as linearity and proportional hazards—limit their applicability to modelling complex data
34 with high-dimensional covariates. These assumptions may be violated in emerging applications like
35 social media and e-commerce, where RED shows complex temporal patterns and heterogeneity across
36 subjects. As such, there is a need for developing more flexible and interpretable models to relax these
37 assumptions and capture these dynamics.

*E-mail: s.m.wu@kent.ac.uk.

38 Recent advances in artificial intelligence (AI) offer promising alternatives. Deep learning methods
39 explicitly model temporal dynamics through mechanisms like recurrent neural networks (RNNs) and
40 attention-based transformers. For instance, Cai et al. (2020) introduced a multi-mechanism temporal
41 framework that disentangles periodic, decaying, and persistent influences in multivariate event se-
42 quences, outperforming classical models. Gupta et al. (2019) developed a deep survival framework that
43 jointly addresses competing risks and recurrent events by learning latent representations of time-varying
44 risk interactions. These AI models demonstrate superior capability in capturing complex temporal pat-
45 terns that defy traditional parametric assumptions.

46 However, the predictive ability of AI models comes at a cost: their inherent opacity. Complex
47 neural networks, often labelled as 'black boxes', obscure the reasoning behind predictions—a critical
48 barrier in high-risk domains like healthcare and industrial safety. For example, clinicians cannot act
49 on a model's prediction of cancer recurrence without understanding how time-varying biomarkers (e.g.,
50 dynamic gene expression profiles) interact with prior treatment history to drive risk fluctuations (Rajpal
51 et al., 2023). Similarly, engineers require explainable fault forecasts to prioritise maintenance actions
52 in multi-component systems (Gashi et al., 2023).

53 Explainable AI (XAI) provides insights into how and why models make predictions, which is crucial
54 for understanding complex temporal behaviours and for deploying AI systems in sensitive domains like
55 healthcare and e-commerce. While XAI is effective for some data types such as panel data and time
56 series data, it fails to address the temporal gap and event interdependency inherent in RED analysis.
57 Most post-hoc methods (e.g., SHAP (Lundberg and Lee, 2017), LIME (Ribeiro et al., 2016a)) provide
58 snapshot explanations that ignore temporal dependencies. While attention mechanisms in sequence
59 models often combine short-term noise with long-term risk factors (Li et al., 2023). Although there is a
60 rich literature on RED analysis, little has considered quantifying and understanding how the occurrences
61 of historical events influence future customer behaviours. For example, in an e-commerce scenario, a
62 customer's final action is influenced by a sequence of historical behaviours—such as repeatedly viewing
63 an item and adding it to the cart. These behaviours correspond to three different types of historical
64 behaviour influences, as shown in Figure 1.

- 65 • *Self-influence*: A customer views an item at time t_1 and returns to view it again at time t (the last
66 event with $t > t_1$). The dashed blue arrow from *View* at t_1 to *View* at t captures this repeated
67 behaviour, where viewing an item is regarded as a marker. That is, a marker that occurs earlier
68 increases the probability that the marker will occur in the future.
- 69 • *Markovian influence*: The sequential path from *View* to *Cart*, and from *Cart* to *Buy*, as shown by
70 red arrows, represents direct influence between different types of markers. For example, viewing an
71 item may increase the chance of carting it, and carting an item may increase the chance of buying
72 it. That is, a marker (i.e., view) directly influences the next marker (i.e., cart), and a marker (i.e.,
73 cart) directly influences the next marker (i.e., buy).
- 74 • *Joint influence*: The blue brace between *View* and *Cart* (t_2 , jointly pointing to the *Buy* event, illus-
75 trates a combined influence. While each action alone may contribute modestly, together they signif-
76 icantly increase the likelihood of purchase—capturing a joint dependency that cannot be attributed
77 to either event in isolation. That is, a marker (i.e., view) indirectly influences the next-but-one
78 marker (i.e., buy).

79 This example demonstrates how different types of influence—repetition, inter-type triggering, and
80 combinatorial influences—interact to shape a user's future decision, providing a concrete motivation
81 for structured influence modelling in RED analysis.

82 However, existing models ignore these historical influences, let alone these three different influences,

83 making users lose trust for decisions made by AI models. Motivated by this need, this paper aims to
 84 develop novel XAI methods for RED analysis, enabling an explainable and understandable framework
 for RED, considering the temporal historical information and three influences of events.

Figure 1: Illustration of self-, Markovian, and joint influences in e-commerce user behaviour

85

86 1.2 Related Work

87 1.2.1 RED Analysis

88 The literature on RED analysis has expanded rapidly, leading to the development of a diverse range
 89 of models and methodologies. RED analysis has evolved through two perspectives: statistical methods
 90 (e.g., Cook et al. (2007)) and machine learning methods (e.g., Du et al. (2016)).

91 *Statistical models:* Traditional approaches include the AG model, PWP models, frailty models and
 92 multi-state models. The AG model generalises the Cox proportional hazards model, which is ex-
 93 pressed as increments in the number of events along a timeline, where the outcome of interest is
 94 the time from randomisation to treatment (or other exposure) to the event, that is, the time since
 95 the beginning of the study, also known as the total time scale (Andersen and Gill, 1982). The
 96 PWP model analyses multiple events in strata according to the number of events that occurred
 97 during follow-up, where all participants are at risk in the first stratum, but only participants who
 98 had an event in the previous stratum are at risk in the subsequent stratum (Prentice et al., 1981).
 99 The core idea of the random effects approach, also known as frailty models, is to introduce ran-
 100 dom covariates into a model, thus inducing dependencies between the times of RED (Kelly and
 101 Lim, 2000). Specifically, random effects describe the excess risk or frailty of different individuals
 102 while considering unmeasured heterogeneity that cannot be explained by observed covariates alone.
 103 The simplest multi-state model (MSM) is defined as two states: alive (a transient state) and dead
 104 (an absorbed state). A special case of MSM occurs when individuals transition from one state to
 105 another over time and intermediate states are identified. These states can be viewed as recurring
 106 events of the same marker (Andersen and Keiding, 2002). Oyamada et al. (2022) evaluated the
 107 performance of these statistical models using an open cohort design with Monte Carlo simulation
 108 in various settings and their application using an actual example. Lintu and Kamath (2022) illus-
 109 trated the usefulness of RED models in the context of defect proneness analysis in software quality
 110 assessment. In addition to previous methods, some new statistical methods developed, for instance,
 111 Oganisian et al. (2024) proposed a Bayesian framework for causal analysis of recurrent events with
 112 timing misalignment. Overall, these statistical models are well-established and offer robust tools for
 113 understanding recurrent events based on probabilistic and time-dependent frameworks; more can
 114 be seen in Amorim and Cai (2015)

115 *Machine learning models:* Recently, machine learning has been used to analyse data from recurrent
 116 events. For example, Gupta et al. (2019) proposed a deep learning based flexible probabilistic
 117 framework for cause-specific recurrent survival analysis for both single-risk scenarios and multi-
 118 risk scenarios. Murris et al. (2024) introduced an extension of random forests tailored for RED,

leveraging principles from survival analysis and ensemble learning, and evaluates their methods on both simulated and open-source data. This proposed method provides a valuable addition to the analytical toolbox in this domain.

In addition to traditional statistical models and the machine learning models that have emerged for RED, the Temporal Point Process (TPP) is another widely applied modelling method for modelling RED (Shchur et al., 2021). TPP combines the theoretical rigour of statistical methods with the ability of deep learning models to process complex high-dimensional data, becoming an important tool for RED analysis research.

In the field of statistics, classic TPPs such as the Poisson process (Dewanji and Moolgavkar, 2000) and the Hawkes process (Hawkes, 1971; Ketelbuters and Bersini, 2022) are often used in RED analysis. These models rely on explicit probabilistic assumptions and can infer the frequency and timing of events. The Hawkes process, in particular, allows for modelling both self- and mutual excitation between events, making it interpretable in terms of temporal influence structures (Xu et al., 2016).

Otherwise, in the field of deep learning, TPP has been further extended to deep learning models. Du et al. (2016) firstly proposed Recurrent Marked Temporal Point Process (RMTPP) model for RED analysis, applies a recurrent neural network to automatically learn a representation of influences from the event history. Lin et al. (2022) estimated the gap times using a generative model for TPP and revised the attentive models to improve prediction performance. There are a lot of research about TPP with neural network, and Shchur et al. (2021) summarised the existing body of knowledge on neural TPP, and provide an overview of application areas commonly considered in the literature.

However, as models become more complex, particularly in cases where non-linear or high-dimensional covariates are involved, the interpretability of models for RED analysis is decreasing. For instance, non-parametric methods and deep learning-based TPP methods excel at capturing complex relationships but often result in black-box models that lack clear interpretability. Balancing complexity with transparency remains a significant challenge, motivating continued research into explainable artificial intelligence (XAI) models, which strive to achieve both.

1.2.2 Explainable Artificial Intelligence (XAI)

The development of XAI has gained significant attention in recent years, especially in applications requiring both high predictive performance and transparency/interpretability (Lyu and Wu, 2025; Stevens and De Smedt, 2024; de Bock et al., 2024). This section reviews key methods that aim to balance these two aspects, progressing from traditional generalised additive models to neural extensions and specialised adaptations.

Generally, XAI methods can be categorised by their application stages, including ante-hoc and post-hoc methods (Speith, 2022; Arrieta et al., 2020). The ante-hoc methods focus on enhancing transparency and fairness during model development, for instance, developing generalised additive models (GAMs) (Chang et al., 2021) and attention branch network (ABN) (Fukui et al., 2019), both of which are explainable. While the post-hoc methods interpret or explain predictions after an AI model has been trained. Such methods include SHAP (SHapley additive exPlanations) (Lundberg and Lee, 2017) and LIME (Local Interpretable MA Explanations) (Ribeiro et al., 2016a), which attribute predictions to input features by perturbing local data points. Attention mechanisms in transformers (Wiegrefe and Pinter, 2019) provide built-in explanations by highlighting influential features/factors. More broadly, Shapley-value explanations have been extensively surveyed in the OR literature (Borgonovo et al., 2024), providing theoretical background for post-hoc baselines. Topuz et al. (2024) proposed a model utilising the inner mechanics of Markovian theory to achieve explainability and obtain interpretable scores for evaluating the performance of healthcare.

164 However, these methods face significant limitations when applied to RED analysis. SHAP values,
165 for instance, treat temporal sequences as static feature vectors, ignoring the time-varying structure
166 of event dependencies (e.g., how a prior hospitalisation alters future risk trajectories). Even if time
167 encodings such as event indices are added, the resulting feature space does not reflect time-dependent
168 changes, and influence attributions remain insensitive to when an event occurred.

169 Recent effort to adapt XAI for RED analysis and temporal data include TimeSHAP (Bento et al.,
170 2021), which extends SHAP to RNNs by aggregating feature attributions over sliding time windows,
171 and dynamic counterfactual explanations (Tsiritsis et al., 2021) that simulate “what-if” scenarios across
172 event histories. While TimeSHAP captures the influence of features at a snapshot in time, it aggregates
173 importance across fixed windows and does not decompose model predictions into individual event
174 attributions in continuous time, which will be discussed in this work.

175 Transformer attention mechanisms offer another form of explanation. However, attention weights
176 are not guaranteed to reflect true causal influence (Wiegreffe and Pinter, 2019), and they are normalised
177 (via softmax) rather than aligned with intensity values. Attention may highlight relevant past tokens,
178 but cannot quantify their additive contribution to a predicted event intensity.

179 While XAI methods can improve transparency, they also come with potential risks in high-stakes
180 applications such as healthcare, criminal justice, and finance. As pointed out by Rudin (2019), post-
181 hoc explanation methods like SHAP or LIME can be misleading or overly simplified. This can lead
182 people to place too much trust in a model, even if it is incorrect. Furthermore, XAI models do not
183 automatically gain user trust unless the quality of explanations is well-calibrated and evaluated. This
184 challenge highlight the importance of evaluating the quality of explanations in practice.

185 XAI evaluation helps build consumer trust, meet demands, reduce bias, and enable more ethical
186 and informed decision making. As AI becomes more integrated into business and the economy, XAI as-
187 sessments will be increasingly crucial, promoting the responsible and effective use of AI. Lozano-Murcia
188 et al. (2023) compared different kinds of evaluation methods on several datasets, and gave correspond-
189 ing evaluation methods for feature importance, consistency, stability and robustness, computation time
190 and efficiency, fairness and bias and regulatory compliance. Recently, the OR community has begun to
191 systematise XAI under an “XAIOR” framework (de Bock et al., 2024), outlining design principles and
192 evaluation criteria, which will be followed in this paper.

193 In summary, XAI techniques have made significant progress in static settings and sequence mod-
194 elling. However, when applied to RED, these techniques still have several limitations:

- 195 • *Lack of temporal sensitivity*: Most XAI methods treat events as isolated points, ignoring how
196 the influence of past events decays or accumulates over time. This leads to temporally myopic
197 explanations that miss long-term dependencies crucial in domains like healthcare or e-commerce.
- 198 • *Inability to attribute historical influence*: Existing methods fail to quantify how specific past events
199 contribute to current risks. For example, a history of product returns may signal declining purchase
200 intent, but snapshot explanations cannot trace or assign influence to such patterns.
- 201 • *Predictive–interpretability trade-off*: Traditional statistical models (e.g., Cox models) offer inter-
202 pretability but struggle with complex event dynamics. In contrast, high-capacity models (e.g.,
203 neural TPPs) perform well in predictive performance but lack built-in interpretability, often relying
204 on unreliable post-hoc explanations.

205 These gaps motivate us towards *XAI for RED analysis*—a challenge we address with our proposed
206 method in this paper. Our proposed framework clearly models temporal influence—decomposing it
207 into self-, Markovian, and joint influences—and provides interpretability through influence values.

208 **1.3 Overview**

209 The remainder of this paper is organised as follows. Section 2 introduces a novel explainable
 210 temporal point process (TPP) model, Stratified Hawkes Point Process (SHPP), for modelling RED.
 211 Section 3 discusses the experimental design and their applications in practical scenarios. Section 5
 212 concludes the research conclusions and proposes future research directions.

213 **2 Methodology**

214 Let $\{t_i\}_{i \geq 1}$ denote the occurrence times of events with $0 < t_1 < t_2 < \dots$, and $t_0(= 0)$ denote the
 215 starting time. The associated *counting process* is defined by $N(t) = \sup\{n \geq 0: t_n \leq t\}$, representing
 216 the total number of events by time t , as illustrated in Fig. 2. Suppose that each occurrence has
 217 a marker associated with it and p covariates. Denote the marker at the i -th event occurrence as m_i ,
 218 where $m_i \in \mathcal{M}$ with $\mathcal{M} = \{1, 2, \dots, K\}$, and K is the number of marker types. Denote the covariates as
 219 $\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip})^\top \in \mathbb{R}^p$, where \mathbf{x}_i can be variable in time or static. The i -th event is characterised
 220 by the tuple $c_i = (t_i, m_i, \mathbf{x}_i)$.

221 Denote the gap time between the i -th and $(i-1)$ -th events as $\tau_i = t_i - t_{i-1}$ for $i \geq 1$. For any time
 222 $t > 0$, the observed history up to t is

$$\mathcal{H}_{[0,t)} = (c_k: t_k < t)_{k=1}^{N(t^-)}, \quad (1)$$

223 where $N(t^-) = \lim_{s \rightarrow t} N(s)$ ensures exclusion of events exactly at t .

Figure 2: Recurrent event data structure.

224 Real-world recurrent event data typically arise from multiple interacting events rather than isolated
 225 event. To illustrate the proposed influence mechanism, consider an e-commerce user browsing and
 226 purchasing items (e.g., smartphones). An e-commerce firm would like to understand their customers'
 227 behaviour by modelling times between views or purchases. To this end, they need to know the exact
 228 times when the actions are taken, where each action is marked with a marker such as *View*, *Cart*,
 229 *Purchase*, or *Return* (that is, $K = 4$ and the associated covariates \mathbf{x}_i may include user profile (e.g.,
 230 age, VIP level), product attributes (e.g., discount, rating), or behavioural features (e.g., time spent,
 231 browsing frequency). To build a model for depicting the times between events, we need to consider
 232 the association between the markers from the three perspectives: self-influence, Markovian influence,
 233 and joint influence, as discussed in Section 1.1. However, existing models either neglect these three
 234 types of influences, or oversimplify them by only considering temporal gaps τ_i between events. They
 235 fail to capture the influence from historical markers m_i and covariates \mathbf{x}_i . To solve these problems, this
 236 paper aims to model RED by considering the markers, the covariates, and the three types of influences.
 237 To characterise the logical of decision making based on RED rigorously, we propose an interpretable
 238 framework with the three types of *influence*, which capture temporal dependencies and interactions
 239 among events:

240 (i). *Self-influence*: Historical occurrences of the same marker modify the likelihood of similar events
 241 that will occur in the future.

242 (ii). *Markovian influence*: Direct interactions between different event markers where one marker explic-

243 itly influences another.

244 (iii). *Joint influence*: The joint influence of multiple past event marker sequences collectively influence
245 future event occurrences.

246 We give the definition of *influence* in this work.

247 **Definition 1** (Influence). *Influence is a term that describes the temporal association or interaction*
248 *from a set of past events $\{c_i\}_{t_i < t}$ towards one or multiple subsequent events $\{c_j\}_{j \geq t}$.*

249 This term captures the extent to which earlier events collectively relate to or predict future event
250 occurrences, acknowledging that multiple historical factors may shape these temporal associations.

251 Building on the influence framework from the previous description, we further formalise the analysis
252 of RED through TPP. A TPP is a stochastic model characterizing event sequences $\{t_i\}_{i=1}^n$ (Rizoiu et al.,
253 2017) and can be modelled by a *conditional intensity* function:

254 **Definition 2** (Conditional Intensity (Daley and Vere-Jones, 2006)). *Given history $\mathcal{H}_{[0,t)}$, a conditional*
255 *intensity $\lambda(t|\mathcal{H}_{[0,t)})$ is defined by:*

$$\lambda(t|\mathcal{H}_{[0,t)}) = \lim_{\Delta \rightarrow 0^+} \frac{\mathbb{P}(N([t, t + \Delta)) \geq 1 \mid \mathcal{H}_{[0,t)})}{\Delta}, \quad (2)$$

256 where $N([t, t + \Delta])$ counts the number of events in interval $[t, t + \Delta]$.

257 A conditional intensity function can fully specify a TPP through two fundamental components:

258 • *Event probability* can be defined by:

$$\mathbb{P}(\text{Occurrence of an event in } [t, t + dt) \mid \mathcal{H}_{[0,t)}) = \lambda(t|\mathcal{H}_{[0,t)})dt + o(dt), \quad (3)$$

259 where $o(dt)$ satisfies $\lim_{dt \rightarrow 0} o(dt)/dt = 0$.

260 • The *survival function* of the i -th occurrence can be defined by:

$$S(t|\mathcal{H}_{[0,t)}) = \exp \left(- \int_{t_i}^t \lambda(\tau|\mathcal{H}_{[0,\tau)})d\tau \right), \quad t > t_i. \quad (4)$$

261 The established notations in Eqs (1)-(4) provide a general framework for RED analysis. However,
262 widely used TPPs such as the Poisson process and the renewal process cannot model the aforementioned
263 influences because they fail to explain the connections between events. This is where *mutual*
264 *point process* come into play—it accounts for the excitatory influences between events. For instance,
265 purchasing item A can stimulate subsequent purchases, creating a chain of influence reaction.

266 The self-exciting process, aka Hawkes' process, and the mutual exciting process (MEP) represent
267 special cases of point processes that model event occurrences conditioned on historical information.
268 Formally, these intensities are expressed using conditional intensity functions, given the event history
269 $\mathcal{H}_{[0,t)}$.

270 • *Hawkes process*: Historical events of a single marker increase the likelihood of future occurrences of
271 the same marker. Its conditional intensity function is defined as (Hawkes, 1971):

$$\lambda(t|\mathcal{H}_{[0,t)}) = \mu + \sum_{r=1}^{N(t)} \gamma(t - T_r), \quad (5)$$

272 where T_r denotes the occurrence of the r -th event, and μ represents base intensity.

273 • Mutual-exciting process generalizes the Hawkes process to multiple occurrences of events with markers.
 274 The MEP models how occurrences of one type of marker influence an event with a different
 275 type of marker, and the conditional intensity is (Daley and Vere-Jones, 2006):

$$\lambda_i(t|\mathcal{H}_{[0,t)}) = \mu_i + \sum_{j=1}^K \sum_{r=1}^{N_j(t)} \gamma_{ij}(t - T_{jr}), \quad (6)$$

276 where T_{jr} denotes the r -th occurrence time of event with marker of type j , μ_i represents a base
 277 intensity for marker of type i , and $N_j(t)$ is the number of the occurrences of events with marker of
 278 type j by time t . The kernel $\gamma_{ij}: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ quantifies how an event with a marker of type j excites
 279 future events with a marker of type i .

280 However, the MEP assumes that each past event contributes independently and additively to the future
 281 event intensity. Nevertheless, both self- and Markovian influences can exhibit not only excitatory
 282 influences but also inhibitory behaviours, which cannot be modelled by Hawkes' process or the MEP.
 283 Furthermore, the MEP cannot model joint influence, which requires non-additive interactions among
 284 multiple events. To overcome these limitations, we propose a new TPP, as shown in Section 2.1.

285 2.1 Stratified Hawkes Point Processes

286 This section proposes a new TPP: *stratified Hawkes point process* (SHPP), which can model self-
 287 and Markovian influences comprehensively.

288 **Definition 3** (Stratified Intensity). *For recurrent events with K type of markers, the intensity of events
 289 with marker of type i is:*

$$\lambda_i(t|\mathcal{H}_{[0,t]}) = \exp \left(\underbrace{\mu_i}_{\text{Base Rate}} + \sum_{j=1}^K \gamma_{ij} \left(\{t - T_{jk}\}_{k=1}^{N_j(t)} | \mathcal{H}_{[0,t]}) \right) \right), \quad (7)$$

290 where $\gamma_{ij}: \mathbb{R}^{N_j(t)} \rightarrow \mathbb{R}$ encodes the stratified influence from events with marker of type j to events with
 291 marker of type i , considering all historical $\{T_{jk}\}_{k=1}^{N_j(t)}$.

292 The word *stratified* highlights that the influence from past events is decomposed by marker types:
 293 for each event of marker of type i , its intensity $\lambda_i(t)$ considers contributions from each marker of type
 294 j through a specific kernel γ_{ij} . In particular, it supports *self-influence* for the case of $i = j$ (e.g.,
 295 repeated views reinforcing future views), and *Markovian influence* for the case of $i \neq j$ (e.g., cart
 296 actions increasing purchase likelihood).

297 The stratified intensity function in Eq.(7) provides a mathematical foundation for RED analysis.
 298 However, to fully characterise the stochastic process governing these events, we must define the proba-
 299 bilistic structure that links the intensity function to the actual event occurrences. This leads us to the
 300 following definition of a stratified Hawkes point process (SHPP):

301 **Definition 4** (Stratified Hawkes Point Process). *A collection $\{N_i(t)\}_{i=1}^K$ forms a stratified Hawkes
 302 point process if:*

$$\mathbb{P}(N_i(t + \Delta) - N_i(t) = 1 | \mathcal{H}_t) = \lambda_i(t)\Delta + o(\Delta), \quad (8)$$

$$\mathbb{P}(N_i(t + \Delta) - N_i(t) > 1 | \mathcal{H}_t) = o(\Delta), \quad (9)$$

303 where $\mathcal{H}_t = \sigma(\{N_j(s)\}_{j=1}^M: s \leq t)$ contains the complete history, and $\lambda_i(t)$ follows Eq. (7).

304 Compared with the MEP, past events T_{jr} in Eq. (6) contribute independently to the intensity in an
 305 additive manner. The function $\gamma_{ij}(\cdot)$ typically depends only on the time difference $(t - T_{jr})$, limiting

306 its ability to capture higher-order dependencies. In contrast, $\gamma_{ij}: \mathbb{R}^{N_j(t)} \rightarrow \mathbb{R}$ in our proposed model
 307 (shown in Eq. (7)) encodes the stratified influence from events with marker of type j to events with
 308 marker of type i , considering the entire history $\mathcal{H}_{[0,t)}$. This structure introduces two key differences:
 309 (i). The exponential transformation enables multiplicative interactions rather than additive influences;
 310 (ii). The function γ_{ij} operates on the entire historical sequence rather than individual time gaps $t - T_{jr}$
 311 in equation (6). These two differences enhance the model's ability to represent complex, higher-order
 312 dependencies, capturing intricate patterns such as combined excitation and inhibition influences in
 313 RED.

314 To assess the influence from historical events, SHPP introduces a kernel function γ_{ij} , which modu-
 315 lates the impact of marker of type j events on marker of type i . This design enables several distinctive
 316 properties:

317 **Remark 1** (Key Properties of SHPP). *The proposed SHPP has the following properties:*

- 318 • *Nonlinear Coupling: SHPP adopts an exponential link function that combines event influences multi-
 319 plicatively, enabling the model to capture nonlinear accumulation effects beyond additive frameworks.*
- 320 • *History-Aware Kernels: Unlike traditional Hawkes models that treat events independently via time
 321 gap functions, SHPP's kernel γ_{ij} can incorporate the full historical context, including temporal
 322 features and covariates, allowing it to model complex sequential dependencies.*
- 323 • *Flexible Influence Semantics: SHPP supports both excitation ($\gamma_{ij} > 0$) and inhibition ($\gamma_{ij} < 0$)
 324 effects, and can model mixed patterns, which is not possible under classical Hawkes assumptions
 325 where all influences are positive.*

326 **Example 1.** Consider the task of predicting whether a customer will make a purchase on an e-commerce
 327 platform. The three core properties of the proposed SHPP model work together to capture the complexity
 328 of real customer behaviour:

- 329 (i). *Nonlinear coupling models how multiple factors—such as repeated product views, recent promotions,
 330 and prior purchases—can jointly amplify the likelihood of a purchase. This goes beyond simple
 331 additive influences by capturing interactions between events.*
- 332 (ii). *History-aware kernels consider the customer's entire browsing and interaction history, not just
 333 recent actions. This allows the model to recognise long-term patterns that may signal sustained
 334 interest or disengagement.*
- 335 (iii). *Flexible influence enables the model to represent both positive influences (e.g., increasing interest
 336 through discounts) and negative influences (e.g., repeated poor reviews reducing likelihood).*

337 To better understand the generality of our framework, we now show that SHPP can reduce to
 338 several classical models under specific parameterisations.

339 **Remark 2** (Connections to other processes). *The proposed SHPP framework generalises several other
 340 point processes:*

- 341 • *Hawkes process: If only self-influence is retained (i.e., $i = j$ for all i), and Markovian/joint influ-
 342 ences are absent, that is, $\lambda_i(t) = \mu_i + \sum_{r=1}^{N_i(t)} \gamma_{ii}(t - T_{ir})$, then, SHPP reduces to a Hawkes process,*
- 343 • *Mutual exciting process: When the kernel depends only on individual time gaps and influences are
 344 additive, i.e., $\gamma_{ij}(t) = \sum_{r=1}^{N_j(t)} \gamma_{ij}(t - T_{jr})$, then SHPP reduces to an MEP, and*
- 345 • *Homogeneous Poisson process: If all influence terms vanish, i.e., $\gamma_{ij} \equiv 0$, the intensity becomes
 346 constant: $\lambda_i(t) = \mu_i$, then SHPP reduces to a homogeneous Poisson process.*

347 These reductions show that SHPP improves modelling flexibility while remaining compatible with clas-
 348 sical models.

349 **2.2 Stability Analysis**

350 The SHPP captures how different events influence each other over time. However, to ensure the
 351 model's predictions stay realistic and reliable, especially over long periods, we need to ensure dynamic
 352 stability. Without this property, the model may output meaningless results, like predicting infinite
 353 medication doses in healthcare scenario or vanishing user actions in e-commerce scenario. Thus, this
 354 section defines the concept of dynamic stability, discusses its importance for practical applications, and
 355 explains how the SHPP framework is designed to ensure it.

356 • *Dynamic stability* (Hawkes, 1971): Mathematically, $\exists C > 0$ such that:

$$\mathbb{P} \left(\sup_{t>0} \lambda_i(t) \leq C \right) = 1 \quad \forall i \in \mathcal{M}. \quad (10)$$

357 This ensures the model does not predict impossible scenarios—like a patient taking infinite medi-
 358 cation doses in a short period.

359 **Example 2.** *To illustrate the importance of dynamic stability, consider an e-commerce platform analysing*
 360 *two key user actions:*

361 • *Event-A: product impressions (system recommends or displays a product), and*
 362 • *Event-B: user clicks (user clicks on the product).*

363 Suppose the model learns that impressions strongly increase the likelihood of clicks, and clicks in turn
 364 induce more impressions (e.g., via a recommender system loop).

365 • *If this mutual exciting is not properly controlled, the model may predict a runaway feedback loop:*
 366 *infinite impressions and clicks in a short time, which is an unrealistic and undesirable scenario,*
 367 • *Conversely, if negative feedback is too strong (e.g., assuming that users become completely uninter-
 368 ested after a single impression), the model may predict that users never interact again, which also
 369 contradicts real-world behaviour, where users often return after delays.*

370 These outcomes reflect a lack of dynamic stability, where the model fails to keep event intensities
 371 within realistic bounds over time. Ensuring stability helps prevent such unreal behaviour and ensures
 372 the model remains reliable in long-term forecasting.

373 To rigorously analyse the dynamic stability of the proposed SHPP, we first establish the probabilistic
 374 framework. Let $(\Omega, \mathcal{H}, \mathbb{P})$ represent the filtered probability space supporting all counting processes
 375 $\{N_i(t)\}_{i=1}^K$, where the filtration \mathcal{H}_t encodes historical event information.

376 We define the *intensity vector* $\Lambda(t) = (\lambda_1(t), \dots, \lambda_K(t))^\top \in \mathbb{R}_+^K$, where $\lambda_i(t)$ is the conditional
 377 intensity of event of type i . The evolution of this system is governed by a differential equation derived
 378 from the SHPP formulation:

$$\dot{\Lambda}(t) = F(\Lambda(t)), \quad F_i(\Lambda) = \lambda_i(t) \sum_{j=1}^K \sum_{k=1}^{N_j(t)} \frac{\partial \gamma_{ij}(t - T_{jk})}{\partial t}. \quad (11)$$

379 This dynamical formulation allows us to analyse the stability of SHPP using tools from stochastic
 380 process theory and dynamical systems. In the context of RED analysis, the mean-square stability
 381 ensures that the expected intensity remains bounded over time, preventing unrealistic behaviours. We
 382 adopt the following definition adapted from Higham (2000):

Definition 5 (Mean-Square Stability (Higham, 2000)). *A stochastic intensity process $\Lambda(t)$ is said to be mean-square stable if*

$$\limsup_{t \rightarrow \infty} \mathbb{E}[\|\Lambda(t)\|^2] < \infty,$$

383 where $\|\mathbf{\Lambda}(t)\|^2 := \sum_{i=1}^K \lambda_i^2(t)$ measures the total fluctuation in intensity.

384 We now establish a sufficient condition under which SHPP satisfies this mean-square stability cri-
385 terion.

386 **Theorem 1** (Sufficient Condition for Mean-Square Stability of SHPP). *Consider a Stratified Hawkes
387 Point Process (SHPP) with intensity vector $\mathbf{\Lambda}(t)$. If all kernel functions $\gamma_{ij}(\tau)$ are non-increasing in
388 $\tau > 0$, i.e.,*

$$\frac{\partial \gamma_{ij}(\tau)}{\partial \tau} \leq 0, \quad \forall \tau > 0, \quad \forall i, j \in \mathcal{M}, \quad (12)$$

389 then the process is mean-square stable:

$$\limsup_{t \rightarrow \infty} \mathbb{E} [\|\mathbf{\Lambda}(t)\|^2] < \infty, \quad (13)$$

390 where $\|\mathbf{\Lambda}(t)\|^2 := \sum_{i=1}^K \lambda_i^2(t)$ measures total intensity fluctuations. This condition guarantees that
391 intensities remain bounded over time to prevent explosion.

392 *Proof.* To analyse the long-term boundedness of the intensity process, we adopt Lyapunov's second
393 method from stochastic stability theory (Khasminskii, 2011). Let the Lyapunov candidate function be:

$$V(\mathbf{\Lambda}) = \|\mathbf{\Lambda}(t)\|^2 = \sum_{i=1}^K \lambda_i^2(t), \quad (14)$$

394 While the choice $V(\mathbf{\Lambda}) = \sum_{i=1}^K \lambda_i^2(t)$ represents a specific Lyapunov candidate, where the quadratic
395 form captures intensity variance, and the kernel decay condition ensures its monotonic decrease. More
396 general Lyapunov functions exist but would complicate interpretation without strengthening results.

397 This function satisfies:

- 398 • *Radial unboundedness:* $V(\mathbf{\Lambda}) \geq 0$ and grows without bound as $\|\mathbf{\Lambda}\| \rightarrow \infty$,
- 399 • *Monotonic decay:* The kernel condition $\partial \gamma_{ij} / \partial \tau \leq 0$ ensures that the cumulative contribution from
400 past events is non-increasing.

401 Applying the infinitesimal generator \mathcal{L} , we compute:

$$\begin{aligned} \mathcal{L}V &= 2 \sum_{i=1}^K \lambda_i(t) \dot{\lambda}_i(t) \\ &= 2 \sum_{i=1}^K \lambda_i^2(t) \sum_{j=1}^K \sum_{k=1}^{N_j(t)} \frac{\partial \gamma_{ij}(t - T_{jk})}{\partial t} \\ &\leq 2 \sum_{i=1}^K \lambda_i^2(t) \sum_{j=1}^K \left(\sum_k \frac{\partial \gamma_{ij}(t - T_{jk})}{\partial t} \right) \\ &\leq -2 \sum_{i=1}^K \lambda_i^2(t) \Gamma_i, \quad \text{where } \Gamma_i := -\max_j \sum_k \frac{\partial \gamma_{ij}}{\partial t} > 0 \\ &\leq -2\Gamma V(t), \quad \text{where } \Gamma := \min_i \Gamma_i > 0. \end{aligned}$$

402 By Lyapunov's stability theorem, this exponential decay yields:

$$\mathbb{E}[V(t)] \leq V(0)e^{-2\Gamma t} \Rightarrow \limsup_{t \rightarrow \infty} \mathbb{E}[V(t)] = 0. \quad (15)$$

403 Therefore, $\limsup_{t \rightarrow \infty} \mathbb{E}[\|\mathbf{\Lambda}(t)\|^2] < \infty$, which completes the proof of mean-square stability. ■

404 To clarify the meaning of our stability condition, we provide an example from an e-commerce
 405 scenario.

406 **Example 3.** Consider an e-commerce platform with two key user actions:

- 407 • *Action 1 – Views (m_1): Users tend to revisit or re-explore products they have viewed before. For
 408 example, it can be modelled via a self-influence kernel: $\gamma_{11}(\tau) = \alpha_1 e^{-\beta_1 \tau}$, where $\alpha_1, \beta_1 > 0$. The
 409 decay term β_1 ensures that earlier views gradually lose influence.*
- 410 • *Action 2 – Cart Adds (m_2): Cart behaviour is influenced by recent browsing activity, which may
 411 both trigger and suppress add-to-cart actions depending on user intent. For example, a Markovian
 412 influence can be modelled by: $\gamma_{21}(\tau) = -\alpha_2 e^{-\beta_2 \tau}$, where $\alpha_2 > 0$.*

413 Now consider two bad cases from the mean-square stability condition:

- 414 • *Case 1 – Unstable Browsing: If the kernel for product views increases over time, e.g., $\gamma_{11}(\tau) =$
 415 $\alpha_1 \tau$, the intensity $\lambda_1(t)$ may grow uncontrollably, leading to unrealistic predictions such as infinite
 416 browsing behaviour.*
- 417 • *Case 2 – Over-Inhibition of Cart Adds: If the inhibition from views to cart adds grows with time
 418 (e.g., $\gamma_{21}(\tau) = -\alpha_2 e^{\beta_2 \tau}$), the model may predict that users stop adding items to carts altogether,
 419 contradicting typical return-to-cart behaviour seen in real-world platforms.*

420 The above examples show how violating the kernel decay condition $\partial \gamma / \partial \tau \leq 0$ results in unstable
 421 or unreal system behaviour. Complying with the stability condition ensures that user activity evolves
 422 in a bounded and interpretable manner.

423 For a summary of which kernel types satisfy the stability condition, please refer to Appendix C..

424 2.3 Interpretable Kernel Design

425 2.3.1 Interpretable Decomposition

426 Section 2.1 introduced the definition of the SHPP to model self- and Markovian influences. However,
 427 joint influence, where multiple historical events interact to affect future outcomes, cannot be modelled
 428 unless the kernel function γ_{ij} is designed to capture such higher-order dependencies. In this section,
 429 we introduce a kernel function, $\gamma_{ij}(\cdot)$, to capture joint influence.

430 In discussed in Section 1.1, we need to ensure an AI model be explainable. To this end, we can use
 431 an interpretable kernel function in the SHPP, where the term *interpretable* refers to the model's ability
 432 to attribute the intensity of an event to specific historical events and influence types. For example, in
 433 an e-commerce scenario, the predicted likelihood of a purchase event can be broken down into influences
 434 such as repeated product views (self-influence), recent cart additions (Markovian influence), and the
 435 joint effect of viewing and carting together.

436 The interpretability of the kernel relies on Theorem 2, which shows how any continuous multivariate
 437 function can be decomposed into a finite sum of univariate functions, which is a result that is widely
 438 adopted for functional decomposition.

439 **Theorem 2** (Kolmogorov-Arnold Representation Theorem (Schmidt-Hieber, 2021)). *For any continuous
 440 multivariate function $f: \mathbb{R}^n \rightarrow \mathbb{R}$, then f can be written as a finite composition of continuous
 441 functions of a single variable and the binary operation of addition. More specifically,*

$$442 f(x_1, \dots, x_n) = \sum_{q=0}^{2n} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right), \quad (16)$$

442 where $\Phi_q: \mathbb{R} \rightarrow \mathbb{R}$ and $\phi_{q,p}: [0, 1] \rightarrow \mathbb{R}$ are continuous univariate functions.

443 Based on the Kolmogorov–Arnold representation theorem, we construct our kernel using a combination
 444 of univariate functions that support both expressiveness and interpretability. This motivates
 445 the following structured decomposition.

446 The kernel $\gamma_{ij}: \mathcal{Z} \rightarrow \mathbb{R}_+$ in our SHPP is defined over the input space $\mathcal{Z} = \mathbb{R}^{p+1}$, which consists of
 447 covariates $\mathbf{x} \in \mathbb{R}^p$ and a temporal feature $\tau \in \mathbb{R}_+$. According to Theorem 2, any continuous multivariate
 448 function defined over this domain can be expressed as a finite sum of outer univariate functions applied
 449 to inner univariate transformations. Specifically:

$$\gamma_{ij}(\mathbf{z}) = \sum_{q=0}^{2d} \Phi_q \left(\sum_{k=1}^d \phi_{q,k}(z_k) \right), \quad d = p + 1. \quad (17)$$

450 To retain interpretability while ensuring sufficient expressiveness, we retain only the first two components
 451 and assume linear outer functions: $\Phi_0(y) = y$, $\Phi_1(y) = y$. This simplification preserves the
 452 additivity of influence contributions, allowing for clear attribution. Under this design, the kernel is
 453 structured as follows:

$$\gamma_{ij}(\mathbf{z}) = \Phi_0 \left(\sum_{k=1}^{N_j(t)} \phi_{0,k}^{(ij)}(\mathbf{z}_k) \right) + \Phi_1 \left(\sum_{k=1}^{N_j(t)} \sum_{s \neq k} \phi_{1,ks}^{(ij)}(\mathbf{z}_k, \mathbf{z}_s) \right) = \underbrace{\sum_{k=1}^{N_j(t)} \phi_{0,k}^{(ij)}(\mathbf{z}_k)}_{\text{Self-/Markovian Influence}} + \underbrace{\sum_{k=1}^{N_j(t)} \sum_{s \neq k} \phi_{1,ks}^{(ij)}(\mathbf{z}_k, \mathbf{z}_s)}_{\text{Joint Influence}}, \quad (18)$$

454 where we use superscripts (ij) to indicate dependence on the target-output marker pair. And the first
 455 term quantifies the impact of each historical event \mathbf{z}_k , capturing both self-influence (when $i = j$) and
 456 Markovian influence (when $i \neq j$). The second term models higher-order interactions among multiple
 457 historical events, thereby enabling the expression of joint influence.

458 To enhance interpretability, we adopt base function expansions for both components:

459 • *Self-/Markovian Influence*:

$$\phi_{0,k}^{(ij)}(\mathbf{z}_k) = \sum_{r=1}^{p+1} \beta_{ij,r}^{(k)} g_r(z_{kr}), \quad (19)$$

460 • *Joint Influence*:

$$\phi_{1,ks}^{(ij)}(\mathbf{z}_k, \mathbf{z}_s) = \sum_{r,u=1}^{p+1} \theta_{ij,ru}^{(ks)} h_{ru}(z_{kr}, z_{su}), \quad (20)$$

461 where $g_r(\cdot)$ and $h_{ru}(\cdot, \cdot)$ are chosen as interpretable functions such as decision trees or generalised linear
 462 models (Quinlan, 1986; Ribeiro et al., 2016b).

463 Thus, the final interpretable kernel is:

$$\gamma_{ij}(\mathbf{z}) = \sum_{k=1}^{N_j(t)} \sum_{r=1}^{p+1} \beta_{ij,r}^{(k)} g_r(z_{kr}) + \sum_{k=1}^{N_j(t)} \sum_{s>k} \sum_{r,u=1}^{p+1} \theta_{ij,ru}^{(ks)} h_{ru}(z_{kr}, z_{su}). \quad (21)$$

464 This formulation enables explicit decomposition into self/Markovian and joint influences, ensuring
 465 interpretability while capturing complex dependencies in RED.

466 To operationalize temporal influence, we adopt exponential-shaped kernels of the form $\kappa(t - t_k) =$
 467 $\alpha \exp(-\beta(t - t_k))$. These kernels are interpretable, capturing decaying influence over time and analytically
 468 tractable, with decay parameters directly controlling long-term behaviour. While our framework
 469 supports alternative kernels (e.g., power-law), we default to exponential forms for their simplicity and
 470 stability guarantees. A comparative overview of common kernels and their theoretical properties is

471 provided in Table 6 in Appendix C..

472 For the interpretable kernel basis, we use *logistic units* for $g_r(\cdot)$ and *bilinear forms* for $h_{ru}(\cdot, \cdot)$.
473 This choice balances interpretability with expressiveness: logistic functions yield bounded, smooth
474 attribution, while bilinear terms naturally capture pairwise covariate interactions. More base functions
475 are provided in Table 8.

476 2.3.2 Interpretability Mechanism

477 The stratified architecture of SHPP enables explicit attribution of intensities to three types of
478 influence. By design, each perspective corresponds to an observable mechanism, allowing the model
479 to quantify “why” an event is likely to occur. We refer to each quantifiable component of the kernel
480 $\gamma_{ij}(\cdot)$ as an influence value, representing the importance and direction of impact from specific historical
481 events on intensity.

482 **Corollary 1** (Influence Values). *For any intensity $\lambda_i(t)$ and interpretable kernel $\gamma_{ij}(\mathbf{z})$ given by SHPP,
483 the following influence values can be extracted:*

- 484 • *Self-influence value: $\sum_{r=1}^{p+1} \beta_{ij,r}^{(k)} g_r(z_{kr})$ in Eq. (21) with $i = j$ quantifies the self-influence of the k -th
485 historical event,*
- 486 • *Markovian influence value: $\sum_{r=1}^{p+1} \beta_{ij,r}^{(k)} g_r(z_{kr})$ in Eq. (21) with $i \neq j$ captures the influence from
487 marker of type j to marker of type i , and*
- 488 • *Joint influence value: $\sum_{r,u=1}^{p+1} \theta_{ij,ru}^{(ks)} h_{ru}(z_{kr}, z_{su})$ models within-marker dependencies based on inter-
489 actions between pairs of historical events.*

490 *Each influence value represents a quantifiable contribution to the intensity $\lambda_i(t)$, enabling inter-
491 pretative tracing of event-to-event temporal influence.*

492 For self-influence and Markovian influence, the influence value has n dimensions, where each element
493 represents the influence of a past event $e_k = (t_k, m_k)$ on the subsequent event $e_{k+1} = (t_{k+1}, m_{k+1})$, with
494 $k \in 1, 2, \dots, n$. In other words, each value quantifies how much a specific historical event contributes
495 to the occurrence of the next event, and it can be represented by:

$$496 \quad \mathcal{I}(e_k) = \begin{cases} \sum_{r=1}^{p+1} \beta_{ij,r}^{(k)} g_r(z_{kr}), & \text{if } m_k = m_{n+1} \text{ (self-influence),} \\ \sum_{r=1}^{p+1} \beta_{ij,r}^{(k)} g_r(z_{kr}), & \text{if } m_k \neq m_{n+1} \text{ (Markovian influence),} \end{cases} \quad (22)$$

496 where $k \in \{1, 2, \dots, n\}$ are the occurrence of events.

497 For joint influence, the influence values are organised as a matrix, where each element corresponds
498 to the influence between a pair of markers (i, j) :

$$499 \quad \mathcal{I}(i, j) = \sum_{r,u=1}^{p+1} \theta_{ij,ru}^{(ks)} h_{ru}(z_{kr}, z_{su}), \quad (23)$$

499 where $i, j \in \mathcal{M}$ are type of markers. Specifically, each element captures how events with marker of type
500 i influence events with marker of type j across the entire sequence.

501 We emphasise that covariate effects are explicitly modelled by the base functions $g_r(z_{kr})$ and
502 $h_{ru}(z_{kr}, z_{su})$ in the SHPP framework, where z_{kr} encodes covariate values from historical events. As
503 such, attribution values naturally reflect both temporal positioning and covariate influence. This en-
504 ables users to assess not only when, but also under what contextual conditions (e.g., product category,
505 user demographics) historical events exert influence on future ones.

506 While self-/Markovian influence in Eq. (22) captures local temporal dependencies and joint influence
507 in Eq. (23) models global interactions, each of them offers a limited, single-perspective influence.

508 To better integrate the contributions of different influence mechanisms, we propose a dynamic
 509 hybrid weighting strategy to combine self-/Markovian and joint influences into a unified influence
 510 value. Specifically, we define a combined influence value for the k -th event as:

$$\mathcal{I}_{\text{combined}}^{(k)} = \alpha \underbrace{\left(\frac{\mathcal{I}_{\text{self/Markovian}}^{(k)}}{\max_j |\mathcal{I}_{\text{self/Markovian}}^{(j)}| + \epsilon} \right)^2}_{\text{Normalised self/Markovian importance}} + (1 - \alpha) \underbrace{\left(\frac{\mathcal{I}_{\text{joint}}^{(k)}}{\max_j |\mathcal{I}_{\text{joint}}^{(j)}| + \epsilon} \right)^2}_{\text{Normalised joint importance}}, \quad (24)$$

511 where:

- 512 • $\mathcal{I}_{\text{self/Markovian}}^{(k)}$: the individual influence value of event e_k derived from self- or Markovian influence,
- 513 • $\mathcal{I}_{\text{joint}}^{(k)}$: the aggregated joint influence involving event e_k as part of pairwise interactions,
- 514 • $\alpha \in [0, 1]$: a learnable coefficient that adaptively balances the two values,
- 515 • $\epsilon > 0$: a small constant added to avoid division by zero during normalisation.

516 The adaptive weight α allows the model to shift emphasis based on scenario. For example, in repetitive
 517 behaviour scenarios, $\alpha \rightarrow 1$ prioritizes self-influence, while in combinatorial conditions, $\alpha \rightarrow 0$ empha-
 518 sises joint patterns. The final influence value $\mathcal{I}_{\text{combined}}^{(k)}$ keeps the interpretability of three influences
 519 while showing how they work together to influence events.

520 2.4 Evaluation Metrics

521 In this section, we will compare our proposed SHPP model with existing TPP models. To this
 522 end, we will use EasyTPP, a user-friendly framework for developing and benchmarking temporal point
 523 process (TPP) models (Xue et al., 2024). We evaluate each model from two main aspects:

524 (i). *Predictive performance*, we need to measure the performance of our proposed method, as explained
 525 below.

- 526 • *Marker prediction*: Given a sequence of historical events up to time t , the model predicts the next
 527 event with marker- m_{i+1} . To measure the performance of the prediction, we use some metrics for
 528 measuring the performance of classification models. Such classification metrics include *Accuracy*,
 529 *F1-score*, or *Top-k Precision*, depending on the number of event markers (Novaković et al., 2017),
- 530 • *Time forecasting*: The model predicts the time t_{i+1} at which the next event will occur. This
 531 is evaluated using the *mean absolute error (MAE)* or the *root mean squared error (RMSE)*
 532 between predicted and actual event times, reflecting how well the model captures temporal
 533 dynamics (Armstrong, 2001).

534 For consistency, we report RMSE for event time forecasting and accuracy for marker prediction
 535 across all models.

536 (ii). *Interpretability*, we will focus on *fidelity*—the degree to which the explanation reflects the true
 537 behaviour of the model (Miró-Nicolau et al., 2025). High fidelity indicates that explanations closely
 538 match the model’s actual predictions.

539 Since fidelity lacks a standardised definition (Miró-Nicolau et al., 2024), we assess it from two
 540 perspectives:

- 541 • *Internal consistency*: whether the explanation aligns with the model’s own decision-making,
- 542 • *Fidelity to real data*: whether the explanation reasonably supports the model’s outputs with
 543 respect to actual event outcomes.

544 **2.4.1 Internal Consistency**

545 To assess internal consistency, we first design perturbation strategies that test whether the model’s
 546 explanations align with its own predictive behaviour. The central idea is that if certain events are
 547 truly important—i.e., assigned high influence values $\mathcal{I}(e_i)$ —then perturbing them should cause mean-
 548 ingful changes in model outputs. Conversely, if perturbing low-influence events has little changes, the
 549 explanation is considered consistent.

550 Given an event sequence $S = \{(t_1, m_1), \dots, (t_n, m_n)\}$, where $e_i = (t_i, m_i)$ and $\mathcal{I}(e_i)$ denotes the
 551 influence value of e_i for predicting the next event (t_{n+1}, m_{n+1}) , we propose the following three pertur-
 552 bation strategies:

- 553 • *Event deletion*: Remove top- k events with highest $\mathcal{I}(e_i)$: $S_{\text{masked}} = S \setminus \{e_j \mid \mathcal{I}(e_j) \in \text{Top}_k(\mathcal{I}(S))\}$.
- 554 • *Time shifting*: Add Gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$ to timestamps: $t'_j = t_j + \epsilon$ for $e_j \in \text{Top}_k(\mathcal{I}(S))$.
- 555 • *Marker flipping*: Alter markers to random markers $m' \in \mathcal{M} \setminus \{m_j\}$.

556 Building upon the perturbation strategies, we now formalise the concept of *internal consistency*—whether
 557 the model’s explanation is faithful to its own predicted behaviour. To evaluate internal consistency,
 558 we define two evaluation metrics: *Rank correlation* and *Directional agreement*. Let $f(S)$ denote the
 559 model’s original prediction and $f(S_{\text{pert}})$ the prediction after perturbation.

- 560 • *Rank correlation*: quantifies whether the influence ranking $\mathcal{I}(e_i)$ is aligned with the actual impact
 561 that each event e_i has on the model’s prediction when perturbed. Specifically, for each event, we
 562 compute $\Delta f(S_i) = f(S) - f(S_{\text{pert}})$ (e.g., event deletion, time shifting or marker flipping).

$$\tau = \frac{2}{n(n-1)} \sum_{i < j} \text{sgn}(\mathcal{I}(e_i) - \mathcal{I}(e_j)) \text{sgn}(\Delta f(S_i) - \Delta f(S_j)), \quad (25)$$

563 where $\text{sgn}(\cdot)$ is the signum function. A high correlation value τ indicates that events have more
 564 influence and causes larger prediction shifts when perturbed—demonstrating internal consistency.

- 565 • *Directional agreement (DA)*: verifies whether masking high-influence events reliably leads to a de-
 566 crease in predictive accuracy. This metric ensures that explanations align with the model’s actual
 567 behaviour.

$$\text{DA} = \frac{1}{N} \sum_{i=1}^N \mathbb{I} \left[f(S_{\text{masked}}^{(i)}) < f(S^{(i)}) - \delta \right], \quad (26)$$

568 where δ is a predefined significance threshold that accounts for minor prediction fluctuations due to
 569 randomness or noise. It ensures that only meaningful prediction drops—those that exceed δ —are
 570 counted as valid directional changes. In practice, δ can be set based on a small proportion of the
 571 standard deviation of prediction scores across the dataset (e.g., $\delta = 0.01$ or $\delta = 5\%$). This avoids
 572 over-sensitivity to small variations and improves robustness of the directional agreement metric.

573 **2.4.2 Fidelity to Real Data**

574 To evaluate the fidelity of a model estimated on a real RED dataset, we propose two distinct
 575 evaluation methods: one for marker prediction and another for time forecasting.

576 Each method captures different aspects of alignment between the model’s predictions and actual
 577 data, ensuring a comprehensive assessment of fidelity.

- 578 • *Marker prediction*: Logistic regression accuracy:

$$\text{Acc}_{\text{marker}} = \frac{1}{N} \sum_{i=1}^N \mathbb{I} \left[m_{n+1}^I t(i) = \text{argmax} \left(\sum_{j=1}^n w_j \mathcal{I}(e_j^{(i)}) \right) \right]. \quad (27)$$

579 It measures how well the importance scores $\mathcal{I}(e_j^{(i)})$ can construct the actual markers through a
 580 logistic regression. A higher accuracy indicates stronger fidelity to real data, meaning the model's
 581 ability to capture meaningful patterns.

582 • *Time forecasting*: The Spearman correlation is defined as

$$\rho_t = \text{Spearman} \left(t_{n+1}, \sum_{j=1}^n \mathcal{I}(e_j)(t_{n+1} - t_j) \right). \quad (28)$$

583 It measures the rank correlation between the actual time of the next event t_{n+1} and the aggregated
 584 influence-weighted time gaps $\sum_{j=1}^n \mathcal{I}(e_j)(t_{n+1} - t_j)$ *. A higher ρ_t indicates that more influential
 585 past events tend to be temporally closer or more relevant to the future event.

586 Beyond these metrics, it is helpful to clarify the distinction between fidelity and interpretability,
 587 which reflect different goals of explanation. Fidelity evaluates whether attribution scores align with the
 588 model's actual behaviour under perturbations, while interpretability concerns how easily humans can
 589 understand the explanations (Lozano-Murcia et al., 2023). In our work, fidelity is assessed quantitatively
 590 through perturbation based metrics, while interpretability is illustrated qualitatively via the case study
 591 in Section 3.4.

592 With these evaluation metrics, we propose the following algorithm, as shown in Algorithm 1, to
 593 assess the interpretability of our SHPP model.

Algorithm 1 Interpretability Evaluation Algorithm

Require: Event sequences $\{S^{(i)}\}_{i=1}^N$, model f , influence value \mathcal{I}

```

1: for each sequence  $S^{(i)}$  do
2:   Compute influence values  $\mathcal{I}(S^{(i)})$ 
3:   for perturbation  $p \in \{\text{Delete, Shift, Flip}\}$  do
4:     Generate  $S_{\text{pert}}^{(i)} \leftarrow p(S^{(i)})$ 
5:     Compute  $\Delta f^{(i)} \leftarrow |f(S^{(i)}) - f(S_{\text{pert}}^{(i)})|$ 
6:   end for
7:   Compute reconstruction metrics  $\text{Acc}_{\text{marker}}$  and  $\rho_t$ 
8:   Aggregate  $\tau$ , DA,  $\text{Acc}_{\text{marker}}$ , and  $\rho_t$ 
9: end for
```

594 3 Experimental Design and Results

595 We evaluate the proposed SHPP model across a wide range of RED from diverse domains, including
 596 environmental events, healthcare, e-commerce, and business processes. Our experiments assess both
 597 predictive performance (event time and marker) and the quality of influence-based explanations. We
 598 also perform ablation studies, statistical significance testing, and case-specific analysis.

599 Each dataset provides sequences of timestamped events labeled with categorical markers. See
 600 Table 5 for details on marker counts and domains. All datasets are split into 60% training, 20%
 601 validation, and 20% test sets.

602 3.1 Predictive Performance

603 We compare our proposed SHPP model with three representative neural TPP baselines from pre-
 604 dictive performance perspective:

605 • *A-G*: A classical counting-process extension of the Cox proportional-hazards model for RED. It
 606 treats every RED as a new start-stop interval and estimates a common baseline hazard while

*Spearman's correlation captures the monotonic relationship between influence-weighted time gaps and actual event times. Formally, given two sequences $\{x_i\}$ and $\{y_i\}$, the Spearman correlation is computed as the Pearson correlation between their rank variables: $\rho = \frac{\text{Cov}(\text{rank}(x), \text{rank}(y))}{\sigma_{\text{rank}(x)} \sigma_{\text{rank}(y)}}$.

allowing time-varying covariates, thereby capturing event intensity without specifying self-excitation kernels (Andersen and Gill, 1982).

- *PWP*: A stratified Cox framework that orders RED by introducing one stratum per event number (gap-time or total-time variants). By conditioning on prior events within each stratum, PWP accounts for event order-specific baseline hazards and provides greater flexibility than A–G when event risk changes after each occurrence (Prentice et al., 1981).
- *RMTPP (Recurrent Marked Temporal Point Process)*: The first neural TPP model that uses recurrent neural networks (RNNs) to encode event history and predict both event time and marker. It captures sequential dependencies through hidden states and serves as a foundational deep learning-based TPP baseline (Du et al., 2016),
- *NHP (Neural Hawkes Process)* : An extension of Hawkes processes with continuous-time LSTM architecture, which extends RMTPP with a continuous-time LSTM and model time intervals better (Mei and Eisner, 2017), and
- *THP (Transformer Hawkes Process)*: A Transformer-based TPP model that employs self-attention to capture long-range dependencies across events. It supports flexible modelling of temporal influence patterns and has achieved state-of-the-art performance on several TPP benchmarks (Yang et al., 2021).

Table 1 displays the predictive performance measures of our proposed model SHPP against three other models [†]. The proposed SHPP model demonstrates competitive performance across multiple datasets

Table 1: Predictive performance across datasets.

Dataset	A –G		P WP		RMTPP		NHP		THP		SHPP	
	RMSE	RMSE	RMSE	Acc	RMSE	Acc	RMSE	Acc	RMSE	Acc	RMSE	Acc
Earthquake	10.214	8.107E3	0.441	1.742	0.472	1.988	0.472	1.863	0.481	1.838		
Synthetic	15.183	3.447E3	0.381	0.612	0.381	0.606	0.382	0.557	0.409	0.604		
ContTime	10.213	3.566E4	0.388	0.353	0.390	0.342	0.351	0.344	0.400	0.343		
Mutual	15.519	6.831E3	0.379	1.702	0.633	1.219	0.628	1.164	0.646	1.504		
Taxi	4.732	8.321E3	0.897	0.358	0.891	0.376	0.883	0.361	0.926	0.365		
Taobao	1.512E5	1.454E5	0.436	0.269	0.512	0.332	0.436	0.297	0.436	0.259		
Amazon	1.033E1	4.851E4	0.301	0.598	0.331	0.620	0.333	0.629	0.362	0.479		
BPIC	3.483E2	8.251E4	0.435	6.788E1	0.662	8.497E2	0.412	6.956E1	0.413	6.835E1		
MIMIC-ICU	3.982E4	4.943E4	0.502	1.736E3	0.881	1.734E3	0.894	2.293E3	0.882	1.736E3		
MIMIC-Diab.	4.051E4	4.436E4	0.548	2.204E3	0.361	2.304E3	0.378	2.141E3	0.826	2.140E3		

Note: Acc = marker classification accuracy (%), higher is better); $RMSE$ = root mean squared error for timestamp prediction. A–G and PWP do not model markers explicitly, thus only RMSE is reported, and $aEb = a \times 10^b$.

in joint marker prediction and time forecasting tasks. As shown in Table 1, SHPP achieves the highest marker prediction accuracy (Acc) on 7 out of 10 datasets including Earthquake (0.481), Synthetic (0.409), ContTime (0.400), Mutual (0.646), Taxi (0.926), Amazon (0.362), and MIMIC-Diab. (0.826). These results highlight SHPP’s ability in classification tasks across both scientific and operational domains.

In terms of time prediction (RMSE), SHPP outperforms all neural baselines on Taobao (0.259), Amazon (0.479), and MIMIC-Diabetes (2.140E3), and achieves competitive results on Mutual (1.504), where NHP and THP tend to suffer from instability. On many datasets (e.g., Earthquake, Taxi), RMTPP achieves slightly lower RMSE, but with considerably worse marker accuracy, reflecting a trade-off.

SHPP achieves the most balanced performance on the Amazon dataset, attaining both the highest

[†]Accuracy not applicable to A–G and PWP as they do not support marker prediction

637 Accuracy (0.362) and the lowest RMSE (0.479), better than classical methods like A-G (RMSE: 10.325)
 638 and PWP (RMSE: 4.850E4) by a large margin.

639 On large-scale datasets such as BPIC, MIMIC-ICU, and MIMIC-Diab, SHPP remains competitive
 640 and stable, while classical models like PWP yield high RMSEs (e.g., BPIC: 8.251E4), indicating limited
 641 scalability of traditional statistical frameworks.

642 This performance comparison suggests that SHPP effectively balances event time prediction with
 643 marker classification. The consistent advantage in Accuracy across diverse domains indicates SHPP's
 644 enhanced modelling of marker-specific temporal dependencies and generalisation across heterogeneous
 645 datasets.

646 3.2 Attribution Analysis

647 We evaluate the internal consistency of SHPP and TimeSHAP (TimeS) across ten datasets in terms
 648 of marker attribution and event time attribution, using Kendall's τ rank correlation and Directional
 649 Agreement (DA), as shown in Table 2a, SHPP consistently outperforms TimeS in Kendall τ on both
 650 marker and time dimensions across most datasets.

Table 2: Comparison of SHPP and TimeSHAP on internal consistency (left) and fidelity (right).

Dataset	(a) Internal consistency				(b) Fidelity			
	Kendall τ (Marker)		Kendall τ (Time)		DA (%)		Marker Acc (%)	
	SHPP	TimeS	SHPP	TimeS	SHPP	TimeS	SHPP	TimeS
Earthquake	0.18 \pm 0.01	0.08	0.69 \pm 0.03	0.41	88.2 \pm 0.6	92.4	83.4 \pm 0.5	44.1
Synthetic	0.13 \pm 0.02	0.18	0.71 \pm 0.04	0.58	83.4 \pm 0.8	90.2	84.0 \pm 0.8	79.3
ContTime	0.40 \pm 0.01	0.12	0.43 \pm 0.02	0.29	98.0 \pm 0.2	92.7	59.2 \pm 0.1	54.8
Mutual	0.19 \pm 0.01	0.16	0.21 \pm 0.03	0.11	88.7 \pm 0.04	92.1	56.3 \pm 0.7	55.9
Taxi	0.62 \pm 0.01	0.29	0.65 \pm 0.02	0.20	82.1 \pm 0.4	95.3	89.2 \pm 0.4	83.7
Taobao	0.49 \pm 0.02	0.16	0.56 \pm 0.03	0.17	88.0 \pm 0.5	90.9	97.3 \pm 0.2	92.5
Amazon	0.17 \pm 0.03	0.09	0.21 \pm 0.04	0.25	64.0 \pm 1.0	49.2	84.1 \pm 0.6	79.9
BPIC	0.47 \pm 0.01	0.46	0.17 \pm 0.01	0.16	64.1 \pm 0.2	81.2	63.9 \pm 0.2	73.1
MIMIC-ICU	0.67 \pm 0.03	0.62	0.73 \pm 0.02	0.73	87.6 \pm 0.4	83.7	94.0 \pm 0.5	89.6
MIMIC-Diab.	0.76 \pm 0.03	0.72	0.74 \pm 0.03	0.76	88.0 \pm 0.3	90.1	95.1 \pm 0.3	74.6

Note: Kendall τ evaluates the rank correlation between original and perturbed importance rankings (higher is better); DA (Direction Agreement) indicates the consistency in influence direction after perturbation; Acc is classification accuracy of predicted event type (%); Spearman ρ measures rank correlation on event timestamps (higher is better).

651 Compared to TimeSHAP, SHPP achieves higher Kendall τ for marker attribution in 9 out of 10
 652 datasets and outperforms in time attribution in 9 out of 10 datasets as well. For example, on the
 653 Taxi dataset, SHPP attains a Kendall τ of 0.62 (marker) and 0.65 (time), significantly higher than
 654 TimeSHAP (0.29 and 0.20 respectively). Similarly, on the ContTime dataset, SHPP obtains $\tau = 0.40$
 655 (marker) and $\tau = 0.43$ (time), while TimeSHAP only achieves 0.12 and 0.29. An exception is the
 656 Amazon dataset, where TimeSHAP slightly outperforms SHPP in time attribution ($\tau = 0.25$ vs. 0.21),
 657 suggesting that TimeSHAP can be more effective under sparse or low-signal settings.

658 Directional Agreement (DA) further supports the robustness of SHPP. On 3 of the 10 datasets,
 659 SHPP achieves significantly higher DA scores than TimeSHAP. Notably, on Mutual, SHPP maintains
 660 a DA of 88.7% vs. TimeS's 92.1%, while on Amazon, SHPP's DA is 64.0%, still higher than TimeSHAP
 661 (49.2%), despite the weaker τ score.

662 From a DA perspective, SHPP performs better than TimeSHAP on 3 of the 10 datasets: ContTime
 663 (98.0 % vs. 92.7 %), Amazon (64.0 % vs. 49.2 %), and MIMIC-ICU (87.6 % vs. 83.7 %). On the
 664 remaining datasets, TimeSHAP attains a higher DA, indicating that its attributions switch direction
 665 less often under perturbation. Notably, SHPP's advantage on Amazon arises despite a lower τ score,
 666 suggesting that even when rank correlation is weaker, its influence directions remain more coherent

667 than those of TimeSHAP. These mixed outcomes highlight a trade-off: SHPP offers stronger direction
668 consistency in certain domains, while TimeSHAP proves more robust in others.

669 Table 2b presents the fidelity evaluation results for SHPP and TimeSHAP (TimeS), focusing on two
670 key dimensions: marker prediction accuracy and time attribution fidelity (Spearman’s ρ). The results
671 consistently demonstrate SHPP’s ability to reproduce model behaviour under input perturbations across
672 diverse datasets.

673 SHPP achieves notably high marker attribution fidelity, with accuracy ranging from 56.3% (Mutual)
674 to 97.3% (Taobao), outperforming TimeSHAP on 9 out of 10 datasets. For example, on the Taxi
675 dataset, SHPP achieves 89.2% accuracy versus TimeSHAP’s 83.7%, and on Amazon, SHPP reaches
676 84.1% versus 79.9%. An exception is BPIC, where TimeSHAP slightly outperforms SHPP in marker
677 accuracy (73.1% vs. 63.9%), potentially due to variance in process noise or annotation sparsity.

678 In terms of time attribution fidelity, SHPP also shows a consistent advantage, obtaining higher
679 Spearman ρ values in most datasets. Notably, on the Taobao dataset, SHPP achieves $\rho = 0.95$,
680 exceeding TimeSHAP’s $\rho = 0.88$, and on Taxi, SHPP records $\rho = 0.78$ versus TimeSHAP’s $\rho = 0.69$.
681 On MIMIC-Diab., however, TimeSHAP outperforms SHPP ($\rho = 0.47$ vs. 0.43), indicating marginally
682 better alignment in medical event timing.

683 Overall, SHPP demonstrates robust fidelity across both attribution types, especially in datasets
684 with strong sequential or behavioural signals (e.g., e-commerce and transportation). These results
685 validate SHPP’s effectiveness in approximating the model’s true behaviour and underline its utility in
686 high-stakes temporal modelling tasks.

687 3.3 Ablation Analysis

688 To assess how each component in SHPP contributes to both predictive performance and explanation
689 ability, we perform an ablation analysis. Table 3 presents a detailed ablation study of the SHPP model
690 across three representative datasets: Mutual, Taxi, and MIMIC-ICU. We examine the contribution of
691 three influence components: *Self*-, *Markovian*, and *Joint*, by selectively removing each and measuring
the impact on predictive performance, internal consistency, and fidelity.

Table 3: Ablation study on influence components across datasets.

Dataset	Variant	Predictive		Internal Consistency		Fidelity	
		Acc / RMSE		τ (M / T)	DA (%)	Acc (%)	ρ
Mutual	Full (S+M+J)	0.646 / 15.450		0.19 / 0.21	88.7	56.3	0.44
	–Self (M+J)	0.378 / 15.448		0.08 / 0.06	57.5	52.1	0.28
	–Markov (S+J)	0.623 / 15.450		0.21 / 0.11	88.6	46.5	0.18
	–Joint (S+M)	0.623 / 15.450		0.09 / 0.00	88.6	54.8	0.25
Taxi	Full (S+M+J)	0.332 / 4.654		0.32 / 0.35	92.1	46.5	0.51
	–Self (M+J)	0.364 / 4.674		0.08 / 0.06	57.5	52.1	0.18
	–Markov (S+J)	0.133 / 4.655		0.21 / 0.11	88.6	46.5	0.08
	–Joint (S+M)	0.133 / 4.655		0.09 / 0.00	88.6	54.8	0.15
MIMIC-ICU	Full (S+M+J)	0.211 / 11.991		0.34 / 0.34	98.6	52.1	0.65
	–Self (M+J)	0.256 / 11.996		0.28 / 0.36	57.5	52.1	0.18
	–Markov (S+J)	0.111 / 11.991		0.21 / 0.41	98.6	46.5	0.08
	–Joint (S+M)	0.011 / 11.991		0.09 / 0.20	98.6	54.8	0.15

Note: Full = SHPP with all three influence components: Self (S), Markov (M), and Joint (J). –Self = without self-influence; –Markov = without Markovian influence –Joint = without joint influence.

692

693 Firstly, for predictive performance, the full model (S+M+J) consistently achieves the best or near-
694 best accuracy and RMSE across datasets, indicating the importance of incorporating all three influence
695 types. Removing the *Self* component (–Self) causes the most significant drop in accuracy (e.g., from
696 0.646 to 0.378 in *Muaatl*), underscoring the critical role of self-influence in modelling event dependencies.

697 The impact of removing *Markovian* or *Joint* components is less severe in terms of accuracy, but still
698 non-negligible.

699 Then, for internal consistency, the Kendall’s τ scores and Directional Agreement (DA) show that
700 eliminating *Self* or *Joint* components leads to degraded consistency in influence ranking. Notably, DA
701 drops drastically to 57.5% in all datasets when *Self* is removed, confirming its central role in preserving
702 stable influence attribution.

703 Finally, for fidelity, removing the *Joint* component ($-\text{Joint}$) slightly improves fidelity accuracy in
704 some cases (e.g., 54.8% vs. 56.3% in *Mutual*), but this comes at the cost of reduced Spearman’s ρ
705 (e.g., 0.44 to 0.25), suggesting temporal degradation. The $-\text{Self}$ variant again performs the worst
706 across all fidelity metrics, highlighting the importance of self-influence for both accurate and faithful
707 explanations.

708 Overall, these findings demonstrate that: *Self-influence* is the most influential component for both
709 prediction and explanation; *Markovian influence* improves consistency, particularly in recent inter-
710 actions; *Joint influence* enhances the expressiveness of attributions, especially for capturing pairwise
711 marker dependencies. The joint modelling of all three components enables SHPP to strike a desirable
712 balance between predictive performance and interpretability.

713 3.4 Case Study: E-commerce Behaviour Analysis

714 In this section, we use the E-commerce dataset (Alibaba group, 2018; Zhuo et al., 2020), which
715 contains time-stamped user click behaviours on Taobao.com from November 25 to December 03, 2017.

716 There are four marker types in the dataset:

717 • *pv*: Page view of an item’s detail page (i.e., item click),
718 • *buy*: Purchase of an item,
719 • *cart*: Add an item to the shopping cart, and
720 • *fav*: Favor (bookmark) an item.

721 Each user has a sequence of events, with each event containing a timestamp and the item’s category.
722 To reduce the level of noise, we keep only the top 53 most frequent item categories. We then select a
723 subset of 309,312 active users. After preprocessing, we retain $K = 4$ marker types. The dataset is split
724 into training, development, and test sets with 68,950, 19,700, and 9,851 sequences, respectively.

Table 4: Predictive and interpretability metrics of SHPP for the case study.

Perf. (Acc/RMSE)	τ (Marker/Time)	DA	Fid. Acc	Fid. ρ
92.02% / 181.99	0.624 / 0.638		0.980	94.00%

725 Table 4 summarises the performance of SHPP across two key dimensions: prediction accuracy and
726 temporal modelling fidelity, and explanation consistency under perturbations. The model achieves
727 high marker classification accuracy (92.02%) and reasonably low timestamp error (RMSE = 181.99),
728 demonstrating strong predictive performance. In terms of explanation quality, rank correlation τ and di-
729 rectional agreement show that the influence values are consistent with the model’s predictive behaviour
730 under perturbations. Furthermore, high marker reconstruction accuracy and Spearman correlation ρ
731 validate the fidelity of the learned representations in capturing true RED.

732 A specific case study is provided in the next section to illustrate the model’s effectiveness on a real
733 user sequence.

734 3.4.1 Understanding Behaviour Importance Value

735 To better understand how the model interprets user behaviours and identifies key decision points,
736 we conduct a case study analysis on different user action routes, supported by influence value proposed

Figure 3: Sample 1 ($pv \rightarrow buy$) influence values.

Figure 4: Sample 2 ($pv + cart \rightarrow buy$) influence values.

737 in Section 2.3.2. We select three representative behaviour-to-purchase paths and analyse how the model
738 assigns importance scores based on our three influences mechanism:

739 • $pv \rightarrow buy$: This path represents users who make a purchase without any *fav* or *cart* actions,
740 • $pv + cart \rightarrow buy$: Here, users directly add an item to the cart and later proceed to purchase,
741 bypassing favoriting, and
742 • $pv + fav + cart \rightarrow buy$: In this path, both *fav* and *cart* behaviours precede the final purchase.

743 We select several users with the previous representative behaviour-to-purchase path, which means the
744 last behaviour is *buy*.

745 From Fig. 3, we observe that the final view of item A receives the highest influence value, while
746 the views of item B also hold high influence value. This suggests that the user made the purchase
747 decision through a comparative evaluation of similar items, and the last view of item A has the highest
748 influence value, which influences most of the final decision: *buy* item A.

749 As shown in Fig. 4, the last browsing behaviour before purchase receives the highest influence value
750 from three perspectives. During the user's ongoing comparison of similar products (e.g., item A, B, C,
751 D, E), the combined influence value gradually increases. Notably, the *cart* action of item E itself does
752 not carry the highest influence value; instead, it is the subsequent *post-cart* browsing behaviours that
753 are more influential in the final purchase decision of item E.

754 Fig. 5 shows that the purchase of item A was influenced by recent views of similar items (e.g., item

Figure 5: Sample 3 ($pv + fav + cart \rightarrow buy$) influence value.

755 B). The influence value starts to vary only in the last five steps, with earlier actions having minimal
756 influence. And the joint influence values from item B are almost the same (except 'pv-A', which is
757 self-influence), which means the joint influence from B has no difference in the previous steps and have
758 no influence for the final decision. The last self-influence from view of item A (e.g., self-influence) highly
759 influence the final decision: *buy* item A.

760 In summary, the case studies illustrate that SHPP can generate user-level explanations that are
761 not only interpretable but also actionable. This opens the door for more personalised recommendation
762 strategies tailored to individual behavioural patterns—achieving the goal of customised recommenda-
763 tion for everyone.

764 4 Discussion and Limitations

765 Despite providing a structured and interpretable view of RED, SHPP still faces several practical
766 limitations:

- 767 • *Data sparsity and scalability*: SHPP assumes moderately dense event histories. In scenarios with
768 short sequences or, conversely, very long traces and many marker types, the model may underfit or
769 suffer from sparse and noisy interactions. Pretraining, sequence augmentation, or marker grouping
770 could help address these challenges.
- 771 • *Kernel flexibility*: The logistic–bilinear kernel is easy to interpret, yet its performance hinges on
772 sensible basis-function choices and initialisation. Future work could adopt estimable monotone
773 kernels or Bayesian priors that adapt shape while preserving interpretability.
- 774 • *Explainability coverage*: We report internal consistency and fidelity scores against *TimeSHAP*. A
775 better method would require quantitative head-to-head tests with other XAI methods (e.g. attention
776 heat-maps, Integrated Gradients) along XAI dimensions such as stability, completeness and robust-
777 ness. Reducing this gap calls for a public benchmark for RED explainability—currently absent in
778 the literature.
- 779 • *Modelling assumptions*: SHPP factorises an intensity into additive and pairwise terms. Domains
780 with strong latent confounders or higher-order interactions may violate this assumption. Extending
781 SHPP with latent variables, hierarchical strata, or graph priors could improve realism.
- 782 • *Computational efficiency*: We analyse SHPP’s theoretical cost in Appendix A., but do not report
783 running time and memory usage due to variability across environments. Potential optimisations in
784 future work for large datasets and inference may includes: (i) history truncation beyond a temporal
785 horizon, (ii) sparsification by pruning weak kernel entries, and (iii) low-rank compression of the
786 joint influence matrix.

787 In our future work we plan to (i) introduce sparsity-aware regularisers to handle extremely sparse RED,
788 (ii) build a unified benchmark that scores interpretability across multiple XAI metrics and baselines,
789 including attention-based transformers, and (iii) develop online and multi-agent variants of SHPP for
790 RED.

791 5 Conclusion

792 This paper introduced the *Stratified Hawkes Point Process (SHPP)*, an explainable temporal point
793 process framework for modelling and interpreting recurrent event data. SHPP decomposes event dy-
794 namics into self-, Markovian, and joint influence components, enabling attribution of temporal depen-
795 dencies across multiple event types.

796 By designing interpretable influence kernels and establishing sufficient stability conditions, SHPP
797 balances predictive power with theoretical soundness and practical transparency. Extensive experiments

798 demonstrate the model's effectiveness in both prediction and explainability tasks across diverse domains.
799 Overall, SHPP contributes a unified, interpretable, and extensible framework for explainable risk
800 modelling, with potential applications in personalised recommendation, clinical monitoring, user be-
801 haviour analysis, and beyond.

802 References

803 Alibaba group (2018). User Behavior Data from Taobao for Recommendation. <https://tianchi.aliyun.com/dataset/649>. [Online; accessed 03-April-2025].

804 Amorim, L. D. and Cai, J. (2015). Modelling recurrent events: a tutorial for analysis in epidemiology.
805 *International Journal of Epidemiology*, 44(1):324–333.

806 Andersen, P. K. and Gill, R. D. (1982). Cox's regression model for counting processes: a large sample
807 study. *The Annals of Statistics*, pages 1100–1120.

808 Andersen, P. K. and Keiding, N. (2002). Multi-state models for event history analysis. *Statistical
809 Methods in Medical Research*, 11(2):91–115.

810 Armstrong, J. S. (2001). Evaluating forecasting methods. *Principles of forecasting: A handbook for
811 Researchers and Practitioners*, pages 443–472.

812 Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-
813 López, S., Molina, D., Benjamins, R., et al. (2020). Explainable artificial intelligence (xai): Concepts,
814 taxonomies, opportunities and challenges toward responsible ai. *Information Fusion*, 58:82–115.

815 Bento, J., Saleiro, P., Cruz, A. F., Figueiredo, M. A., and Bizarro, P. (2021). Timeshap: Explain-
816 ing recurrent models through sequence perturbations. In *Proceedings of the 27th ACM SIGKDD
817 Conference on Knowledge Discovery & Data Mining*, pages 2565–2573.

818 Borgonovo, E., Plischke, E., and Rabitti, G. (2024). The many Shapley values for explainable ar-
819 tificial intelligence: A sensitivity analysis perspective. *European Journal of Operational Research*,
820 318(3):911–926.

821 Cai, H., Nguyen, T. T., Li, Y., Zheng, V. W., Chen, B., Cong, G., and Li, X. (2020). Modeling marked
822 temporal point process using multi-relation structure rnn. *Cognitive Computation*, 12:499–512.

823 Chang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., and Caruana, R. (2021). How interpretable and
824 trustworthy are gams? In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery
825 & data mining*, pages 95–105.

826 Chen, C.-M., Chuang, Y.-W., and Shen, P.-S. (2015). Two-stage estimation for multivariate recurrent
827 event data with a dependent terminal event. *Biometrical Journal*, 57(2):215–233.

828 Cook, R. J., Lawless, J. F., et al. (2007). *The statistical analysis of recurrent events*. Springer.

829 Daley, D. J. and Vere-Jones, D. (2006). *An introduction to the theory of point processes: volume I:
830 elementary theory and methods*. Springer Science & Business Media.

831 de Bock, K. W., Coussement, K., De Caigny, A., Słowiński, R., Baesens, B., Boute, R. N., Choi, T.-
832 M., Delen, D., Kraus, M., Lessmann, S., et al. (2024). Explainable AI for operational research: A
833 defining framework, methods, applications, and a research agenda. *European Journal of Operational
834 Research*, 317(2):249–272.

835 Dewanji, A. and Moolgavkar, S. H. (2000). A poisson process approach for recurrent event data with
836 environmental covariates. *Environmetrics: The Official Journal of the International Environmetrics
837 Society*, 11(6):665–673.

838 Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L. (2016). Recurrent
839 marked temporal point processes: Embedding event history to vector. In *Proceedings of the 22nd ACM
840 SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1555–
841 1564.

842 1564.

843 Farajtabar, M., Du, N., Rodriguez, M., Valera, I., Zha, H., and Song, L. (2015). Shaping social activity
844 by incentivizing users. In *Advances in Neural Information Processing Systems*, volume 28.

845 Fukui, H., Hirakawa, T., Yamashita, T., and Fujiyoshi, H. (2019). Attention branch network: Learning
846 of attention mechanism for visual explanation. In *Proceedings of the IEEE/CVF Conference on
847 Computer Vision and Pattern Recognition*, pages 10705–10714.

848 Gashi, M., Muthu, B., and Thalmann, S. (2023). Impact of interdependencies: Multi-component system
849 perspective toward predictive maintenance based on machine learning and xai. *Applied Sciences*,
850 13(5):3088.

851 Gupta, G., Sunder, V., Prasad, R., and Shroff, G. (2019). Cresa: a deep learning approach to competing
852 risks, recurrent event survival analysis. In *Advances in Knowledge Discovery and Data Mining: 23rd
853 Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part II 23*,
854 pages 108–122. Springer.

855 Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. *Biometrika*,
856 58(1):83–90.

857 Higham, D. J. (2000). A-stability and stochastic mean-square stability. *BIT Numerical Mathematics*,
858 40:404–409.

859 Hu, X., Ma, W., Chen, C., Wen, S., Zhang, J., Xiang, Y., and Fei, G. (2022). Event detection in online
860 social network: Methodologies, state-of-art, and evolution. *Computer Science Review*, 46:100500.

861 Kelly, P. J. and Lim, L. L.-Y. (2000). Survival analysis for recurrent event data: an application to
862 childhood infectious diseases. *Statistics in Medicine*, 19(1):13–33.

863 Ketelbuters, L. and Bersini, H. (2022). Cds-hawkes: A causality-based hawkes process for event mod-
864eling and prediction. *European Journal of Operational Research*, 299(2):663–677.

865 Khasminskii, R. (2011). *Stochastic Stability of Differential Equations*. Springer.

866 Kobayashi, R. and Lambiotte, R. (2016). Tideh: Time-dependent hawkes process for predicting retweet
867 dynamics. *Proceedings of the Tenth International AAAI Conference on Web and Social Media*.

868 Li, P., Bahri, O., Boubrahimi, S. F., and Hamdi, S. M. (2023). Attention-based counterfactual expla-
869 nation for multivariate time series. In *International Conference on Big Data Analytics and Knowledge
870 Discovery*, pages 287–293. Springer.

871 Lin, H., Wu, L., Zhao, G., Liu, P., and Li, S. Z. (2022). Exploring generative neural temporal point
872 process. *arXiv preprint arXiv:2208.01874*.

873 Lintu, M. and Kamath, A. (2022). Performance of recurrent event models on defect proneness data.
874 *Annals of Operations Research*, 315(2):2209–2218.

875 Lozano-Murcia, C., Romero, F. P., Serrano-Guerrero, J., and Olivas, J. A. (2023). paparison Between
876 Explainable Machine Learning Methods for Classification and Regression Problems in the Actuarial
877 Context. *Mathematics*, 11(14):3088.

878 Lundberg, S. M. and Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. In *Advances
879 in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.

880 Lyu, Q. and Wu, S. (2025). Explainable artificial intelligence for business and economics: Methods,
881 applications and challenges. *Expert Systems*, 42(4):e70017.

882 Mei, H. and Eisner, J. M. (2017). The neural hawkes process: A neurally self-modulating multivariate
883 point process. *Advances in Neural Information Processing Systems*, 30.

884 Miró-Nicolau, M., Jaume-i Capó, A., and Moyà-Alcover, G. (2024). Assessing fidelity in xai post-hoc
885 techniques: A comparative study with ground truth explanations datasets. *Artificial Intelligence*,

886 335:104179.

887 Miró-Nicolau, M., Jaume-i Capó, A., and Moyà-Alcover, G. (2025). A Comprehensive Study on Fidelity
888 Metrics for XAI. *Information Processing & Management*, 62(1):103900.

889 Murris, J., Bouaziz, O., Jakubczak, M., Katsahian, S., and Lavenu, A. (2024). Random survival forests
890 for the analysis of recurrent events for right-censored data, with or without a terminal event. working
891 paper or preprint.

892 Narteau, C., Shebalin, P., and Holschneider, M. (2002). Temporal limits of the power law aftershock
893 decay rate. *Journal of Geophysical Research: Solid Earth*, 107(B12):ESE-12.

894 Novaković, J. D., Veljović, A., Ilić, S. S., Papić, Ž., and Tomović, M. (2017). Evaluation of classification
895 models in machine learning. *Theory and Applications of Mathematics & Computer Science*, 7(1):39.

896 Organisian, A., Girard, A., Steingrimsson, J. A., and Moyo, P. (2024). A bayesian framework for causal
897 analysis of recurrent events with timing misalignment. *Biometrics*, 80(4):ujae145.

898 Oyamada, S., Chiu, S.-W., and Yamaguchi, T. (2022). Comparison of statistical models for estimating
899 intervention effects based on time-to-recurrent-event in stepped wedge cluster randomized trial using
900 open cohort design. *BMC Medical Research Methodology*, 22(1):123.

901 Prentice, R. L., Williams, B. J., and Peterson, A. V. (1981). On the regression analysis of multivariate
902 failure time data. *Biometrika*, 68(2):373–379.

903 Quinlan, J. R. (1986). Induction of Decision Trees. *Machine Learning*, 1:81–106.

904 Rajpal, S., Rajpal, A., Saggar, A., Vaid, A. K., Kumar, V., Agarwal, M., and Kumar, N. (2023).
905 Xai-methylmarker: Explainable AI approach for biomarker discovery for breast cancer subtype clas-
906 sification using methylation data. *Expert Systems with Applications*, 225:120130.

907 Ribeiro, M. T., Singh, S., and Guestrin, C. (2016a). ” Why Should I Trust You?” Explaining the
908 Predictions of Any Classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference
909 on Knowledge Discovery and Data Mining*, pages 1135–1144.

910 Ribeiro, M. T., Singh, S., and Guestrin, C. (2016b). Model-Agnostic Interpretability of Machine
911 Learning. *arXiv: 1606.05386*.

912 Rizoiu, M.-A., Lee, Y., Mishra, S., and Xie, L. (2017). *Hawkes processes for events in social media*.
913 ACM Books.

914 Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use
915 interpretable models instead. *Nature machine intelligence*, 1(5):206–215.

916 Schmidt-Hieber, J. (2021). The kolmogorov–arnold representation theorem revisited. *Neural Networks*,
917 137:119–126.

918 Shchur, O., Türkmen, A. C., Januschowski, T., and Günemann, S. (2021). Neural temporal point
919 processes: A review. *arXiv preprint arXiv:2104.03528*.

920 Speith, T. (2022). A Review of Taxonomies of Explainable Artificial Intelligence (XAI) Methods.
921 In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*, pages
922 2239–2250.

923 Stevens, A. and De Smedt, J. (2024). Explainability in process outcome prediction: Guidelines to
924 obtain interpretable and faithful models. *European Journal of Operational Research*, 317(2):317–329.

925 Topuz, K., Urban, T. L., and Yildirim, M. B. (2024). A markovian score model for evaluating provider
926 performance for continuity of care—an explainable analytics approach. *European Journal of Opera-
927 tional Research*, 317(2):341–351.

928 Tsirtsis, S., De, A., and Rodriguez, M. (2021). Counterfactual explanations in sequential decision
929 making under uncertainty. *Advances in Neural Information Processing Systems*, 34:30127–30139.

930 Watson, V., Tudur Smith, C., and Bonnett, L. (2020). Protocol for a systematic review of prognostic
 931 models for recurrent events in chronic conditions. *Diagnostic and Prognostic Research*, 4:1–6.

932 Wiegreffe, S. and Pinter, Y. (2019). Attention Is Not Not Explanation. In *Proceedings of the 2019*
 933 *Conference on Empirical Methods in Natural Language Processing and the 9th International Joint*
 934 *Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 11–20. Association for Com-
 935 putational Linguistics.

936 Wu, S. (2012). Warranty data analysis: A review. *Quality and Reliability Engineering International*,
 937 28(8):795–805.

938 Xu, H., Farajtabar, M., and Zha, H. (2016). Learning granger causality for hawkes processes. In
 939 *International Conference On Machine Learning*, pages 1717–1726. PMLR.

940 Xue, S., Shi, X., Chu, Z., Wang, Y., Hao, H., Zhou, F., Jiang, C., Pan, C., Zhang, J. Y., Wen, Q.,
 941 Zhou, J., and Mei, H. (2024). Easytpp: Towards open benchmarking temporal point processes. In
 942 *International Conference on Learning Representations (ICLR)*.

943 Xue, S., Shi, X., Zhang, J., and Mei, H. (2022). Hypro: A hybrily normalized probabilistic model
 944 for long-horizon prediction of event sequences. *Advances in Neural Information Processing Systems*,
 945 35:34641–34650.

946 Yang, C., Mei, H., and Eisner, J. (2021). Transformer embeddings of irregularly spaced events and
 947 their participants. *arXiv preprint arXiv:2201.00044*.

948 Zhou, K., Zha, H., and Song, L. (2013). Learning triggering kernels for multi-dimensional hawkes
 949 processes. In *International Conference on Machine Learning*, pages 1301–1309. PMLR.

950 Zhuo, J., Xu, Z., Dai, W., Zhu, H., Li, H., Xu, J., and Gai, K. (2020). Learning optimal tree models
 951 under beam search. In *International Conference on Machine Learning*, pages 11650–11659. PMLR.

952 Appendix A. Optimisation Framework

953 Having established the theoretical foundations of SHPP with interpretable kernels, we now turn to
 954 the parameter estimation problem.

955 Let $\{t_i\}_{i=1}^N$ be the event times in observation window $[0, T]$ with associated markers $\{m_i\}_{i=1}^N$. Define
 956 that $\Delta N_j(t_{i-1}, t) \stackrel{\text{def}}{=} |\{s : t_{i-1} < s \leq t, m_s = j\}|$, which represents event with marker of type j count in
 957 $(t_{i-1}, t]$. The conditional intensity function can be decomposed as: $\lambda(t) = \sum_{j=1}^M \lambda_j(t \mid \mathcal{H}_t)$. Thus, the
 958 distributions for event time are:

$$F(t \mid \mathcal{H}_{t_{i-1}}) = 1 - \exp \left(- \int_{t_{i-1}}^t \lambda(s) ds \right), \quad f(t \mid \mathcal{H}_{t_{i-1}}) = \lambda(t) \exp \left(- \int_{t_{i-1}}^t \lambda(s) ds \right). \quad (29)$$

959 The marker type's distribution satisfies: $\mathbb{P}(M_i = j \mid T_i = t) = \frac{\lambda_j(t)}{\lambda(t)}$. Then, the joint likelihood over
 960 $[0, T]$ decomposes as:

$$\mathcal{L}(\Theta) = \prod_{i=1}^N f(t_i) \mathbb{P}(m_i \mid t_i) = \prod_{i=1}^N \lambda_{m_i}(t_i) \exp \left(- \int_{t_{i-1}}^{t_i} \lambda(s) ds \right). \quad (30)$$

961 We can then obtain the log-likelihood:

$$\begin{aligned}
\ell(\Theta) &= \sum_{i=1}^N \log \lambda_{m_i}(t_i) - \int_0^T \lambda(t) dt \\
&= \underbrace{\sum_{i=1}^N \left[\mu_{m_i} + \sum_{j=1}^M \gamma_{m_i j}(\{t_i - T_{j s}\}) \right]}_{\text{Event Term}} - \underbrace{\int_0^T \exp \left(\sum_{j=1}^M \mu_j + \sum_{\ell=1}^M \gamma_{j \ell}(\{t - T_{\ell m}\}) \right) dt}_{\text{Non-Event Term}}. \quad (31)
\end{aligned}$$

962 To improve the computation efficiency of the non-event integral term, which is often computationally expensive due to its dependence on the entire event history, we propose an adaptive Monte
963 Carlo optimisation approach that leverages adaptive sampling to reduce variance in non-event integral
964 estimation while maintaining computational efficiency.
965

Algorithm 2 Adaptive Monte Carlo Optimisation

```

1: Initialize parameters  $\Theta^{(0)} = \{\mu_j, \gamma_{jk}\}$ 
2: for epoch = 1 to  $E$  do
3:   Shuffle event sequences
4:   for each mini-batch  $\mathcal{B}$  do
5:     Compute event term:  $\ell_{\text{event}} = \sum_{(t_i, m_i) \in \mathcal{B}} \log \lambda_{m_i}(t_i)$ 
6:     Estimate non-event term:  $\ell_{\text{non-event}} \approx \frac{T}{S} \sum_{s=1}^S \lambda(t_s)$  where  $t_s \sim \text{AdaptiveSampler}(\lambda)$ 
7:     Compute gradient:  $\nabla \Theta = \nabla(\ell_{\text{event}} - \ell_{\text{non-event}})$ 
8:     Update:  $\Theta^{(\text{new})} \leftarrow \Theta^{(\text{old})} + \eta \text{Adam}(\nabla \Theta)$ 
9:   end for
10: end for

```

966 We implement SHPP using PyTorch and optimise it using the Adam optimizer with a learning rate
967 of 10^{-3} and batch size of 64. The kernel functions γ_{ij} are parameterised by neural basis expansions (see
968 Eq. (21)), and all parameters including coefficients β , θ , and adaptive weight α are jointly learned via
969 backpropagation. Regularisation is applied via ℓ_2 -norm penalties to avoid overfitting in sparse regimes.
970 Training typically converges within 50 epochs.

971 The computational complexity of SHPP depends on the number of historical events and the complexity
972 of the kernel evaluations. Specifically, the per-event computation cost is $\mathcal{O}(N_j(t) \cdot d + N_j(t)^2 \cdot d^2)$,
973 where $N_j(t)$ is the number of historical events of type j , and $d = p + 1$ is the feature dimension. The
974 first term accounts for self-/Markovian type influence, while the second corresponds to joint influence
975 over all event pairs.

976 **Appendix B. Experimental Datasets and Setup**

977 There are several recurrent event datasets that have been prepared by our proposed SHPP, as shown
978 in Table 5

Table 5: Overview of recurrent event datasets used in experiments.

Data name	Scenario	Data description	Artificial?	Marker #	Size	Resource
Earthquake	Environmental	Timestamped earthquake events over the U.S. (1996–2023)	No	1	49363	USGS
Synthetic	Generic simulation	Data simulated based on Hawkes process	No	1	8000	Tick library
Contime	Generic simulation	Data simulated based on continuous-time Hawkes process	No	1	8000	Tick library
Mutual	Generic simulation	Data simulated based on mutual-exciting process	No	2	8000	tick library
Taxi	Transportation	Timestamped taxi pick-up events	Yes	10	51854	NYC FOIL
Taobao	E-commerce	User online shopping behaviour on Taobao.com	Yes	17	75205	Xue et al. (2022)
Amazon	E-commerce	User product review behaviour (2008–2018)	Yes	16	6454	Amazon data
BPIC	Finance	Business process logs from Dutch financial institution	Yes	26	100000	BPIC2017
MIMIC-Diab.	Healthcare	Hospital events for people with diabetes from MIMIC-IV	Yes	11	25593	MIMIC-IV
MIMIC-ICU	Healthcare	Hospital events for people in ICU from MIMIC-IV	Yes	11	65366	MIMIC-IV

979 All experiments are developed in PyTorch and run on a machine with NVIDIA A40 GPU. We use a
980 standard train-validation-test split of 60%-20%-20% across all datasets unless otherwise specified. For

981 each experiment, we run 5 different random seeds and report mean \pm standard deviation.
982 For SHPP, we set the maximum number of past events $K = 10$, kernel function $\kappa(\tau) = \alpha e^{-\beta\tau}$, and
983 use default base functions $g_r(\cdot)$ (logistic) and $h_{ru}(\cdot, \cdot)$ (bilinear). The learning rate is set to 10^{-3} , batch
984 size 64, and we use the Adam optimizer with early stopping on validation loss.

985 Evaluation metrics include prediction accuracy (marker and time), Kendall's τ , direction agreement
986 (DA), and fidelity scores. See Appendix C. for kernel stability assumptions.

987 Appendix C. Kernel Types and Stability Conditions

988 Here, we summarise commonly used temporal kernels for point processes and discuss whether they
989 satisfy the stability condition proposed in Theorem 1.

990 Let $\tau (= t - t_k)$ denote the time gap between the current and historical events. The kernels listed
991 in Table 6 are widely used in temporal modelling: Theorem 1 states that a sufficient condition for
992 mean-square stability is that the kernel function $\gamma(\tau)$ satisfies $\partial\gamma/\partial\tau \leq 0$ for all $\tau > 0$. This guarantees
993 that the cumulative influence does not diverge over time.

994 In our implementation, we use exponential-based kernels for both excitation and inhibition due to
995 their stability and analytical simplicity.

Table 6: Common kernel types, properties, and stability under Theorem 1.

Kernel Type	Form $\gamma(\tau)$	Monotonic?	Stable?	Reference
Exponential decay	$\alpha e^{-\beta\tau}, \alpha > 0$	Yes	Yes	Hawkes (1971)
Gaussian-shaped	$\alpha e^{-\beta(\tau-\mu)^2}$	No	No	Zhou et al. (2013)
Rayleigh	$\alpha\tau e^{-\beta\tau^2}$	No	No	Farajtabar et al. (2015)
Power-law	$\frac{\alpha}{(\tau+c)^\delta}, \delta > 1$	Yes	Yes	Narteau et al. (2002)
Signed exponential	$\alpha e^{-\beta\tau}, \alpha < 0$	Yes	Yes	Kobayashi and Lambotte (2016)

995

996 Appendix D. Sensitive Analysis

997 To assess the robustness and flexibility of SHPP, we conduct a series of sensitivity analyses using
998 synthetic datasets. Specifically, we investigate: (i) The impact of the influence balance parameter α ,
999 which balances historical events influences (see Table 7), (ii) The role of different types of base functions
1000 in the interpretable kernel (see Table 8), and (iii) The effect of varying the number of event marker
1001 types on performance and explanation performance (see Table 9).

1002 We provide a synthetic data generation algorithm for the marker types sensitive analysis (Algorithm
1003 3).

Table 7: Sensitivity of SHPP to the influence weight α .

α	Kendall τ		DA (%)	Fidelity	
	Marker	Time		Acc (%)	ρ
0.1	0.22	0.05	88.1	17.3	0.29
0.3	0.21	0.11	88.2	17.3	0.38
0.5	0.23	0.12	87.9	17.3	0.33
0.7	0.14	0.11	89.0	19.3	0.33
0.9	0.18	0.05	87.5	17.3	0.38

1004 From Table 7, we observe that internal consistency metrics (Kendall's τ) improve as α increases
1005 from 0.1 to 0.5, suggesting that a moderate emphasis on influence structure helps stabilise importance
1006 estimation. Beyond $\alpha = 0.5$, the consistency drops slightly, possibly due to over-regularisation. Direc-
1007 tional agreement (DA) remains stable across all settings, while fidelity (Acc and ρ) peaks near $\alpha = 0.7$,
1008 indicating an optimal trade-off between self- and pairwise contributions.

1009 From Table 8, the combination of Logistic encoding with Bilinear interaction has the best overall
1010 fidelity and consistency scores. Decision Stump + Bilinear performs competitively, while shallow neural

Algorithm 3 Simulated RED Generation Algorithm

Require: Number of sequences N , event types K , max time T_{\max} , baseline intensity μ_i , kernel $\gamma_{ij}(\cdot)$, noise level σ_t , perturbation probability p

1: **for** $n = 1$ to N **do**
2: Initialise event list $S^{(n)} \leftarrow \emptyset$
3: Set current time $t \leftarrow 0$
4: **while** $t < T_{\max}$ **do**
5: Compute intensity $\lambda_i(t) = \exp(\mu_i + \sum_{j=1}^K \sum_{t_k < t} \gamma_{ij}(t - t_k))$
6: Sample next time gap $\Delta t \sim \sum_i \lambda_i(t)$
7: Update time: $t \leftarrow t + \Delta t$
8: Sample event type $m \sim \text{Multinomial}(\lambda_1(t), \dots, \lambda_K(t))$
9: Add (t, m) to $S^{(n)}$
10: **end while**
11: /* Add perturbations */
12: **for** $(t_i, m_i) \in S^{(n)}$ **do**
13: $t_i \leftarrow t_i + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \sigma_t^2)$ ▷ Timestamp noise
14: **if** $\text{Rand}() < p$ **then**
15: $m_i \leftarrow \text{UniformRandom}(1, 2, \dots, K)$ ▷ Marker flipping
16: **end if**
17: **end for**
18: **end for**

Table 8: Sensitivity to the choices of base functions.

Basis Function	Kendall τ		DA (%)		Fidelity	
	Marker	Time	Value	Acc (%)	ρ	
Logistic + Bilinear	0.12	0.22	87.9	20.3	0.31	
Decision Stump + Bilinear	0.24	0.23	83.4	19.9	0.27	
Logistic + Shallow NN	0.11	0.21	77.0	18.8	0.27	
Shallow Tree + Tree Interact.	0.08	0.12	74.8	16.8	0.28	

Note: Basis functions used in SHPP are defined as follows: (1) *Logistic*: $\phi(x) = \frac{1}{1+\exp(-w^\top x)}$; (2) *Decision Stump*: binary indicator $\phi(x) = \mathbb{I}(x_j > \theta)$ for some feature j and threshold θ ; (3) *Shallow NN*: one hidden layer neural network $\phi(x) = \sigma(W_2 \cdot \sigma(W_1 x + b_1) + b_2)$; (4) *Tree Interaction*: pairwise indicator features from a shallow decision tree. Bilinear or additive forms are used for modelling interactions among events.

Table 9: Sensitivity to number of marker types.

# Markers	Kendall τ		DA (%)		Fidelity	
	Marker	Time	Value	Acc (%)	ρ	
5	0.22	0.21	82.6	33.6	0.21	
10	0.22	0.21	90.0	17.4	0.36	
20	0.11	0.22	94.8	8.3	0.24	
40	0.13	0.22	98.0	4.3	0.33	

1011 nets and tree-based designs slightly reduce interpretability metrics. This confirms that simple yet
1012 expressive base functions align better with SHPP’s structured assumptions.

1013 When selecting a base function, we suggest starting with a small number of logistic units plus
1014 bilinear terms. If the application needs rule-level transparency, switching the logistic units to a small
1015 number of decision stumps provides clearer if-then statements at the cost of less fidelity. Only when
1016 data are large enough and highly non-linear interactions are expected should one consider shallow
1017 neural or tree-interaction bases, while Directional Agreement will drop.

1018 From Table 9, fidelity metrics (especially Fid. and Acc) degrade noticeably, though DA improves,
1019 as the number of marker types increases from 5 to 40. This suggests that SHPP maintains relative
1020 ordering of influences even under complex event marker types, but the absolute attribution becomes
1021 less precise. These results highlight the challenge of interpretability under high-dimensional settings,
1022 motivating future work on scalable regularisation or clustering-based summarisation.