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An explainable machine learning framework for recurrent

event data analysis

Qi Lyu, Shaomin Wu*
Kent Business School, University of Kent, Canterbury, Kent CT2 7FS, UK

Abstract: This paper introduces a novel explainable temporal point process (TPP) model, Strat-
ified Hawkes Point Process (SHPP), for modelling recurrent event data (RED). Unlike existing ap-
proaches that treat temporal influence as a black box or rely on post-hoc explanations, SHPP struc-
turally decomposes event intensities into semantically meaningful components for describing self-,
Markovian, and joint influences. This decomposition enables direct quantification of how past events
contribute to future event risks, termed as influence values. We further provide a sufficient condition for
mean-square stability based on kernel decay, ensuring long-term boundedness of intensities and realistic
behavioural predictions. Experiments and an e-commerce case study demonstrate SHPP’s ability to

deliver accurate, interpretable, and stable modelling of complex event-driven systems.

Keywords: (R) explainable machine learning; counting process; Hawkes process; stability; explain-

able artificial intelligence

1 Introduction
1.1 Motivation

In many practical applications, events occur in a recurring form. For example, patients with chronic
conditions may accept repeated treatments from their hospitals due to recurring illnesses or compli-
cations (Watson et al.l 2020; Chen et al., [2015); product users may recurrently claim warranty for
repairing or replacing a product item under the terms of its warranty (Wu, [2012)); social media users
repeatedly create and share content like text, images, and videos with others via online platforms, cus-
tomers in online shopping applications intermittently pick up items (Hu et al., 2022)). These events are
referred to as “recurrent events”, and times between the occurrences of recurrent events are therefore
called recurrent event data (RED).

RED analysis has been a key area of research in survival data analysis. Both statistical models
and machine learning models are developed (Cook et al., |2007; Amorim and Cail 2015; Du et al.|
2016)). Statistical models are for the scenarios where the size of the datasets is typically not very
large. Examples include the Andersen-Gill (AG) model (which is an extension of the proportional
hazards model) (Andersen and Gill, |1982), the Prentice-Williams-Peterson (PWP) models (Prentice
et al., 1981)), the marginal mean/rates model (Cook et al.l 2007), the frailty model (Kelly and Lim),
2000)), and multi-state models (Andersen and Keiding;, [2002).

While traditional statistical models have laid the foundation for RED analysis, their strict assump-
tions—such as linearity and proportional hazards—Ilimit their applicability to modelling complex data
with high-dimensional covariates. These assumptions may be violated in emerging applications like
social media and e-commerce, where RED shows complex temporal patterns and heterogeneity across
subjects. As such, there is a need for developing more flexible and interpretable models to relax these

assumptions and capture these dynamics.

* E-mail: s.m.wu@kent.ac.uk.
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Recent advances in artificial intelligence (AI) offer promising alternatives. Deep learning methods
explicitly model temporal dynamics through mechanisms like recurrent neural networks (RNNs) and
attention-based transformers. For instance, Cai et al. (2020) introduced a multi-mechanism temporal
framework that disentangles periodic, decaying, and persistent influences in multivariate event se-
quences, outperforming classical models. (Gupta et al.| (2019) developed a deep survival framework that
jointly addresses competing risks and recurrent events by learning latent representations of time-varying
risk interactions. These Al models demonstrate superior capability in capturing complex temporal pat-

terns that defy traditional parametric assumptions.

However, the predictive ability of AI models comes at a cost: their inherent opacity. Complex
neural networks, often labelled as "black boxes’, obscure the reasoning behind predictions—a critical
barrier in high-risk domains like healthcare and industrial safety. For example, clinicians cannot act
on a model’s prediction of cancer recurrence without understanding how time-varying biomarkers (e.g.,
dynamic gene expression profiles) interact with prior treatment history to drive risk fluctuations (Rajpal
et al.| [2023). Similarly, engineers require explainable fault forecasts to prioritise maintenance actions

in multi-component systems (Gashi et al., [2023).

Explainable AT (XAI) provides insights into how and why models make predictions, which is crucial
for understanding complex temporal behaviours and for deploying Al systems in sensitive domains like
healthcare and e-commerce. While XAI is effective for some data types such as panel data and time
series data, it fails to address the temporal gap and event interdependency inherent in RED analysis.
Most post-hoc methods (e.g., SHAP (Lundberg and Lee, [2017)), LIME (Ribeiro et al., 2016a))) provide
snapshot explanations that ignore temporal dependencies. While attention mechanisms in sequence
models often combine short-term noise with long-term risk factors (Li et al., [2023)). Although there is a
rich literature on RED analysis, little has considered quantifying and understanding how the occurrences
of historical events influence future customer behaviours. For example, in an e-commerce scenario, a
customer’s final action is influenced by a sequence of historical behaviours—such as repeatedly viewing
an item and adding it to the cart. These behaviours correspond to three different types of historical

behaviour influences, as shown in Figure

e Self-influence: A customer views an item at time ¢; and returns to view it again at time ¢ (the last
event with ¢ > t1). The dashed blue arrow from View at t; to View at ¢ captures this repeated
behaviour, where viewing an item is regarded as a marker. That is, a marker that occurs earlier

increases the probability that the marker will occur in the future.

e Markovian influence: The sequential path from View to Cart, and from Cart to Buy, as shown by
red arrows, represents direct influence between different types of markers. For example, viewing an
item may increase the chance of carting it, and carting an item may increase the chance of buying
it. That is, a marker (i.e., view) directly influences the next marker (i.e., cart), and a marker (i.e.,

cart) directly influences the next marker (i.e., buy).

e Joint influence: The blue brace between View and Cart (t2, jointly pointing to the Buy event, illus-
trates a combined influence. While each action alone may contribute modestly, together they signif-
icantly increase the likelihood of purchase—capturing a joint dependency that cannot be attributed
to either event in isolation. That is, a marker (i.e., view) indirectly influences the next-but-one

marker (i.e., buy).

This example demonstrates how different types of influence—repetition, inter-type triggering, and
combinatorial influences—interact to shape a user’s future decision, providing a concrete motivation

for structured influence modelling in RED analysis.

However, existing models ignore these historical influences, let alone these three different influences,

2
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making users lose trust for decisions made by AI models. Motivated by this need, this paper aims to
develop novel XAI methods for RED analysis, enabling an explainable and understandable framework

for RED, considering the temporal historical information and three influences of events.

Self
ls - -7 ” B ) b s ~
. Joint R
e \\

/ b
View / Cart / Buy View
" - ' - T >,

" Markovian " Markovian ' .

Figure 1: Illustration of self-, Markovian, and joint influences in e-commerce user behaviour

1.2 Related Work
1.2.1 RED Analysis

The literature on RED analysis has expanded rapidly, leading to the development of a diverse range

of models and methodologies. RED analysis has evolved through two perspectives: statistical methods
(e.g., Cook et al.|(2007)) and machine learning methods (e.g., Du et al.| (2016)).

Statistical models: Traditional approaches include the AG model, PWP models, frailty models and

multi-state models. The AG model generalises the Cox proportional hazards model, which is ex-
pressed as increments in the number of events along a timeline, where the outcome of interest is
the time from randomisation to treatment (or other exposure) to the event, that is, the time since
the beginning of the study, also known as the total time scale (Andersen and Gill, 1982). The
PWP model analyses multiple events in strata according to the number of events that occurred
during follow-up, where all participants are at risk in the first stratum, but only participants who
had an event in the previous stratum are at risk in the subsequent stratum (Prentice et al., [1981).
The core idea of the random effects approach, also known as frailty models, is to introduce ran-
dom covariates into a model, thus inducing dependencies between the times of RED (Kelly and
Lim, [2000). Specifically, random effects describe the excess risk or frailty of different individuals
while considering unmeasured heterogeneity that cannot be explained by observed covariates alone.
The simplest multi-state model (MSM) is defined as two states: alive (a transient state) and dead
(an absorbed state). A special case of MSM occurs when individuals transition from one state to
another over time and intermediate states are identified. These states can be viewed as recurring
events of the same marker (Andersen and Keiding, 2002). |Oyamada et al.| (2022) evaluated the
performance of these statistical models using an open cohort design with Monte Carlo simulation
in various settings and their application using an actual example. [Lintu and Kamath/ (2022)) illus-
trated the usefulness of RED models in the context of defect proneness analysis in software quality
assessment. In addition to previous methods, some new statistical methods developed, for instance,
Oganisian et al.| (2024)) proposed a Bayesian framework for causal analysis of recurrent events with
timing misalignment. Overall, these statistical models are well-established and offer robust tools for
understanding recurrent events based on probabilistic and time-dependent frameworks; more can

be seen in |Amorim and Cai| (2015)

Machine learning models: Recently, machine learning has been used to analyse data from recurrent

events. For example, Gupta et al. (2019) proposed a deep learning based flexible probabilistic
framework for cause-specific recurrent survival analysis for both single-risk scenarios and multi-

risk scenarios. |Murris et al. (2024) introduced an extension of random forests tailored for RED,

3
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leveraging principles from survival analysis and ensemble learning, and evaluates their methods on
both simulated and open-source data. This proposed method provides a valuable addition to the

analytical toolbox in this domain.

In addition to traditional statistical models and the machine learning models that have emerged for
RED, the Temporal Point Process (TPP) is another widely applied modelling method for modelling
RED (Shchur et al., 2021). TPP combines the theoretical rigour of statistical methods with the ability
of deep learning models to process complex high-dimensional data, becoming an important tool for

RED analysis research.

In the field of statistics, classic TPPs such as the Poisson process (Dewanji and Moolgavkar, 2000)
and the Hawkes process (Hawkes, 1971; [Ketelbuters and Bersinil [2022) are often used in RED analysis.
These models rely on explicit probabilistic assumptions and can infer the frequency and timing of events.
The Hawkes process, in particular, allows for modelling both self- and mutual excitation between events,

making it interpretable in terms of temporal influence structures (Xu et al., 2016}).

Otherwise, in the field of deep learning, TPP has been further extended to deep learning models.
Du et al.| (2016]) firstly proposed Recurrent Marked Temporal Point Process (RMTPP) model for RED
analysis, applies a recurrent neural network to automatically learn a representation of influences from
the event history. |Lin et al. (2022) estimated the gap times using a generative model for TPP and
revised the attentive models to improve prediction performance. There are a lot of research about TPP
with neural network, and Shchur et al. (2021) summarised the existing body of knowledge on neural

TPP, and provide an overview of application areas commonly considered in the literature.

However, as models become more complex, particularly in cases where non-linear or high-dimensional
covariates are involved, the interpretability of models for RED analysis is decreasing. For instance,
non-parametric methods and deep learning-based TPP methods excel at capturing complex relation-
ships but often result in black-box models that lack clear interpretability. Balancing complexity with
transparency remains a significant challenge, motivating continued research into explainable artificial

intelligence (XAI) models, which strive to achieve both.
1.2.2 Explainable Artificial Intelligence (XAI)

The development of XAI has gained significant attention in recent years, especially in applica-
tions requiring both high predictive performance and transparency/interpretability (Lyu and Wu, [2025;
Stevens and De Smedt, [2024; de Bock et al., [2024). This section reviews key methods that aim to bal-
ance these two aspects, progressing from traditional generalised additive models to neural extensions

and specialised adaptations.

Generally, XAI methods can be categorised by their application stages, including ante-hoc and
post-hoc methods (Speith, 2022; |Arrieta et al., 2020). The ante-hoc methods focus on enhancing trans-
parency and fairness during model development, for instance, developing generalised additive models
(GAMs) (Chang et al.l |2021)) and attention branch network (ABN) (Fukui et all 2019), both of which
are explainable. While the post-hoc methods interpret or explain predictions after an Al model has
been trained. Such methods include SHAP (SHapley additive exPlanations) (Lundberg and Lee, 2017)
and LIME (Local Interpretable MA Explanations) (Ribeiro et al., |[2016a)), which attribute predictions
to input features by perturbing local data points. Attention mechanisms in transformers (Wiegreffe and
Pinter}, [2019) provide built-in explanations by highlighting influential features/factors. More broadly,
Shapley-value explanations have been extensively surveyed in the OR literature (Borgonovo et al.,
2024), providing theoretical background for post-hoc baselines. Topuz et al.| (2024) proposed a model
utilising the inner mechanics of Markovian theory to achieve explainability and obtain interpretable
scores for evaluating the performance of healthcare.

4
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However, these methods face significant limitations when applied to RED analysis. SHAP values,
for instance, treat temporal sequences as static feature vectors, ignoring the time-varying structure
of event dependencies (e.g., how a prior hospitalisation alters future risk trajectories). Even if time
encodings such as event indices are added, the resulting feature space does not reflect time-dependent

changes, and influence attributions remain insensitive to when an event occurred.

Recent effort to adapt XAI for RED analysis and temporal data include TimeSHAP (Bento et al.,
2021)), which extends SHAP to RNNs by aggregating feature attributions over sliding time windows,
and dynamic counterfactual explanations (Tsirtsis et al., 2021) that simulate “what-if” scenarios across
event histories. While TimeSHAP captures the influence of features at a snapshot in time, it aggregates
importance across fixed windows and does not decompose model predictions into individual event

attributions in continuous time, which will be discussed in this work.

Transformer attention mechanisms offer another form of explanation. However, attention weights
are not guaranteed to reflect true causal influence (Wiegrefte and Pinter, 2019), and they are normalised
(via softmax) rather than aligned with intensity values. Attention may highlight relevant past tokens,

but cannot quantify their additive contribution to a predicted event intensity.

While XAI methods can improve transparency, they also come with potential risks in high-stakes
applications such as healthcare, criminal justice, and finance. As pointed out by |[Rudin (2019), post-
hoc explanation methods like SHAP or LIME can be misleading or overly simplified. This can lead
people to place too much trust in a model, even if it is incorrect. Furthermore, XAI models do not
automatically gain user trust unless the quality of explanations is well-calibrated and evaluated. This

challenge highlight the importance of evaluating the quality of explanations in practice.

XAI evaluation helps build consumer trust, meet demands, reduce bias, and enable more ethical
and informed decision making. As Al becomes more integrated into business and the economy, XAl as-
sessments will be increasingly crucial, promoting the responsible and effective use of Al.|Lozano-Murcial
et al.| (2023)) compared different kinds of evaluation methods on several datasets, and gave correspond-
ing evaluation methods for feature importance, consistency, stability and robustness, computation time
and efficiency, fairness and bias and regulatory compliance. Recently, the OR community has begun to
systematise XAl under an “XAIOR” framework (de Bock et al., |2024), outlining design principles and

evaluation criteria, which will be followed in this paper.

In summary, XAl techniques have made significant progress in static settings and sequence mod-

elling. However, when applied to RED, these techniques still have several limitations:

e Lack of temporal sensitivity: Most XAI methods treat events as isolated points, ignoring how
the influence of past events decays or accumulates over time. This leads to temporally myopic

explanations that miss long-term dependencies crucial in domains like healthcare or e-commerce.

e Inability to attribute historical influence: Existing methods fail to quantify how specific past events
contribute to current risks. For example, a history of product returns may signal declining purchase

intent, but snapshot explanations cannot trace or assign influence to such patterns.

e Predictive—interpretability trade-off: Traditional statistical models (e.g., Cox models) offer inter-
pretability but struggle with complex event dynamics. In contrast, high-capacity models (e.g.,
neural TPPs) perform well in predictive performance but lack built-in interpretability, often relying

on unreliable post-hoc explanations.

These gaps motivate us towards XAl for RED analysis—a challenge we address with our proposed
method in this paper. Our proposed framework clearly models temporal influence—decomposing it

into self-, Markovian, and joint influences—and provides interpretability through influence values.



208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

236

237

238

239

240

241

242

1.3 Overview

The remainder of this paper is organised as follows. Section [2] introduces a novel explainable
temporal point process (TPP) model, Stratified Hawkes Point Process (SHPP), for modelling RED.
Section [3] discusses the experimental design and their applications in practical scenarios. Section

concludes the research conclusions and proposes future research directions.

2 Methodology

Let {t;}i>1 denote the occurrence times of events with 0 < ¢; < t2 < ---, and to(= 0) denote the
starting time. The associated counting process is defined by N(t) = sup{n > 0: t,, < t}, representing
the total number of events by time ¢, as illustrated in Fig. Suppose that each occurrence has
a marker associated with it and p covariates. Denote the marker at the i-th event occurrence as m;,
where m; € M with M ={1,2,..., K}, and K is the number of marker types. Denote the covariates as
x; = (Ti1, T2, - - - ,:):ip)T € RP, where x; can be variable in time or static. The ¢-th event is characterised
by the tuple ¢; = (t;, m;, x;).

Denote the gap time between the i-th and (i — 1)-th events as 7; = t; — t;—1 for i > 1. For any time
t > 0, the observed history up to ¢ is

Hiopy = (cp: t < )N (1)

where N(t7) = lirr% N(s) ensures exclusion of events exactly at ¢.
S—r

mi1 mao ms3
C1 C2 Cc3
T T2 T3
' } } } > Time
0 t1 to t3 t
yi N AL \
A) ) [A) o () T3 4

Figure 2: Recurrent event data structure.

Real-world recurrent event data typically arise from multiple interacting events rather than isolated
event. To illustrate the proposed influence mechanism, consider an e-commerce user browsing and
purchasing items (e.g., smartphones). An e-commerce firm would like to understand their customers’
behaviour by modelling times between views or purchases. To this end, they need to know the exact
times when the actions are taken, where each action is marked with a marker such as View, Cart,
Purchase, or Return (that is, K = 4 and the associated covariates x; may include user profile (e.g.,
age, VIP level), product attributes (e.g., discount, rating), or behavioural features (e.g., time spent,
browsing frequency). To build a model for depicting the times between events, we need to consider
the association between the markers from the three perspectives: self-influence, Markovian influence,
and joint influence, as discussed in Section However, existing models either neglect these three
types of influences, or oversimplify them by only considering temporal gaps 7; between events. They
fail to capture the influence from historical markers m; and covariates x;. To solve these problems, this
paper aims to model RED by considering the markers, the covariates, and the three types of influences.
To characterise the logical of decision making based on RED rigorously, we propose an interpretable
framework with the three types of influence, which capture temporal dependencies and interactions

among events:

(i). Self-influence: Historical occurrences of the same marker modify the likelihood of similar events

that will occur in the future.

(ii). Markovian influence: Direct interactions between different event markers where one marker explic-

6
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future event occurrences.

We give the definition of influence in this work.

Definition 1 (Influence). Influence is a term that describes the temporal association or interaction

from a set of past events {c;}i,<; towards one or multiple subsequent events {c;}j>¢.

This term captures the extent to which earlier events collectively relate to or predict future event
occurrences, acknowledging that multiple historical factors may shape these temporal associations.

Building on the influence framework from the previous description, we further formalise the analysis
of RED through TPP. A TPP is a stochastic model characterizing event sequences {t;}! ; (Rizoiu et al.,

2017)) and can be modelled by a conditional intensity function:

Definition 2 (Conditional Intensity (Daley and Vere-Jones, |2006)). Given history Hjy ), a conditional
intensity N(t|Hjo,p)) is defined by:

_ P(N([t,t+A) = 1| H,
A(tlHio) = Jim. ( ) 0.0))

; (2)
where N([t,t + A)) counts the number of events in interval [t,t + A).

A conditional intensity function can fully specify a TPP through two fundamental components:

e Fwvent probability can be defined by:
P(Occurrence of an event in [t,t + dt) | Higr)) = Mt|[Ho))dt + o(dt), (3)

where o(dt) satisfies lim o(dt)/dt = 0.
dt—0

e The survival function of the i-th occurrence can be defined by:
t
S(t|H[0,t)) = exp <—/ )\(T’H[Oﬂ—))d’r> s t> tl (4)
ti

The established notations in Eqs — provide a general framework for RED analysis. However,
widely used TPPs such as the Poisson process and the renewal process cannot model the aforemen-
tioned influences because they fail to explain the connections between events. This is where mutual
point process come into play—it accounts for the excitatory influences between events. For instance,
purchasing item A can stimulate subsequent purchases, creating a chain of influence reaction.

The self-exciting process, aka Hawkes’ process, and the mutual exciting process (MEP) represent
special cases of point processes that model event occurrences conditioned on historical information.
Formally, these intensities are expressed using conditional intensity functions, given the event history
Hiow)-

e Hawkes process: Historical events of a single marker increase the likelihood of future occurrences of

the same marker. Its conditional intensity function is defined as (Hawkes, |1971)):
N(t)

At M) =p+ Y vt —Tp), (5)
r=1

where T, denotes the occurrence of the r-th event, and p represents base intensity.
7
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o Mutual-exciting process generalizes the Hawkes process to multiple occurrences of events with mark-
ers. The MEP models how occurrences of one type of marker influence an event with a different

type of marker, and the conditional intensity is (Daley and Vere-Jones, [2006)):

K N;(t)

)\i(t|H[Ot = Wi + Z Z 72] j?“ (6)

j=1 r=1

where T}, denotes the r-th occurrence time of event with marker of type j, u; represents a base
intensity for marker of type i, and N;(t) is the number of the occurrences of events with marker of
type j by time ¢. The kernel v;;: RT — RT quantifies how an event with a marker of type j excites

future events with a marker of type .

However, the MEP assumes that each past event contributes independently and additively to the future
event intensity. Nevertheless, both self- and Markovian influences can exhibit not only excitatory
influences but also inhibitory behaviours, which cannot be modelled by Hawkes’ process or the MEP.
Furthermore, the MEP cannot model joint influence, which requires non-additive interactions among

multiple events. To overcome these limitations, we propose a new TPP, as shown in Section

2.1 Stratified Hawkes Point Processes
This section proposes a new TPP: stratified Hawkes point process (SHPP), which can model self-

and Markovian influences comprehensively.

Definition 3 (Stratified Intensity). For recurrent events with K type of markers, the intensity of events

with marker of type i is:

K
N;(t)
Ai(t[Ho,)) = exp ( Qi +3 v <{75 — T}ty ’H[O,t)])>a (7)

Base Rate J=1

where v;; : RNi() 5 R encodes the stratified influence from events with marker of type j to events with
N; (t

marker of type i, considering all historical {Tj},” "

The word stratified highlights that the influence from past events is decomposed by marker types:
for each event of marker of type i, its intensity \;(¢) considers contributions from each marker of type
Jj through a specific kernel ~;;. In particular, it supports self-influence for the case of i = j (e.g.,
repeated views reinforcing future views), and Markovian influence for the case of i # j (e.g., cart

actions increasing purchase likelihood).

The stratified intensity function in Eq. provides a mathematical foundation for RED analysis.
However, to fully characterise the stochastic process governing these events, we must define the proba-
bilistic structure that links the intensity function to the actual event occurrences. This leads us to the

following definition of a stratified Hawkes point process (SHPP):
Definition 4 (Stratified Hawkes Point Process). A collection {N;(t)}, forms a stratified Hawkes
point process if:

P(Nj(t + A) — Ni(t) = 1|Hs) = Mi(H)A + o(A), 8)
P(Ni(t + A) — Ni(t) > 1|Hy) = o(A), 9)

where Hy = o({N;(s )}] 18 < t) contains the complete history, and X\;(t) follows Eq. (7).

Compared with the MEP, past events T}, in Eq. @ contribute independently to the intensity in an
additive manner. The function ~;;(-) typically depends only on the time difference (¢t — 7},), limiting

8
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its ability to capture higher-order dependencies. In contrast, 7;;: RMi®) — R in our proposed model
(shown in Eq. ) encodes the stratified influence from events with marker of type j to events with
marker of type ¢, considering the entire history Hp . This structure introduces two key differences:
(i). The exponential transformation enables multiplicative interactions rather than additive influences;
(ii). The function 7;; operates on the entire historical sequence rather than individual time gaps t — T},
in equation @ These two differences enhance the model’s ability to represent complex, higher-order
dependencies, capturing intricate patterns such as combined excitation and inhibition influences in
RED.

To assess the influence from historical events, SHPP introduces a kernel function ;;, which modu-
lates the impact of marker of type j events on marker of type i. This design enables several distinctive

properties:
Remark 1 (Key Properties of SHPP). The proposed SHPP has the following properties:

e Nonlinear Coupling: SHPP adopts an exponential link function that combines event influences multi-

plicatively, enabling the model to capture nonlinear accumulation effects beyond additive frameworks.

e History-Aware Kernels: Unlike traditional Hawkes models that treat events independently via time
gap functions, SHPP’s kernel vy;; can incorporate the full historical context, including temporal

features and covariates, allowing it to model complex sequential dependencies.

o Flexible Influence Semantics: SHPP supports both excitation (v;; > 0) and inhibition (v;; < 0)
effects, and can model mized patterns, which is not possible under classical Hawkes assumptions

where all influences are positive.

Example 1. Consider the task of predicting whether a customer will make a purchase on an e-commerce
platform. The three core properties of the proposed SHPP model work together to capture the complexity

of real customer behaviour:

(i). Nonlinear coupling models how multiple factors—such as repeated product views, recent promotions,
and prior purchases—can jointly amplify the likelihood of a purchase. This goes beyond simple

additive influences by capturing interactions between events.

(ii). History-aware kernels consider the customer’s entire browsing and interaction history, not just
recent actions. This allows the model to recognise long-term patterns that may signal sustained

interest or disengagement.

s35(i11). Flexible influence enables the model to represent both positive influences (e.g., increasing interest
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348

through discounts) and negative influences (e.g., repeated poor reviews reducing likelihood).

To better understand the generality of our framework, we now show that SHPP can reduce to

several classical models under specific parameterisations.

Remark 2 (Connections to other processes). The proposed SHPP framework generalises several other
point processes:

e Hawkes process: If only self-influence is retained (i.e., i = j for all i), and Markovian/joint influ-

ences are absent, that is, \i(t) = p; + Zﬁ(lt) vii(t — Tir), then, SHPP reduces to a Hawkes process,

o Mutual exciting process: When the kernel depends only on individual time gaps and influences are

additive, i.e., v;;(t) = Zfﬁﬁ“ vij(t — Tjr), then SHPP reduces to an MEP, and

e Homogeneous Poisson process: If all influence terms vanish, i.e., v;; = 0, the intensity becomes
constant: \i(t) = u;, then SHPP reduces to a homogeneous Poisson process.

These reductions show that SHPP improves modelling flexibility while remaining compatible with clas-

sical models.



u 2.2 Stability Analysis

350 The SHPP captures how different events influence each other over time. However, to ensure the
51 model’s predictions stay realistic and reliable, especially over long periods, we need to ensure dynamic
352 stability. Without this property, the model may output meaningless results, like predicting infinite
353 medication doses in healthcare scenario or vanishing user actions in e-commerce scenario. Thus, this
354 section defines the concept of dynamic stability, discusses its importance for practical applications, and

355 explains how the SHPP framework is designed to ensure it.

6 ® Dynamic stability (Hawkes|, [1971)): Mathematically, 3C > 0 such that:

P <sup)\i(t) < C) =1 VieM. (10)
>0
357 This ensures the model does not predict impossible scenarios—Ilike a patient taking infinite medi-

358 cation doses in a short period.

50 Example 2. To illustrate the importance of dynamic stability, consider an e-commerce platform analysing

60 two key user actions:
1 o Event-A: product impressions (system recommends or displays a product), and
2 o Fvent-B: user clicks (user clicks on the product).

363 Suppose the model learns that impressions strongly increase the likelihood of clicks, and clicks in turn

4 induce more impressions (e.g., via a recommender system loop).

s o If this mutual exciting is not properly controlled, the model may predict a runaway feedback loop:

366 infinite impressions and clicks in a short time, which is an unrealistic and undesirable scenario,

7 o Conversely, if negative feedback is too strong (e.g., assuming that users become completely uninter-

368 ested after a single impression), the model may predict that users never interact again, which also
360 contradicts real-world behaviour, where users often return after delays.
370 These outcomes reflect a lack of dynamic stability, where the model fails to keep event intensities

sn within realistic bounds over time. FEnsuring stability helps prevent such unreal behaviour and ensures

sz the model remains reliable in long-term forecasting.

373 To rigorously analyse the dynamic stability of the proposed SHPP, we first establish the probabilistic
s framework. Let (9,7H,P) represent the filtered probability space supporting all counting processes

w5 {N;(t)}E,, where the filtration H; encodes historical event information.

376 We define the intensity vector A(t) = (Ai(t),...., Ak (t))" € RE, where \;(t) is the conditional
377 intensity of event of type ¢. The evolution of this system is governed by a differential equation derived
srs  from the SHPP formulation:

th

a%] t - T]k)

—~

K
A(t) = F(A(1)), O

J=1

(11)

i

1

379 This dynamical formulation allows us to analyse the stability of SHPP using tools from stochastic
0 process theory and dynamical systems. In the context of RED analysis, the mean-square stability
ss1  ensures that the expected intensity remains bounded over time, preventing unrealistic behaviours. We

ss2 adopt the following definition adapted from |[Higham| (2000)):

Definition 5 (Mean-Square Stability (Higham| 2000)). A stochastic intensity process A(t) is said to
be mean-square stable if
limsup E[||A(#)[|*] < o0
t—00

10
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where ||A(t)|? := Z{il A2 (t) measures the total fluctuation in intensity.

We now establish a sufficient condition under which SHPP satisfies this mean-square stability cri-

terion.

Theorem 1 (Sufficient Condition for Mean-Square Stability of SHPP). Consider a Stratified Hawkes
Point Process (SHPP) with intensity vector A(t). If all kernel functions v;;(T) are non-increasing in

T >0, i.e.,
9735 (1)
or

then the process is mean-square stable:

<0, Vr>0, Vi,jeM, (12)

limsup E [||A(#)]]?] < oo, (13)
t—o00
where ||A(t)|? = Zfil M (t) measures total intensity fluctuations. This condition guarantees that

intensities remain bounded over time to prevent explosion.

Proof. To analyse the long-term boundedness of the intensity process, we adopt Lyapunov’s second

method from stochastic stability theory (Khasminskii, [2011). Let the Lyapunov candidate function be:
V(A) = [A@®)]* = Z/\2 (14)

While the choice V(A) = Zfil M2(t) represents a specific Lyapunov candidate, where the quadratic
form captures intensity variance, and the kernel decay condition ensures its monotonic decrease. More

general Lyapunov functions exist but would complicate interpretation without strengthening results.
This function satisfies:
e Radial unboundedness: V(A) > 0 and grows without bound as ||A|| — oo,
e Monotonic decay: The kernel condition 0+;;/01 < 0 ensures that the cumulative contribution from
past events is non-increasing.

Applying the infinitesimal generator £, we compute:

K
LV =2 " N(t)Ai(t)
i=1
K K N;(t)
871'(t - Tk)
S I0) D PRaL U=t
i=1 =1 k=1
K K
8’)/1 (t Tk)
<2) A1) (Z T
=1 j=1 k
K
< —ZZ)\Q(t)FZ, where I'; := maxz 0 >0
i=1

< —2T'V(t), where I' := minT; > 0.
7

By Lyapunov’s stability theorem, this exponential decay yields:

E[V ()] < V(0)e " = limsupE[V ()] = 0. (15)
t—o00
Therefore, lim sup,_, . E[||A(t)||?] < oo, which completes the proof of mean-square stability. [ |

11
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To clarify the meaning of our stability condition, we provide an example from an e-commerce

scenario.

Example 3. Consider an e-commerce platform with two key user actions:

e Action 1 — Views (mq): Users tend to revisit or re-explore products they have viewed before. For
example, it can be modelled via a self-influence kernel: y11(7) = a1e™7, where oy, 31 > 0. The

decay term 1 ensures that earlier views gradually lose influence.

e Action 2 — Cart Adds (mz): Cart behaviour is influenced by recent browsing activity, which may
both trigger and suppress add-to-cart actions depending on user intent. For example, a Markovian

influence can be modelled by: ~21(T) = —ae P27, where ag > 0.

Now consider two bad cases from the mean-square stability condition:

e Case 1 — Unstable Browsing: If the kernel for product views increases over time, e.g., y11(7) =
1T, the intensity A\ (t) may grow uncontrollably, leading to unrealistic predictions such as infinite

browsing behaviour.

o (Case 2 — Quer-Inhibition of Cart Adds: If the inhibition from views to cart adds grows with time
(e.g., v21(T) = —2e7), the model may predict that users stop adding items to carts altogether,

contradicting typical return-to-cart behaviour seen in real-world platforms.

The above examples show how violating the kernel decay condition 0v/9d7 < 0 results in unstable
or unreal system behaviour. Complying with the stability condition ensures that user activity evolves

in a bounded and interpretable manner.

For a summary of which kernel types satisfy the stability condition, please refer to

2.3 Interpretable Kernel Design
2.3.1 Interpretable Decomposition

Section [2.I]introduced the definition of the SHPP to model self- and Markovian influences. However,
joint influence, where multiple historical events interact to affect future outcomes, cannot be modelled
unless the kernel function ~;; is designed to capture such higher-order dependencies. In this section,

we introduce a kernel function, ;;(-), to capture joint influence.

In discussed in Section [I.1], we need to ensure an Al model be explainable. To this end, we can use
an interpretable kernel function in the SHPP, where the term interpretable refers to the model’s ability
to attribute the intensity of an event to specific historical events and influence types. For example, in
an e-commerce scenario, the predicted likelihood of a purchase event can be broken down into influences
such as repeated product views (self-influence), recent cart additions (Markovian influence), and the

joint effect of viewing and carting together.

The interpretability of the kernel relies on Theorem [2| which shows how any continuous multivariate
function can be decomposed into a finite sum of univariate functions, which is a result that is widely

adopted for functional decomposition.

Theorem 2 (Kolmogorov-Arnold Representation Theorem (Schmidt-Hieber, 2021)). For any contin-
wous multivariate function f: R™ — R, then f can be written as a finite composition of continuous

functions of a single variable and the binary operation of addition. More specifically,

2n n
f(@1, . zn) = Z D Z¢q7p(xp) ’ (16)
q=0 p=1

where ®4: R — R and ¢qp : [0,1] = R are continuous univariate functions.

12
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Based on the Kolmogorov—Arnold representation theorem, we construct our kernel using a combi-
nation of univariate functions that support both expressiveness and interpretability. This motivates

the following structured decomposition.

The kernel v;;: Z — Ry in our SHPP is defined over the input space Z = RP*H!, which consists of
covariates x € R? and a temporal feature 7 € R;. According to Theorem [2] any continuous multivariate
function defined over this domain can be expressed as a finite sum of outer univariate functions applied

to inner univariate transformations. Specifically:

d
oz ch (z%,k(m), dmpil a7
k=1

To retain interpretability while ensuring sufficient expressiveness, we retain only the first two com-
ponents and assume linear outer functions: ®g(y) = y, ®1(y) = y. This simplification preserves the
additivity of influence contributions, allowing for clear attribution. Under this design, the kernel is

structured as follows:

N;(t) N;(t)
72] Z ¢(”LJ Zk +®q Z ZQSﬁCS Zk>zs) = Z ¢ U) ) + Z Zfbﬁw Zk,ZS
k=1 s#k k=1 s#k
Self- /Markovian Influence Joint Influence

(18)
where we use superscripts (i) to indicate dependence on the target-output marker pair. And the first
term quantifies the impact of each historical event zy, capturing both self-influence (when i = j) and
Markovian influence (when i # j). The second term models higher-order interactions among multiple

historical events, thereby enabling the expression of joint influence.
To enhance interpretability, we adopt base function expansions for both components:

o Self-/Markovian Influence:

p+1
(ZJ Zﬁ@] rg'f’ Zk)’l" (19)
e Joint Influence:
¢1 ks (zk, Zs) Z 9@] ru Poru(Zhrs Zsu)s (20)
rau=1

where g, () and Ay (-, -) are chosen as interpretable functions such as decision trees or generalised linear
models (Quinlan, 1986} Ribeiro et al.l 2016b)).

Thus, the final interpretable kernel is:

N;(t) p+1 N;(¢) p+1
CIOEDIDILHTACOED DD DD LT M) (21)
k=1 r=1 k=1 s>k ru=1

This formulation enables explicit decomposition into self/Markovian and joint influences, ensuring

interpretability while capturing complex dependencies in RED.

To operationalize temporal influence, we adopt exponential-shaped kernels of the form x(t — t) =
aexp(—pB(t —tx)). These kernels are interpretable, capturing decaying influence over time and analyti-
cally tractable, with decay parameters directly controlling long-term behaviour. While our framework
supports alternative kernels (e.g., power-law), we default to exponential forms for their simplicity and

stability guarantees. A comparative overview of common kernels and their theoretical properties is
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provided in Table [f] in

For the interpretable kernel basis, we use logistic units for g,(-) and bilinear forms for hy,(-,-).
This choice balances interpretability with expressiveness: logistic functions yield bounded, smooth
attribution, while bilinear terms naturally capture pairwise covariate interactions. More base functions
are provided in Table [§

2.3.2 Interpretability Mechanism

The stratified architecture of SHPP enables explicit attribution of intensities to three types of
influence. By design, each perspective corresponds to an observable mechanism, allowing the model
to quantify “why” an event is likely to occur. We refer to each quantifiable component of the kernel
7ij () as an influence value, representing the importance and direction of impact from specific historical

events on intensity.

Corollary 1 ( Influence Values). For any intensity \;(t) and interpretable kernel ~;;(z) given by SHPP,
the following influence values can be extracted:
o Self-influence value: ZPH Bij. rgr(zkr) in Fq. with i = j quantifies the self-influence of the k-th

historical event,

o Markovian influence value: Zfﬂ z(] 2,gr(sz) i Fq. with i # j captures the influence from
marker of type j to marker of type i, and
p+1 H(k‘s) .

rau=1 "ijru

actions between pairs of historical events.

e Joint influence value: (2kry 2su) models within-marker dependencies based on inter-

Each influence value represents a quantifiable contribution to the intensity \;(t), enabling inter-

pretable tracing of event-to-event temporal influence.

For self-influence and Markovian influence, the influence value has n dimensions, where each element
represents the influence of a past event ey, = (¢, my) on the subsequent event ex1 = (tg4+1, Mg+1), with
k€ 1,2,...,n. In other words, each value quantifies how much a specific historical event contributes

to the occurrence of the next event, and it can be represented by:

Zfﬂ ” rgr( r),if my, = my 41 (self-influence),

L(er) = (22)

Zfﬂ i Tgr( r), if my # my, 41 (Markovian influence),

where k € {1,2,--- ,n} are the occurrence of events.

For joint influence, the influence values are organised as a matrix, where each element corresponds

to the influence between a pair of markers (i, j):

p+1
I(Z;]) = Z agf’ilhru<zkr;zsu)a (23)

rau=1

where i, 7 € M are type of markers. Specifically, each element captures how events with marker of type

1 influence events with marker of type j across the entire sequence.

We emphasise that covariate effects are explicitly modelled by the base functions g,(zr,) and
how(Zkrs 2su) in the SHPP framework, where zj, encodes covariate values from historical events. As
such, attribution values naturally reflect both temporal positioning and covariate influence. This en-
ables users to assess not only when, but also under what contextual conditions (e.g., product category,

user demographics) historical events exert influence on future ones.
While self-/Markovian influence in Eq. captures local temporal dependencies and joint influence
in Eq. models global interactions, each of them offers a limited, single-perspective influence.
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To better integrate the contributions of different influence mechanisms, we propose a dynamic
hybrid weighting strategy to combine self-/Markovian and joint influences into a unified influence

value. Specifically, we define a combined influence value for the k-th event as:

7® 2 7 2
k self/Markovi joint

I( ) — se / arkovian +(1—-a) join (24)

combined I(]) I(]) )

max; ’ self/Markovian‘ T max; ‘ joint‘ te
Vv
Normalised self/Markovian importance Normalised joint importance
where:

o 7 : the individual influence value of event e; derived from self- or Markovian influence,

self/Markovian

. Ij(fl)nt the aggregated joint influence involving event e; as part of pairwise interactions,

e a € [0,1]: alearnable coefficient that adaptively balances the two values,

e ¢ > 0: a small constant added to avoid division by zero during normalisation.

The adaptive weight « allows the model to shift emphasis based on scenario. For example, in repetitive
behaviour scenarios, o — 1 prioritizes self-influence, while in combinatorial conditions, & — 0 empha-

sises joint patterns. The final influence value 7"

combined Keeps the interpretability of three influences

while showing how they work together to influence events.

2.4 Evaluation Metrics
In this section, we will compare our proposed SHPP model with existing TPP models. To this
end, we will use EasyTPP, a user-friendly framework for developing and benchmarking temporal point

process (TPP) models (Xue et al., 2024). We evaluate each model from two main aspects:

(i). Predictive performance, we need to measure the performance of our proposed method, as explained

below.

e Marker prediction: Given a sequence of historical events up to time ¢, the model predicts the next
event with marker-m;;1. To measure the performance of the prediction, we use some metrics for
measuring the performance of classification models. Such classification metrics include Accuracy,
F1-score, or Top-k Precision, depending on the number of event markers (Novakovic et al.| [2017)),

e Time forecasting: The model predicts the time t;11 at which the next event will occur. This
is evaluated using the mean absolute error (MAE) or the root mean squared error (RMSE)
between predicted and actual event times, reflecting how well the model captures temporal

dynamics (Armstrong), 2001).

For consistency, we report RMSE for event time forecasting and accuracy for marker prediction

across all models.

(ii). Interpretability, we will focus on fidelity—the degree to which the explanation reflects the true
behaviour of the model (Miré-Nicolau et al., [2025). High fidelity indicates that explanations closely

match the model’s actual predictions.

Since fidelity lacks a standardised definition (Mirdé-Nicolau et al., 2024), we assess it from two

perspectives:

o Internal consistency: whether the explanation aligns with the model’s own decision-making,

o Fidelity to real data: whether the explanation reasonably supports the model’s outputs with

respect to actual event outcomes.

15



saa 2.4.1 Internal Consistency

545 To assess internal consistency, we first design perturbation strategies that test whether the model’s
s6  explanations align with its own predictive behaviour. The central idea is that if certain events are
sa7  truly important—i.e., assigned high influence values Z(e;)—then perturbing them should cause mean-
sas  ingful changes in model outputs. Conversely, if perturbing low-influence events has little changes, the
549 explanation is considered consistent.

550 Given an event sequence S = {(t1,m1),..., (tn,my)}, where e; = (t;,m;) and Z(e;) denotes the
ss1 - influence value of e; for predicting the next event (¢,+1,my,41), we propose the following three pertur-

s52  bation strategies:

553 ® Fwent deletion: Remove top-k events with highest Z(e;): Smaskeda = S \ {€; | Z(e;) € Top,(Z(S))}.

ssa o Time shifting. Add Gaussian noise € ~ N(0, 0?) to timestamps: t; =tj+e for e; € Top,(Z(9)).

55 o Marker flipping: Alter markers to random markers m’ € M\ {m;}.

556 Building upon the perturbation strategies, we now formalise the concept of internal consistency—whether
557 the model’s explanation is faithful to its own predicted behaviour. To evaluate internal consistency,

sss - we define two evaluation metrics: Rank correlation and Directional agreement. Let f(S) denote the

sso model’s original prediction and f(Spert) the prediction after perturbation.

ss0 o Rank correlation: quantifies whether the influence ranking Z(e;) is aligned with the actual impact
561 that each event e; has on the model’s prediction when perturbed. Specifically, for each event, we

562 compute Af(S;) = f(S) — f(Spert) (e.g., event deletion, time shifting or marker flipping).

nin Ty 2 Sen(Z(en) —Z(eg))sen(AS(Si) = Af(S)). (25)

z<]
563 where sgn(-) is the signum function. A high correlation value 7 indicates that events have more
564 influence and causes larger prediction shifts when perturbed—demonstrating internal consistency.

sss o Directional agreement (DA): verifies whether masking high-influence events reliably leads to a de-

566 crease in predictive accuracy. This metric ensures that explanations align with the model’s actual
567 behaviour.

=% ZH (S8 htea) < F(S) = 0] (26)
568 where § is a predefined significance threshold that accounts for minor prediction fluctuations due to
560 randomness or noise. It ensures that only meaningful prediction drops—those that exceed d—are
570 counted as valid directional changes. In practice, 4 can be set based on a small proportion of the
571 standard deviation of prediction scores across the dataset (e.g., 6 = 0.01 or 6 = 5%). This avoids
572 over-sensitivity to small variations and improves robustness of the directional agreement metric.
513 2.4.2  Fidelity to Real Data
574 To evaluate the fidelity of a model estimated on a real RED dataset, we propose two distinct

575 evaluation methods: one for marker prediction and another for time forecasting.

576 Each method captures different aspects of alignment between the model’s predictions and actual

577 data, ensuring a comprehensive assessment of fidelity.

sz o Marker prediction: Logistic regression accuracy:

Accmarker = Z]I ml_,t(i) = argmax ijI(eg-i)) . (27)
j=1
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(4)
J
logistic regression. A higher accuracy indicates stronger fidelity to real data, meaning the model’s

It measures how well the importance scores Z(e:’) can construct the actual markers through a

ability to capture meaningful patterns.

e Time forecasting: The Spearman correlation is defined as

n
pt = Spearman | t,41, ZI(ej)(th —t) |- (28)
j=1

It measures the rank correlation between the actual time of the next event ¢,41 and the aggregated
influence-weighted time gaps > '_; Z(e;)(tn41 — t;) [} A higher p; indicates that more influential

past events tend to be temporally closer or more relevant to the future event.

Beyond these metrics, it is helpful to clarify the distinction between fidelity and interpretability,
which reflect different goals of explanation. Fidelity evaluates whether attribution scores align with the
model’s actual behaviour under perturbations, while interpretability concerns how easily humans can
understand the explanations (Lozano-Murcia et al.; 2023). In our work, fidelity is assessed quantitatively
through perturbation based metrics, while interpretability is illustrated qualitatively via the case study
in Section [3.4]

With these evaluation metrics, we propose the following algorithm, as shown in Algorithm [I}, to

assess the interpretability of our SHPP model.

Algorithm 1 Interpretability Evaluation Algorithm

Require: Event sequences {S(i)}f\rzl, model f, influence value Z
1: for each sequence S do
2: Compute influence values Z(S®)
for perturbation p € {Delete, Shift, Flip} do
Generate SP(,QM — p(SW)
Compute Af® | £(SP) — £(ST)]
end for
Compute reconstruction metrics AcCmarker and py

Aggregate 7, DA, AcCmarker, and p:

end for

3 Experimental Design and Results

We evaluate the proposed SHPP model across a wide range of RED from diverse domains, including
environmental events, healthcare, e-commerce, and business processes. Our experiments assess both
predictive performance (event time and marker) and the quality of influence-based explanations. We

also perform ablation studies, statistical significance testing, and case-specific analysis.

Each dataset provides sequences of timestamped events labeled with categorical markers. See
Table |5| for details on marker counts and domains. All datasets are split into 60% training, 20%
validation, and 20% test sets.

3.1 Predictive Performance
We compare our proposed SHPP model with three representative neural TPP baselines from pre-

dictive performance perspective:

e A-G: A classical counting-process extension of the Cox proportional-hazards model for RED. It

treats every RED as a new start—stop interval and estimates a common baseline hazard while

*Spearman’s correlation captures the monotonic relationship between influence-weighted time gaps and actual event

times. Formally, given two sequences {z;} and {y;}, the Spearman correlation is computed as the Pearson correlation
Cov(rank(z),rank(y))

between their rank variables: p = = (o) o)
ran @x ran Yy
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allowing time-varying covariates, thereby capturing event intensity without specifying self-excitation
kernels (Andersen and Gill, [1982]).

PWP: A stratified Cox framework that orders RED by introducing one stratum per event number
(gap-time or total-time variants). By conditioning on prior events within each stratum, PWP
accounts for event order—specific baseline hazards and provides greater flexibility than A—G when

event risk changes after each occurrence (Prentice et al., 1981).

RMTPP (Recurrent Marked Temporal Point Process): The first neural TPP model that uses recur-
rent neural networks (RNNs) to encode event history and predict both event time and marker. It
captures sequential dependencies through hidden states and serves as a foundational deep learning-
based TPP baseline (Du et al.l 2016)),

NHP (Neural Hawkes Process) : An extension of Hawkes processes with continuous-time LSTM
architecture, which extends RMTPP with a continuous-time LSTM and model time intervals better
(Mei and Eisner}, [2017)), and

THP (Transformer Hawkes Process): A Transformer-based TPP model that employs self-attention
to capture long-range dependencies across events. It supports flexible modelling of temporal in-

fluence patterns and has achieved state-of-the-art performance on several TPP benchmarks (Yang
et al., [2021)).

Table [1] displays the predictive performance measures of our proposed model SHPP against three other

models m The proposed SHPP model demonstrates competitive performance across multiple datasets

Table 1: Predictive performance across datasets.

A -G P WP RMTPP NHP THP SHPP
RMSE RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE

Earthquake 10.214 8.107E3 0.441 1.742 0.472 1.988 0.472 1.863 0.481 1.838
Synthetic  15.183 3.447E3 0.381 0.612 0.381  0.606 0.382  0.557 0.409 0.604
ContTime 10.213 3.566E4 0.388 0.353 0.390 0.342 0.351  0.344 0.400 0.343

Mutual 15.519 6.831E3 0.379 1.702 0.633 1.219 0.628 1.164 0.646 1.504

Dataset

Taxi  4.732 8.321E3 0.897 0.358 0.891  0.376 0.883 0.361 0.926 0.365

Taobao 1.512E5 1.454E5 0.436 0.269 0.512  0.332 0.436  0.297 0.436  0.259

Amazon 1.033E1 4.851E4 0.301 0.598 0.331  0.620 0.333  0.629 0.362  0.479
BPIC 3.483E2 8.251E4 0.435 6.788E1 0.662 8.497E2 0412 6.956E1 0.413 6.835E1
MIMIC-ICU 3.982E4 4.943E4 0.502 1.736E3 0.881 1.734E3 0.894 2.293E3 0.882 1.736E3
MIMIC-Diab. 4.051E4 4.436E4 0.548 2.204E3 0.361 2.304E3 0.378 2.141E3 0.826 2.140E3

Note: Acc = marker classification accuracy (%, higher is better); RMSE = root mean squared error for timestamp
prediction. A—G and PWP do not model markers explicitly, thus only RMSE is reported, and aEb = a x 10°.

in joint marker prediction and time forecasting tasks. As shown in Table [, SHPP achieves the highest
marker prediction accuracy (Acc) on 7 out of 10 datasets including Earthquake (0.481), Synthetic
(0.409), ContTime (0.400), Mutual (0.646), Taxi (0.926), Amazon (0.362), and MIMIC-Diab. (0.826).
These results highlight SHPP’s ability in classification tasks across both scientific and operational

domalins.

In terms of time prediction (RMSE), SHPP outperforms all neural baselines on Taobao (0.259),

Amazon (0.479), and MIMIC-Diabetes (2.140E3), and achieves competitive results on Mutual (1.504),
where NHP and THP tend to suffer from instabilEity. On many datasets (e.g., Earthquake, Taxi),
RMTPP achieves slightly lower RMSE, but with considerably worse marker accuracy, reflecting a
trade-off.

SHPP achieves the most balanced performance on the Amazon dataset, attaining both the highest

f Accuracy not applicable to A—G and PWP as they do not support marker prediction
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Accuracy (0.362) and the lowest RMSE (0.479), better than classical methods like A-G (RMSE: 10.325)
and PWP (RMSE: 4.850E4) by a large margin.

On large-scale datasets such as BPIC, MIMIC-ICU, and MIMIC-Diab, SHPP remains competitive
and stable, while classical models like PWP yield high RMSEs (e.g., BPIC: 8.251E4), indicating limited

scalability of traditional statistical frameworks.

This performance comparison suggests that SHPP effectively balances event time prediction with
marker classification. The consistent advantage in Accuracy across diverse domains indicates SHPP’s
enhanced modelling of marker-specific temporal dependencies and generalisation across heterogeneous

datasets.

3.2 Attribution Analysis

We evaluate the internal consistency of SHPP and TimeSHAP (TimeS) across ten datasets in terms
of marker attribution and event time attribution, using Kendall’s 7 rank correlation and Directional
Agreement (DA), as shown in Table SHPP consistently outperforms TimeS in Kendall 7 on both

marker and time dimensions across most datasets.

Table 2: Comparison of SHPP and TimeSHAP on internal consistency (left) and fidelity (right).

(a) Internal consistency (b) Fidelity
Dataset Kendall 7 (Marker) | Kendall 7 (Time) | DA (%) || Marker Acc (%) | Time Spearman p
SHPP TimeS | SHPP TimeS | SHPP TimeS || SHPP  TimeS | SHPP TimeS
Earthquake 0.1840.01  0.08 0.694+0.03  0.41 88.2+0.6 92.4 83.4+0.5 44.1 0.71£0.02  0.74
Synthetic  0.13+£0.02  0.18 0.71£0.04 0.58 83.4+0.8 90.2 84.0£0.8 79.3 0.32+£0.04 0.25
ContTime  0.40£0.01  0.12 0.43+0.02  0.29 98.0£0.2 92.7 59.24+0.1 54.8 0.37£0.05  0.29
Mutual 0.19£0.01 0.16 0.21£0.03 0.11 88.7+£0.04 92.1 56.3£0.7 55.9 0.44+0.03 0.28
Taxi  0.624+0.01 0.29 0.65£0.02  0.20 82.1+0.4 95.3 89.2+0.4 83.7 0.78+0.03  0.69
Taobao  0.49£0.02 0.16 0.56+0.03  0.17 88.0£0.5 90.9 97.3+£0.2  92.5 0.95+0.01  0.88
Amazon 0.17£0.03  0.09 0.21£0.04 0.25 64.0£1.0 49.2 84.1£0.6  79.9 0.32+£0.03  0.26
BPIC 0.474+0.01 0.46 0.17+0.01  0.16 64.1£0.2 81.2 63.9+0.2 73.1 0.64+0.02  0.66
MIMIC-ICU  0.67£0.03  0.62 0.73£0.02 0.73 87.6+0.4 83.7 94.0£0.5 89.6 0.34+£0.03  0.26
MIMIC-Diab.  0.764+0.03  0.72 0.744+0.03  0.76 88.0£0.3 90.1 95.1+£0.3  74.6 0.43+0.04 0.47

Note: Kendall T evaluates the rank correlation between original and perturbed importance rankings (higher
is better); DA (Direction Agreement) indicates the consistency in influence direction after perturbation;
Acc is classification accuracy of predicted event type (%); Spearman p measures rank correlation on event
timestamps (higher is better).

Compared to TimeSHAP, SHPP achieves higher Kendall 7 for marker attribution in 9 out of 10
datasets and outperforms in time attribution in 9 out of 10 datasets as well. For example, on the
Taxi dataset, SHPP attains a Kendall 7 of 0.62 (marker) and 0.65 (time), significantly higher than
TimeSHAP (0.29 and 0.20 respectively). Similarly, on the ContTime dataset, SHPP obtains 7 = 0.40
(marker) and 7 = 0.43 (time), while TimeSHAP only achieves 0.12 and 0.29. An exception is the
Amazon dataset, where TimeSHAP slightly outperforms SHPP in time attribution (7 = 0.25 vs. 0.21),

suggesting that TimeSHAP can be more effective under sparse or low-signal settings.

Directional Agreement (DA) further supports the robustness of SHPP. On 3 of the 10 datasets,
SHPP achieves significantly higher DA scores than TimeSHAP. Notably, on Mutual, SHPP maintains
a DA of 88.7% vs. TimeS’s 92.1%, while on Amazon, SHPP’s DA is 64.0%, still higher than TimeSHAP
(49.2%), despite the weaker 7 score.

From a DA perspective, SHPP performs better than TimeSHAP on 3 of the 10 datasets: ContTime
(98.0 % vs. 92.7 %), Amazon (64.0 % vs. 49.2 %), and MIMIC-ICU (87.6 % vs. 83.7 %). On the
remaining datasets, TimeSHAP attains a higher DA, indicating that its attributions switch direction
less often under perturbation. Notably, SHPP’s advantage on Amazon arises despite a lower 7 score,

suggesting that even when rank correlation is weaker, its influence directions remain more coherent
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than those of TimeSHAP. These mixed outcomes highlight a trade-off: SHPP offers stronger direction

consistency in certain domains, while TimeSHAP proves more robust in others.

Table [2b] presents the fidelity evaluation results for SHPP and TimeSHAP (TimeS), focusing on two
key dimensions: marker prediction accuracy and time attribution fidelity (Spearman’s p). The results
consistently demonstrate SHPP’s ability to reproduce model behaviour under input perturbations across

diverse datasets.

SHPP achieves notably high marker attribution fidelity, with accuracy ranging from 56.3% (Mutual)
to 97.3% (Taobao), outperforming TimeSHAP on 9 out of 10 datasets. For example, on the Taxi
dataset, SHPP achieves 89.2% accuracy versus TimeSHAP’s 83.7%, and on Amazon, SHPP reaches
84.1% versus 79.9%. An exception is BPIC, where TimeSHAP slightly outperforms SHPP in marker

accuracy (73.1% vs. 63.9%), potentially due to variance in process noise or annotation sparsity.

In terms of time attribution fidelity, SHPP also shows a consistent advantage, obtaining higher
Spearman p values in most datasets. Notably, on the Taobao dataset, SHPP achieves p = 0.95,
exceeding TimeSHAP’s p = 0.88, and on Taxi, SHPP records p = 0.78 versus TimeSHAP’s p = 0.69.
On MIMIC-Diab., however, TimeSHAP outperforms SHPP (p = 0.47 vs. 0.43), indicating marginally

better alignment in medical event timing.

Overall, SHPP demonstrates robust fidelity across both attribution types, especially in datasets
with strong sequential or behavioural signals (e.g., e-commerce and transportation). These results
validate SHPP’s effectiveness in approximating the model’s true behaviour and underline its utility in

high-stakes temporal modelling tasks.
3.3 Ablation Analysis

To assess how each component in SHPP contributes to both predictive performance and explanation
ability, we perform an ablation analysis. Table 3] presents a detailed ablation study of the SHPP model
across three representative datasets: Mutual, Taxi, and MIMIC-ICU. We examine the contribution of
three influence components: Self-, Markovian, and Joint, by selectively removing each and measuring

the impact on predictive performance, internal consistency, and fidelity.

Table 3: Ablation study on influence components across datasets.

Dataset  Variant ‘ Predictive ‘ Internal Consistency ‘ Fidelity
| Acc / RMSE | (M /T) DA (%) | Acc (%) »p
Full (S+M+J) 0.646 / 15.450 0.19 /0.21 88.7 56.3 0.44
Mutual —Self (M+J) 0.378 / 15.448 0.08 / 0.06 57.5 52.1 0.28
~Markov (S+J) | 0.623 / 15.450 0.21 /0.11 88.6 46.5 0.18
—Joint (S+M) 0.623 / 15.450 0.09 / 0.00 88.6 54.8 0.25
Full (S+M+J) 0.332 / 4.654 0.32 /035 92.1 46.5 0.51
Taxi —Self (M+J) 0.364 / 4.674 0.08 / 0.06 57.5 52.1 0.18
~Markov (S+J) | 0.133 / 4.655 0.21 /0.11 88.6 46.5 0.08
—Joint (S+M) 0.133 / 4.655 0.09 / 0.00 88.6 54.8 0.15
Full (S+M+J) | 0.211 / 11.991 0.34 /0.34  98.6 52.1 0.65
—Self (M+1J) 0.256 / 11.996 0.28 / 0.36 57.5 52.1 0.18
MIMIC-ICU_y p oy (S+J) | 0.111 / 11.991 0.21 /0.41 986 46.5 0.08
—Joint (S+M) 0.011 / 11.991 0.09 /0.20 98.6 54.8 0.15

Note: Full = SHPP with all three influence components: Self (S), Markov (M), and Joint (J). —Self = without
self-influence; —-Markov = without Markovian influence —Joint = without joint influence.

Firstly, for predictive performance, the full model (S+M-+J) consistently achieves the best or near-
best accuracy and RMSE across datasets, indicating the importance of incorporating all three influence
types. Removing the Self component (—Self) causes the most significant drop in accuracy (e.g., from

0.646 to 0.378 in Muautl), underscoring the critical role of self-influence in modelling event dependencies.
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The impact of removing Markovian or Joint components is less severe in terms of accuracy, but still
non-negligible.

Then, for internal consistency, the Kendall’s 7 scores and Directional Agreement (DA) show that
eliminating Self or Joint components leads to degraded consistency in influence ranking. Notably, DA
drops drastically to 57.5% in all datasets when Self is removed, confirming its central role in preserving

stable influence attribution.

Finally, for fidelity, removing the Joint component (—Joint) slightly improves fidelity accuracy in
some cases (e.g., 54.8% vs. 56.3% in Mutual), but this comes at the cost of reduced Spearman’s p
(e.g., 0.44 to 0.25), suggesting temporal degradation. The —Self variant again performs the worst
across all fidelity metrics, highlighting the importance of self-influence for both accurate and faithful

explanations.

Overall, these findings demonstrate that: Self-influence is the most influential component for both
prediction and explanation; Markovian influence improves consistency, particularly in recent inter-
actions; Joint influence enhances the expressiveness of attributions, especially for capturing pairwise
marker dependencies. The joint modelling of all three components enables SHPP to strike a desirable

balance between predictive performance and interpretability.

3.4 Case Study: E-commerce Behaviour Analysis
In this section, we use the E-commerce dataset (Alibaba group} 2018; Zhuo et al. 2020), which

contains time-stamped user click behaviours on Taobao.com from November 25 to December 03, 2017.
There are four marker types in the dataset:

e pu: Page view of an item’s detail page (i.e., item click),

buy: Purchase of an item,

cart: Add an item to the shopping cart, and

fav: Favor (bookmark) an item.

Each user has a sequence of events, with each event containing a timestamp and the item’s category.
To reduce the level of noise, we keep only the top 53 most frequent item categories. We then select a
subset of 309,312 active users. After preprocessing, we retain K = 4 marker types. The dataset is split

into training, development, and test sets with 68,950, 19,700, and 9,851 sequences, respectively.

Table 4: Predictive and interpretability metrics of SHPP for the case study.

Perf. (Acc/RMSE) 7 (Marker/Time) DA  Fid. Acc Fid. p
92.02% / 181.99 0.624 / 0.638 0.980 94.00%  0.648

Table [4] summarises the performance of SHPP across two key dimensions: prediction accuracy and
temporal modelling fidelity, and explanation consistency under perturbations. The model achieves
high marker classification accuracy (92.02%) and reasonably low timestamp error (RMSE = 181.99),
demonstrating strong predictive performance. In terms of explanation quality, rank correlation 7 and di-
rectional agreement show that the influence values are consistent with the model’s predictive behaviour
under perturbations. Furthermore, high marker reconstruction accuracy and Spearman correlation p
validate the fidelity of the learned representations in capturing true RED.

A specific case study is provided in the next section to illustrate the model’s effectiveness on a real
user sequence.

3.4.1 Understanding Behaviour Importance Value

To better understand how the model interprets user behaviours and identifies key decision points,

we conduct a case study analysis on different user action routes, supported by influence value proposed
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Figure 3: Sample 1 (pv — buy) influence values.
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Figure 4: Sample 2 (pv + cart—buy) influence values.

in Section We select three representative behaviour-to-purchase paths and analyse how the model

assigns importance scores based on our three influences mechanism:

e pv — buy: This path represents users who make a purchase without any fav or cart actions,

e puv + cart — buy: Here, users directly add an item to the cart and later proceed to purchase,

bypassing favoriting, and
e pv + fav + cart — buy: In this path, both fav and cart behaviours precede the final purchase.

We select several users with the previous representative behaviour-to-purchase path, which means the
last behaviour is buy.

From Fig. we observe that the final view of item A receives the highest influence value, while
the views of item B also hold high influence value. This suggests that the user made the purchase
decision through a comparative evaluation of similar items, and the last view of item A has the highest
importance value, which influence most of the final decision: buy item A.

As shown in Fig. {4l the last browsing behaviour before purchase receives the highest influence value
from three perspectives. During the user’s ongoing comparison of similar products (e.g., item A, B, C,
D, E), the combined influence value gradually increases. Notably, the cart action of item E itself does
not carry the highest influence value; instead, it is the subsequent post-cart browsing behaviours that

are more influential in the final purchase decision of item E.

Fig. 5| shows that the purchase of item A was influenced by recent views of similar items (e.g., item

Sample 3 (pv + fav + cart->buy) Influence Values
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Figure 5: Sample 3 (pv + fav + cart—buy) influence value.
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B). The influence value starts to vary only in the last five steps, with earlier actions having minimal
influence. And the joint influence values from item B are almost the same (except 'pv-A’, which is
self-influence), which means the joint influence from B has no difference in the previous steps and have
no influence for the final decision. The last self-influence from view of item A (e.g., self-influence) highly

influence the final decision: buy item A.

In summary, the case studies illustrate that SHPP can generate user-level explanations that are
not only interpretable but also actionable. This opens the door for more personalised recommendation
strategies tailored to individual behavioural patterns—achieving the goal of customised recommenda-

tion for everyone.

4 Discussion and Limitations
Despite providing a structured and interpretable view of RED, SHPP still faces several practical

limitations:

e Data sparsity and scalability: SHPP assumes moderately dense event histories. In scenarios with
short sequences or, conversely, very long traces and many marker types, the model may underfit or
suffer from sparse and noisy interactions. Pretraining, sequence augmentation, or marker grouping

could help address these challenges.

o Kernel flexibility: The logistic—bilinear kernel is easy to interpret, yet its performance hinges on
sensible basis-function choices and initialisation. Future work could adopt estimable monotone

kernels or Bayesian priors that adapt shape while preserving interpretability.

o Ezxplainability coverage: We report internal consistency and fidelity scores against TimeSHAP. A
better method would require quantitative head-to-head tests with other XAI methods (e.g. attention
heat-maps, Integrated Gradients) along XAl dimensions such as stability, completeness and robust-
ness. Reducing this gap calls for a public benchmark for RED explainability—currently absent in

the literature.

o Modelling assumptions: SHPP factorises an intensity into additive and pairwise terms. Domains
with strong latent confounders or higher-order interactions may violate this assumption. Extending

SHPP with latent variables, hierarchical strata, or graph priors could improve realism.

e Computational efficiency: We analyse SHPP’s theoretical cost in but do not report
running time and memory usage due to variability across environments. Potential optimisions in
future work for large datasets and inference may includes: (i) history truncation beyond a temporal
horizon, (ii) sparsification by pruning weak kernel entries, and (iii) low-rank compression of the

joint influence matrix.

In our future work we plan to (i) introduce sparsity-aware regularisers to handle extremely sparse RED,
(ii) build a unified benchmark that scores interpretability across multiple XAI metrics and baselines,
including attention-based transformers, and (iii) develop online and multi-agent variants of SHPP for
RED.

5 Conclusion

This paper introduced the Stratified Hawkes Point Process (SHPP), an explainable temporal point
process framework for modelling and interpreting recurrent event data. SHPP decomposes event dy-
namics into self-, Markovian, and joint influence components, enabling attribution of temporal depen-

dencies across multiple event types.

By designing interpretable influence kernels and establishing sufficient stability conditions, SHPP

balances predictive power with theoretical soundness and practical transparency. Extensive experiments

23



798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

demonstrate the model’s effectiveness in both prediction and explainability tasks across diverse domains.

Overall, SHPP contributes a unified, interpretable, and extensible framework for explainable risk
modelling, with potential applications in personalised recommendation, clinical monitoring, user be-

haviour analysis, and beyond.
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Appendix A. Optimisation Framework

Having established the theoretical foundations of SHPP with interpretable kernels, we now turn to
the parameter estimation problem.

Let {t;}}¥, be the event times in observation window [0, T] with associated markers {m;}¥,. Define
that AN;(ti—1,t) © sty < ts < t,mg = j}|, which represents event with marker of type j count in
(ti—1,t]. The conditional intensity function can be decomposed as: A(t) = Z]]Vil Aj(t | H¢). Thus, the

distributions for event time are:

F(t|Hey ) =1—exp (— /t A(s)ds) . f(t| He, ) = A(t)exp <— /t /\(s)d:;) ) (29)

The marker type’s distribution satisfies: P(M; = j | T; = t) = Ailt), Then, the joint likelihood over

[0, T] decomposes as:

N N t;
£(©) =[] ft)Pms | t:) = ] Ami (&) exp (- / A(s)ds) . (30)
i=1 i=1 ti—1
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We can then obtain the log-likelihood:

N T
(0) = 3 o8, (1) - | Awar

N M

T M M
=3 [t S sl = Tab | = [ oo | o+ S vt = T | .
j=1 j=1 /=1

i=1

(31)

Event Term Non-Event Term

To improve the computation efficiency of the non-event integral term, which is often computa-
tionally expensive due to its dependence on the entire event history, we propose an adaptive Monte
Carlo optimisation approach that leverages adaptive sampling to reduce variance in non-event integral
estimation while maintaining computational efficiency.

Algorithm 2 Adaptive Monte Carlo Optimisation

1: Initialize parameters ©© = {1, v;x }
2: for epoch =1 to F do
3 Shuffle event sequences
4 for each mini-batch B do
5: Compute event term: fovent = Z(thmﬁeg log Am, (t:)
6 Estimate non-event term: fnon-event & 5 Zle A(ts) where ts ~ AdaptiveSampler())
7 Compute gradient: VO = V(Levent — fnon-event )
8 Update: ©®") « 919 4 nAdam(VO)
9 end for
10: end for

We implement SHPP using PyTorch and optimise it using the Adam optimizer with a learning rate
of 1073 and batch size of 64. The kernel functions 7ij are parameterised by neural basis expansions (see
Eq. ), and all parameters including coefficients 3, 0, and adaptive weight « are jointly learned via
backpropagation. Regularisation is applied via ¢3-norm penalties to avoid overfitting in sparse regimes.

Training typically converges within 50 epochs.

The computational complexity of SHPP depends on the number of historical events and the com-
plexity of the kernel evaluations. Specifically, the per-event computation cost is O(N;(t)-d+ N;(t)?-d?),
where N;(t) is the number of historical events of type j, and d = p + 1 is the feature dimension. The
first term accounts for self-/Markovian type influence, while the second corresponds to joint influence

over all event pairs.

Appendix B. Experimental Datasets and Setup
There are several recurrent event datasets that have been prepared by our proposed SHPP, as shown
in Table [{

Table 5: Overview of recurrent event datasets used in experiments.

Data name Scenario Data description Artificial? Marker # Size Resource
Earthquake Environmental Timestamped earthquake events over the U.S. (1996-2023) No 1 49363 USGS
Synthetic ~ Generic simulation —Data simulated based on Hawkes process No 1 8000 Tick library
Conttime  Generic simulation  Data simulated based on continuous-time Hawkes process No 1 8000 Tick library
Mutual  Generic simulation ~Data simulated based on mutual-exciting process No 2 8000 tick library
Taxi Transportation Timestamped taxi pick-up events Yes 10 51854 NYC FOIL
Taobao  E-commerce User online shopping behaviour on Taobao.com Yes 17 75205 |[Xue et al.|(2022)
Amazon E-commerce User product review behaviour (2008-2018) Yes 16 6454  Amazon data
BPIC Finance Business process logs from Dutch financial institution Yes 26 10000 BPIC2017
MIMIC-Diab. Healthcare Hospital events for people with diabetes from MIMIC-IV Yes 11 25593  MIMIC-IV
MIMIC-ICU  Healthcare Hospital events for people in ICU from MIMIC-IV Yes 11 65366 MIMIC-IV

All experiments are developed in PyTorch and run on a machine with NVIDIA A40 GPU. We use a

standard train-validation-test split of 60%-20%-20% across all datasets unless otherwise specified. For
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each experiment, we run 5 different random seeds and report mean + standard deviation.

For SHPP, we set the maximum number of past events K = 10, kernel function x(7) = ae ™7, and
use default base functions g,(-) (logistic) and A, (-, ) (bilinear). The learning rate is set to 1073, batch

size 64, and we use the Adam optimizer with early stopping on validation loss.

Evaluation metrics include prediction accuracy (marker and time), Kendall’s 7, direction agreement
(DA), and fidelity scores. See [Appendix C.|for kernel stability assumptions.
Appendix C. Kernel Types and Stability Conditions

Here, we summarise commonly used temporal kernels for point processes and discuss whether they
satisfy the stability condition proposed in Theorem

Let 7(=t — tx) denote the time gap between the current and historical events. The kernels listed
in Table [6] are widely used in temporal modelling: Theorem [I] states that a sufficient condition for
mean-square stability is that the kernel function (1) satisfies 9y/97 < 0 for all 7 > 0. This guarantees
that the cumulative influence does not diverge over time.

In our implementation, we use exponential-based kernels for both excitation and inhibition due to

their stability and analytical simplicity.

Table 6: Common kernel types, properties, and stability under Theorem

Kernel Type Form ~(7) Monotonic? Stable? Reference

Exponential decay ae ™7, a>0 Yes Yes Hawkes| (1971)
Gaussian-shaped e~ Br—m? No No Zhou et al.| (2013))
Rayleigh are P’ No No Farajtabar et al.| (2015)
Power-law ﬁ, 0>1  Yes Yes Narteau et al.| (2002])
Signed exponential e 7, a<0 Yes Yes Kobayashi and Lambiotte| (2016])

Appendix D. Sensitive Analysis

To assess the robustness and flexibility of SHPP, we conduct a series of sensitivity analyses using
synthetic datasets. Specifically, we investigate: (i) The impact of the influence balance parameter «,
which balances historical events influences (see Table[7)), (ii) The role of different types of base functions
in the interpretable kernel (see Table , and (iii) The effect of varying the number of event marker

types on performance and explanation performance (see Table @
We provide a synthetic data generation algorithm for the marker types sensitive analysis (Algo-
rithm .

Table 7: Sensitivity of SHPP to the influence weight a.

o« | KendallT | DA (%) | Fidelity

| Marker ~ Time | Value | Acc (%) p
0.1 | 0.22 0.05 88.1 17.3 0.29
0.3 | 0.21 0.11 88.2 17.3 0.38
0.5 | 0.23 0.12 87.9 17.3 0.33
0.7 | 0.14 0.11 89.0 19.3 0.33
0.9 | 0.18 0.05 87.5 17.3 0.38

From Table [7, we observe that internal consistency metrics (Kendall’s 7) improve as « increases
from 0.1 to 0.5, suggesting that a moderate emphasis on influence structure helps stabilise importance
estimation. Beyond a = 0.5, the consistency drops slightly, possibly due to over-regularisation. Direc-
tional agreement (DA) remains stable across all settings, while fidelity (Acc and p) peaks near a = 0.7,

indicating an optimal trade-off between self- and pairwise contributions.

From Table [§] the combination of Logistic encoding with Bilinear interaction has the best overall

fidelity and consistency scores. Decision Stump + Bilinear performs competitively, while shallow neural
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Algorithm 3 Simulated RED Generation Algorithm

Require: Number of sequences N, event types K, max time Tmax, baseline intensity p;, kernel 7;;(-), noise level oy,
perturbation probability p
1: forn=1to N do
Initialise event list S™ « @
Set current time ¢ < 0
while t < Tinax do

2
3
4
K
5: Compute intensity Ai(t) = exp(pi + > > vij (¢ — tx))
6
7
8

j=ltg<t
Sample next time gap At ~ >, Ai(t)
Update time: t + t + At
: Sample event type m ~ Multinomial(A; (£), ..., Ak (t))

9: Add (¢, m) to S™
10: end while
11: /* Add perturbations */
12: for (t;,m;) € S™ do

13: ti<ti +e, € ~N(0,07) > Timestamp noise
14: if Rand() < p then

15: m; < UniformRandom(1,2,..., K) > Marker flipping
16: end if

17: end for

18: end for

Table 8: Sensitivity to the choices of base functions.

Basis Function |  Kendall 7 | DA (%) | Fidelity

| Marker Time | Value | Acc (%) p
Logistic + Bilinear | 0.12 0.22 87.9 20.3 0.31
Decision Stump + Bilinear | 0.24 0.23 83.4 19.9 0.27
Logistic + Shallow NN | 0.11 0.21 77.0 18.8 0.27
Shallow Tree + Tree Interact. | 0.08 0.12 74.8 16.8 0.28

Note: Basis functions used in SHPP are defined as follows: (1) Logistic: ¢(x) = m; (2) Decision Stump:

binary indicator ¢(z) = I(z; > 6) for some feature j and threshold 6; (3) Shallow NN: one hidden layer neural
network ¢(z) = o(Wa - o(Wix + b1) + b2); (4) Tree Interaction: pairwise indicator features from a shallow decision
tree. Bilinear or additive forms are used for modelling interactions among events.

Table 9: Sensitivity to number of marker types.

# Markers | Kendall 7 | DA (%) | Fidelity
| Marker ~ Time | Value | Acc (%) »p

5 | 0.22 0.21 82.6 33.6 0.21

10 | 0.22 0.21 90.0 17.4 0.36

20 | 0.11 0.22 94.8 8.3 0.24

40 | 0.13 0.22 98.0 4.3 0.33

nets and tree-based designs slightly reduce interpretability metrics. This confirms that simple yet

expressive base functions align better with SHPP’s structured assumptions.

When selecting a base function, we suggest starting with a small number of logistic units plus
bilinear terms. If the application needs rule-level transparency, switching the logistic units to a small
number of decision stumps provides clearer if-then statements at the cost of less fidelity. Only when
data are large enough and highly non-linear interactions are expected should one consider shallow

neural or tree-interaction bases, while Directional Agreement will drop.

From Table @]7 fidelity metrics (especially Fid. and Acc) degrade noticeably, though DA improves,
as the number of marker types increases from 5 to 40. This suggests that SHPP maintains relative
ordering of influences even under complex event marker types, but the absolute attribution becomes
less precise. These results highlight the challenge of interpretability under high-dimensional settings,

motivating future work on scalable regularisation or clustering-based summarisation.
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