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An explainable machine learning framework for recurrent1

event data analysis2

Qi Lyu, Shaomin Wu*

Kent Business School, University of Kent, Canterbury, Kent CT2 7FS, UK

3

Abstract: This paper introduces a novel explainable temporal point process (TPP) model, Strat-4

ified Hawkes Point Process (SHPP), for modelling recurrent event data (RED). Unlike existing ap-5

proaches that treat temporal influence as a black box or rely on post-hoc explanations, SHPP struc-6

turally decomposes event intensities into semantically meaningful components for describing self-,7

Markovian, and joint influences. This decomposition enables direct quantification of how past events8

contribute to future event risks, termed as influence values. We further provide a sufficient condition for9

mean-square stability based on kernel decay, ensuring long-term boundedness of intensities and realistic10

behavioural predictions. Experiments and an e-commerce case study demonstrate SHPP’s ability to11

deliver accurate, interpretable, and stable modelling of complex event-driven systems.12

Keywords: (R) explainable machine learning; counting process; Hawkes process; stability; explain-13

able artificial intelligence14

1 Introduction15

1.1 Motivation16

In many practical applications, events occur in a recurring form. For example, patients with chronic17

conditions may accept repeated treatments from their hospitals due to recurring illnesses or compli-18

cations (Watson et al., 2020; Chen et al., 2015); product users may recurrently claim warranty for19

repairing or replacing a product item under the terms of its warranty (Wu, 2012); social media users20

repeatedly create and share content like text, images, and videos with others via online platforms, cus-21

tomers in online shopping applications intermittently pick up items (Hu et al., 2022). These events are22

referred to as “recurrent events”, and times between the occurrences of recurrent events are therefore23

called recurrent event data (RED).24

RED analysis has been a key area of research in survival data analysis. Both statistical models25

and machine learning models are developed (Cook et al., 2007; Amorim and Cai, 2015; Du et al.,26

2016). Statistical models are for the scenarios where the size of the datasets is typically not very27

large. Examples include the Andersen-Gill (AG) model (which is an extension of the proportional28

hazards model) (Andersen and Gill, 1982), the Prentice-Williams-Peterson (PWP) models (Prentice29

et al., 1981), the marginal mean/rates model (Cook et al., 2007), the frailty model (Kelly and Lim,30

2000), and multi-state models (Andersen and Keiding, 2002).31

While traditional statistical models have laid the foundation for RED analysis, their strict assump-32

tions—such as linearity and proportional hazards—limit their applicability to modelling complex data33

with high-dimensional covariates. These assumptions may be violated in emerging applications like34

social media and e-commerce, where RED shows complex temporal patterns and heterogeneity across35

subjects. As such, there is a need for developing more flexible and interpretable models to relax these36

assumptions and capture these dynamics.37

*E-mail: s.m.wu@kent.ac.uk.
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Recent advances in artificial intelligence (AI) offer promising alternatives. Deep learning methods38

explicitly model temporal dynamics through mechanisms like recurrent neural networks (RNNs) and39

attention-based transformers. For instance, Cai et al. (2020) introduced a multi-mechanism temporal40

framework that disentangles periodic, decaying, and persistent influences in multivariate event se-41

quences, outperforming classical models. Gupta et al. (2019) developed a deep survival framework that42

jointly addresses competing risks and recurrent events by learning latent representations of time-varying43

risk interactions. These AI models demonstrate superior capability in capturing complex temporal pat-44

terns that defy traditional parametric assumptions.45

However, the predictive ability of AI models comes at a cost: their inherent opacity. Complex46

neural networks, often labelled as ’black boxes’, obscure the reasoning behind predictions—a critical47

barrier in high-risk domains like healthcare and industrial safety. For example, clinicians cannot act48

on a model’s prediction of cancer recurrence without understanding how time-varying biomarkers (e.g.,49

dynamic gene expression profiles) interact with prior treatment history to drive risk fluctuations (Rajpal50

et al., 2023). Similarly, engineers require explainable fault forecasts to prioritise maintenance actions51

in multi-component systems (Gashi et al., 2023).52

Explainable AI (XAI) provides insights into how and why models make predictions, which is crucial53

for understanding complex temporal behaviours and for deploying AI systems in sensitive domains like54

healthcare and e-commerce. While XAI is effective for some data types such as panel data and time55

series data, it fails to address the temporal gap and event interdependency inherent in RED analysis.56

Most post-hoc methods (e.g., SHAP (Lundberg and Lee, 2017), LIME (Ribeiro et al., 2016a)) provide57

snapshot explanations that ignore temporal dependencies. While attention mechanisms in sequence58

models often combine short-term noise with long-term risk factors (Li et al., 2023). Although there is a59

rich literature on RED analysis, little has considered quantifying and understanding how the occurrences60

of historical events influence future customer behaviours. For example, in an e-commerce scenario, a61

customer’s final action is influenced by a sequence of historical behaviours—such as repeatedly viewing62

an item and adding it to the cart. These behaviours correspond to three different types of historical63

behaviour influences, as shown in Figure 1.64

� Self-influence: A customer views an item at time t1 and returns to view it again at time t (the last65

event with t > t1). The dashed blue arrow from View at t1 to View at t captures this repeated66

behaviour, where viewing an item is regarded as a marker. That is, a marker that occurs earlier67

increases the probability that the marker will occur in the future.68

� Markovian influence: The sequential path from View to Cart, and from Cart to Buy, as shown by69

red arrows, represents direct influence between different types of markers. For example, viewing an70

item may increase the chance of carting it, and carting an item may increase the chance of buying71

it. That is, a marker (i.e., view) directly influences the next marker (i.e., cart), and a marker (i.e.,72

cart) directly influences the next marker (i.e., buy).73

� Joint influence: The blue brace between View and Cart (t2, jointly pointing to the Buy event, illus-74

trates a combined influence. While each action alone may contribute modestly, together they signif-75

icantly increase the likelihood of purchase—capturing a joint dependency that cannot be attributed76

to either event in isolation. That is, a marker (i.e., view) indirectly influences the next-but-one77

marker (i.e., buy).78

This example demonstrates how different types of influence—repetition, inter-type triggering, and79

combinatorial influences—interact to shape a user’s future decision, providing a concrete motivation80

for structured influence modelling in RED analysis.81

However, existing models ignore these historical influences, let alone these three different influences,82
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making users lose trust for decisions made by AI models. Motivated by this need, this paper aims to83

develop novel XAI methods for RED analysis, enabling an explainable and understandable framework84

for RED, considering the temporal historical information and three influences of events.

t1 t2 t3 t

View Cart Buy View

Self

Markovian Markovian

Joint

Figure 1: Illustration of self-, Markovian, and joint influences in e-commerce user behaviour

85

1.2 Related Work86

1.2.1 RED Analysis87

The literature on RED analysis has expanded rapidly, leading to the development of a diverse range88

of models and methodologies. RED analysis has evolved through two perspectives: statistical methods89

(e.g., Cook et al. (2007)) and machine learning methods (e.g., Du et al. (2016)).90

Statistical models: Traditional approaches include the AG model, PWP models, frailty models and91

multi-state models. The AG model generalises the Cox proportional hazards model, which is ex-92

pressed as increments in the number of events along a timeline, where the outcome of interest is93

the time from randomisation to treatment (or other exposure) to the event, that is, the time since94

the beginning of the study, also known as the total time scale (Andersen and Gill, 1982). The95

PWP model analyses multiple events in strata according to the number of events that occurred96

during follow-up, where all participants are at risk in the first stratum, but only participants who97

had an event in the previous stratum are at risk in the subsequent stratum (Prentice et al., 1981).98

The core idea of the random effects approach, also known as frailty models, is to introduce ran-99

dom covariates into a model, thus inducing dependencies between the times of RED (Kelly and100

Lim, 2000). Specifically, random effects describe the excess risk or frailty of different individuals101

while considering unmeasured heterogeneity that cannot be explained by observed covariates alone.102

The simplest multi-state model (MSM) is defined as two states: alive (a transient state) and dead103

(an absorbed state). A special case of MSM occurs when individuals transition from one state to104

another over time and intermediate states are identified. These states can be viewed as recurring105

events of the same marker (Andersen and Keiding, 2002). Oyamada et al. (2022) evaluated the106

performance of these statistical models using an open cohort design with Monte Carlo simulation107

in various settings and their application using an actual example. Lintu and Kamath (2022) illus-108

trated the usefulness of RED models in the context of defect proneness analysis in software quality109

assessment. In addition to previous methods, some new statistical methods developed, for instance,110

Oganisian et al. (2024) proposed a Bayesian framework for causal analysis of recurrent events with111

timing misalignment. Overall, these statistical models are well-established and offer robust tools for112

understanding recurrent events based on probabilistic and time-dependent frameworks; more can113

be seen in Amorim and Cai (2015)114

Machine learning models: Recently, machine learning has been used to analyse data from recurrent115

events. For example, Gupta et al. (2019) proposed a deep learning based flexible probabilistic116

framework for cause-specific recurrent survival analysis for both single-risk scenarios and multi-117

risk scenarios. Murris et al. (2024) introduced an extension of random forests tailored for RED,118
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leveraging principles from survival analysis and ensemble learning, and evaluates their methods on119

both simulated and open-source data. This proposed method provides a valuable addition to the120

analytical toolbox in this domain.121

In addition to traditional statistical models and the machine learning models that have emerged for122

RED, the Temporal Point Process (TPP) is another widely applied modelling method for modelling123

RED (Shchur et al., 2021). TPP combines the theoretical rigour of statistical methods with the ability124

of deep learning models to process complex high-dimensional data, becoming an important tool for125

RED analysis research.126

In the field of statistics, classic TPPs such as the Poisson process (Dewanji and Moolgavkar, 2000)127

and the Hawkes process (Hawkes, 1971; Ketelbuters and Bersini, 2022) are often used in RED analysis.128

These models rely on explicit probabilistic assumptions and can infer the frequency and timing of events.129

The Hawkes process, in particular, allows for modelling both self- and mutual excitation between events,130

making it interpretable in terms of temporal influence structures (Xu et al., 2016).131

Otherwise, in the field of deep learning, TPP has been further extended to deep learning models.132

Du et al. (2016) firstly proposed Recurrent Marked Temporal Point Process (RMTPP) model for RED133

analysis, applies a recurrent neural network to automatically learn a representation of influences from134

the event history. Lin et al. (2022) estimated the gap times using a generative model for TPP and135

revised the attentive models to improve prediction performance. There are a lot of research about TPP136

with neural network, and Shchur et al. (2021) summarised the existing body of knowledge on neural137

TPP, and provide an overview of application areas commonly considered in the literature.138

However, as models become more complex, particularly in cases where non-linear or high-dimensional139

covariates are involved, the interpretability of models for RED analysis is decreasing. For instance,140

non-parametric methods and deep learning-based TPP methods excel at capturing complex relation-141

ships but often result in black-box models that lack clear interpretability. Balancing complexity with142

transparency remains a significant challenge, motivating continued research into explainable artificial143

intelligence (XAI) models, which strive to achieve both.144

1.2.2 Explainable Artificial Intelligence (XAI)145

The development of XAI has gained significant attention in recent years, especially in applica-146

tions requiring both high predictive performance and transparency/interpretability (Lyu and Wu, 2025;147

Stevens and De Smedt, 2024; de Bock et al., 2024). This section reviews key methods that aim to bal-148

ance these two aspects, progressing from traditional generalised additive models to neural extensions149

and specialised adaptations.150

Generally, XAI methods can be categorised by their application stages, including ante-hoc and151

post-hoc methods (Speith, 2022; Arrieta et al., 2020). The ante-hoc methods focus on enhancing trans-152

parency and fairness during model development, for instance, developing generalised additive models153

(GAMs) (Chang et al., 2021) and attention branch network (ABN) (Fukui et al., 2019), both of which154

are explainable. While the post-hoc methods interpret or explain predictions after an AI model has155

been trained. Such methods include SHAP (SHapley additive exPlanations) (Lundberg and Lee, 2017)156

and LIME (Local Interpretable MA Explanations) (Ribeiro et al., 2016a), which attribute predictions157

to input features by perturbing local data points. Attention mechanisms in transformers (Wiegreffe and158

Pinter, 2019) provide built-in explanations by highlighting influential features/factors. More broadly,159

Shapley-value explanations have been extensively surveyed in the OR literature (Borgonovo et al.,160

2024), providing theoretical background for post-hoc baselines. Topuz et al. (2024) proposed a model161

utilising the inner mechanics of Markovian theory to achieve explainability and obtain interpretable162

scores for evaluating the performance of healthcare.163
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However, these methods face significant limitations when applied to RED analysis. SHAP values,164

for instance, treat temporal sequences as static feature vectors, ignoring the time-varying structure165

of event dependencies (e.g., how a prior hospitalisation alters future risk trajectories). Even if time166

encodings such as event indices are added, the resulting feature space does not reflect time-dependent167

changes, and influence attributions remain insensitive to when an event occurred.168

Recent effort to adapt XAI for RED analysis and temporal data include TimeSHAP (Bento et al.,169

2021), which extends SHAP to RNNs by aggregating feature attributions over sliding time windows,170

and dynamic counterfactual explanations (Tsirtsis et al., 2021) that simulate “what-if” scenarios across171

event histories. While TimeSHAP captures the influence of features at a snapshot in time, it aggregates172

importance across fixed windows and does not decompose model predictions into individual event173

attributions in continuous time, which will be discussed in this work.174

Transformer attention mechanisms offer another form of explanation. However, attention weights175

are not guaranteed to reflect true causal influence (Wiegreffe and Pinter, 2019), and they are normalised176

(via softmax) rather than aligned with intensity values. Attention may highlight relevant past tokens,177

but cannot quantify their additive contribution to a predicted event intensity.178

While XAI methods can improve transparency, they also come with potential risks in high-stakes179

applications such as healthcare, criminal justice, and finance. As pointed out by Rudin (2019), post-180

hoc explanation methods like SHAP or LIME can be misleading or overly simplified. This can lead181

people to place too much trust in a model, even if it is incorrect. Furthermore, XAI models do not182

automatically gain user trust unless the quality of explanations is well-calibrated and evaluated. This183

challenge highlight the importance of evaluating the quality of explanations in practice.184

XAI evaluation helps build consumer trust, meet demands, reduce bias, and enable more ethical185

and informed decision making. As AI becomes more integrated into business and the economy, XAI as-186

sessments will be increasingly crucial, promoting the responsible and effective use of AI. Lozano-Murcia187

et al. (2023) compared different kinds of evaluation methods on several datasets, and gave correspond-188

ing evaluation methods for feature importance, consistency, stability and robustness, computation time189

and efficiency, fairness and bias and regulatory compliance. Recently, the OR community has begun to190

systematise XAI under an “XAIOR” framework (de Bock et al., 2024), outlining design principles and191

evaluation criteria, which will be followed in this paper.192

In summary, XAI techniques have made significant progress in static settings and sequence mod-193

elling. However, when applied to RED, these techniques still have several limitations:194

� Lack of temporal sensitivity : Most XAI methods treat events as isolated points, ignoring how195

the influence of past events decays or accumulates over time. This leads to temporally myopic196

explanations that miss long-term dependencies crucial in domains like healthcare or e-commerce.197

� Inability to attribute historical influence: Existing methods fail to quantify how specific past events198

contribute to current risks. For example, a history of product returns may signal declining purchase199

intent, but snapshot explanations cannot trace or assign influence to such patterns.200

� Predictive–interpretability trade-off : Traditional statistical models (e.g., Cox models) offer inter-201

pretability but struggle with complex event dynamics. In contrast, high-capacity models (e.g.,202

neural TPPs) perform well in predictive performance but lack built-in interpretability, often relying203

on unreliable post-hoc explanations.204

These gaps motivate us towards XAI for RED analysis—a challenge we address with our proposed205

method in this paper. Our proposed framework clearly models temporal influence—decomposing it206

into self-, Markovian, and joint influences—and provides interpretability through influence values.207
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1.3 Overview208

The remainder of this paper is organised as follows. Section 2 introduces a novel explainable209

temporal point process (TPP) model, Stratified Hawkes Point Process (SHPP), for modelling RED.210

Section 3 discusses the experimental design and their applications in practical scenarios. Section 5211

concludes the research conclusions and proposes future research directions.212

2 Methodology213

Let {ti}i≥1 denote the occurrence times of events with 0 < t1 < t2 < · · · , and t0(= 0) denote the214

starting time. The associated counting process is defined by N(t) = sup{n ≥ 0: tn ≤ t}, representing215

the total number of events by time t, as illustrated in Fig. 2. Suppose that each occurrence has216

a marker associated with it and p covariates. Denote the marker at the i-th event occurrence as mi,217

where mi ∈ M with M = {1, 2, . . . ,K}, and K is the number of marker types. Denote the covariates as218

xi = (xi1, xi2, . . . , xip)
⊤ ∈ Rp, where xi can be variable in time or static. The i-th event is characterised219

by the tuple ci = (ti, mi, xi).220

Denote the gap time between the i-th and (i− 1)-th events as τi = ti − ti−1 for i ≥ 1. For any time221

t > 0, the observed history up to t is222

H[0,t) = (ck : tk < t)
N(t−)
k=1 , (1)

where N(t−) = lim
s→t

N(s) ensures exclusion of events exactly at t.223

Time
0 t1 t2 t3 t

c1

m1

x1

c2

m2

x2

c3

m3

x3

τ1 τ2 τ3

Figure 2: Recurrent event data structure.

Real-world recurrent event data typically arise from multiple interacting events rather than isolated224

event. To illustrate the proposed influence mechanism, consider an e-commerce user browsing and225

purchasing items (e.g., smartphones). An e-commerce firm would like to understand their customers’226

behaviour by modelling times between views or purchases. To this end, they need to know the exact227

times when the actions are taken, where each action is marked with a marker such as View, Cart,228

Purchase, or Return (that is, K = 4 and the associated covariates xi may include user profile (e.g.,229

age, VIP level), product attributes (e.g., discount, rating), or behavioural features (e.g., time spent,230

browsing frequency). To build a model for depicting the times between events, we need to consider231

the association between the markers from the three perspectives: self-influence, Markovian influence,232

and joint influence, as discussed in Section 1.1. However, existing models either neglect these three233

types of influences, or oversimplify them by only considering temporal gaps τi between events. They234

fail to capture the influence from historical markers mi and covariates xi. To solve these problems, this235

paper aims to model RED by considering the markers, the covariates, and the three types of influences.236

To characterise the logical of decision making based on RED rigorously, we propose an interpretable237

framework with the three types of influence, which capture temporal dependencies and interactions238

among events:239

(i). Self-influence: Historical occurrences of the same marker modify the likelihood of similar events240

that will occur in the future.241

(ii). Markovian influence: Direct interactions between different event markers where one marker explic-242
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itly influences another.243

(iii). Joint influence: The joint influence of multiple past event marker sequences collectively influence244

future event occurrences.245

We give the definition of influence in this work.246

Definition 1 (Influence). Influence is a term that describes the temporal association or interaction247

from a set of past events {ci}ti<t towards one or multiple subsequent events {cj}j≥t.248

This term captures the extent to which earlier events collectively relate to or predict future event249

occurrences, acknowledging that multiple historical factors may shape these temporal associations.250

Building on the influence framework from the previous description, we further formalise the analysis251

of RED through TPP. A TPP is a stochastic model characterizing event sequences {ti}ni=1 (Rizoiu et al.,252

2017) and can be modelled by a conditional intensity function:253

Definition 2 (Conditional Intensity (Daley and Vere-Jones, 2006)). Given history H[0,t), a conditional254

intensity λ(t|H[0,t)) is defined by:255

λ(t|H[0,t)) = lim
∆→0+

P
(
N([t, t + ∆)) ≥ 1 | H[0,t)

)
∆

, (2)

where N([t, t + ∆)) counts the number of events in interval [t, t + ∆).256

A conditional intensity function can fully specify a TPP through two fundamental components:257

� Event probability can be defined by:258

P(Occurrence of an event in [t, t + dt) | H[0,t)) = λ(t|H[0,t))dt + o(dt), (3)

where o(dt) satisfies lim
dt→0

o(dt)/dt = 0.259

� The survival function of the i-th occurrence can be defined by:260

S(t|H[0,t)) = exp

(
−
∫ t

ti

λ(τ |H[0,τ))dτ

)
, t > ti. (4)

The established notations in Eqs (1)-(4) provide a general framework for RED analysis. However,261

widely used TPPs such as the Poisson process and the renewal process cannot model the aforemen-262

tioned influences because they fail to explain the connections between events. This is where mutual263

point process come into play—it accounts for the excitatory influences between events. For instance,264

purchasing item A can stimulate subsequent purchases, creating a chain of influence reaction.265

The self-exciting process, aka Hawkes’ process, and the mutual exciting process (MEP) represent266

special cases of point processes that model event occurrences conditioned on historical information.267

Formally, these intensities are expressed using conditional intensity functions, given the event history268

H[0,t)].269

� Hawkes process: Historical events of a single marker increase the likelihood of future occurrences of270

the same marker. Its conditional intensity function is defined as (Hawkes, 1971):271

λ(t|H[0,t)) = µ +

N(t)∑
r=1

γ(t− Tr), (5)

where Tr denotes the occurrence of the r-th event, and µ represents base intensity.272
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� Mutual-exciting process generalizes the Hawkes process to multiple occurrences of events with mark-273

ers. The MEP models how occurrences of one type of marker influence an event with a different274

type of marker, and the conditional intensity is (Daley and Vere-Jones, 2006):275

λi(t|H[0,t)) = µi +

K∑
j=1

Nj(t)∑
r=1

γij(t− Tjr), (6)

where Tjr denotes the r-th occurrence time of event with marker of type j, µi represents a base276

intensity for marker of type i, and Nj(t) is the number of the occurrences of events with marker of277

type j by time t. The kernel γij : R+ → R+ quantifies how an event with a marker of type j excites278

future events with a marker of type i.279

However, the MEP assumes that each past event contributes independently and additively to the future280

event intensity. Nevertheless, both self- and Markovian influences can exhibit not only excitatory281

influences but also inhibitory behaviours, which cannot be modelled by Hawkes’ process or the MEP.282

Furthermore, the MEP cannot model joint influence, which requires non-additive interactions among283

multiple events. To overcome these limitations, we propose a new TPP, as shown in Section 2.1.284

2.1 Stratified Hawkes Point Processes285

This section proposes a new TPP: stratified Hawkes point process (SHPP), which can model self-286

and Markovian influences comprehensively.287

Definition 3 (Stratified Intensity). For recurrent events with K type of markers, the intensity of events288

with marker of type i is:289

λi(t|H[0,t)]) = exp

(
µi︸︷︷︸

Base Rate

+
K∑
j=1

γij

(
{t− Tjk}

Nj(t)
k=1 |H[0,t)]

))
, (7)

where γij : RNj(t) → R encodes the stratified influence from events with marker of type j to events with290

marker of type i, considering all historical {Tjk}
Nj(t)
k=1 .291

The word stratified highlights that the influence from past events is decomposed by marker types:292

for each event of marker of type i, its intensity λi(t) considers contributions from each marker of type293

j through a specific kernel γij . In particular, it supports self-influence for the case of i = j (e.g.,294

repeated views reinforcing future views), and Markovian influence for the case of i ̸= j (e.g., cart295

actions increasing purchase likelihood).296

The stratified intensity function in Eq.(7) provides a mathematical foundation for RED analysis.297

However, to fully characterise the stochastic process governing these events, we must define the proba-298

bilistic structure that links the intensity function to the actual event occurrences. This leads us to the299

following definition of a stratified Hawkes point process (SHPP):300

Definition 4 (Stratified Hawkes Point Process). A collection {Ni(t)}Ki=1 forms a stratified Hawkes301

point process if:302

P(Ni(t + ∆) −Ni(t) = 1|Ht) = λi(t)∆ + o(∆), (8)

P(Ni(t + ∆) −Ni(t) > 1|Ht) = o(∆), (9)

where Ht = σ({Nj(s)}Mj=1 : s ≤ t) contains the complete history, and λi(t) follows Eq. (7).303

Compared with the MEP, past events Tjr in Eq. (6) contribute independently to the intensity in an304

additive manner. The function γij(·) typically depends only on the time difference (t − Tjr), limiting305
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its ability to capture higher-order dependencies. In contrast, γij : RNj(t) → R in our proposed model306

(shown in Eq. (7)) encodes the stratified influence from events with marker of type j to events with307

marker of type i, considering the entire history H[0,t). This structure introduces two key differences:308

(i). The exponential transformation enables multiplicative interactions rather than additive influences;309

(ii). The function γij operates on the entire historical sequence rather than individual time gaps t−Tjr310

in equation (6). These two differences enhance the model’s ability to represent complex, higher-order311

dependencies, capturing intricate patterns such as combined excitation and inhibition influences in312

RED.313

To assess the influence from historical events, SHPP introduces a kernel function γij , which modu-314

lates the impact of marker of type j events on marker of type i. This design enables several distinctive315

properties:316

Remark 1 (Key Properties of SHPP). The proposed SHPP has the following properties:317

� Nonlinear Coupling: SHPP adopts an exponential link function that combines event influences multi-318

plicatively, enabling the model to capture nonlinear accumulation effects beyond additive frameworks.319

� History-Aware Kernels: Unlike traditional Hawkes models that treat events independently via time320

gap functions, SHPP’s kernel γij can incorporate the full historical context, including temporal321

features and covariates, allowing it to model complex sequential dependencies.322

� Flexible Influence Semantics: SHPP supports both excitation (γij > 0) and inhibition (γij < 0)323

effects, and can model mixed patterns, which is not possible under classical Hawkes assumptions324

where all influences are positive.325

Example 1. Consider the task of predicting whether a customer will make a purchase on an e-commerce326

platform. The three core properties of the proposed SHPP model work together to capture the complexity327

of real customer behaviour:328

(i). Nonlinear coupling models how multiple factors—such as repeated product views, recent promotions,329

and prior purchases—can jointly amplify the likelihood of a purchase. This goes beyond simple330

additive influences by capturing interactions between events.331

(ii). History-aware kernels consider the customer’s entire browsing and interaction history, not just332

recent actions. This allows the model to recognise long-term patterns that may signal sustained333

interest or disengagement.334

(iii). Flexible influence enables the model to represent both positive influences (e.g., increasing interest335

through discounts) and negative influences (e.g., repeated poor reviews reducing likelihood).336

To better understand the generality of our framework, we now show that SHPP can reduce to337

several classical models under specific parameterisations.338

Remark 2 (Connections to other processes). The proposed SHPP framework generalises several other339

point processes:340

� Hawkes process: If only self-influence is retained (i.e., i = j for all i), and Markovian/joint influ-341

ences are absent, that is, λi(t) = µi +
∑Ni(t)

r=1 γii(t− Tir), then, SHPP reduces to a Hawkes process,342

� Mutual exciting process: When the kernel depends only on individual time gaps and influences are343

additive, i.e., γij(t) =
∑Nj(t)

r=1 γij(t− Tjr), then SHPP reduces to an MEP, and344

� Homogeneous Poisson process: If all influence terms vanish, i.e., γij ≡ 0, the intensity becomes345

constant: λi(t) = µi, then SHPP reduces to a homogeneous Poisson process.346

These reductions show that SHPP improves modelling flexibility while remaining compatible with clas-347

sical models.348
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2.2 Stability Analysis349

The SHPP captures how different events influence each other over time. However, to ensure the350

model’s predictions stay realistic and reliable, especially over long periods, we need to ensure dynamic351

stability. Without this property, the model may output meaningless results, like predicting infinite352

medication doses in healthcare scenario or vanishing user actions in e-commerce scenario. Thus, this353

section defines the concept of dynamic stability, discusses its importance for practical applications, and354

explains how the SHPP framework is designed to ensure it.355

� Dynamic stability (Hawkes, 1971): Mathematically, ∃C > 0 such that:356

P
(

sup
t>0

λi(t) ≤ C

)
= 1 ∀i ∈ M. (10)

This ensures the model does not predict impossible scenarios—like a patient taking infinite medi-357

cation doses in a short period.358

Example 2. To illustrate the importance of dynamic stability, consider an e-commerce platform analysing359

two key user actions:360

� Event-A: product impressions (system recommends or displays a product), and361

� Event-B: user clicks (user clicks on the product).362

Suppose the model learns that impressions strongly increase the likelihood of clicks, and clicks in turn363

induce more impressions (e.g., via a recommender system loop).364

� If this mutual exciting is not properly controlled, the model may predict a runaway feedback loop:365

infinite impressions and clicks in a short time, which is an unrealistic and undesirable scenario,366

� Conversely, if negative feedback is too strong (e.g., assuming that users become completely uninter-367

ested after a single impression), the model may predict that users never interact again, which also368

contradicts real-world behaviour, where users often return after delays.369

These outcomes reflect a lack of dynamic stability, where the model fails to keep event intensities370

within realistic bounds over time. Ensuring stability helps prevent such unreal behaviour and ensures371

the model remains reliable in long-term forecasting.372

To rigorously analyse the dynamic stability of the proposed SHPP, we first establish the probabilistic373

framework. Let (Ω,H,P) represent the filtered probability space supporting all counting processes374

{Ni(t)}Ki=1, where the filtration Ht encodes historical event information.375

We define the intensity vector Λ(t) = (λ1(t), ..., λK(t))⊤ ∈ RK
+ , where λi(t) is the conditional376

intensity of event of type i. The evolution of this system is governed by a differential equation derived377

from the SHPP formulation:378

Λ̇(t) = F (Λ(t)), Fi(Λ) = λi(t)

K∑
j=1

Nj(t)∑
k=1

∂γij(t− Tjk)

∂t
. (11)

This dynamical formulation allows us to analyse the stability of SHPP using tools from stochastic379

process theory and dynamical systems. In the context of RED analysis, the mean-square stability380

ensures that the expected intensity remains bounded over time, preventing unrealistic behaviours. We381

adopt the following definition adapted from Higham (2000):382

Definition 5 (Mean-Square Stability (Higham, 2000)). A stochastic intensity process Λ(t) is said to

be mean-square stable if

lim sup
t→∞

E
[
∥Λ(t)∥2

]
< ∞,
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where ∥Λ(t)∥2 :=
∑K

i=1 λ
2
i (t) measures the total fluctuation in intensity.383

We now establish a sufficient condition under which SHPP satisfies this mean-square stability cri-384

terion.385

Theorem 1 (Sufficient Condition for Mean-Square Stability of SHPP). Consider a Stratified Hawkes386

Point Process (SHPP) with intensity vector Λ(t). If all kernel functions γij(τ) are non-increasing in387

τ > 0, i.e.,388

∂γij(τ)

∂τ
≤ 0, ∀τ > 0, ∀i, j ∈ M, (12)

then the process is mean-square stable:389

lim sup
t→∞

E
[
∥Λ(t)∥2

]
< ∞, (13)

where ∥Λ(t)∥2 :=
∑K

i=1 λ
2
i (t) measures total intensity fluctuations. This condition guarantees that390

intensities remain bounded over time to prevent explosion.391

Proof. To analyse the long-term boundedness of the intensity process, we adopt Lyapunov’s second392

method from stochastic stability theory (Khasminskii, 2011). Let the Lyapunov candidate function be:393

V (Λ) = ∥Λ(t)∥2 =
K∑
i=1

λ2
i (t), (14)

While the choice V (Λ) =
∑K

i=1 λ
2
i (t) represents a specific Lyapunov candidate, where the quadratic394

form captures intensity variance, and the kernel decay condition ensures its monotonic decrease. More395

general Lyapunov functions exist but would complicate interpretation without strengthening results.396

This function satisfies:397

� Radial unboundedness: V (Λ) ≥ 0 and grows without bound as ∥Λ∥ → ∞,398

� Monotonic decay : The kernel condition ∂γij/∂τ ≤ 0 ensures that the cumulative contribution from399

past events is non-increasing.400

Applying the infinitesimal generator L, we compute:401

LV = 2

K∑
i=1

λi(t)λ̇i(t)

= 2

K∑
i=1

λ2
i (t)

K∑
j=1

Nj(t)∑
k=1

∂γij(t− Tjk)

∂t

≤ 2
K∑
i=1

λ2
i (t)

K∑
j=1

(∑
k

∂γij(t− Tjk)

∂t

)

≤ −2
K∑
i=1

λ2
i (t)Γi, where Γi := −max

j

∑
k

∂γij
∂t

> 0

≤ −2ΓV (t), where Γ := min
i

Γi > 0.

By Lyapunov’s stability theorem, this exponential decay yields:402

E[V (t)] ≤ V (0)e−2Γt ⇒ lim sup
t→∞

E[V (t)] = 0. (15)

Therefore, lim supt→∞ E[∥Λ(t)∥2] < ∞, which completes the proof of mean-square stability. ■403
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To clarify the meaning of our stability condition, we provide an example from an e-commerce404

scenario.405

Example 3. Consider an e-commerce platform with two key user actions:406

� Action 1 – Views (m1): Users tend to revisit or re-explore products they have viewed before. For407

example, it can be modelled via a self-influence kernel: γ11(τ) = α1e
−β1τ , where α1, β1 > 0. The408

decay term β1 ensures that earlier views gradually lose influence.409

� Action 2 – Cart Adds (m2): Cart behaviour is influenced by recent browsing activity, which may410

both trigger and suppress add-to-cart actions depending on user intent. For example, a Markovian411

influence can be modelled by: γ21(τ) = −α2e
−β2τ , where α2 > 0.412

Now consider two bad cases from the mean-square stability condition:413

� Case 1 – Unstable Browsing: If the kernel for product views increases over time, e.g., γ11(τ) =414

α1τ , the intensity λ1(t) may grow uncontrollably, leading to unrealistic predictions such as infinite415

browsing behaviour.416

� Case 2 – Over-Inhibition of Cart Adds: If the inhibition from views to cart adds grows with time417

(e.g., γ21(τ) = −α2e
β2τ ), the model may predict that users stop adding items to carts altogether,418

contradicting typical return-to-cart behaviour seen in real-world platforms.419

The above examples show how violating the kernel decay condition ∂γ/∂τ ≤ 0 results in unstable420

or unreal system behaviour. Complying with the stability condition ensures that user activity evolves421

in a bounded and interpretable manner.422

For a summary of which kernel types satisfy the stability condition, please refer to Appendix C..423

2.3 Interpretable Kernel Design424

2.3.1 Interpretable Decomposition425

Section 2.1 introduced the definition of the SHPP to model self- and Markovian influences. However,426

joint influence, where multiple historical events interact to affect future outcomes, cannot be modelled427

unless the kernel function γij is designed to capture such higher-order dependencies. In this section,428

we introduce a kernel function, γij(·), to capture joint influence.429

In discussed in Section 1.1, we need to ensure an AI model be explainable. To this end, we can use430

an interpretable kernel function in the SHPP, where the term interpretable refers to the model’s ability431

to attribute the intensity of an event to specific historical events and influence types. For example, in432

an e-commerce scenario, the predicted likelihood of a purchase event can be broken down into influences433

such as repeated product views (self-influence), recent cart additions (Markovian influence), and the434

joint effect of viewing and carting together.435

The interpretability of the kernel relies on Theorem 2, which shows how any continuous multivariate436

function can be decomposed into a finite sum of univariate functions, which is a result that is widely437

adopted for functional decomposition.438

Theorem 2 (Kolmogorov-Arnold Representation Theorem (Schmidt-Hieber, 2021)). For any contin-439

uous multivariate function f : Rn → R, then f can be written as a finite composition of continuous440

functions of a single variable and the binary operation of addition. More specifically,441

f(x1, ..., xn) =
2n∑
q=0

Φq

 n∑
p=1

ϕq,p(xp)

 , (16)

where Φq : R → R and ϕq,p : [0, 1] → R are continuous univariate functions.442
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Based on the Kolmogorov–Arnold representation theorem, we construct our kernel using a combi-443

nation of univariate functions that support both expressiveness and interpretability. This motivates444

the following structured decomposition.445

The kernel γij : Z → R+ in our SHPP is defined over the input space Z = Rp+1, which consists of446

covariates x ∈ Rp and a temporal feature τ ∈ R+. According to Theorem 2, any continuous multivariate447

function defined over this domain can be expressed as a finite sum of outer univariate functions applied448

to inner univariate transformations. Specifically:449

γij(z) =
2d∑
q=0

Φq

(
d∑

k=1

ϕq,k(zk)

)
, d = p + 1. (17)

To retain interpretability while ensuring sufficient expressiveness, we retain only the first two com-450

ponents and assume linear outer functions: Φ0(y) = y, Φ1(y) = y. This simplification preserves the451

additivity of influence contributions, allowing for clear attribution. Under this design, the kernel is452

structured as follows:453

γij(z) = Φ0

Nj(t)∑
k=1

ϕ
(ij)
0,k (zk)

+Φ1

Nj(t)∑
k=1

∑
s ̸=k

ϕ
(ij)
1,ks(zk, zs)

 =

Nj(t)∑
k=1

ϕ
(ij)
0,k (zk)︸ ︷︷ ︸

Self-/Markovian Influence

+

Nj(t)∑
k=1

∑
s ̸=k

ϕ
(ij)
1,ks(zk, zs)︸ ︷︷ ︸

Joint Influence

,

(18)

where we use superscripts (ij) to indicate dependence on the target-output marker pair. And the first454

term quantifies the impact of each historical event zk, capturing both self-influence (when i = j) and455

Markovian influence (when i ̸= j). The second term models higher-order interactions among multiple456

historical events, thereby enabling the expression of joint influence.457

To enhance interpretability, we adopt base function expansions for both components:458

� Self-/Markovian Influence:459

ϕ
(ij)
0,k (zk) =

p+1∑
r=1

β
(k)
ij,rgr(zkr), (19)

� Joint Influence:460

ϕ
(ij)
1,ks(zk, zs) =

p+1∑
r,u=1

θ
(ks)
ij,ruhru(zkr, zsu), (20)

where gr(·) and hru(·, ·) are chosen as interpretable functions such as decision trees or generalised linear461

models (Quinlan, 1986; Ribeiro et al., 2016b).462

Thus, the final interpretable kernel is:463

γij(z) =

Nj(t)∑
k=1

p+1∑
r=1

β
(k)
ij,rgr(zkr) +

Nj(t)∑
k=1

∑
s>k

p+1∑
r,u=1

θ
(ks)
ij,ruhru(zkr, zsu). (21)

This formulation enables explicit decomposition into self/Markovian and joint influences, ensuring464

interpretability while capturing complex dependencies in RED.465

To operationalize temporal influence, we adopt exponential-shaped kernels of the form κ(t− tk) =466

α exp(−β(t− tk)). These kernels are interpretable, capturing decaying influence over time and analyti-467

cally tractable, with decay parameters directly controlling long-term behaviour. While our framework468

supports alternative kernels (e.g., power-law), we default to exponential forms for their simplicity and469

stability guarantees. A comparative overview of common kernels and their theoretical properties is470
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provided in Table 6 in Appendix C..471

For the interpretable kernel basis, we use logistic units for gr(·) and bilinear forms for hru(·, ·).472

This choice balances interpretability with expressiveness: logistic functions yield bounded, smooth473

attribution, while bilinear terms naturally capture pairwise covariate interactions. More base functions474

are provided in Table 8.475

2.3.2 Interpretability Mechanism476

The stratified architecture of SHPP enables explicit attribution of intensities to three types of477

influence. By design, each perspective corresponds to an observable mechanism, allowing the model478

to quantify “why” an event is likely to occur. We refer to each quantifiable component of the kernel479

γij(·) as an influence value, representing the importance and direction of impact from specific historical480

events on intensity.481

Corollary 1 ( Influence Values). For any intensity λi(t) and interpretable kernel γij(z) given by SHPP,482

the following influence values can be extracted:483

� Self-influence value:
∑p+1

r=1 β
(k)
ij,rgr(zkr) in Eq. (21) with i = j quantifies the self-influence of the k-th484

historical event,485

� Markovian influence value:
∑p+1

r=1 β
(k)
ij,rgr(zkr) in Eq. (21) with i ̸= j captures the influence from486

marker of type j to marker of type i, and487

� Joint influence value:
∑p+1

r,u=1 θ
(ks)
ij,ruhru(zkr, zsu) models within-marker dependencies based on inter-488

actions between pairs of historical events.489

Each influence value represents a quantifiable contribution to the intensity λi(t), enabling inter-490

pretable tracing of event-to-event temporal influence.491

For self-influence and Markovian influence, the influence value has n dimensions, where each element492

represents the influence of a past event ek = (tk,mk) on the subsequent event ek+1 = (tk+1,mk+1), with493

k ∈ 1, 2, . . . , n. In other words, each value quantifies how much a specific historical event contributes494

to the occurrence of the next event, and it can be represented by:495

I(ek) =


∑p+1

r=1 β
(k)
ij,rgr(zkr), if mk = mn+1(self-influence),∑p+1

r=1 β
(k)
ij,rgr(zkr), if mk ̸= mn+1(Markovian influence),

(22)

where k ∈ {1, 2, · · · , n} are the occurrence of events.496

For joint influence, the influence values are organised as a matrix, where each element corresponds497

to the influence between a pair of markers (i, j):498

I(i, j) =

p+1∑
r,u=1

θ
(ks)
ij,ruhru(zkr, zsu), (23)

where i, j ∈ M are type of markers. Specifically, each element captures how events with marker of type499

i influence events with marker of type j across the entire sequence.500

We emphasise that covariate effects are explicitly modelled by the base functions gr(zkr) and501

hru(zkr, zsu) in the SHPP framework, where zkr encodes covariate values from historical events. As502

such, attribution values naturally reflect both temporal positioning and covariate influence. This en-503

ables users to assess not only when, but also under what contextual conditions (e.g., product category,504

user demographics) historical events exert influence on future ones.505

While self-/Markovian influence in Eq. (22) captures local temporal dependencies and joint influence506

in Eq. (23) models global interactions, each of them offers a limited, single-perspective influence.507
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To better integrate the contributions of different influence mechanisms, we propose a dynamic508

hybrid weighting strategy to combine self-/Markovian and joint influences into a unified influence509

value. Specifically, we define a combined influence value for the k-th event as:510

I(k)
combined = α

 I(k)
self/Markovian

maxj |I(j)
self/Markovian| + ϵ

2

︸ ︷︷ ︸
Normalised self/Markovian importance

+(1 − α)

(
I(k)
joint

maxj |I(j)
joint| + ϵ

)2

︸ ︷︷ ︸
Normalised joint importance

, (24)

where:511

� I(k)
self/Markovian: the individual influence value of event ek derived from self- or Markovian influence,512

� I(k)
joint: the aggregated joint influence involving event ek as part of pairwise interactions,513

� α ∈ [0, 1]: a learnable coefficient that adaptively balances the two values,514

� ϵ > 0: a small constant added to avoid division by zero during normalisation.515

The adaptive weight α allows the model to shift emphasis based on scenario. For example, in repetitive516

behaviour scenarios, α → 1 prioritizes self-influence, while in combinatorial conditions, α → 0 empha-517

sises joint patterns. The final influence value I(k)
combined keeps the interpretability of three influences518

while showing how they work together to influence events.519

2.4 Evaluation Metrics520

In this section, we will compare our proposed SHPP model with existing TPP models. To this521

end, we will use EasyTPP, a user-friendly framework for developing and benchmarking temporal point522

process (TPP) models (Xue et al., 2024). We evaluate each model from two main aspects:523

(i). Predictive performance, we need to measure the performance of our proposed method, as explained524

below.525

� Marker prediction: Given a sequence of historical events up to time t, the model predicts the next526

event with marker-mi+1. To measure the performance of the prediction, we use some metrics for527

measuring the performance of classification models. Such classification metrics include Accuracy,528

F1-score, or Top-k Precision, depending on the number of event markers (Novaković et al., 2017),529

� Time forecasting : The model predicts the time ti+1 at which the next event will occur. This530

is evaluated using the mean absolute error (MAE) or the root mean squared error (RMSE)531

between predicted and actual event times, reflecting how well the model captures temporal532

dynamics (Armstrong, 2001).533

For consistency, we report RMSE for event time forecasting and accuracy for marker prediction534

across all models.535

(ii). Interpretability, we will focus on fidelity—the degree to which the explanation reflects the true536

behaviour of the model (Miró-Nicolau et al., 2025). High fidelity indicates that explanations closely537

match the model’s actual predictions.538

Since fidelity lacks a standardised definition (Miró-Nicolau et al., 2024), we assess it from two539

perspectives:540

� Internal consistency : whether the explanation aligns with the model’s own decision-making,541

� Fidelity to real data: whether the explanation reasonably supports the model’s outputs with542

respect to actual event outcomes.543
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2.4.1 Internal Consistency544

To assess internal consistency, we first design perturbation strategies that test whether the model’s545

explanations align with its own predictive behaviour. The central idea is that if certain events are546

truly important—i.e., assigned high influence values I(ei)—then perturbing them should cause mean-547

ingful changes in model outputs. Conversely, if perturbing low-influence events has little changes, the548

explanation is considered consistent.549

Given an event sequence S = {(t1,m1), . . . , (tn,mn)}, where ei = (ti,mi) and I(ei) denotes the550

influence value of ei for predicting the next event (tn+1,mn+1), we propose the following three pertur-551

bation strategies:552

� Event deletion: Remove top-k events with highest I(ei): Smasked = S \ {ej | I(ej) ∈ Topk(I(S))}.553

� Time shifting: Add Gaussian noise ϵ ∼ N (0, σ2) to timestamps: t
′
j = tj + ϵ for ej ∈ Topk(I(S)).554

� Marker flipping: Alter markers to random markers m′ ∈ M \ {mj}.555

Building upon the perturbation strategies, we now formalise the concept of internal consistency—whether556

the model’s explanation is faithful to its own predicted behaviour. To evaluate internal consistency,557

we define two evaluation metrics: Rank correlation and Directional agreement. Let f(S) denote the558

model’s original prediction and f(Spert) the prediction after perturbation.559

� Rank correlation: quantifies whether the influence ranking I(ei) is aligned with the actual impact560

that each event ei has on the model’s prediction when perturbed. Specifically, for each event, we561

compute ∆f(Si) = f(S) − f(Spert) (e.g., event deletion, time shifting or marker flipping).562

τ =
2

n(n− 1)

∑
i<j

sgn
(
I(ei) − I(ej)

)
sgn
(
∆f(Si) − ∆f(Sj)

)
, (25)

where sgn(·) is the signum function. A high correlation value τ indicates that events have more563

influence and causes larger prediction shifts when perturbed—demonstrating internal consistency.564

� Directional agreement (DA): verifies whether masking high-influence events reliably leads to a de-565

crease in predictive accuracy. This metric ensures that explanations align with the model’s actual566

behaviour.567

DA =
1

N

N∑
i=1

I
[
f(S

(i)
masked) < f(S(i)) − δ

]
, (26)

where δ is a predefined significance threshold that accounts for minor prediction fluctuations due to568

randomness or noise. It ensures that only meaningful prediction drops—those that exceed δ—are569

counted as valid directional changes. In practice, δ can be set based on a small proportion of the570

standard deviation of prediction scores across the dataset (e.g., δ = 0.01 or δ = 5%). This avoids571

over-sensitivity to small variations and improves robustness of the directional agreement metric.572

2.4.2 Fidelity to Real Data573

To evaluate the fidelity of a model estimated on a real RED dataset, we propose two distinct574

evaluation methods: one for marker prediction and another for time forecasting.575

Each method captures different aspects of alignment between the model’s predictions and actual576

data, ensuring a comprehensive assessment of fidelity.577

� Marker prediction: Logistic regression accuracy:578

Accmarker =
1

N

N∑
i=1

I

mI
n+1t(i) = argmax

 n∑
j=1

wjI(e
(i)
j )

 . (27)
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It measures how well the importance scores I(e
(i)
j ) can construct the actual markers through a579

logistic regression. A higher accuracy indicates stronger fidelity to real data, meaning the model’s580

ability to capture meaningful patterns.581

� Time forecasting : The Spearman correlation is defined as582

ρt = Spearman

tn+1,

n∑
j=1

I(ej)(tn+1 − tj)

 . (28)

It measures the rank correlation between the actual time of the next event tn+1 and the aggregated583

influence-weighted time gaps
∑n

j=1 I(ej)(tn+1 − tj)
*. A higher ρt indicates that more influential584

past events tend to be temporally closer or more relevant to the future event.585

Beyond these metrics, it is helpful to clarify the distinction between fidelity and interpretability,586

which reflect different goals of explanation. Fidelity evaluates whether attribution scores align with the587

model’s actual behaviour under perturbations, while interpretability concerns how easily humans can588

understand the explanations (Lozano-Murcia et al., 2023). In our work, fidelity is assessed quantitatively589

through perturbation based metrics, while interpretability is illustrated qualitatively via the case study590

in Section 3.4.591

With these evaluation metrics, we propose the following algorithm, as shown in Algorithm 1, to592

assess the interpretability of our SHPP model.593

Algorithm 1 Interpretability Evaluation Algorithm

Require: Event sequences {S(i)}Ni=1, model f , influence value I
1: for each sequence S(i) do

2: Compute influence values I(S(i))

3: for perturbation p ∈ {Delete,Shift,Flip} do
4: Generate S

(i)
pert ← p(S(i))

5: Compute ∆f (i) ← |f(S(i))− f(S
(i)
pert)|

6: end for

7: Compute reconstruction metrics Accmarker and ρt

8: Aggregate τ , DA, Accmarker, and ρt

9: end for

3 Experimental Design and Results594

We evaluate the proposed SHPP model across a wide range of RED from diverse domains, including595

environmental events, healthcare, e-commerce, and business processes. Our experiments assess both596

predictive performance (event time and marker) and the quality of influence-based explanations. We597

also perform ablation studies, statistical significance testing, and case-specific analysis.598

Each dataset provides sequences of timestamped events labeled with categorical markers. See599

Table 5 for details on marker counts and domains. All datasets are split into 60% training, 20%600

validation, and 20% test sets.601

3.1 Predictive Performance602

We compare our proposed SHPP model with three representative neural TPP baselines from pre-603

dictive performance perspective:604

� A-G : A classical counting-process extension of the Cox proportional-hazards model for RED. It605

treats every RED as a new start–stop interval and estimates a common baseline hazard while606

*Spearman’s correlation captures the monotonic relationship between influence-weighted time gaps and actual event
times. Formally, given two sequences {xi} and {yi}, the Spearman correlation is computed as the Pearson correlation

between their rank variables: ρ = Cov(rank(x),rank(y))
σrank(x)σrank(y)

.
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allowing time-varying covariates, thereby capturing event intensity without specifying self-excitation607

kernels (Andersen and Gill, 1982).608

� PWP : A stratified Cox framework that orders RED by introducing one stratum per event number609

(gap-time or total-time variants). By conditioning on prior events within each stratum, PWP610

accounts for event order–specific baseline hazards and provides greater flexibility than A–G when611

event risk changes after each occurrence (Prentice et al., 1981).612

� RMTPP (Recurrent Marked Temporal Point Process): The first neural TPP model that uses recur-613

rent neural networks (RNNs) to encode event history and predict both event time and marker. It614

captures sequential dependencies through hidden states and serves as a foundational deep learning-615

based TPP baseline (Du et al., 2016),616

� NHP (Neural Hawkes Process) : An extension of Hawkes processes with continuous-time LSTM617

architecture, which extends RMTPP with a continuous-time LSTM and model time intervals better618

(Mei and Eisner, 2017), and619

� THP (Transformer Hawkes Process): A Transformer-based TPP model that employs self-attention620

to capture long-range dependencies across events. It supports flexible modelling of temporal in-621

fluence patterns and has achieved state-of-the-art performance on several TPP benchmarks (Yang622

et al., 2021).623

Table 1 displays the predictive performance measures of our proposed model SHPP against three other624

models �. The proposed SHPP model demonstrates competitive performance across multiple datasets

Table 1: Predictive performance across datasets.

Dataset
A –G P WP RMTPP NHP THP SHPP

RMSE RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE

Earthquake 10.214 8.107E3 0.441 1.742 0.472 1.988 0.472 1.863 0.481 1.838
Synthetic 15.183 3.447E3 0.381 0.612 0.381 0.606 0.382 0.557 0.409 0.604
ContTime 10.213 3.566E4 0.388 0.353 0.390 0.342 0.351 0.344 0.400 0.343

Mutual 15.519 6.831E3 0.379 1.702 0.633 1.219 0.628 1.164 0.646 1.504

Taxi 4.732 8.321E3 0.897 0.358 0.891 0.376 0.883 0.361 0.926 0.365
Taobao 1.512E5 1.454E5 0.436 0.269 0.512 0.332 0.436 0.297 0.436 0.259
Amazon 1.033E1 4.851E4 0.301 0.598 0.331 0.620 0.333 0.629 0.362 0.479

BPIC 3.483E2 8.251E4 0.435 6.788E1 0.662 8.497E2 0.412 6.956E1 0.413 6.835E1
MIMIC-ICU 3.982E4 4.943E4 0.502 1.736E3 0.881 1.734E3 0.894 2.293E3 0.882 1.736E3

MIMIC-Diab. 4.051E4 4.436E4 0.548 2.204E3 0.361 2.304E3 0.378 2.141E3 0.826 2.140E3

Note: Acc = marker classification accuracy (%, higher is better); RMSE = root mean squared error for timestamp
prediction. A–G and PWP do not model markers explicitly, thus only RMSE is reported, and aEb = a× 10b.

625

in joint marker prediction and time forecasting tasks. As shown in Table 1, SHPP achieves the highest626

marker prediction accuracy (Acc) on 7 out of 10 datasets including Earthquake (0.481), Synthetic627

(0.409), ContTime (0.400), Mutual (0.646), Taxi (0.926), Amazon (0.362), and MIMIC-Diab. (0.826).628

These results highlight SHPP’s ability in classification tasks across both scientific and operational629

domains.630

In terms of time prediction (RMSE), SHPP outperforms all neural baselines on Taobao (0.259),631

Amazon (0.479), and MIMIC-Diabetes (2.140E3), and achieves competitive results on Mutual (1.504),632

where NHP and THP tend to suffer from instabilEity. On many datasets (e.g., Earthquake, Taxi),633

RMTPP achieves slightly lower RMSE, but with considerably worse marker accuracy, reflecting a634

trade-off.635

SHPP achieves the most balanced performance on the Amazon dataset, attaining both the highest636

�Accuracy not applicable to A–G and PWP as they do not support marker prediction
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Accuracy (0.362) and the lowest RMSE (0.479), better than classical methods like A-G (RMSE: 10.325)637

and PWP (RMSE: 4.850E4) by a large margin.638

On large-scale datasets such as BPIC, MIMIC-ICU, and MIMIC-Diab, SHPP remains competitive639

and stable, while classical models like PWP yield high RMSEs (e.g., BPIC: 8.251E4), indicating limited640

scalability of traditional statistical frameworks.641

This performance comparison suggests that SHPP effectively balances event time prediction with642

marker classification. The consistent advantage in Accuracy across diverse domains indicates SHPP’s643

enhanced modelling of marker-specific temporal dependencies and generalisation across heterogeneous644

datasets.645

3.2 Attribution Analysis646

We evaluate the internal consistency of SHPP and TimeSHAP (TimeS) across ten datasets in terms647

of marker attribution and event time attribution, using Kendall’s τ rank correlation and Directional648

Agreement (DA), as shown in Table 2a, SHPP consistently outperforms TimeS in Kendall τ on both649

marker and time dimensions across most datasets.650

Table 2: Comparison of SHPP and TimeSHAP on internal consistency (left) and fidelity (right).

(a) Internal consistency

Dataset
Kendall τ (Marker) Kendall τ (Time) DA (%)

SHPP TimeS SHPP TimeS SHPP TimeS

Earthquake 0.18±0.01 0.08 0.69±0.03 0.41 88.2±0.6 92.4
Synthetic 0.13±0.02 0.18 0.71±0.04 0.58 83.4±0.8 90.2
ContTime 0.40±0.01 0.12 0.43±0.02 0.29 98.0±0.2 92.7

Mutual 0.19±0.01 0.16 0.21±0.03 0.11 88.7±0.04 92.1

Taxi 0.62±0.01 0.29 0.65±0.02 0.20 82.1±0.4 95.3
Taobao 0.49±0.02 0.16 0.56±0.03 0.17 88.0±0.5 90.9
Amazon 0.17±0.03 0.09 0.21±0.04 0.25 64.0±1.0 49.2

BPIC 0.47±0.01 0.46 0.17±0.01 0.16 64.1±0.2 81.2
MIMIC-ICU 0.67±0.03 0.62 0.73±0.02 0.73 87.6±0.4 83.7

MIMIC-Diab. 0.76±0.03 0.72 0.74±0.03 0.76 88.0±0.3 90.1

(b) Fidelity

Marker Acc (%) Time Spearman ρ

SHPP TimeS SHPP TimeS

83.4±0.5 44.1 0.71±0.02 0.74
84.0±0.8 79.3 0.32±0.04 0.25
59.2±0.1 54.8 0.37±0.05 0.29
56.3±0.7 55.9 0.44±0.03 0.28

89.2±0.4 83.7 0.78±0.03 0.69
97.3±0.2 92.5 0.95±0.01 0.88
84.1±0.6 79.9 0.32±0.03 0.26
63.9±0.2 73.1 0.64±0.02 0.66
94.0±0.5 89.6 0.34±0.03 0.26
95.1±0.3 74.6 0.43±0.04 0.47

Note: Kendall τ evaluates the rank correlation between original and perturbed importance rankings (higher
is better); DA (Direction Agreement) indicates the consistency in influence direction after perturbation;
Acc is classification accuracy of predicted event type (%); Spearman ρ measures rank correlation on event
timestamps (higher is better).

Compared to TimeSHAP, SHPP achieves higher Kendall τ for marker attribution in 9 out of 10651

datasets and outperforms in time attribution in 9 out of 10 datasets as well. For example, on the652

Taxi dataset, SHPP attains a Kendall τ of 0.62 (marker) and 0.65 (time), significantly higher than653

TimeSHAP (0.29 and 0.20 respectively). Similarly, on the ContTime dataset, SHPP obtains τ = 0.40654

(marker) and τ = 0.43 (time), while TimeSHAP only achieves 0.12 and 0.29. An exception is the655

Amazon dataset, where TimeSHAP slightly outperforms SHPP in time attribution (τ = 0.25 vs. 0.21),656

suggesting that TimeSHAP can be more effective under sparse or low-signal settings.657

Directional Agreement (DA) further supports the robustness of SHPP. On 3 of the 10 datasets,658

SHPP achieves significantly higher DA scores than TimeSHAP. Notably, on Mutual, SHPP maintains659

a DA of 88.7% vs. TimeS’s 92.1%, while on Amazon, SHPP’s DA is 64.0%, still higher than TimeSHAP660

(49.2%), despite the weaker τ score.661

From a DA perspective, SHPP performs better than TimeSHAP on 3 of the 10 datasets: ContTime662

(98.0 % vs. 92.7 %), Amazon (64.0 % vs. 49.2 %), and MIMIC-ICU (87.6 % vs. 83.7 %). On the663

remaining datasets, TimeSHAP attains a higher DA, indicating that its attributions switch direction664

less often under perturbation. Notably, SHPP’s advantage on Amazon arises despite a lower τ score,665

suggesting that even when rank correlation is weaker, its influence directions remain more coherent666
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than those of TimeSHAP. These mixed outcomes highlight a trade-off: SHPP offers stronger direction667

consistency in certain domains, while TimeSHAP proves more robust in others.668

Table 2b presents the fidelity evaluation results for SHPP and TimeSHAP (TimeS), focusing on two669

key dimensions: marker prediction accuracy and time attribution fidelity (Spearman’s ρ). The results670

consistently demonstrate SHPP’s ability to reproduce model behaviour under input perturbations across671

diverse datasets.672

SHPP achieves notably high marker attribution fidelity, with accuracy ranging from 56.3% (Mutual)673

to 97.3% (Taobao), outperforming TimeSHAP on 9 out of 10 datasets. For example, on the Taxi674

dataset, SHPP achieves 89.2% accuracy versus TimeSHAP’s 83.7%, and on Amazon, SHPP reaches675

84.1% versus 79.9%. An exception is BPIC, where TimeSHAP slightly outperforms SHPP in marker676

accuracy (73.1% vs. 63.9%), potentially due to variance in process noise or annotation sparsity.677

In terms of time attribution fidelity, SHPP also shows a consistent advantage, obtaining higher678

Spearman ρ values in most datasets. Notably, on the Taobao dataset, SHPP achieves ρ = 0.95,679

exceeding TimeSHAP’s ρ = 0.88, and on Taxi, SHPP records ρ = 0.78 versus TimeSHAP’s ρ = 0.69.680

On MIMIC-Diab., however, TimeSHAP outperforms SHPP (ρ = 0.47 vs. 0.43), indicating marginally681

better alignment in medical event timing.682

Overall, SHPP demonstrates robust fidelity across both attribution types, especially in datasets683

with strong sequential or behavioural signals (e.g., e-commerce and transportation). These results684

validate SHPP’s effectiveness in approximating the model’s true behaviour and underline its utility in685

high-stakes temporal modelling tasks.686

3.3 Ablation Analysis687

To assess how each component in SHPP contributes to both predictive performance and explanation688

ability, we perform an ablation analysis. Table 3 presents a detailed ablation study of the SHPP model689

across three representative datasets: Mutual, Taxi, and MIMIC-ICU. We examine the contribution of690

three influence components: Self-, Markovian, and Joint, by selectively removing each and measuring691

the impact on predictive performance, internal consistency, and fidelity.

Table 3: Ablation study on influence components across datasets.

Dataset Variant
Predictive Internal Consistency Fidelity

Acc / RMSE τ (M / T) DA (%) Acc (%) ρ

Mutual

Full (S+M+J) 0.646 / 15.450 0.19 / 0.21 88.7 56.3 0.44
–Self (M+J) 0.378 / 15.448 0.08 / 0.06 57.5 52.1 0.28
–Markov (S+J) 0.623 / 15.450 0.21 / 0.11 88.6 46.5 0.18
–Joint (S+M) 0.623 / 15.450 0.09 / 0.00 88.6 54.8 0.25

Taxi

Full (S+M+J) 0.332 / 4.654 0.32 / 0.35 92.1 46.5 0.51
–Self (M+J) 0.364 / 4.674 0.08 / 0.06 57.5 52.1 0.18
–Markov (S+J) 0.133 / 4.655 0.21 / 0.11 88.6 46.5 0.08
–Joint (S+M) 0.133 / 4.655 0.09 / 0.00 88.6 54.8 0.15

MIMIC-ICU

Full (S+M+J) 0.211 / 11.991 0.34 / 0.34 98.6 52.1 0.65
–Self (M+J) 0.256 / 11.996 0.28 / 0.36 57.5 52.1 0.18
–Markov (S+J) 0.111 / 11.991 0.21 / 0.41 98.6 46.5 0.08
–Joint (S+M) 0.011 / 11.991 0.09 / 0.20 98.6 54.8 0.15

Note: Full = SHPP with all three influence components: Self (S), Markov (M), and Joint (J). –Self = without
self-influence; –Markov = without Markovian influence –Joint = without joint influence.

692

Firstly, for predictive performance, the full model (S+M+J) consistently achieves the best or near-693

best accuracy and RMSE across datasets, indicating the importance of incorporating all three influence694

types. Removing the Self component (–Self ) causes the most significant drop in accuracy (e.g., from695

0.646 to 0.378 in Muautl), underscoring the critical role of self-influence in modelling event dependencies.696
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The impact of removing Markovian or Joint components is less severe in terms of accuracy, but still697

non-negligible.698

Then, for internal consistency, the Kendall’s τ scores and Directional Agreement (DA) show that699

eliminating Self or Joint components leads to degraded consistency in influence ranking. Notably, DA700

drops drastically to 57.5% in all datasets when Self is removed, confirming its central role in preserving701

stable influence attribution.702

Finally, for fidelity, removing the Joint component (–Joint) slightly improves fidelity accuracy in703

some cases (e.g., 54.8% vs. 56.3% in Mutual), but this comes at the cost of reduced Spearman’s ρ704

(e.g., 0.44 to 0.25), suggesting temporal degradation. The –Self variant again performs the worst705

across all fidelity metrics, highlighting the importance of self-influence for both accurate and faithful706

explanations.707

Overall, these findings demonstrate that: Self-influence is the most influential component for both708

prediction and explanation; Markovian influence improves consistency, particularly in recent inter-709

actions; Joint influence enhances the expressiveness of attributions, especially for capturing pairwise710

marker dependencies. The joint modelling of all three components enables SHPP to strike a desirable711

balance between predictive performance and interpretability.712

3.4 Case Study: E-commerce Behaviour Analysis713

In this section, we use the E-commerce dataset (Alibaba group, 2018; Zhuo et al., 2020), which714

contains time-stamped user click behaviours on Taobao.com from November 25 to December 03, 2017.715

There are four marker types in the dataset:716

� pv : Page view of an item’s detail page (i.e., item click),717

� buy : Purchase of an item,718

� cart : Add an item to the shopping cart, and719

� fav : Favor (bookmark) an item.720

Each user has a sequence of events, with each event containing a timestamp and the item’s category.721

To reduce the level of noise, we keep only the top 53 most frequent item categories. We then select a722

subset of 309,312 active users. After preprocessing, we retain K = 4 marker types. The dataset is split723

into training, development, and test sets with 68,950, 19,700, and 9,851 sequences, respectively.724

Table 4: Predictive and interpretability metrics of SHPP for the case study.

Perf. (Acc/RMSE) τ (Marker/Time) DA Fid. Acc Fid. ρ

92.02% / 181.99 0.624 / 0.638 0.980 94.00% 0.648

Table 4 summarises the performance of SHPP across two key dimensions: prediction accuracy and725

temporal modelling fidelity, and explanation consistency under perturbations. The model achieves726

high marker classification accuracy (92.02%) and reasonably low timestamp error (RMSE = 181.99),727

demonstrating strong predictive performance. In terms of explanation quality, rank correlation τ and di-728

rectional agreement show that the influence values are consistent with the model’s predictive behaviour729

under perturbations. Furthermore, high marker reconstruction accuracy and Spearman correlation ρ730

validate the fidelity of the learned representations in capturing true RED.731

A specific case study is provided in the next section to illustrate the model’s effectiveness on a real732

user sequence.733

3.4.1 Understanding Behaviour Importance Value734

To better understand how the model interprets user behaviours and identifies key decision points,735

we conduct a case study analysis on different user action routes, supported by influence value proposed736
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Figure 3: Sample 1 (pv → buy) influence values.
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Figure 4: Sample 2 (pv + cart→buy) influence values.

in Section 2.3.2. We select three representative behaviour-to-purchase paths and analyse how the model737

assigns importance scores based on our three influences mechanism:738

� pv → buy: This path represents users who make a purchase without any fav or cart actions,739

� pv + cart → buy: Here, users directly add an item to the cart and later proceed to purchase,740

bypassing favoriting, and741

� pv + fav + cart → buy: In this path, both fav and cart behaviours precede the final purchase.742

We select several users with the previous representative behaviour-to-purchase path, which means the743

last behaviour is buy.744

From Fig. 3, we observe that the final view of item A receives the highest influence value, while745

the views of item B also hold high influence value. This suggests that the user made the purchase746

decision through a comparative evaluation of similar items, and the last view of item A has the highest747

importance value, which influence most of the final decision: buy item A.748

As shown in Fig. 4, the last browsing behaviour before purchase receives the highest influence value749

from three perspectives. During the user’s ongoing comparison of similar products (e.g., item A, B, C,750

D, E), the combined influence value gradually increases. Notably, the cart action of item E itself does751

not carry the highest influence value; instead, it is the subsequent post-cart browsing behaviours that752

are more influential in the final purchase decision of item E.753

Fig. 5 shows that the purchase of item A was influenced by recent views of similar items (e.g., item754
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B). The influence value starts to vary only in the last five steps, with earlier actions having minimal755

influence. And the joint influence values from item B are almost the same (except ’pv-A’, which is756

self-influence), which means the joint influence from B has no difference in the previous steps and have757

no influence for the final decision. The last self-influence from view of item A (e.g., self-influence) highly758

influence the final decision: buy item A.759

In summary, the case studies illustrate that SHPP can generate user-level explanations that are760

not only interpretable but also actionable. This opens the door for more personalised recommendation761

strategies tailored to individual behavioural patterns—achieving the goal of customised recommenda-762

tion for everyone.763

4 Discussion and Limitations764

Despite providing a structured and interpretable view of RED, SHPP still faces several practical765

limitations:766

� Data sparsity and scalability: SHPP assumes moderately dense event histories. In scenarios with767

short sequences or, conversely, very long traces and many marker types, the model may underfit or768

suffer from sparse and noisy interactions. Pretraining, sequence augmentation, or marker grouping769

could help address these challenges.770

� Kernel flexibility: The logistic–bilinear kernel is easy to interpret, yet its performance hinges on771

sensible basis-function choices and initialisation. Future work could adopt estimable monotone772

kernels or Bayesian priors that adapt shape while preserving interpretability.773

� Explainability coverage: We report internal consistency and fidelity scores against TimeSHAP. A774

better method would require quantitative head-to-head tests with other XAI methods (e.g. attention775

heat-maps, Integrated Gradients) along XAI dimensions such as stability, completeness and robust-776

ness. Reducing this gap calls for a public benchmark for RED explainability—currently absent in777

the literature.778

� Modelling assumptions: SHPP factorises an intensity into additive and pairwise terms. Domains779

with strong latent confounders or higher-order interactions may violate this assumption. Extending780

SHPP with latent variables, hierarchical strata, or graph priors could improve realism.781

� Computational efficiency: We analyse SHPP’s theoretical cost in Appendix A., but do not report782

running time and memory usage due to variability across environments. Potential optimisions in783

future work for large datasets and inference may includes: (i) history truncation beyond a temporal784

horizon, (ii) sparsification by pruning weak kernel entries, and (iii) low-rank compression of the785

joint influence matrix.786

In our future work we plan to (i) introduce sparsity-aware regularisers to handle extremely sparse RED,787

(ii) build a unified benchmark that scores interpretability across multiple XAI metrics and baselines,788

including attention-based transformers, and (iii) develop online and multi-agent variants of SHPP for789

RED.790

5 Conclusion791

This paper introduced the Stratified Hawkes Point Process (SHPP), an explainable temporal point792

process framework for modelling and interpreting recurrent event data. SHPP decomposes event dy-793

namics into self-, Markovian, and joint influence components, enabling attribution of temporal depen-794

dencies across multiple event types.795

By designing interpretable influence kernels and establishing sufficient stability conditions, SHPP796

balances predictive power with theoretical soundness and practical transparency. Extensive experiments797
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demonstrate the model’s effectiveness in both prediction and explainability tasks across diverse domains.798

Overall, SHPP contributes a unified, interpretable, and extensible framework for explainable risk799

modelling, with potential applications in personalised recommendation, clinical monitoring, user be-800

haviour analysis, and beyond.801
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M., Delen, D., Kraus, M., Lessmann, S., et al. (2024). Explainable AI for operational research: A833

defining framework, methods, applications, and a research agenda. European Journal of Operational834

Research, 317(2):249–272.835

Dewanji, A. and Moolgavkar, S. H. (2000). A poisson process approach for recurrent event data with836

environmental covariates. Environmetrics: The Official Journal of the International Environmetrics837

Society, 11(6):665–673.838

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L. (2016). Recurrent839

marked temporal point processes: Embedding event history to vector. In Proceedings of the 22nd840

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1555–841

24

https://tianchi.aliyun.com/dataset/649
https://tianchi.aliyun.com/dataset/649
https://tianchi.aliyun.com/dataset/649


1564.842

Farajtabar, M., Du, N., Rodriguez, M., Valera, I., Zha, H., and Song, L. (2015). Shaping social activity843

by incentivizing users. In Advances in Neural Information Processing Systems, volume 28.844

Fukui, H., Hirakawa, T., Yamashita, T., and Fujiyoshi, H. (2019). Attention branch network: Learning845

of attention mechanism for visual explanation. In Proceedings of the IEEE/CVF Conference on846

Computer Vision and Pattern Recognition, pages 10705–10714.847

Gashi, M., Mutlu, B., and Thalmann, S. (2023). Impact of interdependencies: Multi-component system848

perspective toward predictive maintenance based on machine learning and xai. Applied Sciences,849

13(5):3088.850

Gupta, G., Sunder, V., Prasad, R., and Shroff, G. (2019). Cresa: a deep learning approach to competing851

risks, recurrent event survival analysis. In Advances in Knowledge Discovery and Data Mining: 23rd852

Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part II 23,853

pages 108–122. Springer.854

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika,855

58(1):83–90.856

Higham, D. J. (2000). A-stability and stochastic mean-square stability. BIT Numerical Mathematics,857

40:404–409.858

Hu, X., Ma, W., Chen, C., Wen, S., Zhang, J., Xiang, Y., and Fei, G. (2022). Event detection in online859

social network: Methodologies, state-of-art, and evolution. Computer Science Review, 46:100500.860

Kelly, P. J. and Lim, L. L.-Y. (2000). Survival analysis for recurrent event data: an application to861

childhood infectious diseases. Statistics in Medicine, 19(1):13–33.862

Ketelbuters, L. and Bersini, H. (2022). Cds-hawkes: A causality-based hawkes process for event mod-863

eling and prediction. European Journal of Operational Research, 299(2):663–677.864

Khasminskii, R. (2011). Stochastic Stability of Differential Equations. Springer.865

Kobayashi, R. and Lambiotte, R. (2016). Tideh: Time-dependent hawkes process for predicting retweet866

dynamics. Proceedings of the Tenth International AAAI Conference on Web and Social Media.867

Li, P., Bahri, O., Boubrahimi, S. F., and Hamdi, S. M. (2023). Attention-based counterfactual explana-868

tion for multivariate time series. In International Conference on Big Data Analytics and Knowledge869

Discovery, pages 287–293. Springer.870

Lin, H., Wu, L., Zhao, G., Liu, P., and Li, S. Z. (2022). Exploring generative neural temporal point871

process. arXiv preprint arXiv:2208.01874.872

Lintu, M. and Kamath, A. (2022). Performance of recurrent event models on defect proneness data.873

Annals of Operations Research, 315(2):2209–2218.874

Lozano-Murcia, C., Romero, F. P., Serrano-Guerrero, J., and Olivas, J. A. (2023). paparison Between875

Explainable Machine Learning Methods for Classification and Regression Problems in the Actuarial876

Context. Mathematics, 11(14):3088.877

Lundberg, S. M. and Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. In Advances878

in Neural Information Processing Systems, volume 30. Curran Associates, Inc.879

Lyu, Q. and Wu, S. (2025). Explainable artificial intelligence for business and economics: Methods,880

applications and challenges. Expert Systems, 42(4):e70017.881

Mei, H. and Eisner, J. M. (2017). The neural hawkes process: A neurally self-modulating multivariate882

point process. Advances in Neural Information Processing Systems, 30.883
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Appendix A. Optimisation Framework952

Having established the theoretical foundations of SHPP with interpretable kernels, we now turn to953

the parameter estimation problem.954

Let {ti}Ni=1 be the event times in observation window [0, T ] with associated markers {mi}Ni=1. Define955

that ∆Nj(ti−1, t)
def
= |{s : ti−1 < ts ≤ t,ms = j}|, which represents event with marker of type j count in956

(ti−1, t]. The conditional intensity function can be decomposed as: λ(t) =
∑M

j=1 λj(t | Ht). Thus, the957

distributions for event time are:958

F (t | Hti−1) = 1 − exp

(
−
∫ t

ti−1

λ(s)ds

)
, f(t | Hti−1) = λ(t) exp

(
−
∫ t

ti−1

λ(s)ds

)
. (29)

The marker type’s distribution satisfies: P(Mi = j | Ti = t) =
λj(t)
λ(t) . Then, the joint likelihood over959

[0, T ] decomposes as:960

L(Θ) =

N∏
i=1

f(ti)P(mi | ti) =

N∏
i=1

λmi(ti) exp

(
−
∫ ti

ti−1

λ(s)ds

)
. (30)
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We can then obtain the log-likelihood:961

ℓ(Θ) =

N∑
i=1

log λmi(ti) −
∫ T

0
λ(t)dt

=

N∑
i=1

µmi +

M∑
j=1

γmij({ti − Tjs})


︸ ︷︷ ︸

Event Term

−
∫ T

0
exp

 M∑
j=1

µj +

M∑
ℓ=1

γjℓ({t− Tℓm})

 dt

︸ ︷︷ ︸
Non-Event Term

.
(31)

To improve the computation efficiency of the non-event integral term, which is often computa-962

tionally expensive due to its dependence on the entire event history, we propose an adaptive Monte963

Carlo optimisation approach that leverages adaptive sampling to reduce variance in non-event integral964

estimation while maintaining computational efficiency.965

Algorithm 2 Adaptive Monte Carlo Optimisation

1: Initialize parameters Θ(0) = {µj , γjk}
2: for epoch = 1 to E do

3: Shuffle event sequences

4: for each mini-batch B do

5: Compute event term: ℓevent =
∑

(ti,mi)∈B log λmi(ti)

6: Estimate non-event term: ℓnon-event ≈ T
S

∑S
s=1 λ(ts) where ts ∼ AdaptiveSampler(λ)

7: Compute gradient: ∇Θ = ∇(ℓevent − ℓnon-event)

8: Update: Θ(new) ← Θ(old) + ηAdam(∇Θ)

9: end for

10: end for

We implement SHPP using PyTorch and optimise it using the Adam optimizer with a learning rate966

of 10−3 and batch size of 64. The kernel functions γij are parameterised by neural basis expansions (see967

Eq. (21)), and all parameters including coefficients β, θ, and adaptive weight α are jointly learned via968

backpropagation. Regularisation is applied via ℓ2-norm penalties to avoid overfitting in sparse regimes.969

Training typically converges within 50 epochs.970

The computational complexity of SHPP depends on the number of historical events and the com-971

plexity of the kernel evaluations. Specifically, the per-event computation cost is O(Nj(t)·d+Nj(t)
2 ·d2),972

where Nj(t) is the number of historical events of type j, and d = p + 1 is the feature dimension. The973

first term accounts for self-/Markovian type influence, while the second corresponds to joint influence974

over all event pairs.975

Appendix B. Experimental Datasets and Setup976

There are several recurrent event datasets that have been prepared by our proposed SHPP, as shown977

in Table 5978

Table 5: Overview of recurrent event datasets used in experiments.

Data name Scenario Data description Artificial? Marker # Size Resource

Earthquake Environmental Timestamped earthquake events over the U.S. (1996–2023) No 1 49363 USGS
Synthetic Generic simulation Data simulated based on Hawkes process No 1 8000 Tick library
Conttime Generic simulation Data simulated based on continuous-time Hawkes process No 1 8000 Tick library
Mutual Generic simulation Data simulated based on mutual-exciting process No 2 8000 tick library

Taxi Transportation Timestamped taxi pick-up events Yes 10 51854 NYC FOIL
Taobao E-commerce User online shopping behaviour on Taobao.com Yes 17 75205 Xue et al. (2022)
Amazon E-commerce User product review behaviour (2008–2018) Yes 16 6454 Amazon data

BPIC Finance Business process logs from Dutch financial institution Yes 26 10000 BPIC2017
MIMIC-Diab. Healthcare Hospital events for people with diabetes from MIMIC-IV Yes 11 25593 MIMIC-IV
MIMIC-ICU Healthcare Hospital events for people in ICU from MIMIC-IV Yes 11 65366 MIMIC-IV

All experiments are developed in PyTorch and run on a machine with NVIDIA A40 GPU. We use a979

standard train-validation-test split of 60%-20%-20% across all datasets unless otherwise specified. For980
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each experiment, we run 5 different random seeds and report mean ± standard deviation.981

For SHPP, we set the maximum number of past events K = 10, kernel function κ(τ) = αe−βτ , and982

use default base functions gr(·) (logistic) and hru(·, ·) (bilinear). The learning rate is set to 10−3, batch983

size 64, and we use the Adam optimizer with early stopping on validation loss.984

Evaluation metrics include prediction accuracy (marker and time), Kendall’s τ , direction agreement985

(DA), and fidelity scores. See Appendix C. for kernel stability assumptions.986

Appendix C. Kernel Types and Stability Conditions987

Here, we summarise commonly used temporal kernels for point processes and discuss whether they988

satisfy the stability condition proposed in Theorem 1.989

Let τ(= t − tk) denote the time gap between the current and historical events. The kernels listed990

in Table 6 are widely used in temporal modelling: Theorem 1 states that a sufficient condition for991

mean-square stability is that the kernel function γ(τ) satisfies ∂γ/∂τ ≤ 0 for all τ > 0. This guarantees992

that the cumulative influence does not diverge over time.993

In our implementation, we use exponential-based kernels for both excitation and inhibition due to994

their stability and analytical simplicity.

Table 6: Common kernel types, properties, and stability under Theorem 1.

Kernel Type Form γ(τ) Monotonic? Stable? Reference

Exponential decay αe−βτ , α>0 Yes Yes Hawkes (1971)

Gaussian-shaped αe−β(τ−µ)2 No No Zhou et al. (2013)

Rayleigh ατe−βτ2

No No Farajtabar et al. (2015)
Power-law α

(τ+c)δ
, δ>1 Yes Yes Narteau et al. (2002)

Signed exponential αe−βτ , α<0 Yes Yes Kobayashi and Lambiotte (2016)

995

Appendix D. Sensitive Analysis996

To assess the robustness and flexibility of SHPP, we conduct a series of sensitivity analyses using997

synthetic datasets. Specifically, we investigate: (i) The impact of the influence balance parameter α,998

which balances historical events influences (see Table 7), (ii) The role of different types of base functions999

in the interpretable kernel (see Table 8), and (iii) The effect of varying the number of event marker1000

types on performance and explanation performance (see Table 9).1001

We provide a synthetic data generation algorithm for the marker types sensitive analysis (Algo-1002

rithm 3).1003

Table 7: Sensitivity of SHPP to the influence weight α.

α Kendall τ DA (%) Fidelity

Marker Time Value Acc (%) ρ

0.1 0.22 0.05 88.1 17.3 0.29
0.3 0.21 0.11 88.2 17.3 0.38
0.5 0.23 0.12 87.9 17.3 0.33
0.7 0.14 0.11 89.0 19.3 0.33
0.9 0.18 0.05 87.5 17.3 0.38

From Table 7, we observe that internal consistency metrics (Kendall’s τ) improve as α increases1004

from 0.1 to 0.5, suggesting that a moderate emphasis on influence structure helps stabilise importance1005

estimation. Beyond α = 0.5, the consistency drops slightly, possibly due to over-regularisation. Direc-1006

tional agreement (DA) remains stable across all settings, while fidelity (Acc and ρ) peaks near α = 0.7,1007

indicating an optimal trade-off between self- and pairwise contributions.1008

From Table 8, the combination of Logistic encoding with Bilinear interaction has the best overall1009

fidelity and consistency scores. Decision Stump + Bilinear performs competitively, while shallow neural1010
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Algorithm 3 Simulated RED Generation Algorithm

Require: Number of sequences N , event types K, max time Tmax, baseline intensity µi, kernel γij(·), noise level σt,
perturbation probability p

1: for n = 1 to N do
2: Initialise event list S(n) ← ∅
3: Set current time t← 0
4: while t < Tmax do

5: Compute intensity λi(t) = exp(µi +
K∑

j=1

∑
tk<t

γij(t− tk))

6: Sample next time gap ∆t ∼
∑

i λi(t)
7: Update time: t← t+∆t
8: Sample event type m ∼ Multinomial(λ1(t), . . . , λK(t))
9: Add (t,m) to S(n)

10: end while
11: /* Add perturbations */
12: for (ti,mi) ∈ S(n) do
13: ti ← ti + ϵt, ϵt ∼ N (0, σ2

t ) ▷ Timestamp noise
14: if Rand() < p then
15: mi ← UniformRandom(1, 2, . . . ,K) ▷ Marker flipping
16: end if
17: end for
18: end for

Table 8: Sensitivity to the choices of base functions.

Basis Function Kendall τ DA (%) Fidelity

Marker Time Value Acc (%) ρ

Logistic + Bilinear 0.12 0.22 87.9 20.3 0.31
Decision Stump + Bilinear 0.24 0.23 83.4 19.9 0.27

Logistic + Shallow NN 0.11 0.21 77.0 18.8 0.27
Shallow Tree + Tree Interact. 0.08 0.12 74.8 16.8 0.28

Note: Basis functions used in SHPP are defined as follows: (1) Logistic: ϕ(x) = 1
1+exp(−w⊤x)

; (2) Decision Stump:

binary indicator ϕ(x) = I(xj > θ) for some feature j and threshold θ; (3) Shallow NN : one hidden layer neural
network ϕ(x) = σ(W2 · σ(W1x+ b1) + b2); (4) Tree Interaction: pairwise indicator features from a shallow decision
tree. Bilinear or additive forms are used for modelling interactions among events.

Table 9: Sensitivity to number of marker types.

# Markers Kendall τ DA (%) Fidelity

Marker Time Value Acc (%) ρ

5 0.22 0.21 82.6 33.6 0.21
10 0.22 0.21 90.0 17.4 0.36
20 0.11 0.22 94.8 8.3 0.24
40 0.13 0.22 98.0 4.3 0.33

nets and tree-based designs slightly reduce interpretability metrics. This confirms that simple yet1011

expressive base functions align better with SHPP’s structured assumptions.1012

When selecting a base function, we suggest starting with a small number of logistic units plus1013

bilinear terms. If the application needs rule-level transparency, switching the logistic units to a small1014

number of decision stumps provides clearer if–then statements at the cost of less fidelity. Only when1015

data are large enough and highly non-linear interactions are expected should one consider shallow1016

neural or tree-interaction bases, while Directional Agreement will drop.1017

From Table 9, fidelity metrics (especially Fid. and Acc) degrade noticeably, though DA improves,1018

as the number of marker types increases from 5 to 40. This suggests that SHPP maintains relative1019

ordering of influences even under complex event marker types, but the absolute attribution becomes1020

less precise. These results highlight the challenge of interpretability under high-dimensional settings,1021

motivating future work on scalable regularisation or clustering-based summarisation.1022
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