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Abstract

LIDL− is a decidable fragment of Interval Duration Logic with Located Constraints, an expressive
subset of dense-time Duration Calculus. It has been claimed that, for any LIDL− formulaD, a timed
automaton can be constructed which accepts the models of D. However, the proposed construction
is incomplete and has not been proved effective. In this paper, we prove the effective construction
of equivalent timed automata from LIDL− formulae.

1 Introduction

LIDL− [21] is a decidable fragment of Interval Duration Logic with Located Constraints, an expressive
propositional subset of dense-time Duration Calculus (DC) [32, 31]. LIDL− is interpreted on finite
timed state sequences [14, 4]. The decidability of LIDL− is obtained by disallowing the DC duration
operator (

∫

) and restricting timing constraints to a particular form, called located constraints. A located
constraint is a formula of the form P ; ℓ ∼ c, where P is the anchor proposition, ℓ denotes the elapsed
time in a sequence, ∼ is a relational operator and c ∈ N is a constant. The LIDL− formula P ; ℓ ∼ c
holds in a sequence where the time elapsed between the last time a (previous) state satisfying P was
entered, and the time the current state was entered, satisfies the constraint (∼ c). LIDL−inherits
all other DC operators, such as the chop operator ( ⌢) [19, 26] and quantification over propositional
variables. This allows LIDL− to express a large and practically relevant class of timing constraints (for
instance, most of the well-known requirements patterns of [25] can be naturally expressed in LIDL−). In
addition, LIDL− includes a past operator, ←−3 (“sometime in the past”), which extends the satisfiability
of LIDL− formulae to previously observed states in the sequence.

A translation from LIDL− to deterministic event-recording timed automaton (ERA) [2] is outlined
in [21]. (Moreover, LIDL− and ERA are claimed to be equally expressive.) Given an LIDL− formula
D, each located constraint in D is replaced by an “untimed” formula that preserves the state-based
semantics but omit timing constraints. This formula includes a fresh propositional variable that wit-
nesses the last state of the constrained sequence, and will help to recover the timing constraint in the
final automaton. It is claimed that, this reduction yields a formula D in Quantified Discrete Duration
Calculus (QDDC) [22], for which it is known that an equivalent finite state automaton (FSA), A(D),
can be effectively constructed (the alphabet of A(D) is the set of all different valuations for proposi-
tional variables in D, and the language accepted by A(D) is the set of state sequences satisfying D).

∗This research has been supported by the UK Engineering and Physical Sciences Research Council under grant
EP/D067197/1.
†This is a revised version of the original paper (April, 2009).

1



Finally, [21] proposes to convert the A(D) into an ERA A(D), by recovering the timing constraints
which were lost during the untimed reduction to QDDC. This is achieved by adding one clock xi for
each located constraint Pi ; ℓ ∼i ci in D (i : 1..n), by resetting xi whenever Pi holds, and by testing
xi ∼i ci whenever the last state of a constrained (sub)sequence is found in the input word (the witnesses
added during the untimed reduction help to identify the transitions where clocks must be tested).

The existence of A(D) implies the decidability of LIDL−, because the reachability problem is de-
cidable for ERA [3, 2]. Thus, [21] lays the foundation for automatic verification of LIDL− properties
via observers [20], and contributes to a line of research that has identified decidable subsets of DC
that are suitable for model-checking [6, 15, 29, 17]. However, the construction of A(D), as described in
[21], is incomplete and has not been proved effective. In particular, no procedure was given to identify
the transitions where clocks must be reset. We note that, this cannot be trivially inferred from the
structure of the A(D), because the anchor propositions (Pi, i : 1..n) may refer to previous states in the
input sequence. In addition, the past operator ←−3 is not defined in QDDC. Thus, the untimed formula,
which is obtained after substitution of located constraints, is not a QDDC formula. Moreover, no trivial
characterization of←−3 seems to exist in terms of QDDC operators and (currently) there are no available
tools that can automatically generate the FSA A(D). (As a final remark, by definition, A(D) is not an
ERA. For each symbol a in the alphabet of an event-recording automaton, a clock xa is given which
measures the time since the last occurrence of a in the input word [3]. Instead, clocks in A(D) are
associated with located constraints, s.t. xi measures the time since the last position in the input word
where Pi was true. Each Pi is actually a LTL [23, 16] formula on the automaton’s alphabet, and thus
A(D) should be considered a formula-recording timed automaton [2, page 8]. Nonetheless, the class of
formula-recording timed automata is a generalization of ERA, which preserves closure under Boolean
operations (hence, both classes are determinizable), and preserves the decidability and complexity of
the reachability problem.)

Contribution. We prove the effective construction of equivalent timed automata from LIDL− formu-
lae. We observe that, the extension of QDDC with←−3 , QDDC←−

3
, can be easily encoded in Weak Second

Order Theory of 1 Successor (WS1S) [7, 8, 30]. Hence, we know that equivalent FSA can be effec-
tively constructed (future versions of the DCVALID tool [22], which currently translates pure QDDC
formulae to automata, could support this extension). Following the approach in [21], we define an
untimed reduction from LIDL− to QDDC←−

3
. However, in contrast to [21], we define a QDDC←−

3
formula

that includes witnesses for both, the states where anchors are true and the final states of constrained
sequences. In this way, we are able to construct an equivalent FSA that allows a simple and effective
translation to deterministic timed automata (in particular, in the class of formula-recording automata
that we mentioned before).

We also introduce the logic LIDL−∆, a variant of LIDL− where the use of←−3 is disallowed and timing
constraints take the form of future located constraints. Future located constraints are formulae of the
form P∆∼c, which define sequences where P holds in the first state but nowhere else except possibly
in the last state, and where the time elapsed in the sequence satisfies the constraint (∼ c). With trivial
modifications, the translation from LIDL− to timed automata applies also to LIDL−∆. Thus, we prove
that LIDL−∆ is decidable. However, in contrast to LIDL−, the absence of←−3 and past located constraints
allows LIDL−∆ to be reduced directly to pure QDDC, and thus, the DCVALID tool [22] can be used
to generate the equivalent FSA. Moreover, and at least for the class of timing constraints that are
commonly found in practice, LIDL−∆ seems as expressive as LIDL−.

Outline. Section 2 recalls the syntax and semantics of LIDL−. Section 3 proves the decidability of
LIDL−. Section 4 introduces the logic LIDL−∆. We conclude this paper in Section 5, with a comparative
discussion on the expressive power of LIDL−, LIDL−∆, and other related logics.

2



2 The logic LIDL−

This section introduces the syntax and semantics of LIDL−, as originally defined in [21].

Preliminaries. Let P be a set of propositional variables. A state over P is an element of 2P. A finite
timed state sequence over P of length n > 0 (n ∈ N) is a sequence of pairs θ = (s0, t0) . . . (sn−1, tn−1),
where (1) σ(θ) = s0s1 . . . sn−1 is a state sequence, s.t. si ∈ 2P for all i : 0..n− 1; (2) τ(θ) = t0t1 . . . tn−1

is a sequence of time instants, s.t. ti ∈ R
+0 for all i : 0..n − 1, t0 = 0 and ti ≤ ti+1 for all i : 0..n − 2;

and (3) a unique state σ(t) is identified with every instant t ∈ R
+0, s.t. σ(t) = si for all ti ≤ t < ti+1,

i : 0..n− 2, and σ(t) = sn−1 for all tn−1 ≤ t.
Let θ be a timed state sequence of length n, as described above. The length of θ is denoted |θ|; the ith

element of θ is denoted θi = (si, ti); the set of intervals of θ is denoted I(θ) = { [i, j] | i, j : 0..n−1, i ≤ j }
and subsequences of θ are denoted θ[i,j] = θi . . . θj, for any [i, j] ∈ I(θ). This notation extends to
sequences of states and time instants. We use p ∈ θi to denote p ∈ si, for any p ∈ P. The elapsed time
in a subsequence θ[i,j] is given by δ(θ[i,j]) = tj − ti.

Let V be any set of propositional variables. Let s be a state, ω = ω0 . . . ωn be a state sequence,
and L a set of state sequences. The projection of s, ω and L over V is given by (resp.) [s]V = s ∩ V ,
[ω]V = [ω0]V . . . [ωn]V and [L]V = { [ω]V | ω ∈ L}. These definitions extend to timed state sequences.

Syntax and semantics. A proposition P over P is defined by the grammar:

P ::= 0 | 1 | p | ¬P | P ∧ P | ⊖ P

where p ∈ P. A proposition is interpreted over a timed state sequences, θ, and a position i : 0..|θ| − 1,
as follows.

〈θ, i〉 2 0

〈θ, i〉 |= p iff p ∈ θi

〈θ, i〉 |= ¬P iff 〈θ, i〉 2 P
〈θ, i〉 |= P1 ∧ P2 iff 〈θ, i〉 |= P1 and 〈θ, i〉 |= P2

〈θ, i〉 |= ⊖P iff i > 0 and 〈θ, i− 1〉 |= P

Informally, ⊖P holds in the current state if P holds in the previous state. As usual, we define 1 ≡ ¬0,
P1 ∨ P2 ≡ ¬(¬P1 ∧ ¬P2), P1 ⇒ P2 ≡ ¬P1 ∨ P2 and P1 ⇔ P2 ≡ (P1 ⇒ P2) ∧ (P2 ⇒ P1). Events can
also be defined in terms of propositions. For instance, the following propositions denote that the truth
value of P has changed in the current state (w.r.t. the previous state, if any).

↑P ≡ (⊖¬P ) ∧ P ↓P ≡ (⊖P ) ∧ ¬P ⇑P ≡ (¬ ⊖ P ) ∧ P ⇓P ≡ (¬ ⊖ ¬P ) ∧ ¬P

A LIDL− formula D over P is defined by the grammar:

D ::= ⌈P ⌉0 | VP ⌉ | D⌢D | D ∧D | ¬D | ∃ p.D | D∗ | η ∼ c | ΣP ∼ c | ←−3D | P ; ℓ ∼ c

where c ∈ N is a constant; ∼∈ {<,>,=,≤,≥}; P is a proposition and p ∈ P. Formulae of the form
P ; ℓ ∼ c are referred to as located constraints, where P is the anchor. All variables in anchors must
be free (i.e., not bound under the scope of quantifiers). A LIDL− formulae is interpreted over a timed
state sequence, θ, and an interval [i, j], as follows.

3



〈θ, [i, j]〉 2 false
〈θ, [i, j]〉 |= ⌈P ⌉0 iff i = j and 〈θ, i〉 |= P
〈θ, [i, j]〉 |= VP ⌉ iff i < j and for all t, i ≤ t < j, 〈θ, t〉 |= P
〈θ, [i, j]〉 |= D1

⌢D2 iff i = j and there is a m, i ≤ m ≤ j, s.t.
〈θ, [i,m]〉 |= D1 and 〈θ, [m, j]〉 |= D2

〈θ, [i, j]〉 |= D1 ∧D2 iff 〈θ, [i, j]〉 |= D1 and 〈θ, [i, j]〉 |= D2

〈θ, [i, j]〉 |= ¬D iff 〈θ, [i, j]〉 2 D
〈θ, [i, j]〉 |= ∃ p. D iff there is a p-variant θ′ s.t. 〈θ′, [i, j]〉 |= D
〈θ, [i, j]〉 |= D∗ iff there are i ≤ k1 ≤ . . . ≤ km ≤ j s.t. 〈θ, [kr, kr+1]〉 |= D for all r : 1..m
〈θ, [i, j]〉 |= η ∼ c iff (j − i) ∼ c
〈θ, [i, j]〉 |= ΣP ∼ c iff (Σk:i..jθk(P )) ∼ c
〈θ, [i, j]〉 |=←−3D iff there is a i′, i′ ≤ i, s.t. 〈θ, [i′, j]〉 |= D
〈θ, [i, j]〉 |= P ; ℓ ∼ c iff i = j and there is a i′, i′ < i, s.t. δ(θ[i′,i]) ∼ c, 〈σ(θ), i′〉 |= P and

〈σ(θ), i′′〉 |= ¬P for all i′ < i′′ < i

The function θk(P ) is defined s.t. θk(P ) = 1 if 〈θ, k〉 |= P and θk(P ) = 0 otherwise. A p-variant of
θ, where p ∈ P, is any θ′ that is undistinguishable from θ except (possibly) for the value of p in the
sequence. As usual, we define true ≡ ¬ false, D1 ∨D2 ≡ ¬(¬D1 ∧ ¬D2), D1 ⇒ D2 ≡ ¬D1 ∨D2 and
D1 ⇔ D2 ≡ (D1 ⇒ D2) ∧ (D2 ⇒ D1).

Informally, the formula ⌈P ⌉0 holds if P holds in the current state and the interval is a singleton.
VP ⌉ holds in a non-singleton interval where P holds everywhere in the interval except possibly in the
last state. D1

⌢D2 holds in intervals which can be split into a pair of consecutive subintervals (sharing
the last and first state) s.t. D1 holds in the prefix and D1 holds in the suffix. D∗ holds if the interval
can be divided into any number of consecutive subintervals, where each subinterval satisfies D (the
equivalent of Kleene-star for regular languages). η ∼ c holds if the interval has (∼ c)-many states.
ΣP ∼ c holds if the interval has (∼ c)-many P -states (i.e., states where P holds). ←−3D holds in an
interval which can be extended to the past to satisfy D. P ; ℓ ∼ c holds in a sequence where the time
elapsed between the last time a (previous) state satisfying P was entered, and the time the current
state was entered, satisfies the constraint (∼ c).

A wealth of other operators can be derived in LIDL−. In fact, formulae of the form η ∼ c, ΣP ∼ c
and D∗ can be defined in terms of ⌈P ⌉0, VP ⌉ and ∃p.D [22]. In this paper, we will use the following
derived operators.

unit ≡ η = 1
⌈P ⌉ ≡ unit ∨ (unit ⌢VP ⌉) VPW ≡ VP ⌉⌢⌈P ⌉0

3D ≡ true ⌢D⌢true 2D ≡ ¬3¬D

Satisfiability and Validity. Let D be a LIDL− formula. D is satisfiable is there exists a θ s.t.
〈θ, [0, |θ| − 1]〉 |= D. D is valid iff it is satisfiable in any θ. We will use L(D) to denote the models
of D, L(D) = { θ | θ |= D } (these definitions assume that θ and D are defined over a common set of
propositional variables).

Example. Consider the example of a mine pump that is able to detect high levels of methane [21].
The requirement “After an occurrence of methane release, the level of methane remains low for at least
ζ seconds.” can be expressed by the LIDL− formula,

D = 2(⌈↓H⌉0 ⌢V¬H⌉⌢⌈H⌉0 ⇒ true ⌢(↓H ; ℓ ≥ ζ))

where H is a propositional variable, which denotes “high level of methane”.
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3 Decidability of LIDL−

This section proves the decidability of LIDL− via translation to deterministic timed automata [1].

3.1 Timed Automata

Preliminaries. Let C be a set of clocks (variables that range in the non-negative reals, R
+0). Let Φ

be the set of clock constraints over C, s.t.

φ ::= true |x ∼ c |φ ∧ φ

where φ ∈ Φ, x ∈ C, ∼ ∈ {<,>,=,≤,≥} and c ∈ N. A valuation is a mapping from clocks to
non-negative reals. Let V be the set of clock valuations over C, and let |= denote the satisfiability of
constraints over valuations. For any v ∈ V, δ ∈ R

+ and r ⊆ C, we define the valuations v + δ ∈ V s.t.
∀x ∈ C. (v + δ)(x) = v(x) + δ, and r(v) ∈ V s.t. ∀x ∈ r. r(v)(x) = 0 and ∀x ∈ C \ r. r(v)(x) = v(x).

Syntax and semantics. A timed automaton is a tuple of the form A = (L, l0,Σ, T, C, F ), where L is
the set of locations, l0 ∈ L is the initial location, Σ is the alphabet, T ⊆ L × Σ × 2Φ × 2C × L is the
set of transitions, C ⊆ C is the set of clocks and F ⊆ L is the set of final locations. Given a transition
(l, a, g, r, l′) ∈ T , l is the source location, a is the label, g is the guard, r is the reset set and l′ is the
target location. A is deterministic if for every pair of distinct transitions (l, a, g, r, l′) and (l, a, g′, r′, l′′)
with the same source location and label, the guards g and g′ are disjoint.

A timed automaton A can be interpreted over a timed transition system [18], (Q, q0,Σ ∪ R
+, TQ),

where Q ⊆ L× V is the set of states, q0 ∈ Q = [l0, v0] is the initial state (s.t. ∀x ∈ C. v0(x) = 0) and
TQ ⊆ L× Σ ∪R

+ × L is the (semantic) transition relation. Transitions in TQ correspond either to the

execution of a transition in A, denoted s a−→ s′ (a ∈ Σ), or delays (the passage of time), denoted s δ−→ s′

(δ ∈ R
+). TQ is defined by the following rules.

(l,a,g,r,l′)∈T, v|=g

[l,v] a−→ [l′,r(v)]∈TQ

δ∈R
+

[l,v] δ−→ [l,v+δ]∈TQ

A run of A is a finite path in the timed transition system, ρ = q0
γ0−−→ q1 . . . qn−1

γn−1−−−−→ qn, where qi ∈ Q
and γi ∈ Σ ∪ R

+. We use Runs(A) to denote the set of all runs of A.
An accepting run is a run that ends in a state [l, v] where l ∈ F . A location l in A is rejecting if no run

from [l, v] is accepting, for any v ∈ V. For any timed state sequence θ over P, θ = (s0, t0) . . . (sn−1, tn−1),
we say that A accepts θ (where the alphabet of A is 2P) if there exists ρ ∈ Runs(A) s.t.

ρ = q0
t0−−→ q′0

s0−−→ q1
t1−t0−−−−→ q′1

s1−−→ q2 . . . qn−1
tn−1−tn−2−−−−−−−−→ q′n−1

sn−1−−−−→ qn

We will use L(A) to denote the set of timed state sequences accepted by A (equivalently, a timed state
sequence over P can be seen as a timed word over 2P).

3.2 From LIDL− to Timed Automata

Let D be a LIDL− formula over P. Let Φ = {φ1, . . . , φn} be the set of all located constraints occurring
in D, where φi = Pi ; ℓ ∼i ci. Let C = {x1, . . . , xn} be a set of clocks. Let B = {B1, . . . , Bn} and
E = {E1, . . . , En} be two sets of propositional variables, s.t. B ∩ (E ∪ P) = E ∩ (B ∪ P) = ∅. We refer to
propositions in B as the anchor witnesses, and to propositions in E as final witnesses. In what follows,
we explain how to construct a deterministic timed automaton, A(D), s.t. L(A(D)) = L(D).

From LIDL− to FSA. Let QDDC←−
3

denote the extension of QDDC with the past operator ←−3 (the
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semantics of QDDC←−
3

can be obtained by adding the semantic definition of ←−3 given in § 2 to the the
semantics of QDDC [22]). For any LIDL− formula D, we define the QDDC←−

3
formula D, as follows.

D = D[witness(φi)/φi]i:1..n ∧ V
∧

i:1..n Pi ⇔ BiW

witness(φi) = ⌈Ei⌉
0 ∧←−3(⌈Pi⌉

0 ⌢⌈¬Pi⌉)

where D[β/α] denotes substitution of β for α in D.
In turn, QDDC←−

3
is expressible in WS1S, as follows.1 Let F be a formula in QDDC←−

3
. We interpret

the propositional variables of ψ as second-order variables. The WS1S formula that encodes ψ, α(ψ), is
defined as follows.

α(ψ) = ∃w, x, y. first(w) ∧ last(y) ∧ x = w ∧ β(ψ)

where w, x, y respectively encode the positions of the first, current and last states in the model (the
positions between the first and current states refer to past states), first(x) ≡ ∀y.x ≤ y, last(x) ≡ ∀y.y ≤
x, and β(ψ) is the WS1S formula defined as follows (we show only a minimal subset of operators; all
other operators can be derived from this subset).

β(p) = x ∈ p
β(¬P ) = ¬β(P )
β(P ∧Q) = β(P ) ∧ β(Q)
β(⊖P ) = w < x ∧ ∃z.(x = z + 1 ∧ β(P )[z/x])
β(⌈P ⌉0) = x = y ∧ β(P )
β(VP ⌉0) = x < y ∧ ∀z.(x ≤ z < y ⇒ β(P )[z/x])
β(¬ψ) = w ≤ x ≤ y ∧ ¬β(ψ)
β(ψ1 ∧ ψ2) = β(ψ1) ∧ β(ψ2)
β(∃p.ψ) = ∃p.β(ψ)
β(ψ1

⌢ψ2) = ∃z.(x ≤ z ≤ y ∧ β(ψ1)[z/y] ∧ β(ψ2)[z/x])
β(←−3ψ) = ∃z.(w ≤ z < x ∧ β(ψ)[z/x])

Given the WS1S formula D, there exists a minimal, deterministic FSA A(D) s.t. L(A(D)) = L(D).
We will not describe the construction of A(D) here [7, 8]; it suffices to mention that A(D) can be
automatically generated from α(D) by the MONA tool [10, 12].

Importantly, note that, whenever located constraints occur in the LIDL− formula D, the conjunct
V
∧

i:1..n Pi ⇔ BiW occurs in WS1S formula D, and (due to minimality) the FSA A(D) is guaranteed
to contain a rejecting location (which is reached for those input words where V

∧

i:1..n Pi ⇔ BiW does
not hold). On the other hand, if located constraints do not occur in D, A(D) contains at most one
rejecting location.2

From FSA to timed automata. Let V = P ∪ B ∪ E be the set of propositional variables in D. Let
A(D) = (L, l0, 2

V , T, F ), where L is the set of locations, l0 is the initial location, 2V is the alphabet,
T ⊆ L × 2V × L is the transition relation and F ⊆ L is the set of final locations. Let lR ∈ L be the
unique rejecting location of A(D) (if it exists).

We construct a timed automaton A0 = (L, l0, 2
V , T0, C, F ), where:

1We simply extend the encoding of QDDC into WS1S given in [22], with a WS1S formula for←−3D, where D is a formula
in QDDC←−

3
.

2We assume the standard definition of accepting runs on FSA, and define a rejecting location as we did in § 3.1; i.e.,
a rejecting location is one which does not admit accepting runs. Note that, in the literature of formal languages, final
locations are sometimes referred to as accepting states, and all other locations are referred to as rejecting states. Hence,
in this paper, rejecting locations are rejecting states, but the converse is not necessarily true.
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T0 = { l a, g, r−−−−−→ l′ | l a−→ l′ ∈ T, g =
∧

i:1..nG(a, i), r = {xi ∈ C | Bi ∈ a, i : 1..n } }

G(a, i) =

{

xi ∼i ci if Ei ∈ a
¬ (xi ∼i ci) otherwise

Let θ′ be a timed state sequence over V. We say that θ′ is B-consistent if Bi ∈ θ
′
j ⇔ 〈θ

′, j〉 |= Pi, for
all i : 1..n and j : 1..|θ′|. We say that θ′ is E-consistent if Ei ∈ θ

′
j ⇔ ∃ j

′. 〈θ′, [j′, j]〉 |= φi, for all i : 1..n
and j : 1..|θ′|. We say that θ′ is consistent if it is both B-consistent and E-consistent. Let θ be a timed
state sequence over P. A B-consistent extension of θ is a B-consistent θ′ s.t. θ = [θ′]P. A B-consistent
extension of a language is the set of B-consistent extensions of the language’s sequences. (E-consistent
and consistent extensions are defined similarly).

theorem 3.1. A0 is a deterministic timed automaton s.t. L(A0) is the consistent extension of L(D).

Proof. Any two transitions in A0, with the same source location and different target locations, must
necessarily have different labels (because A(D) is deterministic). Hence, A0 is deterministic. For any
timed state sequence θ over P, there exists a consistent extension θ′ s.t. σ(θ′) ∈ L(D) iff θ ∈ L(D) (by
definition of D), iff σ(θ′) is recognized by an accepting path π in A0 (by definition of A0 from A(D),
and L(A(D)) = L(D)). In addition, for any timed state sequence ω that is accepted by π, the following
holds (by definition of guards and resets in A0): (a) xi is reset in transition πj (the transition in π that
is visited in the jth step during recognition of ω) iff Bi ∈ ωj ⇔ 〈ω, j〉 |= Pi, and (b) xi ∼i ci guards
the transition πj iff Ei ∈ θj ⇔ ∃ j

′. 〈θ, [j′, j]〉 |= φi, for all i : 1..n, j : 1..|ω|. Hence, [θ′]P ∈ L(D) iff
θ ∈ L(A0), i.e., L(A0) is the consistent extension of L(D).

The effective construction of A0 suffices to prove the decidability of LIDL−∆. However, since the alphabet
include witnesses (B and E), A0 is not itself a useful observer for LIDL−∆ properties. Next, we construct
A(D) from A0. This is achieved by removing from A0 all transitions that target the rejecting location
(if this location exists), s.t. another transition exists in the same source location with a different target,
and whose label differs only in the actual value of anchor witnesses (if all such transitions target the
rejecting location, w.l.o.g, we remove all but the one where all anchor witnesses are false). As a final
step, the alphabet is projected over P. We define A(D) = (L, l0, 2

P, T1, C, F ), where:

T1 = { l b,g,r−−−→ l′ | l a,g,r−−−−→ l′ ∈ T0, b = [a]P,
l′ 6= lR ∨ (a ∩ B = ∅ ∧ (∀ t ∈ T0. (src(t) = l ∧ [lab(t)]P∪E = [a]P∪E)⇒ tgt(t) = l′)) }

theorem 3.2. A(D) is a deterministic timed automaton, s.t. L(A(D)) = L(D).

Proof. Assume (by contradiction) that located constraints occur inD, and that A(D) is non-deterministic.
Then, there exists a pair of transitions t1, t2 ∈ T1, t1 = (l, b, g1, r1, l1) and t2 = (l, b, g2, r2, l2), s.t.
g1 ∩ g2 6= ∅ and l1 6= l2. By construction of A1, this implies g1 = g2, l1 6= lR and l2 6= lR. Nec-
essarily, t1, t2 ∈ T1 were derived from a pair of transitions t′1, t

′
2 ∈ T0, t

′
1 = (l, a1, g1, r1, l1) and

t′2 = (l, a2, g2, r2, l2), s.t. [a1]P∪E = [a2]P∪E and [a1]B 6= [a2]B (because A0 is deterministic). Let ω1

and ω2 denote any two input prefixes, s.t. ω1 is recognized by a path in A0 from l0 to l1, and ω2 is
recognized by a path in A0 from l0 to l2. Thus, ω1 |= V

∧

i:1..n Pi ⇔ BiW iff ω2 2 V
∧

i:1..n Pi ⇔ BiW,
which implies either l1 = lR or l2 = lR. This is a contradiction.

Now, we prove that L(A) = L(D). By definition of A, [L(A0)]P = L(A) (because the accepting
paths of A correspond exactly to the accepting paths in A0, projected over P). By Theorem 3.1, L(A0)
is the consistent extension of L(A), hence [L(A0)]P = L(D), and thus L(A) = L(D).
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4 The logic LIDL−∆

This section introduces the syntax and semantics of LIDL−∆. LIDL−∆ is a variant of LIDL− where the
use of ←−3 is disallowed and timing constraints take the form of future located constraints.

Syntax and semantics. A LIDL−∆ formula D over P is defined by the grammar:

D ::= ⌈P ⌉0 | VP ⌉ | D⌢D | D ∧D | ¬D | ∃ p.D | D∗ | η ∼ c | ΣP ∼ c | P∆∼c

where c ∈ N is a constant; ∼∈ {<,>,=,≤,≥}; P is a proposition over P (defined as in § 2) and
p ∈ P. Formulae of the form P∆∼c are referred to as future located constraints, where P is the anchor.
All variables in anchors must be free (i.e., not bound under the scope of quantifiers). The semantics
of LIDL− and LIDL−∆ coincide for propositions and common operators; future located constraints are
interpreted as follows.

〈θ, [i, j]〉 |= P∆∼c iff δ(θ[i,j]) ∼ c, 〈θ, i〉 |= P , and 〈θ, i′〉 |= ¬P for all i′, i < i′ < j

Informally, P∆∼c holds if P holds in the current state, P does not hold anywhere else in the interval
except possibly in the last state, and the elapsed time in the interval satisfies (∼ c). The satisfiability
and validity of LIDL−∆ formulae are defined as for LIDL−.

Example. The LIDL− property DMP of § 2, which expresses a requirement on a mine pump, can be
expressed by the LIDL−∆ property D′MP , as follows.

D′MP = 2(⌈↓H⌉0 ⌢V¬H⌉⌢⌈H⌉0 ⇒ ↓H∆≥ζ ∧ (true ⌢⌈↑H⌉0))

4.1 Decidability

The decidability of LIDL−∆ follows from the decidability of LIDL−, because LIDL−∆ can be encoded in
LIDL−.

theorem 4.1. For any LIDL−∆ formula D, a deterministic timed automaton can be constructed which
accepts the models of D (the time and space complexity of this construction is non-elementary). In
addition, an event-clock automaton can be constructed which expresses D.

Proof. LIDL−∆ is expressible in LIDL−, by the equivalence: P∆∼c ≡ ⌈P ⌉
0 ⌢(η ≥ 1) ⌢(P ; ℓ ∼ c).

Given a LIDL−∆ formula D, by Theorem 4.1, we can express D as a LIDL− formula D′ and use
the construction of § 3 to obtain the equivalent timed automaton. The translation to LIDL− is not
necessary, however, because the construction of § 3 can be applied over D (with trivial modifications).
It suffices to define witness(Pi∆∼ici

) = ⌈Pi⌉
0 ⌢⌈¬Pi⌉

⌢⌈Ei⌉
0. Moreover, the untimed formula D =

D[witness(φi)/φi]i:1..n ∧ V
∧

i:1..n Pi ⇔ BiW is a now QDDC formula, and thus, the DCVALID tool can
be used to generate the FSA A(D) from it [22].

A note on DCVALID. As we mentioned, DCVALID automatically generates an FSA that accepts
the models of a QDDC formula [22]. DCVALID translates an input QDDC formula into an equivalent
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WS1S formula, and uses the MONA tool [10, 12].3 to generate the equivalent FSA. This FSA is slightly
different to the one considered in § 3. The main differences are discussed below.

1. Transitions are labeled with strings in Bx = {0,1,x}|V|, where V is the set of propositional
variables in the QDDC formula, D. Given an enumeration of the variables in V, ε : [1..|V|] → V,
a string ω ∈ Bx denotes the following set of valuations,

ω = { s ∈ 2V | ∀ i : 1..|V|. (wi = 0⇒ ε(i) /∈ s) ∧ (wi = 1⇒ ε(i) ∈ s) }

This allows for a concise representation of multiple transitions between the same pair of locations.4

For instance, given V = {P,Q} and ε = {(1, P ), (2, Q)}, ω1 = 01 denotes the singleton ω1 =
{{Q}}, while ω2 = 1x denotes the set ω2 = {{P}, {P,Q}}.

2. Transitions at the initial location read the Boolean variables in the WS1S formula [11]. However,
the encoding of QDDC in WS1S results in formulae without Boolean variables. Hence, for any
QDDC formula D, the equivalent FSA generated by DCVALID, M(D), contains a transition of
the form t0 : l0

xx...x−−−−→ l1, where l0 is the initial location, l0 has no ingoing transitions, and t0 is
the only one outgoing transition from l0. Correspondingly, the automaton A(D) of § 3 is obtained
fromM(D) by removing l0 and t0, and making l1 the new initial location.

Example. Consider again the LIDL−∆ formula D′MP . This formula contains only one future located
constraint, namely, φ1 = (↓H)∆≥ζ . The corresponding QDDC formula is given by D, as follows.

D = 2(⌈↓H⌉0 ⌢V¬H⌉⌢⌈H⌉0 ⇒ (⌈↓H⌉0 ⌢⌈¬ ↓H⌉⌢⌈E⌉0) ∧ (true ⌢⌈↑H⌉0)) ∧ V↓H ⇔ BW

where P = {H}, B = {B} and E = {E}.
Figure 1 shows the FSA A(D). The figure depicts the automaton as generated by DCVALID (after

removing the initial transitions). Edges are labeled with strings in {0,1, x}3, assuming the enumeration
ε = {(1,H), (2, B), (3, E)}. S2, S4, S5 and S6 are the final locations, and S3 is the rejecting location.
Figure 2 shows the timed automaton A(D), where y is the clock associated with the located constraint
(↓H)∆≥ζ(↑H), and we use the labels 0 = ∅ and 1 = {H} (we omit guards that are trivially true and
empty reset sets). To illustrate the construction of A(D) from A(D), let us consider the following edges
in A(D) (fig. 1):

t1 = S4 01x−−−→ S5 = { S4
{B,E}
−−−−−→ S5, S4

{B}
−−−→ S5 }

t2 = S4 00x−−−→ S3 = { S4
{E}
−−−→ S3, S4 ∅−→ S3 }

Equivalently, if σ denotes the input state sequence, and σ[0,i−1] is the prefix of σ which has been read
up to S4, then the automaton evolves as follows:

t1 is executed if 〈σ, i〉 |= ¬H ∧B
t2 is executed if 〈σ, i〉 |= ¬H ∧ ¬B

Hence, if the automaton is currently in S4 and 〈σ, i〉 |= ¬H, then no constraint should be enforced on
y (because E is irrelevant), but y should be reset (because B /∈ σi rejects the input, i.e., 〈σ, i〉 |=↓H).

Accordingly, t1 and t2 in A(D) are mapped to t = S4
∅,true,{y}
−−−−−−−→ S5 in A(D) (fig. 2).

To illustrate how clock constraints are added to the FSA, let us now consider the edges:

3http://www.brics.dk/mona/
4In MONA’s jargon, x is referred to as a “don’t care” value.
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Figure 1: The FSA A(D), as generated by DCVALID
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1

1

Figure 2: The timed automaton A(D)

t1 = S5 101−−−→ S4 = { S5
{H,E}
−−−−−→ S4 }

t2 = S5 100−−−→ S3 = { S5
{H}
−−−→ S3 }

t3 = S5 11x−−−→ S3 = { S5 {H,B,E}−−−−−−→ S3, S5
{H,B}−−−−−→ S3 }

Equivalently,

t1 is executed if 〈σ, i〉 |= H ∧ ¬B ∧ E
t2 is executed if 〈σ, i〉 |= H ∧ ¬B ∧ ¬E
t3 is executed if 〈σ, i〉 |= H ∧B

Hence, if the automaton is currently in S5 and 〈σ, i〉 |= H, then y must not be reset (because B ∈ σi

rejects the input, i.e., 〈σ, i〉 2↓H), but timing constraints should be enforced on y (because, provided
B /∈ σi, the rejecting location is immediately reached iff E /∈ σi). Accordingly, t1, t2 and t3 in A(D)

are mapped to S5
1,y≥ζ,∅−−−−−→ S4 and S5

1,y<ζ,∅−−−−−→ S3 in A(D) (fig. 2).

5 On the expressive power of LIDL− and LIDL−∆

Many complex, quantitative timing requirements can be expressed in LIDL− and LIDL−∆. For instance,
the following LIDL−∆ properties are variants of the patterns described in [25, 21],
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stable(P, δ) = 2(⇑P∆≤δ ⇒ VPW)
VPW ←֓ δ ⌈Q⌉ = ¬3(⇑P∆≥δ ∧ VPW ⌢⌈¬Q⌉0)

The first property above states that whenever P becomes true, it must hold for at least δ t.u. The
second property states that whenever P holds for at least δ t.u. after it becomes true, then Q must
become true within δ t.u. from P becoming true, and Q must hold for as long as P holds.

On the other hand, LIDL− and LIDL−∆ are limited by the semantics of located constraints, which
may refer only to the time elapsed between state changes. In addition, located constraints are relative
to the last occurrence of a particular state change (the anchor becoming true). In other words, in order
to constrain the time elapsed between two state changes e1 and e2, e1 is required not to occur again
until e2 occurs. Consider, for instance, θ = ({P}, 0)({Q}, 0.5)({P}, 2)({Q}, 4). The requirement “Q
holds 1 t.u. after P holds” is satisfiable in θ, because Q holds continuously in the interval [0.5,2); but
this cannot be expressed with located constraints, because there are no state changes 1 t.u. after P
starts to hold. Similarly, the requirement “Q holds 4 t.u. after P holds” is satisfiable in θ, because 4
t.u. pass between the first time P starts to hold, and the second time Q starts to hold; but located
constraints cannot relate the state changes at ({P}, 0) and ({Q}, 4) (P changes again at ({P}, 2)).
Nonetheless, despite these limitations, we believe that LIDL− and LIDL−∆ are expressive enough to
describe a practically useful class of properties.

We conclude this section by comparing the expressive power of LIDL− and LIDL−∆, relative to some
well-known linear-time logics.

LIDL− and LIDL−∆. We know that, LIDL− is at least as expressive as LIDL−∆ (see Theorem 4.1).
However, whether LIDL− is strictly more expressive than LIDL−∆, remains an open problem. We observe
that, MTLS, which denotes MTL [13] extended with the past operator since (S), is more expressive than
MTL [24].5 In [24], it is proved that Llast a can be expressed in MTLS but not in MTL, where Llast a

is the language of all finite timed words over the alphabet Σ = {a, b} that have an action occurrence
at time 1, and a is the last action to occur in the interval (0, 1). This may suggest that LIDL−∆ is less
expressive than LIDL−. However, Llast a is already expressible in LIDL−∆, and thus cannot be used as
a witness. Llast a can be expressed by the LIDL−∆ formula φlast a , which is defined as follows.6

φlast a = ((φa∈(0,1)
⌢V¬b⌉) ∧ φat 1 ) ⌢true

φa∈(0,1) = (φ0∆>0 ∧ φ0∆<1)
⌢⌈a⌉0

φat 1 = φ0∆=1 ∧ (true ⌢⌈a ∨ b⌉0)
φ0 = ⌈⊖false⌉0

where φ0 denotes the first state of an interval, φa∈(0,1) denotes an interval that ends with the occurrence
of a in (0, 1), and φat 1 denotes the occurrence of an event exactly at time 1.

MTL. LIDL− and LIDL−∆ are expressively incomparable to MTL. On the one hand, MTL cannot
express the language Leven b , which consists of all timed words in Σ = {a, b} with an even number of
b’s [24] (in fact, [24] proves that Leven b is inexpressible even in MTLSI

, a more expressive logic than
MTLS where the S operator can be restricted to a time interval I). Leven b can be expressed by the
LIDL−∆ formula φeven b , which is defined as follows.

φeven b = V¬b⌉∗⌢(⌈b⌉0 ⌢⌈¬b⌉⌢⌈b⌉0 ⌢⌈¬b⌉)∗

5Throughout this section, we consider MTL interpreted over finite timed words with pointwise semantics [24]. This
allows us to compare MTL with LIDL−∆ and LIDL−, which are interpreted over finite timed state sequences.

6We assume that actions a, b, . . ., in a timed word are represented by propositions (events) ↑A, ↑B, . . ., in a timed state
sequence, where A, B, . . ., are propositional variables.
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On the other hand, the MTL property, φev until = 3(aU[1,∞)b), cannot be expressed in LIDL−, because
constraints may only be expressed on the time elapsed since the last occurrence of an anchor event
(and no such event can be defined for φev until ).

Simple DC∗ and Timed Regular Expressions. Both Simple DC∗ [9] (a fragment of Duration Cal-
culus with iteration) and timed regular expressions [5] are expressively complete for (non-deterministic)
timed automata and hence more expressive than LIDL− and LIDL−∆. However, both Simple DC∗ and
timed regular expressions are negation-free, which makes LIDL− and LIDL−∆ non-elementary more
succinct [28, 27].

Test formulae. Test formulae, the subset of DC studied in [17], may express unanchored durations,
which are inexpressible in either LIDL−∆ or LIDL−. In contrast, test formulae are star-free and restrict
the use of negation. For instance, the LIDL−∆ formula ¬((⌈P ⌉ ∨ ⌈Q⌉) ⌢⌈R⌉), for some propositions P ,
Q and R, cannot be expressed by a test formula.
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