
STREAM: A First Programming Process
MICHAEL E. CASPERSEN
Department of Computer Science, Aarhus University, Denmark
and
MICHAEL KÖLLING
Computing Laboratory, University of Kent, United Kingdom
__

Programming is recognised as one of seven grand challenges in computing education. Decades of research have
shown that the major problems novices experience are composition-based – they may know what the individual
programming language constructs are, but they do not know how to put them together. Despite this fact, text-
books, educational practice, and programming education research hardly address the issue of teaching the skills
needed for systematic development of programs.

We provide a conceptual framework for incremental program development, called Stepwise Improvement,
which unifies best practice in modern software development such as test-driven development and refactoring
with the prevailing perspective of programming methodology, stepwise refinement. The conceptual framework
enables well-defined characterizations of incremental program development.

We utilize the conceptual framework to derive a programming process, STREAM, designed specifically for
novices. STREAM is a carefully down-scaled version of a full and rich agile software engineering process
particularly suited for novices learning object-oriented programming. In using it, we hope to achieve two things:
to help novice programmers learn faster and better while at the same time laying the foundation for a more
thorough treatment of more advanced aspects of software engineering. In this paper, two examples demonstrate
the application of STREAM.

The STREAM process has been taught in the introductory programming courses at our universities for the
past three years and the results are very encouraging. We report on a small, preliminary study evaluating the
learning outcome of teaching STREAM. The study indicates a positive effect on the development of students’
process competences.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/SpecificationsMethodolo-
gies; D.2.3 [Software Engineering]: Coding Tools and TechniquesObject-oriented programming, Structured
programming, Top-down programming; D.2.10 [Software Engineering]: DesignMethodologies; K.3.2
[Computers and Education]: Computer and Information Science EducationComputer science education,
Curriculum

General Terms: Design, Experimentation, Human Factors

Additional Key Words and Phrases: Stepwise improvement, stepwise refinement, programming methodology,
programming process, agile methods, test-driven development, refactoring, programming education

__

Authors' addresses: M.E. Caspersen, Department of Computer Science, Aarhus University, IT-parken, Aaboga-
de 34, DK-8200 Aarhus N, Denmark; email: mec@cs.au.dk; M. Kölling, Computing Laboratory, University of
Kent, Canterbury, Kent, CT2 7NF, United Kingdom; email: mik@kent.ac.uk.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permis-
sion and/or a fee.
© 2009 ACM 1073-0516/01/0300-0034 $5.00

1. INTRODUCTION
Teaching beginners to program is hard. Many teachers agree that this always has been,

and remains, a very difficult task that has no quick solutions. What is especially worry-

ing, though, is that the task of teaching programming did not become easier over the last

decades. Initially, one might have claimed that much of the difficulty could be related to

the relative immaturity of our discipline: since we do not have the many decades of

teaching experience other subjects have gone through, some initial problems could be

expected. This might have been viewed as teething problems.

The worrying fact, however, is that this does not seem to be true. Many teachers now

agree that the teaching of programming has recently become more difficult, rather than

easier, as it should have been had maturity of the discipline been the significant factor.

Instructors now look back at the days of teaching Pascal, and mourn the relative simplic-

ity of teaching in those days.

Some attribute the increased level of difficulty to intrinsic characteristics of new

paradigms used in teaching, such as object orientation, some attribute it rather to our rela-

tively naïve treatment of object orientation and lack of experience with this paradigm.

Others again blame increasingly complex tools and infrastructure. One thing that seems

certain is that the number of concepts covered in introductory programming courses has

grown. Group work, GUI programming, testing, debugging, concurrency, correctness,

patterns, refactoring, and many other topics are now regularly found in first year courses,

while they were much less prominent a decade ago.

We can easily accept that most or all of the above contribute to the problems that

teachers currently experience. However, in our view, one of the main reasons for the in-

creasing problems is a lack of recognition of process as an important topic in introductory

programming courses.

Several aspects of programming courses have changed dramatically over the last de-

cade. One significant addition to the traditional discussion of algorithms and data struc-

tures at the heart of the course is the coverage of real world (“large”) software systems.

Issues such as code quality, maintainability, extendibility, testing, modularization, group

work, etc., have gained in prominence. With this, the programs under investigation are

often larger (not always written by the students alone – often code is provided by the

teacher to be corrected, modified, or extended).

With the increase in size and complexity of the artefacts being worked on by students,

the concept of a development process has become increasingly important. This is often

not clearly reflected in the academic content of introductory courses.

While software development processes are well established among professional pro-

grammers, very little is done to address process in introductory programming courses.

Most textbooks, and with it most courses, focus on presenting programming language

constructs, programming concepts, and computer programs. “Program”, in short, is

treated as a noun, not as a verb.

A typical pattern of introducing material is the presentation of a problem, followed by

the presentation of a program that solves the problem, followed by a detailed discussion

of the language constructs and concepts or algorithms involved.

This pattern of introducing material creates – unintentionally – the illusion that these

programs were developed (by an expert programmer) in a single step from the problem

formulation. The fact that we all start with incomplete and incorrect programs when we

start addressing a problem, which we then slowly modify to improve and extend our im-

plementation until we arrive at an acceptable solution, seems to be swept under the carpet

as if it was an embarrassing secret that must not be mentioned.

While the ultimate solution to the problem is explained in detail, the process – how

we go about developing the solution – is often entirely neglected in beginners’ courses.

Developing software is, by its very nature, always a process, whether we are formally

aware of it or not. If we do not explicitly teach the programming process, we end up with

two groups of students: those who cannot cope with the challenge of development and

those who can and who discover their own implicit process.

Some of the first group, those students we lose, might have been saved had we given

them better techniques to address this problem.

Students in the second group can also greatly benefit from a systematic process, since

the techniques they discover and apply in an ad-hoc manner often (and unsurprisingly)

lead to inadequate and badly designed solutions. The most applied development tech-

nique among students is probably the “first solution that comes to mind” technique. Many

of our students are so happy to find any solution at all that it does not occur to them to

investigate alternatives. Thus, a systematic process should not only help those students

who have fundamental problems arriving at any solution at all but should improve the

quality of solutions of all students.

Another problem with hiding the development process is the misleading impressions

students develop about the nature of software development, which can lead to a discour-

aging experience. When going through a rather normal activity of struggling with their

implementation, chasing bugs, getting stuck, and tearing their hair out before finishing an

assignment, they often think that they are inadequate programmers because they find

software development difficult. It would help them to know that most developers as a

matter of course go through exactly the same experience.

The problem with teaching a formal process from the start in an introductory course is

the overhead in time and complexity this imposes on the course. Most software processes

described in the literature have been developed for professional software engineers work-

ing on large systems in teams. Lately, agile processes have become more popular, which

are described as "light weight" – they remove some of the overhead associated with more

traditional processes. However, they are still not easy to follow for new students. An even

simpler process is needed.

Stepwise Improvement is a model of program development that unifies elements of

Stepwise Refinement and agile methods. It provides a conceptual framework which can

be used to derive a simple, semi-formal programming process. This process, named

STREAM, is simple enough to be taught to beginners. It provides clear guidance through

development steps while its overhead is kept low enough to be integrated into many

introductory courses.

Stepwise Improvement itself is an instance of an approach to programming which we

call Growing Islands of Functionality.

In this paper, we will first briefly introduce the ideas of Growing Islands of Function-

ality and Stepwise Improvement. We will then present the main elements of the

STREAM process. We present this process at a sufficient level of detail for it to be used

directly in teaching situations by interested readers.

We do not mean to suggest that the introduction of a semi-formal process for begin-

ners will somehow remove all problems that students have in developing software. Pro-

viding a process, even one that is light weight and reasonably precise, will still leave

plenty of grey areas that students have to struggle with. Some decisions to be made will

still be difficult. Some students will still have problems, but we believe that teaching a

process can help with some problems that students face and result in some meaningful

improvement.

2. GROWING ISLANDS OF FUNCTIONALITY
In the 1970s and 1980s, Structured Programming (a.k.a. Stepwise Refinement and Top-

Down Development) was the dominant development paradigm. In this model, the devel-

opment of a computer program starts at the highest level of abstraction, which is repeat-

edly refined until its level of detail reaches that of an available machine for execution

(Figure 1).

Figure 1. Top-down programming

This idea, while compelling at a theoretical level, does not usually work very well in

practice for non-trivial systems [Caspersen 2007, p.90-91]. Experience over time has

shown that it presents a useful way to reason about the structure of a program, but is

problematic as a development process in practice, since it requires the developer to have

the full (abstract) solution in mind before commencing the implementation.

The widespread acceptance of object-oriented programming in the early 1990s saw

increased prominence of the idea of Bottom-Up Development (Figure 2).

Figure 2. Bottom-up programming

In this model, lower level components are developed first, with higher level function-

ality slowly being built on top of the low-level modules. The concrete machine is slowly

built up towards the required functionality.

While the top-down development process results in partial programs during the de-

velopment that do not compile, the bottom-up process produces programs that compile,

but do not (yet) provide required functionality.

The model of Growing Islands of Functionality is based on an approach that initially

implements small subsets of functionality. This functionality is implemented completely

(from the user interface down to the available machine), but it can be very "thin" (Figure

3). The overall available functionality is then gradually increased by growing the avail-

able islands of implementation.

Figure 3. Islands of functionality

Systems developed according to this model reach compilable and functional stages

early and often. Most agile methodologies are compatible with this model.

The model of Growing Islands of Functionality and the notion of Stepwise Improve-

ment are inspired by a qualitative study of the programming practice of experts [Casper-

sen 2007, pp. 81-85] as well as recent developments in best-practice in modern software

development.

Computing is a vocational discipline, which means that a large group of professionals

are developing and expanding the practices of the discipline, in parallel with academia.

Examples of recent major contributions to the programming practices primarily offered

by people outside academia are design patterns and frameworks, extreme programming,

refactoring, agile development, and test-driven development [Beck 2000, Beck 2003,

Cockburn 2002, Fowler 1999, Gamma 1995, Martin 2003]. Further references to this are

presented in section 8 on related and future work.

3. STEPWISE IMPROVEMENT
In traditional stepwise refinement [Dijkstra 1969, Wirth 1971, Back 1978, Morgan 1990,

Back 1998], programming is regarded as the one-dimensional activity of refining abstract

programs (i.e. programs containing non-executable specifications) to concrete programs

(i.e. executable code) through a series of behaviour preserving program transformations.

The fundamental assumption of traditional stepwise refinement is that the complete

specification, the requirements, is known and addressed from the outset. Algorithmically,

stepwise refinement can be characterised as follows (req is the requirements, impl the

implementation, and abstract means ‘not executable’):

impl:= abstract solution (that meets req);
do impl is abstract -> refine impl od

Figure 4. Stepwise refinement: programming as a one-dimensional activity

Typically, stepwise refinement is described as a strict top-down process of program-

ming.

Programming by Stepwise Improvement [Caspersen 2007], on the other hand, is char-

acterised as an explorative activity of discovery and invention that takes place in the

three-dimensional space of extension, refinement, and restructuring. Extension is the ac-

tivity of extending the specification to cover more (use-) cases; refinement is the activity

of refining abstract code to executable code to meet the current specification; and restruc-

ture is the activity of improving non-functional aspects of a solution without altering its

observable behaviour, such as design improvements through refactoring, efficiency opti-

misation, or portability improvements. Algorithmically, stepwise improvement can be

characterised as follows (spec is the current specification that the implementation is sup-

posed to meet):

spec:= the empty specification;
impl:= empty (do nothing);
do spec does not imply req -> extend spec
[] impl does not meet spec -> refine impl
[] impl needs restructuring -> restructure impl
od

Figure 5. Stepwise improvement: programming as a three-dimensional activity

Stepwise Improvement captures the Islands of Functionality model. It can be il-

lustrated as a movement graph in a three-dimensional space. Figure 6 illustrates a devel-

opment scenario consisting of five activities that in order are refine, extend, refine, re-

structure, and refine.

Figure 6. Stepwise improvement: moving through three-dimensional space

Different software development methodologies put different emphasis on the order of

the activities described in Stepwise Improvement. Waterfall methods are characterized by

a strict separation of the activities (extension first, refinement and restructure later)

whereas agile methods allow a much more fine-grained interleaving of the activities.

The traditional approach to programming education is to “invite” the students for a

random walk in the 3D space. Students are shown a few finished programs and told to

solve programming problems on their own. Our approach to programming education of-

fers an alternative to random walks. Instead, we suggest guided tours. By providing guid-

ance and scaffolding1 with respect to all dimensions involved, we can ensure that students

exercise the important aspects of programming while keeping the cognitive load within

the bounds where learning outcome is optimized. Our primary means of providing guid-

ance with respect to extension (incremental development) is through the structure of the

teaching material (textbook, exercises and assignments, and videos) and an apprentice-

based teaching approach. Guidance with respect to refinement is provided through a care-

fully designed novice’s process of object-oriented programming. The process, which we

call STREAM, is described in the next section.

4. STREAM: A SYSTEMATIC PROCESS FOR NOVICES
In this section, we describe, in a general way, some simple steps that can be followed to

implement classes whose intended behaviour is essentially understood.

This section is kept brief and is intended as an initial overview – we will discuss the

techniques in more detail using an example in the following section.

Our techniques do not address the analysis phase or the finding of the classes from the

problem domain. This may be achieved by using the noun/verb method or other simple

methodologies. More likely, in very early student exercises, the teacher or the textbook

will provide the class structure.

The name STREAM is an acronym for the six steps that make up this process: Stubs,

Tests, Representation, Evaluation, Attributes, Methods.

4.1 Step 1: Stubs (Create a Skeleton Class with Method Stubs)
We assume that the classes and their observable (public) functionality are understood and

given, for example in the form of a Java interface and carefully written Javadoc com-

ments.

The first step towards implementation is to create an implementation class that im-

plements this interface (or, if the interface is not formally given, provides methods with

the intended signatures). The method implementations at this stage are stubs (i.e. minimal

method bodies).

For methods that do not return values, the method body is empty. For methods with

return values, the method body consists of a single return statement. The value returned is

a default value (zero for numbers, null for object types, etc.).

Repeat this for every class in the project. The resulting project, which compiles but

does noting when executed, is called a walking skeleton.

4.2 Step 2: Tests (Ensure that Tests are Available)
Once method stubs have been defined, test cases can be written for every method. This is

commonly done using JUnit [JUnit 2009]. Several educational tools support JUnit testing

(e.g. BlueJ and Dr. Java [Kölling 2003, Dr. Java]), and in environments that support re-

cording of interactive testing, such as BlueJ [Kölling 2009], the existence of stubs en-

ables the test interaction to be recorded.

Initially, most tests will fail. Details about how these tests should be developed are

beyond the scope of this paper and have been discussed elsewhere [Beck 2003, Hunt

2003]. In early teaching examples, the tests may be provided by the teacher.

1 Scaffolding is a term from cognitive apprenticeship describing support provided by the master to

apprentices in order to carry out some given task: “this can range from doing almost the entire
task for them to giving them occasional hints on what to do next” [Collins 1991, p. 24].

4.3 Step 3: Representations (Consider Alternative Representations)
The next steps aim at deciding on an implementation representation for the objects to be

defined. The representation is defined by the instance fields of the class.

For every class, alternative representations must be considered. These can be as many

as a student can think of, but must be at least two. The alternative representations should

be briefly described in writing.

We label our candidate representations R1 to Rn.

4.4 Step 4: Evaluation (Evaluate the Alternative Representations)
Next, we evaluate each representation with respect to difficulty of implementation. To do

this, we create a Representation Evaluation Matrix (REM). A REM is a table with one

column for each candidate representation, and one row for each method in our class to be

implemented (Table 1). Above the table is the short description of each alternative.

R1: a short description of the first representation alternative here

R2: a short description of the second representation alternative here

IMPL.

EFFORT
R1 R2

method1() Challenging Trivial

method2() Trivial Hard

method3() Easy Hard

Table 1: Representation Evaluation Matrix (Effort)

We use this matrix to compare each method that must be implemented for each pos-

sible object representation. The comparison criteria may vary – leading to different tables

– but is initially always “implementation effort”.Table 1 shows an example of an Effort

REM. In this table, we compare the estimated effort it takes to implement each method

using a particular object representation. As values, we use a small ordered set of effort

qualifiers. They are Trivial, Easy, Average, Challenging, and Hard (the “TEACH scale”).

In later exercises, different REMs may be used for other criteria that are explicitly

mentioned in the task specification. For example, if runtime performance is an explicitly

stated goal, a Performance REM may be used.

It is crucial not to judge representations on imaginary requirements. Especially, per-

formance consideration should not play a role in early exercises, and it should be made

clear that performance is entirely irrelevant for judgement of the Effort REM. We rec-

ommend focusing on Effort REMs in early exercises.

It is also worth noting that the emphasis on minimising implementation effort does

not at all mean that we intend to encourage “quick-and-dirty” implementations, and thus

are prepared to compromise implementation quality. On the contrary! Usually, a simpler

implementation (one that requires less effort to understand and implement) will include

fewer bugs, and therefore be of higher quality. This focus merely intends to avoid prema-

ture optimisation efforts, and represents a straightforward application of Dijkstra’s prin-

ciple of “Separation of Concerns”.

Initially the instructor can supply the representation alternatives and the REM, but

gradually the students should be responsible for finding representation alternatives and

filling in the REM. (This is a good group exercise.)

Once the Effort REM is complete, we choose the representation that is judged to have

the simplest overall implementation.

4.5 Step 5: Attributes (Define Instance Fields)
When we have settled on one particular representation, we can refine our implementation

class.

We now define the fields needed to represent the object. (The field definitions need

not be complete; further fields may be added later to support method implementations.

However, many important fields are derived from the implementation representation.)

The field definitions may include their role (in the form of a comment) and possible con-

straints on their values (also in comment form).

At this stage, we also provide appropriate initialisations for the fields, either in the

form of default values or by using client-supplied values. This includes at least partial

implementation of the class’s constructor.

4.6 Step 6: Methods (Implement the Methods)
Step 6 is actually more than a single step: it has the form of a nested loop. The definition

is:
while there is an unfinished method:
 Pick an unfinished method;
 Implement the method

The “Implement the method” step itself contains a loop:
while not done:
 improve the method;
 test

In the latter loop, ‘improve’ means one of three things: Extend (the specification), re-

fine (the implementation), or restructure (the implementation).

The order in which a student chooses the methods is essentially arbitrary. Our rec-

ommendation for students who are not entirely confident is to choose the method that,

according to the Effort REM, is easiest to implement first.

It is easy to see that this completes the implementation. If a student successfully com-

pletes this step, the class is finished.

All the magic now lies in the “Implement the method” steps. This is still a large task,

and needs further advice to break it down into smaller steps.

4.7 Method Implementation Rules
Implementing a method is potentially a large and non-trivial task. We aim to provide a

process that breaks this task into smaller steps as well. This time, we cannot give a single

recipe, since details of the method may vary widely. Instead, we give a set of rules that

can be applied in certain cases.

Some methods, of course, consist of only a few lines of code and may be easy to

write. Our rules aim at breaking all methods down into smaller chunks, until they ap-

proach the complexity of those easy-to-write methods. This is essentially a small vari-

ation of stepwise refinement [Dijkstra 1969, Wirth 1971].

At the heart of this technique is the Mañana Principle. The Mañana Principle says:

When – during implementation of a method – you wish you had a certain

support method, write your code as if you had it. Implement it later.

Thus, the Mañana Principle encourages separation of concerns and the use of many

small methods. We discuss an example below.

To get beginners used to the Mañana Principle, there are some more specific forms of

this rule, each of which state a more concrete situation in which this principle should be

used. They are:

Special Case rule: If you write code to treat a special case in your algorithm, treat the

special case in a separate method.

Nested Loop rule: If you have a nested loop, move the inner loop into a separate

method.

Code Duplication rule: If you write the same code segment twice, move the segment

into a separate method.

Hard Problem rule: If you need the answer to a problem that you cannot immediately

solve, make it a separate method.

Heavy Functionality rule: If a sequence of statements or an expression becomes long

or complicated, move some of it into a separate method.

The special methods created as part of these rules are usually private methods, unless

they are created in different classes – we discuss this further below.

It is important to remind students that these separate methods do not need to be im-

plemented straight away. The calling method can be written as if the method existed. Fol-

lowing this, a stub for the Mañana method should be created. (If the programming envi-

ronment had specific tool support for the Mañana principle, this could be automated by

the IDE.)

The specific rules are initially easier to apply, because they provide concrete hints to

times when they should be applied. They are, however, just instances of the Mañana

Principle, and, if applied regularly, develop a coding habit that encourages the under-

standing and application of the principle in general.

This principle – and the specific rules – may sound abstract or complicated when pre-

sented in this theoretical form, but they are quite easy to understand when presented in

the context of an example. In the next section, we discuss the development of a class de-

fining objects for dates (day, month and year) to illustrate these techniques in practice.

5. A FIRST EXAMPLE: DATE
We demonstrate the techniques discussed above in the context of a simple programming

problem: the implementation of a class representing a date.

5.1 Specification of Date
Here, we give the specification of the problem as a Java interface (Figure 7). It could eas-

ily be presented more informally; the introduction of interfaces is not a requirement for

this process.

interface Date {
 /**
 * Advance the date to the next day
 */
 void setToNextDate();

 /**
 * Return a string representation of this date
 * in the format yyyy-mm-dd
 */
 String toString();
}

Figure 7. Specification of Date

5.2 Creating Method Stubs
The first step is to create a class for the implementation that contains method stubs. The

resulting class is presented in Figure 8. (Note that we do not formally implement the in-

terface given above to demonstrate that the use of Java interfaces is not a requirement.)

If the specification was provided in the form of a Java interface, this process is essen-

tially mechanical and could be automated by a development environment. For students in

early stages of learning, however, it might help to write this class skeleton by hand. The

important thing is: simple rules can be given to guide the creation of this class.

/** An instance represents a date */
class Date1 {

 /**
 * Advance the date to the next day
 */
 public void setToNextDate() {
 }

 /**
 * Return a string representation of this date
 * in the format yyyy-mm-dd
 */
 public String toString() {
 return null;
 }
}

Figure 8. Date class with method stubs

5.3 Test Cases
The next step is to ensure that appropriate test cases exist.

Our techniques do not necessarily prescribe a strict test-first approach, in which stu-

dents create tests for all methods themselves. A viable alternative for early programming

tasks is to use teacher-provided tests. The teacher may provide a test suite for the ex-

pected methods as part of the specification of the task.

The important step here is to ensure that tests exist, can be compiled, and can be exe-

cuted (but do not need to pass).

In this paper, we do not present the specific tests, since the actual test development is

not the main focus of this paper. There is, however, nothing special about these tests, and

any standard test-first strategy can be applied.

5.4 Alternative Representations for Date
The next step in our technique is to consider alternative representations (at least two).

An obvious representation for this problem is to use three integer variables day,

month and year; we will denote this alternative R1. An alternative representation is to

store the number of days from a certain start date, say 0001-01-01; we denote this alterna-

tive R2. (In in-class discussions, students typically come up with more creative alterna-

tives, e.g. representing the month or the complete date as a string.)

5.5 Evaluation of Alternative Representations for Date
R1 simplifies the implementation of toString whereas the implementation of setToNext-

Date will be more challenging, since it must deal with the special case of the last day of a

month.

R2 leads to a simple implementation of setToNextDate (a simple increment), whereas

implementing toString will be hard.

The result of this analysis is the Effort REM for Date (Table 2).

R1: Use three integers for date: day: int; month: int; year: int

R2: Use one integer: number of days since 1 Jan 0001

IMPL.

EFFORT
R1 R2

setToNextDate() Challenging Trivial

toString() Trivial Hard

Table 2. Estimate of required effort to implement Date

We choose to use R1 for our class, since it seems to be the representation that allows

for the quickest implementation of Date.

5.6 Attributes
Choosing R1 as the basis for our implementation determines the instance fields. The defi-

nition of class Date1 after adding the fields is presented in Figure 9. The method stubs

are unchanged. Comments from previous code segments are left out for brevity; only

comments for new methods are included from here on.

class Date1 {

 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 /**
 * Create a date instance with an arbitrary
 * (fixed) value.
 */
 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 }

 public String toString() {
 return null;
 }
}

Figure 9. Adding instance fields to Date

5.7 Implementing the Methods of Date
The next step is to implement and test the methods. Some methods may be easy to im-

plement in one step; toString in our example falls into this category. Other methods may

require more work. In this case, partial solutions may be used for initial versions. Figure

10 shows our class after implementing function toString and a first, naïve version of set-

ToNextDate.

class Date1 {
 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 day = day + 1;
 }
 public String toString() {
 return year + “-” + month + “-” + day;
 }
}

Figure 10. Naïve implementation of Date

This partial solution is indeed a very naïve implementation. Nevertheless, we might

claim that the setToNextDate method is 97% correct since it works correctly in 353 out of

365 cases! In some sense, we are very close to a full solution, and if the class is part of a

larger system, it can now be used (as a test stub) by other parts of the system.

Incrementing the field day might violate the representation invariant, and in this spe-

cial case the above implementation of setToNextDate fails to work properly. We have to

check for this special case and handle it appropriately. For simplicity, we temporarily

assume 30 days in every month.

In the special case where day after being incremented exceeds the number of days in

the month, we must set day to 1 and increment field month. Following our Special Case

rule from section 2, we deal with this special case by introducing a new private method,

checkDayOverflow. Figure 11 shows the resulting code.

class Date1 {
 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 day = day + 1;
 checkDayOverflow();
}

/**
 * Check for special case where day > daysInMonth;
 * in that case, set day to 1 and add 1 to the month
 */
 private void checkDayOverflow() {
 if (day > 30) {
 day = 1;
 month = month + 1;
 }
 }

 public String toString() {
 return year + “-” + month + “-” + day;
 }
}

Figure 11. Partial implementation of Date

Now, incrementing the variable month might also violate the representation invariant;

this special case is handled similarly by introducing a new private method checkMon-

thOverflow, which is called after incrementing month. Except for the assumption of 30

days in every month, the method is now finished.

To finish our implementation, we have to replace the literal 30 with the correct num-

ber of days in every month. Here, the Mañana Principle comes in again, this time in the

form of the Hard Problem rule: If we need some information that we do not have, we

pretend we have a method that gives us the answer. Thus, we just assume a method

daysInMonth that does exactly what we need. We do not worry about the implementation

of this method now; it is postponed until later.

The new version of the checkDayOverflow method is shown in Figure 12.

private void checkDayOverflow() {
 if (day > daysInMonth()) {
 day = 1;
 month = month + 1;
 checkMonthOverflow();
 }
}

Figure 12. Final version of checkDayOverflow()

This method will not compile until we provide a method stub for daysInMonth. The

stub, in this case, should not return a zero, but should return 30 – the approximation we

have used previously.

The most important thing at this stage is that we have explicitly separated two inde-

pendent problems: the correct use of this method and the implementation of the method.

Separating these problems makes each half easier to solve.

Since our checkDayOverflow method is now complete, we might now proceed to im-

plement checkMonthOverflow. In the general case, implementing one method may gener-

ate several other methods via the Mañana Principle, which can then be gradually imple-

mented.

For our example, implementing the daysInMonth method is the last thing that is miss-

ing. To calculate the number of days in the current month, we declare a local array vari-

able in this method to hold the number of days per month (with 28 days for February),

and the method returns the number of days in the current month by looking up the num-

ber in the array. This brings us almost to the finishing line: the implementation now

works, except for the special case where the current year is a leap year (“99.93% correct-

ness”).

As previously, we treat a special case by introducing a new private method to deal

with it. In this case, we introduce a boolean method isLeapYear that returns true if the

current year is a leap year. The implementation of this method is a straightforward im-

plementation of the leap year rule: a year is a leap year if the year is divisible by 4 but not

by 100 or if it is divisible by 400.

The hardest part of this calculation is the check whether a number can be divided by

another so, again, following the Mañana Principle, we use a method divides that gives us

the result, and then we implement that method later.

The complete implementation of our Date class, including these methods, is shown in

Figure 13.

class Date1 {
 private int day; // 1 ≤ day ≤ daysInMonth
 private int month; // 1 ≤ month ≤ 12
 private int year;

 public Date1() {
 day = 23; month = 10; year = 2006;
 }

 public void setToNextDate() {
 day = day + 1;
 checkDayOverflow();
 }

 private void checkDayOverflow() {
 if (day > daysInMonth()) {
 day= 1;
 month= month + 1;
 checkMonthOverflow();
 }
 }

 /**
 * Check for special case where month > 12;
 * in that case, set month to 1 and add 1 to the year
 */
 private checkMonthOverflow() {
 if (month > 12) {
 month= 1;
 year= year + 1;
 }
 }

 /**
 * Return the number of days in the current month
 */
 private int daysInMonth() {
 // month: 1 2 3 ... 12
 int[] daysInMonth = {31,28,31,...,31};

 int result = daysInMonth[month-1];
 // special case: February in a leap year
 if (month == 2 && isLeapYear()) {
 result= result + 1;
 }
 return result;
 }

 /**
 * Return true iff the current year is a leap year
 */
 private boolean isLeapYear() {
 return (divides(4, year) && !(divides(100, year))
 || divides(400, year);
 }

 /**
 * Return true iff a divides b
 */

 private boolean divides(int a, int b) {
 return b % a == 0;
 }

 public String toString() {
 return year + “-” + month + “-” + day;
 }
}

Figure 13. Complete implementation of Date

5.8 Discussion of Date Implementation
The above development of a class implementing Date demonstrates the application of the

techniques set out in section 4. The most relevant observation is that every step is broken

into small, manageable chunks.

Some of the steps in our technique are fairly easy to learn (creating method stubs, de-

fining the instance fields after deciding on a representation); others require much practice

(creating tests, implementing methods).

The detailed discussion of the method implementation has shown that – at least in this

case – the harder tasks can also be broken down into small parts. This technique can be

applied to any implementation of a method.

6. A SECOND EXAMPLE: A SIMULATION
Our second example is the core of a simulation, in which actors move in a two-

dimensional bounded world. The world is divided into a limited set of discrete locations,

so that the position of the actors in the world can be specified as a coordinate pair in a

grid (row, column).

For the purpose of this discussion, we examine a fairly simple version of such a simu-

lation. The principles discussed here are, however, generally applicable.

We examine two classes that specify this application: a class Actor that represents the

actors that live and act within the simulated world, and a class Simulator, the main class

that holds and controls the collection of actors. We discuss this example to illustrate some

additional points (while mostly skipping those parts that we have already covered above).

6.1 Specification of Simulator
Again, we give the specifications of Simulator and Actor in the form of Java interfaces

(Figure 14). Alternatively, they may be provided as a UML diagram or informally as a

list of required methods.

/** A simulator that manages actors in a 2D world.
 Locations in the world are specified by row and
 column number. */
interface Simulator {

 /** Add Actor a to this simulation */
 void add(Actor a, int row, int col);

 /** Return the actor at location specified by (row,col).
 Return null if there is no actor at the location. */
 Actor getActorAt(int row, int col);

 /** Let all actors act once */
 void act();

 /** Display a representation of the current world state
 to standard out */
 void display();
}

/** An actor in the world */
interface Actor {
 void act();
}

Figure 14. Specification of Simulator and Actor

6.2 Creating Method Stubs and Test Cases
For this example, we skip the discussion of method stub creation and test case definitions,

since the process is essentially the same as in the first example. Instead, we jump straight

ahead to the discussion of representation alternatives.

6.3 Alternative Representations for Simulator
As always, before embarking on implementing a specification, alternative representations

must be considered. This must be done for each class. In this discussion, we consider

only the implementation of class Simulator and ignore class Actor.

The main task of the Simulator class is to hold a collection of all actors, and to ma-

nipulate and process this collection. One representation makes use of an unordered list of

actors. Actors store information about their location in the world in their instance data;

we will denote this representation R1.

An alternative representation uses a grid (a two-dimensional array). Actors are stored

in this grid according to their logical position – they do not need to store their position in

the actor object itself; we will denote this representation R2.

6.4 Evaluation of Alternative Representations for Simulator
For both R1 and R2, implementation of the add method is trivial (adding an element to the

end of the list for R1, or storing an actor object at a given grid position in R2).

R2 simplifies the programming task of getActorAt, since only a single access to the

grid at a known location is required, whereas a linear search of the actor list is required

with R1. (This will also effect efficiency, with the time complexity of R1 being O(n),

where n denotes the number of actors in the simulation, while R2 is O(1). However, our

concern here is exclusively implementation difficulty – efficiency should not greatly in-

fluence our discussion at this stage.) We might assign an REM value of Trivial to R2,

while R1 is slightly more work, but still Easy.

Implementation of the simulator’s act method (invoking act on all actors) requires a

simple sweep of all actors in R1. Again, we classify a simple iterator loop as Easy. Using

R2, this method requires a traversal of the grid, which includes a nested loop. Since this is

harder than a single sweep, we might classify this as Average.

The last method, display, is intended to print a representation of the current world to

the screen. For the grid variant, R2, this is similar to the previous method – a nested loop

– and therefore classified as Average again. For R1, the task is considerable harder, since

the list has no particular order. We consider this to be Hard. The result of the analysis is

summarized in the Effort REM for class Simulator (Table 3).

R1: Use unordered list to store actors

R2: Use 2-dimensional array to hold actors

IMPL.

EFFORT
R1 R2

add() Trivial Trivial

getActor() Easy Trivial

act() Easy Average

display() Hard Average

Table 3. Estimate of required effort to implement class Simulator

We choose R2 because it allows for the simplest implementation of Simulator.

6.5 Attributes
We are now ready to add the instance fields and constructor to our stub version of Simu-

lator (Figure 15). Again, the work here is fairly straight forward: we create a version of

our chosen representation in Java (field definition and setup in the constructor – this is a

largely mechanical task.

/** A simulator that manages actors in a 2D world.
 Locations in the world are specified by row and
 column number. */
class Simulator {
 private Actor[][] world;

 /** Create an empty Simulator */
 public Simulator(int rows, int columns) {
 world = new Actor[rows][columns];
 }

 /** Add Actor a to this simulation */
 public void add(Actor a, int row, int col) {
 // FixMe
 }

 /** Return the actor at location specified by (row,col).
 Return null if there is no actor at that location. */
 public Actor getActorAt(int row, int col) {
 return null; // FixMe
 }

 /** Let all actors act once */
 public void act(){
 // FixMe
 }

 /** Display a representation of the current world state
 to standard out */
 public void display(){
 // FixMe
 }
}

Figure 15. Partial implementation of Simulator

This is indeed a very small step toward a complete implementation of Simulator, but

it compiles and maybe even makes a few test cases run. For novices (and indeed for oth-

ers), making small successful steps toward the goal is a rewarding and satisfying way of

developing software.

6.6 Implementing the Methods of Simulator
Having decided upon a representation of the simulator, we have decoupled the four sub-

tasks of implementing the methods of the Simulator interface. This is an instance of the

principle separation of concerns – Dijkstra’s mantra and primary instrument of thought

[Dijkstra 1976, pp. 211].

The add method can be implemented simply by storing the new actor at the specified

location in the grid (assuming replacement of possibly existing actors is the intended be-

haviour). This gives us the implementation for the first of our four methods (Figure 16).

/** Add Actor a to this simulation */
public void add(Actor a, int row, int col) {
 world[row][col] = a;
}

Figure 16. Implementation of add()

The getActorAt method has a similarly simple implementation. All that is required is a

direct access at the specified world location, and a return of that value found at that posi-

tion (Figure 17).

/** Return the actor at location specified by (row,col).
 Return null if there is no actor at that location. */
public Actor getActorAt(int row, int col) {
 return world[row][col];
}

Figure 17. Implementation of getActor()

The act and display methods are a little more interesting – they both involve travers-

ing the whole grid. The implementation for both methods is quite similar – we discuss the

display method here, and leave the act method as an exercise to the reader.

Implementing display involves traversing the grid structure and displaying the con-

tents of every grid location. For this implementation, we assume our specification re-

quires that the output is in the form of ASCII characters arranged in lines and columns,

with a dot (“.”) for an empty location and the letter “A” for an actor. A first step towards

implementing display is shown in Figure 18.

/** Display a representation of the current world state
 to standard out */
public void display() {
 for(Actor[] row : world) {
 // display actors in the current row
 // go to new line
 }
}

Figure 18. Partial implementation of display()

Here, we iterate over the rows of the grid, and note the remaining work to be done in-

formally.

It is obvious that displaying the actors in each row involves an iteration within that

row, and consequently a nested loop. One of our rules for method implementation is the

Nested Loop rule: use a new private method to unfold nested loops. Instead of proceeding

with development of the inner loop, we define a new private method for displaying a sin-

gle row. We name the method displayRow. Following the Mañana Principle, we also

define a method for the second task, starting a new line on screen, named newLine

(Figure 19). Note that the Mañana Principle can be used independently of method com-

plexity: the newLine method will be very simple – we can see that already. However,

following this principle still has value, leading to readable, decoupled code that lends

itself to modification more easily (in this case, for example, output to a different me-

dium).

private void displayRow(Actor[] row) {
 // FixMe
}

private void newLine() {
 // FixMe
}

Figure 19. Specification of displayRow() and newLine()

With methods displayRow and newLine to serve us, we can now finish the loop body

of method display (Figure 20).

/** Display a representation of the current
 world state to standard out */
public void display() {
 for(Actor[] row : world) {
 displayRow(row);
 newLine();
 }
}

Figure 20. Implementation of display()

Now we need to implement the new private methods displayRow and newLine. The

newLine method is easy to do (Figure 21).

private void newLine() {
 System.out.println();
}

Figure 21. Implementation of newLine()

The displayRow method involves two aspects: an iteration over the actors in the given

row, and the display of each of those actors on screen. To separate those two aspects, we

use the Mañana Principle again, and assume we have a displayActor method. The dis-

playRow method then becomes quite simple to write (Figure 22).

private void displayRow(Actor[] row) {
 for(Actor a : row) {
 displayActor(a);
 }
}

Figure 22. Implementation of displayRow()

The last thing to do is to create the displayActor method, which is shown in Figure 23.

Since this is our last method, we do not need to create a stub, but can proceed straight to

the implementation.

private void displayActor(Actor a) {
 if (a == null)
 System.out.print('.');
 else
 System.out.print('A');
}

Figure 23. Implementation of displayActor()

This completes the development of an implementation of Simulator based on R2. We

have seen that by carefully choosing the simpler representation overall, and repeatedly

applying the Mañana Principle, each method becomes reasonably easy to write and un-

derstand.

6.7 Discussion of the Development of Simulator
The discussion of the simulation example has shown the application of the Nested Loop

rule. When consistently applying this rule, the code remains considerably simpler (and

easier to understand for beginners) than an alternative using a nested loop.

In this example, all the methods introduced through our rules were private methods in

class Simulator. In the general case, this does not always have to be the case. If, for in-

stance, we were dealing with a number of different actors which are to be displayed dif-

ferently depending on their type or state, we might introduce a getDisplayChar method in

the Actor class as an application of the Hard Problem rule while implementing the simu-

lator's displayActor method.

In early exercises, we usually start with problems where the methods that naturally

develop are in the same class. This can then – a bit later – be extended and linked to a

discussion of responsibility-driven design, and the question which class should provide a

new, required method.

7. A PRELIMINARY EVALUATION OF TEACHING STREAM
In this section we report on a small, preliminary study evaluating the learning outcomes

of teaching STREAM.

The STREAM process has been taught in the introductory programming courses at

the authors’ home universities (Aarhus University and the University of Kent) for the

past three years and the results are very encouraging.

In order to conduct a preliminary evaluation of process competence, we set up an ex-

periment just prior to the final examination at Aarhus University two years ago. We de-

signed a programming task similar to our final examination. No guidance was provided

with respect to the overall programming process. The task description consisted of a class

model and functional specifications of methods in the model, and students were told to

implement the specified model.

We first designed and carried out an evaluation based on “think aloud”: We asked the

students to think aloud while solving the given task. For each student, the screen and the

student’s voice were recorded. This experiment largely failed because the students often

did not think aloud; they were preoccupied with the programming task and did not have

mental resources to also speak about what they were thinking.

After this, we designed and carried out an evaluation based on observations. 38 stu-

dents took part in the evaluation (they were representative of the whole population of

approximately 400 students). 13 teaching assistants (TAs) helped monitor the students

while they solved the programming assignment. The experiment lasted one hour.

Our goal was to evaluate the students’ programming process when no process guid-

ance is provided in the phrasing of the assignment. A group of TAs examined the stu-

dents and took notes of their behaviour; the student/TA ratio was 3/1.

The TAs were instructed to take notes of the students’ programming process. A form

was designed and used to record the notes. TAs were instructed to record student activi-

ties, in particular noting whenever a student violated the ‘standard process’ that had been

taught in the course.

The form consisted of columns for recording the time from the start of the task and

the nature of observed activity. Figure 24 shows the form structure and some typical en-

tries. A mark in a column indicates activity in that category.

T TC PC R S F1 F2 ... Fn E C

...

:11 x x x fixing indentation

...

:27 x x x handling special case

...

:41 x x x can’t find last element

...

T: elapsed time (in minutes); TC: test code; PC: production code; R: refine; S: restructure;
Fi: functionality; Error handling; C: comment (free text)

Figure 24. Form for note-taking during experiment

The completed forms were analysed to produce a condensed characterization of each

student’s programming process with special focus on deviations from the prescribed pro-

cess.

The somewhat surprising conclusion of the experiment was that all 38 students fol-

lowed the process they had been taught even though no process guidance was provided.

The students developed one part of the program at a time, separating the different con-

cerns of the task. There was some variation in the frequency of students swapping be-

tween writing test code and writing production code and in writing the test code before or

after the production code. STREAM suggests writing test code before the production

code, but almost all the students wrote the production code first.

Immediately after the experiment, we conducted informal interviews with groups of

students. When asked about their testing behaviour (less frequent than prescribed and

after the functionality to be tested was implemented), they responded that they did not

feel the need for the test in order to implement the requested methods. They wrote the

tests because they had to, not because they needed it to understand the task or to ensure

that the production code worked. It is hard to blame students for this since their behaviour

mirrors expert behaviour [Caspersen 2007, section 6.3.2].

We refrain from drawing overly strong conclusions from this experiment, since it was

not a strictly formal study with well-defined research questions. However, the observa-

tions are encouraging and suggest that students under the right conditions can learn the

process we teach – at least when they are exposed to familiar tasks. Again, this reflects

expert behaviour. Winslow puts it this way: “Experts, when given a task in a familiar

area, work forward from the givens and develop subgoals in a hierarchical manner, but

given an unfamiliar problem, fall back on general (opportunistic) problem solving” [Win-

slow 1996, p. 18].

This preliminary study shows that our teaching of STREAM had a positive effect on

the development of our students’ process competences. To draw more general conclu-

sions, further and more thorough investigations are needed.

8. RELATED AND FUTURE WORK
Numerous software engineering topics relate to our efforts of identifying a systematic

programming process for novices. We will discuss these topics in turn.

Stepwise refinement. 40 years ago, Dijkstra and Wirth identified the need for a con-

structive and systematic approach to programming – not only for novices, but for the

community as a whole [Dijkstra 1968, Dijkstra 1969, Wirth 1971, Wirth 1973]. Our work

builds on the work of Wirth and Dijkstra but concentrates on a specialized process for

novices learning object-oriented programming.

Programming methodology. In the early seventies Dijkstra formalized his ideas about

structured programming and developed a methodology for systematic construction of

programs using functional specifications (pre and post conditions) and loop invariants to

drive the development process [Dijkstra 1976]. In continuation of Dijkstra’s seminal

work, Back developed a refinement calculus [Back 1978, Back 1998] while Gries and

others produced text books based on the methodology (e.g. [Gries 1981, Cohen 1990,

Morgan 1990]). Our approach differs from this work by being a formally-based but in-

formally-practiced approach to systematic program development.

Responsibility-driven design. The Mañana Principle is related to responsibility-driven

design [Wirfs-Brock 2003]. In this paper, we apply the Mañana Principle only for func-

tional decomposition, but even here it reveals its relationship to responsibility-driven de-

sign (the nested loop rule factors a part of the program to a separate method with the re-

sponsibility of implementing the nested loop functionality).

Refactoring. During a programming session, it is inevitable that decisions made ear-

lier in the session need to be altered at a later stage. Realizing and learning that this is the

rule rather than the exception helps novice programmers come to terms with the fact that

programming is not a linear process. This is refactoring-in-the-small [Fowler 1999]. An

interesting aspect here is programming environment support: in a similar manner in

which refactoring is now commonly supported in development environments, the

Mañana Principle could easily be supported by automating the creation of method stubs

whenever a new private method is introduced.

XP and agile software development. Extreme programming and agile software devel-

opment covers many aspects of software engineering [Beck 2000, Martin 2003]; two of

the basic principles are: “Take small steps” and “Always do the simplest thing that will

work”. We use these principles as guidelines for choosing among several possible im-

plementations of an abstraction (a method specification or an interface) and for the pro-

cess of implementing it. They are wise guidelines for novices as well as experts. Extreme

programming typically manifests itself in the classroom as pair programming [Williams

2001, Bergin 2004, Hanks 2008]. Agile software development in education is covered by

a special issue of Computer Science Education [Williams 2002]; practical software engi-

neering education was the topic for another special issue of the same journal in 2001

[Saiedian 2001].

Test-driven development. The strategy of test-driven development [Beck 2003, Hunt

2003] relates closely to step 2 in our process: Create tests. Test-driven development is

gaining increased recognition, and it is beneficial to apply this strategy with novices for

several reasons (e.g. force a consumer view as well as producer view of program compo-

nents). But it is not necessary to adopt test-driven development in order to apply our pro-

cess; instead test cases can be provided as part of the specification of a programming

task. Several educators promote rethinking of the introductory programming course in

terms of test-driven programming [Edwards 2004, Jones 2004, Janzen 2006].

In this paper, we have concentrated on a part of the process where decomposition

generates support methods. This part is not exclusively object-oriented and is equally

applicable to functional and procedural languages, even though we have presented it in

the context of an object-oriented language. Future work includes extending the set of

rules that unfolds the Mañana Principle to cover cases of decomposition that generate not

only new methods but also new classes (or interfaces).

A second direction of future work will focus on investigating and designing tool sup-

port for the process in general and in particular for the Mañana Principle.

An obvious third direction of future work concerns a more thorough evaluation of the

learning effects of teaching STREAM. Different methods can be used for such evalu-

ations, e.g. “think aloud”, observation, instrumentation of the programming environment,

and stimulated recall. We particularly welcome third party adoption and evaluation of

STREAM.

9. CONCLUSIONS
We have argued that we need to teach novices about the process of software development

in order to enable them to follow organised steps to move toward a solution to a problem,

and that we must treat software development explicitly as a process that is carried out in

stages and small steps, rather than the writing of a single, monolithic solution.

Furthermore we have briefly presented a model and a conceptual framework of in-

cremental software development called Stepwise Improvement that characterises pro-

gramming development as an explorative activity of discovery and invention taking place

in the three-dimensional space of extension, refinement, and restructuring.

Stepwise Improvement is specialised into an informal but systematic development

process, STREAM, designed to be applied by beginners. As part of STREAM we have

identified and described principles and systematic programming techniques particularly

suited for novices learning object-oriented programming. Through two examples we have

demonstrated the application of STREAM.

STREAM is a carefully down-scaled version of a full and rich software engineering

process. By using it we hope to achieve two things: To help novice programmers learn

faster and better while at the same time laying the foundation for a more thorough treat-

ment of the various aspects of a software engineering process.

We have reported on a small, preliminary study indicating that teaching STREAM

can have a positive effect on the development of the students’ process competences.

REFERENCES
BACK, R.-J. 1978. On the Correctness of Refinement Steps in Program Development. PhD thesis, Department of

Computer Science, University of Helsinki.
BACK, R.-J. 1998. Refinement Calculus: A Systematic Introduction. Springer-Verlag.
BECK, K. 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley.
BECK, K. 2003. Test-Driven Development by Example. Addison-Wesley.
BERGIN, J., CARISTI, J., DUBINSKY, J., HAZZAN, O., AND WILLIAMS, L. 2004. Teaching Software Development

Methods: The Case of Extreme Programming. In Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education, Norfolk, Virginia, USA, 2004, 448-449.

CASPERSEN, M.E. 2007. Educating Novices in the Skills of Programming. PhD Dissertation PD-07-4, Depart-
ment of Computer Science, University of Aarhus.

COCKBURN, A. 2002. Agile Software Development. Addison-Wesley.
COHEN, E. 1990. Programming in the 1990’s. Springer-Verlag.
COLLINS, A.M., BROWN, J.S. AND HOLUM, A. 1991. Cognitive apprenticeship: Making thinking visible. In

American Educator, Vol. 15, 3.
DAHL, O.-J., DIJKSTRA, E.W., AND HOARE, C.A:R. 1972. Structured Programming. Academic Press.
DIJKSTRA, E.W. 1968. A Constructive Approach to the Problem of Program Correctness. In BIT 8, 1968.
DIJKSTRA, E.W. 1969. Notes on Structured Programming, EWD 249, In [10].
DIJKSTRA, E.W. 1976. A Discipline of Programming. Prentice-Hall.
DR. JAVA. 2009. http://drjava.org. Accessed 8 February 2009.
EDWARDS, S.H. 2004. Using Software Testing to Move Students from Trial-and-Error to Reflection-in-Action.

In Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education, Norfolk, Virginia,
USA, 26-30.

FOWLER, M. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J.M.. 1995. Design Patterns: Elements of Reusable Ob-

ject-Oriented Software. Addison-Wesley.
GRIES, D. 1981. The Science of Programming. Springer-Verlag.
HANKS, B. 2008. Problems Encountered by Novice Pair Programmers. Journal on Educational Resources in

Computing, Vol. 7 (4), Article No. 2.
HUNT, A. AND THOMAS, D. 2003. Pragmatic Unit Testing in Java with JUnit. The Pragmatic Programmers.
JANZEN, D.S. AND SAIEDIAN, H. 2006. Test-Driven Learning: Intrinsic Integration of Testing into the CS/SE

Curriculum. In Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education,
Houston, Texas, USA, 254-258.

JONES, C.G. 2004. Test-Driven Development Goes to School. Journal of Computing Sciences in Colleges, Vol.
20 (1), 220-231.

JUNIT. 2009. http://www.junit.org. Accessed 8 February 2009.
KÖLLING, M. 2009. Unit Testing in BlueJ. http://www.bluej.org/tutorial/testing-tutorial.pdf. Accessed 8 Feb-

ruary 2009.
KÖLLING, M., QUIG, B., PATTERSON, A., AND ROSENBERG, J. 2003. The BlueJ System and its Pedagogy. Com-

puter Science Education, Vol. 13 (4), 249-268.
MARTIN, R.C. 2003. Agile Software Development: Principles, Patterns, and Practices. Prentice-Hall.
MORGAN, C. 1990. Programming from Specifications, Prentice-Hall.
SAIEDIAN, H. 2001. Practical Software Engineering Education. Computer Science Education, Vol. 11 (1), 3-5.
WILLIAMS, L.A. AND KESSLER, R.R. 2001. Experiments with Industry’s “Pair-Programming” Model in the

Computer Science Classroom. Computer Science Education, Vol. 11 (1), 7-20.
WILLIAMS, L.A., TOMAYKO, J. 2002. Agile Software Development. Computer Science Education, Vol. 12 (3),

167-168.
WINSLOW, L.E.. 1996. Programming pedagogy − a psychological overview. SIGCSE Bulletin, Vol. 28 (3), 17-

22.
WIRFS-BROCK, R. AND MCKEAN, A. 2003. Object Design: Roles, Responsibilities, and Collaborations, Addi-

son-Wesley.
WIRTH, N. 1971. Program Development by Stepwise Refinement. Communications of the ACM, Vol. 14 (4),

221-227.
WIRTH, N. 1973. Systematic Programming, Prentice-Hall.

Received November 2008; revised January 2009; accepted February 2009.

