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Abstract

Neural networks (NNs) benefit biomedicine and agriculture, especially when
relying on the specificity and implementation of stochastic fractal-supported
models. In the poultry industry, a particular challenge is the search for an ideal
sorbent-based complex additive to minimize the loss of valuable feed
components that can be tailored to groups of gastrointestinal microorganisms.
The aim of this study was thus to develop and apply a mathematical model and
Gaussian NN to analyze productivity and blood parameters of laying hens
when administering a complex feed additive from the mineral shungite sorbent,
plus a nutritive supplement of brown seaweed meal. We developed and built a
computational NN that modelled the stochastic ManyToOne relationship of an
array of hens’ main blood parameters and performance traits. The results
presented herein were that the artificial computational stochastic fractal-based
NN (EuclidNN) first effectively analyzed the profiles of operational taxonomic
units (OTUs) of the physiological/biochemical blood parameters. Also,
correlation coefficients were highly positive in relation to certain zootechnical
indicators, suggesting that feed additive intake may have led to changes in
these performance traits. Calculations suggested that when implementing the
feed additive, the values of the Cognitive Salience Index (CSI) vector vCSI2
declined. Hereby, this vector correlates with, and affects the egg production
trait. Moreover, there was a certain relationship between the feed additive
intake and feed and water consumption. Further, EuclidNN computed the
respective bioconsolidation indices of hens and, simultaneously, processed
several profiles of OTUs for all experimental variants. It also contributed to the
calculation of bioconsolidation index values for each variant, i.e., a quantitative
assessment of the physiological/biochemical blood descriptors, depending on
diet. Collectively, the poultry productivity prediction based on the developed
model and NN is pivotal as an initial step for future improvements of
economically important traits in chickens when using novel and efficient
complex feed additives.
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Introduction

For agricultural, and particularly poultry data
analysis, neural networks (NNs) present promising
and potentially applicable tools for the analysis and
synthesis of numerous biological systems (Pitelinskiy
and Shimansky, 2013; Jahanmiri and Parker, 2022).
One of the major problems of concern is that
industrial conditions of livestock exploitation create
significant functional stress for the bird’s body
(Kochish et al., 2019, 2021). Adaptive responses to
external stimuli are often stressed, weakening natural
defenses, and adversely affecting the health and
growth rate of poultry (Young et al, 2022;
Kirikovich et al., 2012). One of the ways to alleviate
this is through using various feed additives, e.g.,
mineral-containing substances to stimulate metabolic
barriers in the body (Yarovan, 2005; Ghahri et al.,
2010; Sharapova, 2011). Contemporary activity in
the search for ideal sorbents (i.e., insoluble materials
or mixtures thereof that are used to recover liquids
through absorption and/or adsorption) aims to reduce
the negative effects caused by mycotoxins from the
feedstuffs. Minimal loss of useful feed components
and adaptability to microorganisms living in various
parts of the gastrointestinal tract are also key
objectives (Ghahri et al, 2010; Okolelova and
Mansurov, 2013; Zasorin et al., 2019; Kochish et al.,
2020b; Tyurina, 2022). One of the promising sorbent
materials is the mineral shungite (Kochish et al.,
2020a; Buryakov et al., 2023), which has a specific
set of physical properties and structural
characteristics; it is composed of non-crystalline
carbon with a metastable structure, being incapable
of graphitization (Ignatov and Mosin, 2013;
Tukhbatov, 2013). Shungite rock has good
adsorption properties due to its developed and active
surface and is capable of acting as a catalyst or
catalyst carrier in organic synthesis reactions
(Gorodnichev et al., 2019; Vats et al., 2016; Zasorin
et al., 2019). Recently, attention has been also drawn
to marine brown algae as a nutrient and efficient feed
additive. These algae are rich in protein, vitamins and
other biologically active substances that play an
important role in the body's metabolism (Sharapova,
2011; Buryakov et al., 2023; for review see Kochish
etal,2021).

To model complex stochastic biochemical
processes occurring in a bird’s body, a computational
NN can be employed that includes procedures of
multivariate mathematical statistics, i.e., correlation,
cluster and discriminant analyses (Meireles et al.,
2003; Colbrook et al., 2022; Taye, 2023). One of the
instrumental solutions for constructing appropriate
mathematical models to describe certain processes,
including biologically significant ones, can be
stochastic fractal-based mathematical models. These
comprise hybrid mixing methods for the
mathematical modeling (Moroz and Maslovskaya,

2020; Zaikina et al., 2022) applicable to various
(e.g., biological) processes. Previously, we developed
a concept of  fractal conformity-based
bioconsolidation index, which varies within 0 ... 1
depending on the efficiency of coherent biological
processes in the body, and tested an artificial NN
modelling approach (Kochish et al., 2020b, 2023;
Pukhalskiy et al., 2023; Vorobyov et al., 2023a,b),
suggesting reasonable prospects of their applications
in biological studies. Computational NNs are
designed to model a ManyToOne relationship that,
for instance, connects a multiple set of heterogeneous
bird blood parameters of different dimensions with
one single dimensionless numerical indicator for the
cognitive significance of the data being studied, i.e.,
the Cognitive Salience Index (CSI = 0 ... 10; Sutrop,
2001; Mascarenhas, 2018). In one particular case, the
dimensionless CSI index can be interpreted as an
indicator of an increase/decrease in the intensity of
biochemical processes in the bird’s body that
determine the egg performance of laying hens.
Furthermore, an  important stage in the
implementation of an NN in poultry-related research
is setting up/training the NN and checking/validating
it based on a correlation analysis of the CSI values
with egg production indicators of layers. After
successful NN training and validation, it is feasible to
estimate the feed additive intake effects (positive or
negative) on the egg performance by
increasing/decreasing the CS/ values.

Considering the remarkable adsorption properties
of shungite rock and the nutritional benefits of
incorporating brown algae into poultry diets, a
combination of these supplements can be most
attractive for practical use (Sharapova, 2011;
Buryakov et al., 2023). Here, we thus applied an NN
and hybrid stochastic fractal-based approach to the
mathematical process of analyzing the poultry
productivity and blood parameters under the
influence of a complex of these two feed
supplements. The goal of the present study was
therefore to develop the appropriate mathematical
model and NN based on this to analyze the
performance and blood parameters of laying hens in
response to the intake of a complex additive that
combined shungite and brown algae, estimating the
respective CS7 and bioconsolidation indices.

Materials and Methods

Experimental birds, performance traits and blood
parameters

This study was conducted at a large poultry farm
located in Leningrad Oblast, Russia, using Hisex
White commercial cross layers (Laptev et al., 2017)
at the starting age of 49 weeks. Birds were kept in
group cages and fed the basic diet containing grain,
root crops, green grass, and a vitamin-mineral feed
premix. According to the existing standards, there
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were 5 laying hens in each cage. The cage had a
standard size, with the dimensions of the total seating
area being 490 x 580 x 550 mm. This allowed for a
regulated density of hens in the cage, which meets
the general requirements that are very strictly
observed at this poultry farm. The control (C) group
totalled 225,378 hens. The experimental (E) group
numbered 218,125 birds fed the basic diet
supplemented with the following complex feed
additive: 0.7 kg shungite and 0.3 kg brown algae (as
dried Fucus vesiculosus seaweed meal) per 1-ton
fodder. The objective of this feeding experiment was
to assess the effect of the combination of these two
supplements, i.e. their synergistic impact,
considering that the two feed ingredients, different in
their essence, are expected to have non-overlapping
effects from their use. In particular, the mineral
shungite is an inorganic sorbent substance that is not
digested in the hen’s body, while algae, of an organic
(plant) nature, when assimilated in the chicken’s
body, go through digestive processes in the same
way as other plant (and animal) components of the
compound feed. The chosen optimal dosages and the
ratio of the two supplements were based on our and
other preliminary tests (Sharapova, 2011; Buryakov
et al., 2023) and taking into account an overall
economy of the compound feed recipe that poultry
enterprises in Russia adhered to for keeping feed
costs reasonable. For the NN analysis, the six most
important zootechnical indicators of egg production,
feeding and watering of laying hens were also taken
as follows: egg production rate (in %), egg weight (in
g), proportions of cracked, leaking and dirty eggs (in
%), feed conversion (in kg per 10 eggs produced),
feed consumption (in g per hen), and water
consumption (in mL per hen), plus their four
derivative indices (ratios).

We studied the effect of the complex additive on
older laying hens in their third feeding phase (i.e., at
75 weeks of age and after), which is considered
critical and corresponds to a physiological state of
decline in egg production rate and, accordingly,
overall productivity. Using 0.5 to 1 mL of blood per
sample, three 75-week-old females were sampled
from the control and experimental groups (designated
C1 and El, respectively). Five hens per group were
then sampled to analyze 12 blood parameters (Table
1) in the middle (86 weeks of age; designated C2 and
E2, respectively) and at the end of the feed additive
administration study (94 weeks of age; designated C3
and E3, respectively). Accordingly, twelve
physiological/biochemical blood characteristics of
the laying hens were assessed (Table 1), including
the following most informative indices:

e Descriptors  of erythrocytes, leukocytes and
platelets using Goryaev’s grid-equipped counting
chamber (Tietz, 1997);

e Blood leukogram wusing microscopy, May-
Griinwald fixative and Romanowsky azure-eosin
dye to stain blood smears (Tietz, 1997);

e Serum hemoglobin level using the hemoglobin
cyanide method, and the formula-assisted cell-color
ratio (Tietz, 1997);

e Phagocytosis indices using a microscopic method
and Staphylococcus aureus strain 209 culture
inactivated by heat and standardized via an optical
turbidity standard (Menshikov, 1997).

Data analysis principles using NN

Super-new artificial intelligence (Al) computer

programs (D’Addona, 2014; Gharajeh, 2018;

Dall'Alba ef al., 2022) were used with the respective

computational NNs to search, e.g., for feed additives

that ensure minimal loss of useful feed components
and modulate the gastrointestinal microflora to
ensure a complete symbiosis of microorganisms with
the animal’s body (e.g., Kochish ef al. et al., 2020b,

2023; Pukhalskiy et al., 2023). In this regard, the

following methods can be considered most relevant

(Pitelinskiy and Shimansky, 2013; Taye, 2023):

e Standard statistical methods based on mathematical
instrumental regression analysis that optimize
specific experimental parameters by applying an
appropriate evaluation function.

e Methods based on the use of functional expansions
in a Fourier series (Garrapa, 2018). Herein, it is
taken into account that the experiment is a
commutative process and can be transformed by a
sum of functions that describe its polynomials with
a given accuracy (e.g., trigonometric functions).

e Partial modelling and formal grammars (Pitelinskiy
and Shimansky, 2013).

A sequence of s elements can be considered as an
“approximation” in that identical oscillations are
often observed in biological systems, differing only
in magnitude and time of occurrence, i.e., scale-
invariance (Grosu et al., 2023). To describe this, the
concept of diversity as a heterogeneous destructive
body is employed. For a complete description of
diversity, the entire spectrum of dimensions is
necessary since, unlike a common mathematical
decomposition, it is not enough to introduce only one
value, the fractal index d. These dimensions are
usually infinite numbers and other time intervals and
frequencies of a sample can be further analyzed.
Current trends, i.e., specific signal sequences, can
then be examined in more detail using, for instance,
frequency analysis (Casals et al., 2005; Pitelinskiy
and Shimansky, 2013). Conventional experiments are
based on inertial analysis and use flexible linear
statistical models. However, NNs are inherently
nonlinear and do not require knowledge of the
correlation between input data and output data. This
makes them more promising than traditional methods
(Meireles et al., 2003). Although simulations involve
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the use of multilayer sensor devices (Rosenblatt,
1962; Minsky and Papert, 1969/1988), the use of
closed-loop NN is not always recommended due to

short-term memory and difficulty of use (Pitelinskiy
and Shimansky, 2013; Colbrook et al., 2022).

Table 1: Mean values (=SEM") of 12 blood parameters in hens by four experiment variants (C2, C3, E2, and
E3) and correlation coefficients (R) with vCSII and vCSI2 vectors?

Experiment variants® R (SEM = £0.01)

Blood parameters

C2 C3 E2 E3 vCSI1 vCSI2

Erythrocyte count (mln/pL) 2.88+0.19 3.10+0.47 2.60+0.25 3.194+0.36 (P=O§(3)21) (P_g..(7)§10)
fmﬁ‘)’cm sedimentationrate ) 55,040 1204040  1.20£040  1.60+0.49 ( onéggg) ( P_gﬁn
Leukocyte count (thousand/pL) 30.26+4.13 35.85+£3.93 31.2242.78 30.34£8.74 (P:0g§24) (P;OO'%3991)
Platelet count (thousand/uL) 71.84£11.34 65.71£10.84 54.62+16.31 62.67+£22.58 (P;O(;)8789) (P=0i)1.§01)
Eosinophils 2206110 1208040 180075 0402049 P;Od.go% 6 P:0.09.(5)01)
Pseudoeosinophils 6.60+1.02 14.60+4.92  12.00+1.67*  18.80+2.93 (P=0.09.3(’)03) (P;Od.8081 0)
Monocytes 0.40+0.49 1.00+0.00 0.80+0.75 0.80+0.40 (P=Og?)56) (P;O(j.60986)
Basophils 1.00+0.89 0.80+0.40 1.20+0.40 0.80+0.75 (P;O(JO%H) (P=0i)8.?)22)
Lymphocytes 89.604233 8240480 84208264 7920279 p;od.8061 5 PZO‘Og.(l)OS)
Hemoglobin (g/L) 80.00+5.48 89.20+8.70 85.60+4.18 83.00+8.85 (P=0.05.(2)49) (P;O(;‘;OS)
Cell-color ratio 1.68+0.21 1.79+0.44 1.99+0.11 1.59+0.28 ;0033?9(51; :034?;5183)

Phagocytic index (a.u.)* 10.62+0.87 9.57+1.31 9.93+1.45 11.01+0.92 :08%2173) ;000;5(51;

! SEM, standard error of the mean. 2 vCSII and vCSI2, vectors containing the values of the CSII and CSI2 cognitive salience
indices for the experiment variants. 3> Experiment variants corresponded to the second and third blood sampling points (at 86
and 94 weeks of age) for the control (C2 and C3) and experimental (E2 and E3) groups of laying hens, respectively. * a.u.,

arbitrary units. * Significant difference between the respective C2 and E2 values (at P < 0.05).

General NN and stochastic fractal-based model
description

The mathematical research was carried out using NN
analysis and stochastic fractal-based modelling
(Garrapa, 2018; Moroz and Maslovskaya, 2020;
Zaikina et al., 2022). The NN and its elements we
report here are subject to protecting the intellectual
property of the authors (Vorobyov ef al., 2023b). NN
data mining implies a machine learning algorithm
and data analysis technique that mimics the
functionality of the human brain (Khlivnenko, 2015;
Goodfellow et al., 2016). This approach involves a
large number of interconnected nodes capable of
processing and transmitting information. Because of
this, NNs can be typically used to process large
amounts of information and identify patterns among
the analyzed datasets (D’Addona, 2014), the latter
being, in our case, the physiological/biochemical
blood parameters of laying hens.

When examining blood parameters as operational
taxonomic units (OTUs), it was important to
determine how the statistics of these datasets differ
from the conventional Gaussian statistics (i.e.,
normal distribution) (Wentzel, 1999). It was assumed

that any deviation of the actual data statistics from
Gaussian statistics would be indicative of the
regulation of physiological/biochemical processes in
the blood, e.g., changes in the levels of erythrocytes,
leukocytes, platelets, etc., that are controlled by the
bird’s body. Deviations from the normal distribution
were assessed by the magnitude of the highest central
moments in the empirical distributions of the
measured values (Rosenblatt, 1962; Popov, 2013).
The physiological/biochemical characteristics of
the hen’s blood can be characterized by Shannon
entropy indices (/ndShen) also  considered
biodiversity indices (Grishanov and Grishanova,
2010; Chernov et al., 2015; Gorodnichev et al.,
2019) and by bioconsolidation indices (/ndBconl) of
the bird’s body and its immune system status
(Kochish et al., 2020b, 2022, 2023). With increasing
entropy  (increasing  IndShen  index), the
physiological/biochemical characteristics of blood
across replicates are levelled out, and their dispersion
decreases. Therefore, it can be assumed that the
positive correlation of the /ndShen index with the
IndBconl index means that the corresponding
characteristic of hen’s blood may be a signal
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indicator of the bioconsolidation of the immune Papert, 1969/1988; Filntisi et al., 2013; Sergeev and

status. Tarasov, 2017; Mascarenhas, 2018; Gafarov and

To calculate the distribution moments for the Galimyanov, 2018) (Figure 1). This was based on a
empirical blood parameter data used as OTUs and stochastic ~ fractal-based model (Moroz and
compute the respective bioconsolidation indices of Maslovskaya, 2020; Zaikina ef al., 2022) for defining
the hen’s body and its immune status, an artificial the flow of physiological/biochemical processes in

Gaussian NN (GNN) was implemented (Minsky and the bird’s body.

\
\
\
\‘n

—

‘ O

8

| End

5 888> 8 | D 18>

— M2 M3|\ M4\ iM%‘ZT

N —

Figure 1. Artificial Gaussian neural network for calculating bioconsolidation indices of the bird’s body and its
immune system status. S, matrix of physiological/biochemical blood parameters; D, matrix of statistical
moments of blood parameters; and C, vector of bioconsolidation indices.

Results with one unique dimensionless characteristic, CS/
Constructing NN and stochastic fractal-based (Sutrop, 2001; Mascarenhas, 2018). Values of the
model CSIl and CSI2 indices for the four experiment
In the course of developing the artificial GNN further variants were transformed into vCSI/ and vCSI2
called EuclidNN (Figure 2), we built a computational vectors (Tables 1 and 2).

NN that modelled the stochastic ManyToOne The most informative poultry performance
relationship of an array of hens’ main blood indicators and correlation coefficients with vectors
parameters and performance traits (used as OTUs) vCSI1 and vCSI2 are summarized in Table 2.

Figure 2. Chart flow of the EuclidNN computational neural network. mBlood is a matrix of 12 key
physiological/biochemical blood indicators (Table 1). mEggs is a matrix of eight physiological performance-
related indicators (Table 2). mNorm is a matrix of normalized values of the mBlood matrix. mDist is a matrix of
Euclidean distances of four experimental variants based on blood parameter data. mCompo is a matrix of
orthogonal components in the space of blood parameter data. mComby is a matrix containing the results of a
nonlinear combinatorial transformation of data from matrices mDist and mCompo. vCSII and vCSI2 are vectors
containing the values of the CSI/ and CSI2 cognitive salience indices for the experiment variants. L1, L2 and L3
are layers of artificial neurons that perform matrix transformations of the initial and intermediate data.

Poultry Science Journal 2025, 13(2): 245-258



250

Complex Feed Additive Effects in Laying Hens

Table 2. Mean values of eight key zootechnical indicators (i.e., hen productivity, feeding and watering) by four
experiment variants (C2, C3, E2 and E3) and correlation coefficients (R) with vectors vCSI/ and vCSI2

Experiment variant!

R (SEM = £0.01)

Indicators C2 3 E2 E3 vCSI11 vCSI2
. -0.92 0.98
Egg production rate, % 88.7 719 854 L8 p=0003)  (P<0.001)
. 0.85 —0.80
Egg weight, g 64.3 66.5 64.8 65.5 (P =0.016) (P=0.032)
0.83 —0.78
V)
Cracked eggs, % 4.0 8.8 8.8 124 (P=0.020)  (P=0.039)
. 0.94 —0.89
0
Leaklng eggs, % 0.21 0.41 0.33 0.54 (P _ 0002) (P: 0008)
. 0.99 —0.94
0,
Dirty eggs, % 29 9.7 4.1 126 (p<o001)  (P=0002)
. 0.84 —0.78
Feed conversion, kg/10 eggs 1.46 1.64 1.63 1.72 (P =0.019) (P=0.037)
. —0.66 0.71
Feed consumption, g/hen 130 128 139 124 (P =0.109) (P=0.074)
. —0.68 0.73
Water consumption, mL/hen 250 248 250 228 (P =0.092) (P=0.061)
- 1.00 —0.95
vCSI1 vector (SEM = =+0.2) 2.5 6.7 3.4 7.4 (P < 0.001) (P=0.001)
_ —0.95 1.00
vCSI2 vector (SEM = £0.2) 7.5 33 6.6 2.6 (P =0.001) (P< 0.001)

! Experiment variants corresponded to the second and third blood sampling points (at 86 and 94 weeks of age) for the control
(C2 and C3) and experimental (E2 and E3) groups of laying hens. SEM, standard error of the mean.

The constructed multilayer EuclidNN included three artificial neuron layers L1, L2 and L3 that executed the initial and
intermediate data matrix transformations (Figure 2) as outlined below.

L1 neuron layer

This performed normalization of the mBlood matrix
data (Figure 2) (Everitt et al., 2011; Mascarenhas,
2018) that contained digital data on the blood
parameters of birds (OTUs) in the four experiment
variants (Table 1). The results of normalization were
stored in the mNorm matrix according to the
following Equation 1:

mBlood;;, — % - k=t mBloody,

mNormy, = - > (D)
\/ k=4 [mBloodjk—Z- ﬁ‘{mBloodjk]

where mBloodj. are mBlood matrix values; j = 1, 2,
..., 12 are ordinal numbers of 12 blood parameters
(Table 1); and k=1, 2, ..., 4 are ordinal numbers of
the four experiment variants that conformed to C2,
C3, E2 and E3, respectively (Tables 1 and 2).

The L1 neuron layer also computed the mDist matrix,
i.e., the matrix of Euclidean distances between the
four experiment variants in the 12-dimensional space
of birds’ blood parameters (Yeung and Ruzzo, 2001;
Everitt et al., 2011) using the following Equation 2:

1 =12 2
mDist,, = —z (mNormj, —mNormj,,,)", (2)
12445,

where m, n =1, 2, ..., 4 are ordinal numbers of the
four experiment variants that conformed to C2, C3,
E2 and E3, respectively (Tables 1 and 2); and j = 1,
2, ..., 12 are ordinal numbers of 12 blood parameters
(Table 1).

L2 neuron layer

This computed the mCompo matrix, i.e., the matrix
of principal components (orthogonal eigenvectors) in
the 12-dimensional space of birds’ blood indices
using the mDist matrix data and a standard
computational procedure (Yeung and Ruzzo, 2001;
Jolliffe, 2002; Schmidhuber, 2015) as follows:

mCompo = EigenVectors(mDist). 3)

L3 neuron layer. This computed the mComby matrix
containing numerical data that were obtained by
different variants of the nonlinear combination of the
mDist and mCompo matrix data. The mComby matrix
data were intended for training tuning of the
EuclidNN model and for calculating the desired
vCSI1 and vCSI2 index vectors using hens’ blood
parameters.

When training the EuclidNN neural network
(Nikoli¢ et al., 2012; Schmidhuber 2015; Widrow et
al., 2013; Nikolenko et al., 2018), the second
orthogonal component (mCompo2, i.e., the second
row of the mCompo matrix) in the 12-dimensional
space of blood indices was chosen because the
projection of blood indices onto the mCompo?2
component maximally correlated with performance
indices (Table 2) (Gao et al., 2012; Batushansky et
al., 2016). Using the values of the mCompo?2
component, the values of the vectors vCSI/ and
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vCSI2 (Tables 1 and 2) were calculated using the 1 k=N
followine Equati 4and 5 IndShen, = S/—'k~10g S
N 1
ollowing Equations 4 and 5: log(N) S| m, m,
vCSI1, = mCompo2, - 4.17 + 5, 4) _1IE
vCSI2), = —mCompo2,, - 4.17 + 5, (5) =y el
. k=1
where k=1, 2, ..., 4 are ordinal numbers of the four . > ¢ stical
experiment variants that conformed to C2, C3, E2 J=23 L N_Z are numbers of statistical moments
and E3, respectively (Tables 1 and 2). of physiological/biochemical blood parameters; k =
; 1,2, ..., N are numbers of blood parameter values in

In addition, the correlation coefficients (R) of
vCSI1 and vCSI2 vectors with blood parameters and
performance indicators were calculated as
summarized in Tables 1 and 2.

To compute the statistical moments of blood
indices in the layers of neurons M2, M3, M4, ..., Mn,
the moments (d;;) forming the matrix of moments D
(Figure 1) were calculated using the following
Equations 6 and 7:

1 k=N fl/j
d . =| —— ) Abs(s,, —m,) m 6
y {N_l ) (514 ,)} , (©)

5

1 k=N

m N & Stk ’ (7
where m; (s;x) are physiological/biochemical blood
parameters; k=1, 2, ..., N are numbers of replicates
of blood parameters in samples; j = 2, 3, ..., N-2 are
numbers of statistical moments of blood parameters;
N is the number of blood parameter values in a
sample; and / is the serial number of the four
experiment variants.

Subsequently, IndBconl (c;) indices were
calculated in the End neuron layer (Figure 1) using
the following Equation 8:

1
¢ = 8
! 1+exp(—a'Abs(p,)) ®
where the respective additional indices were

computed as follows:

e d g 1 (=M
- L Sg = d  —-r
b Z_: [lndShen,] & "y ( i Cj

j=1

>

1 JN2(1=m
o=y > (Zdﬁjj

=1

> >

a sample; / is serial number of the four experiment
variants; and a is a constant.

EuclidNN computational algorithm
implementation to analyze experimental data

The input data for calculations using EuclidNN
(Figures 1 and 2) (Rosenblatt, 1962; Meireles et al.,
2003; Anastasiadis, 2005; Filntisi et al., 2013;
Mascarenhas, 2018; Colbrook et al., 2022; Taye,
2023) were generated in the Excel environment and
are presented in Tables 1 and 2).

At the first stage, the appropriate immune
bioconsolidation indices were calculated from the
most informative physiological/biochemical blood
parameter data using the GNN artificial intelligence
process and are summarized in Table 3.

Then, the correlation coefficients between the
IndBconl indices and performance parameters of
laying hens were computed as shown in Table 4. As
can be seen from Table 4, there were high correlation
coefficients (positive or negative) between certain
performance indicators and blood parameter
bioconsolidation indices. For example, the egg mass
yield indicators, i.e., the product of mean egg weight
and egg production, positively correlated with the
IndBconl values for hemoglobin (R = 0.998, 0.838 and
0.916) and platelet counts (R = 0.878, 0.777 and
0.993).

Finally, the values of the vectors vCSI/ and
vCSI2 were computed using EuclidNN (Tables 1 and
5). In particular, when administering the shungite—
seaweed feed additive, the vCSII vector values raised
as follows: vCSI1(C2) = 2.5 < vCSI1(E2) = 3.4; and
vCSI1(C3) = 6.7 < vCSII(E3) = 7.4 (Table 5). The
correlation coefficients (Table 5) for the vCSII
vector were highly positive in relation to certain
zootechnical indicators (R = 0.83 to 0.99), suggesting
that the feed additive intake may have led to changes
in these performance indicators.

Table 3: Bioconsolidation indices (IndBconl) for five main blood parameters according to the four experiment

variants!

Blood indicators? C2 C3 E2 E3
Erythrocyte count 0.65 0.77 0.52 0.53
Leukocyte count 0.37 0.30 0.41 0.48
Platelet count 0.27 0.47 0.35 0.47
Hemoglobin 0.53 0.62 0.56 0.71
Cell-color ratio 0.81 0.92 0.50 0.67

! Experiment variants corresponded to the second and third blood sampling points (at 86 and 94 weeks of age) for the control
(C2 and C3) and experimental (E2 and E3) groups of laying hens. SEM = £0.02, standard error of the mean.

Poultry Science Journal 2025, 13(2): 245-258



252

Complex Feed Additive Effects in Laying Hens

Table 4. Correlation coefficients (R) between blood parameter bioconsolidation indices (/ndBconl) and

performance indicators

IndBconl
Performance indicators Erythrocyt  Leukocyte Platelet . Cell-color
Hemoglobin R
e count count count ratio
E roduction rate. % 0.77 -0.39 0.47 0.40 0.93
gep » /0 (P=0026) (P=0337) (P=0235 (P=0323) (P <0.001)
Mean cee weight 0.87 -0.54 0.35 0.23 0.98
gg weight, & (P=0005) (P=0.167) (P=0391) (P=058) (P <0.001)
Mean eoe mass vicld! 0.05 0.38 0.77 0.93 0.32
g8 y (P=0.898) (P=0355) (P=0.025 (P<0.001) (P=0435)
Mean egg mass yield to feed consumption 0.72 -0.36 0.73 0.58 0.81
ratio (P=0.045) (P=0375) (P=0037) (P=0.134) (P=0.014)
Mean egg mass yield to water —0.61 0.38 -0.77 —0.59 —0.68
consumption ratio (P=0.111) (P =0.360) (P =0.026) (P =0.125) (P =0.065)
Total nonmarket ceas. % —0.18 0.17 —0.86 —0.58 —0.06
888, 7o (P=0673) (P=0.694) (P=0006) (P=0.129) (P =0.892)
Feed conversion, kg per 10 eggs —0.79 0.75 057 —0.19 0.67
P KEP &g (P=0019) (P=0033) (P=0.137) (P=0660) (P =0.069)
Feed conversion, kg per 1 kg egg mass —0.68 0.48 -0.73 -0.50 -0.71
ield (P=0.065 (P=0228) (P=0.038 (P=0206) (P =0.050
y
Feed consumption er hen -0.79 0.55 0.30 —0.20 -0.92
ption, g p (P=0020) (P=0.159) (P=0476) (P=0637) (P =0.001)
Water consumption, mL per hen 047 0.18 ~0.76 —0.70 0.63
ption, mL p (P=0238) (P=0.675 (P=0028) (P=0053) (P =0.094)

! The product of mean egg weight by egg production characterizes the egg mass yield as a whole. SEM = —0.08 ... 0,

standard error of the mean.

Table 5. Mean values of vectors vCS// and vCSI2 by four experiment variants (C2, C3, E2 and E3) and
correlation coefficients (R) with eight key zootechnical indicators (i.e., hen productivity, feeding and watering)

Experiment variant!

R (SEM = £0.01)

Vectors

C2 C3 E2 E3 vCSI1 vCSI2
vCSI1 (SEM = £0.2) 2.5 6.7 34 7.4 1 -1
vCSI2 (SEM = £0.2) 7.5 33 6.6 2.6 -1 1

R values (SEM = £0.01) for indicators
Vectors Egg Egg Cracked Leaking Dirty Feed Feed Water
production weight eggs eggs  conversion consumption consumption

vCSI11 - 0.84 0.83 0.99 0.83 - -
vCSI2 0.98 — — — — 0.69 0.74

! Experiment variants corresponded to the second and third blood sampling points (at 86 and 94 weeks of age) for the control
(C2 and C3) and experimental (E2 and E3) groups of laying hens. SEM, standard error of the mean.

Calculations using EuclidNN showed that when the
feed additive was implemented, the values of the
vCSI2 vector declined (Table 5): vCSI2(C2) = 7.5 >
vCSI2(E2) = 6.6; and vCSI2(C3) = 3.3 > vCSI2(E3) =
2.6. Hereby, this vector correlates with, and affects
the egg production trait. Also, there was a certain
relationship between the feed additive intake and
feed and water consumption because the correlation
coefficients (R) of the vCSI2 vector in relation to
these two indicators were positive, though relatively
not very high: 0.69 and 0.74, respectively (Table 5).

Discussion

Humankind directly interacts with, and has profound
effects on, the multifaceted information environment.
Consequently, the relevance of using NNs in these
circumstances is increasing. NNs have been already

integrated into the lives of the contemporary
population, thereby assisting us in solving a large
number of problems, especially in the biomedicine
area. Modern industrial poultry farming operates
with a myriad of objective physiological and genetic
data (big data) used to formulate an optimal diet and
feeding regime for birds, as well as for the justified
application of protective and modulating feed
additives. Big data analysis (Gharajeh, 2018;
Dall'Alba et al., 2022) allows us to explore the
influence of external factors and feed on the health
condition and egg production of layers. Based on this
analysis outcome, it is possible to develop an optimal
strategy for feeding birds in an industrial
environment and achieve the highest performance in
commercial poultry production. Using the NN
approach in this study, we evaluated the
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increase/decrease in the intensity of
physiological/biochemical processes in the body of
an agricultural species, specifically in relation to the
performance of laying hens by virtue of
increasing/decreasing CSI index values.

The developed computational EuclidNN, through
internal calculations, was instrumental in defining the
nature (positive or negative) of the impact that the
shungite rock—brown algae feed additive has on the
physiological/biochemical processes occurring in the
bird’s body and, correspondingly, on the
performance indicators of laying hens by utilizing the
basic blood indices. The latter integrally reflects the
hematopoiesis processes resulting in the formation of
blood cells such as erythrocytes, leukocytes and
platelets (Tietz, 1997). Their production and growth
depend on nutritional and vitamin status (Menshikov,
1997; Levchenko et al., 2020; Matveev and
Torshkov, 2020; Milevski, 2024; TAKI.RF, 2023).
The conversion of feed substrates into nutrients, as
well as other mediated physiological/biochemical
processes in the hens’ body, may have occurred more
efficiently when administering the feed additive. For
the same reason, the water consumption for keeping
birds could also reduce; however, a relatively low
correlation of the CSI2 index with feed and water
consumption (R = 0.69 and 0.74, respectively) was
probably a consequence of additional accidental
losses while keeping the flock of egg layers.

Considering the blood parameters of birds
(Tables 1 and 2), we found that they correlated to
varying degrees with the vCSI/ and vCSI2 vectors.
We conclude that the high positive correlation of
blood  parameters  (erythrocyte count and
sedimentation rate, pseudoeosinophils, monocytes,
and phagocytic index) with the vCSI/ vector implied
that, when using the feed additive, the values of these
indicators increased. If other blood parameters
(eosinophils, basophils and lymphocytes) correlated
with the vCSI2 vector, this meant that these
parameters decreased in response to the feed additive
intake. At the same time, it was found that the
number of platelets in the blood did not correlate
with the vCSI2 vector (Table 1), suggesting that this
blood indicator was not involved in the formation of
vCSI2 vector values and, therefore, may not be
measured when diagnosing the health status of birds.
In terms of the zootechnical characteristics (Tables 4
and 5), one can note that the feed additive
administration most likely caused such a change in
physiological/biochemical processes in the bird’s
body that increased the egg weight while reducing
the shell strength. The latter could raise the
likelihood of accidental eggshell damage (i.e.,
cracked, leaking and dirty eggs) during
transportation. Consequently, the hens’ body
responded to the feed additive intake by restructuring
internal physiological/biochemical processes,

accompanied by an increase/decrease in the birds’
blood composition and the performance indicators of
laying hens. On the other hand, the NN-based
mathematical model was sufficiently sensitive to
reveal implicit issues that might affect egg
performance and lead to an increased percentage of
nonmarket eggs (Table 5).

The use of NN, stochastic fractal-based and
similar models has been also assessed in other studies
when implementing feed additives for raising egg
layers and other farm animals (Nematinia and
Abdanan Mehdizadeh, 2018; de Almeida et al., 2020;
Ojo et al., 2022; Yang et al., 2023; Buryakov et al.,
2023; Siriani et al., 2023). In particular, Buryakov et
al. (2023) determined the bioconsolidation indices of
microorganisms in the intestines of laying hens and
estimated the effect of a similar complex feed
additive (shungite and Fucus vesiculosus seaweed
meal) on the self-organization of the microbial-
organismal biosystem in the intestines of birds.
Calculation of bioconsolidation indices in this and
other studies (Kochish et al., 2020b; Buryakov et al.,
2023) showed that shungite, in combination with
brown algae, can be a promising feed additive for a
beneficial effect on the body of layers.

To reduce health risks and financial concerns,
decisions regarding poultry production and health
status should be made based on objective criteria (de
Almeida et al, 2020). Consistent with our study
results, de Almeida ef al. (2020) demonstrated that
the use of artificial NNs is a valuable tool to reduce
the subjectivity of analysis for predicting and
managing poultry flocks and egg production.

The defective eggs we focused upon in our
experiments reduce the value of laying hen egg
production. Mathematical modelling, as our and
other studies (Yang et al., 2023) have shown, can be
used to solve problems of improving egg quality and
productivity. To this end, Yang et al. (2023)
developed a convolutional NN-based model to
control egg category and weight. To predict egg
productivity and freshness, Nematinia and Abdanan
Mehdizadeh (2018) used an artificial NN that was
trained with the Levenberg-Marquardt algorithm. By
implementing research findings like these, the
poultry industry can reduce costs and improve
productivity.

Ojo et al. (2022) stated that the advent of digital
technologies has led to significant improvements in
various areas. Modern NNs have great potential to
intelligently automate current and future poultry
management operations to ensure high-quality, low-
cost poultry production and manage bird welfare.
Siriani et al. (2023) tested an NN with a stochastic
fractal-based model algorithm to classify the mobility
and resting phases of chickens during the rearing
process. The stochastic fractal-based model we have
developed also allows, by assessing the zootechnical
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and physiological/biochemical parameters of chicken
rearing, to predict their performance and, in this
perspective, resistance to diseases.

In general, many models have emerged to date in
the field of computer-aided research development
that is accompanied by methods for identifying
fractals (Meakin, 1999; Dvoryatkina et al., 2017,
Kochish et al., 2023; Yurkovych et al., 2023).
Analysis and synthesis of biological systems
(Chakraverty et al., 2023) is a critical element in the
task of rising the analysis efficiency of experiments,
especially when the sequence of s successive
elements is considered to be disrupted. Describing
complex biological systems requires the use of
multidimensional concepts and additional analysis of
other time intervals and frequencies of the sample
being studied (Pitelinskiy and Shimansky, 2013).
Traditional experiments are based on inertial analysis
and use flexible linear statistical models (Pyrhonen et
al., 2024). However, NNs are inherently nonlinear
(Ge & Wang, 2002) and do not require knowledge of
the correlation between input data and output data
(Hsieh, 2000), making them more promising than
traditional approaches (Pitelinskiy and Shimansky,
2013). In the current study, multilayer sensitizers
(perceptrons; Przybyla-Kasperek and Marfo, 2024)
were used to simulate poultry performance and
analyze the tolerance of exposure to the complex
feed additive based on shungite and algae. However,
one should take into account the possible limitations
of using closed-loop NNs (Zhu et al., 2021),
including short-term memory and other potential
difficulties.

Collectively, EuclidNN, an NN model we
developed using the mathematical stochastic fractal-
based method, facilitated studying the effects of the
complex feed additive on the immune state of the
birds’ body, on the intensity of internal
physiological/biochemical processes (through their
blood parameters) and, ultimately, the performance
of layers. As a result, changes in CS/ index values
can be used to estimate changes in the intensity of
physiological/biochemical processes in birds' bodies
and laying hen productivity.

Conclusion

In the current research, a mathematical stochastic
fractal-based model and GNN using this model were
developed for the first time, which can be
implemented to analyze poultry performance
indicators under the influence of the complex feed
additive from the mineral shungite and brown algae.
Such mycotoxin adsorbents as shungite can have a
complex effect on the body of farm animals. Its
multifactorial action is associated, first of all, with
the removal of negative effects caused by
mycotoxins. This study exemplified an NN analysis-
assisted evaluation of the effects of the shungite in

combination with brown algae on the performance
and blood parameters of laying hens in an industrial
poultry farm.

We suggest that high bioconsolidation values
correspond to increased efficiency of
physiological/biochemical processes in the bird’s
body in response to the feed additive intake. In
future, methods for assessing fractal characteristics
will be increasingly used for analyzing random
processes, developing mathematical models and
conducting simulations in biomedicine and in a wide
variety of science and technology fields (Pitelinsky
and Tyurkin, 2007). The productivity prediction
approach using the obtained mathematical model and
GNN will be useful in the future improvements of
the productive qualities and resilience in poultry.

Traditional poultry studies do not address the
one-way ManyToOne relationship of blood
parameters with the quantitative and qualitative egg
production characteristics of layers, since the
qualitative traits are dimensionless and, in a
quantitative representation, cannot participate in
correlation analysis with the measured characteristics
of egg performance. To overcome this obstacle, we
created the computational EuclidNN that allowed
customizing its calculation procedures to determine
the CSI values. A distinctive feature of the CSI index
is that, on the one hand, it characterizes the entire
complex of blood parameters of laying hens and, on
the other, represents a qualitative or quantitative egg
production indicator. Thus, EuclidNN makes it
possible to evaluate the complex feed additive
influence not only on the quantitative indicators but
also on the qualitative egg performance indicators of
chickens.
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