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Neural networks (NNs) benefit biomedicine and agriculture, especially when 

relying on the specificity and implementation of stochastic fractal-supported 

models. In the poultry industry, a particular challenge is the search for an ideal 

sorbent-based complex additive to minimize the loss of valuable feed 

components that can be tailored to groups of gastrointestinal microorganisms. 

The aim of this study was thus to develop and apply a mathematical model and 

Gaussian NN to analyze productivity and blood parameters of laying hens 

when administering a complex feed additive from the mineral shungite sorbent, 

plus a nutritive supplement of brown seaweed meal. We developed and built a 

computational NN that modelled the stochastic ManyToOne relationship of an 

array of hens’ main blood parameters and performance traits. The results 

presented herein were that the artificial computational stochastic fractal-based 

NN (EuclidNN) first effectively analyzed the profiles of operational taxonomic 

units (OTUs) of the physiological/biochemical blood parameters. Also, 

correlation coefficients were highly positive in relation to certain zootechnical 

indicators, suggesting that feed additive intake may have led to changes in 

these performance traits. Calculations suggested that when implementing the 

feed additive, the values of the Cognitive Salience Index (CSI) vector vCSI2 

declined. Hereby, this vector correlates with, and affects the egg production 

trait. Moreover, there was a certain relationship between the feed additive 

intake and feed and water consumption. Further, EuclidNN computed the 

respective bioconsolidation indices of hens and, simultaneously, processed 

several profiles of OTUs for all experimental variants. It also contributed to the 

calculation of bioconsolidation index values for each variant, i.e., a quantitative 

assessment of the physiological/biochemical blood descriptors, depending on 

diet. Collectively, the poultry productivity prediction based on the developed 

model and NN is pivotal as an initial step for future improvements of 

economically important traits in chickens when using novel and efficient 

complex feed additives. 
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Introduction 

For agricultural, and particularly poultry data 

analysis, neural networks (NNs) present promising 

and potentially applicable tools for the analysis and 

synthesis of numerous biological systems (Pitelinskiy 

and Shimansky, 2013; Jahanmiri and Parker, 2022). 

One of the major problems of concern is that 

industrial conditions of livestock exploitation create 

significant functional stress for the bird’s body 

(Kochish et al., 2019, 2021). Adaptive responses to 

external stimuli are often stressed, weakening natural 

defenses, and adversely affecting the health and 

growth rate of poultry (Young et al., 2022; 

Kirikovich et al., 2012). One of the ways to alleviate 

this is through using various feed additives, e.g., 

mineral-containing substances to stimulate metabolic 

barriers in the body (Yarovan, 2005; Ghahri et al., 

2010; Sharapova, 2011). Contemporary activity in 

the search for ideal sorbents (i.e., insoluble materials 

or mixtures thereof that are used to recover liquids 

through absorption and/or adsorption) aims to reduce 

the negative effects caused by mycotoxins from the 

feedstuffs. Minimal loss of useful feed components 

and adaptability to microorganisms living in various 

parts of the gastrointestinal tract are also key 

objectives (Ghahri et al., 2010; Okolelova and 

Mansurov, 2013; Zasorin et al., 2019; Kochish et al., 

2020b; Tyurina, 2022). One of the promising sorbent 

materials is the mineral shungite (Kochish et al., 

2020a; Buryakov et al., 2023), which has a specific 

set of physical properties and structural 

characteristics; it is composed of non-crystalline 

carbon with a metastable structure, being incapable 

of graphitization (Ignatov and Mosin, 2013; 

Tukhbatov, 2013). Shungite rock has good 

adsorption properties due to its developed and active 

surface and is capable of acting as a catalyst or 

catalyst carrier in organic synthesis reactions 

(Gorodnichev et al., 2019; Vats et al., 2016; Zasorin 

et al., 2019). Recently, attention has been also drawn 

to marine brown algae as a nutrient and efficient feed 

additive. These algae are rich in protein, vitamins and 

other biologically active substances that play an 

important role in the body's metabolism (Sharapova, 

2011; Buryakov et al., 2023; for review see Kochish 

et al., 2021). 

To model complex stochastic biochemical 

processes occurring in a bird’s body, a computational 

NN can be employed that includes procedures of 

multivariate mathematical statistics, i.e., correlation, 

cluster and discriminant analyses (Meireles et al., 

2003; Colbrook et al., 2022; Taye, 2023). One of the 

instrumental solutions for constructing appropriate 

mathematical models to describe certain processes, 

including biologically significant ones, can be 

stochastic fractal-based mathematical models. These 

comprise hybrid mixing methods for the 

mathematical modeling (Moroz and Maslovskaya, 

2020; Zaikina et al., 2022) applicable to various 

(e.g., biological) processes. Previously, we developed 

a concept of fractal conformity-based 

bioconsolidation index, which varies within 0 … 1 

depending on the efficiency of coherent biological 

processes in the body, and tested an artificial NN 

modelling approach (Kochish et al., 2020b, 2023; 

Pukhalskiy et al., 2023; Vorobyov et al., 2023a,b), 

suggesting reasonable prospects of their applications 

in biological studies. Computational NNs are 

designed to model a ManyToOne relationship that, 

for instance, connects a multiple set of heterogeneous 

bird blood parameters of different dimensions with 

one single dimensionless numerical indicator for the 

cognitive significance of the data being studied, i.e., 

the Cognitive Salience Index (CSI = 0 ... 10; Sutrop, 

2001; Mascarenhas, 2018). In one particular case, the 

dimensionless CSI index can be interpreted as an 

indicator of an increase/decrease in the intensity of 

biochemical processes in the bird’s body that 

determine the egg performance of laying hens. 

Furthermore, an important stage in the 

implementation of an NN in poultry-related research 

is setting up/training the NN and checking/validating 

it based on a correlation analysis of the CSI values 

with egg production indicators of layers. After 

successful NN training and validation, it is feasible to 

estimate the feed additive intake effects (positive or 

negative) on the egg performance by 

increasing/decreasing the CSI values. 

Considering the remarkable adsorption properties 

of shungite rock and the nutritional benefits of 

incorporating brown algae into poultry diets, a 

combination of these supplements can be most 

attractive for practical use (Sharapova, 2011; 

Buryakov et al., 2023). Here, we thus applied an NN 

and hybrid stochastic fractal-based approach to the 

mathematical process of analyzing the poultry 

productivity and blood parameters under the 

influence of a complex of these two feed 

supplements. The goal of the present study was 

therefore to develop the appropriate mathematical 

model and NN based on this to analyze the 

performance and blood parameters of laying hens in 

response to the intake of a complex additive that 

combined shungite and brown algae, estimating the 

respective CSI and bioconsolidation indices. 

 

Materials and Methods 

Experimental birds, performance traits and blood 

parameters 

This study was conducted at a large poultry farm 

located in Leningrad Oblast, Russia, using Hisex 

White commercial cross layers (Laptev et al., 2017) 

at the starting age of 49 weeks. Birds were kept in 

group cages and fed the basic diet containing grain, 

root crops, green grass, and a vitamin-mineral feed 

premix. According to the existing standards, there 
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were 5 laying hens in each cage. The cage had a 

standard size, with the dimensions of the total seating 

area being 490 × 580 × 550 mm. This allowed for a 

regulated density of hens in the cage, which meets 

the general requirements that are very strictly 

observed at this poultry farm. The control (C) group 

totalled 225,378 hens. The experimental (E) group 

numbered 218,125 birds fed the basic diet 

supplemented with the following complex feed 

additive: 0.7 kg shungite and 0.3 kg brown algae (as 

dried Fucus vesiculosus seaweed meal) per 1-ton 

fodder. The objective of this feeding experiment was 

to assess the effect of the combination of these two 

supplements, i.e. their synergistic impact, 

considering that the two feed ingredients, different in 

their essence, are expected to have non-overlapping 

effects from their use. In particular, the mineral 

shungite is an inorganic sorbent substance that is not 

digested in the hen’s body, while algae, of an organic 

(plant) nature, when assimilated in the chicken’s 

body, go through digestive processes in the same 

way as other plant (and animal) components of the 

compound feed. The chosen optimal dosages and the 

ratio of the two supplements were based on our and 

other preliminary tests (Sharapova, 2011; Buryakov 

et al., 2023) and taking into account an overall 

economy of the compound feed recipe that poultry 

enterprises in Russia adhered to for keeping feed 

costs reasonable. For the NN analysis, the six most 

important zootechnical indicators of egg production, 

feeding and watering of laying hens were also taken 

as follows: egg production rate (in %), egg weight (in 

g), proportions of cracked, leaking and dirty eggs (in 

%), feed conversion (in kg per 10 eggs produced), 

feed consumption (in g per hen), and water 

consumption (in mL per hen), plus their four 

derivative indices (ratios). 

We studied the effect of the complex additive on 

older laying hens in their third feeding phase (i.e., at 

75 weeks of age and after), which is considered 

critical and corresponds to a physiological state of 

decline in egg production rate and, accordingly, 

overall productivity. Using 0.5 to 1 mL of blood per 

sample, three 75-week-old females were sampled 

from the control and experimental groups (designated 

C1 and E1, respectively). Five hens per group were 

then sampled to analyze 12 blood parameters (Table 

1) in the middle (86 weeks of age; designated C2 and 

E2, respectively) and at the end of the feed additive 

administration study (94 weeks of age; designated C3 

and E3, respectively). Accordingly, twelve 

physiological/biochemical blood characteristics of 

the laying hens were assessed (Table 1), including 

the following most informative indices: 

 Descriptors of erythrocytes, leukocytes and 

platelets using Goryaev’s grid-equipped counting 

chamber (Tietz, 1997); 

 Blood leukogram using microscopy, May-

Grünwald fixative and Romanowsky azure-eosin 

dye to stain blood smears (Tietz, 1997); 

 Serum hemoglobin level using the hemoglobin 

cyanide method, and the formula-assisted cell-color 

ratio (Tietz, 1997); 

 Phagocytosis indices using a microscopic method 

and Staphylococcus aureus strain 209 culture 

inactivated by heat and standardized via an optical 

turbidity standard (Menshikov, 1997). 

 

Data analysis principles using NN 

Super-new artificial intelligence (AI) computer 

programs (D’Addona, 2014; Gharajeh, 2018; 

Dall'Alba et al., 2022) were used with the respective 

computational NNs to search, e.g., for feed additives 

that ensure minimal loss of useful feed components 

and modulate the gastrointestinal microflora to 

ensure a complete symbiosis of microorganisms with 

the animal’s body (e.g., Kochish et al. et al., 2020b, 

2023; Pukhalskiy et al., 2023). In this regard, the 

following methods can be considered most relevant 

(Pitelinskiy and Shimansky, 2013; Taye, 2023): 

 Standard statistical methods based on mathematical 

instrumental regression analysis that optimize 

specific experimental parameters by applying an 

appropriate evaluation function. 

 Methods based on the use of functional expansions 

in a Fourier series (Garrapa, 2018). Herein, it is 

taken into account that the experiment is a 

commutative process and can be transformed by a 

sum of functions that describe its polynomials with 

a given accuracy (e.g., trigonometric functions). 

 Partial modelling and formal grammars (Pitelinskiy 

and Shimansky, 2013). 

A sequence of s elements can be considered as an 

“approximation” in that identical oscillations are 

often observed in biological systems, differing only 

in magnitude and time of occurrence, i.e., scale-

invariance (Grosu et al., 2023). To describe this, the 

concept of diversity as a heterogeneous destructive 

body is employed. For a complete description of 

diversity, the entire spectrum of dimensions is 

necessary since, unlike a common mathematical 

decomposition, it is not enough to introduce only one 

value, the fractal index d. These dimensions are 

usually infinite numbers and other time intervals and 

frequencies of a sample can be further analyzed. 

Current trends, i.e., specific signal sequences, can 

then be examined in more detail using, for instance, 

frequency analysis (Casals et al., 2005; Pitelinskiy 

and Shimansky, 2013). Conventional experiments are 

based on inertial analysis and use flexible linear 

statistical models. However, NNs are inherently 

nonlinear and do not require knowledge of the 

correlation between input data and output data. This 

makes them more promising than traditional methods 

(Meireles et al., 2003). Although simulations involve 
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the use of multilayer sensor devices (Rosenblatt, 

1962; Minsky and Papert, 1969/1988), the use of 

closed-loop NNs is not always recommended due to 

short-term memory and difficulty of use (Pitelinskiy 

and Shimansky, 2013; Colbrook et al., 2022). 

 

Table 1: Mean values (±SEM1) of 12 blood parameters in hens by four experiment variants (C2, C3, E2, and 

E3) and correlation coefficients (R) with vCSI1 and vCSI2 vectors2 

Blood parameters 
Experiment variants3 R (SEM = ±0.01) 

C2 C3 E2 E3 vCSI1 vCSI2 

Erythrocyte count (mln/μL) 2.88±0.19 3.10±0.47 2.60±0.25 3.19±0.36 
0.83 

(P= 0.021) 

−0.78 

(P  0.040) 

Erythrocyte sedimentation rate 

(mm/h) 
1.20±0.40 1.20±0.40 1.20±0.40 1.60±0.49 

0.67 

(P= 0.098) 

−0.62 

(P  0.137) 

Leukocyte count (thousand/μL) 30.26±4.13 35.85±3.93 31.22±2.78 30.34±8.74 
0.44 

(P= 0.324) 

−0.39 

(P= 0.391) 

Platelet count (thousand/μL) 71.84±11.34 65.71±10.84 54.62±16.31 62.67±22.58 
−0.07 

(P= 0.889) 

0.12 

(P= 0.801) 

Eosinophils 2.20±1.10 1.20±0.40 1.80±0.75 0.40 ± 0.49 
−0.90 

(P= 0.006) 

0.95 

(P= 0.001) 

Pseudoeosinophils 6.60±1.02 14.60±4.92 12.00±1.67* 18.80±2.93 
0.93 

(P= 0.003) 

−0.88 

(P= 0.010) 

Monocytes 0.40±0.49 1.00±0.00 0.80±0.75 0.80±0.40 
0.74 

(P= 0.056) 

−0.69 

(P= 0.086) 

Basophils 1.00±0.89 0.80±0.40 1.20±0.40 0.80±0.75 
−0.78 

(P= 0.041) 

0.83 

(P= 0.022) 

Lymphocytes 89.60±2.33 82.40±4.80 84.20±2.64 79.20±2.79 
−0.86 

(P= 0.014) 

0.91 

(P= 0.005) 

Hemoglobin (g/L) 80.00±5.48 89.20±8.70 85.60±4.18 83.00±8.85 
0.50 

(P= 0.249) 

−0.45 

(P= 0.308) 

Cell-color ratio 1.68±0.21 1.79±0.44 1.99±0.11 1.59±0.28 
−0.38 (P 

= 0.395) 

0.44 (P 

= 0.328) 

Phagocytic index (a.u.)4 10.62±0.87 9.57±1.31 9.93±1.45 11.01±0.92 
0.08 (P 

= 0.867) 

−0.03 (P 

= 0.955) 
1 SEM, standard error of the mean. 2 vCSI1 and vCSI2, vectors containing the values of the CSI1 and CSI2 cognitive salience 

indices for the experiment variants. 3 Experiment variants corresponded to the second and third blood sampling points (at 86 

and 94 weeks of age) for the control (C2 and C3) and experimental (E2 and E3) groups of laying hens, respectively. 4 a.u., 

arbitrary units. * Significant difference between the respective C2 and E2 values (at P < 0.05). 

 

General NN and stochastic fractal-based model 

description 

The mathematical research was carried out using NN 

analysis and stochastic fractal-based modelling 

(Garrapa, 2018; Moroz and Maslovskaya, 2020; 

Zaikina et al., 2022). The NN and its elements we 

report here are subject to protecting the intellectual 

property of the authors (Vorobyov et al., 2023b). NN 

data mining implies a machine learning algorithm 

and data analysis technique that mimics the 

functionality of the human brain (Khlivnenko, 2015; 

Goodfellow et al., 2016). This approach involves a 

large number of interconnected nodes capable of 

processing and transmitting information. Because of 

this, NNs can be typically used to process large 

amounts of information and identify patterns among 

the analyzed datasets (D’Addona, 2014), the latter 

being, in our case, the physiological/biochemical 

blood parameters of laying hens. 

When examining blood parameters as operational 

taxonomic units (OTUs), it was important to 

determine how the statistics of these datasets differ 

from the conventional Gaussian statistics (i.e., 

normal distribution) (Wentzel, 1999). It was assumed 

that any deviation of the actual data statistics from 

Gaussian statistics would be indicative of the 

regulation of physiological/biochemical processes in 

the blood, e.g., changes in the levels of erythrocytes, 

leukocytes, platelets, etc., that are controlled by the 

bird’s body. Deviations from the normal distribution 

were assessed by the magnitude of the highest central 

moments in the empirical distributions of the 

measured values (Rosenblatt, 1962; Popov, 2013). 

The physiological/biochemical characteristics of 

the hen’s blood can be characterized by Shannon 

entropy indices (IndShen) also considered 

biodiversity indices (Grishanov and Grishanova, 

2010; Chernov et al., 2015; Gorodnichev et al., 

2019) and by bioconsolidation indices (IndBconI) of 

the bird’s body and its immune system status 

(Kochish et al., 2020b, 2022, 2023). With increasing 

entropy (increasing IndShen index), the 

physiological/biochemical characteristics of blood 

across replicates are levelled out, and their dispersion 

decreases. Therefore, it can be assumed that the 

positive correlation of the IndShen index with the 

IndBconI index means that the corresponding 

characteristic of hen’s blood may be a signal 
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indicator of the bioconsolidation of the immune 

status. 

To calculate the distribution moments for the 

empirical blood parameter data used as OTUs and 

compute the respective bioconsolidation indices of 

the hen’s body and its immune status, an artificial 

Gaussian NN (GNN) was implemented (Minsky and 

Papert, 1969/1988; Filntisi et al., 2013; Sergeev and 

Tarasov, 2017; Mascarenhas, 2018; Gafarov and 

Galimyanov, 2018) (Figure 1). This was based on a 

stochastic fractal-based model (Moroz and 

Maslovskaya, 2020; Zaikina et al., 2022) for defining 

the flow of physiological/biochemical processes in 

the bird’s body. 

 

 
Figure 1. Artificial Gaussian neural network for calculating bioconsolidation indices of the bird’s body and its 

immune system status. S, matrix of physiological/biochemical blood parameters; D, matrix of statistical 

moments of blood parameters; and C, vector of bioconsolidation indices. 

 

Results 

Constructing NN and stochastic fractal-based 

model 

In the course of developing the artificial GNN further 

called EuclidNN (Figure 2), we built a computational 

NN that modelled the stochastic ManyToOne 

relationship of an array of hens’ main blood 

parameters and performance traits (used as OTUs) 

with one unique dimensionless characteristic, CSI 

(Sutrop, 2001; Mascarenhas, 2018). Values of the 

CSI1 and CSI2 indices for the four experiment 

variants were transformed into vCSI1 and vCSI2 

vectors (Tables 1 and 2). 

The most informative poultry performance 

indicators and correlation coefficients with vectors 

vCSI1 and vCSI2 are summarized in Table 2. 

 

 
Figure 2. Chart flow of the EuclidNN computational neural network. mBlood is a matrix of 12 key 

physiological/biochemical blood indicators (Table 1). mEggs is a matrix of eight physiological performance-

related indicators (Table 2). mNorm is a matrix of normalized values of the mBlood matrix. mDist is a matrix of 

Euclidean distances of four experimental variants based on blood parameter data. mCompo is a matrix of 

orthogonal components in the space of blood parameter data. mComby is a matrix containing the results of a 

nonlinear combinatorial transformation of data from matrices mDist and mCompo. vCSI1 and vCSI2 are vectors 

containing the values of the CSI1 and CSI2 cognitive salience indices for the experiment variants. L1, L2 and L3 

are layers of artificial neurons that perform matrix transformations of the initial and intermediate data. 
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Table 2. Mean values of eight key zootechnical indicators (i.e., hen productivity, feeding and watering) by four 

experiment variants (C2, C3, E2 and E3) and correlation coefficients (R) with vectors vCSI1 and vCSI2 

Indicators 
Experiment variant1 R (SEM = ±0.01) 

C2 C3 E2 E3 vCSI1 vCSI2 

Egg production rate, % 88.7 77.9 85.4 71.8 
−0.92  

(P = 0.003) 

0.98  

(P< 0.001) 

Egg weight, g 64.3 66.5 64.8 65.5 
0.85  

(P = 0.016) 

−0.80  

(P= 0.032) 

Cracked eggs, % 4.0 8.8 8.8 12.4 
0.83  

(P = 0.020) 

−0.78  

(P= 0.039) 

Leaking eggs, % 0.21 0.41 0.33 0.54 
0.94  

(P = 0.002) 

−0.89  

(P= 0.008) 

Dirty eggs, % 2.9 9.7 4.1 12.6 
0.99 

(P < 0.001) 

−0.94  

(P= 0.002) 

Feed conversion, kg/10 eggs 1.46 1.64 1.63 1.72 
0.84  

(P = 0.019) 

−0.78  

(P= 0.037) 

Feed consumption, g/hen 130 128 139 124 
−0.66  

(P = 0.109) 

0.71  

(P= 0.074) 

Water consumption, mL/hen 250 248 250 228 
−0.68  

(P = 0.092) 

0.73  

(P= 0.061) 

vCSI1 vector (SEM = ±0.2) 2.5 6.7 3.4 7.4 
1.00  

(P < 0.001) 

−0.95  

(P= 0.001) 

vCSI2 vector (SEM = ±0.2) 7.5 3.3 6.6 2.6 
−0.95  

(P = 0.001) 

1.00  

(P< 0.001) 
1 Experiment variants corresponded to the second and third blood sampling points (at 86 and 94 weeks of age) for the control 

(C2 and C3) and experimental (E2 and E3) groups of laying hens. SEM, standard error of the mean. 

The constructed multilayer EuclidNN included three artificial neuron layers L1, L2 and L3 that executed the initial and 

intermediate data matrix transformations (Figure 2) as outlined below. 

 

L1 neuron layer 

This performed normalization of the mBlood matrix 

data (Figure 2) (Everitt et al., 2011; Mascarenhas, 

2018) that contained digital data on the blood 

parameters of birds (OTUs) in the four experiment 

variants (Table 1). The results of normalization were 

stored in the mNorm matrix according to the 

following Equation 1: 

 

𝑚𝑁𝑜𝑟𝑚𝑗𝑘 =
𝑚𝐵𝑙𝑜𝑜𝑑𝑗𝑘 −

1
4
∙ ∑ 𝑚𝐵𝑙𝑜𝑜𝑑𝑗𝑘

𝑘=4
𝑘=1

√∑ [𝑚𝐵𝑙𝑜𝑜𝑑𝑗𝑘 −
1
4
∙ ∑ 𝑚𝐵𝑙𝑜𝑜𝑑𝑗𝑘

𝑘=4
𝑘=1 ]

2
𝑘=4
𝑘=1

 (1) 

where mBloodjk are mBlood matrix values; j = 1, 2, 

…, 12 are ordinal numbers of 12 blood parameters 

(Table 1); and k = 1, 2, …, 4 are ordinal numbers of 

the four experiment variants that conformed to C2, 

C3, E2 and E3, respectively (Tables 1 and 2). 

The L1 neuron layer also computed the mDist matrix, 

i.e., the matrix of Euclidean distances between the 

four experiment variants in the 12-dimensional space 

of birds’ blood parameters (Yeung and Ruzzo, 2001; 

Everitt et al., 2011) using the following Equation 2: 

 

𝑚𝐷𝑖𝑠𝑡𝑚𝑛 = √
1

12
∑ (𝑚𝑁𝑜𝑟𝑚𝑗𝑛 −𝑚𝑁𝑜𝑟𝑚𝑗𝑚)

2𝑗=12

𝑗=1
, (2) 

where m, n = 1, 2, …, 4 are ordinal numbers of the 

four experiment variants that conformed to C2, C3, 

E2 and E3, respectively (Tables 1 and 2); and j = 1, 

2, …, 12 are ordinal numbers of 12 blood parameters 

(Table 1). 

 

L2 neuron layer 

This computed the mCompo matrix, i.e., the matrix 

of principal components (orthogonal eigenvectors) in 

the 12-dimensional space of birds’ blood indices 

using the mDist matrix data and a standard 

computational procedure (Yeung and Ruzzo, 2001; 

Jolliffe, 2002; Schmidhuber, 2015) as follows: 

 

𝑚𝐶𝑜𝑚𝑝𝑜 = 𝐸𝑖𝑔𝑒𝑛𝑉𝑒𝑐𝑡𝑜𝑟𝑠(𝑚𝐷𝑖𝑠𝑡). (3) 

 

L3 neuron layer. This computed the mComby matrix 

containing numerical data that were obtained by 

different variants of the nonlinear combination of the 

mDist and mCompo matrix data. The mComby matrix 

data were intended for training tuning of the 

EuclidNN model and for calculating the desired 

vCSI1 and vCSI2 index vectors using hens’ blood 

parameters. 

When training the EuclidNN neural network 

(Nikolić et al., 2012; Schmidhuber 2015; Widrow et 

al., 2013; Nikolenko et al., 2018), the second 

orthogonal component (mCompo2, i.e., the second 

row of the mCompo matrix) in the 12-dimensional 

space of blood indices was chosen because the 

projection of blood indices onto the mCompo2 

component maximally correlated with performance 

indices (Table 2) (Gao et al., 2012; Batushansky et 

al., 2016). Using the values of the mCompo2 

component, the values of the vectors vCSI1 and 
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vCSI2 (Tables 1 and 2) were calculated using the 

following Equations 4 and 5: 

 

𝑣𝐶𝑆𝐼1𝑘 = 𝑚𝐶𝑜𝑚𝑝𝑜2𝑘 ∙ 4.17 + 5, (4) 

𝑣𝐶𝑆𝐼2𝑘 = −𝑚𝐶𝑜𝑚𝑝𝑜2𝑘 ∙ 4.17 + 5, (5) 

where k = 1, 2, …, 4 are ordinal numbers of the four 

experiment variants that conformed to C2, C3, E2 

and E3, respectively (Tables 1 and 2). 

In addition, the correlation coefficients (R) of 

vCSI1 and vCSI2 vectors with blood parameters and 

performance indicators were calculated as 

summarized in Tables 1 and 2. 

To compute the statistical moments of blood 

indices in the layers of neurons M2, M3, M4, ..., Mn, 

the moments (dl.j) forming the matrix of moments D 

(Figure 1) were calculated using the following 

Equations 6 and 7: 

 

 
1

. ,

1

1

1

j
k N
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l j l k l l

k

d Abs s m m
N





 
    


, 

(6) 

.

1

1 k N

l l k

k

m s
N





 
, 

(7) 

where ml (sl.k) are physiological/biochemical blood 

parameters; k = 1, 2, …, N are numbers of replicates 

of blood parameters in samples; j = 2, 3, …, N−2 are 

numbers of statistical moments of blood parameters; 

N is the number of blood parameter values in a 

sample; and l is the serial number of the four 

experiment variants. 

Subsequently, IndBconI (cl) indices were 

calculated in the End neuron layer (Figure 1) using 

the following Equation 8: 

  
1

1 exp
l

l

c
a Abs p


  

 

(8) 

where the respective additional indices were 

computed as follows: 
2
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j = 2, 3, …, N−2 are numbers of statistical moments 

of physiological/biochemical blood parameters; k = 

1, 2, …, N are numbers of blood parameter values in 

a sample; l is serial number of the four experiment 

variants; and a is a constant. 
 

EuclidNN computational algorithm 

implementation to analyze experimental data 

The input data for calculations using EuclidNN 

(Figures 1 and 2) (Rosenblatt, 1962; Meireles et al., 

2003; Anastasiadis, 2005; Filntisi et al., 2013; 

Mascarenhas, 2018; Colbrook et al., 2022; Taye, 

2023) were generated in the Excel environment and 

are presented in Tables 1 and 2). 

At the first stage, the appropriate immune 

bioconsolidation indices were calculated from the 

most informative physiological/biochemical blood 

parameter data using the GNN artificial intelligence 

process and are summarized in Table 3. 

Then, the correlation coefficients between the 

IndBconI indices and performance parameters of 

laying hens were computed as shown in Table 4. As 

can be seen from Table 4, there were high correlation 

coefficients (positive or negative) between certain 

performance indicators and blood parameter 

bioconsolidation indices. For example, the egg mass 

yield indicators, i.e., the product of mean egg weight 

and egg production, positively correlated with the 

IndBconI values for hemoglobin (R = 0.998, 0.838 and 

0.916) and platelet counts (R = 0.878, 0.777 and 

0.993). 

Finally, the values of the vectors vCSI1 and 

vCSI2 were computed using EuclidNN (Tables 1 and 

5). In particular, when administering the shungite–

seaweed feed additive, the vCSI1 vector values raised 

as follows: vCSI1(C2) = 2.5 < vCSI1(E2) = 3.4; and 

vCSI1(C3) = 6.7 < vCSI1(E3) = 7.4 (Table 5). The 

correlation coefficients (Table 5) for the vCSI1 

vector were highly positive in relation to certain 

zootechnical indicators (R = 0.83 to 0.99), suggesting 

that the feed additive intake may have led to changes 

in these performance indicators. 

 

Table 3: Bioconsolidation indices (IndBconI) for five main blood parameters according to the four experiment 

variants1 

Blood indicators2 C2 C3 E2 E3 

Erythrocyte count 0.65 0.77 0.52 0.53 

Leukocyte count 0.37 0.30 0.41 0.48 

Platelet count 0.27 0.47 0.35 0.47 

Hemoglobin 0.53 0.62 0.56 0.71 

Cell-color ratio 0.81 0.92 0.50 0.67 
1 Experiment variants corresponded to the second and third blood sampling points (at 86 and 94 weeks of age) for the control 

(C2 and C3) and experimental (E2 and E3) groups of laying hens. SEM = ±0.02, standard error of the mean. 
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Table 4. Correlation coefficients (R) between blood parameter bioconsolidation indices (IndBconI) and 

performance indicators 

Performance indicators 

IndBconI 

Erythrocyt

e count 

Leukocyte 

count 

Platelet 

count 
Hemoglobin 

Cell-color 

ratio 

Egg production rate, % 
0.77  

(P = 0.026) 

−0.39  

(P = 0.337) 

0.47  

(P = 0.235) 

0.40  

(P = 0.323) 

0.93  

(P < 0.001) 

Mean egg weight, g 
0.87  

(P = 0.005) 

−0.54  

(P = 0.167) 

0.35  

(P = 0.391) 

0.23  

(P = 0.588) 

0.98  

(P < 0.001) 

Mean egg mass yield1 0.05  

(P = 0.898) 

0.38  

(P = 0.355) 

0.77  

(P = 0.025) 

0.93  

(P < 0.001) 

0.32  

(P = 0.435) 

Mean egg mass yield to feed consumption 

ratio 

0.72  

(P = 0.045) 

−0.36  

(P = 0.375) 

0.73  

(P = 0.037) 

0.58  

(P = 0.134) 

0.81  

(P = 0.014) 

Mean egg mass yield to water 

consumption ratio 

−0.61  

(P = 0.111) 

0.38  

(P = 0.360) 

−0.77  

(P = 0.026) 

−0.59  

(P = 0.125) 

−0.68  

(P = 0.065) 

Total nonmarket eggs, % 
−0.18  

(P = 0.673) 

0.17  

(P = 0.694) 

−0.86  

(P = 0.006) 

−0.58  

(P = 0.129) 

−0.06  

(P = 0.892) 

Feed conversion, kg per 10 eggs 
−0.79  

(P = 0.019) 

0.75  

(P = 0.033) 

−0.57  

(P = 0.137) 

−0.19  

(P = 0.660) 

−0.67  

(P = 0.069) 

Feed conversion, kg per 1 kg egg mass 

yield 

−0.68  

(P = 0.065) 

0.48  

(P = 0.228) 

−0.73  

(P = 0.038) 

−0.50  

(P = 0.206) 

−0.71  

(P = 0.050) 

Feed consumption, g per hen 
−0.79  

(P = 0.020) 

0.55  

(P = 0.159) 

0.30  

(P = 0.476) 

−0.20  

(P = 0.637) 

−0.92  

(P = 0.001) 

Water consumption, mL per hen 
−0.47  

(P = 0.238) 

0.18  

(P = 0.675) 

−0.76  

(P = 0.028) 

−0.70  

(P = 0.053) 

−0.63  

(P = 0.094) 
1 The product of mean egg weight by egg production characterizes the egg mass yield as a whole. SEM = −0.08 … 0, 

standard error of the mean. 

 

Table 5. Mean values of vectors vCSI1 and vCSI2 by four experiment variants (C2, C3, E2 and E3) and 

correlation coefficients (R) with eight key zootechnical indicators (i.e., hen productivity, feeding and watering) 

Vectors 
Experiment variant1 R (SEM = ±0.01) 

C2 C3 E2 E3 vCSI1 vCSI2 

vCSI1 (SEM = ±0.2) 2.5 6.7 3.4 7.4 1 −1 

vCSI2 (SEM = ±0.2) 7.5 3.3 6.6 2.6 −1 1 

 

Vectors 

R values (SEM = ±0.01) for indicators 

Egg 

production 

Egg 

weight 

Cracked 

eggs 

Leaking 

eggs 

Dirty 

eggs 

Feed 

conversion 

Feed 

consumption 

Water 

consumption 

vCSI1 – 0.84 0.83 0.94 0.99 0.83 – – 

vCSI2 0.98 – – – – – 0.69 0.74 
1 Experiment variants corresponded to the second and third blood sampling points (at 86 and 94 weeks of age) for the control 

(C2 and C3) and experimental (E2 and E3) groups of laying hens. SEM, standard error of the mean. 

 

Calculations using EuclidNN showed that when the 

feed additive was implemented, the values of the 

vCSI2 vector declined (Table 5): vCSI2(C2) = 7.5 > 

vCSI2(E2) = 6.6; and vCSI2(C3) = 3.3 > vCSI2(E3) = 

2.6. Hereby, this vector correlates with, and affects 

the egg production trait. Also, there was a certain 

relationship between the feed additive intake and 

feed and water consumption because the correlation 

coefficients (R) of the vCSI2 vector in relation to 

these two indicators were positive, though relatively 

not very high: 0.69 and 0.74, respectively (Table 5). 

 

Discussion 

Humankind directly interacts with, and has profound 

effects on, the multifaceted information environment. 

Consequently, the relevance of using NNs in these 

circumstances is increasing. NNs have been already 

integrated into the lives of the contemporary 

population, thereby assisting us in solving a large 

number of problems, especially in the biomedicine 

area. Modern industrial poultry farming operates 

with a myriad of objective physiological and genetic 

data (big data) used to formulate an optimal diet and 

feeding regime for birds, as well as for the justified 

application of protective and modulating feed 

additives. Big data analysis (Gharajeh, 2018; 

Dall'Alba et al., 2022) allows us to explore the 

influence of external factors and feed on the health 

condition and egg production of layers. Based on this 

analysis outcome, it is possible to develop an optimal 

strategy for feeding birds in an industrial 

environment and achieve the highest performance in 

commercial poultry production. Using the NN 

approach in this study, we evaluated the 
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increase/decrease in the intensity of 

physiological/biochemical processes in the body of 

an agricultural species, specifically in relation to the 

performance of laying hens by virtue of 

increasing/decreasing CSI index values. 

The developed computational EuclidNN, through 

internal calculations, was instrumental in defining the 

nature (positive or negative) of the impact that the 

shungite rock–brown algae feed additive has on the 

physiological/biochemical processes occurring in the 

bird’s body and, correspondingly, on the 

performance indicators of laying hens by utilizing the 

basic blood indices. The latter integrally reflects the 

hematopoiesis processes resulting in the formation of 

blood cells such as erythrocytes, leukocytes and 

platelets (Tietz, 1997). Their production and growth 

depend on nutritional and vitamin status (Menshikov, 

1997; Levchenko et al., 2020; Matveev and 

Torshkov, 2020; Milevski, 2024; IAKI.RF, 2023). 

The conversion of feed substrates into nutrients, as 

well as other mediated physiological/biochemical 

processes in the hens’ body, may have occurred more 

efficiently when administering the feed additive. For 

the same reason, the water consumption for keeping 

birds could also reduce; however, a relatively low 

correlation of the CSI2 index with feed and water 

consumption (R = 0.69 and 0.74, respectively) was 

probably a consequence of additional accidental 

losses while keeping the flock of egg layers. 

Considering the blood parameters of birds 

(Tables 1 and 2), we found that they correlated to 

varying degrees with the vCSI1 and vCSI2 vectors. 

We conclude that the high positive correlation of 

blood parameters (erythrocyte count and 

sedimentation rate, pseudoeosinophils, monocytes, 

and phagocytic index) with the vCSI1 vector implied 

that, when using the feed additive, the values of these 

indicators increased. If other blood parameters 

(eosinophils, basophils and lymphocytes) correlated 

with the vCSI2 vector, this meant that these 

parameters decreased in response to the feed additive 

intake. At the same time, it was found that the 

number of platelets in the blood did not correlate 

with the vCSI2 vector (Table 1), suggesting that this 

blood indicator was not involved in the formation of 

vCSI2 vector values and, therefore, may not be 

measured when diagnosing the health status of birds. 

In terms of the zootechnical characteristics (Tables 4 

and 5), one can note that the feed additive 

administration most likely caused such a change in 

physiological/biochemical processes in the bird’s 

body that increased the egg weight while reducing 

the shell strength. The latter could raise the 

likelihood of accidental eggshell damage (i.e., 

cracked, leaking and dirty eggs) during 

transportation. Consequently, the hens’ body 

responded to the feed additive intake by restructuring 

internal physiological/biochemical processes, 

accompanied by an increase/decrease in the birds’ 

blood composition and the performance indicators of 

laying hens. On the other hand, the NN-based 

mathematical model was sufficiently sensitive to 

reveal implicit issues that might affect egg 

performance and lead to an increased percentage of 

nonmarket eggs (Table 5). 

The use of NN, stochastic fractal-based and 

similar models has been also assessed in other studies 

when implementing feed additives for raising egg 

layers and other farm animals (Nematinia and 

Abdanan Mehdizadeh, 2018; de Almeida et al., 2020; 

Ojo et al., 2022; Yang et al., 2023; Buryakov et al., 

2023; Siriani et al., 2023). In particular, Buryakov et 

al. (2023) determined the bioconsolidation indices of 

microorganisms in the intestines of laying hens and 

estimated the effect of a similar complex feed 

additive (shungite and Fucus vesiculosus seaweed 

meal) on the self-organization of the microbial-

organismal biosystem in the intestines of birds. 

Calculation of bioconsolidation indices in this and 

other studies (Kochish et al., 2020b; Buryakov et al., 

2023) showed that shungite, in combination with 

brown algae, can be a promising feed additive for a 

beneficial effect on the body of layers. 

To reduce health risks and financial concerns, 

decisions regarding poultry production and health 

status should be made based on objective criteria (de 

Almeida et al., 2020). Consistent with our study 

results, de Almeida et al. (2020) demonstrated that 

the use of artificial NNs is a valuable tool to reduce 

the subjectivity of analysis for predicting and 

managing poultry flocks and egg production. 

The defective eggs we focused upon in our 

experiments reduce the value of laying hen egg 

production. Mathematical modelling, as our and 

other studies (Yang et al., 2023) have shown, can be 

used to solve problems of improving egg quality and 

productivity. To this end, Yang et al. (2023) 

developed a convolutional NN-based model to 

control egg category and weight. To predict egg 

productivity and freshness, Nematinia and Abdanan 

Mehdizadeh (2018) used an artificial NN that was 

trained with the Levenberg-Marquardt algorithm. By 

implementing research findings like these, the 

poultry industry can reduce costs and improve 

productivity. 

Ojo et al. (2022) stated that the advent of digital 

technologies has led to significant improvements in 

various areas. Modern NNs have great potential to 

intelligently automate current and future poultry 

management operations to ensure high-quality, low-

cost poultry production and manage bird welfare. 

Siriani et al. (2023) tested an NN with a stochastic 

fractal-based model algorithm to classify the mobility 

and resting phases of chickens during the rearing 

process. The stochastic fractal-based model we have 

developed also allows, by assessing the zootechnical 
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and physiological/biochemical parameters of chicken 

rearing, to predict their performance and, in this 

perspective, resistance to diseases. 

In general, many models have emerged to date in 

the field of computer-aided research development 

that is accompanied by methods for identifying 

fractals (Meakin, 1999; Dvoryatkina et al., 2017; 

Kochish et al., 2023; Yurkovych et al., 2023). 

Analysis and synthesis of biological systems 

(Chakraverty et al., 2023) is a critical element in the 

task of rising the analysis efficiency of experiments, 

especially when the sequence of s successive 

elements is considered to be disrupted. Describing 

complex biological systems requires the use of 

multidimensional concepts and additional analysis of 

other time intervals and frequencies of the sample 

being studied (Pitelinskiy and Shimansky, 2013). 

Traditional experiments are based on inertial analysis 

and use flexible linear statistical models (Pyrhönen et 

al., 2024). However, NNs are inherently nonlinear 

(Ge & Wang, 2002) and do not require knowledge of 

the correlation between input data and output data 

(Hsieh, 2000), making them more promising than 

traditional approaches (Pitelinskiy and Shimansky, 

2013). In the current study, multilayer sensitizers 

(perceptrons; Przybyła-Kasperek and Marfo, 2024) 

were used to simulate poultry performance and 

analyze the tolerance of exposure to the complex 

feed additive based on shungite and algae. However, 

one should take into account the possible limitations 

of using closed-loop NNs (Zhu et al., 2021), 

including short-term memory and other potential 

difficulties. 

Collectively, EuclidNN, an NN model we 

developed using the mathematical stochastic fractal-

based method, facilitated studying the effects of the 

complex feed additive on the immune state of the 

birds’ body, on the intensity of internal 

physiological/biochemical processes (through their 

blood parameters) and, ultimately, the performance 

of layers. As a result, changes in CSI index values 

can be used to estimate changes in the intensity of 

physiological/biochemical processes in birds' bodies 

and laying hen productivity. 

 

Conclusion 

In the current research, a mathematical stochastic 

fractal-based model and GNN using this model were 

developed for the first time, which can be 

implemented to analyze poultry performance 

indicators under the influence of the complex feed 

additive from the mineral shungite and brown algae. 

Such mycotoxin adsorbents as shungite can have a 

complex effect on the body of farm animals. Its 

multifactorial action is associated, first of all, with 

the removal of negative effects caused by 

mycotoxins. This study exemplified an NN analysis-

assisted evaluation of the effects of the shungite in 

combination with brown algae on the performance 

and blood parameters of laying hens in an industrial 

poultry farm. 

We suggest that high bioconsolidation values 

correspond to increased efficiency of 

physiological/biochemical processes in the bird’s 

body in response to the feed additive intake. In 

future, methods for assessing fractal characteristics 

will be increasingly used for analyzing random 

processes, developing mathematical models and 

conducting simulations in biomedicine and in a wide 

variety of science and technology fields (Pitelinsky 

and Tyurkin, 2007). The productivity prediction 

approach using the obtained mathematical model and 

GNN will be useful in the future improvements of 

the productive qualities and resilience in poultry. 

Traditional poultry studies do not address the 

one-way ManyToOne relationship of blood 

parameters with the quantitative and qualitative egg 

production characteristics of layers, since the 

qualitative traits are dimensionless and, in a 

quantitative representation, cannot participate in 

correlation analysis with the measured characteristics 

of egg performance. To overcome this obstacle, we 

created the computational EuclidNN that allowed 

customizing its calculation procedures to determine 

the CSI values. A distinctive feature of the CSI index 

is that, on the one hand, it characterizes the entire 

complex of blood parameters of laying hens and, on 

the other, represents a qualitative or quantitative egg 

production indicator. Thus, EuclidNN makes it 

possible to evaluate the complex feed additive 

influence not only on the quantitative indicators but 

also on the qualitative egg performance indicators of 

chickens. 
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