## **SUPPLEMENTARY MATERIAL**

## Weak compliance with Nigeria's wildlife trade ban imposed to curb mpox spillovers

Charles A. Emogor, Andrew Balmford, Daniel J. Ingram, Omini Iferi, Inaoyom Imong, Dominic Ogu, and Lauren Coad

<sup>™</sup> Charles A. Emogor; emogorcharles@gmail.com

Journal: Proceedings of the Royal Society B

Article DOI: 10.1098/rspb.2025.0471

This supplementary file contains:

Supplementary Text (Equations S1-S6) Tables S1-S10 Figures S1-S2

## **Supplementary Text**

#### **Equation S1**

The equation for the model predicting the weekly number of vendors selling wild meat is given by

$$log(Vendor\ count)_{ijklm} = \beta_0 + \beta_1 Period_i + \beta_2 Season_j + \beta_3 Year_k + \beta_4 Market_l + \beta_5 Lagged\ vendor\ count_m + \alpha_{ijklm} + \mathcal{E}_{ijklm}$$
 (1)

where:

 $log(Vendor\ count)_{ijkl}$  represents the weekly number of vendors selling wild meat from September 2020 to December 2024, standardised by dividing the vendor count by the number of records for each week, in  $Period_i, Season_j, Year_k, and\ Market_l$ , with  $Lagged\ mass_m$  accounting for the number of vendors selling wild meat in the previous week;  $\beta_0$  is the intercept and  $\beta_{1-5}$  are the slopes of the respective predictors;  $\alpha_{ijklm}$  is a random intercept for week.  $\mathcal{E}_{ijklmn}$  represents the residual errors, assumed to follow a Gaussian distribution ( $\mathcal{E}_{ijklm}$  ~  $\mathcal{N}(0,\sigma^2)$ ).

#### **Equation S2**

The equation for the model predicting the weekly mass of wild meat sold per vendor is given by

$$log(Mass)_{ijklmn} = \beta_0 + \beta_1 Period_i + \beta_2 Season_j + \beta_3 Year_k + \beta_4 Market_l + \beta_5 Lagged \ mass_m + \beta_6 Order_n + \alpha_{ijklmn} + \gamma_{ijklmn} + \epsilon_{ijklmn}$$
(2)

where:

 $log(Mass)_{ijklmn}$  represents the weekly mass sold per vendor in

 $Period_i, Season_j, Year_k, and Market_l$ , with  $Lagged\ mass_m$  accounting for each vendor's mass in the previous week and  $Order_n$  representing the taxonomic orders;  $\beta_0$  is the intercept and  $\beta_{1-5}$  are the slopes of the respective predictors;  $\alpha_{ijklmn}$  and  $\gamma_{ijklmn}$  are random intercepts for week and vendor identity, respectively.  $\mathcal{E}_{ijklmn}$  represents the residual errors, assumed to follow a Gaussian distribution ( $\mathcal{E}_{ijklmn} \sim \mathcal{N}(0, \sigma^2)$ ).

#### **Equation S3**

The equation for the model predicting the weekly price (carcass asking price) of wild meat sold per vendor is given by

$$log(Value)_{ijklmn} = \beta_0 + \beta_1 Period_i + \beta_2 Season_j + \beta_3 Year_k + \beta_4 Market_l + \beta_5 Lagged\ value_m + \beta_6 Order_n + \alpha_{ijklmn} + \gamma_{ijklmn} + \epsilon_{ijklmn}$$
(3)

where:

 $log(Value)_{ijklmn}$  represents the weekly price (i.e., carcass asking price) per vendor in  $Period_i, Season_j, Year_k, and Market_l$ , with  $Lagged\ value_m$  accounting for the price of wild meat each vendor sold in the previous week and  $Order_n$  representing the taxonomic orders;  $\beta_0$  is the intercept and  $\beta_{1-5}$  are the slopes of the respective predictors;  $\alpha_{ijklmn}$  and  $\gamma_{ijklmn}$  are random intercepts for week and vendor identity, respectively.  $\mathcal{E}_{ijklmn}$  represents the residual errors, assumed to follow a Gaussian distribution ( $\mathcal{E}_{ijklmn} \sim \mathcal{N}(0, \sigma^2)$ ).

#### **Equation S4**

The equation for the model predicting the weekly price per kilogram of wild meat sold per vendor is given by

$$log(Price\ per\ kg)_{ijklmn} = \beta_0 + \beta_1 Period_i + \beta_2 Season_j + \beta_3 Year_k + \beta_4 Market_l + \beta_5 Lagged\ price\ per\ kg_m + \beta_6 Order_n + \alpha_{ijklmn} + \gamma_{ijklmn} + \epsilon_{ijklmn}$$

$$\tag{4}$$

where:

 $log(Price\ per\ kg)_{ijklmn}$  represents the weekly price per kilogram of wild meat sold per vendor in  $Period_i, Season_j, Year_k, and\ Market_l$ , with  $Lagged\ price\ per\ kg_m$  accounting for each vendor's price per kilogram in the previous week and  $Order_n$  representing taxonomic orders;  $\beta_0$  is the intercept and  $\beta_{1-5}$  are the slopes of the respective predictors;  $\alpha_{ijklmn}$  and  $\gamma_{ijklmn}$  are random intercepts for week and vendor identity, respectively.  $\mathcal{E}_{ijklmn}$  represents the residual errors, assumed to follow a Gaussian distribution  $(\mathcal{E}_{ijklmn} \sim \mathcal{N}(0,\sigma^2))$ .

## **Equation S5**

The equation for the model predicting the weekly mass of wild meat sold per vendor three months before and after the ban is given by

$$log(mass)_{ijklmn} = \beta_0 + \beta_1 Period_i + \beta_2 Season_j + \beta_3 Market_k + \beta_4 Lagged \ mass_l + \beta_5 Order_m + \alpha_{ijklm} + \gamma_{ijklm} + \epsilon_{ijklm}$$
(5)

where:

 $log(mass)_{ijklmn}$  represents the weekly price per kilogram of wild meat sold per vendor in  $Period_i, Season_j, and Market_k$ , with  $Lagged\ mass_l$  accounting for each vendor's mass in the previous week and  $Order_m$  representing taxonomic orders;  $\beta_0$  is the intercept and  $\beta_{1-5}$  are the slopes of the respective predictors;  $\alpha_{ijklm}$  and  $\gamma_{ijklm}$  are random intercepts for week and vendor identity, respectively.  $\mathcal{E}_{ijklm}$  represents the residual errors, assumed to follow a Gaussian distribution ( $\mathcal{E}_{ijklm} \sim \mathcal{N}(0, \sigma^2)$ ).

## **Equation S6**

The equation for the model predicting the weekly mass of wild meat sold per vendor six months before and after the ban is given by

$$log(mass)_{ijklmn} = \beta_0 + \beta_1 Period_i + \beta_2 Season_j + \beta_3 Market_k + \beta_4 Lagged \ mass_l + \beta_5 Order_m + \alpha_{ijklm} + \gamma_{ijklm} + \epsilon_{ijklm}$$
(6)

where:

 $log(mass)_{ijklmn}$  represents the weekly price per kilogram of wild meat sold per vendor in  $Period_i, Season_j, and Market_k$ , with  $Lagged\ mass_l$  accounting for each vendor's mass in the previous week and  $Order_m$  representing taxonomic orders;  $\beta_0$  is the intercept and  $\beta_{1-5}$  are the slopes of the respective predictors;  $\alpha_{ijklm}$  and  $\gamma_{ijklm}$  are random intercepts for week and vendor identity, respectively.  $\mathcal{E}_{ijklm}$  represents the residual errors, assumed to follow a Gaussian distribution ( $\mathcal{E}_{ijklm} \sim \mathcal{N}(0, \sigma^2)$ ).

## **Supplementary Tables**

**Table S1.** Vendor interview questionnaire.

- 1. To your knowledge, are there any current restrictions on buying or selling bushmeat in Nigeria?
- 2. Do you know about the ban on selling and buying bushmeat in Nigeria since May 2022

## If they know about ban

## If they do not know about ban

- 3. Are you aware of the reasons behind this ban in 2022? If so, what are they?
- 4. How has the ban on wildlife trade affected your business?

How do you think a ban on bushmeat sale to stop the spread of diseases from animals to humans would affect your business?

5. What livelihood alternatives, if any, have you considered or adopted since the ban on bushmeat trade?

What livelihood alternatives would you consider or adopt if a ban on bushmeat trade was enacted and properly enforced?

6. Have you been complying with the ban? If yes, how so?

How closely do you feel you would comply with such a ban on bushmeat trade?

7. What challenges do you face in complying with the ban?

What challenges would you face in complying with such a ban?

8. What changes or support would help you better comply with the ban?

What changes or support would help you better comply with such a ban?

9. Have you experienced any inspections or enforcement actions by authorities since the ban was enacted? If so, please describe your experiences.

10. Do you believe banning bushmeat trade as a way to reduce the spread of diseases is necessary? Why or why not?

Do you believe banning bushmeat trade as a way to reduce the spread of diseases is necessary? Why or why not?

- 11. Do you think selling wild animals exposes humans to diseases from the animals?
  - A) Agree
  - B) Not sure
  - C) Disagree
- 12. Have you heard of any of the following viruses? Please answer 'Yes' or 'No' per option.
  - A) Coronavirus
  - B) Ebola virus
  - C) Lassa virus
  - D) Mpox virus (Monkeypox)

- 1. What is the geographic coverage of your role?
- 2. What do you know about Mpox?
- 3. What was the government's response to the outbreak of Mpox in 2022?
- 4. How did the outbreak and any possible government response change your activities?

## A) If ban is mentioned

# 5. Tell me more about the directive. What was it aimed at achieving and what is the current status of the directive?

## B) If ban is not mentioned

Do you know about a directive in Nigeria about Mbox in 2022 given by Dr. Mohammad Abubakar, Minister of Agriculture and Rural Development?

## Go to #5A if the directive is acknowledged.

6. Is the directive enforceable?

Inform them about the directive and ask: Why do you think you were not aware of this given the directive's relevance to your work?

7. How has your organization raised public awareness of the directive?

Have you observed any changes in the wildlife trade in the markets since the Mpox outbreak of 2022?

8. What specific actions have been taken to enforce the directive since it was enacted in May 2022?

What impact do you believe government policies or restrictions could have on public compliance with wildlife trade regulations?

- 9. How often do you or your colleagues conduct inspections or checks in the markets to ensure compliance with the directive?
- 10. Which markets have you or your colleagues visited?
- 11. What are the biggest challenges you or your colleagues face in enforcing the directive on wildlife trade?
- 12. Have you observed any changes in the wildlife trade in the markets since the Mpox outbreak of 2022?
- 13. What percentage of the changes is attributable to the directive and what are other reasons for the changes?

- 14. How do you or your colleagues handle cases of non-compliance with the directive?
- 15. In your opinion, how effective has the directive been in reducing the trade and consumption of wild meat?
- 16. What support or resources would assist you or your colleagues in increasing compliance with the directive?

**Table S3a.** Gaussian-based mixed effects model of the number of vendors selling wild meat weekly. Number of observations: 417. Groups: Week, 52

| Random effect:      |           |            |           |         |          |
|---------------------|-----------|------------|-----------|---------|----------|
| Groups              | Term      | Variance   | Std. dev  |         |          |
| Week                | Intercept | 0.011      | 0.010     |         |          |
| Residual            |           | 0.143      | 0.378     |         |          |
| Fixed effects:      |           |            |           |         |          |
| Term                | Estimate  | Standard   | Degree of | T ratio | P value  |
|                     | (β)       | error (SE) | freedom   |         |          |
|                     |           |            | (DF)      |         |          |
| Intercept           | 1.178     | 0.081      | 304.755   | 14.495  | < 0.0001 |
| Period: Post-ban    | -0.069    | 0.081      | 406.790   | -0.843  | 0.400    |
| Season: Wet         | -0.001    | 0.047      | 64.952    | -0.031  | 0.975    |
| Year: 2021          | -0.040    | 0.082      | 402.474   | -0.485  | 0.628    |
| Year: 2022          | -0.174    | 0.097      | 401.407   | -1.803  | 0.072    |
| Year: 2023          | -0.179    | 0.117      | 393.582   | -1.535  | 0.126    |
| Year: 2024          | -0.198    | 0.117      | 390.763   | -1.691  | 0.092    |
| Location: Market B  | -0.094    | 0.038      | 374.479   | -2.454  | 0.015    |
| Lagged vendor count | 0.154     | 0.021      | 407.504   | 7.311   | < 0.0001 |

**Table S3b.** Pairwise post-hoc Tukey test pairwise comparisons of the 'year' variable used in the model assessing changes in the weekly number of wild meat vendors. We accounted for multiple comparisons using the Benjamini-Hochberg procedure, which controls for false discovery rate.

| Pair      | β      | SE     | DF       | T ratio | P value |
|-----------|--------|--------|----------|---------|---------|
| 2020-2021 | 0.0398 | 0.0824 | 402.5060 | 0.4834  | 0.8113  |
| 2020-2022 | 0.1741 | 0.0971 | 401.4437 | 1.7920  | 0.2564  |
| 2020-2023 | 0.1795 | 0.1177 | 393.6506 | 1.5245  | 0.2564  |
| 2020-2024 | 0.1984 | 0.1182 | 390.8429 | 1.6794  | 0.2564  |
| 2021-2022 | 0.1343 | 0.0734 | 404.3968 | 1.8302  | 0.2564  |
| 2021-2023 | 0.1396 | 0.0981 | 409.7458 | 1.4230  | 0.2592  |
| 2021-2024 | 0.1586 | 0.0985 | 409.9439 | 1.6096  | 0.2564  |
| 2022-2023 | 0.0054 | 0.0625 | 387.3511 | 0.0861  | 0.9314  |
| 2022-2024 | 0.0244 | 0.0629 | 389.1234 | 0.3869  | 0.8113  |
| 2023-2024 | 0.0190 | 0.0550 | 365.7037 | 0.3451  | 0.8113  |

**Table S4a.** Gaussian-based mixed effects model of the mass of wild meat each vendor sold weekly. Number of observations: 3942. Groups: Week, 52; Vendor.ID, 19

| Random effect:     |                  |                     |                        |         |          |
|--------------------|------------------|---------------------|------------------------|---------|----------|
| Groups             | Term             | Variance            | Std. dev               |         |          |
| Week               | Intercept        | 0.213               | 0.146                  |         |          |
| Vendor.ID          | Intercept        | 0.306               | 0.175                  |         |          |
| Residual           | ·                | 0.913               | 0.956                  |         |          |
| Fixed effects:     |                  |                     |                        |         |          |
| Term               | Estimat<br>e (β) | Standard error (SE) | Degree of freedom (DF) | T ratio | P value  |
| Intercept          | 1.122            | 0.091               | 59.491                 | 12.294  | < 0.0001 |
| Period: Post-ban   | 0.098            | 0.070               | 2127.530               | 1.410   | 0.159    |
| Year: 2021         | -0.041           | 0.061               | 3329.651               | -0.676  | 0.499    |
| Year: 2022         | -0.141           | 0.078               | 1955.876               | -1.805  | 0.071    |
| Year: 2023         | -0.417           | 0.098               | 1837.361               | -4.238  | < 0.0001 |
| Year: 2024         | -0.430           | 0.099               | 1740.527               | -4.347  | < 0.0001 |
| Location: Market B | 0.350            | 0.094               | 14.932                 | 3.719   | 0.002    |
| Season: Wet        | -0.014           | 0.050               | 67.227                 | -0.274  | 0.785    |
| Order: Aves        | -1.514           | 0.963               | 3902.160               | -1.572  | 0.116    |
| Order: Carnivora   | -1.554           | 0.092               | 3884.374               | -16.814 | < 0.0001 |
| Order: Crocodylia  | -1.392           | 0.191               | 3904.414               | -7.282  | < 0.0001 |
| Order: Pholidota   | -2.506           | 0.079               | 3895.343               | -31.688 | < 0.0001 |
| Order: Primates    | -0.613           | 0.045               | 3881.927               | -13.571 | < 0.0001 |
| Order: Rodentia    | -0.233           | 0.036               | 3870.915               | -6.543  | < 0.0001 |
| Order: Squamata    | -1.703           | 0.155               | 3893.914               | -10.975 | < 0.0001 |
| Order: Testudines  | -1.667           | 0.306               | 3891.109               | -5.456  | < 0.0001 |
| Lagged mass        | 0.092            | 0.016               | 3918.500               | 5.827   | < 0.0001 |

**Table S4b.** Pairwise post-hoc Tukey test pairwise comparisons of the 'year' variable used in the model assessing changes in mass of wild meat sold weekly. We accounted for multiple comparisons using the Benjamini-Hochberg procedure, which controls for false discovery rate.

| Pair        | β     | SE    | DF       | T ratio | P value  |
|-------------|-------|-------|----------|---------|----------|
| 2020 - 2021 | 0.041 | 0.061 | 3317.641 | 0.674   | 0.556    |
| 2020 - 2022 | 0.141 | 0.079 | 1937.405 | 1.796   | 0.104    |
| 2020 - 2023 | 0.417 | 0.099 | 1820.212 | 4.215   | < 0.0001 |
| 2020 - 2024 | 0.430 | 0.100 | 1723.292 | 4.323   | < 0.0001 |
| 2021 - 2022 | 0.100 | 0.063 | 3023.369 | 1.588   | 0.140    |
| 2021 - 2023 | 0.376 | 0.086 | 2665.055 | 4.382   | < 0.0001 |
| 2021 - 2024 | 0.389 | 0.086 | 2543.666 | 4.515   | < 0.0001 |
| 2022 - 2023 | 0.276 | 0.053 | 3828.338 | 5.191   | < 0.0001 |
| 2022 - 2024 | 0.289 | 0.053 | 3754.312 | 5.412   | < 0.0001 |
| 2023 - 2024 | 0.014 | 0.049 | 3903.710 | 0.276   | 0.783    |

**Table S4c.** Pairwise post-hoc Tukey test pairwise comparisons of the 'order' variable used in the model assessing changes in mass of wild meat sold weekly. We accounted for multiple comparisons using the Benjamini-Hochberg procedure, which controls false discovery rate.

| Pair                                                | β              | SE    | DF       | T ratio | P value  |
|-----------------------------------------------------|----------------|-------|----------|---------|----------|
| Artiodactyla – Aves                                 | 1.514          | 0.963 | 3902.764 | 1.572   | 0.182    |
| Artiodactyla – Aves Artiodactyla – Carnivora        | 1.554          | 0.903 | 3884.705 | 16.811  | < 0.0001 |
| Artiodactyla – Carrivora Artiodactyla – Crocodylia  | 1.392          | 0.092 | 3904.646 | 7.279   | < 0.0001 |
| Artiodactyla – Crocodylla  Artiodactyla – Pholidota | 2.506          | 0.191 | 3895.610 | 31.678  | < 0.0001 |
| Artiodactyla – Primates                             | 0.613          | 0.079 | 3882.065 | 13.568  | < 0.0001 |
| •                                                   | 0.013          | 0.045 | 3871.292 | 6.542   | < 0.0001 |
| Artiodactyla – Rodentia                             | 0.233<br>1.703 | 0.036 | 3894.301 | 10.971  | < 0.0001 |
| Artiodactyla – Squamata                             | 1.703<br>1.667 | 0.133 | 3891.483 | 5.455   | < 0.0001 |
| Artiodactyla – Testudines                           |                |       |          |         |          |
| Aves - Carnivora                                    | 0.040          | 0.967 | 3903.142 | 0.041   | 0.967    |
| Aves - Crocodylia                                   | -0.122         | 0.981 | 3903.397 | -0.124  | 0.942    |
| Aves - Pholidota                                    | 0.992          | 0.966 | 3903.377 | 1.027   | 0.421    |
| Aves - Primates                                     | -0.901         | 0.964 | 3903.012 | -0.935  | 0.466    |
| Aves - Rodentia                                     | -1.281         | 0.963 | 3902.608 | -1.330  | 0.275    |
| Aves - Squamata                                     | 0.189          | 0.974 | 3900.521 | 0.194   | 0.942    |
| Aves – Testudines                                   | 0.153          | 1.010 | 3902.641 | 0.152   | 0.942    |
| Carnivora – Crocodylia                              | -0.161         | 0.209 | 3903.282 | -0.773  | 0.530    |
| Carnivora – Pholidota                               | 0.952          | 0.117 | 3884.923 | 8.172   | < 0.0001 |
| Carnivora – Primates                                | -0.941         | 0.096 | 3885.587 | -9.781  | < 0.0001 |
| Carnivora – Rodentia                                | -1.321         | 0.093 | 3885.670 | -14.257 | < 0.0001 |
| Carnivora - Squamata                                | 0.149          | 0.177 | 3892.879 | 0.845   | 0.512    |
| Carnivora - Testudines                              | 0.113          | 0.317 | 3891.913 | 0.358   | 0.837    |
| Crocodylia - Pholidota                              | 1.114          | 0.204 | 3903.899 | 5.457   | < 0.0001 |
| Crocodylia - Primates                               | -0.779         | 0.193 | 3904.412 | -4.037  | < 0.0001 |
| Crocodylia – Rodentia                               | -1.159         | 0.191 | 3904.683 | -6.055  | < 0.0001 |
| Crocodylia - Squamata                               | 0.311          | 0.243 | 3898.952 | 1.277   | 0.290    |
| Crocodylia – Testudines                             | 0.275          | 0.357 | 3881.654 | 0.769   | 0.530    |
| Pholidota - Primates                                | -1.893         | 0.084 | 3892.889 | -22.539 | < 0.0001 |
| Pholidota – Rodentia                                | -2.273         | 0.079 | 3896.574 | -28.751 | < 0.0001 |
| Pholidota – Squamata                                | -0.803         | 0.170 | 3898.035 | -4.713  | < 0.0001 |
| Pholidota - Testudines                              | -0.839         | 0.314 | 3889.727 | -2.674  | 0.012    |
| Primates - Rodentia                                 | -0.380         | 0.045 | 3890.064 | -8.352  | < 0.0001 |
| Primates - Squamata                                 | 1.090          | 0.157 | 3895.438 | 6.926   | < 0.0001 |
| Primates - Testudines                               | 1.054          | 0.307 | 3891.116 | 3.437   | 0.001    |
| Rodentia - Squamata                                 | 1.470          | 0.155 | 3893.705 | 9.468   | < 0.0001 |
| Rodentia - Testudines                               | 1.434          | 0.306 | 3891.481 | 4.691   | < 0.0001 |
| Squamata - Testudines                               | -0.036         | 0.341 | 3892.689 | -0.105  | 0.942    |

**Table S5a.** Gaussian-based mixed effects model of the weekly price of wild meat. Number of observations: 3942. Groups: Week, 52; Vendor.ID, 19

| Random effect:     | _         |            |           |         |          |
|--------------------|-----------|------------|-----------|---------|----------|
| Groups             | Term      | Variance   | Std. dev  |         |          |
| Week               | Intercept | 0.022      | 0.149     |         |          |
| Vendor.ID          | Intercept | 0.031      | 0.177     |         |          |
| Residual           |           | 0.880      | 0.939     |         |          |
| Fixed effects:     |           |            |           |         |          |
| Term               | Estimate  | Standard   | Degree of | T ratio | P value  |
|                    | (β)       | error (SE) | freedom   |         |          |
|                    | u-7       | <b>(,</b>  | (DF)      |         |          |
| Intercept          | 9.809     | 0.091      | 63.633    | 107.634 | < 0.0001 |
| Period: Post-ban   | 0.175     | 0.069      | 2204.950  | 2.539   | 0.011    |
| Year: 2021         | -0.195    | 0.060      | 3365.927  | -3.272  | 0.001    |
| Year: 2022         | -0.338    | 0.077      | 2032.557  | -4.388  | < 0.0001 |
| Year: 2023         | -0.475    | 0.097      | 1917.567  | -4.898  | < 0.0001 |
| Year: 2024         | -0.315    | 0.098      | 1823.667  | -3.228  | 0.001    |
| Location: Market B | 0.316     | 0.095      | 16.523    | 3.342   | 0.004    |
| Season: Wet        | -0.008    | 0.050      | 67.437    | -0.160  | 0.874    |
| Order: Aves        | -2.181    | 0.945      | 3903.054  | -2.307  | 0.021    |
| Order: Carnivora   | -1.894    | 0.091      | 3884.798  | -20.881 | < 0.0001 |
| Order: Crocodylia  | -1.679    | 0.188      | 3904.007  | -8.946  | < 0.0001 |
| Order: Pholidota   | -2.000    | 0.078      | 3895.320  | -25.755 | < 0.0001 |
| Order: Primates    | -1.120    | 0.044      | 3882.187  | -25.244 | < 0.0001 |
| Order: Rodentia    | -0.261    | 0.035      | 3872.646  | -7.445  | < 0.0001 |
| Order: Squamata    | -2.104    | 0.152      | 3893.804  | -13.810 | < 0.0001 |
| Order: Testudines  | -1.725    | 0.300      | 3891.005  | -5.752  | < 0.0001 |
| Lagged price       | 0.099     | 0.016      | 3920.081  | 6.334   | < 0.0001 |
|                    |           |            |           |         |          |

**Table S5b.** Pairwise post-hoc Tukey test pairwise comparisons of the 'year' variable used in the model assessing changes in the weekly price of wild meat. We accounted for multiple comparisons using the Benjamini-Hochberg procedure, which controls for false discovery rate.

| Pair        | β      | SE    | DF       | T ratio | P value  |
|-------------|--------|-------|----------|---------|----------|
| 2020 - 2021 | 0.195  | 0.060 | 3359.185 | 3.265   | 0.002    |
| 2020 - 2022 | 0.338  | 0.077 | 2019.941 | 4.367   | < 0.0001 |
| 2020 - 2023 | 0.475  | 0.098 | 1904.851 | 4.872   | < 0.0001 |
| 2020 - 2024 | 0.315  | 0.098 | 1811.030 | 3.210   | 0.002    |
| 2021 - 2022 | 0.143  | 0.062 | 3085.970 | 2.307   | 0.026    |
| 2021 - 2023 | 0.280  | 0.085 | 2743.352 | 3.319   | 0.002    |
| 2021 - 2024 | 0.120  | 0.085 | 2628.314 | 1.414   | 0.175    |
| 2022 - 2023 | 0.137  | 0.052 | 3837.954 | 2.629   | 0.012    |
| 2022 - 2024 | -0.023 | 0.053 | 3774.086 | -0.439  | 0.660    |
| 2023 - 2024 | -0.160 | 0.048 | 3902.461 | -3.333  | 0.002    |

**Table S5c.** Pairwise post-hoc Tukey test pairwise comparisons of the 'order' variable used in the model assessing changes in the weekly price of wild meat. We accounted for multiple comparisons using the Benjamini-Hochberg procedure, which controls for false discovery rate.

| Pair                      | β      | SE    | DF       | T ratio | P value  |
|---------------------------|--------|-------|----------|---------|----------|
| Artiodactyla - Aves       | 2.181  | 0.946 | 3902.099 | 2.306   | 0.042    |
| Artiodactyla – Carnivora  | 1.894  | 0.091 | 3883.816 | 20.877  | < 0.0001 |
| Artiodactyla - Crocodylia | 1.679  | 0.188 | 3903.482 | 8.943   | < 0.0001 |
| Artiodactyla – Pholidota  | 2.000  | 0.078 | 3894.584 | 25.748  | < 0.0001 |
| Artiodactyla - Primates   | 1.120  | 0.044 | 3881.298 | 25.239  | < 0.0001 |
| Artiodactyla – Rodentia   | 0.261  | 0.035 | 3871.362 | 7.444   | < 0.0001 |
| Artiodactyla – Squamata   | 2.104  | 0.152 | 3892.942 | 13.806  | < 0.0001 |
| Artiodactyla – Testudines | 1.725  | 0.300 | 3890.108 | 5.750   | < 0.0001 |
| Aves - Carnivora          | -0.286 | 0.950 | 3902.507 | -0.302  | 0.832    |
| Aves - Crocodylia         | -0.501 | 0.964 | 3902.740 | -0.520  | 0.700    |
| Aves - Pholidota          | -0.181 | 0.948 | 3902.717 | -0.191  | 0.899    |
| Aves - Primates           | -1.061 | 0.946 | 3902.347 | -1.122  | 0.377    |
| Aves - Rodentia           | -1.920 | 0.946 | 3901.924 | -2.030  | 0.080    |
| Aves - Squamata           | -0.077 | 0.957 | 3899.805 | -0.080  | 0.936    |
| Aves - Testudines         | -0.455 | 0.992 | 3901.907 | -0.459  | 0.727    |
| Carnivora - Crocodylia    | -0.215 | 0.205 | 3902.152 | -1.048  | 0.408    |
| Carnivora – Pholidota     | 0.106  | 0.114 | 3883.921 | 0.923   | 0.475    |
| Carnivora - Primates      | -0.775 | 0.094 | 3884.767 | -8.205  | < 0.0001 |
| Carnivora – Rodentia      | -1.633 | 0.091 | 3885.268 | -17.950 | < 0.0001 |
| Carnivora - Squamata      | 0.209  | 0.173 | 3891.730 | 1.208   | 0.355    |
| Carnivora - Testudines    | -0.169 | 0.311 | 3890.592 | -0.543  | 0.700    |
| Crocodylia – Pholidota    | 0.321  | 0.200 | 3902.753 | 1.600   | 0.180    |
| Crocodylia - Primates     | -0.560 | 0.190 | 3903.270 | -2.955  | 0.007    |
| Crocodylia – Rodentia     | -1.419 | 0.188 | 3903.588 | -7.546  | < 0.0001 |
| Crocodylia - Squamata     | 0.424  | 0.239 | 3897.786 | 1.776   | 0.130    |
| Crocodylia - Testudines   | 0.046  | 0.351 | 3880.826 | 0.131   | 0.921    |
| Pholidota - Primates      | -0.881 | 0.082 | 3891.742 | -10.675 | < 0.0001 |
| Pholidota - Rodentia      | -1.739 | 0.078 | 3895.745 | -22.383 | < 0.0001 |
| Pholidota - Squamata      | 0.104  | 0.167 | 3896.644 | 0.620   | 0.664    |
| Pholidota - Testudines    | -0.275 | 0.308 | 3888.376 | -0.891  | 0.479    |
| Primates - Rodentia       | -0.859 | 0.045 | 3889.480 | -19.211 | < 0.0001 |
| Primates - Squamata       | 0.984  | 0.155 | 3894.054 | 6.371   | < 0.0001 |
| Primates - Testudines     | 0.606  | 0.301 | 3889.752 | 2.012   | 0.080    |
| Rodentia - Squamata       | 1.843  | 0.152 | 3892.440 | 12.091  | < 0.0001 |
| Rodentia - Testudines     | 1.464  | 0.300 | 3890.195 | 4.879   | < 0.0001 |
| Squamata - Testudines     | -0.378 | 0.335 | 3891.387 | -1.131  | 0.377    |
|                           |        |       |          |         |          |

**Table S6a.** Gaussian-based mixed effects model of the weekly price per kilogram of wild meat. Number of observations: 3942. Groups: Week, 52; Vendor.ID, 19

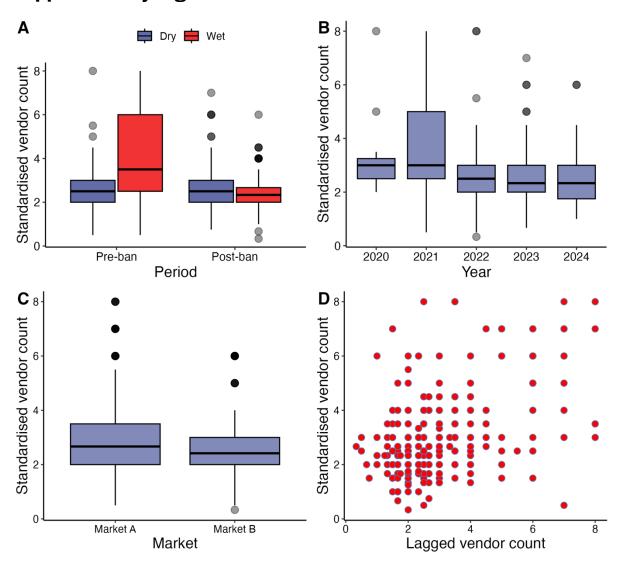
| Random effect:     |           |            |              |         |          |
|--------------------|-----------|------------|--------------|---------|----------|
| Groups             | Term      | Variance   | Std. dev     |         |          |
| Week               | Intercept | 0.016      | 0.130        |         |          |
| Vendor.ID          | Intercept | 0.034      | 0.184        |         |          |
| Residual           |           | 0.751      | 0.867        |         |          |
| Fixed effects:     |           |            |              |         |          |
| Term               | Estimate  | Standard   | Degree of    | T ratio | P value  |
| 101111             | (β)       | error (SE) | freedom (DF) | 1 Tado  | 1 Value  |
| Intercept          | 8.907     | 0.088      | 38.685       | 101.088 | < 0.0001 |
| Period: Post-ban   | 0.022     | 0.063      | 2087.558     | 0.345   | 0.730    |
| Year: 2021         | -0.282    | 0.055      | 3277.279     | -5.129  | < 0.0001 |
| Year: 2022         | -0.404    | 0.071      | 1903.880     | -5.695  | < 0.0001 |
| Year: 2023         | -0.487    | 0.089      | 1792.733     | -5.455  | < 0.0001 |
| Year: 2024         | -0.322    | 0.090      | 1698.715     | -3.595  | 0.000    |
| Location: Market B | -0.426    | 0.096      | 12.138       | -4.424  | 0.001    |
| Season: Wet        | 0.003     | 0.045      | 65.556       | 0.067   | 0.947    |
| Order: Aves        | -2.101    | 0.873      | 3898.353     | -2.406  | 0.016    |
| Order: Carnivora   | -1.674    | 0.084      | 3880.774     | -19.976 | < 0.0001 |
| Order: Crocodylia  | -1.476    | 0.173      | 3903.682     | -8.514  | < 0.0001 |
| Order: Pholidota   | -0.592    | 0.072      | 3892.045     | -8.252  | < 0.0001 |
| Order: Primates    | -1.322    | 0.041      | 3878.889     | -32.272 | < 0.0001 |
| Order: Rodentia    | -0.174    | 0.032      | 3866.503     | -5.384  | < 0.0001 |
| Order: Squamata    | -1.721    | 0.141      | 3890.171     | -12.227 | < 0.0001 |
| Order: Testudines  | -1.035    | 0.277      | 3887.479     | -3.736  | 0.0002   |
| Lagged price per   |           |            |              |         |          |
| kilogram           | 0.111     | 0.014      | 3915.006     | 7.754   | < 0.0001 |
|                    |           |            |              |         |          |

**Table S6b** Pairwise post-hoc Tukey test pairwise comparisons of the 'year' variable used in the model assessing changes in the weekly price per kilogram of wild meat. We accounted for multiple comparisons using the Benjamini-Hochberg procedure, which controls for false discovery rate.

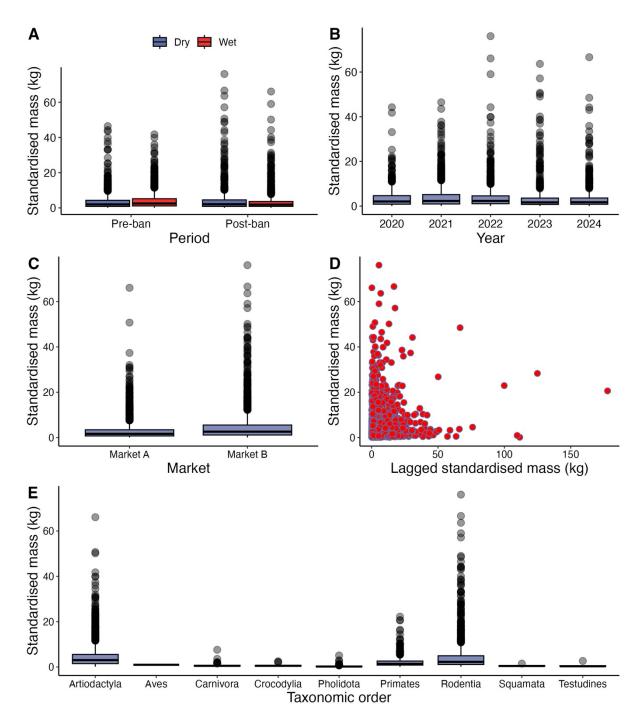
| Pair        | β      | SE    | DF       | T ratio | P value  |
|-------------|--------|-------|----------|---------|----------|
| 2020 - 2021 | 0.282  | 0.055 | 3279.036 | 5.117   | < 0.0001 |
| 2020 - 2022 | 0.404  | 0.071 | 1905.351 | 5.666   | < 0.0001 |
| 2020 - 2023 | 0.487  | 0.090 | 1795.210 | 5.425   | < 0.0001 |
| 2020 - 2024 | 0.322  | 0.090 | 1700.950 | 3.575   | 0.001    |
| 2021 - 2022 | 0.122  | 0.057 | 3019.582 | 2.133   | 0.047    |
| 2021 - 2023 | 0.205  | 0.078 | 2660.393 | 2.632   | 0.014    |
| 2021 - 2024 | 0.041  | 0.078 | 2541.364 | 0.520   | 0.603    |
| 2022 - 2023 | 0.083  | 0.048 | 3826.017 | 1.717   | 0.103    |
| 2022 - 2024 | -0.081 | 0.048 | 3754.101 | -1.680  | 0.103    |
| 2023 - 2024 | -0.164 | 0.044 | 3902.874 | -3.691  | 0.001    |

**Table S6c.** Pairwise post-hoc Tukey test pairwise comparisons of the 'order' variable used in the model assessing changes in the weekly price per kilogram of wild meat. We accounted for multiple comparisons using the Benjamini-Hochberg procedure, which controls for false discovery rate.

| Pair                      | β      | SE    | DF       | T ratio | P value  |
|---------------------------|--------|-------|----------|---------|----------|
| Artiodactyla - Aves       | 2.101  | 0.873 | 3902.659 | 2.405   | 0.029    |
| Artiodactyla – Carnivora  | 1.674  | 0.084 | 3884.348 | 19.972  | < 0.0001 |
| Artiodactyla - Crocodylia | 1.476  | 0.173 | 3905.512 | 8.510   | < 0.0001 |
| Artiodactyla – Pholidota  | 0.592  | 0.072 | 3895.014 | 8.249   | < 0.0001 |
| Artiodactyla – Primates   | 1.322  | 0.041 | 3881.777 | 32.266  | < 0.0001 |
| Artiodactyla – Rodentia   | 0.174  | 0.032 | 3870.862 | 5.383   | < 0.0001 |
| Artiodactyla – Squamata   | 1.721  | 0.141 | 3893.649 | 12.223  | < 0.0001 |
| Artiodactyla – Testudines | 1.035  | 0.277 | 3890.949 | 3.735   | 0.0004   |
| Aves - Carnivora          | -0.427 | 0.877 | 3903.046 | -0.487  | 0.663    |
| Aves - Crocodylia         | -0.625 | 0.890 | 3903.335 | -0.702  | 0.527    |
| Aves - Pholidota          | -1.509 | 0.876 | 3903.236 | -1.723  | 0.128    |
| Aves - Primates           | -0.779 | 0.874 | 3902.909 | -0.892  | 0.424    |
| Aves - Rodentia           | -1.927 | 0.873 | 3902.504 | -2.206  | 0.043    |
| Aves - Squamata           | -0.380 | 0.884 | 3900.478 | -0.431  | 0.686    |
| Aves - Testudines         | -1.066 | 0.916 | 3902.478 | -1.163  | 0.326    |
| Carnivora - Crocodylia    | -0.198 | 0.189 | 3904.171 | -1.044  | 0.364    |
| Carnivora - Pholidota     | -1.082 | 0.106 | 3883.891 | -10.231 | < 0.0001 |
| Carnivora - Primates      | -0.352 | 0.087 | 3884.981 | -4.039  | 0.0001   |
| Carnivora – Rodentia      | -1.500 | 0.084 | 3886.177 | -17.842 | < 0.0001 |
| Carnivora - Squamata      | 0.046  | 0.160 | 3892.519 | 0.290   | 0.772    |
| Carnivora - Testudines    | -0.639 | 0.288 | 3891.518 | -2.222  | 0.043    |
| Crocodylia – Pholidota    | -0.884 | 0.185 | 3904.624 | -4.775  | < 0.0001 |
| Crocodylia - Primates     | -0.155 | 0.175 | 3905.242 | -0.883  | 0.424    |
| Crocodylia – Rodentia     | -1.302 | 0.174 | 3905.536 | -7.498  | < 0.0001 |
| Crocodylia - Squamata     | 0.244  | 0.221 | 3899.337 | 1.106   | 0.345    |
| Crocodylia - Testudines   | -0.441 | 0.324 | 3881.773 | -1.361  | 0.240    |
| Pholidota - Primates      | 0.730  | 0.076 | 3891.458 | 9.571   | < 0.0001 |
| Pholidota - Rodentia      | -0.418 | 0.072 | 3895.805 | -5.814  | < 0.0001 |
| Pholidota – Squamata      | 1.128  | 0.155 | 3897.294 | 7.297   | < 0.0001 |
| Pholidota - Testudines    | 0.443  | 0.285 | 3889.155 | 1.557   | 0.172    |
| Primates - Rodentia       | -1.148 | 0.041 | 3890.349 | -27.762 | < 0.0001 |
| Primates - Squamata       | 0.399  | 0.143 | 3894.724 | 2.794   | 0.010    |
| Primates – Testudines     | -0.286 | 0.278 | 3890.561 | -1.029  | 0.364    |
| Rodentia - Squamata       | 1.546  | 0.141 | 3893.185 | 10.982  | < 0.0001 |
| Rodentia - Testudines     | 0.861  | 0.277 | 3891.008 | 3.106   | 0.004    |
| Squamata - Testudines     | -0.685 | 0.309 | 3892.083 | -2.217  | 0.043    |


**Table S7.** Gaussian-based mixed effects model of the weekly mass of wild meat sold three months before and after the ban. Number of observations: 689. Groups: Week, 23; Vendor.ID,  $19. \text{ Overall R}^2 = 0.39.$ 

| Random effect:     |           |            |           |         |          |
|--------------------|-----------|------------|-----------|---------|----------|
| Groups             | Term      | Variance   | Std. dev  |         |          |
| Week               | Intercept | 0.019      | 0.140     |         |          |
| Vendor.ID          | Intercept | 0.026      | 0.162     |         |          |
| Residual           |           | 0.613      | 0.783     |         |          |
| Fixed effects:     |           |            |           |         |          |
| Term               | Estimate  | Standard   | Degree of | T ratio | P value  |
|                    | (β)       | error (SE) | freedom   |         |          |
|                    |           |            | (DF)      |         |          |
| Intercept          | 2.174     | 0.165      | 69.940    | 13.173  | < 0.0001 |
| Period: Post-ban   | 0.368     | 0.088      | 25.427    | 4.189   | 0.0003   |
| Season: Wet        | 0.137     | 0.155      | 54.881    | 0.886   | 0.379    |
| Location: Market B | 0.220     | 0.101      | 15.023    | 2.174   | 0.046    |
| Order: Carnivora   | -1.455    | 0.201      | 663.742   | -7.222  | < 0.0001 |
| Order: Crocodylia  | -1.509    | 0.306      | 661.682   | -4.926  | < 0.0001 |
| Order: Pholidota   | -2.214    | 0.152      | 665.356   | -14.558 | < 0.0001 |
| Order: Primates    | -0.571    | 0.088      | 661.405   | -6.476  | < 0.0001 |
| Order: Rodentia    | -0.340    | 0.070      | 644.068   | -4.850  | < 0.0001 |
| Order: Squamata    | -1.369    | 0.800      | 654.782   | -1.710  | 0.087    |
| Order: Testudines  | -1.344    | 0.362      | 660.324   | -3.711  | 0.0002   |
| Lagged price per   | -0.017    | 0.032      | 676.685   | -0.545  | 0.585    |
| kilogram           |           |            |           |         |          |


**Table S8.** Gaussian-based mixed effects model of the weekly mass of wild meat sold six months before and after the ban. Number of observations: 1401. Groups: Week, 48; Vendor.ID, 19. Overall  $R^2 = 0.38$ .

| P value  |
|----------|
|          |
| < 0.0001 |
| 0.033    |
| 0.069    |
| 0.026    |
| < 0.0001 |
| < 0.0001 |
| < 0.0001 |
| < 0.0001 |
| < 0.0001 |
| 0.001    |
| < 0.0001 |
| 0.788    |
|          |
|          |

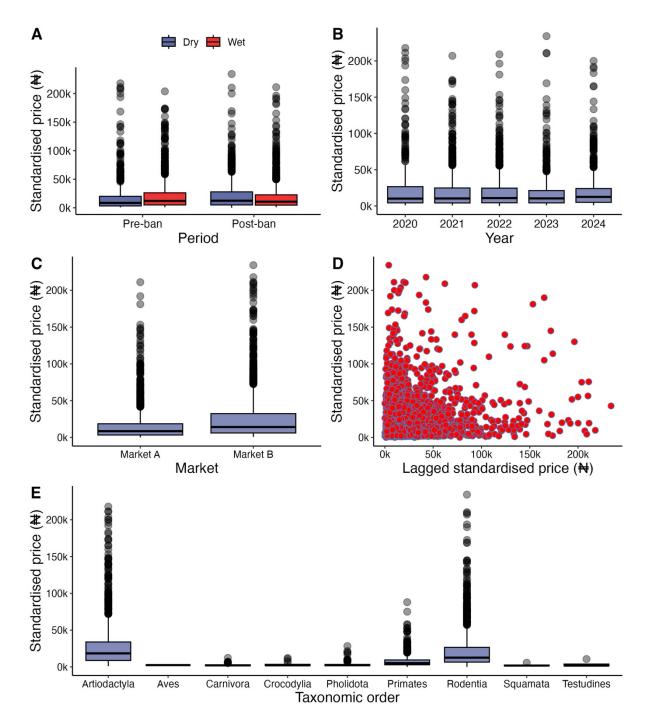
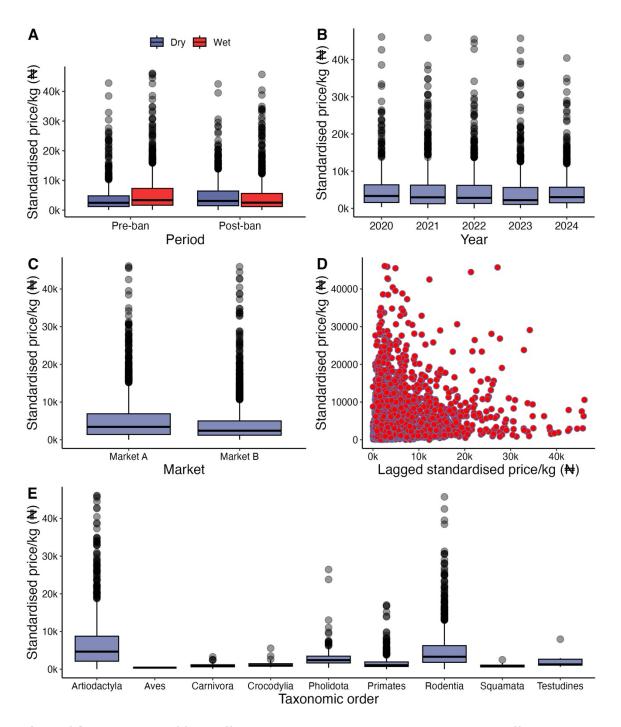
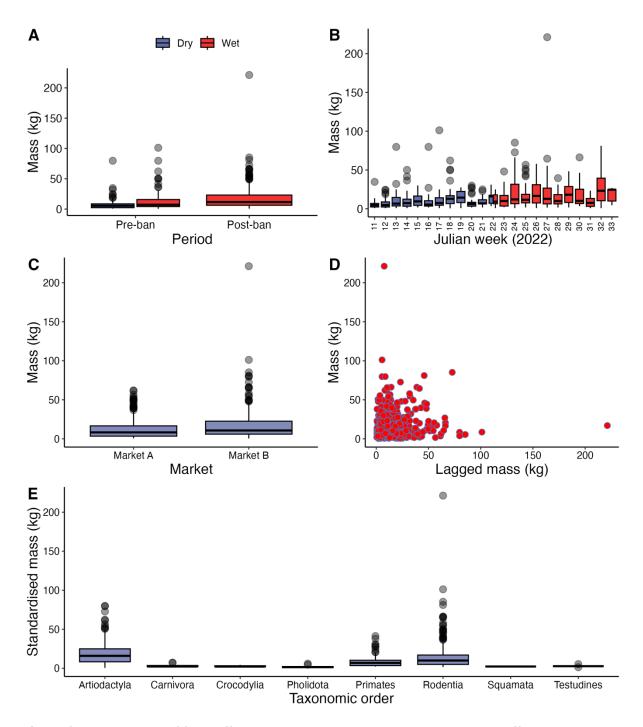
## **Supplementary Figures**

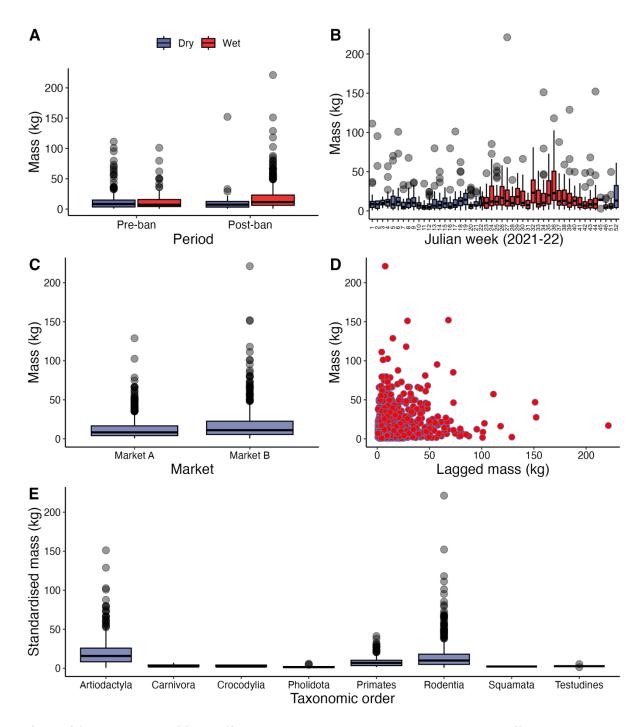


**Figure S1.** Distribution of fixed-effect predictors used in the model assessing differences in the standardised number of vendors selling wild meat weekly. Variable names are indicated on the x-axis and/or legend. The boxes represent the interquartile range of the data (between the first and the third quartiles), with the median number of animals captured shown by the thick horizontal line in each box. Whiskers show the minimum and maximum values of the data for each community, and outliers are represented by the dots. The plot was made in R using *ggplot*.

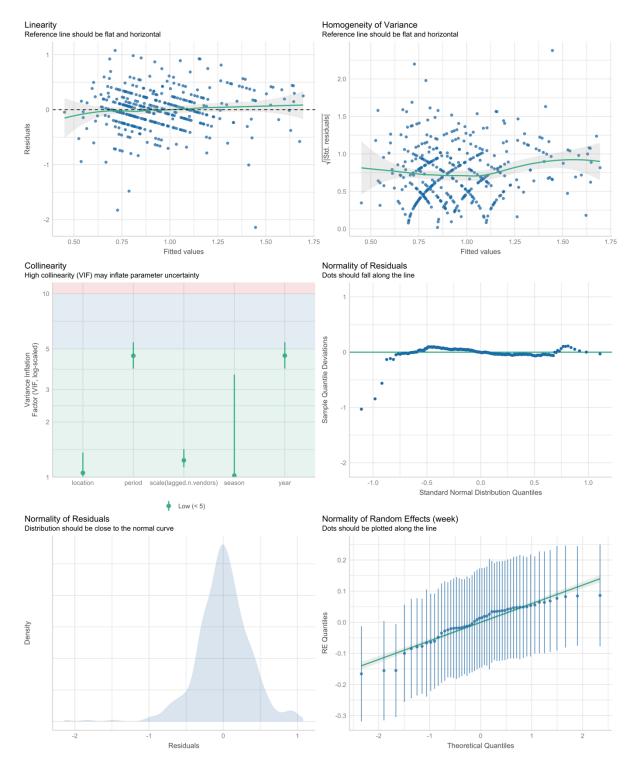


**Figure S2.** Distribution of fixed-effect predictors used in the model assessing differences in the standardised mass of wild meat vendors displayed for sale. Variable names are indicated on the x-axis and/or legend. Note that we dropped five values that were over 98 kg to improve visualisation. The boxes represent the interquartile range of the data (between the first and the third quartiles), with the median number of animals captured shown by the thick horizontal line in each box. Whiskers show the minimum and maximum values of the data for each community, and outliers are represented by the dots. The plot was made in R using *ggplot*.

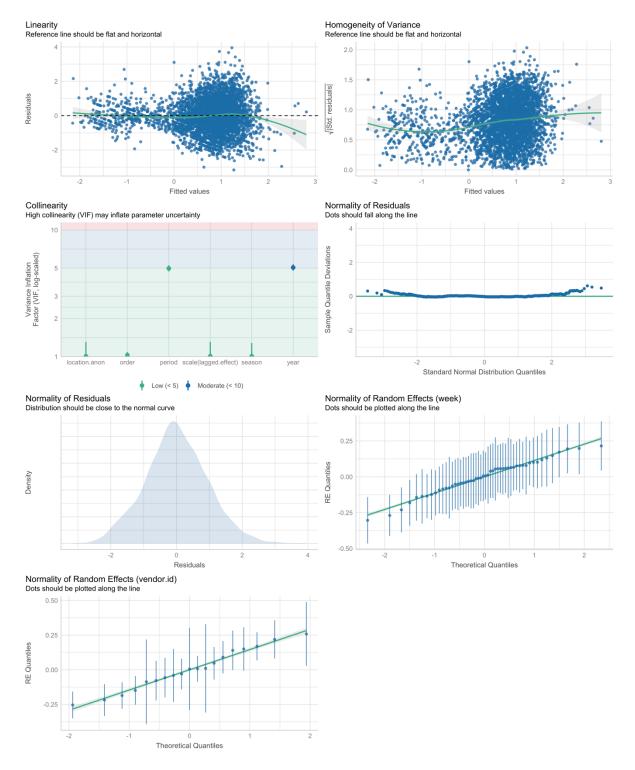






Figure S3. Distribution of fixed-effect predictors used in the model assessing differences in the standardised price (carcass asking price) of wild meat vendors displayed for sale. Variable names are indicated on the x-axis and/or legend. Note that we dropped five values that were over №300,000 to improve visualisation. The boxes represent the interquartile range of the data (between the first and the third quartiles), with the median number of animals captured shown by the thick horizontal line in each box. Whiskers show the minimum and maximum values of the data for each community, and outliers are represented by the dots. The plot was made in R using ggplot.

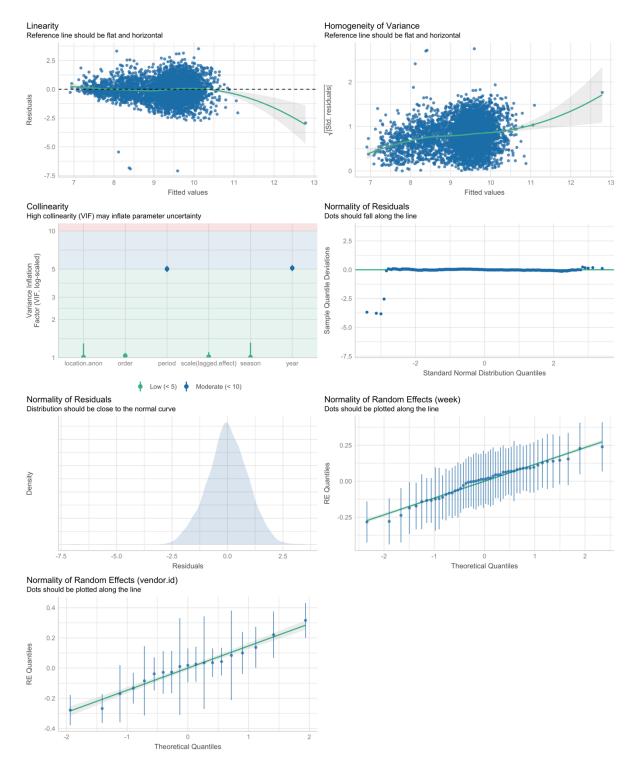



**Figure S4.** Distribution of fixed-effect predictors used in the model assessing differences in the standardised price per kilogram of wild meat vendors displayed for sale. Variable names are indicated on the x-axis and/or legend. Note that we dropped two values that were over  $\Re 40,000$  to improve visualisation. The boxes represent the interquartile range of the data (between the first and the third quartiles), with the median number of animals captured shown by the thick horizontal line in each box. Whiskers show the minimum and maximum values of the data for each community, and outliers are represented by the dots. The plot was made in R using *ggplot*.

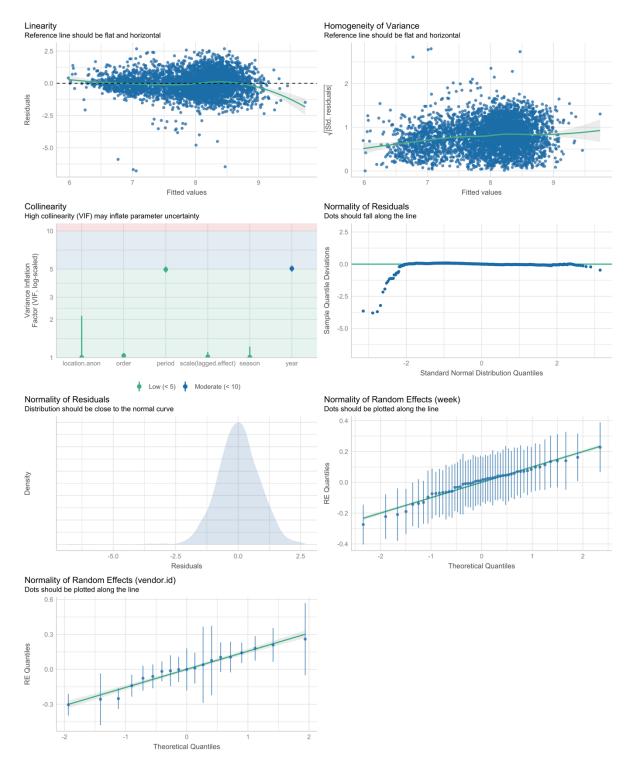



**Figure S5.** Distribution of fixed-effect predictors used in the model assessing differences in the weekly mass of wild meat vendors displayed for sale three months before and after the ban. Variable names are indicated on the x-axis and/or legend. The boxes represent the interquartile range of the data (between the first and the third quartiles), with the median number of animals captured shown by the thick horizontal line in each box. Whiskers show the minimum and maximum values of the data for each community, and outliers are represented by the dots. The plot was made in R using *ggplot*.

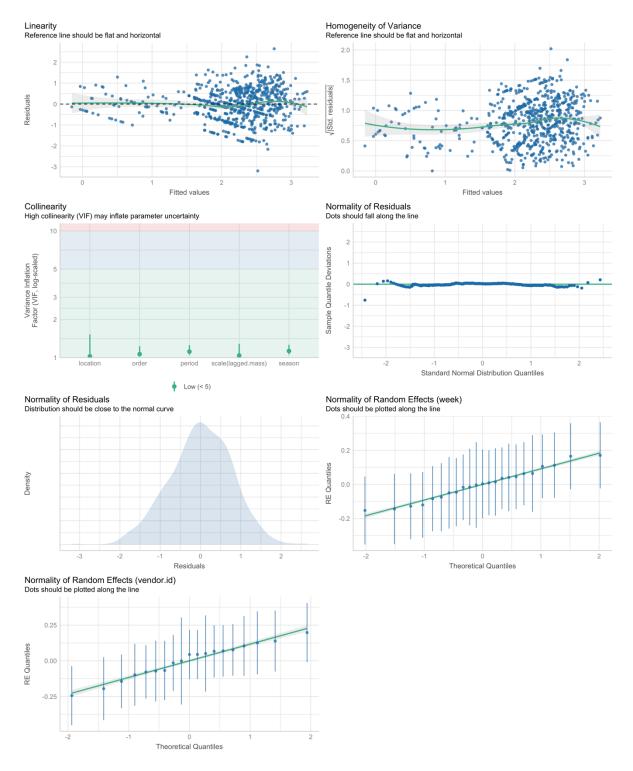



**Figure S6.** Distribution of fixed-effect predictors used in the model assessing differences in the weekly mass of wild meat vendors displayed for sale six months before and after the ban. Variable names are indicated on the x-axis and/or legend. The boxes represent the interquartile range of the data (between the first and the third quartiles), with the median number of animals captured shown by the thick horizontal line in each box. Whiskers show the minimum and maximum values of the data for each community, and outliers are represented by the dots. The plot was made in R using *ggplot*.

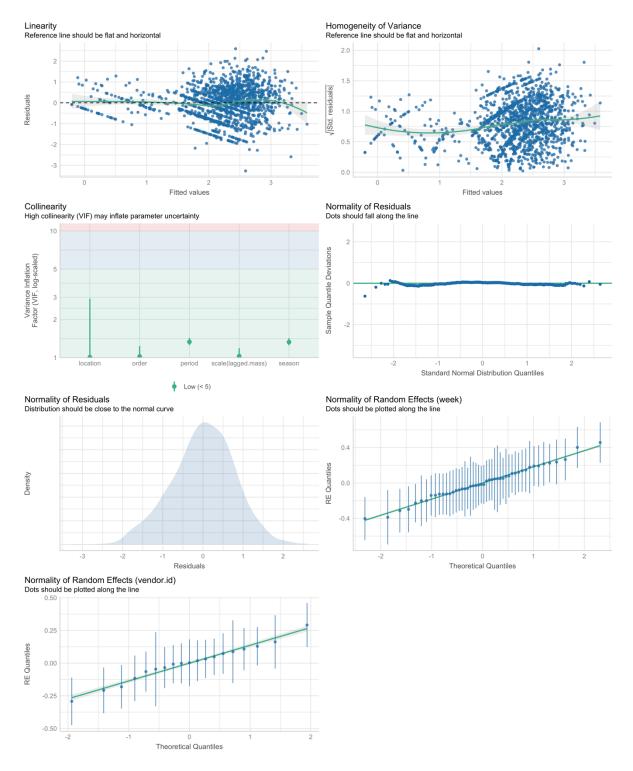



**Figure S7.** Diagnostics of the model predicting the weekly number of vendors selling wild meat. Diagnostic parameters and interpretation of the plot are provided on top of each panel. Model assessment was conducted in R using *performance*.




**Figure S8.** Diagnostics of the model predicting the weekly mass of wild meat each vendor sold. Diagnostic parameters and interpretation of the plot are provided on top of each panel. Model assessment was conducted in R using *performance*.




**Figure S9.** Diagnostics of the model predicting the weekly price (carcass asking price) of wild meat each vendor sold. Diagnostic parameters and interpretation of the plot are provided on top of each panel. Model assessment was conducted in R using *performance*.



**Figure S10.** Diagnostics of the model predicting the weekly price (carcass asking price) per kilogram of wild meat that each vendor sold. Diagnostic parameters and interpretation of the plot are provided on top of each panel. Model assessment was conducted in R using *performance*.



**Figure S11.** Diagnostics of the model predicting the total mass sold per week, three months before and after the ban. Diagnostic parameters and interpretation of the plot are provided on top of each panel. Model assessment was conducted in R using *performance*.



**Figure S12.** Diagnostics of the model predicting the total mass sold per week, six months before and after the ban. Diagnostic parameters and interpretation of the plot are provided on top of each panel. Model assessment was conducted in R using *performance*.