Computer Science at Kent

The Collected Algorithms of the
ACM

Tim Hopkins

Technical Report No. 4-08
Date: Dec 2008

Copyright © 2008 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent CT2 7NF, UK

The Collected Algorithms of the ACM

TIM HOPKINS
University of Kent, UK

December 2, 2008

Abstract

The Collected Algorithms of the ACM (CALGO) is now the longest running journal-
published series of algorithms. After placing CALGO in the context of other journal
algorithm series, we discuss the factors that we believe have made CALGO the well
respected means of publishing mathematical software that it is today. We report on how
moving with the times and technology has ensured the survival of CALGO, and we look
briefly at how we may continue this in the near future.

Keywords: numerical software, software libraries, software quality, mathematical software.

1 Introduction

Collections of scientific routines have existed since the dawn of the digital computing age.
Consisting of around 90 routines written in assembler, one of the first software libraries to
be documented was developed around 1950 at the University of Cambridge for their EDSAC
computer [56]. Authors of routines destined for this library had to demonstrate that their
code was capable of solving a wide variety of problems and was efficiently programmed, well
tested and properly documented. Even at this early stage the basic ground rules required for
the successful take up of library software by end-users were recognized.

During the intervening years such collections have developed in many different directions:
commercial general-purpose (NAG [43], IMSL [54]), institutional (CERN [10], Harwell [50]),
application specific (Applied Statistics [47], Computer Physics Communications [17]), problem
area specific (Eispack [51, 20], Lapack [2, 6]) and Open Source/Freely available (netlib [15],
Gnu [21]). In all cases the driving force has been to provide end-users with reliable, accu-
rate, efficient, general-purpose building blocks with which to construct or guide their own
applications.

The Collected Algorithms of the ACM (CALGO) is unusual in that this collection was
initiated quite early in the development of computer software and is still growing. While the
implementation languages and the means of publishing a specific algorithm have both changed
over the years, the basic ideals such as high quality, robustness and good documentation have
remained and, indeed, improved with time and experience.

In section 2 we look briefly at the history of CALGO and discuss the collection in the con-
text of a number of similar projects that have been undertaken by other journals. Section 3
looks briefly at how the choice of implementation languages has changed and how different
journals influenced this choice. In Section 4, we review how the availability of the published
software has changed and how this has affected the continuation of journal publication of
software. Section 5 provides a discussion of the ways in which CALGO has influenced how

numerical software has evolved and how this evolution has influenced CALGO. Our conclu-
sions are presented in Section 6.

2 History

Several journals have published software either as part of a series of algorithms or just as in-
dividual papers; these include Applied Statistics [47], The Computer Journal (8], Numerische
Mathematik [53], Numerical Algorithms [52], and Computer Physics Communications [17].
In this section we consider how CALGO has changed over the last four decades and how other
journals treated their series of published algorithms.

The CALGO series started in the February 1960 edition of Communications of the ACM
(CACM) with the publication of a procedure for numerical integration [24]. As stated in the
announcement for the new “additional department” [55], submitted procedures were to be
implemented in Algol 60 [44] and submitted in the publication form of Algol. This latter
requirement was to ensure that the printed form of the code was consistent and readable,
for example, by the use of bold font to denote keywords instead of the variety of different
quote marks that were used in practice. One major disadvantage of this requirement was
that the code appearing in print had to be transliterated and rekeyed; an error-prone process.
Although Algol procedures continued to be rekeyed, early Fortran codes appear to have been
photo-reproduced from listings.

In 1975 with the advent of ACM Transactions on Mathematical Software (TOMS) and
because the majority of algorithms being published in CALGO were numerical, CALGO
moved to TOMS, where it has remained.

The two closest journal competitors to CALGO were Applied Statistics, whose algorithms
appeared from 1968 to 1997, and The Computer Journal, where the algorithm series began
in September 1964 and ceased in August 1987.

Like CALGO, The Computer Journal series also started very early; the first nine algo-
rithms actually appeared in the The Computer Bulletin from September 1964 to December
1965 and the rest were published in The Computer Journal. This series can be viewed as a
European competitor to CALGO; the application area, mainly numerical codes, was identical
and the format of the published articles was also very similar to that used for CALGO. In to-
tal there were 123 published papers in this series; with the implementation languages showing
a distinct bias towards ‘European’ languages, for example, Algol 68 and DAP Fortran!

Applied Statistics began its algorithm section in response to a report on a meeting on
statistical programming [3] that had recognized the need for a specialist library because it
felt that statistical software was not properly represented in other series, for example, CALGO
and The Computer Journal.

Numerische Mathematik took a very different approach to publishing algorithm codes.
While there was no single official series within the journal, algorithm papers (which included
full code, a detailed description of the algorithm and the required parameters, a discussion of
the numerical properties and sample test results) were prepublished ahead of their projected
appearance in a series entitled Handbooks for Automatic Computation. Of the four handbooks
envisaged for this series (Linear Algebra, Special Functions, Methods of Approximation and
Integration) only the Linear Algebra volume appeared [57]. This volume contained 29 algo-
rithms, 25 of which had appeared as fascicles.

The other three proposed books in the series failed to materialize presumably because of

the small number of published algorithms (special functions — 6, methods of approximation —
3, integration — 2 compared to 30 for linear algebra) and the rapid decline in the popularity
of Algol 60 from the start of the 1970s. In addition to the Handbook series some 20 other
algorithm codes were published in Numerische Mathematik between 1964 and 1971, all in
Algol 60 and none explicitly designated as containing software.

3 Implementation Languages

CALGO mandated the use of Algol 60 [41] as its implementation language until the publi-
cation of the ASA standard for Fortran in 1966 [4], when the revised Algorithm Policy [25]
allowed both languages. Surprisingly, the first published algorithm in Fortran did not ap-
pear until 1968 [58]. From 1970 onwards the use of Algol 60 steadily declined (the last
Algol submission was in 1977 [16]) and the use of Fortran dominated. PL/1 was added
to the list of approved languages in 1975 [18]. The approved list was replaced in future
policies [34, 35, 36, 37] by a requirement for portability (see section 5 for a more detailed dis-
cussion). Any language is acceptable provided it has wide availability and the author adheres
to the official language standard, if one exists, or is careful to use a subset of the language
that is common to all implementations. Where they exist, the algorithm policy gives details
of the acceptable standard for each language.

Adherence to the Fortran 77 standard was first required in the 1982 Algorithm Policy [36]
although submissions checked by Pfort [49] (Fortran 66) were still acceptable. It was not
until 1990 [37] that the Fortran 77 standard became the sole standard for Fortran. Fortran
2003 [32] is now the defining standard for Fortran although this contains almost all of Fortran
77 as a subset.

Apart from Numerische Mathematik, which only published software written in Algol 60,
all other published series have allowed a variety of implementation languages and most require
adherence to any available standards. Applied Statistics was probably the most prescriptive
issuing an approved list of languages that changed with each new algorithm policy. Fortran
66 or 77 was the only language that was accepted throughout the series, with Algol 60 (until
1981), Algol 68 (1978-88), Cobol (1975-1979), Pascal and APL (1987-end) and PL/1 (1968-
1975) also appearing. While emphasis was placed on standards conformance for the published
software, this rule was relaxed for driver programs.

The question of whether to include languages on an approved list is always going to be
fraught as trends come and go and few authors actually take advantage of non-mainstream
languages. The CALGO solution of requiring the resultant code to be fit for purpose, widely
portable and, if possible, standard-conforming is a good compromise.

Table 1 gives details of the languages that have been used to implement the algorithm series
from Applied Statistics, The Computer Journal and CALGO. It also provides the number of
algorithms accepted in each language and the date of the first appearance of the language in
each series. This clearly shows the overwhelming use of Fortran and, in the early days, Algol
60 for the implementation of numerical software. It also illustrates how languages that have
been greatly hypes to take over from Fortran have failed to gain a foothold in the numerical
community, for example, just one algorithm has appeared implemented in Ada and none have
yet appeared in Java. Given the Fortran community’s continuing commitment to providing
appropriate functionality for numerical computation, this seems unlikely to change in the near
future.

Language CALGO Computer Journal Applied Statistics
Number Year Number Year Number Year

Algol 60 415 | 1960 81 1964 35 1968

Fortran (66,77) 379 | 1968 33 1968 274 1968

P1/1 4 | 1973 1 1972

Non-standard Fortran 3| 1977

APL 4 1977

Ratfor 1| 1981

Nitpack 1] 1984

Algol 68 1 1985

Dap Fortran 1 1985

Assembler 1| 1987

Pascal 1] 1989 2 1984 9 1987

Matlab 25 | 1991

C 16 | 1993 2 1993

Fortran (90+) 23 | 1994

Lisp 111995

C++ 13 | 1997

Ada 1] 1999

Awk 1 | 2000 1 1970

Python 1| 2004

Total 886 123 321

Table 1: Distribution of Algorithms by Implementation Language and First Year of Use

4 Availability of Algorithms

In the early days of journal algorithm series most of the published code was short; few of the
first 250 algorithms that appeared in CALGO exceeded a few tens of executable statements.
Users, therefore, felt no great hardship at having to rekey code; indeed there appears to have
been almost a cottage industry in reporting the successful execution (or otherwise!) of many
of the early CALGO routines. CACM published a large number of certificates and remarks
on previously appearing algorithms, where users either confirmed the correct execution of the
published code or reported the changes necessary to obtain working software.

However, as time progressed the submitted codes grew in size so that rekeying became less
attractive, being both time-consuming and error-prone. In addition, publishers were aware
that an increasing number of their published pages were being taken up with code listings.

ACM was almost alone in solving this problem; with the move to TOMS an algorithm
distribution service was instituted that allowed potential users of published software to obtain
machine-readable copies, initially, on magnetic tape and later on diskettes. At the same time,
full code listings were discontinued from the journal and were made available in a separate
CALGO supplement, initially as printed listing and then on microfiche before the supplement
was discontinued completely in 2004.

Network access began in 1985 with the netlib service [15] allowing users to retrieve indi-
vidual algorithms via electronic mail. All the available CALGO codes are now available via
the ACM’s Digital Library [1].

Providing on-line access to the algorithm submissions has meant that not only is code size

irrelevant but also that other material that might be useful to future implementors can also
be included, for example, test drivers, data and expected results, makefiles and user manuals.
Indeed the move to a free electronic repository for algorithm software and associated material
was the key to the survival of CALGO. This was especially welcomed by authors, who now
view publication in CALGO as a means of greatly expanding the user base of their software.

None of The Computer Journal codes was ever made available by the publisher. The codes
from the Applied Statistics series were never officially made available in machine-readable
form, although an incomplete set of routines has been obtainable via statlib [9] for many
years. A collection of the ‘best’ routines was published as a book [22]; as with the journal,
the sources, which had been reworked to provide a more consistent style, were presented in
printed form.

On the other hand Computer Physics Communications, have provided access to their
software first via magnetic tape and later on-line, although they have always levied a charge
for access. Finally, Numerical Algorithms [52] accepts software as part of a submission; this
is reviewed in parallel with the associated paper and accepted submissions are made available
via netlib. Accepted software remains the responsibility of the authors, who are able to make
corrections and upgrades to the published code.

5 The CALGO Experience

The algorithms that have appeared in CALGO cover a wide range of numerical topics. Table 2
provides a breakdown based on the IBM SHARE Library classification [29]; this illustrates
well the diverse nature of the subject areas and also shows the popularity of linear algebra,
special functions, integration and curve fitting and optimization. Statistical algorithms (G)
account for almost 10% of the total although many of these (58/83) were published prior to
1975. Surprisingly, there has not been a surge of statistical algorithms since the demise of
the Applied Statistics series in 1997.

While a published series of algorithms cannot hope to compete with a commercial library
because it is not able to commission particular codes to generate the necessary depth of
coverage of the field, it can, and does, provide an extremely useful service at other levels.

First, it helps to foster further research in particular areas, as the availability of state of
the art codes means that other researchers have rapid access to the implementation details
of the latest algorithms. Second, it allows application programmers to try out new methods
and software on a wide variety of practical (and, therefore, typically difficult) problems. This
can very quickly expose shortcomings in the new software or provide a springboard for wider
acceptance of the new code. Indeed it is quite common for algorithms appearing in CALGO to
find their way into commercial libraries. Third, they allow a useful sanity check on commercial
algorithms.

One major disadvantage of publishing algorithms is that there is no simple way of unpub-
lishing them if they are found to be defective or if they are superseded by better algorithms
or implementations. A commercial library can just withdraw troublesome code by replacing
it by a superior routine; while this may cause short-term problems to end-users in changing
calls within their code, the benefits are obvious.

In many cases, published algorithms are downgraded because of improved understanding
and more sophisticated analysis techniques. As a simple example consider the linear mul-
tiplicative random number generators that have appeared in CALGO; Algorithms 133 [7],

Numerical Area Number
of Routines

H Operations Research, Graph Structure 56
D1 Quadrature 56
F4 Simultaneous Linear Equations 54
F1 Matrix Operations, including Inversion 51
Z All Others 44
E2 Curve and Surface Fitting 42
F2 Eigenvalues and Eigenvectors of a Matrix 40
Al Real Arithmetic, Number Theory 40
E4 Minimizing or Maximizing a Function 38
S14 Psi Function 32
G6 Permutations and Combinations 29
E1l Interpolation 27
D3 Partial Differential Equations 27
C5 Zeros of one or more Nonlinear Equations 27
S22 Miscellaneous Higher Mathematical Functions 26
D2 Ordinary Differential Equations 26
G5 Random Number Generators 25
M1 Sorting 20
C2 Zeros of Polynomials 18
S15 Polynomials, Hermite 16
J6 Plotting 15
G2 Correlation and Regression Analysis 15
C6 Summation of Series, Convergence Acceleration 15
S17 Bessel Functions of Real Argument 13
S20 Bessel and Related Functions, Miscellaneous 12
D5 Integral Equations 12
C1l Operations on Polynomials and Power Series 11
S13 Sine Integrals 10
G1 Simple Calculations on Statistical Data 10

S21 Theta Functions

S18 Modified Bessel Functions

R2 Symbol Manipulation

02 Simulation of Computing Structure
F3 Determinants

E3 Smoothing

S16 Legendre Functions

G7 Subset Generators

F5 Orthogonalization

B4 Roots and Powers

A2 Complex Arithmetic

K2 Relocation

15 Input — Composite

B3 Exponential and Logarithmic Functions
B1 Trig and Inverse Trig Functions

S19 Kelvin Functions

S03 Partitions

S Approximation of Special Functions
D4 Differentiation

S23 Numerical Differentiation and Integration
M2 Data Conversion and Scaling

L2 Compiling

o

o R NN DNDDNDDNWWWWE B ROt ot

Table 2: Breakdown of CALGO algorithms by numerical subject area

266 [45] and 266R [23]. At the time of publication these were all considered to be useful addi-
tions to the collection. However, application of the spectral test [33, 27] produces the values
given in Table 3. The requirement that {u;}9_, should be greater than unity is obviously not
attained by any of the generators and this indicates that none is suitable for general appli-
cations. They remain on the books as traps for the unwary, although the officially available
code does contain health warnings in the comments!

Generator a m Period 12 "3 4 s e
CACM 133 5 2% m/4 [[0107% 010" 0O(10~7) 0(107% 0(107)
CACM 266 | 3125 226 m/4 | 1.83 0.68 0.53 1.53 2.11
CACM 266R | 125 226 m/4 | O(1073) 0.49 2.36 0.82 5.80

Table 3: Spectral test results for CALGO random number generators

That publication in CALGO can provide the impetus for better algorithms is clear in a
number of areas; for example, consider the computation of various special functions where
numerous publications over the years have improved the overall accuracy and/or the range of
values for which accurate results may be computed.

CALGO has always striven to publish high quality software. This is a moving target as
the definition of quality, when applied to numerical software, has evolved over the years as our
understanding of numerical applications and software engineering has improved. In addition,
the term quality when applied to software may mean very different things to different people.

Prior to the move of CALGO to TOMS, algorithm codes were already being peer reviewed;
authors were required to submit code either on cards or magnetic tape (tapes were returned!).
The code was at least compiled and executed on some of the author provided test cases
although it is not clear if this was performed by reviewers or the Algorithms Editor.

After 1975, reviewers received the code with the expectation that it was reviewed to the
same standard as journal papers. Since the early 1990s the distribution of code to referees
has routinely been via networks and the standard to which the software is reviewed has
become increasingly rigorous. Authors are now required to submit extensive test programs
which exercise all the features of their software along with files containing the expected run-
time outputs. Referees are asked not only to check that the author supplied test programs
execute correctly but also to perform additional testing of their own and to quality assure the
code itself. In recognition of the effort involved in this process, the time allowed for review is
longer that for normal research papers. As well as increasing exposure to the user community,
authors recognize that acceptance of an algorithm into CALGO acts as a certification of their
code and thus provides added status over publication via a personal web page.

In the beginning, authors publishing in CALGO were required to restrict the language
facilities they used to those published in the then current Algol 60 reference manual [44, 41].
As more languages became available, portability became a requirement with strict adherence
to available language standards. The onus was on authors to provide proof of the portability
of their software; this could be by

e showing that code executed correctly on hardware using three different instruction sets,
or

e using software tools to check for strict adherence to the language standard. (Authors
of Fortran software could obtain copies of the pfort Fortran 66 standard conformance

checker [49] from the Algorithms Editor.)

CALGO thus attempted to further the use of software tools, something that many authors
are still reticent to do today. The requirements for portability have no doubt ensured wide
use of the software along with the longevity of the implementations.

Programming advice was, however, restricted to general software quality concerns, for
example, the consistent naming of machine-dependent constants and adequate documentation
of user-supplied parameters. Compared to other journals this advice was relatively low key;
for example, contributors to the Applied Statistics algorithms series were faced with six pages
of detail including advice on code layout, precision, label, jumps, and ifs, the construction of
loops, etc. [48]. In retrospect CALGO was possibly too lax; for example, it never required
user input to be checked, nor did it prescribe how problems detected during execution should
be reported to the user, leading to major inconsistencies over the years.

The non-prescriptive approach to implementation languages has generally worked in that
it has allowed authors both to experiment (not always successfully) with new languages (for
example, Lisp and Python [39]) and to reflect popular use (for example, Matlab [26]). Imple-
mentation languages do, however, pose a number of problems.

First, languages fall into disuse, which can make future-proofing published codes extremely
difficult if not impossible. Algol 60, for all its advantages as an implementation language over
its nearest competitor Fortran, failed to gain the support of a number of major hardware
manufacturers, most notably IBM, resulting in a rapid decline in its use. This meant that
the wealth of algorithms developed in Algol during the 60s and early 70s quickly became
unavailable unless they are translated into Fortran.

Fortran itself has evolved through a variety of standards [4, 5, 30, 31, 32]. However, much
effort has been expended to ensure that, with each successive standard, software adhering
to the previous standard is still, to a very large extent, valid. A project to modernize the
Fortran codes that have appeared in ACM TOMS [28] aimed at using a small number of newer
features to improve the portability of the software and to remove a large number of defects
that could be detected using run-time checking facilities available with modern compilers. It
did not attempt any major restructuring of the software.

While tools are available for automatically upgrading old Fortran code (nag_struct [42]
and spag [46] both offer automatic improvements to the control structure and various tools
are available for translating old fixed format sources into modern free format, for example,
Spag [46]) it can be argued that using old code as a black box is likely to be cheaper and less
error prone. This is what generally happens with library codes and, since only executables
are usually provided, the user doesn’t worry!

Testing and maintenance have always been important aspects in the development of
CALGO. When software exchange was difficult, testing relied on individual users rekeying
the code, developing their own test programs and data, and reporting their experiences via
Remark and Certificate papers. Testing requirements have become far more formalized over
the years and extensive testing material now forms a part of all algorithm submissions. This
material should include not only simple example drivers to allow reviewers and users to check
their implementation but also more stringent tests designed to exercise the code fully and
to illustrate the range of problems that can be solved. All test material is included in the
software bundle that is published in CALGO. We believe that this strict regimen has been
one of the main reasons for the relatively low number of errors reported in published software.

The difficulty of generating fault-free software is well known and some formal mechanism

is necessary for users to report bug fixes and for authors to update their software. In the past
this has been performed using formally reviewed Remark papers that, in the case of a bug fix,
detail the source code changes required. All the criticism levelled at the publication of source
code can be applied to Remarks — in the age of electronic publishing this is an outmoded
mechanism. In the near future we expect to move CALGO into a source code control system
like Subversion [11] and to use a system like Trac [40] to publish corrections and updates. All
code updates will be summarised in TOMS in order to preserve the audit trail.

6 Conclusion

CALGO has seen the publication of algorithms that have had a major impact on the way in
which we perform numerical computation; for example, the various families of Basic Linear
Algebra Subroutines [38, 13, 12] and the use of a standard function for accessing machine
dependent parameters [19].

Other series of published algorithms have met with similar success. The importance of
the pre-publication of the Linear Algebra algorithms and the subsequent appearance of the
Handbook for Linear Algebra cannot be underestimated. These codes set the standards that
all writers of numerical software have since aspired to, and translated into Fortran, in some
cases with minor improvements, they formed the core of the Eispack [51, 20] and Linpack [14]
projects. In addition, both the Algol 60 version and the Fortran translations formed a major
part of the first NAG subroutine libraries [43].

We believe that CALGO is still an important catalyst for furthering research in numerical
computation as well as being an extremely valuable source of state of the art codes for use
in applications. Authors of numerical software continue to recognize CALGO as a means of
obtaining extensive peer review of their code as well as the underlying algorithm and, almost
without exception, submitted software is improved by the review process. By making the
sources of CALGO freely available electronically, the ACM has ensured that the published
codes are accessible by a very wide audience; an added bonus for authors.

The move to electronic publishing is providing further opportunities to make the collection
more dynamic and to allow for a more rapid and efficient mechanism for the reporting and
fixing of software errors. We sincerely hope that, by continuing to move with the technology,
CALGO will remain well respected and leading-edge in the decades to come.

References

[1] ACM. Digital Library, 2008. Available from: http://www.acm.org/d1l/ [cited 10 October
2008].

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: Users’ Guide,
volume 9 of Software, Environments, and Tools. SIAM, Philadelphia, third edition, 1999.

[3] Anonymous. Statistical programming: Prologue. Applied Statistics, 16(2):88-88, 1967.

[4] ANSI. Programming Language Fortran X3.9-1966. American National Standards Insti-
tute, New York, 1966.

[5]

[6]

[14]

[15]

ANSI. Programming Language Fortran X3.9-1978. American National Standards Insti-
tute, New York, 1979.

V. A. Barker, L. S. Blackford, J. Dongarra, J. Du Croz, S. Hammarling, M. Marinova,
J. Waéniewski, and P. Yalamov. LAPACK95: Users’ Guide. STAM, Philadelphia, 2001.

P. G. Behrenz. Algorithm 133: Random. Commun. ACM, 5(11):553, November 1962.
http://dx.doi.org/http://doi.acm.org/10.1145/368996.368971 .

British Computer Society. The Computer Journal, 2008. Available from: http:
//comjnl.oxfordjournals.org/current.dtl [cited 10 October 2008].

Carnegie Mellon University. StatLib, 2008. Available from: http://1ib.stat.cmu.edu/
[cited 10 October 2008].

CERN - European Organization for Nuclear Research. CERN program library, 2008.
Available from: http://cernlib.web.cern.ch/cernlib/ [cited 10 October 2008].

Ben Collins-Sussman, Brian Fitzpatrick, and C. Pilato. Version Control with Subversion.
O’Reilly Media, Inc., Sebastopol, CA, 2008.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. Algorithm 679: A set of Level
3 Basic Linear Algebra Subprograms: model implementation and test programs. ACM
Trans. Math. Softw., 16(1):18-28, March 1990. http://dx.doi.org/http://doi.acm.
org/10.1145/77626.77627 .

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Algorithm 656: An
extended set of Basic Linear Algebra Subprograms: model implementation and test pro-
grams. ACM Trans. Math. Softw., 14(1):18-32, March 1988.

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK: Users’ Guide.
SIAM Publications, Philadelphia, 1979.

Jack J. Dongarra and Eric Grosse. Distribution of mathematical software via electronic
mail. Commun. ACM, 30(5):403-407, May 1987. http://dx.doi.org/http://doi.
acm.org/10.1145/22899.22904 .

T. M. R. Ellis and D. H. McLain. Algorithm 514: A new method of cubic curve fitting
using local data [E2]. ACM Trans. Math. Softw., 3(2):175-179, June 1977. http://dx.
doi.org/10.1145/355732.355738 .

Elsevier. Computer Physics Communications, 2008. Available from: http://www.cpc.
cs.qub.ac.uk/cpc/ [cited 10 October 2008].

L. D. Fosdick. Algorithms policy. ACM Trans. Math. Softw., 1(1):5-6, March 1975.
http://dx.doi.org/http://doi.acm.org/10.1145/355626.355629 .

P. A. Fox, A. D. Hall, and N. L. Schryer. The PORT mathematical subroutine library.
ACM Trans. Math. Softw., 4(2):104-126, June 1978. http://dx.doi.org/http://doi.
acm.org/10.1145/355780.355783 .

10

[20]

[21]

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matrixz Figensystem Rou-
tines — FISPACK Guide Ezxtensions, volume 51 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1977.

GNU. GSL - GNU Scientific Library, 2008. Available from: http://www.gnu.org/
software/gsl/ [cited 10 October 2008].

P. Griffiths and 1. D. Hill, editors. Applied Statistics Algorithms. Ellis Horwood, 1985.

L. Hansson. Remark on Algorithm 266. Commun. ACM, 9(9):687, September 1966.
http://dx.doi.org/http://doi.acm.org/10.1145/365813.365838 .

R. J. Herbold. Quad I. Commun. ACM, 3(2):74, February 1960. http://dx.doi.org/
http://doi.acm.org/10.1145/366959.366964 .

J. G. Herriot. Revised algorithms policy — August 1966. Commun. ACM, 9(9):683,
September 1966. The doi associated with this reference is actually for Algorithm 290:
linear equations, exact solutions, by J. Boothroyd. The revised policy is on the first page
of this paper but has not been included as a separate document. http://dx.doi.org/
10.1145/365813.365822 .

Desmond J. Higham and Nicholas J. Higham. MATLAB Guide. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

T. R. Hopkins. AS193 — A revised algorithm for the spectral test. J. Roy. Statist. Soc.
Ser. C, 32(3):328-335, 1983.

T. R. Hopkins. Renovating the Collected Algorithms from ACM. ACM Trans. Math.
Softw., 28(1):59-74, March 2002. http://dx.doi.org/http://doi.acm.org/10.1145/
513001.513005 .

IBM Users’ Group. SHARE Reference Manual, 1973.

ISO/IEC. Information Technology — Programming Languages — Fortran (ISO/IEC
1559:1991(E)). ISO/IEC Copyright Office, Geneva, 1991.

ISO/IEC. Information Technology — Programming Languages — Fortran - Part 1: Base
Language (ISO/IEC 1589-1:1997). ISO/TEC Copyright Office, Geneva, 1997.

ISO/IEC. Information Technology — Programming Languages — Fortran - Part 1: Base
Language (ISO/IEC 1539-1:2004). ISO/IEC Copyright Office, Geneva, 2004.

D. E. Knuth. The Art of Computer Programming Vol 2: Semi-numerical Algorithms.
Addison-Wesley, London, second edition, 1981.

F. T. Krogh. Algorithms policy. ACM Trans. Math. Softw., 4(2):97-99, June 1978.
http://dx.doi.org/http://doi.acm.org/10.1145/355780.355781 .

F. T. Krogh. Algorithms policy (revised by W. Miller). ACM Trans. Math. Softw.,
5(2):129-131, June 1979. http://dx.doi.org/http://doi.acm.org/10.1145/355826.
355827 .

11

[36]

[37]

[38]

[48]

[49]

[50]

F. T. Krogh. Algorithms policy (revised by R. J. Hanson). ACM Trans. Math. Softw.,
8(1):1-4, March 1982. http://dx.doi.org/http://doi.acm.org/10.1145/355984.
355985 .

F. T. Krogh. Algorithms policy (revised by R. Renka). ACM Trans. Math. Softw.,
16(3):293-296, September 1990. http://dx.doi.org/http://doi.acm.org/10.1145/
79505.356315 .

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Algorithm 539: Basic Linear
Algebraic Subprograms for Fortran usage. ACM Trans. Math. Softw., 5(3):324-325,
September 1979. http://dx.doi.org/http://doi.acm.org/10.1145/355841.355848

Mark Lutz. Programming Python: Object-Oriented Scripting. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2001.

D. J. Murphy. Managing Software Development with Trac and Subversion. Packt Pub-
lishing Ltd, Birmingham, UK, December 2007.

Peter Naur, J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J.
Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden,
M. Woodger, and P. Nauer. Revised report on the algorithmic language ALGOL 60. Com-
mun. ACM, 6(1):1-17, January 1963. http://dx.doi.org/10.1145/366193.366201 .

Numerical Algorithms Group, Oxford, UK. NAGWare f90 Tools (Uniz), first edition,
May 1995.

Numerical Algorithms Group Ltd. NAG Fortran Library, 2008. Available from: http:
//www.nag.com/.

Alan J. Perlis and K. Samelson. Preliminary report — International Algebraic Language.
Commun. ACM, 1(12):8-22, December 1958. http://dx.doi.org/10.1145/377924.
594925 .

M. C. Pike and I. D. Hill. Pseudo-random numbers. Commun. ACM, 8(10):605-606,
October 1965. http://dx.doi.org/http://doi.acm.org/10.1145/365628.365648 .

Polyhedron Software, Oxford, UK. plusFORT (Revision D), 1997. Available from: http:
//www .polyhedron.com/spagOhtml [cited 16 October 2008|.

Royal Statistical Society. Series C (Applied Statistics), 2008. Available from: http://
www.blackwellpublishing.com/journal.asp?ref=0035-9254 [cited 10 October 2008].

J. P. Royston, J. B. Webb, P. Griffiths, and I. D. Hill. Miscellanea: The construction
and description of algorithms. Applied Statistics, 36(1):94-103, 1987.

B. G. Ryder. The PFORT verifier. Softw. Pract. Ezxper., 4(4):359-377, April 1974.
http://dx.doi.org/10.1002/spe.4380150402 .

Science & Technology Facilities Council. HSL, 2008. Available from: http://www.cse.
scitech.ac.uk/nag/hsl/ [cited 10 October 2008].

12

[51]

[52]

[53]

[54]

[55]

[56]

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and
C. B. Moler. Matriz Figensystem Routines — FISPACK Guide, volume 6 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, second edition, 1976.

Springer Verlag. Numerical Algorithms, 2008. Available from: http://www.
springerlink.com/content/101751/ [cited 10 October 2008].

Springer Verlag. Numerische Mathematik, 2008. Available from: http://www.
springerlink.com/content/100479/ [cited 10 October 2008].

Visual Numerics Inc. IMSL Fortran numerical library, 2008. Available from: http:
//www.vni.com/products/imsl/fortran/overview.php [cited 10 October 2008].

J. H. Wegstein. Algorithms: Announcement. Commun. ACM, 3(2):73, February 1960.
http://dx.doi.org/10.1145/366959.366964 .

Maurice V. Wilkes, David J. Wheeler, and Stanley Gill. The Preparation of Programs
for an Electronic Digital Computer: Special Reference to the EDSAC and the Use of a
Library of Subroutines. Addison-Wesley, Reading, MA, USA, 1951.

J. H. Wilkinson and C. Reinsch. Handbook for Automatic Computation Volume II -
Linear Algebra. Springer-Verlag, New York, 1971.

B. F. W. Witte. Jacobi polynomials. Commun. ACM, 11(6):436-437, June 1968. http:
//dx.doi.org/http://doi.acm.org/10.1145/363347.363393 .

13

