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Abstract

1. Understanding whether a species still persists, or the timing of its extinction is challenging,
however, such knowledge is fundamental for effective species management.

2. For the vast majority of species our understanding of their existence is based solely on
sighting data that can range from museum specimens and clear photographs, through
vocalisations, to markings and oral accounts.

3. Here we review themethods that have been developed to infer the extinction of species from a
sighting record, providing an understanding of their assumptions and applications. We have
also produced an RShiny package which can be used to implement some of the methods
presented in the article.

4. While there are a number of potential areas that could be further developed, the methods
reviewed provide a useful tool for inferring species extinction.

Impact statement

When a species has gone unseen for a period of time, the question naturally arises as to whether
the species still persists. Knowing whether a species is extant or extinct is fundamental for
effective conservation. A series of methods have been developed for the inference of extinction
based on sighting data (e.g. museum specimens, photographs, markings and oral accounts).
Here we provide a review of the different methods describing the underlying assumptions and
important considerations when applying these methods. To increase the accessibility of these
methods we provide an RShiny package with instructions for its application. While these
methods have most frequently been applied to extinctions of species, these end-point estima-
tions have wider relevance having been applied in the context of archaeology, geological
stratigraphy, phenological studies, and phylogenetics, as well as more recently the estimation
of origination in archaeology, epidemiology, and geology.

Introduction

We are now entering a time of immense environmental upheaval with a multitude of factors
(e.g. habitat degradation, climate change, over-exploitation) driving species to extinction as a
result of human activities. This has led some to suggest we are entering the 6th mass extinction
event (Ceballos et al. 2015), with extinction rates orders of magnitude greater than background
extinction rates. Knowing if a species is extinct is therefore not only fundamental to the
conservation of species through effective resource allocation but also to our understanding of
how the Earth is changing. The problem, however, is that extinctions are very rarely observed and
therefore must be inferred given the available data.

According to the IUCN Red List criteria (IUCN 2012), the gold standard by which threat
assessments are undertaken for species, a species may be listed as Extinct (EX), if there is no
reasonable doubt that the last individual has died. In essence, the population size has reached
zero. However, there is often uncertainty as to whether a species is extinct due to the lack of direct
observations, and so more recently, the category Critically Endangered (Possibly Extinct) (CR
(PE)) was developed (IUCN Standards and Petitions Committee 2022).

Uncertainty as to whether a species is extinct largely arises from the lack of direct observation
of the extinction which itself is the result of a lack of data. For the vast majority of species, their
persistence is only known through sightings, whether direct (e.g. specimens or photographs) or
indirect (e.g. footprints, nests, scrapes, oral accounts). This is also the case for formerly more
common species that have undergone a decline, as when a species approaches extinction, data
often becomes scarce.

Prior to the early work of Solow (1993a,b), little consideration had been given to the
development of statistical methods for inferring historical extinctions (i.e. extinctions since

Cambridge Prisms: Extinction

www.cambridge.org/ext

Review

Cite this article: McCrea RS, Cheale T,
Campillo-Funollet E and Roberts DL (2024).
Inferring species extinction from sighting
data. Cambridge Prisms: Extinction, 2, e19, 1–8
https://doi.org/10.1017/ext.2024.18

Received: 03 November 2023
Revised: 19 June 2024
Accepted: 20 June 2024

Keywords:
extaille; extinction; extirpation; Poisson
process; rediscovery; time series

Corresponding author:
Rachel McCrea;
Email: r.mccrea@lancaster.ac.uk

© The Author(s), 2024. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

https://doi.org/10.1017/ext.2024.18 Published online by Cambridge University Press

https://orcid.org/0000-0002-3813-5328
https://doi.org/10.1017/ext.2024.18
mailto:r.mccrea@lancaster.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/ext.2024.18


1500); although McArdle (1990) laid the foundation for using
probabilistic arguments for extinction declarations. It is, however,
important to note that there is considerable literature in palaeo-
biology research on extinction inference, although this specifically
refers to the inference of the timing of extinction rather than the
question of whether the species is extinct.

Earlyworks (see Statisticalmethods for examples of this work) are
based on the question, given the distribution of sightings (t1,..., tn)
through time, what is the probability another sighting would not
have occurred between the last sighting (tn) and a specified date
(e.g. today’s date)? From the initial work of Solow (1993a), more
complex models have been developed that incorporate potentially
important factors, such as assumptions around the shape of the
decline (e.g. Solow 1993b), sighting uncertainty (e.g. Solow et al.
2012) and underlying sampling effort (e.g. McCarthy 1998).

The state-of-the-art of inferring species extinction has been
reviewed in a number of previous papers, e.g. Solow (2005) and
Boakes et al. (2015). The methodological developments in this area
have typically followed the application of well-established Bayesian
or classical statistics principles to an explicit statistical model of the
sighting record. We present a review of the literature around the
development of methods for inferring historical extinctions
(i.e. extinctions since 1500), notable extensions and future challenges

Statistical methods

It is important to first understand two terms frequently used within
the extinction modelling literature, specifically ‘sighting’ or ‘sight-
ing event’, and ‘sighting record’. In this literature, a ‘sighting’ or
‘sighting event’ refers to a single observational data point related to
the existence of the species. These, as mentioned, can be anything
from amuseum specimen or clear diagnostic photograph, to mark-
ings and oral accounts. A ‘sighting record’, however, is a series of
sightings of a particular species, rather than a single event; that is
not to say that some species are only known from a single specimen
and therefore such a sighting would also constitute the sighting
record (Roberts and Jarić 2020).

Let t1 < t2 <… < tn be the times at which a species is sighted
during an observation period (0, T). Suppose that the studied
species become extinct at time TE, then we might be interested in
determining whether extinction has occurred, i.e. whether TE < T.
Two statistical paradigms exist for inference about extinction:

Classical/Frequentist methodology: Classically, an assessment
could be made of the hypothesis test H0: TE ≥ T versus H1: TE < T.
The null hypothesis in this case corresponds to the species being
extant and the alternative hypothesis corresponds to the species
being extinct. It is possible to calculate a probability (p-)value which
corresponds to the probability of observing the sighting record under
the null hypothesis. If the p-value is small this means that there is
evidence to reject the null hypothesis and infer that the species is
indeed extinct. The issue of deciding upon an appropriate threshold
(significance level,α) to draw this conclusion is of course challenging,
and there is considerable current literature on the subjectivity of
p-values – see for example Wasserstein and Lazar (2016). Alterna-
tively, the focusmight be on the estimationofTE and equivalently it is
possible to construct the upper bound of a 100(1 � α)% confidence
interval for TE of the form (tn, TE

U). Note that this formulation is a
one-sided confidence interval with the last sighting being the lower
bound. It is also possible to construct a two-sided confidence interval,
as in Roberts and Solow (2003), where the lower bound could be
greater than the time of the last sighting.

Bayesian methodology: In a Bayesian framework, it is possible to
evaluate the posterior distribution of the species being extant as:

PðTE >Tjt1,…, tnÞ=
Pðt1,…, tnjTE >TÞPðTE >TÞ

Pðt1,…, tnjTE >TÞpðTE >TÞ+Pðt1,…, tnjTE ≤TÞð1�PðTE >TÞÞ
where Pðt1,…, tnjTE >TÞ denotes the likelihood of observing the
sighting data given the species is extant and pðt1,…, tnjTE ≤TÞ
denotes the likelihood of observing the sighting data given the
species is extinct by T. p TE >Tð Þ denotes the prior probability that
the population is extant.

The Bayes factor is defined to be the ratio of the likelihood of the
sighting data under TE >T and TE ≤T , respectively:

Bðt1,…, tnÞ = Pðt1,…, tnjTE >TÞ
Pðt1,…, tnjTE ≤TÞ

This represents the ratio of the posterior to prior odds in favour of
species being extant. A large value of B(t1,..,tn) represents substan-
tial evidence that the species is extant whilst small values indicate
evidence for extinction.

Inferring extinction

Regardless of which inferential approach is taken, the methods
for inferring extinction which we present here rely on the general
assumption that the sightings, t1,…, tn can be modelled as
realisations of a point process which is defined by a rate function
denoted by λ(t). The point process typically used is the non-
stationary Poisson process, and the rate λ(t) is interpreted to
be the instantaneous rate of sightings at time t, as described in
Solow (2005). Within this context, λ(t) can be considered to
be proportional to the abundance of the species and the sam-
pling effort to sight the species, however, we will later describe
methods that have been developed to separate these two
processes.

Using this model structure requires a number of stringent
assumptions to bemade. The sightingsmust bemade in continuous
time and must be independent of one another. We discuss the
potential violation of these assumptions and other aspects of
the implementation of these methods in Important model consid-
erations section.

Using the properties of the Poisson process, the number of
sightings in a fixed time period (0,T) has a Poisson distribution

with mean ΛðTÞ= R T
0 λðuÞdu . The number of sightings in the

period (0, T), denoted n, does not contain any information about
extinction time so it is reasonable to condition on it. Conditional on
n, the sightings are independent and identically distributed over the

time period with probability density function f ðtÞ= λðtÞ
ΛðTÞ . Thus

models, defined by f (t) can be proposed and under the null
hypothesis of an extinction time, TE this is equivalent to the
determination of the endpoint of a distribution.

Parametric models
Unsurprisingly, early proposals for modelling sighting data made a
number of simplifying assumptions. In particular, the stationary
Poisson process, which assumes sightings are uniformly distributed
over time, such that f (t) = 1/Twas addressed in both a classical and
Bayesian framework in Solow (1993a). A truncated exponential
formulation, which allows the sighting rate to decline over time was
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presented in Solow (1993b) and further developed in Solow and
Helser (2000). The truncated exponential model is appropriate in
the case when the sighting rate is proportional to population size
which, prior to extinction, declines exponentially. Rout et al. (2009)
provided a Bayesian framework for the determination of whether
extinction has occurred under this declining sighting rate model,
but within the context of eradication of invasive species.

A substantial number of modifications have been made to these
basic models with either constant or declining sighting rate. For
example, McCarthy (1998) derived a model which can account for
changes in collection effort and Roberts and Jarić (2020) showed
how this could be adapted for data from a single specimen.
McInerny et al. (2006) modified the approach by incorporating
sighting rate into the model. Explicitly, their method generates a
probability that another sighting will occur given the previous
sighting rate and the time since last observation. These sighting
rates can then be used to contrast species, even when sighting data
may have been collected at different times.

Non-parametric models
The approaches described so far are parametric, i.e. a statistical
model, defined in terms of a small number of parameters, has
been adopted via the specification of the probability density
function, f(t). Alternatively, it is possible to use a statistical
method in which the data are not presumed to come from pre-
scribed models. This approach is referred to as a non-parametric
approach. Solow and Roberts (2003) propose a non-parametric
test for extinction, based on the general endpoint estimation
method of Robson andWhitlock (1964). This approach performs
well when the sighting rate is constant, however will have lower
power than the corresponding parametric approach. Jarić and
Ebenhard (2010) modified this non-parametric test to account
for trends in the sighting interval. Unlike the parametric
approaches we have presented, the non-parametric approach
does not require knowledge of the start time of the sighting
interval or number of sighting observations, and inference is
performed with just knowledge of the properties of the later
sightings. This property, as explained in Solow (2005), motivates
the use of the property that the joint distribution of the k most

recent sightings is the Weibull extreme value distribution (Coles
2001). Solow and Roberts (2003) developed an approach, based
on optimal linear estimation (referred to as the OLE approach in
the extinction literature) to estimate TE and derived an upper
confidence bound and p-value for inferring extinction. The
method was used to estimate the extinction time of the Dodo,
Raphus cucullatus.

Table 1 collates the p-value, upper 100(1 � α)% confidence
bound and where available, the estimator of extinction time, T̂E,
for the constant sighting rate (Uniform)model, declining sighting
rate (Truncated exponential) model, non-parametric approach
based on end point estimation and the corresponding adapted
version which accommodates trends in sighting rate and the
extreme value distribution approach. To make the methods of
Table 1 more accessible we have collated them within an RShiny
app, available at https://tommy-cheale-shinyapps.shinyapps.io/
New_ext_pap/.

Bayesian inference requires an appropriate choice of prior prob-
ability of extinction (Solow 2016a, b) and also requires the choice of
a prior distribution for the rate of the Poisson process, λ(t). One
possibility is to use a non-informative prior, or alternatively expert
opinion can be used to construct an informative prior. Whichever
approach is taken, it is prudent to assess prior sensitivity to avoid
inadvertent influence on the conclusions from the analysis.
Depending on the choice of prior probabilities it can be possible
to derive an explicit form for the Bayes factor.

Under an assumption of constant sighting rate and non-
informative prior on the rate of the Poisson process and a prior
which assumes all values of TE are equally likely, the Bayes factor,
derived in Solow (1993a) is given by:

B t1,…, tnð Þ= n�1

T
tn

� �n�1
�1

:

These assumptionswere relaxed inRoutet al. (2009) toaccommodate
a decreasing sighting rate, such that λ(t) = mt�a, where m is a constant
and a ∈ (0, 1). When a = 0 this simplifies to the constant sighting rate
model. The corresponding Bayes factor now generalises to:

Table 1. p denotes the p-value, such that the null hypothesis H0:TE ≥ T can be rejected at the significance level α if p < α

Approach p T̂E T̂
U
E

Uniform1 tn
T

� �n n + 1
n tn tn

α1=n

Truncated exponential2 F tnð Þ
F Tð Þ

tn +

P s=tn½ �
i = 0

�1ð Þi n
i

� �
s�itnð Þn�1

n n�1ð Þ
P s=tn½ ��1

i = 0
�1ð Þi n�1

i

� �
s� i + 1ð Þtnð Þn�2

Ϯ

End point estimation3 tn�tn�1
T�tn�1

tn + tn� tn�1ð Þ tn + 1�α
α tn� tn�1ð Þ

Adapted end point estimation4 tn�1
n�1 + γ

tn�1
n�1 + γ + T�tnð Þ

– tn + tn�1
n�1 + γ

� �
× 1�α

α

Weibull extreme value5
exp �k T�tn

T�tn�k + 1

h i1=ν̂� � Pk
i = 1witn�i + 1

tn�c αð Þtn�k + 1

1�c αð Þ

F xð Þ= 1�P s=x½ �
i = 1 �1ð Þi�1 n

i

� �
1� ix

s

� �n�1
where s=

Pn
i = 1ti and denotes the integer part. Ϯ denotes that the upper confidence limit has to be calculated numerically. γ denotes a coefficient of

trend in sighting intervals (the average change in length of intervals between each two consecutive sightings) and is given by γ =
Pn�1

i = 2
ti + 1�ti½ �� ti�ti�1½ �ð Þ

n�2 . ν̂ = 1
k�1

Pk�2
i = 1

tn�tn�k + 1
tn�ti + 1

, w = ðe0Y�1eÞ�1Y�1e

where e is a vector of k 1’s and Y is the symmetric k × k matrix with element Y ij =
Γ 2υ̂+ ið ÞΓ υ̂+ jð Þ
Γ υ̂+ ið ÞΓ jð Þ for j≤ i, and c αð Þ= � logα

k

� �ν̂
.

1Solow (1993a).
2Solow (1993b).
3Solow and Roberts (2003)
4Jarić and Ebenhard (2010).
5Presented in Solow and Roberts (2003) with mathematical detail given in Solow (2005).
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B t1,…, tnð Þ= n 1�að Þ�1

T
tn

� �n 1�að Þ�1
�1

Uncertain and certain sightings

The Bayesian framework also provides a flexible mechanism by
which to incorporate uncertainty in sighting records. This principle
was first introduced in Solow et al. (2012) and further explored in
Kodikara et al. (2018). Following the notation proposed in Kodi-
kara et al. (2018), the first (termed Model 1) assumes that the
sighting record is divided into two parts with the division based
on the unknown extinction time, TE. Valid sightings in the period
before extinction follow a stationary Poisson process with rate Λ
and invalid sightings follow a stationary Poisson process with rate
Θ. Over the second time period, all sightings are invalid and follow a
stationary Poisson process with rate Θ. Let j denote the number of
valid uncertain sightings before TE. If nc and nu denote the number
of certain and uncertain sightings respectively, there are then nc + j
valid sightings in the interval (0, TE) and n � (nc + j) in valid
sightings in (0, T). It is then possible to construct the likelihoods for
the valid and invalid sightings in these time periods and to infer
extinction from the observed sighting data.

Model 2 assumes that certain sightings follow an independent
Poisson process with rateM, while valid uncertain sightings follow
a stationary Poisson process with rateΛ and invalid sightings follow
a stationary Poisson process with rate Θ. The Bayes factors corres-
ponding to these models do not have closed-form solutions and so
need to be calculated numerically. These twomodelling approaches
were found to differ in conclusion for an application to the ivory-
billed woodpecker and particular sighting sensitivities were
explored in Kodikara et al. (2018). Their finding was that each
model was sensitive to certain sightings within the data set and it is
not possible to ascertain which one to use for any given application.

Themodelling approaches for accounting for certain and uncer-
tain sighting data had typically made the assumption of sighting
data arising from constant rate Poisson processes. Kodikara et al.
(2021) relaxed this assumption by extending the models to accom-
modate non-homogeneous Poisson processes. The use of the non-
homogeneous Poisson process offers considerable flexibility, for
example, this model can accommodate species sighting records
where the population size and/or sighting generation process
changes through time. Interestingly, they also framed the extinction
time as a change-point for uncertain sightings, since uncertain
sightings before the extinction time will consist of both valid and
invalid sightings, while after the extinction time, only uncertain
sightings will be observed.

It is clear that accounting for uncertainty in sighting observa-
tions is important as otherwise estimates of extinction time will be
biased (Roberts et al. 2010). However, it is important to also
recognise potential limitations of what can be determined from
the sighting record. In particular, Solow and Beet (2014) introduce
two plausible statistical models for a sighting record, the first
assumes certain and valid uncertain sightings arise from the same
process, whilst the second assumes they arise from independent
processes. Conclusions regarding the extinction of the Ivory-billed
woodpecker were different depending on which underlying process
was assumed. Deciding which model is more appropriate will
depend on the natural history of the sighting record, i.e. how the
sighting observations have been recorded. It is also worth noting
that the conclusions are also sensitive to the choice of prior distri-
butions for the rate parameter, Λ.

A number of papers have proposed incorporating measures of
sighting reliability, for example, assessment of certain and uncer-
tain sightings was further expanded in Thompson et al. (2013)
which incorporated expert estimates for observing the species. This
approach was further extended in Lee et al. (2014) to incorporate
uncertainty in the priors and inclusion of sampling effort and
observation reliability was explored in Jarić and Roberts (2014).
Numerical implementation of this approach can be found in Lee
(2014). Thompson et al. (2017) provides guidance for simultaneous
analysis of both record and survey data whilst accounting for data
quality. Thompson et al. (2019) implements Bayesian updating,
which allows probabilities of extinction to be updated year-by-year
as new data come to hand. This approach means that the posterior
distribution from year t is set to be the prior in year t + 1 and results
in a Bayes Factor which also updates each year. However, Lee et al.
(2017) evaluated how useful expert opinion on the quality of
sighting data is when inferring extinction and found that incorp-
orating expert estimates of sighting reliability had little effect on
inference, and instead classifying sightings as certain or uncertain
was more useful. It should be noted that validity probabilities
attached to sightings combine prior information about extinction
time and information about the skill of the observer and so should
not be used in isolation (pers. comm. Solow) when inferring
extinction time (Lee et al. 2015).

An alternative approach proposed by Brook et al. (2019)
obtains the empirical sampling distribution of extinction time,
by re-sampling without replacement from the sighting record.
Sighting reliability is used as the probability of inclusion of an
individual sighting observation and extinction time is estimated
using one of the preferred models described in this review. The
confidence bounds of extinction time can be obtained directly from
the empirical distribution. Solow (2023) documents some concerns
regarding the statistical properties of the extinction date estimator
and confidence interval proposed in Brook et al. (2019) and high-
lights that the estimated extinction time will exceed the true extinc-
tion time when reliability ratings are high. However, as described in
Jarić et al. (2023) the method of Brook et al. (2019) is not designed to
be a method to obtain an extinction-date estimator, rather it is
proposed as a pre-processing step applied to the input data prior
to further analysis. The re-sampling method does not make any
assumptions about the model used for inference; thus, it can be used
in combination with the methods presented in Table 1.

Important model considerations

This article reviews the plethora of methodological developments
which have been proposed to be able to infer species extinction
from sighting data. With such a range of methods available, it is of
course desirable to provide guidance on which methods should be
used for a particular application. Each of the describedmethods will
make model assumptions and it is unfortunately impossible to test
the validity of these assumptions from sighting data alone. How-
ever, given conclusions from inference might vary depending on
the method used, within this section we highlight aspects that
should be considered before selecting a model. Typically, we would
not endorse using multiple methods for a single case study –

selection of the method should be determined by an understanding
of how the sighting data has been recorded and the translation of
that into the best mathematical interpretation of that process.
For example, whether the sighting rate can be considered to be
proportional to population size, which will be declining if a species
is approaching extinction, or whether it is necessary to account for
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uncertainty in observations. Within this section, we discuss aspects
which should be considered when establishing which methodology
to consider.

How many sightings are required?
The OLE model of Solow (2005) requires the choice of k. The
method necessitates that the joint distribution of the kmost recent
sightings is the Weibull extreme value distribution and if k is too
large the asymptotic argument leading to the Weibull model may
not hold. In contrast, if k is too small issues of small sample size will
arise and the inferential method will lack power. In his discussion
Solow (2005) suggested that k should be between 5 and 10. How-
ever, Clements et al. (2013) found, based on simulations from
microcosm experiments, that accuracy increased as the size of k
increased, however, considerations of the validity of the Weibull
model have not been explored, and thus conclusions are limited to
the scenarios considered within the article. Most published work
continues to follow Solow (2005) in the use of the most recent 5 to
10 sightings. It is, important to note that this does not apply to other
models. For example, the non-parametric model of Solow and
Roberts (2003) is based on the last two sightings, while othermodels
such as Solow (1993a) will still generate a result when n = 1. Roberts
and Jarić (2020) looked at the issue of inferring extinction for
species known from only a single specimen, this is expanded on
in the discussion.

Sighting independence
While these models use sightings of a species, consideration needs
to be given to the issue of non-independence in sightings. If there
are several sightings of the species on the same date from the same
location, then these could still be considered as one sighting.
Whereas if the date and/or location were different then these could
be considered separate sightings. In order to account for frequency
data, rather than binary sighting observations, Burgman et al.
(1995) demonstrated how the sighting period (0, T) can be parti-
tioned into equal-sized units of time, with data now corresponding
to 0, 1 or multiple sightings within each unit. Calculation of
probabilities corresponding to the longest run of units with no
sightings, conditional on the observed data, can then be used to
infer extinction. The gain in statistical power of using frequency
data rather than binary data is examined in Burgman et al. (2000).

A special case of extinction is the eradication of invasive species,
where interest lies in inferring when a species has been eradicated.
An important difference here is that often sightings used in these
cases are extermination events (e.g. trappings) and therefore these
sightings are non-independent of the decline of the species. While a
number of models have been developed and applied in relation to
the question of eradication (e.g. Regan et al. 2006; Solow et al. 2008;
Rout et al. 2009; Ramsey et al. 2023), this issue needs to be borne in
mind when also looking at certain extinctions such as the Thylacine
(Thylacinus cynocephalus) where, in this case, bounty records may
form a significant proportion of the sighting record.

Multiple sightings within a year
Assuming all sightings are independent and would be used in the
analysis, one issue that may arise is when there are multiple
sightings in a single year. In some models, such as Solow (1993a),
where the parameters used are tn, T and n, this is not an issue.
However, in other models (e.g. OLE), the time between each
sighting forms part of the model and these times cannot be zero.
Where amore precise date is known then a decimal figure for a year
can be used (e.g. for the date August 2022, the date used in the

model would be 2022.67). In the case when only the year is present,
but the locations are different and therefore can be considered
independent sightings, then a simple solution is to split the distri-
bution of the sightings evenly across the year, such as 2022.0 and
2022.5.

Choosing a start date
Choosing a start date needs to be carefully considered. For some, it
may be obvious, such as the starting date of a long-term survey, or
more arbitrary, such as a convenient date (e.g. 2000). In some cases,
the first sighting, t1, of the sighting record may be used. In this case,
the starting point of the sighting record is non-independent of the
sightings. Statistically, you are conditioning on the first sighting
observation, and therefore, the number of sightings reduces by 1 to
become n � 1.

Interestingly, for the uniform and truncated exponential
models, it is statistically valid to set the time of the first sighting
to be the start date since the subsequent sighting rates continue to
be uniform or exponential. Furthermore, the truncated exponential
estimator is based on a technical result that requires the minimum
value to be 0, hence suggesting setting the initial observation to be at
time 0 (Solow 1993b). Both methods are invariant to changes in
scale, i.e. changes in the unit of measurement of time. However, if
other parametric models for sighting rate were derived it may be
necessary to incorporate an additional parameter within the model
to account for the unknown start time (Solow 2005).

Separation of population abundance and sampling effort
Caley and Barry (2014) propose a hierarchical Bayesian framework
to separate the two processes of underlying population dynamics
and the sighting process. They achieve this through the estimation
of survival and detection probabilities conditional on the observed
sighting data. The advantage of this approach is that it is not
constrained to consideration of constant or declining population
densities and indeed they have demonstrated how survival and
detection probabilities can be density dependent. Through appli-
cation to red fox carcass data, they have shown that there is more
uncertainty on population persistence when the population process
is made more complex and have used this to urge caution over
conclusions drawn from the naive use of simplifying assumptions.
A similar approach was considered in Kodikara et al. (2020) who in
addition, extended the formulation to account for certain and
uncertain sightings.

Discussion

Although the methods reviewed here are based solely on sightings
that are often seen as theminimumdata that exists for a species, it is
important to note that for many species even this level of data is
scarce, with some species being only known from a single museum
specimen. For example, Roberts and Jarić (2020) looked at the issue
of inferring extinction in Malagasy orchids that are data-poor,
where 31% of the species are known from a single herbarium
specimen. As Roberts et al. (2016) showed in their study of data
accumulation in Malagasy orchids, those species that are known
from very little data, are not as such data deficient, but rather the
lack of data is an indication of their rarity.

In general, sighting data contains temporal and spatial infor-
mation, with temporal data having beenmade use of in themethods
discussed here. The associated spatial element of the data has been
rarely used other than when focusing on a geographically defined
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area. More recently, Brook et al. (2023) reconstructed and mapped
the spatio-temporal extirpation and eventual extinction of the
Thylacine (T. cynocephalus). There is much work to do regarding
the incorporation of the spatial element in modelling extinction.
While this may go beyond the question of inference of species
extinction, it is relevant in relation to local extirpation events and
may provide useful evidence regarding the current known range of
the species, even if it is not extinct.

The majority of models presented in this article assume that the
sightings can be modelled as realisations of a point process and are
thus continuous-time models. New methodological approaches
which have already been discussed that are within a discrete-time
framework include Thompson et al. (2013), Lee (2014), Lee et al.
(2014). Alroy (2014) derived a discrete-time model, evaluating
sequential posterior probabilities of extinction conditional on
observations up to a given time. This differs from the methods
presented in Inferring extinction section of this article as inference
is based upon the entire sighting record (Solow 2016c). Consider-
ation of whether to use a discrete or continuous time model should
account for an understanding of the types of sightings that are
recorded within the available sighting record. All sighting records
will be observations recorded at discrete times; however, it can be
appropriate to model these observations using a continuous time
model, particularly in a situation when the observation period is
long, and the time intervals between observations are short.

Beyond biological extinctions, these methods have now been
applied to other extinction contexts, such as the end of the Acheu-
lean stone tool culture (Key et al. 2021). Likewise, as these methods
are interested in endpoints, they have the potential to be applied to
infer the start, or origination, of processes, such as dating the origin
of Covid-19 (Roberts et al. 2021) or the origins of the first flaked
stone technologies (Key et al. 2021). It is, however, important to
note that in these cases interest lies in dating a known extinction or
origination events rather than answering the question as to whether
a species is or is not extinct.

Much of the work in the extinction modelling literature
reviewed here has largely focused on the theoretical development
of inferential approaches, with associated model selection mainly
based on how well model assumptions are perceived to fit the data.
However, due to the type of data (i.e. often sparse sightings),
knowledge of the extent to which the data fits the assumptions is
poor. A number of papers (Rivadeneira et al. 2009; Clements et al.
2013) have undertaken power analyses to better understand the
impact of factors such as varying sighting effort, population decline
and violation of distributional assumptions underpinning on the
performance of the methods. Vogel et al. (2009) used L-moment
diagrams and probability plot correlation coefficient hypothesis
tests to evaluate the goodness-of-fit of a number of models. How-
ever, it is still the case that it can be difficult to justify a particular
approach for any specific application. Because of this, it is likely that
newmethodswill emerge as a consequence ofmotivating properties
of sighting data, for example, community-based data in marine
settings as presented in Smith and Solow (2011). To select an
appropriate method, it’s essential to understand the underlying
generation process of the sighting record, as outlined in the Import-
ant model considerations section. If the model’s assumptions about
how the data is generated do not match the sighting record, it could
lead to inaccurate estimates of extinction.

An interesting extension of the question as to whether a species
is extinct, is the question of functional extinction. The term func-
tional extinction has often been confused, however Jarić (2015)
recently provided a deeper understanding of this concept and the

different forms it takes. In particular Jarić (2015) explained that
functional extinction could be described as: (i) a population decline
that leads to a loss of ecosystem services that the species provided or
to a negligible contribution of a species to ecosystem processes;
(ii) populations at very low abundances; or (iii) populations which
experience time-delayed deterministic extinction which occurs due
to persistent lack of reproductive success or recruitment. Each of
these definitions will require different assessment to establish
whether functional extinction has occurred. This has led to a
number of papers for the inference of functional extinction (Jarić
et al. 2016; Roberts et al. 2017; Zhang et al. 2020). These methods
again use sighting data, although this may take the form of aged
individuals that are sighted to give a timing of last breeding
(e.g. Zhang et al. 2020), or a comparison of the sighting record of
the species and the sighting record of the functional event such as
nesting (e.g. Roberts et al. 2017). The modelling approach uses a
population dynamic model to detect functional extinction on a
sighting record of individuals of known or estimated ages. A
detailed review of these methods is however beyond the scope of
this article.

While this article focuses specifically on the use of sighting
data in temporal models, often there is additional information
that can be used in the inference of extinction. As mentioned, the
criteria for the category of Extinct, as laid out by the IUCN Red
List (IUCN 2012), emphasises other aspects such as that the
surveys that have been carried out are appropriate to the species’
biology (i.e. correct time, season, habitat, etc.). Thompson et al.
(2019) have gone some way towards incorporating these elements
into a model for inferring extinction. In their study into the
attributes of extinction declarations, Roberts et al. (2023) sur-
veyed expert assessors from the IUCN Species Survival Commis-
sion’s Specialist Groups using a choice experiment approach.
They found that in the main, data availability, time from the last
sighting, detectability, habitat availability, and population
decline were all important attributes used when inferring extinc-
tion, although there were slight differences between certain
groups. While Keith et al. (2017) provided a framework for the
inference of extinction based on a qualitative approach using
expert judgement. This qualitative approach incorporated map-
ping and structured elicitation.

As a result, the temporal models discussed here should only be
considered as one line of evidence when making extinction declar-
ations. Future extensions of these models should consider how
other attributes of extinction can be incorporated to aid with the
robust assessment of extinction. A first starting point may be to
consider how we can infer attributes such as detectability, habitat
availability, etc., but that we must consider for the majority of
species data is scarce.

Open peer review. To view the open peer review materials for this article,
please visit http://doi.org/10.1017/ext.2024.18.

Data availability statement. The methods presented in Table 1 have been
collated in an RShiny app, available at https://tommy-cheale-shinyapps.shi
nyapps.io/New_ext_pap/.

Acknowledgements. We thank the Editor, Handling Editor, Andrew Solow
and one anonymous reviewer for their detailed comments on our article. Their
recommendations have greatly improved the article.

Author contribution. RSM reviewed the statistical methodology, TC wrote
the RShiny app, ECF explored the mathematical underpinnings of the
approaches and DLR reviewed the contextual and main developments of this
field. All authors contributed to the writing of the article.

6 Rachel S. McCrea et al.

https://doi.org/10.1017/ext.2024.18 Published online by Cambridge University Press

http://doi.org/10.1017/ext.2024.18
https://tommy-cheale-shinyapps.shinyapps.io/New_ext_pap/
https://tommy-cheale-shinyapps.shinyapps.io/New_ext_pap/
https://doi.org/10.1017/ext.2024.18


Financial support. RSM and DLR were funded by the British Academy, Royal
Academy of Engineering and Royal Society Academies Partnership in Supporting
Excellence in Cross-disciplinary research award (APEX award, AA21/100175).
RSM was supported by Leverhulme Research Fellowship RF-2022-197. TC is a
PhD student funded by EPSRC grant EP/W524050/1.

Competing interest. DLR is a senior editor of the journal Cambridge Prisms:
Extinction.

References

Alroy J (2014) A simple Bayesian method of inferring extinction. Paleobiology
40, 584–607.

Boakes EH, Rout TM and Collen B (2015) Inferring species extinction: the use
of sighting records. Methods in Ecology and Evolution 6 (6), 678–687.

Brook BW, Buettel JC and Jarić I (2019) A fast-re-sampling method for using
reliability ratings of sightings with extinction-date estimators. Ecology 100
(9), e02787.

Brook BW, Sleightholme SR, Campbell CR, Jarić I and Buettel JC (2023)
Resolving when (and where) the thylacine went extinct. Science of the Total
Environment 877, 162878.

BurgmanM,Maslin BR,Andrewartha D,KeatleyMR, Boek C andMcCarthyM
(2000) Inferring Threat from Scientific Collections: Power Tests and anApplication
to Western Australian Acacia Species. New York: Springer.

Burgman MA, Grimson RC and Ferson S (1995) Inferring threat from
scientific collections. Conservation Biology 9 (4), 923–928.

Caley P andBarry SC (2014) Quantifying extinction probabilities from sighting
records: inference and uncertainties. PLoS One 9 (4), 1–11.

Ceballos G, Ehrlich PR,Barnosky AD,Garc’ıa A, Pringle RM and Palmer TM
(2015) Accelerated modern human induced species losses: entering the sixth
mass extinction. Science Advances 1 (5), e1400253.

Clements CF, Worsfold NT, Warren PH, Collen B, Clark N, Blackburn TM
and Petchey OL (2013) Experimentally testing the accuracy of an extinction
estimator: Solow’s optimal linear estimation model. Journal of Animal Ecol-
ogy 82 (2), 345–354.

Coles S (2001) An Introduction to Statistical Modeling of Extreme Values.
Springer Series in Statistics. Springer, London: Springer Series in Statistics.

IUCN (2012) The IUCN Red List Categories and Criteria: Version 3.1, 2nd Edn.
Gland and Cambridge

IUCN Standards and Petitions Committee (2022) Guidelines for Using the
IUCN Red List Categories and Criteria. Version 15.1. Prepared by the Stand-
ards and Petitions Committee. Gland and Cambridge.

Jarić I, Buettel JC and Brook BW (2023) A fast-re-sampling method for using
reliability ratings of sightings with extinction-date estimators: reply. Ecology
104 (9), e4124.

Jarić I and Ebenhard T (2010) Amethod for inferring extinction based on sighting
records that change in frequency over time.Wildlife Biology 16 (3), 267–275.

Jarić I,Gessner J and SolowAR (2016) Inferring functional extinction based on
sighting records. Biological Conservation 199, 84–87.

Jarić I and Roberts DL (2014) Accounting for observation reliability when
inferring extinction based on sighting records. Biodiversity and Conservation
23, 2801–2815.

Jarić I (2015) Complexity and insidiousness of cryptic function loss mechan-
isms. Trends in Ecology and Evolution 30 (7), 371–372.

Keith DA,Butchart SH,ReganHM,Harrison I,Akçakaya HR, SolowAR and
Burgman MA (2017) Inferring extinctions I: a structured method using
information on threats. Biological Conservation 214, 320–327.

Key AJ, Jarić I and Roberts DL (2021) Modelling the end of the Acheulean at
global and continental levels suggests widespread persistence into the middle
palaeolithic. Humanities and Social Sciences Communications 8, 55.

Key AJ, Roberts DL and Jarić I (2021) Statistical inference of earlier origins for
the first flaked stone technologies. Journal of Human Evolution 154, 102976.

Kodikara S,DemirhanHand Stone L (2018) Inferring about the extinction of a
species using certain and uncertain sightings. Journal of Theoretical Biology
442, 98–109.

Kodikara S, Demirhan H, Wang Y, Solow A and Stone L (2020) Inferring
extinction year using a Bayesian approach.Methods in Ecology and Evolution
11 (8), 964–973

Kodikara S,DemirhanH,WangY and Stone L (2021) Inferring extinction date
of a species using non-homogeneous Poisson processes with a change-point.
Methods in Ecology and Evolution 12 (3), 530–538.

Lee TE (2014) A simple numerical tool to infer whether a species is extinct.
Methods in Ecology and Evolution 5 (8), 791–796.

Lee TE,Black SA, Fellous A,Yamaguchi N,Angelici FM,AlHikmani H,Reed
JM, Elphick CS and Roberts DL (2015) Assessing uncertainty in sighting
records: an example of the barbary lion. PeerJ 3, e1224.

Lee TE, Bowman C and Roberts DL (2017) Are extinction opinions extinct?
PeerJ 5, e3663.

Lee TE, McCarthy MA, Wintle BA, Bode M, Roberts DL and Burgman MA
(2014) Inferring extinctions from sighting records of variable reliability.
Journal of Applied Ecology 51 (1), 251–258.

McArdle BH (1990) When are rare species not there? Oikos 57 (2), 276–277.
McCarthy MA (1998) Identifying declining and threatened species with

museum data. Biological Conservation 83 (1), 9–17.
McInernyGJ,RobertsDL,DavyAJ andCribbPC (2006) Significance of sighting

rate in inferring extinction and threat. Conservation Biology 20 (2), 562–567.
Ramsey DSL, Anderson DP and Gormley AM (2023) Invasive species eradi-

cation: how do we declare success? Cambridge Prisms: Extinction 1, e4.
Regan TJ, McCarthy MA, Baxter PWJ, Panetta FD and Possingham HP

(2006) Optimal eradication: when to stop looking for an invasive plant.
Ecology Letters 9 (7), 759–766.

RivadeneiraMM,HuntG andRoyK (2009) The use of sighting records to infer
species extinctions: an evaluation of different methods. Ecology 90(5),
1291–1300.

Roberts DL, Elphick CS and Reed JM (2010) Identifying anomalous reports of
putatively extinct species and why it matters. Conservation Biology 24 (1),
189–196.

Roberts DL,Hinsley A, Fiennes S and Ver’ıssimoD (2023) Understanding the
drivers of expert opinion when classifying species as extinct. Conservation
Biology, 37, e13968.

Roberts DL and Jarić I (2020) Inferring the extinction of species known only
from a single specimen. Oryx 54 (2), 161–166.

Roberts DL, Jarić I and Solow AR (2017) On the functional extinction of the
passenger pigeon. Conservation Biology 31 (5), 1192–1195.

Roberts DL, Rossman J and Jarić I (2021) Dating first cases of Covid-19. PLoS
Pathogens 17(6), e1009620.

Roberts DL and Solow A (2003) When did the dodo become extinct? Nature
426, 245.

Roberts DL, Taylor L and Joppa LN (2016) Threatened or data deficient:
assessing the conservation status of poorly known species. Diversity and
Distributions 22 (5), 558–565.

Robson DS and Whitlock JH (1964) Estimation of a truncation point. Biome-
trika 51 (1/2), 33–39.

Rout TM, SalomonY andMcCarthyMA (2009) Using sighting records to declare
eradication of an invasive species. Journal of Applied Ecology 46 (1), 110–117.

Smith WK and Solow AR (2011) Missing and presumed lost: extinction in the
ocean and its inference. ICES Journal of Marine Science 69(1), 89–94.

Solow A and Helser T (2000) Detecting Extinction in Sighting Data. New York,
NY: Springer New York, pp. 1–6.

Solow A, Seymour A, Beet A and Harris S (2008) The untamed shrew: on the
termination of an eradication programme for an introduced species. Journal
of Applied Ecology 45 (2), 424–427.

Solow A, Smith W, Burgman M, Rout T, Wintle B and Roberts D (2012)
Uncertain sightings and the extinction of the ivory-billed woodpecker.
Conservation Biology 26 (1), 180–184.

SolowAR (1993a) Inferring extinction from sighting data. Ecology 74 (3), 962–964.
Solow AR (1993b) Inferring extinction in a declining population. Journal of

Mathematical Biology 32, 79–82.
Solow AR (2005) Inferring extinction from a sighting record. Mathematical

Biosciences 195(1), 47–55.
Solow AR (2016a) On Bayesian inference about extinction. Proceedings of the

National Academy of Sciences 113 (9), E1132–E1132.
Solow AR (2016b) On the prior distribution of extinction time. Biology Letters

12 (6), 20160089.
Solow AR (2016c) A simple Bayesian method of inferring extinction: comment.

Ecology 97(3), 796–798.

Cambridge Prisms: Extinction 7

https://doi.org/10.1017/ext.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/ext.2024.18


Solow AR (2023) A fast-re-sampling method for using reliability ratings of
sightings with extinction-date estimators: comment. Ecology 104(9),
e4123.

Solow AR and Beet AR (2014) On uncertain sightings and inference about
extinction Conservation Biology 28(4), 1119–1123.

SolowAR and Roberts DL (2003) A nonparametric test for extinction based on
a sighting record. Ecology 84(5), 1329–1332.

Thompson C, Lee T, Stone L, McCarthy M and Burgman M (2013) Inferring
extinction risks from sighting records. Journal of Theoretical Biology 338, 16–22.

Thompson CJ, Kodikara S, Burgman MA, Demirhan H and Stone L (2019)
Bayesian updating to estimate extinction from sequential observation data.
Biological Conservation 229, 26–29.

Thompson CJ, Koshkina V, Burgman MA, Butchart SH and Stone L (2017)
Inferring extinctions II: a practical, iterative model based on records and
surveys. Biological Conservation 214, 328–335.

Vogel RM, Hosking JRM, Elphick CS, Roberts DL and Reed JM (2009)
Goodness of fit of probability distributions for sightings as species approach
extinction. Bulletin of Mathematical Biology 71, 701.

Wasserstein RL and Lazar NA (2016) The ASA statement on p-values: context,
process, and purpose. The American Statistician 70 (2), 129–133.

Zhang H, Jarić I, Roberts DL, He Y, Du H,Wu J,Wang C and Wei Q (2020)
Extinction of one of the world’s largest freshwater fishes: lessons for con-
serving the endangered Yangtze fauna. Science of the Total Environment 710,
136242.

8 Rachel S. McCrea et al.

https://doi.org/10.1017/ext.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/ext.2024.18

