
Harrow, J.W.E. and Hone, Andrew N.W. (2024) Casting more light in the shadows: 
dual Somos-5 sequences.  Journal of Physics A: Mathematical and Theoretical, 
58 (1). ISSN 1751-8121. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/108069/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1088/1751-8121/ad978b

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/108069/
https://doi.org/10.1088/1751-8121/ad978b
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 58 (2025) 015203 (28pp) https://doi.org/10.1088/1751-8121/ad978b

Casting more light in the shadows: dual
Somos-5 sequences

J W E Harrow and A N W Hone∗

School of Mathematics, Statistics & Actuarial Science, University of Kent,
Canterbury CT2 7NF, United Kingdom

E-mail: A.N.W.Hone@kent.ac.uk

Received 29 August 2024; revised 15 November 2024
Accepted for publication 26 November 2024
Published 5 December 2024

Abstract
Motivated by the search for an appropriate notion of a cluster superalgebra,
incorporating Grassmann variables, Ovsienko and Tabachnikov considered
the extension of various recurrence relations with the Laurent phenomenon to
the ring of dual numbers. Furthermore, by iterating recurrences with specific
numerical values, some particular well-known integer sequences, such as the
Fibonacci sequence, Markoff numbers, and Somos sequences, were shown to
produce associated ‘shadow’ sequences when they were extended to the dual
numbers. Here we consider the most general version of the Somos-5 recurrence
defined over the ring of dual numbers D with complex coefficients, that is the
ringC[ε]modulo the relation ε2 = 0. We present three different ways to present
the general solution of the initial value problem for Somos-5 and its shadow
part: in analytic form, using the Weierstrass sigma function with arguments in
D; in terms of the solution of a linear difference equation; and using Hankel
determinants constructed from D-valued moments, via a connection with a
Quispel–Roberts–Thompson map over the dual numbers.
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1. Introduction

Supersymmetry is a proposed physical framework in which bosons and fermions can be treated
on the same footing. In terms of algebra, this means that one should work with aZ2-graded ring
that is a direct sum of even and odd components, and one can then define geometric structures
(supergeometry) by working over such a ring. One of the simplest examples, corresponding to
the minimal case of N= 1 supersymmetry in physics [3], is to extend the real numbers R by
two Grassmann variables ξ1, ξ2, satisfying

ξjξk+ ξkξj = 0, j,k= 1,2, (1.1)

which produces the ring

(R⊕Rξ1ξ2)⊕ (Rξ1 ⊕Rξ2) = R0 ⊕R1, (1.2)

whose even part R0 = R⊕Rξ1ξ2 contains nilpotent elements, namely the multiples of ε=
ξ1ξ2. The ring (or R-algebra) corresponding to the even part D= R0, that is

D= R⊕Rε with ε2 = 0,

is known as the set of dual numbers, and was first introduced by Clifford. Replacing R by
C or another field (or a ring) gives analogues of the dual numbers, which are useful in com-
puter algebra (for automatic differentiation) and in algebraic geometry (for defining the tan-
gent space of an algebraic variety). For the purposes of this paper, it will be convenient to take
the complex numbers as the ambient field, and work with the commutative C-algebra of dual
numbers D= D⊗C given by

D=
{
x+ yε |x,y ∈ C, ε2 = 0

}
,

which is isomorphic to the quotient C[ε]/
〈
ε2
〉
.

Although the algebraic and geometric aspects of supergeometry have been developed for
some time, it seems that certain arithmetic aspects of superalgebras have only begun to be
explored very recently. There are two especially noteworthy examples: the ‘shadows’ of
integer sequences [11, 25, 27, 28]; and the notion of supersymmetric continued fractions asso-
ciated with the supermodular group OSp(1|2,Z) [5], namely the supergroup OSp(1|2) with
coefficients in the ring Z[ξ1, ξ2] with two Grassmann variables satisfying (1.1). Both of the
latter examples have come about as a byproduct of the search, starting with [24], for an appro-
priate notion of a cluster superalgebra, including mutations of both even and odd cluster vari-
ables, together with supersymmetric analogues of related objects like frieze patterns and snake
graphs [19–21, 26].

The general philosophy of shadow sequences is explained in the paper [27], whereOvsienko
considers integer sequences that are obtained by replacing variables xn in nonlinear recurrence
relations by dual variables Xn = xn+ ynε ∈ D, as well as taking D-valued coefficients in any
such recurrence. Working in D (where we can regard ε on its own as a single Grassmann
variable), the resulting recurrence relation for Xn can be split into its odd and even parts in
terms of powers of ε, with the original recurrence relation is recovered in the even (ε0) part.
The remaining odd (ε1) part defines the new associated sequence of values yn, satisfying an
inhomogeneous linear relation in terms of the xn and coefficients of the original equation and
their new dual parts. If we restrict the coefficients to be C-valued, then the sequence (yn)
is referred to as a ‘shadow’ of the original sequence (xn): in that case, yn is a solution of a
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homogeneous linear reurrence, which is just the linearization of the original recurrence around
xn. Hence a single original sequence (xn) has multiple shadows, belonging to a vector space
with the same dimension as the original nonlinear recurrence relations that it satisfies; but
in the case of integer sequences xn ∈ Z generated by nonlinear recurrence, the problem of
characterizing its integer shadows yn ∈ Z appears to be an interesting arithmetical question.
As an example, Ovsienko demonstrates that the tetrahedral numbers may be obtained as a
shadow of the natural numbers when they are viewed as solutions of the nonlinear relation

xn+1xn−1 = x2n− 1. (1.3)

The latter is one of the simplest examples of a recurrence which exhibits the Laurent
phenomenon [8], meaning that if the two initial values x0,x1 are viewed as variables then
all of the iterates are Laurent polynomials in these variables with integer coefficients: xn ∈
Z[x±1

0 ,x±1
1 ] for all n.

Another example of the Laurent phenomenon is provided by the Somos-5 recurrence,

xnxn+5 = αxn+1xn+4 +βxn+2xn+3 (1.4)

with coefficients α,β. In this case, the Laurent property for (1.4) means all iterates of the
recurrence are Laurent polynomials in the initial 5 entries x0,x1,x2,x3,x4 with coefficients
belonging to the polynomial ring Z[α,β], i.e.

xn ∈ Z
[
α,β,x±1

0 ,x±1
1 ,x±1

2 ,x±1
3 ,x±1

4

]
, ∀n ∈ Z. (1.5)

It follows that setting all five initial conditions xj = 1 for j = 0,1,2,3,4 and taking α,β ∈
Z ensures that the whole sequence (xn) consists of integers for all n. The original example
considered is when α= β = 1, commonly referred to as the Somos-5 sequence, in which case
first few terms are given by

1,1,1,1,1,2,3,5,11,37,83,274,1217, . . ., (1.6)

this being the OEIS sequence A006721 [22]. However, there are considerably more choices
of initial conditions and coeffcients that give rise to integer sequences, due to the way that the
recurrence is connected with elliptic curves (see below).

Shadow sequences obtained from an analogous recurrence of fourth order, namely Somos-4
given by

xnxn+4 = αxn+1xn+3 +βx2n+2, (1.7)

were presented for general initial conditions by one of us in [11]. Sequences of Somos type,
or Gale-Robinson sequences, have many structural similarities with Somos-4 and Somos-5
sequences: they inherit the Laurent property via reduction from partial difference equations,
specifically the octahedron/cube recurrences (a.k.a. the discrete Hirota/Miwa equations) [8,
18], which means they can also be interpreted as discrete integrable systems [10].

The purpose of this article is to explore how Somos-5 sequences extend to sequences of
dual numbers, and to determine explicit expressions for the shadow sequences defined by this
change. In the next section we describe basic properties of Somos-5 and its extension to D.
Section 3 presents analytic formulae in terms of Weierstrass functions. The fourth section
provides a derivation of a complete set of shadow Somos-5 sequences, given by a combina-
tion of analytic and algebraic expressions, based on variation of parameters for a linear differ-
ence equation, while the fifth section presents Hankel determinant formulae for dual Somos-5
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sequences, making use of recent results from [13]. Section 6 is concerned with the Quispel–
Roberts–Thompson (QRT) map associated with Somos-5, and the interpretation of its dual
number version as a discrete integrable system, via the construction of a compatible pen-
cil of Poisson brackets (a bi-Hamiltonian structure). We end with some brief comments and
conclusions.

2. Somos-5 recurrence and dual version

We begin by briefly reviewing some properties of the Somos-5 recurrence, which are summar-
ized in [12]. The recurrence (1.4) has a 2-invariant given by

Kn =
xnxn+4 +αx2n+2

xn+1xn+3
; (2.1)

it is straightforward to verify directly from the recurrence that this satisfies the period 2 con-
dition Kn = Kn+2. This leads immediately to two independent invariant quantities I,J for the
Somos-5 recurrence, which are obtained from the product and sum, respectively, of the odd
and even values of this 2-invariant, according to

I= Kn+Kn+1, (2.2)

J=
KnKn+1 −β

α
(2.3)

(where it is assumed that α 6= 0). These invariants can both be given explicitly in terms of the
coefficients α,β and any 5 adjacent iterates, by solving the following pair of homogeneous
relations of degree 5 in xj:

xnxn+1xn+2xn+3xn+4I= x2nxn+2x
2
n+4 +α

(
x3n+1xn+3xn+4

+xnx
3
n+2xn+4 + xnxn+1x

3
n+3

)
+βx2n+1xn+2x

2
n+3, (2.4)

xnxn+1xn+2xn+3xn+4J= x2nx
2
n+3xn+4 + xnx

2
n+1x

2
n+4

+α
(
x2n+1x

2
n+2xn+4 + xnx

2
n+2x

2
n+3

)
+βxn+1x

3
n+2xn+3. (2.5)

These relations allow I,J to be simply computed from any set of 5 initial conditions, and then
they are both constant along each orbit of (1.4). Both relations also extend directly to the case
of dual numbers.

To extend the recurrence relation (1.4) to the dual numbers D in the most general way
possible, we write the dual Somos-5 recurrence as

XnXn+5 = αXn+1Xn+4 +βXn+2Xn+3, (2.6)

with not only dual number variables Xn = xn+ ynε, but also coefficients α,β ∈ D, which can
be expanded as

α= α(0) +α(1)ε, β = β(0) +β(1)ε.

In their paper [25], Ovsienko and Tabachnikov consider the specific cases

XnXn+5 =
(
1+α(1)ε

)
Xn+1Xn+4 +Xn+2Xn+3, (2.7)

4



J. Phys. A: Math. Theor. 58 (2025) 015203 J W E Harrow and A N W Hone

XnXn+5 = Xn+1Xn+4 +
(
1+β(1)ε

)
Xn+2Xn+3. (2.8)

In the context of more general Gale-Robinson sequences, showing these produce integer
sequences for x0 = x1 = x2 = x3 = x4 = 1 and an arbitrary set of 5 integer initial values yj ∈ Z
for 0⩽ j⩽ 4.

We can immediately expand the general case into its odd and even parts, giving the system:

xnxn+5 = α(0)xn+1xn+4 +β(0)xn+2xn+3, (2.9)

in the even (ε0) part and

xnyn+5 + ynxn+5 −α(0) (xn+1yn+4 + yn+1xn+4) −β(0) (xn+2yn+3 + yn+2xn+3)

= α(1)xn+1xn+4 +β(1)xn+2xn+3, (2.10)

in the odd (ε1) part. Clearly the even part recovers the original Somos-5 recurrence (1.4) for xn,
with coefficients α(0),β(0), as expected. The odd part gives the inhomogeneous linear relation
for the new sequence (yn). The homogeneous version of (2.10), corresponding toα(1) = β(1) =
0, gives the shadow sequence yn in the sense defined by Ovsienko [27], and is the linearization
of the even part. Five linearly independent shadow sequences can then be specified implicitly
in terms of 5 independent sets of initial conditions y0,y1,y2,y3,y4, but in what follows we will
derive 5 specific shadow sequences related to the base sequence xn, using the explicit solution
to the Somos-5 recurrence.

Fomin and Zelevinsky’s original proofs of the Laurent property for Somos-5 and other
sequences including Somos-4 [8] are based on treating the initial data as formal variables. The
same method carries over directly to (2.6) with dual numbers, because the dual version has the
same form as (1.4) and D is a commutative ring. Thus we see that Xn has the Laurent property
in its coefficients and initial data, that is

Xn = Z
[
α,β,X±1

0 ,X±1
1 ,X±1

2 ,X±1
3 ,X±1

4

]
. (2.11)

Upon splitting the relation (2.6) into its even and odd parts, we can state a more precise version
of the Laurent property for each part, by making use of the standard reciprocal formula for dual
numbers:

(x+ yε)−1
= x−1

(
1− x−1yε

)
. (2.12)

Thus we see that the two parts of the system, (2.9) and (2.10), together have the Laurent prop-
erty in the sense that

xn ∈ Z
[
α(0),β(0),x±1

0 ,x±1
1 ,x±1

2 ,x±1
3 ,x±1

4

]
, ∀n ∈ Z. (2.13)

yn ∈ Z
[
α(0),β(0),α(1),β(1),x±1

0 ,x±1
1 ,x±1

2 ,x±1
3 ,x±1

4 ,y0,y1,y2,y3,y4
]
, ∀n ∈ Z. (2.14)

Also note that to iterate the dual Somos-5 for numerical values at any particular step n, we
require xn 6= 0 in order to determine xn+5. This means that if we take the 5 dual initial data to be
units, i.e. X0,X1,X2,X3,X4 ∈ D∗ where D∗ = {x+ yε ∈ D |x 6= 0}, then the Laurent property
ensures that the whole orbit (Xn)n∈Z can be defined by evaluating suitable Laurent polynomials
in these 5 initial values.
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The conserved quantities likewise carry over to the dual system, as an analogous 2-invariant
Kn ∈ D can be defined with exactly the same formula (2.1) but replacing each xj → Xj and
with α ∈ D. Thus dual invariants (first integrals) I= I(0) + I(1)ε and J= J(0) + J(1)ε can be
found. To find these explicitly it is best to simply take the original homogeneous relations (2.4)
and (2.5), and change all terms to their dual counterparts, x0 → X0 etc.

In what follows, the first integral J ∈ D will play a central role, so we consider it first. For
J, the even part of the dual version of (2.5) yields precisely the same formula as (2.5) does for
J(0), as expected, but with the parameters replaced by α(0),β(0):

J(0) =
x2nx

2
n+3xn+4 + xnx2n+1x

2
n+4 +α(0)

(
x2n+1x

2
n+2xn+4 + xnx2n+2x

2
n+3

)
+β(0)xn+1x3n+2xn+3

xnxn+1xn+2xn+3xn+4
.

(2.15)

As it stands, dualizing (2.5) and taking the odd part gives a relation for J(1) which includes
J(0) as well. After substituting for J(0), we can get an expression for J(1) in terms of the initial
data and coefficients alone:

J(1) =
Dn−

∑4
j=0C

( j)
n x−1

n+jyn+j
xnxn+1xn+2xn+3xn+4

, (2.16)

where

C(0)
n = α(0)x2n+1x

2
n+2xn+4 +β(0)xn+1x

3
n+2xn+3 − x2nx

2
n+3xn+4, (2.17)

C(1)
n = α(0)

(
xnx

2
n+2x

2
n+3 − x2n+1x

2
n+2xn+4

)
+ x2nx

2
n+3xn+4 − xnx

2
n+1x

2
n+4, (2.18)

C(2)
n = x2nx

2
n+3xn+4 + xnx

2
n+1x

2
n+4 −α(0)

(
x2n+1x

2
n+2xn+4 + xnx

2
n+2x

2
n+3

)
− 2β(0)xn+1x

3
n+2xn+3,

(2.19)

C(3)
n = α(0)

(
x2n+1x

2
n+2xn+4 − xnx

2
n+2x

2
n+3

)
+ xnx

2
n+1x

2
n+4 − x2nx

2
n+3xn+4, (2.20)

C(4)
n = α(0)xnx

2
n+2x

2
n+3 +β(0)xn+1x

3
n+2xn+3 − xnx

2
n+1x

2
n+4, (2.21)

Dn = α(1)
(
x2n+1x

2
n+2xn+4 + xnx

2
n+2xn+4 + xnx

2
n+2x

2
n+3

)
+β(1)xn+1x

3
n+2xn+3. (2.22)

As we might expect, there are many symmetries in this expression. This would be even more
apparent if we shifted n down by two to see how the n− j and n+ j terms for j = 0,1,2 balance
each other in many expressions. We will use this expression later when examining one of the
linearly independent shadow sequences of Somos-5 and note some of its other properties.

For completeness, we also include the form of the second dual invariant, I ∈ D. Similarly
the even part gives I(0) by the same expression (2.4) for the original I. The odd part of I can
then be found from the odd component, to yield

I(1) =
B̄n−

∑4
j=0 Ā

( j)
n x−1

n+jyn+j
xnxn+1xn+2xn+3xn+4

, (2.23)

where

Ā(0)
n = α(0)x3n+1xn+3xn+4 +β(0)x2n+1xn+2x

2
n+3 − x2nxn+2x

2
n+4, (2.24)
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Ā(1)
n = x2nxn+2x

2
n+4 +α(0)

[
xnx

3
n+2xn+4 − 2x3n+1xn+3xn+4

]
−β(0)x2n+1xn+2x

2
n+3, (2.25)

Ā(2)
n = α(0)

[
x3n+1xn+3xn+4 − 2xnx

3
n+2xn+4 + xnxn+1x

3
n+3

]
, (2.26)

Ā(3)
n = x2nxn+2x

2
n+4 +α(0)

[
xnx

3
n+2xn+4 − 2xnxn+1x

3
n+3

]
−β(0)x2n+1xn+2x

2
n+3, (2.27)

Ā(4)
n = α(0)xnxn+1x

3
n+3 +β(0)x2n+1xn+2x

2
n+3 − x2nxn+2x

2
n+4, (2.28)

B̄n = α(1)
[
x3n+1xn+3xn+4 + xnx

3
n+2xn+4 + xnxn+1x

3
n+3

]
+β(1)x2n+1xn+2x

2
n+3. (2.29)

The quantity I is considerably less useful in studying the Somos-5 shadow solutions, essen-
tially because the quantity J leads to a connection with elliptic curves, which leads to explicit
analytic solutions of the recurrence in terms of Weierstrass functions, as described in the next
section.

3. Analytic solution of dual Somos-5

An explicit analytic solution for the Somos-5 recurrence was given in [9], via the relation
with elliptic curves and associated functions. We will state one version of this solution here,
following the notation used in [12], and subsequently show how to extend it to dual Somos-5
sequences.

Theorem 3.1. The general solution of the initial value problem for the Somos-5 recur-
rence (1.4) over C is

xn = A±B
b n

2c
± µb

n
2c2

σ (nκ+ z0) (3.1)

(where the subscripts +/− apply for even and odd n respectively), given in terms of the
Weierstrass sigma function σ(z) = σ(z;g2,g3) associated with the elliptic curve

y2 = 4x3 − g2x− g3 (3.2)

with the parameters g2,g3,µ and κ appearing in (3.1) being explicitly determined from the
coefficients α,β of (1.4) and the conserved quantity J defined by (2.5), via the formulae

g2 = 12λ̃− 2J, g3 = 4λ̃3 − g2λ̃− µ̃2. (3.3)

µ̃= (β+αJ)
1
4 , λ̃=

1
3µ̃2

(
J2

4
+α

)
, µ=

µ̃

σ (2κ)
=−σ (κ)

−4
. (3.4)

The arbitrary parameter z0 is determined from the initial data, while the remaining constants
A±,B± (also related to the initial data) are arbitrary up to the constraint

B+ =−µ−1B− = σ (κ)
4B−. (3.5)

The solution (3.1) corresponds to a sequence of points P0 + nP along the curve (3.2), for
an arbitrary initial point P0 = (℘(z0),℘ ′(z0)) translated by P= (℘(κ),℘ ′(κ)) = (λ̃, µ̃). The
proof in [9] makes use of the fact that if xn is a solution of (1.4) then the sequence of ratios

wn =
xn+2xn−1

xn+1xn
. (3.6)

7
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Satisfies a nonlinear recurrence relation of second order, namely

wn−1wnwn+1 = αwn+β, (3.7)

which is a particular example of a QRTmap in the plane. The conserved quantity J for Somos-5
can be rewritten in terms of two adjacent ratios (3.6), as the expression

J= wn−1 +wn+α

(
1

wn−1
+

1
wn

)
+

β

wn−1wn
. (3.8)

The explicit solution is found by associating the curve (3.2) with the recurrence, where the
coefficients are given in terms of the sigma function by

α=
σ (3κ)

σ (κ)
9 , β =− σ (4κ)

σ (2κ)σ (κ)12
. (3.9)

For fixed initial conditions, the parameters z0,κ can be computed from the elliptic integrals

z0 =±
ˆ x0

∞

dx
y
, κ=±

ˆ λ̃

∞

dx
y
, (3.10)

where x0 and a consistent relative choice of signs above must be determined from

x0 = λ̃+
µ̃2

w−1 +w0 − J
, µ̃= ℘ ′ (κ) , ℘ ′ (κ)℘ ′ (z0) = (x0 −λ)(w−1 −w0) ,

while the coefficients A±,B± can be found from the initial data. To see that the number of para-
meters in the analytic solution match the initial value problem, note that the recurrence (1.4)
requires 5 pieces of initial data to be specified, x0,x1,x2,x3,x4, say, together with 2 coefficients
α,β, making a total of 7 parameters, while the analytic solution (3.1) is completely specified
by choosing the 7 quantities A+,A−,B−,z0,κ,g2,g3. (Note that B+ is fixed by the other data
by the constraint (3.5), while µ is determined from (3.4).)

To extend this to the dual system, we note the standard identity

Φ(X) = Φ(x)+Φ ′ (x)yε, (3.11)

for any differentiable function Φ and X= x+ yε ∈ D. This can be used to give solutions to the
dual system (2.6) in terms of the analytic solution (3.1) and derivatives.

Proposition 3.2. Given dual number parameters A± = A(0)
± +A(1)

± ε, B− = B(0)
− +B(1)

− ε,

Z0 = z(0) + z(1)ε, K= κ(0) +κ(1)ε, g2 = g(0)2 + g(1)2 ε, g3 = g(0)3 + g(1)3 ε, with A±,B−,σ(K) ∈
D∗, and letting µ=−σ(K)−4, B+ =−µ−1B−, the sequence

Xn = A±B
⌊ n
2 ⌋

± µ⌊ n
2 ⌋

2

σ (nK+Z0) , n ∈ Z (3.12)

satisfies the dual Somos-5 recurrence (2.6) with coefficients

α= α(0) +α(1)ε=
σ (3K)

σ (K)9
, β = β(0) +β(1)ε=− σ (4K)

σ (2K)σ (K)12
. (3.13)

8
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In terms of even/odd components, this may be written as

Xn = xn+ xn

(
A(1)
±

A(0)
±

+
⌊n
2

⌋ B(1)
±

B(0)
±

+ z(1)0 ζ
(
z(0)0 + nκ(0)

)
+
(
κ(1)∂κ(0) + g(1)2 ∂

g(0)2
+ g(1)3 ∂

g(0)3

)
logxn

)
ε (3.14)

where ∂ denotes a partial derivative, ζ(z) = ζ(z;g(0)2 ,g(0)3 ) is the Weierstrass zeta function,
and xn is the right-hand side of (3.12) with all parameters replaced by their even components,
i.e. A+ → A(0)

+ , etc.

Proof. This is analogous to the proof of the analytic solution of the dual Somos-4 recurrence
in [11]. We can make use of part of the original proof of theorem 3.1 for the regular Somos-5
recurrence in [9]: in one direction, the fact that the analytic expression satisfies the recurrence
relies only on the three-term relation for the sigma function. The sigma function σ(z;g2,g3) is
an analytic function of the argument z ∈ C, and of the parameters g2,g3, and so the three-term
relation holds as an identity of formal series, which is still valid when z,g2,g3 are replaced
by elements of the commutative ring D. As for the even and odd parts, we can expand the
right-hand side of (3.12) into its even and odd parts, Xn = xn+ ynε, by writing

A±= A(0)
±

(
1+

A(1)
±

A(0)
±

ε

)
, B

⌊ n
2
⌋

± =
(
B(0)
±

)⌊ n
2
⌋
(
1+

B(1)
±

B(0)
±

ε

)⌊ n
2⌋

=
(
B(0)
±

)⌊ n
2
⌋
(
1+

⌊n
2

⌋ B(1)
±

B(0)
±

ε

)
,

where we used the binomial theorem, and also

σ (Z0 + nK;g2,g3) = σ
(
z(0)0 + nK;g2,g3

)(
1+ z(1)0 ζ (z0 + nK;g2,g3)ε

)
= σ

(
z(0)0 + nK;g2,g3

)(
1+ z(1)0 ζ

(
z0 + nκ(0);g(0)2 ,g(0)3

)
ε
)

by (3.11). Upon multiplying out and keeping only terms of order zero and one in ε, this yields

Xn = A(0)
±

(
B(0)
±

)⌊ n
2 ⌋
µ⌊ n

2 ⌋
2

σ
(
z(0)0 + nK;g2,g3

)(
1+

(
A(1)
±

A(0)
±

+
⌊n
2

⌋ B(1)
±

B(0)
±

+ z(1)0 ζ
(
z0 + nκ(0);g(0)2 ,g(0)3

))
ε

)
,

whose even (ε0) coefficient xn just corresponds to the solution of the regular Somos-5 recur-
rence with all parameters being the even parts of the dual ones, while at order ε1 above one
can see the first three terms that make up the expression for yn in (3.14). The remaining terms
at order ε1, involving a linear combination of the partial derivatives ∂κ(0) ,∂g(0)2

,∂
g(0)3

applied

to logxn, follow by considering the analytic dependence of the factor µ⌊ n
2 ⌋

2
σ(z(0)0 + nK;g2,g3)

on the parameters K,g2,g3 ∈ D and applying (3.11) to each of these variables in turn.

As it stands, the preceding result is not a complete analogue of theorem 3.1: while (3.12)
provides a solution of the dual Somos-5 recurrence, depending on 7 dual parameters, we have
not shown that it solves the general initial value problem for (2.6). To do this, we would need to
have an analogue of the elliptic integrals (3.10) in order to reconstruct the parameters Z0,K ∈ D

9
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from α,β and the initial data. This would seem to require a proper theory of elliptic curves
and integrals over the dual numbers, which seems to be lacking. Nevertheless, the analytic
formulae appearing in proposition 3.2 will be useful in what follows, for the construction of
the shadow Somos-5 sequences.

4. Somos-5 shadows

Returning to the recurrence (2.10) for yn, we noted previously that the case α(1) = 0= β(1),
that is

xnyn+5 + ynxn+5 −α(0) (xn+1yn+4 + yn+1xn+4)−β(0) (xn+2yn+3 + yn+2xn+3) = 0, (4.1)

corresponds to the linearization of (2.9), whose solutions are the shadow sequences in the
sense of [27]. The above homogeneous linear equation for yn is of order five, the same as the
order of (2.9), hence the shadow Somos-5 sequences form a vector space of dimension 5. In
particular, we can consider differentiating the explicit solution (3.1) with respect to suitable
parameters, in order to obtain 5 linearly independent solutions of the linearized equation (4.1).

Lemma 4.1. For fixed coefficientsα(0),β(0), the Somos-5 shadow equation (4.1) has 5 linearly
independent solutions, which can be chosen as follows:

y(i)n =

{
0 for n odd,

xn for n even,
(4.2)

y(ii)n =

{
xn for n odd,

0 for n even,
(4.3)

y(iii)n = nxn (4.4)

y(iv)n = ζ
(
z(0)0 + nκ(0)

)
xn (4.5)

y(v)n = xn∂J(0) log(xn) = xn

(
dκ(0)

dJ(0)
∂κ(0) +

dg(0)2

dJ(0)
∂
g(0)2

+
dg(0)3

dJ(0)
∂
g(0)3

)
logxn (4.6)

Proof. For fixed α,β ∈ C, the solution (3.1) depends on the 5 complex parameters
A+,A−,B−,z0,J, which can be chosen arbitrarily, so we can obtain independent solutions
of the linearized equation by differentiating with respect to each of these in turn. In the con-
text of the dual equation, we wish to consider each of these parameters as the even part of a
corresponding dual number, so that they should acquire a superscript (0), but for the purposes
of this proof the superscripts are omitted. The parameters A± appear alternately in even/odd
terms, and the derivatives with respect to these scaling parameters are proportional to xn for
each choice of parity of n, hence produce the alternating forms of (4.2) and (4.3) above. Using
the constraint of (3.5) to rewrite B+ in terms of B−, B− appears in both odd and even terms,
and the derivative with respect to B− up to scaling brings down a

⌊
n
2

⌋
factor on each term,

giving
⌊
n
2

⌋
xn. Then we can set y(iii)n = y(ii)n + 2

⌊
n
2

⌋
xn to obtain the simpler form of (4.4). The

fourth solution, as in (4.5), contains the Weierstrass zeta function ζ(z) = ζ(z;g2,g3) for the
same g2,g3 as in the solution, which comes from taking the derivative of σ(z0 + nκ) and using
the definition

ζ (z;g2,g3) =
σ ′ (z;g2,g3)
σ (z;g2,g3)

.

10
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The final linearly independent solution, y(v)n , is found using the derivative with respect to the
quantity J, the conserved quantity of the Somos-5 sequence, defined by (2.5), since the para-
meters κ,g2,g3 appearing in the formula (3.1) all depend on this quantity. The dependence
on J is not straightforward, since it is determined by variations of the sigma function both
with respect to its argument as a quasiperiodic function on the torus C/Λ, and with respect to
the modular parameters g2,g3 which determine the period lattice Λ of the elliptic curve (3.2).
Hence (4.6) is best left in the form of a sum of logarithmic derivatives of xn with respect to the
quantities κ,g2,g3.

There are several different ways to construct these explicit shadow solutions. On the one
hand, notice that the result of lemma 4.1 can be viewed as a corollary of proposition 3.12,
since when α(1) = β(1) = 0 the odd part of the solution (3.14) satisfies the homogeneous
equation (4.1): the freedom of choice in the pair of parameters A(1)

± gives linear combina-

tions of y(i)n and y(ii)n ; terms involving the parameters B(1)
± (of which only one can be chosen

freely) results in including multiples of y(iii)n ; the parameter z(1)± produces linear combinations

of y(iv)n ; and the last three logarithmic derivatives correspond to the inclusion of the fifth lin-
early independent solution y(v)n . On the other hand, it is also easy to verify that y(i)n ,y(ii)n ,y(iii)n

are shadow solutions by direct substitution.

Example 4.2. The solution y(iii)n = nxn can be shown to satisfy the linear homogeneous recur-
rence as follows: Substituting yn = nxn into the left-hand side of (4.1) produces

(n+ 5)xnxn+5 + nxnxn+5 −α(0) ((n+ 4)xn+1xn+4 +(n+ 1)xn+1xn+4)

−β(0) ((n+ 3)xn+2xn+3 +(n+ 3)xn+2xn+3) ,

which is equal to

(2n+ 5)
(
xnxn+5 −α(0) xn+1xn+4 −β(0) xn+2xn+3

)
= 0,

since xn is a solution of the original Somos-5 recurrence (1.4) with α→ α(0), β → β(0).

Similar direct substitutions verify that y(i)n and y(ii)n are shadow solutions, and even more
straightforward to check is their sum yn = y(i)n + y(ii)n = xn. Compared with the analogous res-
ults for Somos-4 in [11], where the original sequence is also a shadow, the fact that the split-
ting of the original solution xn into its odd and even index components are separate shadow
solutions for Somos-5 is not unexpected: it is a consequence of the fact that the nonlinear
recurrence admits a symmetry whereby the odd and even terms of the sequence can be scaled
independently.

The solution y(iv)n is more complicated, being expressed in terms of the Weierstrass ζ func-
tion associated with the elliptic curve (3.2). To obtain algebraic relations for this shadow, we
note that from the solution (3.1), after shifting the index, the ratios wn in (3.6) are given by

wn =
σ (z0 +(n− 1)κ)σ (z0 +(n+ 2)κ)

σ (κ)4σ (z0 + nκ)σ (z0 +(n+ 1)κ)
= C(ζ (z0 +(n+ 1)κ)− ζ (z0 + nκ)+ c̃) , (4.7)

for C= σ(2κ)
σ(κ)4 and c̃= ζ(κ)− ζ(2κ), where the second equality (used in [13] in connection

with solutions of the Volterra lattice) follows from addition formulae forWeierstrass functions.
We can compare this formula directly with the shadow solution y(iv)n .

11
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Lemma 4.3. Up to subtracting multiples of y(i)n ,y(ii)n ,y(iii)n and overall scale, a fourth linearly
independent shadow sequence for Somos-5 is ȳ(iv)n given by

ȳ(iv)n = xn

n−1∑
j=0

wj = C
(
y(iv)n + c̃y(iii)n − ζ(z(0)0 )

(
y(i)n + y(ii)n

))
(4.8)

for wn =
xnxn+3

xn+1xn+2
which satisfies

wn+1wn−1 = α(0) +
β(0)

wn
, (4.9)

Proof. Using the formula (4.7) but with parameters z0 → z(0)0 , κ→ κ(0), and so forth, we have
the telescopic sum

n−1∑
j=0

wj = C
(
ζ
(
z(0)0 + nκ(0)

)
− ζ
(
z(0)0 +(n− 1)κ(0)

)
+ c̃+ · · ·+ ζ

(
z(0)0 +κ(0)

)
− ζ
(
z(0)0

)
+ c̃
)

= C
(
ζ
(
z(0)0 + nκ(0)

)
+ nc̃− ζ

(
z(0)0

))
,

and upon multiplying by xn and comparing with the result of lemma 4.1, we obtain (4.8).

Upon computing another telescopic sum, namely xnȳ
(iv)
n+1 − xn+1ȳ

(iv)
n , we find a first order

inhomogeneous linear relation for this alternative fourth shadow solution.

Corollary 4.4. The terms of the shadow Somos-5 sequence (ȳ(iv)n ) satisfy the relation

xnȳ
(iv)
n+1 = xn+1ȳ

(iv)
n + xn−1xn+2. (4.10)

To look into the final sequence y(v)n we return to the conserved quantity J as defined by
the relation (2.5). We noted previously that extending to dual numbers changes this to a dual
quantity given by J= J(0) + J(1)ε where J(0) fulfills the same role as the original conserved
quantity and J(1) relates to the yn sequence and is given by (2.16). We can rewrite this equation
in terms of a linear operator acting on yn by defining

Ln =
4∑

j=0

C ( j)
n x−1

n+jS
j, (4.11)

Fn = Dn− J(1)xnxn+1xn+2xn+3xn+4, (4.12)

where S is the shift operator that sends n→ n+ 1. Then (2.16) can be rewritten as

Ln (yn) = Fn, (4.13)

which, for fixed J(1), is a linear inhomogeneous difference equation of order 4 for yn, reducing
the order by 1 from the original recurrence (2.10) for yn.

The 4th order homogeneous equation that arises whenα(1) = β(1) = 0 and J(1) = 0, namely

Ln (yn) = 0, (4.14)

12
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is the linearization of the equation defining J(0), whose solutions form a vector space of dimen-
sion 4, spanned by the 4 linearly independent shadow solutions y(i)n ,y(ii)n ,y(iii)n ,y(iv)n . A fifth
linearly independent shadow solution for Somos-5, such as y(v)n , then arises from an inhomo-
genous solution of (4.13), by keeping α(1) = β(1) = 0, but taking a non-zero value J(1) 6= 0.
The other dual invariant I has even/odd components I(0) and I(1) which are functionally inde-
pendent of the components of J, so the values taken by I depend on the orbits of dual Somos-5;
but here we will not pursue the analogous linear equation obtained from I(1) any further.

Examining the other sequences y(i)n ,y(ii)n ,y(iii)n ,y(iv)n as solutions to this homogeneous
equation, we can note some identities for the coefficients of the operator Ln. For y

(i)
n , Ln(y

(i)
n ) =

0 gives

0=
4∑

j=0

C ( j)
n x−1

n+jyn+j =

{
C(1)
n +C(3)

n for n odd,

C(0)
n +C(2)

n +C(4)
n for n even.

(4.15)

The corresponding equations obtained from Ln(y
(ii)
n ) = 0 are the same but with n odd/even

switched, so hence we must have C(0)
n +C(2)

n +C(4)
n = 0 and C(1)

n +C(3)
n = 0 for all n; and

from the original definitions of the coefficientsC( j)
n in (2.17), we can see that these are satisfied

identically. By taking the sum y(i)n + y(ii)n of these two shadow solutions, from (4.2) and (4.3) we
get the equation Ln(xn) = 0, which corresponds to the identity

∑4
j=0C

( j)
n = 0. Upon examining

the equation Ln(y
(iii)
n ) = 0, we obtain the identity

0=
4∑

j=0

C ( j)
n (n+ j) = n

4∑
j=0

C ( j)
n +C(1)

n + 2C(2)
n + 3C(3)

n + 4C(4)
n . (4.16)

Hence, by making use of
∑4

j=0C
( j)
n = 0 and the other relations for the coefficients C( j)

n , we

find that C(2)
n , C(3)

n and C(4)
n can be written in terms of C(0)

n and C(1)
n , thus:

C(2)
n =−2C(0)

n −C(1)
n , C(3)

n =−C(1)
n , C(4)

n = C(0)
n +C(1)

n . (4.17)

The relations (4.17) allow us to rewrite the homogeneous equation (4.14) in a much simpler
way, which makes the first three independent shadow solutions even more obvious. Indeed, if
we define

yn = xnYn,

then the homogeneous equation becomes

Ln (yn)≡ xnxn+1xn+2xn+3xn+4L̃n (Yn) = 0, (4.18)

where a short calculation with the above relation yields the 4th order difference operator

L̃n =
[
C̃(0)
n (S + 1)+ C̃(1)

n S
]
(S + 1)(S − 1)2 , (4.19)

where

C̃(0)
n = α(0) xn+1xn+2

xnxn+3
+β(0) x2n+2

xnxn+4
− xnxn+3

xn+1xn+2
, (4.20)

13
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C̃(1)
n = α(0)

(
xn+2xn+3

xn+1xx+4
− xn+1xn+2

xnxn+3

)
+

xnxn+3

xn+1xn+2
− xn+1xn+4

xn+2xn+3
. (4.21)

Due to the factorized cubic part of L̃n with constant coefficients, namely (S + 1)(S − 1)2, it is
clear that the kernel of this operator has a 3-dimensional subspace spanned by Yn = 1, Yn = n
and Yn = (−1)n, and multiplying by xn we immediately find the subspace of kerLn spanned
by y(i)n ,y(ii)n ,y(iii)n .

We now present an algebraic formula for the general solution of the 5th order recur-
rence (2.10) for yn, which is based on applying the method of variation of parameters in the
discrete setting (see [6]) to the 4th order equation (4.13). The main observation to make ini-
tially is that every solution of (2.10) is also a solution of (4.13), for some value of the first
integral J(1). Hence, to solve the original problem, it is sufficient to find the general solution
of the 4th order equation with an arbitrary parameter J(1).

For variation of parameters, we start with any 4 linear independent solutions of the homo-
geneous equation (4.14), y(i)n ,y(ii)n ,y(iii)n ,y(iv)n say, and assume that the solution of the full
inhomogeneous problem (4.13) takes the form

yn =
∑
j

f ( j)n y ( j)
n , (4.22)

where f( j)n are some coefficient functions, as yet undetermined, and the sum runs over j= i, ii,
iii, iv. Before we substitute this into the equation, we first set the constraints∑

j

(
f ( j)n+1 − f ( j)n

)
y ( j)
n+k = 0 for k= 1,2,3, (4.23)

which also implies that

yn+k =
∑
j

f ( j)n y ( j)
n+k, k= 0,1,2,3.

Then substituting this form of yn into (4.13) and applying the constraints (4.23) gives

Ln (yn) = C(4)
n x−1

n+4

∑
j

(
f ( j)n+1 − f ( j)n

)
y ( j)
n+4 +

∑
j

f jnLn
(
y ( j)
n

)
= C(4)

n x−1
n+4

∑
j

(
f ( j)n+1 − f ( j)n

)
y ( j)
n+4,

as the shadow sequences y( j)n ∈ kerLn for j = i, ii, iii, iv. Hence, from (4.13), we have

C(4)
n x−1

n+4

∑
j

(
f ( j)n+1 − f ( j)n

)
y ( j)
n+4 = Fn,

which, together with the 3 constraints (4.23), gives a system of 4 simultaneous equations for
the differences

δ ( j)
n := f ( j)n+1 − f ( j)n ,

and solving this linear system then determines the functions f( j)n , up to a set of arbitrary con-
stants f( j)0 , corresponding to the choice of initial conditions.

14
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Theorem 4.5. A general solution of (2.10) can be given in the form

yn =
∑
j

f ( j)n y ( j)
n , (4.24)

where the sum runs over j = i, ii, iii, iv for the 4 shadow sequences y(i)n ,y(ii)n ,y(iii)n ,y(iv)n . The
coefficients f( j)n are given by

f ( j)n = f ( j)0 +
n−1∑
k=0

δ
( j)
k (4.25)

for arbitrary constants f( j)0 , and
δ
(i)
n

δ
(ii)
n

δ
(iii)
n

δ
(iv)
n

=
xn+4Fn

C(4)
n

∣∣∣∣∣∣∣∣∣∣
y(i)n+1 y(ii)n+1 y(iii)n+1 y(iv)n+1

y(i)n+2 y(ii)n+2 y(iii)n+2 y(iv)n+2

y(i)n+3 y(ii)n+3 y(iii)n+3 y(iv)n+3

y(i)n+4 y(ii)n+4 y(iii)n+4 y(iv)n+4

∣∣∣∣∣∣∣∣∣∣

−1
d(ii, iii, iv)
d(i, iii, iv)
d(i, ii, iv)
d(i, ii, iii)

 , (4.26)

where

d(a,b,c) =

∣∣∣∣∣∣∣
y(a)n+1 y(b)n+1 y(c)n+1

y(a)n+2 y(b)n+2 y(c)n+2

y(a)n+3 y(b)n+3 y(c)n+3

∣∣∣∣∣∣∣ . (4.27)

Proof. The variation of parameters method reduces the problem to solving the linear system
y(i)n+1 y(ii)n+1 y(iii)n+1 y(iv)n+1

y(i)n+2 y(ii)n+2 y(iii)n+2 y(iv)n+2

y(i)n+3 y(ii)n+3 y(iii)n+3 y(iv)n+3

y(i)n+4 y(ii)n+4 y(iii)n+4 y(iv)n+4




δ
(i)
n

δ
(ii)
n

δ
(iii)
n

δ
(iv)
n

=


0
0
0(

C(4)
n

)−1
xn+4Fn

 .

The four independent shadow sequences y( j)n ∈ kerLn for j = i, ii, iii, iv can be chosen
arbitrarily.

We end this section by presenting some explicit examples of shadow sequences.

Example 4.6. Taking the sequence xn to be the original well-known Somos-5 sequence (1.6),
i.e. with α= β = x0 = x1 = x2 = x3 = x4 = 1, we immediately find the first three shadow
sequences in terms of these xn from (4.2)–(4.4). For the fourth shadow sequence y(iv)n , we
can take ȳ(iv)n given by (4.8) in terms of xn and the quantities wn, which can either be calcu-
lated directly from the xn using (3.6), or found recursively using (4.9) with w1 = w2 = 1. The
n= 0 term is fixed to be ȳ(iv)0 = 0 (an empty sum) which is consistent with the relation (4.10).

For y(v)n we must solve (4.13) for α(1) = β(1) = 0 and J(1) 6= 0. For simplicity we start with
y(v)n = 0 for n= 0,1,2,3 and set J(1) =−1 to cancel the − sign in Fn, which gives y(v)4 = 1,
and the rest of the sequence is found by continuing with the definition of J(1) or by iterating
the base recurrence (4.1). Numerical values up to n= 10 are given in table 1.

The 5 sequences are linearly independent, as can be seen clearly for these values by
considering the initial conditions as y0,y1,y2,y3,y4 and the corresponding vectors y( j) =
(y( j)0 ,y( j)1 ,y( j)2 ,y( j)3 ,y( j)4 ) for j = i,ii,iii,iv,v. Then we can explicitly expand the standard basis
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Table 1. The original Somos-5 sequence (1.6) and 5 linearly independent Shadow
sequences associated with it.

n 0 1 2 3 4 5 6 7 8 9 10

xn 1 1 1 1 1 2 3 5 11 37 83
y(i)n 1 0 1 0 1 0 3 0 11 0 83
y(ii)n 0 1 0 1 0 2 0 5 0 37 0
y(iii)n 0 1 2 3 4 10 18 35 88 333 830
y(iv)n 0 2 3 4 6 15 25 49 130 475 1147
y(v)n 0 0 0 0 1 1 2 5 17 23 118

for C5 in terms of these vectors as

e1 = y(i) + y(v) − y(iv) + y(ii) + y(iii),

e2 = y(iv) − 3
2
y(iii) +

1
2
y(ii),

e3 = y(iv) − 2y(v) − y(ii) − y(iii),

e4 =
1
2
y(ii) − y(iv) +

3
2
y(iii),

e5 = y(v),

which shows that {y(i),y(ii),y(iii),y(iv),y(v)} span the space of initial conditions (although
not as a Z-module).

5. Hankel determinant formulae

Using a combinatorial approach and determinant identities, Hankel determinant formulae for
Somos-5 sequences were derived in [4], while in recent work on discrete integrable systems
related to the Volterra lattice, a different set of Hankel determinant formulae were found by
one of us via the connection with Stieltjes continued fractions [13]. In the notation used in the
latter work, the sequence of Hankel determinants is specified by

∆2k−1 = det(si+j−1)i,j=1,2,...,k , ∆2k = det(si+j)i,j=1,2,...,k (5.1)

for k⩾ 1, with ∆−2 =∆−1 =∆0 = 1, where the entries sj (the moments) are defined by the
recursion relation

sj = γ1 sj−1 +

j−1∑
i=1

sisj−i+ γ2

j−2∑
i=1

sisj−i−1 (5.2)

for j⩾ 3, with initial values s1 = w1,s2 = w1w2, and

γ1 =−2w1 −
c1
2
, γ2 =

1
4w1

(
c21
4
− c2

)
−w2. (5.3)
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Here, as usual, the wn are given by the recurrence (3.7), which is the QRT map associated with
the Somos-5 relation (1.4) via the substitution

wn =
xnxn+3

xn+1xn+2
(5.4)

(and the reader should note that in this section we havemade an overall shift of index compared
with (3.6), in order to be consistent with the conventions used in [13]). The remaining constants
c1,c2, which appear in the coefficients γ1,γ2 defined by (5.3), can be fixed from a related
elliptic curve, or by a variety of relations to the other parameters. They can be written

c1 =−2

(
α

w0
+w1 +w0 +w−1

)
=−2J,

c2 = 4α+
c21
4

= 4α+ J2 = 12µ̃λ̃,

where the substitution (5.4) has been used to obtain the extra equalities in each line above,
rewriting c1,c2 in terms of other constants used earlier, namely the first integral J defined
in (2.5), and µ̃, λ̃ as in (3.4). Equivalently, the sequence of moments sj, and the corresponding
Hankel determinants, are completely determined by fixing the values of s1,s2 and the coeffi-
cients γ1,γ2 in (5.2). The wn can then be given in terms of these determinants by

wn =
∆n−3∆n

∆n−1∆n−2
=

xnxn+3

xn+1xn+2
.

So the∆n generate a Somos-5 sequence with x1 = x2 = x3 = 1,x4 = s1,x5 = s2, if we identify

xn =∆n−3.

Example 5.1. For the original Somos-5 sequence we have x0 = x1 = x2 = x3 = x4 = α= β =
1 and J= 5, thus s1 = w1 = 1 and s2 = w1w2 = 2. From the above, the entries of the Hankel
matrices are found recursively using

sj = 3sj−1 +

j−1∑
i=1

sisj−i− 3
j−2∑
i=1

sisj−i−1, (5.5)

which recovers example 3.9 in [13], and the Hankel determinants ∆n = xn+3 can be seen to
reproduce the original Somos-5 sequence (1.6).

In [13], integrable maps and Hankel determinant solutions are constructed from continued
fraction expansions on hyperelliptic curves of arbitrary genus g, but for what follows it will be
convenient to paraphrase the main results about Hankel determinants in the case g= 1, which
correspond to Somos-5 sequences in the following way.

Proposition 5.2. Suppose that a sequence (∆n)n⩾−2 is specified by ∆−2 =∆−1 =∆0 = 1,
and Hankel determinants∆2k−1,∆2k given by (5.1) for k⩾ 1, with entries given by the moment
sequence (sj) obtained from the recursion (5.2) for j⩾ 3, for a fixed choice of coefficients γ1,γ2
and initial values s1,s2. Then ∆n is a solution of the Somos-5 recurrence

∆n+3∆n−2 = α∆n+2∆n−1 +β∆n+1∆n, n⩾ 0,
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where the coefficients α and β are given by

α=−γ2s1 − s2, β = (γ1 + γ2)s2 + γ2s
2
1 + 2s1s2, (5.6)

and the resulting value of the first integral J is

J= γ1 + 2s1. (5.7)

Note that fixing initial values ∆−2 =∆−1 =∆0 = 1 means that there are just 4 free para-
meters s1,s2,γ1,γ2, compared with the 7 parameters required to specify the general initial
value problem for Somos-5. However, other initial values for the sequences can be obtained,
and the missing degrees of freedom can be restored, by applying the 3-parameter group of
scaling symmetries

x2k−1 → A−x2k−1, x2k → A+x2k, xn → Bnxn (5.8)

for arbitrary non-zero constants A−,A+,B ∈ C∗.
Hankel determinant formulae for negative values of the index n are also presented in [13],

given by a similar formula and recursion for the entries. The scaling symmetries above can
be applied in order to ensure the positive and negative index formulae line up to form a full
sequence for all n ∈ Z.

As with the explicit form of the Somos-5 solution previously, because D is a commutative
ring, the above Hankel determinant formula extends directly to the dual numbers, simply by
taking all variables and constants to be in D.

Proposition 5.3. Suppose that constants γ1,γ2 ∈ D and s1,s2 ∈ D∗ are given, and ∆−2 =
∆−1 =∆0 = 1. Then the sequence (∆n) defined from the Hankel determinants

∆2k−1 = det(si+j−1)i,j=1,2,...,k ∆2k = det(si+j)i,j=1,2,...,k , k⩾ 1, (5.9)

with entries given by the sequence of moments sj = s(0)j + s(1)j ε ∈ D generated recursively from

sj = γ1sj−1 +

j−1∑
i=1

sisj−i+ γ2

j−2∑
i=1

sisj−i−1, j⩾ 3, (5.10)

is a solution of the dual Somos-5 recurrence

∆n+3∆n−2 = α∆n+2∆n−1 +β∆n+1∆n, n⩾ 0, (5.11)

where the coefficients α= α(0) +α(1)ε and β = β(0) +β(1)ε are given by

α(0) =−γ
(0)
2 s(0)1 − s(0)2 , β(0) = γ

(0)
2 s(0)2 + γ

(0)
1 s(0)2 + γ

(0)
2

(
s(0)1

)2
+ 2s(0)1 s(0)2 , (5.12)

and

α(1) =−γ
(0)
2 s(1)1 − γ

(1)
2 s(0)1 − s(1)2 , (5.13)

β(1) = γ
(0)
2 s(1)2 + γ

(1)
2 s(0)2 + γ

(1)
1 s(0)2 + γ

(0)
1 s(1)2 + γ

(1)
2

(
s(0)1

)2
+ 2γ(0)

2 s(1)1 s(0)1 + 2s(1)1 s(0)2 + 2s(0)1 s(1)2 . (5.14)
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and the components of the resulting dual first integral J= J(0) + J(1)ε take the values

J(i) = γ
(i)
1 + 2s(i)1 for i = 0,1. (5.15)

The constants γ1,γ2 can also be given explicitly in terms of an initial set of values of xn,yn,
via the formulae

γ
(0)
1 = J(0) − 2

x1x4
x2x3

, γ
(0)
2 =

x1x4
x2x3

+
x0x3
x1x2

− J(0), (5.16)

and

γ
(1)
1 = J(1) − 2

y1x4
x2x3

− 2
x1y4
x2x3

+ 2
x1y2x4
x22x3

+ 2
x1y3x4
x2x23

, (5.17)

γ
(1)
2 =

y1x4
x2x3

+
x1y4
x2x3

− x1y2x4
x22x3

− x1y3x4
x2x23

+
y0x3
x1x2

+
x0y3
x1x2

− x0y1x3
x21x2

− x0y2x3
x1x22

− J(1), (5.18)

which can be obtained via the formulae for the coefficients γ1,γ2 in terms of the wn and J from
[13], and using (2.12) to expand into even/odd components after changing all variables into
dual numbers. Assuming x1 = x2 = x3 = 1 and y1 = y2 = y3 = 0 to match up with the initial
terms of the sequence (∆n), with∆−2 =∆−1 =∆0 = 1, this simplifies considerably, to give

γ
(0)
1 = J(0) − 2x4, γ

(0)
2 = x4 + x0 − J(0), (5.19)

and

γ
(1)
1 = J(1) − 2y4, γ

(1)
2 = y4 + y0 − J(1). (5.20)

The Hankel determinant formulae can now be demonstrated to recover some of the dual
Somos-5 sequences that were found previously in the literature.

Example 5.4. To obtain the Shadow sequence y(v)n as in example 4.6, we have α(0) = β(0) =
x0 = x1 = x2 = x3 = x4 = 1 and α(1) = β(1) = y0 = y1 = y2 = y3 = 0 with J(1) =−1. Hence
∆−2 =∆−1 =∆0 = 1 from ∆n = xn+3 + yn+3ε as required. Then J(0) = 5 can be found
from (2.5) using the initial values of xn. Hence s

(0)
1 = x4 = 1 via w1 =

X1X4
X2X3

and the reciprocal

formula (2.12). Similarly, s(0)2 = x5 = 2 which can be found using the recurrence for the xn.

Then from the yn values, we find s
(1)
1 = 1,s(1)2 = 1. We can make use of the relations for the

components of α and β to get the coefficients γ1,γ2. In fact, without using (5.12), we already
know from example 5.1 that we have γ

(0)
1 = 3 and γ

(0)
2 =−3, because the even parts must

agree with the parameters for the ordinary Somos-5 over C. From the n= 1 case of (5.15) we
find γ

(1)
1 =−3 and via (5.13) we get γ(1)

2 = 2. Hence

sj = (3− 3ε)sj−1 +

j−1∑
i=1

sisj−i− (3− 2ε)
j−2∑
i=1

sisj−i−1, j⩾ 3, (5.21)

with initial moments s1 = 1+ ε,s2 = 2+ ε. From this we can find the first few dual moments:
s3 = 7− ε,s4 = 27− 18ε,s5 = 109− 119ε, and verify that the determinants recover the
sequence. We have∆1 = s1 = 1+ ε, ∆2 = 2+ ε and

∆3 =

∣∣∣∣1+ ε 2+ ε
2+ ε 7− ε

∣∣∣∣= 3+ 2ε, (5.22)

19



J. Phys. A: Math. Theor. 58 (2025) 015203 J W E Harrow and A N W Hone

∆4 =

∣∣∣∣2+ ε 7− ε
7− ε 27− 18ε

∣∣∣∣= 5+ 5ε, (5.23)

∆5 =

∣∣∣∣∣∣
1+ ε 2+ ε 7− ε
2+ ε 7− ε 27− 18ε
7− ε 27− 18ε 109− 119ε

∣∣∣∣∣∣= 11+ 17ε. (5.24)

So from the even parts we can see the expected sequence xn: 1,1,1,1,1,2,3,5,11, . . . , while
the odd parts give the shadow sequence y(v)n as yn: 0,0,0,0,1,1,2,5,17, . . . .

We can also demonstrate the use of the scalings (5.8) to get other dual sequences, when we
consider an example of one of Ovsienko and Tabachnikov’s specific cases, namely (2.7).

Example 5.5. From (2.7) we have α= 1+α(1)ε, β= 1. Letting α(1) = 2 for this example,
with the usual initial conditions x0 = x1 = x2 = x3 = x4 = 1 and y0 = y1 = y2 = y3 = y4 = 0
so that ∆−2 =∆−1 =∆0 = 1, we have from (5.19) that γ(0)

1 = 3,γ(0)
2 =−3. Similarly we

can find J(1) = 6 from (2.16) and thus, via (5.20), γ(1)
1 = 4,γ(1)

2 =−4. Also have s1 = X4 = 1,
and using the full recurrence for the yn, (2.10), with the above values we find y5 = 2 so s2 =
X5 = 2+ 2ε. Hence the entries can be generated by

sj = (3+ 4ε)sj−1 +

j−1∑
i=1

sisj−i− (3+ 4ε)
j−2∑
i=1

sisj−i−1, (5.25)

which gives s3 = 7+ 14ε,s4 = 27+ 78ε,s5 = 109+ 402ε. Hence

∆3 =

∣∣∣∣ 1 2+ 2ε
2+ 2ε 7+ 14ε

∣∣∣∣= 3+ 6ε, (5.26)

∆4 =

∣∣∣∣ 2+ 2ε 7+ 14ε
7+ 14ε 27+ 78ε

∣∣∣∣= 5+ 14ε, (5.27)

∆5 =

∣∣∣∣∣∣
1 2+ 2ε 7+ 14ε

2+ 2ε 7+ 14ε 27+ 78ε
7+ 14ε 27+ 78ε 109+ 402ε

∣∣∣∣∣∣= 11+ 42ε. (5.28)

Hence we can see the expected sequence xn: 1,1,1,1,1,2,3,5,11, . . . , and we have the
sequence of odd parts yn: 0,0,0,0,0,2,6,14,42, . . . which can be checked via the recur-
rence (2.10). We can also demonstrate rescaling using (5.8) to get sequences with initial val-
ues other than ∆−2 =∆−1 =∆0 = 1. For example, to obtain the initial conditions yn = n for
n= 0, . . . ,4 we can use A− = A+ = 1 and B= 1+ ε. Then by scaling the Xn = xn+ ynε for the
sequences above to Xn → BnXn, we obtain the same sequence xn: 1,1,1,1,1,2,3,5,11, . . . but
the alternative odd component sequence yn: 0,1,2,3,4,12,24,49,130, . . . which can again be
verified by (2.10). Hence sequences with other initial conditions can still be obtained from the
original Somos-5 sequence, by using the Hankel determinant formulae together with appro-
priate scalings.

6. Bi-Hamiltonian structure for dual QRT map

Iterating the recurrence (3.7) is equivalent to making iterations of the birational map

φ :

(
w1

w2

)
7−→

(
w2

w−1
1

(
α+βw−1

2

) ) , (6.1)
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in the affine plane with coordinates (w1,w2), which preserves the log-canonical symplectic
form

ω =
dw1 ∧ dw2

w1w2
,

in the sense that φ∗(ω) = ω. The first integral J for Somos-5 can be rewritten in terms of a
pair of coordinates (w1,w2) in the plane, by fixing n= 1 in (3.8), to obtain

J= w1 +w2 +α

(
1
w1

+
1
w2

)
+

β

w1w2
,

and the family of level sets of J defines a pencil of biquadratic plane curves. The map (6.1) is
a particular example of a symmetric QRT map, and is associated with elliptic solutions of the
Volterra lattice (see [13] and references).

As already mentioned above, the substitution (3.6) relates solutions of the Somos-5 recur-
rence to iterates of the map (6.1), and we can extend this to the dual numbers by setting

Wn =
Xn+2Xn−1

Xn+1Xn
, (6.2)

where Xn is a solution of (2.6). Upon expanding into even/odd components we find

Wn = wn+ εvn,

where the even component wn corresponds to iterates of φ as before, but with the replacement
α→ α(0), β → β(0) in (6.1), and the odd components are given in terms of xn and yn by

vn =
xn−1yn+2

xn+1xn
− xn−1xn+2yn+1

x2n+1xn
− xn−1xn+2yn

xn+1x2n
+
xn+2yn−1

xn+1xn
. (6.3)

Moreover, the odd components satisfy the recurrence

wn−1wnvn+1 +wn−1wn+1vn+wnwn+1vn−1 = α(0) vn+α(1)wn+β(1), (6.4)

which comes from the odd part of the recurrence for Wn, that is

Wn+1WnWn−1 = αWn+β, α,β ∈ D. (6.5)

The above recurrence corresponds to the dual QRT map

φdual :

(
W1

W2

)
7−→

(
W2

W−1
1

(
α+βW−1

2

) ) , (W1,W2) ∈ D∗, (6.6)

which can be written in components as the 4D map
w1

w2

v1
v2

 7−→


w2

w3

v2
v3

 , where w3 = w−1
1 w−1

2

(
α(0)w2 +β(0)

)
, (6.7)

and

v3 =−w−1
2 w3v2 −w−1

1 w3v1 +w−1
1 w−1

2

(
α(0)v2 +α(1)w2 +β(1)

)
.
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Remark 6.1. In the general setting of noncommutative variables, whereW1,W2 are considered
as units in an associative algebra, with parameters α,β both set to 1, Duzhin and Kontsevich
discovered the map (6.6) in the form

(W1,W2) 7→
(
W1W2W

−1
1 ,
(
1+W−1

2

)
W−1

1

)
,

which they found was a discrete symmetry of the ODE system

Ẇ1 =W1W2 −W1W
−1
2 −W−1

2 , Ẇ2 =−W2W1 +W2W
−1
1 +W−1

1 . (6.8)

(See [14] and [29] for more details.)

We now derive a Poisson structure that is compatible with the dual QRT map φdual, which
is obtained simply by noticing that the dual analogue of the symplectic form ω, namely

Ω=
dW1 ∧ dW2

W1W2
, (6.9)

is preserved by (6.6), so that φ∗
dual(Ω) = Ω. Then we can expand Ω into its even and odd

components,

Ω= ω(0) + εω(1),

where

ω(0) = ω

is the same as the original log-canonical 2-form on the (w1,w2) plane, while

ω(1) =−
(
v1
w1

+
v2
w2

)
ω+

1
w1w2

(dv1 ∧ dw2 + dw1 ∧ dv2) ,

and note that each component is separately invariant under the map in the extended 4D phase
space:

φ∗
dual

(
ω ( j)

)
= ω ( j), j = 0,1.

Theorem 6.2. The dual QRT map φdual defined by (6.7) is bi-Hamiltonian, in the sense that it
preserves the pencil of Poisson brackets { , } with parameter ζ defined by

{w1,w2}= {w1,v1}= {w2,v2}= 0,
{w2,v1}=−{w1,v2}= w1w2,
{v1,v2}= w1w2 ζ −w1v2 −w2v1.

(6.10)

Furthermore, the even and odd components of the first integral J are in involution with respect
to this pencil, hence φdual is a Liouville integrable map in 4D.

Proof. The form (6.9) can be written as d logW1 ∧ dlogW2, so dΩ= 0 which implies that the
even and odd parts are both closed. Hence ω(0) and ω(1) are both symplectic forms that are
preserved by the map φdual, as is the linear combination

ωζ = ζω(0) +ω(1).
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The 2-form ωζ is nondegenerate for any ζ ∈ C. Hence its inverse defines a nondegener-
ate Poisson tensor, which corresponds to the pencil of brackets { , } given in (6.10), and
φ∗
dual(ωζ) = ωζ implies that this bracket is preserved by the dual QRT map for all ζ. In the

form (6.6), it is clear that the map preserves the invariant J ∈ D given by the dual analogue
of (3.8), that is

J=W1 +W2 +α

(
1
W1

+
1
W2

)
+

β

W1W2
= J(0) + εJ(1),

where

J(0) = w1 +w2 +α(0)

(
1
w1

+
1
w2

)
+

β(0)

w1w2
,

J(1) =

(
1− α(0)

w2
1

− β(0)

w2
1w2

)
v1 +

(
1− α(0)

w2
2

− β(0)

w1w2
2

)
v2

+ α(1)

(
1
w1

+
1
w2

)
+

β(1)

w1w2
, (6.11)

which correspond to rewriting the conserved quantities (2.15) and (2.16) for the dual Somos-5
recurrence in terms of the coordinates for the 4D phase space. The latter define two independent
invariants for themap in 4D, and {J(0),J(1)}= 0 for all ζ ∈ C, hence themapφdual is integrable
in the Liouville sense.

Remark 6.3. Because they are in involution, the conserved quantities (6.11) generate a pair
of commuting vector fields from any member of the Poisson pencil. Fixing ζ = 0 to obtain
the bracket corresponding to the symplectic form ω(1), the first vector field is {·,J(0)}|ζ=0

given by

w ′
1 = 0,

w ′
2 = 0,

v ′1 =−w1w2 +
(
α(0)w1 +β(0)

)
w−1
2 ,

v ′2 = w1w2 −
(
α(0)w2 +β(0)

)
w−1
1

(with the derivative denoted by prime), while the second vector field is {·,J(1)}|ζ=0 given by

ẇ1 =−w1w2 +
(
α(0)w1 +β(0)

)
w−1
2 ,

ẇ2 = w1w2 −
(
α(0)w2 +β(0)

)
w−1
1 ,

v̇1 =
(
−w2 +α(0)w−1

2

)
v1 −

(
w1 +α(0)w1w

−2
2 +β(0)w−2

2

)
v2 +

(
α(1)w1 +β(1)

)
w−1
2 ,

v̇2 =
(
w2 +α(0)w2w

−2
1 +β(0)w−2

1

)
v1 +

(
w1 −α(0)w−1

1

)
v2 −

(
α(1)w2 +β(1)

)
w−1
1 .

In terms of the original dual coordinates, the latter is

Ẇ1 =−W1W2 +(αW1 +β)W−1
2 , Ẇ2 =W1W2 − (αW2 +β)W−1

1 ,
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which, when α= β = 1, corresponds to (6.8) (up to an overall minus sign). Observe that the
first two components ẇ1, ẇ2 above are the Hamiltonian vector field produced by J(0) with the
bracket {w1,w2}= w1w2, corresponding to the form ω in the (w1,w2) plane, but this form
becomes degenerate when it is extended to the 4D phase space.

The map φdual provides a geometric interpretation of the shadow Somos-5 sequences. If
we take the additional parameters α(1) = β(1) = 0, then (6.7) is just the original QRT map
together with its linearization, and the points (v1,v2) are the shadow in the plane. We can
obtain a sequence of such points by using the formula (6.3), where (xn) is an ordinary Somos-
5 sequence and (yn) is any one of the shadow sequences (y( j)n ) for j= i, ii, iii, iv, v, or any linear
combination of the latter. Now the first three shadows (that is, j= i, ii, iii) just correspond to the
infinitesimal action of the three-dimensional group of scaling symmetries (gauge transforma-
tions) for Somos-5, namely (5.8) for arbitrary A+,A−,B ∈ C∗. These scaling symmetries leave
wn invariant, and by extending them to A+,A−,B ∈ D∗, at the level of the linearization in the
plane this means that they do not appear: substituting yn = y(i)n , y(ii)n , y(iii)n or any linear combin-
ation thereof into (6.3) gives a trivial shadow sequence in the plane, namely (vn,vn+1) = (0,0)
for all n. The fourth shadow sequence (or multiples of it) corresponds to a sequence of points
on tangent lines of the level curve of the first integral J(0) in the (w1,w2) plane: substituting
yn = y(iv)n into (6.3) gives a sequence of points (vn,vn+1) that satisfy(

1− α(0)

w2
n
− β(0)

w2
nwn+1

)
vn+

(
1− α(0)

w2
n+1

− β(0)

wnw2
n+1

)
vn+1 = 0, (6.12)

which corresponds to J(1) = 0 (with α(1) = 0, β(1) = 0 as before). Each generic level curve of
J(0) has genus 1, being isomorphic to a Weierstrass elliptic curve (3.2) as in theorem 3.1, and
the vector (vn,vn+1) satisfying (6.12) is tangent to the level curve at the point (wn,wn+1).

As an example, let us consider the original Somos-5 sequence, for which the points
(wn,wn+1) lie on the curve

wn+wn+1 +
1
wn

+
1

wn+1
+

1
wnwn+1

= 5 (6.13)

(corresponding to J(0) = 5), and densely fill a real compact connected component of this curve
(an oval). Taking the shadow sequence y(iv)n , as given in table 1, one can obtain a sequence of
vectors (vn,vn+1) satisfying the equation(

1− 1
w2
n
− 1
w2
nwn+1

)
vn+

(
1− 1

w2
n+1

− 1
wnw2

n+1

)
vn+1 = 0

for all n, which provide a tangent vector to the oval at the point (wn,wn+1), for each n. We have
plotted the same orbit of such tangent vectors twice, in figures 1 and 2 (points shown in red),
where they can be seen to densely fill a closed curve starting from the point (v1,v2) = (−1,1),
which is tangent to the curve (6.13) at (w1,w2) = (1,1).

The fifth shadow sequence corresponds to linear perturbations of the QRT map that are
transverse to the level curves of the first integral J(0), involving modular deformations of the
underlying elliptic curve: substituting yn = y(v)n into (6.3), or taking this shadow sequence with
a linear combination of any of the other four, gives points (vn,vn+1) that produce a non-zero
value of the second invariant J(1) in (6.11). For the original Somos-5 sequence, the fifth shadow
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Figure 1. Plot in (v1,v2) plane of 1000 points on two different shadow orbits of the
map φdual for α= β = 1 and (w1,w2) = (1,1)with initial values (v1,v2) = (−1,1) and
(v1,v2) = (0,1), respectively. The red points, starting from (−1,1), densely fill a closed
curve, while the black points, starting from (0, 1), appear to spiral outwards.

sequence y(v)n is given in the last column of table 1, and we can use this to generate vectors
(vn,vn+1) that are transverse to the level curve J0= 5, given by (6.13) above, at each point
(wn,wn+1). Figure 1 shows 1000 points on an orbit starting from (v1,v2) = (0,1), which gives
J(1) =−1, and figure 2 shows the same number of points on an orbit starting from (v1,v2) =
(1,1), which gives J(1) =−2. Both of these orbits including transverse perturbations (with
points shown in black) appear to spiral gradually out from the origin.

7. Conclusion

We have shown that the main results on the dual Somos-4 sequences from [11] have exact
analogues for dual Somos-5 sequences: analytic solutions in terms of Weierstrass functions
with arguments inD; an algebraic form of the general solution for the odd parts using variation
of parameters; and exact algebraic expressions in terms of D-valued Hankel determinants. We
have also constructed explicit formulae for a complete basis of shadow Somos-5 sequences,
in the sense of [27], and showed how to reproduce other examples of dual sequences studied
by Ovsienko and Tabachnikov.

The fact that we are able to obtain so many explicit results is due to integrability lurking
in the background, which persists when we move from the shadows to dual sequences. From
a naive viewpoint, integrability just means that the original system has a certain number of
conserved quantities, and these extend in the obvious way when all variables and parameters
are replaced by dual numbers. However, there appears to be a much stronger set of properties
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Figure 2. Another plot in the (v1,v2) plane, as in figure 1, but now comparing orbits of
φdual with initial values (v1,v2) = (−1,1) (the same red points as before) and (v1,v2) =
(1,1) (black points that spiral outwards), respectively.

that is inherited in the context of dual numbers, since we have shown that the symplectic
structure for the QRTmap associated with Somos-5 extends to give a bi-Hamiltonian structure
in the dual setting, and this leads to a proof that the dual QRTmap is integrable in the Liouville
sense.

Supersymmetric analogues of integrable PDEs and the construction of their associated bi-
Hamiltonian structures have been considered for several decades [7, 16, 23], and supersymmet-
ric soliton equations continue to be a subject of current interest [17]. However, some analogues
of discrete integrable systems over Grassmann algebras have only been obtained quite recently
[1, 2, 15], and there does not appear to be a fully developed theory of Liouville integrability
in this context.
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