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Biogeographic context, such as biome type, has a critical influence on ecological resil-
ience, as climatic and environmental conditions impact how communities respond to 
anthropogenic threats. For example, land-use change causes a greater loss of biodiversity 
in tropical biomes compared to temperate biomes. Furthermore, the nature of threats 
impacting ecosystems varies geographically. Therefore, monitoring the state of biodiver-
sity at a high spatial resolution is crucial to capture variation in threat–responses caused 
by biogeographical context. However such fine-scale ecological data collection could be 
prohibitively resource intensive. In this study, we aim to find the spatial scale that could 
best capture variation in community-level threat responses whilst keeping data collec-
tion requirements feasible. Using a database of biodiversity records with extensive global 
coverage, we modelled species richness and total abundance (the responses) across land-
use types (reflecting threats), considering three different spatial scales: biomes, biogeo-
graphical realms, and regional biomes (the interaction between realm and biome). We 
then modelled data from three highly sampled biomes to ask how responses to threat 
differ between regional biomes and taxonomic group. We found strong support for 
regional biomes in explaining variation in species richness and total abundance com-
pared to biomes or realms alone. Our biome case studies demonstrate that there is 
variation in magnitude and direction of threat responses across both regional biomes 
and taxonomic group, although the interpretation is limited by sampling bias in the 
literature. All groups in tropical forest showed a consistently negative response, whilst 
many taxon-regional biome groups showed no clear response to threat in temperate 
forest and tropical grassland. Our results provide the first empirical evidence that the 
taxon-regional biome unit has potential as a reasonable spatial unit for monitoring how 
ecological communities respond to threats and designing effective conservation inter-
ventions to bend the curve on biodiversity loss.
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Introduction

Despite multiple internationally agreed science-based con-
servation targets, biodiversity continues to decline across the 
globe, with the consequent loss of essential ecosystem ser-
vices (Tittensor et al. 2014, Brooks et al. 2015, Isbell et al. 
2017, Ceballos et al. 2017, Mace et al. 2018, IPBES 2019, 
Ingram  et  al. 2021). Habitat disturbance caused by land-
use change is a major factor contributing to biodiversity 
loss (Newbold et al. 2015). However, the impact of distur-
bance on biodiversity (its response) varies spatially and is 
contingent on factors such as the intensity of environmen-
tal change (Felipe-Lucia  et  al. 2020), the original habitat 
(Monsarrat  et  al. 2019) and taxon studied. Such threat–
response relationships will further be influenced by specific 
life-history traits, biogeographic context, and the ecologi-
cal scale being measured (e.g. a community, population 
or individual) (Isaac and Cowlishaw 2004, Murphy 2021, 
Suraci  et  al. 2021). Understanding the variability in how 
biodiversity responds to threats such as habitat disturbance 
can help to improve conservation decisions. With the adop-
tion of new targets such as the Kunming-Montreal Global 
Biodiversity Framework (CBD 2022) and the Global Deal 
for Nature (Dinerstein et al. 2019), it is vital to develop spa-
tial frameworks for biodiversity monitoring that can accu-
rately measure indicators at an appropriate spatial scale that 
optimises available resources with the resolution necessary to 
inform successful conservation actions.

The specific location of a species or ecological community 
on the planet, or biogeographic context, plays a crucial role 
in determining its sensitivity to an anthropogenic threat. This 
could be due to the climate, historical natural disturbances, or 
the history of human activity in the area. For example, stud-
ies on biodiversity in tropical areas have been shown to have 
higher levels of fragmentation-sensitive species, stronger neg-
ative responses to land-use change and faster declining abun-
dance than comparable temperate areas (Betts  et  al. 2019, 
Newbold et al. 2020, WWF 2022). This could be explained 
by the extinction filter hypothesis, which suggests that eco-
systems with a history of disturbance will be more resilient 
in the present day due to the previous filtering of sensitive 
species (Balmford 1996). Tropical biomes are considered to 
have a history of low natural disturbance and a stable climate, 
whereas temperate biomes have been subject to elevated lev-
els of glaciation, widespread fires, and human-caused forest 
loss in the last 10 000 years (Betts et al. 2019). In addition, 
traits typically associated with tropical species (Stevens 1989, 
Gaston 2000, Brown 2014), including habitat specialisation 
and small range size, have also been associated with stronger 
negative responses to land-use change (Newbold et al. 2013). 
The history of land use and environmental disturbance is 
not uniform across the globe and will further contribute 
to modern day responses to anthropogenic threats (Klein 
Goldewijk et al. 2011, Yang et al. 2021). Incorporating an 

understanding of biogeography and historical knowledge of 
an environment could play a key role in global biodiversity 
monitoring.

Considering the influence of biogeography on threat–
response relationships, monitoring biodiversity at the small-
est possible scale would be appropriate. However, there are 
currently more than 42 000 threatened species on the IUCN 
red list (IUCN 2022), all of which cannot have unique con-
servation plans created for them. Therefore, indicators must 
be used at a higher ecological and spatial scale that strikes a 
balance between presenting global trends and understand-
ing local scale responses to human pressure (Ingram  et  al. 
2021). One way to account for biogeographic variation in 
threat responses is to use a monitoring framework based on 
spatial units, but choosing the correct unit is challenging. For 
example, creating national statistics for biodiversity is help-
ful for feeding into policy, but biodiversity is not nationally 
constrained (Murphy 2021). A global framework has been 
suggested for monitoring biodiversity at an ecoregional level 
(n = 867) (Dinerstein et al. 2017, 2019, Smith et al. 2018). 
This framework is powerful when measuring variables that 
can be obtained using remote sensing or global species lists 
(Dinerstein et al. 2017, Smith et al. 2020), but many ecore-
gions are lacking the required field data or access to study 
population responses to human pressure at this resolution 
(Stephenson  et  al. 2015). It is therefore critical to evaluate 
whether broader spatial units, already used in many global 
monitoring studies (Newbold et al. 2016, Blowes et al. 2019, 
WWF 2022), can effectively capture the diversity in threat–
response relationships across different biogeographic contexts.

The broadest spatial unit of terrestrial habitats is the cli-
matically defined biome, of which there are 14 (Olson et al. 
2001). Responses of animal and plant populations to 
threats do differ between biomes (Greenville  et  al. 2018, 
Green et al. 2020) and species richness is particularly sensi-
tive to land use change in tropical forest, tropical grassland 
and Mediterranean biomes compared to temperate and des-
ert biomes (Newbold  et  al. 2020). In addition to biomes, 
there are 8 biogeographic realms, which broadly follow the 
continents (Olson et al. 2001). Data from the Living Planet 
Database (Collen et al. 2009, WWF 2022) has shown that 
decreases in vertebrate populations are more pronounced in 
Southern Hemisphere realms, particularly the Neotropics 
(Green et al. 2020, WWF 2022). Although there is evidence 
for variation in threat–response relationships between biomes 
and between realms, the intersection of these two spatial 
units is rarely investigated, which may mean a large amount 
of variation is unaccounted for when monitoring biodiversity 
in biomes or realms alone.

A potential, intermediate spatial framework for monitor-
ing biodiversity are regional biomes (the interaction of realms 
and biomes) (n = 64) (Ingram et al. 2021). Regional biomes 
each cover 11 ecoregions on average, ranging from 1 to –81 
ecoregions (Olson and Dinerstein 2002). Separating biomes 
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by biogeographic realms can account for differences in evo-
lutionary history, vegetative structure, threats and socioeco-
nomic status that occur between realms (Moncrieff et al. 2016, 
Allan et al. 2019). Furthermore, threats are not spread evenly 
across the world and can be region-specific (Lewis et al. 2015, 
Bowler et al. 2020); for example, tropical forest in southeast 
Asia is a threat ‘hotspot’, whereas large parts of the Amazon 
rainforest act as threat ‘refugia’ (Allan et al. 2019). Some areas 
of forest biomes, particularly in the Northern Hemisphere, 
are being afforested, whilst others experience mass defores-
tation (Song  et  al. 2018). In Asian tropical forests, species 
richness was found to be significantly more sensitive to dis-
turbance compared to similar regions in South America and 
Africa (Gibson et al. 2011, Phillips et al. 2017). Conversely, 
vertebrate abundance is declining more in the Neotropics and 
Afrotropics than in the Indo-Pacific region (Green et al. 2020, 
WWF 2022). These conflicting trends highlight the necessity 
of understanding and clearly reporting how biogeographical 
variation contributes to threat responses. Regional biomes 
may present a middle-ground between the finer scale moni-
toring of ecoregions and the coarser biome scale, facilitating 
robust reporting of biodiversity responses, but there is a lack of 
empirical evidence comparing this unit to biomes or realms.

Here, we use the PREDICTS database to analyse data from 
over 400 field studies to explore the efficacy of regional biomes 
as a spatial monitoring unit for terrestrial species. Our expec-
tation is that there will be negative responses to human-domi-
nated land-use types compared to primary vegetation, but the 
magnitude of response will differ between regional biomes. 
We therefore hypothesise that regional biomes present a more 
parsimonious explanation of responses of biodiversity to land-
use change than realms or biomes alone. We then model the 
three most data-rich biomes (tropical forest, temperate for-
est, tropical grasslands) in the PREDICTS database to explore 
how responses to land-use change vary between regional 
biomes. Here, we also consider the impact of taxonomic 
group (vertebrate, invertebrate, plant) on the threat–response 
relationship within regional biomes. We expect the highest 
variation but also uncertainty in predicted responses between 
tropical regional biomes due to ecoregions being more distinct 
in these biomes (Smith et al. 2020), and smaller and less vari-
able responses between temperate regional biomes due to the 
history of natural and anthropogenic disturbance leading to 
biotic homogenization (Newbold et al. 2018).

Methods

The PREDICTS database

We used species abundance and occupancy data from the 
PREDICTS database (Hudson et al. 2017; 22 678 sites, 480 
sources, 666 studies, 47 000 species). We chose to use the 
PREDICTS database due to high global coverage compared 
to other databases (Hudson et al. 2017), making it suitable for 
a study comparing many regional biomes. The PREDICTS 
project (Predicting Responses of Ecological Diversity In 

Changing Terrestrial Systems; www.predicts.co.uk) is a data-
base that collates biodiversity studies with comparable mea-
sures of terrestrial biodiversity from sites of different land uses 
and land-use intensity (Hudson et al. 2017). All sampled sites 
are classified by stage of disturbance or recovery which can 
be used as a substitute for actual temporal change at a single 
site (Srivathsa et al. 2017, Walker et al. 2010). This space-for-
time substitution methods allows for specific measurements 
of biodiversity over distinct land-use types, acting as a proxy 
for anthropogenic pressure. PREDICTS does not include 
marine or freshwater data but does have extensive global cov-
erage and has made attempts to reduce taxonomic and geo-
graphic bias (Hudson et al. 2017).

We summarised occurrence and abundance records by site 
and taxon using the ‘predictsFunctions’ R package (www.r-
project.org, Newbold 2018). ‘Taxa’ were categorised as ver-
tebrate (n = 7488 sites), invertebrates (n = 7946 sites), plants 
(n = 5306 sites) or fungi (n = 467 sites). The PREDICTS 
database contains biodiversity data from 47 of 64 regional 
biomes (70%), with some regional biomes more comprehen-
sively sampled than others. Only 14 regional biomes had data 
available for ≥ 50% of their ecoregions (Supporting informa-
tion). For analysis, we excluded data from three biomes with 
fewer than 50 sites in total from the dataset (flooded grass-
lands and savannahs, tundra, deserts and xeric shrublands and 
mangroves). Additionally, regional biomes were considered 
data deficient and excluded from analysis if they had no sites 
in primary vegetation land-use types (our reference level), or 
no sites in any kind of managed land use (cropland, pasture, 
and plantation forest). This ensured that regional biomes 
included in analysis had data points (sites) across a gradient 
of increasingly anthropogenic land-use types. After removing 
data deficient regional biomes, a total of 30 regional biomes 
were available for analysis (Fig. 1; 20011 sites, 545 studies).

Using the predominant land use classification from the 
PREDICTS database (primary vegetation, mature secondary 
vegetation, intermediate secondary vegetation, young second-
ary vegetation, plantation forest, pasture, cropland and urban) 
(Hudson et al. 2017), we created the LandUse variable. We 
combined the three secondary vegetation classes (mature, 
intermediate, and young) into one and removed data from 
urban land-use types due to the low quantity of samples com-
pared to other land-types (917 sites from 53 studies). Because 
some combinations of regional biome and LandUse class have 
low sample sizes, we tested five variations of this variable where 
categories were aggregated to find the most parsimonious 
grouping that still explained variation in the model well. For 
example, to make the LandUse2 variable we grouped primary 
vegetation and secondary vegetation as ‘natural vegetation’. 
Full descriptions of each land-use type and the five variations 
of LandUse can be found in Supporting information.

Statistical analysis

We used generalised mixed-effects models (Bolker  et  al. 
2009) to test for differences in species richness and total 
abundance in response to land use, biome, realm and regional 
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biome (an interaction of biome and realm). Species richness 
was modelled using a Poisson distribution and total abun-
dance was log transformed (natural logarithm) and modelled 
with a Gaussian distribution. In all models, we included 
study and taxa as random intercepts to account for site-level 
differences, data collection methods and scale differences 
between response metrics of vertebrates, invertebrates, plants 
and fungi. We ran a series of models with species richness 
and total abundance against each LandUse variable (i.e. 
LandUse1, LandUse2 LandUse3 etc. ) and selected the best 
fitting variable using Akaike information criterion (AIC) 
(Burnham et  al. 2011). We found that LandUse1 (primary 
vegetation, secondary vegetation, agriculture, plantation for-
est, cropland) had the most support and was used for remain-
ing analyses (Supporting information).

Global analysis of regional biomes

To see if including regional biome is a more parsimoni-
ous explanation for changes in biodiversity than realm or 
biome, we ran a model selection process using ΔAIC values 
to assess the support for each variable. The fixed effect struc-
tures tested were LandUse, LandUse:Realm, LandUse:Biome 
and LandUse:RegionalBiome and species richness and total 
abundance were used as response variables. We tested model 
robustness in two ways. First, we increased the sample size 

threshold that would allow a regional biome to be included 
in the model (minimum 1, 5, 25 or 50 sites in each regional 
biome-land use combination) and checked if the model selec-
tion process gave the same results in each case. Second, we ran 
a series of 100 hold-out models using the 25-site threshold 
dataset where each iteration randomly removed 10% of stud-
ies to see if this would change the results of model selection.

Biome-specific case study

As case studies, we investigated the differences in biodiversity 
response to land-use change between regional biomes by select-
ing the three biomes which had three or more regional biomes 
with at least 100 sites in the PREDICTS database (Supporting 
information). The biomes selected were tropical and subtrop-
ical moist broadleaf forest (tropical forest) (4 realms; Indo-
Malay: 1702 sites; Neotropics: 2314 sites; Afrotropics: 2174 
sites; Australasia: 178 sites), temperate broadleaf and mixed 
forests (temperate forest) (4 realms; Palearctic: 3965 sites; 
Neotropics: 653 sites; Nearctic: 856 sites; Australasia: 336 
sites) and tropical and subtropical savannahs, grasslands and 
shrublands (tropical grassland) (3 realms; Afrotropic: 2174 
sites; Neotropics: 190 sites; Australasia: 502 sites). To allow 
fair comparison between regional biomes, a down-sampling 
process was implemented to remove extremely high sam-
ple sizes. The range of studies in each regional biome was 

Figure 1. Map of regional biomes. Solid coloured areas represent biomes. Black lines separate out biogeographic realms. Black dots represent 
sites in the PREDICTS database used in our global model (Hudson et al. 2017). Hashed coloured areas represent regional biomes that were 
not included in analysis due to data deficiency (see methods). Biome and biogeographic realm spatial data from (Olson et al. 2001).
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13–127 (mean = 42, median = 24), and the range of sites was 
178–3941 (mean = 1293, median = 856). The large differ-
ence between mean and median demonstrates the presence 
of extremely high sample numbers in two regional biomes: 
Neotropical tropical forest (n = 116 studies) and Palearctic 
temperate forest (n = 127 studies). We chose to down-sam-
ple these two regional biomes only because their values were 
more than double the mean number of studies. We randomly 
selected 50% of studies from each of these regional biomes 
to bring their sample size within range of the other regional 
biomes. This reduced the range of study numbers per regional 
biome to 13–63 (mean = 32, median = 24) and the range of 
sites to 178–2100 (mean = 1019, median = 856) (Supporting 
information). We chose total studies, rather than total sites, 
as the down-sampling factor as this would keep entire studies 
intact in the final dataset.

For each biodiversity metric (species richness and total 
abundance), we modelled the interaction between LandUse 
and regional biome and predicted the average change in spe-
cies richness and total abundance, relative to primary vegeta-
tion, for each land-use type in each regional biome using the 
‘StatisticalModels’ R package (www.r-project.org, Newbold 
2015).

In addition to the biome case study, we did a further anal-
ysis to investigate how taxonomic group further influences 
the responses of species richness to land-use change across 
regional biomes. We ran one model using species richness as 
the response variable and LandUse, Realm and Taxa (verte-
brate, invertebrate and plant) as fixed interaction terms. As 
above, we predicted the average change in species richness 
relative to primary vegetation.

Results

Global analysis of regional biomes

Including regional biome as a variable improved model fit and 
better explained the effect of land-use change on species rich-
ness and total abundance (Fig. 2). Models with realm or biome 
alone had lower support and this was consistent across 100 
iterations of hold-out models (Fig. 2). Increasing the sample 
size threshold for regional biomes did not change the overall 
outcome (Supporting information). Furthermore, marginal 
R2 values showed that regional biome explained more varia-
tion in both species richness and total abundance than biome 
or realm interacting with land use (Supporting information).

Biome-specific case studies

We found that species richness and total abundance in 
each regional biome of tropical forest (except Australasia) 
showed a strong response to land-use change. Species rich-
ness reduced in human-dominated land-use types compared 
to primary vegetation in all realms except Australasia but to 
different degrees at each land-use type (Fig. 3a). The larg-
est loss of species richness was predicted in Indo-Malayan 
cropland (−55% reduction compared to primary vegetation, 

Figure 2. Change in Akaike’s information criterion (ΔAIC) for gen-
eralised linear mixed models (GLMMs) predicting change in a 
global dataset of (a) species richness and (b) total abundance consis-
tently suggests models including regional biome have highest sup-
port when modelling response to land-use change. Four GLMMs 
with differing fixed-effect structures containing Land Use (LU) 
interacting with Regional biome (RB), Biome or Realm were com-
pared using AIC values. A model with low AIC is considered to 
have higher support. ΔAIC is calculated as the difference in AIC 
from the lowest scoring model. The box and whisker plots represent 
a summary of ΔAIC values of 100 hold-out models, where each 
iteration removed 10% of studies at random as a test of model 
robustness. Importantly, for a given dataset in this hold-out analy-
sis, LU:RB model had the lowest AIC in 100% of iterations. The 
PREDICTS dataset was subset to only include data from regional 
biomes with 25 data points per combination of regional biome and 
land-use type. Land use is a discrete variable with primary vegeta-
tion, secondary vegetation, plantation forest, pasture and cropland 
as its categories (see the Supporting information for descriptions of 
land-use types).
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95% CI: [−66%, −39%]), followed by Afrotropical crop-
land (−44%, 95% CI [−57%, −27%]). Conversely, the 
Neotropics did not show a significant species richness reduc-
tion in cropland and had a small, but significant reduction 
in plantation forest (−26%, 95% CI [−44%, −3%]), with 
species richness for this regional biome being worst affected 
in pasture land-use types (−31%, 95% CI [−48%, −10%]). 

When predicting responses of total abundance to land-use 
change in the tropical forest biome there were high levels of 
uncertainty. The negative responses to land-use type seen in 
the species richness models did not always carry over to the 
abundance models, for example there was no longer a sign of 
a negative response in Neotropical pasture. The only negative 
responses that were significantly different from primary veg-
etation was seen in Indo-Malayan plantation forest (−52%, 
95% CI [−72%, −18%]) and Afrotropical pasture (−45%, 
95% CI [−68%, −6%]) (Fig 4a).

In temperate forest regional biomes, species richness and 
total abundance both showed low to no response in human-
dominated land-use types compared to primary vegetation 
(Fig. 3b, 4b). The exception is the Palearctic regional biome, 
where species richness reduced by 47% (95% CI [−62%, 
−25%] in plantation forest land-use types. This was the 
only response from any temperate forest regional biome that 
showed a significant change from primary vegetation (95% 
confidence intervals do not include 0). Furthermore, predic-
tions for change in species richness and total abundance have 
high levels of uncertainty for all realms except palearctic.

Similar to temperate forest, biodiversity metrics in most 
tropical grassland regional biomes showed little or no response 
to any land-use type when compared to primary vegetation 
(Fig. 3c, 4c). Predictions of species richness and total abun-
dance change showed a high degree of uncertainty across all 
regional biomes, except for the Afrotropics, where there was a 
strong negative response to pasture (species richness: −38%, 
95% CI [−53%, −17%]; total abundance: −59%, 95% CI 
[−76%, −31%]).

Including taxon as an interaction term reveals distinct 
responses to land-use change across different taxonomic groups 
within regional biomes, although prediction uncertainty for 
some groups is increased (Fig. 5). In tropical forest, there is 
still a general trend of negative responses to human-dominated 
land-use types, but for some regional biomes there is high vari-
ation in responses. For example, Afrotropical vertebrates have 
no observable response to cropland and plantation forest, but 
plants in the same regional biome display negative responses 
of species richness at these land-use types. Conversely, in 
Neotropical tropical forest, invertebrates show a negative 
response to pasture land, whilst plants and vertebrates do not, 
although note high levels of uncertainty in these predictions. 
In temperate forest, the addition of taxon groups creates a high 
level of uncertainty in predicting species richness responses, 
highlighting the level of incomplete sampling in the dataset. In 
tropical grassland, strong responses of invertebrates to planta-
tion forest and cropland are observed in the Neotropics and 
Afrotropics, respectively. This reveals responses that were not 
seen when taxa was not accounted for (Fig. 3c).

Discussion

Global analysis of regional biomes

Our results show that including regional biome when model-
ling the global effects of land use on biodiversity can increase 

Figure 3. Responses of species richness to land-use change across 
regional biomes. The results of a GLMM predicting the response of 
species richness to land-use within regional biomes from tropical 
forest (a), temperate forest (b) and tropical grasslands and savannahs 
(c) across land-use types when compared to primary vegetation 
(PV). Responses of species richness of plants and animals were pre-
dicted across land-use types including secondary vegetation (SV), 
plantation forest (PF), pasture (Pa) and cropland (Cr). Each point 
represents mean prediction, with 75% confidence intervals (thick 
whiskers) and 95% confidence intervals (thin whiskers). Responses 
are considered significantly different from PV if the 95% confi-
dence intervals do not overlap 0. To keep scales consistent, upper 
95% CIs greater than 100 have been included as text instead.
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explanatory power, providing the first empirical test of region-
ally-separated biomes as a potential spatial monitoring frame-
work. Although a small spatial unit would be optimal for 
monitoring biodiversity trends, our analysis excluded spatial 
units smaller than a regional biome, such as ecoregions, due 
to data deficiency. The PREDICTS database contains data 
from only 36% of ecoregions (237 of 867), highlighting the 

practical difficulty in achieving high global coverage with this 
spatial unit. In this study, we sought to explore a biodiversity 
monitoring spatial framework that finds the balance between 
having feasible data collection requirements and adequate 
global coverage, at a realistic scale that captures true variation 
in ecological resilience to disturbance (Ingram et al. 2021). 
It has been previously shown that biodiversity shows differ-
ent responses to disturbance across biomes (Greenville et al. 
2018, Blowes et al. 2019, Newbold et al. 2020) and across 
realms (Gibson et al. 2011, Phillips et al. 2017, WWF 2022), 
but for the first time, we have shown the important inter-
action between biome and realm. The combination of these 
two spatial delineations gives more information about eco-
logical processes.

One reason for the increase in model support after adding 
regional biome is that the comparison of land-use types will 
change as spatial unit becomes more localised. For example, a 
comparison of any primary vegetation with cropland is quite 
general and will be hard to characterise, but the relationship 
between biodiversity in Indo-Malayan tropical forest and 
cropland has a high specificity and contains less variation in 
response. In all our models, we attempted to control for this 
localised specificity by including study as a random effect, 
which may control for differing methodologies, site condi-
tions or sampling bias. Future models using the PREDICTS 
database or other global databases could also consider using 
regional biome as a random effect to control for more 
regional variation that reflects environmental and ecological 
differences between these spatial units.

Biome-specific case study

Whilst our global models suggest that regional biome can 
modulate the effect of land-use change on species richness 
and abundance on a global scale, a more focused analy-
sis found that the influence of regional biome is stronger 
in some biomes than others. Generally, species richness 
and total abundance in tropical biomes (tropical forest and 
tropical grassland) showed negative responses to disturbed 
land-use types, the degree of which changed with realm and 
taxonomic group. In temperate forest, however, there was no 
significant response to land-use change overall, excluding the 
palearctic realm. The observed difference between tropical and 
temperate regional biomes is expected; responses to land-use 
change are stronger in tropical biomes compared to temper-
ate biomes, especially tropical forest (Newbold et al. 2020). 
However, ecoregions in tropical biomes are considered more 
ecologically distinct than neighbouring ecoregions compared 
to those in temperate biomes (Smith  et  al. 2018). As each 
regional biome is a group of many ecoregions, it would follow 
that predicted responses to disturbance in tropical regional 
biomes would contain more uncertainty than temperate, but 
the opposite is true for our case studies. The high uncertainty 
in predicted responses produced by the temperate forest and 
tropical grassland models are most likely explained by low 
sample sizes and the high variation in responses of taxonomic 
groups. Predictions in palearctic temperate forest have very 

Figure 4. Responses of total abundance to land-use change across 
regional biomes. The results of a GLMM predicting the response of 
total abundance to land-use within regional biomes from tropical 
forest (a), temperate forest (b) and tropical grasslands and savannahs 
(c) across land-use types when compared to primary vegetation 
(PV). Responses of total abundance of plants and animals were pre-
dicted across land-use types including secondary vegetation (SV), 
plantation forest (PF), pasture (Pa) and cropland (Cr). Each point 
represents mean prediction, with 75% confidence intervals (thick 
whiskers) and 95% confidence intervals (thin whiskers). Responses 
are considered significantly different from PV if the 95% confi-
dence intervals do not overlap 0. To keep scales consistent, upper 
95% CIs greater than 100 have been included as text instead.
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low uncertainty compared to all other regional biomes and 
is also the most extensively sampled regional biome in the 
PREDICTS database (Supporting information).

For tropical forest regional biomes, our model predictions 
suggest Indo-Malayan biodiversity responds most strongly to 
land-use change (plantation forest and cropland), followed 
by the Afrotropics (pasture and cropland). Species richness in 
Neotropic tropical forest responded to plantation forest and 

pasture, but to a lesser degree than other regional biomes. 
Adding taxon to the model showed that these responses are 
nuanced and driven by different taxonomic groups, but the 
patterns between regional biomes remain largely the same. 
Biodiversity in Asian tropical forest is repeatedly found to 
be extremely sensitive to land-use change and disturbance 
(Sodhi et al. 2009, Gibson et al. 2011, Phillips et al. 2017). 
The islands of south east Asia have a rich geographical history 

Figure 5. Responses of species richness in individual taxa groups to land-use change across regional biomes. The results of a GLMM predict-
ing the response of species richness across land-use types, regional biomes in three biomes (tropical forest, temperate forest and tropical 
grassland) and three taxon groups (vertebrate, invertebrate and plants) when compared to primary vegetation (PV). Responses of species 
richness were predicted across disturbed land-use types including secondary vegetation (SV), plantation forest (PF), pasture (Pa) and crop-
land (Cr). Each point represents mean prediction, with 75% confidence intervals (thick whiskers) and 95% confidence intervals (thin 
whiskers). To keep scales consistent, upper 95% CIs greater than 100 have been included as text instead. Responses are considered signifi-
cantly different if the 95% confidence intervals do not overlap 0.
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which has led to this region having the highest number of 
endemic species and biodiversity hotspots (Myers et al. 2000, 
Sodhi et al. 2004) compared to other tropical regions. This 
area also has the highest proportion of species under threat 
in the world (Allan et al. 2019). This high baseline for spe-
cies richness combined with high levels of specialisation 
may partly explain why the response to land-use change is 
so pronounced in this regional biome. Response metrics in 
Neotropical tropical forest have the smallest response to dis-
turbed land-use types compared to similar regional biomes. 
However, temporal trends from the Living planet index sug-
gest that populations of vertebrates in south America have 
decreased by 94% since 1970 (WWF 2022). In addition, 
other studies in this region have shown a decline in biodiver-
sity due to land-use change (Bogoni et al. 2020, Gaona et al. 
2021, Quintero et al. 2023). It is possible that the responses 
observed in our results are due to data collection methods 
and sampling bias, rather than an ecological distinction, 
demonstrating the importance of testing multiple data types 
and of assessing the regional biome framework using time-
series biodiversity data and across multiple threat gradients in 
the future. Further research is needed to understand how bio-
logical and taxonomic differences between these tropical for-
est realms might be impacting sensitivity to land-use change.

The intensity and history of habitat disturbance in each 
regional biome will also impact the observed response of bio-
diversity and may even cause biases in our data set. A limita-
tion of our comparison across regional biomes is that we could 
not control for publication bias in threat-types e.g. there is a 
high focus in the literature on palm oil in the Asian tropics. 
Such publication biases will impact the interpretation of com-
munity threat–responses both within and between regional 
biomes as some crop types are more damaging to biodiver-
sity than others, for example cacao crops, common in the 
Neotropics, are less damaging than oil palm, more common 
in Asia (Oakley and Bicknell 2022). Temperate forest biomes 
have a long history of human habitation and extinction events, 
meaning the baseline in primary vegetation is much lower in 
these regional biomes compared to less historically disturbed 
biomes (Monsarrat and Svenning 2022). The lack of variation 
in responses observed in temperate forest regional biomes may 
well be because of this lower baseline in primary vegetation. 
Indeed, trends of vertebrate abundance have been increasing 
in the Northern Hemisphere since 1970 (Leung et al. 2017) 
as well as forest cover (Song et al. 2018). The drivers that cause 
differences in sensitivity to habitat disturbance are related to 
both biogeographic and human history, splitting the world 
into regional biomes can further account for these differences.

Although regional biomes may be a valuable spatial moni-
toring unit, our models were limited by sample size for some 
regional biomes. The PREDICTS database is the most exten-
sive collection of terrestrial biodiversity records available, but 
there are still gaps. Under-sampling was pronounced in non-
forested temperate biomes like montane grasslands and shrub-
lands, and realms were unevenly sampled, for example studies 
from Palearctic temperate forest dominate the database but 
there are no studies at all on Palearctic temperate grasslands 

(Supporting information). Furthermore, taxonomic under 
sampling was highlighted in our model that included taxo-
nomic group. For example, Fig. 3 suggests that Afrotropical 
tropical forests have a greater response to cropland compared 
to the Neotropical regional biome. However, this response 
is driven by plants in the Afrotropics and Invertebrates and 
vertebrates in the Neotropics, making the impact of cropland 
hard to compare. Prioritising data collection in under-rep-
resented regional biomes and taxonomic groups highlighted 
here would enhance progress towards an effective monitor-
ing framework (Ingram et al. 2021). In this study, we used a 
crude classification of all animals and plants into only three 
groups. A further investigation that would benefit from 
increased sampling would be to split taxonomic group fur-
ther, for example flying and non-flying vertebrates, who may 
respond differently to land-use pressures. Furthermore, this 
study focuses only on terrestrial regional biomes, as these are 
more extensively sampled and we were specifically testing the 
effect of land-use change on species richness and abundance. 
We acknowledge that marine biodiversity is showing stron-
ger responses to disturbance than terrestrial (Blowes  et  al. 
2019), and suggest a similar monitoring framework could be 
adapted for marine ecosystems.

Conclusion

Our results show that the taxa-regional biome unit has the 
potential to be a powerful spatial framework for monitor-
ing biodiversity and implementing conservation action, 
although further work is needed to disentangle the statisti-
cal artefacts of the sparse dataset verses real ecological signal. 
Resources for data collection and biodiversity monitoring on 
the ground are limited, and the regional biome framework 
implies that monitoring studies could be more evenly spread 
across regional biomes and taxonomic groups instead of the 
national or ecoregional scale, optimising resource allocation 
for data collection. Here we have highlighted that there is 
within-biome variation in how biodiversity is responding to 
disturbance, but the difference between realms may be more 
prevalent in tropical biomes than temperate, and that spatial 
resolution should be carefully considered in any attempts at 
monitoring global biodiversity trends. Although more data 
are needed, regional biomes have the potential to be a mean-
ingful scale at which to prioritise monitoring. These results 
will be beneficial for informing ongoing policy discussions, 
such as the monitoring framework for the CBD’s Kunming-
Montreal Global Biodiversity Framework, on the best way 
to monitor progress towards biodiversity targets and effect 
change on the ground.
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