
Ketwaroo, Fabian R., Matechou, Eleni, Silk, Matthew and Delahay, Richard (2024) 
Modeling disease dynamics From spatially explicit capture‐recapture data.  Environmetrics 
. ISSN 1180-4009. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/108014/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/doi:10.1002/env.2888

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/108014/
https://doi.org/doi:10.1002/env.2888
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Environmetrics

RESEARCH ARTICLE OPEN ACCESS

Modeling Disease Dynamics From Spatially Explicit
Capture-Recapture Data
Fabian R. Ketwaroo1, 2 | Eleni Matechou2 | Matthew Silk3, 4, 5 | Richard Delahay6

1Swiss Ornithological Institiue, Sempach, Switzerland | 2School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK |
3Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK | 4CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France |
5Centre for Ecology and Conservation, University of Exeter, Penryn, UK | 6National Wildlife Management Centre, Animal & Plant Health Agency, Sand Hutton,
York, UK

Correspondence: Fabian R. Ketwaroo (fabian.ketwaroo@vogelwarte.ch; f.ketwaroo@kent.ac.uk)

Received: 21 August 2023 | Revised: 9 October 2024 | Accepted: 6 November 2024

Keywords: density-dependent transmission | endemic disease | European badger | population density

ABSTRACT
One of the main aims of wildlife disease ecology is to identify how disease dynamics vary in space and time and as a function
of population density. However, monitoring spatiotemporal and density-dependent disease dynamics in the wild is challenging
because the observation process is error-prone, which means that individuals, their disease status, and their spatial locations are
unobservable, or only imperfectly observed. In this paper, we develop a novel spatially-explicit capture-recapture (SCR) model
motivated by an SCR data set on European badgers (Meles meles), naturally infected with bovine tuberculosis (Mycobacterium
bovis, TB). Our model accounts for the observation process of individuals as a function of their latent activity centers, and for
their imperfectly observed disease status and its effect on demographic rates and behavior. This framework has the advantage
of simultaneously modeling population demographics and disease dynamics within a spatial context. It can therefore generate
estimates of critical parameters such as population size; local and global density by disease status and hence spatially-explicit
disease prevalence; disease transmission probabilities as functions of local or global population density; and demographic rates
as functions of disease status. Our findings suggest that infected badgers have lower survival probability but larger home range
areas than uninfected badgers, and that the data do not provide strong evidence that density has a non-zero effect on disease
transmission. We also present a simulation study, considering different scenarios of disease transmission within the population,
and our findings highlight the importance of accounting for spatial variation in disease transmission and individual disease status
when these affect demographic rates. Collectively these results show our new model enables a better understanding of how wildlife
disease dynamics are linked to population demographics within a spatiotemporal context.

1 | Introduction

Understanding relationships between the dynamics of popula-
tions and their infectious pathogens is a key aim of wildlife
disease ecology. Infectious diseases can directly influence pop-
ulation density through impacts on demographic vital rates
(Manlove et al. 2016; McCallum et al. 2007; Vredenburg

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

© 2024 The Author(s). Environmetrics published by John Wiley & Sons Ltd.

et al. 2010), but in turn disease dynamics can vary in space
and time as well as with population density. Quantifying
how pathogen transmission varies with population density
is important because of its implications for the conservation
and management of wildlife populations (McCallum 2016; Silk
et al. 2019). Hereafter, we refer to pathogen transmission as
disease transmission. While the potential importance of host
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density for epidemiological dynamics has long been known
(Krkošek 2010; O’Neill et al. 2023), it is now recognized that
aspects of spatial and social behavior (e.g., Albery et al. 2021) can
mean that disease transmission may covary with host population
density across a continuum from density-dependent (transmis-
sion increases with population density) to frequency-dependent
(transmission is independent of population density) (Hopkins
et al. 2020).

There are two main analytical challenges associated with quanti-
fying the relationship between host density and disease transmis-
sion in wildlife populations. First is the difficulty of estimating
population size, and hence population density, in wild popula-
tions, where not every individual is captured or observed over
time. The second challenge is associated with the detection of
infection in wild hosts owing to limitations in the sensitivity
and specificity of diagnostic tests (Choquet et al. 2013; Drewe
et al. 2010; Enøe, Georgiadis, and Johnson 2000).

Capture-recapture (CR) models have been one of the main tools
developed to estimate the population size of wild animals. Tradi-
tional CR models essentially represent “fish bowl” sampling, that
is, a system that is unconnected to the spatial structure of the
population. These models do not account for the spatial nature
of sampling nor the spatial distribution of individuals (Royle,
Fuller, and Sutherland 2018). Consequently, they do not allow
for the study of many vital spatial population processes, such
as density, movement, and dispersal of individuals. This weak-
ness of CR models has been overcome by the development of
spatially-explicit capture-recapture (SCR) models (Borchers and
Efford 2008; Efford 2004). SCR models consider the collection of
individuals in a population as a latent point process, with each
point corresponding to an individual activity center (AC), defined
as the core of its home range area. Home range area refers to the
area an individual typically occupies and traverses in its activities
such as foraging, mating, or nesting.

In SCR data, individual ACs are unknown and thus are consid-
ered latent variables in corresponding models. SCR models can be
fitted in a classical framework, where the ACs are marginalized
from the likelihood by integration (Borchers and Efford 2008),
or in a Bayesian framework, where the ACs are explicitly esti-
mated along with other unknown parameters and random vari-
ables using Markov chain Monte Carlo (MCMC) methods (J. A.
Royle and Young 2008). Once inferred, the ACs can be used to
estimate spatial population processes such as density, which is
the number of ACs per unit area of the region of interest. Addi-
tionally, conditional on the latent ACs, the probability of observ-
ing or encountering an individual is modeled as a function of the
distance between the individual’s AC and the location of each
trap. Consequently, SCR models take into consideration the spa-
tial nature of sampling as well as the spatial distribution of indi-
vidual ACs to allow for the study of spatial population processes.
This is arguably equally important to the study of demographic
population rates, with the formal link between state model and
observational model allowing for better inference on the former
and more robust accommodation of the latter (Sutherland, Royle,
and Linden 2019). When data are collected over a longer time
frame, for example over multiple years or seasons, open SCR
models (Gardner et al. 2010) can be used to estimate demographic

population rates such as survival and recruitment in addition to
spatial population processes.

However, existing SCR models do not currently accommodate
additional data on the disease status of captured individuals.
These data typically consist of diagnostic test results that are also
prone to error and hence are only an imperfect observation of an
individual’s disease status. In addition, as is always the case in CR
data, these individual-level diagnostics are only available for the
particular time point when an animal is captured, and are miss-
ing for all other times and for individuals that have never been
caught.

In the present study, we develop a novel open SCR model
that accounts for the observation process of individuals, as well
as their imperfectly observed disease status. Our new model-
ing framework allows the simultaneous modeling of popula-
tion demographics and disease dynamics within a spatiotemporal
context. This makes it possible to simultaneously test hypotheses
related to spatial and density-related variation in disease trans-
mission while examining variation in survival and individual cap-
ture probabilities as a function of individual (latent) disease state.

We perform a simulation study to assess model performance
for a number of scenarios. Our results reveal the requirement
in terms of effect size to have sufficient power to identify
density-dependence in disease transmission. Finally, our study
indicate that when demographic rates are dependent upon indi-
vidual disease status, existing SCR models, which do not account
for that dependence, yield substantially biased estimates of pop-
ulation density.

We then fit our model to a motivating case study of European
badgers (Meles meles), naturally infected with bovine tuberculo-
sis (Mycobacterium bovis, TB) at Woodchester Park in Glouces-
tershire, UK (Delahay et al. 2013; McDonald, Robertson, and
Silk 2018), revealing important aspects of the epidemiological
dynamics. Our model reveals that infected individuals have a
lower survival probability and larger home range areas. We also
infer that, despite a more recent reduction in population size, the
prevalence of infection remained constant and that the data do
not provide strong evidence that density has a non-zero effect
on disease transmission. The paper is structured as follows: in
Section 2 we describe the case study that motivated the work in
this paper, in Section 3 we introduce the new model and discuss
our inference approach, while Sections 4 and 5 present simula-
tion and case study results, respectively. Section 6 discusses the
results from our simulations and case study in the context of
wildlife disease ecology, and suggests directions for future work.

2 | Data Collection and Processing

The Woodchester Park study area is located on the Cotswold lime-
stone escarpment in Gloucestershire, South West England. Over
an area of ̃7 km2 the resident badger population has been mon-
itored in a consistent manner since 1981 (McDonald, Robertson,
and Silk 2018). The majority of the study area comprises mixed
woodland, grassland, and arable farmland (Delahay et al. 2006).
Badger population density is relatively high (Rogers et al. 1997)
and their social groups occupy more or less contiguous territories
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throughout the study area (Delahay et al. 2006), each of which is
typically associated with one main sett and several smaller outly-
ing setts (underground burrow systems).

The badger population is monitored by CR sampling, which
enables the collection of demographic and epidemiological data.
The study area has been divided into three zones of approximately
equal size, each of which is trapped four times per year from May
to January inclusive, with a suspension from February to April
to avoid catching dependent cubs and their mothers (Woodroffe
et al. 2006). To determine which setts are active and how many
traps to deploy, a sett activity survey is conducted in each zone
before each trapping event. At each active sett, more traps are
deployed than are expected to be required (i.e., avoiding satura-
tion trapping).

Box traps constructed of steel mesh are dug into the substrate
close to each active sett and baited with peanuts for 4 to 8 days
to habituate badgers to their presence (Cheeseman and Har-
ris 1982). On the last day of baiting, the traps are set for two
consecutive nights and are checked on the following mornings.
Once captured, newly caught badgers are aged, sexed and perma-
nently marked with a unique ID tattoo on the abdomen (Cheese-
man and Harris 1982), with their weight, body condition, body
length, reproductive status, and tooth wear recorded at this and
every subsequent capture event.

Once captured, three tests are used to determine their TB status:
interferon-gamma immunoassay (Ifn, Dalley et al. 2008), used
since 2006 to detect a cell-mediated immune response, Dual Path
Platform test (DPP®, Chembio.inc), used since 2014 to test for
antibodies (Ashford et al. 2020) and selective microbiological cul-
ture of clinical samples (Cul, Gallagher and Horwill 1977) used
since 1976. Ifn and DPP® use blood samples while Cul is carried
out on samples of sputum, feces, urine, and swabs of abscesses
and wounds. Each test is imperfect, resulting in false positive and
false negative errors, making it difficult to infer an individual’s
disease state from the tests alone (Drewe et al. 2010).

Following examination and collection of diagnostic samples, bad-
gers caught during the first night of trapping are held overnight
and released the following morning to prevent them from being
re-captured on the second trapping night. Badgers caught dur-
ing the second night are released the following day. Badgers are
released where captured, following a period of recovery and sub-
ject to a welfare assessment.

3 | Model

Open SCR models follow the robust design (Pollock 1982) and
assume that a population of 𝑖 = 1, . . . , 𝑁𝑡 individuals is moni-
tored at 𝑡 = 1, . . . , 𝑇 primary periods, each having 𝑟 = 1, . . . , 𝑅
secondary sampling occasions at 𝑗 = 1, . . . , 𝐽 sampling locations.
The population is open to births/death/immigration/emigration
between primary periods but closed across the 𝑅 sampling occa-
sions within each period. Each individual has an associated spa-
tial location within a spatial domain (𝑆), representing its AC 𝑠𝑖,𝑡,
a two-dimensional spatial coordinate. The collection of ACs can
be thought of as a statistical spatial point pattern that describes
how individuals are distributed within 𝑆. This statistical point

process is often referred to as the state model. Here, we define our
model in a Bayesian framework using data augmentation (Royle
and Dorazio 2012) and let 𝑖 = 1, . . . ,𝑀 be “pseudo-individuals”
that potentially could belong to 𝑁𝑡.

Our model has two key latent states: presence, 𝑧𝑖,𝑡, and disease
status, 𝑑𝑖,𝑡, defined as

𝑧𝑖,𝑡 =

{
1 alive in primary period t
0 unrecruited∕dead in primary period t

𝑑𝑖,𝑡 ∣ 𝑧𝑖,𝑡 = 1 =

{
1 infected given alive in primary period t
0 uninfected given alive in primary period t

We assume that individual ACs do not change over time by
modeling

𝑠𝑖,𝑡 = 𝑠𝑖 ∼ Uniform(𝑆) ∀𝑖, 𝑡

Following the data collection and processing methods described
in Section 2, we assume that an individual can be caught in max-
imum one sampling location on a secondary sampling occasion,
but that each sampling location can catch more than one indi-
vidual at a time (Efford, Borchers, and Byrom 2009; Ergon and
Gardner 2014). Let 𝑦𝑖,𝑟,𝑡 denote the index of the sampling loca-
tion where individual 𝑖 is captured in secondary occasion 𝑟within
a primary occasion 𝑡, and 𝑦𝑖,𝑟,𝑡 = 0 when an individual is not
captured. The observation likelihood is

𝑦𝑖,𝑟,𝑡 ∼ Categorical
(
𝜋𝑖,𝑟,𝑡

)
where 𝜋𝑖,𝑟,𝑡, the sampling location and individual specific cap-
ture probability, is a 1 × (𝐽 + 1) vector with the first element
being the probability of not being captured and the remaining
elements being the probability of capture in 1 to 𝐽 sampling loca-
tions. Following Ergon and Gardner (2014), we allow sampling
location-specific capture probabilities to depend on the locations
of all other sampling locations and to decline with the distance
between the AC of the individual and the sampling location. Let
ℎ𝑖,𝑟,𝑡,𝑗 denote the capture hazard rate of individual 𝑖 during sam-
pling occasion (𝑟, 𝑡) in sampling location 𝑗 and ℎ𝑖,𝑟,𝑡,∗ =

∑
𝑗 ℎ𝑖,𝑟,𝑡,𝑗

be the total risk of being captured in any sampling location. The
probability of not being captured in any sampling location is

𝜋𝑖,𝑟,𝑡[1] = exp
(
−ℎ𝑖,𝑟,𝑡,∗𝑧𝑖,𝑡

)
and the probability of being captured in sampling location 𝑗 is

𝜋𝑖,𝑟,𝑡[𝑗 + 1] =
(
1 − 𝜋𝑖,𝑟,𝑡[1]

)ℎ𝑖,𝑟,𝑡,𝑗

ℎ𝑖,𝑟,𝑡,∗

To model ℎ𝑖,𝑟,𝑡,𝑗 , we use the hazard half-normal function (Royle
et al. 2013).

ℎ𝑖,𝑟,𝑡,𝑗 = 𝜆𝑑𝑖,𝑡 exp

(
− 1

2𝜎2
𝑑𝑖,𝑡

∥𝑥𝑟,𝑡,𝑗 − 𝑠𝑖∥2

)

where 𝑥𝑟,𝑡,𝑗 is the two-dimensional spatial coordinate location of
the j th sampling location during sampling occasion (𝑟, 𝑡), 𝜆𝑑𝑖,𝑡 > 0
is the baseline encounter rate and 𝜎𝑑𝑖,𝑡 > 0 represents the rate
at which capture probability declines as the Euclidean distance
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from the AC increases. We model both of these parameters depen-
dent on the individual disease status in primary period 𝑡, using
log-linear models for 𝜆 and 𝜎, both of which have the binary dis-
ease status as the only covariate, allowing disease status to poten-
tially affect behavior in terms of space use.

Finally, we model the result of test𝑄,𝜔𝑄
𝑖,𝑡

, for individual 𝑖 on occa-
sion 𝑡, conditional on their disease status, as a Bernoulli

(
𝜔𝑄
𝑖,𝑡

)
random variable, with

𝜔𝑄
𝑖,𝑡
∣ 𝑑𝑖,𝑡 =

{
1 − 𝑞𝑄00, 𝑑𝑖,𝑡 = 0
𝑞𝑄11, 𝑑𝑖,𝑡 = 1

where we refer to the probability of a true positive result by test
𝑄 as 𝑞𝑄11 (sensitivity of test 𝑄) and to the corresponding probabil-
ity of a true negative result as 𝑞𝑄00 (specificity of test 𝑄), and 𝑄 ∈
{DPP®, Ifn,Cul}. Following Buzdugan et al. (2017), we assume
independence between tests and hence define the joint distri-
bution of the three test results as the product of the marginal
Bernoulli distributions. The sensitivity and specificity of each test
are inferred parameters, thus, enabling the diagnostic accuracy of
each test to be evaluated. This formulation accounts for imperfect
tests and enables a higher diagnostic accuracy than single-test use
(Drewe et al. 2010).

We model the transition between latent states accordingly, so that
at 𝑡 = 1

𝑧𝑖,1 ∼ Bernoulli
(
𝛾1
)

𝑑𝑖,1 ∣ 𝑧𝑖,1 ∼ Bernoulli
(
𝑧𝑖,1𝛿𝐼

)
where 𝛾1 is the recruitment probability that a “pseudo-
individual” is in the population at the start of the study and
𝛿𝐼 is the probability of being infected at the start of the study. For
𝑡 ≥ 2,

𝑧𝑖,𝑡 ∼ Bernoulli
(
𝜙𝑑𝑖,𝑡−1

𝑧𝑖,𝑡−1 + 𝛾𝑡𝛼𝑖,𝑡

)
𝑑𝑖,𝑡 ∼ Bernoulli

(
𝑧𝑖,𝑡

[
𝑑𝑖,𝑡−1 +

{(
1 − 𝑑𝑖,𝑡−1

)
𝜓𝑖,𝑡−1

}])
where 𝜙𝑑𝑖,𝑡−1

is the probability of survival from primary period
𝑡 − 1 to 𝑡 conditional on disease status in primary period 𝑡 − 1
for individual 𝑖, 𝜓𝑖,𝑡 is the disease transmission probability, that
is the probability that an individual that is uninfected in primary
period 𝑡 − 1 becomes infected by primary period 𝑡, 𝛾𝑡 is the recruit-
ment probability that a “pseudo-individual” is first recruited, and
hence is first available for capture, in primary period 𝑡 and 𝛼𝑖,𝑡
is a latent indicator variable of whether an individual is avail-
able to be recruited or not in primary period 𝑡. We define 𝛼𝑖,𝑡 =(

1 − I
(∑𝑡−1

𝑡=1
(
𝑧𝑖,𝑡

)
> 0

))
such that 𝛼𝑖,𝑡 = 1 if individual 𝑖 is avail-

able to be recruited in primary period 𝑡, 𝛼𝑖,𝑡 = 0 otherwise to
ensure an individual can only be recruited once.

We note that, clearly, only individuals that are alive and unin-
fected can become infected and, as is the case in our motivating
data, once infected, individuals cannot become uninfected. To
investigate the relationship between density and disease trans-
mission, we model 𝜓𝑖,𝑡 as a function of local population density at
each primary period. We discretize the study space using a grid
and create 𝐺 non-overlapping habitat cells. We denote the cell
in which individual AC 𝑖 falls by 𝑐𝑖, with 𝑐𝑖 ∈ {1, . . . , 𝐺}. Local

density of grid cell 𝑔, 𝑔 = 1, . . . , 𝐺, on occasion 𝑡 is defined as
𝓁𝑔,𝑡 =

∑𝑀

𝑖=1𝐼
(
𝑧𝑖,𝑡 = 1, 𝑐𝑖 = 𝑔

)
, where 𝐼

(
𝑧𝑖,𝑡 = 1, 𝑐𝑖 = 𝑔

)
is an indi-

cator variable equal to 1 if individual 𝑖 is alive in primary period
𝑡 and its AC falls within cell 𝑔, and 0 otherwise. Therefore, 𝓁𝑔,𝑡

corresponds to the number of live individuals with ACs in cell 𝑔
in primary period 𝑡. Thus, we build a logistic regression model for
the probability of disease transmission

logit
(
𝜓𝑖,𝑡

)
= 𝛽0 + 𝛽1𝓁𝑐𝑖,𝑡

(1)

such that an uninfected individual can become infected due to
the local density

(
𝓁𝑐𝑖,𝑡

)
at the individual AC location in its habitat

cell. Coefficient 𝛽1 determines the direction and size of the effect
of local density on disease transition probability.

Finally, population size in primary period 𝑡, 𝑁𝑡, is defined as
𝑁𝑡 =

∑
𝑖 𝑧𝑖,𝑡 and corresponding global population density, 𝐷𝑡, as

𝐷𝑡 = 𝑁𝑡∕area(𝑆), while the corresponding sizes of the infected
population (𝑁 i

𝑡
) and of the uninfected population

(
𝑁u

𝑡

)
as 𝑁 i

𝑡
=∑

𝑖 𝑧𝑖,𝑡𝑑𝑖,𝑡 and 𝑁u
𝑡
=

∑
𝑖 𝑧𝑖,𝑡

(
1 − 𝑑𝑖,𝑡

)
, respectively. Hence, disease

prevalence (𝐷i
𝑡
) is defined as 𝐷i

𝑡
= 𝑁 i

𝑡
∕𝑁𝑡. Density, global and

local, is latent, and throughout the manuscript, we refer to it as
density.

We fit models in a Bayesian framework using MCMC methods
via R package NIMBLE (de Valpine et al. 2017) version 1.2.1.
Additionally, to increase the computational efficiency of using
a Bayesian implementation via data augmentation, we vector-
ize computation and perform block sampling on correlated
parameters (Turek et al. 2021) when appropriate. We employ
user-defined NIMBLE functions to reduce the total number
of nodes in the model and improve MCMC efficiency. We use
the R package nimbleSCR (Bischof et al. 2020) version 0.2.1 to
create habitat grids and for the computation of local density. To
improve convergence and mixing, we use a fine habitat grid to
provide the model with a large number of latent density points to
serve as a covariate on disease transmission probability. We also
center latent density to improve computation by reducing the
correlation between the intercept and fixed effect. Random walk
block samplers are assigned to (𝑞DPP®

11 , 𝑞Ifn
11 , 𝑞

Cul
11 ), (𝑞DPP®

00 , 𝑞Ifn
00 , 𝑞

Cul
00 )

and
(
𝜆𝑑𝑖 , 𝜎𝑑𝑖

)
to improve MCMC efficiency. The code is freely

available on https://github.com/Fabian-Ketwaroo/Modelling
-disease-dynamics-from-spatially-explicit-capture-recapture
-data. The data from the Woodchester Park study can be made
available on request to the Animal and Plant Health Agency via
Richard Delahay.

4 | Simulation Study

We performed a simulation study to assess the performance
of the proposed modeling framework in estimating population
density and all other model parameters, as well as the impact
on estimation when the effect of (local) population density on
transmission probability is ignored and, more importantly, when
density-dependent disease transmission, disease status and its
effect on other model parameters are ignored altogether. We refer
to our proposed model as M

(
𝜓𝓁

)
, to the model that does not

account for density-dependence in 𝜓 as model M
(
𝜓0

)
and to

the standard open SCR model that does not account for density
dependence and disease status as model M(SRC0).

4 of 11 Environmetrics, 2024
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FIGURE 1 | 95% quantile error bars of RB, (a), and CV, (b), for 𝛽1 when using our proposed model, M
(
𝜓𝓁

)
. Dots represent the median in each case.

We investigate model performance at both high and low den-
sity effects on disease transmission, 𝛽1 = (0.5,0.25). We moti-
vated our simulation study using parameter values similar to
those obtained from the case study analysis. We set𝑀 = 500, 𝑇 =
8, 𝑅 = 3 and the rest of the parameter values as: 𝜙𝑑𝑖=0 = 0.9,
𝜙𝑑𝑖=1 = 0.8, 𝛾1 = 0.4, 𝛾2∶4 = 0.1, 𝛾5 = 0.2, 𝛾6∶𝑇 = 0.15, 𝜆𝑑𝑖=0 = 1.5,
𝜆𝑑𝑖=1 = 0.25, 𝜎𝑑𝑖=0 = 0.25, 𝜎𝑑𝑖=1 = 0.6, 𝛿𝐼 = 0.15, 𝛽0 = −3, 𝑞DPP®

11 =
0.492, 𝑞Ifn

11 = 0.809, 𝑞Cul
11 = 0.1, 𝑞DPP®

00 = 0.931, 𝑞Ifn
00 = 0.936, and

𝑞Cul
00 = 0.999. This setting results in mean local density ≈ 4.2,

which is very close to that of the case study.

We used a 9 × 5 habitat grid in which we centered the case study
sampling locations. For each case, we performed 30 simulation
runs and used relative bias

(
RB = θ−θ

θ

)
to measure relative error

and coefficient of variation
(

CV = SD(θ̂)
∣θ∣

)
to measure relative

precision, where 𝜃 is the true parameter value, 𝜃 is the mean
and SD(θ̂) is the standard deviation of the posterior distribution
obtained, across the 30 runs. Further details on the simulation
study are given in Section S1.

From Figure 1 and Table S2, we can see that as expected, the qual-
ity of inference of the density effect (𝛽1) is highest when the den-
sity effect is high, with RB and CV smaller than when the density
effect is low (Figure 1). This highlights that reliable inference of
𝛽1 is possible but is more challenging than for other parameters,
as also reported by Milleret et al. (2023). In addition, as shown in
Figure 2, 𝑁𝑡 is inferred similarly well at both density levels, 𝑁 i

𝑡

is inferred with lower CV in the high-density level case and 𝑁u
𝑡

with lower CV in the low-density level case.

From Figure 2, it can be seen that, for the early primary periods in
particular, the M(SCR 0) model has a negative RB for 𝑁 , whereas
the opposite is true for the M

(
𝜓0

)
at both levels of density effect.

The simpler M(SCR 0) model has a lower CV compared to the two
more complicated models, especially at the high-density level. All
three models have similar CV for 𝑁 with higher CV values at the
start and end of the study period. This result highlights the need
to account for the spatial variation in disease transmission and

the disease status of individuals where these are linked to demo-
graphic parameters and/or space use. As shown in Figure S1, we
simulated the density values, which serve as the latent covariate
in model M

(
𝜓𝓁

)
, using a realistic scenario of small and gradual

changes, with ACs simulated from a homogeneous Poisson pro-
cess, as is the standard assumption of SCR models, including the
one in this paper. As a result, especially when the true value for 𝛽1
is low, density does not vary dramatically between primary peri-
ods or between grid cells, and hence, ignoring its effect in the
M
(
𝜓0

)
model does not lead to substantial bias in the estimation

of 𝑁 .

5 | Case Study

We analyzed SCR data and corresponding disease test data col-
lected from 2014 to 2018 by the long-term study at Woodchester
Park using the modeling framework defined in Section 3. These
years were selected as they correspond to a period when the pop-
ulation was undisturbed by management interventions and the
diagnostic tests for TB did not change, as opposed to the previous
years where different tests were employed and subsequent years
when badger culling for TB control was initiated in the surround-
ing area. Closure was assumed within each of the four times the
three zones were sampled across the years, but open between the
four primary periods across the years. We use 𝑀 = 1500 and an
11 × 8 habitat grid in which we center the sampling locations.
Prior settings are provided in Section S2.3 where informative pri-
ors for the sensitivity and specificity of each test were elicited
from Drewe et al. (2010) and Ashford et al. (2020).

Table 1 displays key posterior estimates obtained. Caterpillar
plots of these parameter posterior distributions are also shown
in Section S2.4. All parameters converged according to Gelman
and Rubin’s convergence diagnostic (Gelman and Rubin 1992),
displayed good mixing, and had effective sample size (ESS) ≥ 200
except the intercept of disease transmission which has ESS≈ 110.

Figure 3a indicates that during the study period (2014–2018)
the Woodchester badger population was in decline, with both
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FIGURE 2 | 95% quantile error bars of RB and CV of population size, 𝑁 , at high and low-density effect levels for three models: Our proposed model,
M
(
𝜓𝓁

)
, the model that does not account for density-dependence in disease transmission, M

(
𝜓0

)
and the model that does not account for disease status,

M(SCR 0). Dots represent the median in each case.

the number of uninfected and infected individuals decreasing
over the course of the study. Disease prevalence during this
period remained relatively stable with median disease prevalence
between 20% and 25% (Figure 3b). Additionally, our model out-
put includes posterior distributions of the number of individuals
newly infected on each sampling occasion (Figure S14), which in
this case is shown to be decreasing, in line with the decreasing
population size.

Model results also confirmed known differences between unin-
fected and infected badgers in relation to their behavior and
survival, indicating that the latter were less likely to be cap-
tured at their activity center and had a larger home range area
than the former, with 95% PCI of the difference between base-
line encounter rates and of the scale parameter (1.082,1.745) and
(−0.397,−0.2490), respectively.

Infected individuals also had a lower survival probability (𝜙)
than uninfected individuals (Table 1), with the 95% PCI of
the difference (0.038,0.182) excluding zero. Overall, the survival
probability of infected individuals was approximately 10% lower

than for uninfected individuals, albeit with more error around
this estimate—potentially caused by the smaller sample size of
infected individuals or greater variability in their survival. The
sensitivity (𝑞11) and specificity (𝑞00) estimates for each test also
provide valuable information on test performance. Specifically,
Cul was found to have low sensitivity (23.4%) but had the high-
est specificity (99.1%), Ifn was the most sensitive (65.6%) and had
relatively high specificity (90.7%), whereas the DPP® had interme-
diate sensitivity (52.0%) and very high specificity (97.8%). These
estimates are similar to those obtained by Ashford et al. (2020)
for DPP® and Drewe et al. (2010) for Ifn and Cul, and reflect
known differences in the performance of the tests and the bio-
logical processes being targeted (e.g., Ifn detecting an initial cel-
lular response to infection while Cul detects bacterial shedding
by infectious individuals). Hence, the tests may, in some cases,
be identifying animals at different stages of infection.

As individual latent ACs are estimated by the model, they enable
useful and interesting summaries such as “realized kernel density
maps” shown in Figure 4. These maps provide useful visualiza-
tion of the distribution of individual ACs across the trapping grid,

6 of 11 Environmetrics, 2024
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TABLE 1 | Case study: Posterior distribution summaries of model
parameters.

Parameters Median SD 95% PCI

𝛾1 0.365 0.034 (0.300,0.435)
𝛾2∶4 0.020 0.011 (0.002,0.045)
𝛾5 0.167 0.037 (0.099,0.248)
𝛾6∶8 0.010 0.008 (0.004,0.030)
𝛾9 0.087 0.035 (0.030,0.165)
𝛾10∶12 0.048 0.018 (0.017,0.089)
𝛾13 0.188 0.053 (0.099,0.305)
𝛾14∶16 0.017 0.015 (0.006,0.056)
𝜙𝑑𝑖=0 0.892 0.012 (0.867,0.915)
𝜙𝑑𝑖=1 0.792 0.033 (0.725,0.855)
𝜆𝑑𝑖=0 1.584 0.161 (1.302,1.929)
𝜆𝑑𝑖=1 0.220 0.044 (0.149,0.317)
𝜎𝑑𝑖=0 0.266 0.008 (0.251,0.283)
𝜎𝑑𝑖=1 0.588 0.038 (0.522,0.667)
𝛿 0.232 0.052 (0.140,0.342)
𝛽0 −2.878 0.350 (−3.698,−2.253)
𝛽1 −0.136 0.157 (−0.472,0.147)
𝑞DPP®

11 0.520 0.026 (0.471,0.573)
𝑞Ifn

11 0.656 0.038 (0.587,0.730)
𝑞Cul

11 0.234 0.035 (0.175,0.311)
𝑞DPP®

00 0.978 0.007 (0.961,0.990)
𝑞Ifn

00 0.907 0.013 (0.879,0.931)
𝑞Cul

00 0.991 0.005 (0.978,0.998)

making it easier to identify patterns, trends, and areas of high/low
probability densities of individual ACs. Figure 4 displays the pop-
ulation kernel density maps for infected and uninfected indi-
viduals across years in spring after cubs have been recruited to
the population. These plots are standardized across years with
the black dots representing the setts trapped. The process used
to obtain these maps is outlined in Section S2.5. These outputs
reveal spatiotemporal variation in the distribution of uninfected
and infected individuals across the population. High probabil-
ity densities of infected badgers were concentrated in the central
(and northern) and western area of the study site at the start of
our study period, becoming more diffuse over time. The eastern
parts of the study site maintained consistently higher probability
densities of uninfected badgers throughout the period.

Finally, the data did not provide strong evidence that density has
a non-zero effect on disease transmission. The simplistic inter-
pretation would be that transmission was independent of local
population density during our study period. However, density is
a latent variable with an unknown effect, and hence the power
to detect small effects relies heavily on the number of primary
periods and the number of individuals becoming infected. Con-
sequently, we can interpret this finding as evidence that strong
density-dependence of transmission is highly unlikely, but that
transmission could instead either be weakly density-dependent
or close to frequency-dependent.

6 | Discussion

We have developed a novel SCR model that uses disease data
from multiple imperfect tests together with SCR data to simul-
taneously model population demographics and disease dynam-
ics within a spatiotemporal context. Accounting for observation
error in both the individual capture process and the disease test-
ing process, our modeling approach accounts for spatial variation
in survival and individual capture probabilities as a function of
individual (latent) disease state as well as variation in disease
transmission as a function of population density. This allows for
a better understanding of how disease dynamics relate to demog-
raphy in a spatiotemporal context.

We also conducted a simulation study to assess model perfor-
mance for a number of scenarios. Our simulations generated
encouraging results for our modeling approach and highlighted
that, if spatial variation in disease transmission and heterogeneity
in demographic rates (capture and survival probabilities) induced
by individual disease status are not accounted for, biased esti-
mates of population size can be produced. Notably, there are exist-
ing models that use finite mixtures to model heterogeneity in
these demographic rates (Pledger, Pollock, and Norris 2010). We
have not considered these models but it is likely that they might
return similar inference on population density to our proposed
model. However, such models do not provide information on
density-dependent disease transmission or information on indi-
vidual disease status effects on such demographic parameters.

Applying this new model to a dataset on European badgers, nat-
urally infected with TB, our model provided valuable insights
into the badger-TB system with broader implications for wildlife
disease ecology in general. Our model results agreed closely
with previous findings from the Woodchester Park study sys-
tem. Estimates of population size align with those from the
long-term study (Delahay et al. 2013; McDonald, Robertson,
and Silk 2018) and support the observed recent decline, while
our estimates of individual badger home range area are simi-
lar to those from previous studies of this population (Garnett,
Delahay, and Roper 2005; Tuyttens et al. 2000; Weber, Bearhop
et al. 2013). Finally, our estimates of disease prevalence and inci-
dence, as well as disease-associated changes in survival are sim-
ilar to those found previously for this study population (preva-
lence: Delahay et al. 2013; incidence and changes in survival: Gra-
ham et al. 2013). However, the approach considered in this paper
is the first to simultaneously model all these processes from the
available SCR data and hence properly account for uncertainty
in every stage of the process. Joint modeling of different data
sets has been shown to improve parameter estimation, increase
inference power, account for multiple sources of error, and so
forth (Fletcher et al. 2016; Gotway and Young 2002; Schaub and
Abadi 2011).

One key advantage of our modeling framework is that by using
longitudinal diagnostic test results to infer the (unobservable)
disease status of an individual, we are able to gain new insights
into how individual movement patterns vary with disease sta-
tus. Specifically, our results show that infected badgers ranged
over larger areas than uninfected badgers. Previous research has
detected a tendency for test-positive individuals (i.e., those likely
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FIGURE 3 | 95% quantile error bars of, (a) total (𝑁𝑡), uninfected (𝑁𝑢
𝑡

), infected (𝑁𝑖
𝑡
) population size, and (b) disease prevalence. Dots represent the

posterior median.

FIGURE 4 | Standardized kernel density maps for infected, (a) and uninfected, (b) individuals across years in Spring each year. Black dots represent
the setts trapped and higher level values indicate higher probability density and vice-versa.

to be infected) to make greater use of outlying setts (Weber,
Bearhop et al. 2013) and have more between-group contacts (Silk
et al. 2018; Weber, Carter et al. 2013), both of which are traits
expected to be linked to wider ranging behavior. Our model
results indicate these changes may (to some extent) be linked
directly to infection. The tendency for infected badgers to start
ranging further likely has important implications for the epidemi-
ology of the badger-TB host-pathogen system. Due to the modular
nature of badger contact networks (Rozins et al. 2018), move-
ments between groups offer important opportunities for trans-
mission that enable wider pathogen spread. Therefore, changes
in the behavior of infected badgers could play an important role
in the longer-term persistence of the disease. Previous research
in the Woodchester system has revealed a positive association
between new individuals arriving in a group and the incidence of

disease (Vicente et al. 2007). Infected badgers ranging over larger
areas than uninfected badgers, using areas that are larger than
typical social group territory size, would provide a mechanism to
explain these findings.

Our results also add to our knowledge of how transmission scales
with population density in the badger-TB system. We find no clear
relationship between local population density and the incidence
of infection in the Woodchester Park badger population (Dela-
hay et al. 2005; Delahay et al. 2013). Historically, many infections
that spread by (nonsexual) close contact were assumed to exhibit
density-dependent (as opposed to frequency-dependent) trans-
mission, and this principle of density-dependence underpins
some interventions to control disease in wildlife populations
(Carter et al. 2009; McCallum 2016). More recently, studies have

8 of 11 Environmetrics, 2024
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typically considered a continuum between frequency-dependent
and density-dependent transmission driven by changes in indi-
vidual behavior (Hopkins et al. 2020). For example, our failure
to detect evidence for density-dependent transmission supports
other research suggesting it may be that the transmission of many
infectious diseases including TB is a function of population den-
sity at low population densities (i.e., density-dependent) but inde-
pendent of it (i.e., frequency-dependent) at high population den-
sities (Hu, Nigmatulina, and Eckhoff 2013). Our results fit well
with this general pattern given that the Woodchester Park badger
population was relatively high density during the study period,
compared with badger populations elsewhere. At this population
scale, it is likely that the social structure of the population plays
an important role and it would be valuable for future research to
focus on this question at finer social and spatial scales.

By separately estimating the density of uninfected and infected
badgers in the population, our SCR model provides an intuitive
approach to the analysis of spatiotemporal variation in TB epi-
demiology in the population while accounting for uncertainty
generated from the use of CR data (i.e., imperfect capture of bad-
gers) and the limitations of diagnostic test data (i.e., imperfect
knowledge of disease state). The kernel density maps generated
(Figure 4) can provide a useful tool for visualizing hotspots of dis-
ease (i.e., areas with a high prevalence of infected individuals) or
guiding surveillance (e.g., by revealing areas with rapidly increas-
ing or decreasing prevalence). Consequently, our study highlights
the value of integrating disease status within an SCR framework
for applied disease ecology more generally.

The choice of grid size is a crucial factor in this modeling frame-
work as it can impact accuracy and computational efficiency.
A smaller grid size provides finer resolution, capturing intri-
cate details and small-scale patterns in density. However, using
a smaller grid size comes at the cost of increased computational
complexity and memory requirements. On the other hand, a
larger grid size provides a coarser resolution that can overlook
smaller-scale patterns but reduces the computational burden.
Thus, it is important to strike a balance between accuracy and
computational efficiency when selecting grid size. To achieve
this, a sensitivity analysis can be carried out. Varying the grid size
helps determine the most appropriate size and also helps ensure
that the chosen grid size does not unduly influence the results.
At the same time, since disease transmission is dependent on
latent density, the grid size needs to be chosen such that there are
adequate latent density points to serve as a covariate on disease
transmission.

One caveat to our model is that we assumed individual ACs
do not change over the period of study. This reflected lim-
ited badger movement as highlighted by Rogers et al. (1998)
and in Figure S7. However, this assumption will be vio-
lated for species that change ACs frequently. Our modeling
approach can be extended to accommodate such movement by
using different state models such as the independent (Royle
et al. 2014) and the Markovian random walk model (Raabe,
Gardner, and Hightower 2014). We have also assumed indepen-
dence between individuals in terms of the locations of their
ACs, however, populations can exhibit attraction or repulsion,
which means that the spatial pattern cannot be described by a
homogeneous Poisson process. In these cases, our model would

need to be extended using models that account for repulsion
(Diana et al. 2022; Reich and Gardner 2014) and/or attraction
(McLaughlin and Bar 2021).

Another avenue for future work is the modeling of disease trans-
mission. Here we assumed that once infected an individual
remained so for the rest of its life, consistent with the normal
approach when modeling TB transmission in badgers. However,
in other wildlife disease systems, it may be important to introduce
further states to the disease model, such as a recovered state (to
represent individuals in which the disease has resolved) or a vac-
cinated state. Such multistate disease models have been fitted to
CR data (e.g., Marescot et al. 2018), and could be easily incorpo-
rated within our modeling framework.

It could also be possible to vary how disease transmission
probability is associated with the spatiotemporal distribution of
infected and uninfected individuals. In this paper, we used a
logistic regression to investigate the effect of (latent) local den-
sity on disease transmission probability and induce heterogene-
ity. However, other latent variables of this type could also be
considered. For example, one might consider alternative mod-
els, a model that assumes that an uninfected individual is more
likely to become infected the closer it is to infected individuals,
or a model that considers disease transmission probability as a
function of the overlap of home range areas between an unin-
fected individual and surrounding infected individuals. Addition-
ally, spatial covariates can be used to account for spatial varia-
tion in disease transmission probability as well as demographic
population rates (Milleret et al. 2023). Thus, future work can
be focused on developing such models and comparing model
performance.

In conclusion, our SCR model provides a novel tool to investi-
gate the relationship between population demographics, spatial
behavior, and infectious disease dynamics in imperfectly sampled
systems. By applying it to other host-pathogen systems, it may be
possible to gain valuable insights into how spatial behavior and
pathogen epidemiology are interwoven with important implica-
tions for wildlife disease ecology and management.

Data Availability Statement

The data that support the findings of this study are available on request
from the corresponding author. The data are not publicly available due to
privacy or ethical restrictions.
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