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Abstract 

Ageing is a highly complex and important biological process that pla y s major roles in many diseases. Therefore, it is essential to better understand 
the molecular mechanisms of ageing-related genes. In this w ork, w e proposed a no v el enhanced Gaussian noise augmentation-based contrastive 
learning (EGsCL) frame w ork to predict the pro-longe vity or anti-longe vity effect of f our model organisms’ ageing-related genes b y e xploiting 
protein–protein interaction (PPI) netw orks. T he e xperimental results suggest that EGsCL successfully outperformed the conventional Gaussian 
noise augmentation-based contrastive learning methods and obtained state-of-the-art performance on three model organisms’ predictive tasks 
when merely relying on PPI network data. In addition, we use EGsCL to predict 10 novel pro- / anti-longevity mouse genes and discuss the 
support for these predictions in the literature. 
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ntroduction 

geing is a highly complex biological process that involves
any genes and biological pathways ( 1 ,2 ), and despite signif-

cant progress in ageing-biology research, the precise molecu-
ar mechanisms of ageing are still not well understood ( 2–4 ).
n addition, ageing research is particularly important because
geing is a major driving factor for many diseases ( 5–7 ), and
o a better understanding of the effects of ageing-related genes
ould lead to new therapies that would potentially extend not
nly the longevity but also the healthspan (period of health
ife) of individuals ( 6 , 8 , 9 ). With the help of Artificial Intelli-
ence (more specifically, machine learning), research has been
arried out to predict new ageing-related genes or biomark-
rs and to identify ageing-related biological pathways or pro-
esses ( 10 ,11 ). In this work, we focus on predicting the pro-
ongevity or anti-longevity effect of genes from four model
rganisms in ageing research (mouse, worm, fly and yeast).
e cast this problem as a classification task from the perspec-

ive of supervised machine learning, where each instance (ex-
mple) represents an ageing-related gene, each instance’s class
abel indicates whether that gene has a pro-longevity or anti-
ongevity effect on the lifespan of an organism ( 12 ,13 )—based
n such class labels as recorded in the GenAge database ( 14 ).
he predictive features are protein–protein interaction (PPI)
etwork-based features. 

PPI networks are a type of biologically meaningful and rel-
vant features that have been widely used in multiple bioin-
ormatics tasks like protein function prediction ( 15–17 ) and
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disease–gene association prediction ( 18–20 ). PPI networks
have also been used for ageing research. Freitas et al. ( 21 ) first
exploited PPI networks as a type of features to classify DNA
repair genes into ageing-related or non-ageing-related genes.
Fang et al . ( 22 ) classified ageing-related genes into DNA repair
or non-DNA repair-related genes using PPI networks-based
features. This type of features were also used for predicting
ageing-related genes for flies ( 23 ), mice ( 24 ) and humans ( 25 ).
More recently, Magdaleno et al . ( 26 ) exploited PPI network
features to predict ageing-related genes’ dietary restriction as-
sociations, and Ribeiro et al. ( 27 ) used PPI network features
to predict lifespan-extending chemical compounds for worms.

In this work, we propose a new contrastive learning-based
framework to cope with PPI network features by develop-
ing two novel contrastive learning algorithms. In general,
contrastive learning aims to learn a type of discriminative
distribution where similar instances are pulled closer whilst
different instances are pushed away. The conventional self-
supervised contrastive learning methods like SimCLR ( 28 )
first create two views for each instance by using different data
augmentation strategies. For each target instance, two views
that are generated from that target instance are treated as pos-
itive views, and all other views that are not generated from
that target instance are treated as negative views. Then Sim-
CLR optimizes the network parameters to reduce the distance
between two positive views, whilst enlarging the difference be-
tween positive views and negative views. The self-supervised
learning paradigm was further extended to the supervised
28, 2024. Accepted: October 29, 2024 
enomics and Bioinformatics. 
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Figure 1. The flowchart for the proposed EGsCL framework based on PPI networks. 
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contrastive learning paradigm ( 29 ), where the definition of
positive and negative views relies on the original labels of
instances. For each target instance, views are considered pos-
itive if they are generated from those instances bearing the
same class label as that target instance. Vice versa, the negative
views are generated from the instances bearing different labels
to that target instance. This supervised contrastive learning
paradigm successfully demonstrated better predictive perfor-
mance than the self-supervised contrastive learning paradigm.

Data augmentation plays a crucial role on contrastive learn-
ing and is usually considered domain-specific. For example, in
the computer vision area, the mainstream augmentation meth-
ods ( 28–32 ) rely on spatial and colour transformations (e.g.
random cropping and Gaussian blur) to create different views
of original images. In the natural language processing area,
text paraphrasing and word replacement ( 33 ) are usually used
as augmentation methods. Several works introduced different
data augmentation strategies for bioinformatics research. For
example, Ciortan and Defrance ( 34 ) and Wan et al . ( 35 ) used a
type of random masking strategy to deal with single-cell RNA-
seq expression profiles. Alsaggaf et al. ( 36 ) and Xu et al . ( 37 )
adopted a noise-addition approach by randomly adding Gaus-
sian noise vectors to gene expression profiles to create differ-
ent views. In this work, we propose a new Gaussian noise-
based data augmentation strategy that adopts a mean-shifting
approach to enlarge the difference between views to improve
the contrastive learning process. 

The remainder of this paper is organized as follows. The
materials and methods section introduces the newly pro-
posed enhanced Gaussian noise augmentation-based con-
trastive learning (EGsCL) algorithms, followed by the results
section and the discussion section, where a further analysis of
the proposed algorithms was conducted. Finally, the conclu-
sion section summaries this paper’s major findings and men-
tions some future research directions. 

Materials and methods 

Enhanced Gaussian noise augmentation-based 

contrastive learning 

In general, the proposed EGsCL framework learns a type
of discriminative feature representations based on PPI net-
works. As shown in Figure 1 , given a PPI network, EGsCL 

first extracts a type of PPI network embedding features us- 
ing the well-known node2vec ( 38 ) method. Then the PPI net- 
work embedding features were used to create augmented in- 
stances (aka views) by using different Gaussian noises. For 
one d -dimensional PPI network embedding instance x in a 
given dataset, EGsCL randomly draws two Gaussian noises 
from two different Gaussian distributions, i.e. N (μ + β, σ ) 
and N (μ − β, σ ) , where μ and σ denote the mean and stan- 
dard deviation of the dataset, whilst β is a shifting hyperpa- 
rameter that is used to manipulate the differences between 

those two Gaussian distributions. Those two Gaussian noises 
are then added with the values of x , leading to two different 
augmented PPI network embedding instances. After creating 
a pair of augmented instances for all individual PPI network 

embedding instances in the dataset, a new sample set that in- 
cludes all those augmented instances is used as inputs for the 
contrastive learning networks consisting of an encoder and 

a projector. The contrastive learning networks optimize the 
parameters by adopting the conventional supervised or self- 
supervised contrastive learning strategies, i.e. minimizing the 
dissimilarity between each augmented instance and its corre- 
sponding positive augmented instance(s), whilst maximizing 
the dissimilarity to its corresponding negative augmented in- 
stances. To cope with the classification tasks in this work,
we used the EGsCL-learned feature representations to train 

support vector machines to predict the pro-longevity or anti- 
longevity effect of different model organisms’ genes. The no- 
tations used in this paper are summarized in Table 1 . 

Algorithms 1 and S1 (in Supplementary File S1 ) show two 

different pseudocodes of the proposed EGsCL algorithms 
working with supervised and self-supervised contrastive learn- 
ing loss functions, respectively. In Algorithm 1, supervised en- 
hanced Gaussian noise augmentation-based contrastive learn- 
ing (Sup-EGsCL) takes a training dataset X and a correspond- 
ing class label set Y as inputs and initialised five variables,
i.e. a set of m -sized batches B, an untrained encoder E , an 

untrained projection head P, a temperature hyperparameter 
τ and a mean-shift hyperparameter β. From lines 1 to 31,
Sup-EGsCL processes each batch of training instances b in 

turns. It creates an empty variable L b to store the loss func- 
tion value for b and an empty set S to store the augmented in- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae153#supplementary-data
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Table 1. The list of notations used in this paper 

Notation Description 

x A d -dimensional PPI network embedding instance. 
N (μ, σ ) A Gaussian distribution, where μ and σ denote its 

mean and standard deviation. 
β A hyperparameter that is used to manipulate a 

Gaussian distribution by shifting its mean. 
X A training dataset. 
Y A set of class labels. 
B A set of m -sized training batches. 
E A contrastive learning encoder. 
P A contrastive learning projection head. 
τ A temperature hyper-parameter. 
b A m -sized training batch. 
S A set to store two different augmentations of each 

original instance. 
z A d -dimensional Gaussian noise. 
˜ x An augmentation (i.e. view) of the original instance x . 
L 

SL 
i The supervised contrastive loss function value for the 

i th instance. 
H 

+ 
i A set of projections of positive augmented instances 

w.r.t. ˜ x i . 
H i A set of projections of all positive and negative 

augmented instances w.r.t. ˜ x i . 
|H 

+ 
i | The number of positive augmented instances w.r.t. ˜ x i . 

F (·) The cosine similarity. 
V ( ̃ x ) A variable that maps an augmented instance ˜ x to its 

original instance x . 
L 

SSL 
i The self-supervised contrastive loss function value for 

the i th instance. 
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tances (a.k.a. views). For each training instance x i in b (lines
–11), two d -dimensional Gaussian noises, i.e. z a and z b , are
andomly drawn from two different Gaussian distributions,
.e. N (μ + β, σ ) and N (μ − β, σ ) , where μ and σ denote the
ean and standard deviation of the training dataset X . β is a
yperparameter that is used to adjust the differences between
hose two Gaussian distributions. Then z a and z b are added
o x i to create two different augmented instances, i.e. x ia and
 ib (lines 7–8). Those two augmented instances are added to
he set S (lines 9–10). After obtaining the complete set S that
onsists of all the augmented instances for the entire train-
ng dataset X , from lines 12 to 28, Sup-EGsCL processes each
ugmented instance ˜ x i in S to compute the loss function value.
t creates three empty variables, i.e. a variable L 

SL 
i for storing

he supervised loss function value for ˜ x i , a set H 

+ 

i for storing
he projections of positive augmented instances with respect
o 

˜ x i , and a set H i for storing the projections of all positive and
egative augmented instances with respective to 

˜ x i . From lines
6 to 24, EGsCL defines the positive augmented instances ac-
ording to the pre-defined class labels. Each augmented in-
tance ˜ x j in S that is different from the target instance ˜ x i is
dded to H i after getting its corresponding projection using
he encoder E and the projector P (lines 17–19). Only the pro-
ections of those augmented instances bearing the same class
abel as ˜ x i will be considered as positive augmented instances
ith respect to 

˜ x i and their projections will be added to H 

+
i 

lines 20–22). Vice versa, the negative augmented instances
ith respect to 

˜ x i are defined as those augmented instances
earing different class labels to 

˜ x i . After obtained the com-
leted sets of H 

+ 

i and H i , Sup-EGsCL creates the projection
f the target instance ˜ x i (line 25). Then Sup-EGsCL computes
he loss function value L 

SL 
i that will then be added to L b (lines

6–27). After processing all augmented instances in S, the loss
function value L b will be normalised by 2 m denoting the total
number of augmented instances in S, and both the encoder
and the projector will be optimised (lines 29–30). The pseu-
docode will output a trained encoder E ∗ after processing all
batches (line 32). Equation 1 defines the supervised contrastive
loss function for the target instance ˜ x i , where |H 

+ 

i | denotes the
number of positive augmented instances w.r.t. ˜ x i , j denotes the
indices of the positive augmented instances, and k denotes the
indices of all augmented instances except i . F (·) denotes the
cosine similarity and τ is a temperature hyper-parameter that
controls the strength of penalty on positives and negatives. 

Algorithm S1 shows the pseudocode of the self-supervised
enhanced Gaussian noise augmentation-based contrastive
learning (Self-EGsCL) method, which shares the same initial-
ization and data augmentation process with the Sup-EGsCL
method. The main difference between Algorithms 1 and S1 is
the positive augmented instance selection strategy. As shown
in lines 9 and 10, Self-EGsCL stores the original instance infor-
mation for each augmented instance. For example, the value
of variable V (x ia ) is assigned as x i , if x ia is the augmented in-
stance of x i . In lines 22–24, for each augmented instance ˜ x i ,
Self-EGsCL treated another augmented instance ˜ x j as a posi-
tive augmented instance, if both 

˜ x i and 

˜ x j are generated by us-
ing the same original instance (i.e. V ( ̃  x i ) == V ( ̃  x j ) ). All other
augmented instances in S are treated as negative augmented
instances. Self-supervised EGsCL uses a similar loss function
( Equation S1 in Supplementary File S1 ) as Sup-EGsCL. Be-
cause there is only one positive augmented sample w.r.t. one
single target augmented instance (i.e. |H 

+ 

i | = 1 ), Self-EGsCL
does not normalise the loss function value L 

SSL 
i . 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae153#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae153#supplementary-data
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Table 2. Main characteristics of the created datasets 

Model organisms Mouse Worm Fly Yeast 

# Instances Total 124 718 186 312 
Pro-longevity 80 239 117 34 
Anti-longevity 44 479 69 278 

# Features Embedding 128 128 128 128 
Binary 17438 16010 11535 5957 
Combined 17566 16138 11663 6085 
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Computational experiments 

We evaluated the predictive performance of EGsCL using
five different β values, i.e. 0.1, 0.2, 0.3, 0.4 and 0.5. We
also compared EGsCL with the conventional Gaussian noise
augmentation-based contrastive learning (GsCL) method,
which also randomly draws two different Gaussian noises to
create a pair of augmented instances for x , but from the same
Gaussian distribution, i.e. N (μ, σ ) . Therefore, GsCL is equiv-
alent to the case when EGsCL’s β value equals 0. We also
compared with another GsCL variant with N (0 , 1) , which
was used in ( 36 ) for cell type identification tasks. We used
the well-known multi-layer perceptron (MLP) to create the
encoder and the projection head of an EGsCL network. The
encoder consists of three hidden layers and one output layer
(i.e. the representation layer). The projection head consists of
one hidden layer and one output layer. The ReLU activation
function was used in both MLPs. We used Adam optimizer
with a learning rate of 10 

−4 and a weight decay of 10 

−6 . The
number of maximum training epochs was set to 1000. We set
the value of τ to 0.1 for the supervised contrastive loss and
0.07 for the self-supervised contrastive loss. Due to the small
number of instances, we set the batch size as the same as the
number of training instances. The proposed EGsCL methods
were implemented by PyTorch ( 39 ) and Scikit-learn ( 40 ). 

We created 12 datasets in total using the ageing-related
genes for four model organisms, i.e. mouse, worm, fly and
yeast, as reported in the GenAge database ( 41 ). We generated
three types of features based on the PPI networks deposited
in the STRING database (version 12.0) ( 42 ). The first type
of features is network embeddings learned by the well-known
node2vec method ( 38 ) leading to a 128-dimensional vector
for each individual protein included in the most informative
combined score STRING PPI networks. The second type of
features is binary PPI features, where the value of 1 denotes
protein_a and protein_b have an interaction and the value of
0 means those two proteins do not have an interaction. The
third type of features is the combination of both the network
embedding and the binary PPI features. The characteristics of
all 12 datasets are listed in Table 2 . The numbers of instances
for four different model organisms range between 124 and
718. The dimensionalities of binary features range between
5957 and 17 438 and the combined features range between
6085 and 17 566. 

Each generated dataset was split into two subsets, i.e. 80%
of the instances were used for conducting a 10-fold cross-
validation, and the remaining 20% of the instances were used
to create a validation set for conducting model selection dur-
ing the contrastive learning process. For each fold of the cross
validation, after every 5 training epochs, we froze the encoder
E and used it to transform the training folds, the validation set
and the testing fold into the EGsCL feature representations.
An Support Vector Machine (SVM) classifier was trained on
the transformed training folds and then predicted the labels 
of the transformed validation set. The best encoder was se- 
lected according to the highest validation set predictive accu- 
racy. The corresponding SVM classifier was used to predict the 
predictive accuracy of the transformed testing fold. We mea- 
sured the predictive performance using three well-known met- 
rics, i.e. Matthews correlation coefficient (MCC), F1 score and 

average precision (AP) score, which were also used as model 
selection criteria when reporting corresponding metrics’ 
values. 

Results 

EGsCL successfully improved the predictive 

performance of GsCL when using different types of 
PPI features to predict the pro-longevity or 
anti-longevity effect of four model organisms’ 
genes 

We first conducted pairwise comparisons between EGsCL and 

GsCL using supervised and self-supervised settings. In general,
both Sup-EGsCL and Self-EGsCL outperformed Sup-GsCL 

and Self-GsCL, respectively. As shown in Table 3 , when using 
the network embedding features to predict the longevity ef- 
fects of mouse’s genes, Sup-EGsCL with all different β values 
obtained higher MCC values and AP scores than Sup-GsCL 

with both N (0 , 1) and N (μ, σ ) , denoting by the double up ar-
rows. The former with β values of 0.3 and 0.4 also obtained 

higher F1 scores than the latter. When using the binary PPI 
features, Sup-EGsCL with almost all β values except 0.1 ob- 
tained higher AP scores than Sup-GsCL. However, the latter 
obtained higher MCC values and F1 scores. When using the 
combined features, Sup-EGsCL with β values of 0.3 and 0.5 

obtained higher MCC values and F1 scores than Sup-GsCL.
The former with all β values also outperformed the latter due 
to higher AP scores. In terms of Self-EGsCL, when using the 
network embedding features and binary PPI features, it out- 
performed Self-GsCL with both N (0 , 1) and N (μ, σ ) accord- 
ing to the higher MCC values, F1 and AP scores obtained 

with different β values, as denoted by the single up arrows.
When using the combined features, Self-EGsCL with β values 
of 0.1 and 0.2 obtained higher MCC values than Self-GsCL.
It also obtained higher AP scores with β values of 0.2 and 0.5,
though Self-GsCL with N (0 , 1) and N (μ, σ ) obtained higher 
F1 scores. 

When predicting the longevity effects of worm’s genes us- 
ing the network embedding features, Sup-GsCL with N (μ, σ ) 
outperformed Sup-EGsCL, according to MCC values and F1 

scores. However, Sup-EGsCL with all different β values ob- 
tained higher AP scores than Sup-GsCL with both N (μ, σ ) 
and N (0 , 1) . When using the binary PPI features, Sup-EGsCL 

obtained higher MCC values with β values of 0.2 and 0.3.
It also obtained higher F1 scores with β values of 0.1 and 

0.3. However, Sup-GsCL obtained higher AP scores. When 

using the combined features, Sup-EGsCL with different β val- 
ues outperformed Sup-GsCL with both N (μ, σ ) and N (0 , 1) ,
according to the higher MCC values, F1 and AP scores. Anal- 
ogously, as shown in Table 3 , Self-EGsCL with almost all dif- 
ferent β values using the network embedding features outper- 
formed Self-GsCL with both N (μ, σ ) and N (0 , 1) , according 
to the higher MCC values and AP scores. It also obtained a 
higher F1 score with a β value of 0.1. When using the bi- 
nary PPI features, Self-EGsCL with a β value of 0.2 obtained 
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a higher MCC value and a higher AP score than Self-GsCL,
but the latter obtained a higher F1 score with N (0 , 1) . When
using the combined features, Self-EGsCL with almost all dif-
ferent β values obtained higher MCC values and AP scores. It
also obtained a higher F1 score than Self-GsCL with a β value
of 0.3. 

When using network embedding features to predict the
longevity effects of fly’s genes, Sup-EGsCL with β values of
0.3 and 0.4 obtained higher MCC values and F1 scores than
Sup-GsCL with both N (0 , 1) and N (μ, σ ) . But Sup-GsCL
with N (μ, σ ) obtained a higher AP score. When using the
binary PPI features, Sup-GsCL with N (μ, σ ) outperformed
Sup-EGsCL due to the higher MCC value and F1 score. Sup-
GsCL with N (0 , 1) also obtained a higher AP score than Sup-
EGsCL. When using the combined features, Sup-EGsCL with
a β value of 0.5 obtained a higher MCC value than Sup-GsCL.
The former with a β value of 0.3 also obtained the same F1
score as the latter with N (μ, σ ) . But Sup-GsCL with N (0 , 1)
obtained a higher AP score than Sup-EGsCL. In terms of Self-
EGsCL, as shown in Table 3 , according to MCC values, it
outperformed Self-GsCL with a β value of 0.3 using the net-
work embedding features. It also obtained higher AP scores
with β values of 0.1 and 0.5, though Self-GsCL with N (0 , 1)
obtained a higehr F1 score. When using the binary PPI fea-
tures, Self-EGsCL outperformed Self-GsCL with different β
values, according to the higher MCC values, F1 and AP scores.
When using the combined features, Self-EGsCL with all dif-
ferent β values obtained higher MCC values, but Self-GsCL
obtained higher F1 and AP scores with N (μ, σ ) and N (0 , 1) ,
respectively. 

When predicting the longevity effects of yeast’s genes, Sup-
GsCL with N (0 , 1) obtained higher MCC values and F1
scores than Sup-EGsCL using both the network embedding
and binary PPI features. Sup-EGsCL with β values of 0.1
and 0.3 obtained higher AP scores than Sup-GsCL with both
N (0 , 1) and N (μ, σ ) . It also obtained higher AP scores than
Sup-GsCL when using the combined features with all different
β values. However, Sup-GsCL with N (μ, σ ) performed bet-
ter due to the higher MCC value and F1 score. Analogously,
when using the network embedding features, Self-GsCL with
N (0 , 1) outperformed Self-EGsCL, according to the higher
MCC value and F1 score. However, Self-EGsCL with a β value
of 0.5 obtained a higher AP score. When using the binary
PPI features, Self-GsCL with N (μ, σ ) performed better than
Self-EGsCL due to the higher MCC value and F1 score. Self-
EGsCL with a β value of 0.1 obtained the same AP score as
Self-GsCL with N (0 , 1) . When using the combined features,
Self-EGsCL with a β value of 0.2 obtained a higher MCC
value than Self-GsCL with both N (0 , 1) and N (μ, σ ) . Self-
EGsCL with all different β values also obtained the same F1
scores as Self-GsCL with N (μ, σ ) . However, the latter ob-
tained a higher AP score than the former. 

EGsCL successfully obtained state-of-the-art 
accuracy in predicting the pro-longevity or 
anti-longevity effect of three model organisms’ 
genes using PPI network-based features 

We further compared EGsCL with the benchmark method
that uses raw PPI network features to train SVM classifiers.
When predicting mouse genes’ longevity effects using the net-
work embedding features, both Sup-EGsCL and Self-EGsCL
with all different β values obtained higher MCC values, F1
and AP scores than the benchmark method. Analogously,
when working with the binary PPI features, both Sup-EGsCL 

and Self-EGsCL with almost all different β values obtained 

higher AP scores, though the benchmark obtained a higher 
MCC value. In addition, Self-EGsCL with a β value of 0.1 

obtained a higher F1 score. When working with the combined 

features, Sup-EGsCL with a β value of 0.5 obtained a higher 
MCC value. It also obtained higher AP scores with all different 
β values, though the benchmark method obtained a higher F1 

score. In terms of Self-EGsCL, it failed to obtain any higher 
MCC value and F1 score, but it obtained a higher AP score 
with a β value of 0.2. 

When predicting worm genes’ longevity effects using the 
network embedding features, Sup-EGsCL with all different 
β values obtained higher F1 and AP scores than the bench- 
mark method, though the latter obtained a higher MCC value.
When working with the binary PPI features, Sup-EGsCL with 

β values of 0.2 and 0.3 obtained higher MCC values. It also 

obtained higher F1 scores with all different β values, though 

the benchmark method obtained a higher AP score. When us- 
ing the combined features, Sup-EGsCL with a β value of 0.5 

obtained a higher MCC value. It also obtained higher F1 and 

AP scores with almost all different β values than the bench- 
mark method. In terms of Self-EGsCL, it failed to obtain any 
higher MCC value, F1 and AP scores than the benchmark 

method using both the network embedding features and the 
binary PPI features. However, when working with the com- 
bined features, it obtained a higher F1 score with a β value 
of 0.3. It also obtained higher AP scores than the benchmark 

method with all different β values. 
When predicting fly genes’ longevity effects, both Sup- 

EGsCL and Self-EGsCL with almost all different β values ob- 
tained higher MCC values, F1 and AP scores than the bench- 
mark method using the network embedding features. How- 
ever, when using the binary PPI features, the latter obtained 

higher MCC value, F1 and AP scores. When working with 

the combined features, Sup-EGsCL with all different β val- 
ues obtained higher MCC values and F1 scores, though the 
benchmark method obtained a higher AP score. In terms of 
Self-EGsCL, it obtained higher MCC values with β values of 
0.3 and 0.4. It also obtained higher F1 scores with almost all 
β values, though the benchmark method obtained a higher AP 

score. 
When predicting yeast genes’ longevity effects using the 

network embedding features, the benchmark method outper- 
formed both Sup-EGsCL and Self-EGsCL due to its higher 
MCC value, F1 and AP scores. However, when using the bi- 
nary PPI features, Sup-EGsCL with almost all different β val- 
ues obtained higher MCC values, F1 and AP scores, but Self- 
EGsCL failed to obtained higher F1 and AP scores than the 
benchmark method. When working with the combined fea- 
tures, Sup-EGsCL outperforms the benchmark method with 

all different β values due to the higher MCC values and F1 

scores, though the latter obtained a higher AP score. Analo- 
gously, Self-EGsCL also obtained higher MCC values and F1 

scores than the benchmark method with all different β values.
Sup-EGsCL is also the overall best method for predicting 

mouse, worm and fly genes’ longevity effects. As denoted by 
the bold texts in Table 3 , in terms of the mouse datasets, Sup- 
EGsCL with a β value of 0.5 obtained the overall highest 
MCC value (i.e. 0.427), whilst it also obtained the overall 
highest AP score (i.e. 0.860) with a β value of 0.1. The over- 
all highest F1 score (i.e. 0.826) was obtained by the bench- 
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Table 4. New predictions about the pro- / anti-longevity effect of mouse genes and their homologous genes from human, fly and worm 

Mouse Mouse Predicted Predicted Homologous genes from 

Gene ID Gene Name Class Probability Human (HS), Fly (DM) and Worm (CE) 

Pofut1 Protein O-fucosyltransferase 1 Pro-longevity 87.8% POFUT1 (HS), O-fut1 (DM), pfut-1 
(CE) 

Ints15 Integrator complex subunit 15 Pro-longevity 87.7% INTS15 (HS), CG5274 (DM), 
Y56A3A.31 (CE) 

Plod2 Procollagen lysine, 2-oxoglutarate 
5-dioxygenase 2 

Pro-longevity 87.7% PLOD2 (HS), Plod (DM), let-268 (CE) 

Arid3a AT-rich interaction domain 3A Pro-longevity 87.6% ARID3A (HS), retn (DM), cfi-1 (CE) 
Col3a1 Collagen, type III, alpha 1 Pro-longevity 87.3% COL3A1 (HS) 
Grk5 G protein-coupled receptor kinase 5 Anti-longevity 71.3% GRK5 (HS), Gprk2 (DM), grk-1 (CE) 
C2cd4b C2 calcium-dependent domain containing 

4B 

Anti-longevity 70.5% C2CD4B (HS) 

Sstr3 Somatostatin receptor 3 Anti-longevity 69.6% SSTR3 (HS), AstC-R1 (DM), npr-24 & 

npr-16 (CE) 
Rab44 RAB44, member RAS oncogene family Anti-longevity 69.5% RAB44 (HS), rsef-1 (CE) 
Ntsr1 Neurotensin receptor 1 Anti-longevity 69.5% NTSR1 (HS) 
‡ Apln Apelin Anti-longevity 70.2% APLN (HS) 
‡ This gene is predicted as an anti-longevity gene, but the literature suggests it is a pro-longevity gene. 
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ark method. Analogously, in terms of the worm datasets,
up-EGsCL also obtained the overall highest MCC value (i.e.
.387), F1 score (i.e. 0.599) and AP score (i.e. 0.698) with
ifferent β values. The overall highest MCC value (i.e. 0.328)
nd F1 score (i.e. 0.782) for the fly datasets were obtained by
up-EGsCL with a β value of 0.3. Sup-GsCL with N (μ, σ )
lso obtained the same overall highest F1 score, whilst Sup-
sCL with N (0 , 1) obtained the overall highest AP score (i.e.
.838). In terms of the yeast datasets, the overall highest MCC
alue (i.e. 0.274), F1 score (i.e. 0.297) and AP score (i.e. 0.509)
ere all obtained by the benchmark method. 

up-EGsCL successfully predicted novel mouse 

enes with the pro- / anti-longevity effect 

e then used one of the trained Sup-EGsCL-based classifiers
uring the 10-fold cross-validation to predict the pro- / anti-
ongevity effect of all the mouse genes included in the STRING
atabase. The pro-longevity genes are defined as those genes
hose decreased expression reduces lifespan and / or their
verexpression extends lifespan. Vice versa, the anti-longevity
enes are defined as those genes whose overexpression reduces
ifespan and / or their decreased expression extends lifespan
 14 ). 

We focus on predicting novel mouse genes for several rea-
ons, as follows. First, the predictive models for mouse data
re the most accurate models in general, across the models for
he four organisms. Second, mice are much closer to humans
han the other three model organisms investigated (with re-
ults for mice being more useful as evidenced from pre-clinical
tudies). Third, experiments with mice are much slower and
ore time consuming than experiments with the other three

ypes of organisms investigated, so it is particularly important
o use machine learning methods to prioritize mouse genes for
urther testing via wet-lab experiments. 

Table 4 shows the top-ranked mouse genes that were most
ikely to bear pro- / anti-longevity labels according to their
robabilities predicted by the trained Sup-EGsCL-based clas-
ifier. Those genes are considered potentially novel pro- / anti-
ongevity genes because they are not included in the GenAge
atabase (and so, they are not in the datasets used to learn our
up-EGsCL-based classifiers). The table also includes infor-
ation about homologous genes from human, fly and worm
according to the Alliance of Genome Resources database
( 43 ) with the stringent homolog information deposit crite-
rion. The complete list of mouse genes that are included in
both STRING ( 42 ) and NCBI ( 44 ) databases with their pre-
dicted probabilities of bearing the pro- / anti-longevity effect
is included in Supplementary File S2 . Other genes might also
be considered potentially exhibiting a pro- / anti-longevity ef-
fect if their predicted probabilities are no less than a certain
threshold, which can be specified by each researcher based on
their research requirements. 

For example, in order to identify the small sets of top-
ranked genes reported in Table 4 , we consider that a mouse
gene is likely to have a pro-longevity effect if its correspond-
ing predicted probability is no < 85%; whilst a mouse gene
is likely to have an anti-longevity effect if its corresponding
probability is no < 67%. We consider a somewhat smaller
probability threshold for identifying potentially novel anti-
longevity genes due to the fact that, overall, the degree of confi-
dence (predicted probabilities) for the predicted anti-longevity
genes is substantially smaller than the degree of confidence for
the predicted pro-longevity genes. 

Regarding the predicted pro-longevity genes in Table 4 ,
there is support in the literature for their pro-longevity role, as
follows. As the top-ranked pro-longevity gene, Pofut1 and its
homologous genes from human, fly and worm play important
roles in the well-known ageing-related notch pathway ( 45 ). It
has been found in mice that this gene’s deletion is linked to
multiple muscle ageing-related phenotypes ( 46 ) and promotes
colorectal cancer cell apoptosis ( 47 ). Ints15 is another top-
ranked mouse gene predicted to have a pro-longevity effect. It
is known to be related to RNA polymerase II—another well-
known ageing-related factor in multiple species ( 48 ). Recent
research on mice’s Ints15 gene ( 49 ) also confirmed its crucial
role in cell survival—the knockout of Ints15 induces cell apop-
tosis. Analogously, Plod2 and its corresponding homologous
human genes play an important role in responses to hypoxia
( 50 ), which could extend the lifespan of mice ( 51 ). Arid3a and
its homologous genes from human, fly and worm are another
group of genes that are linked to RNA polymerase II-related
transcription regulations. It has been revealed that the loss of
Arid3a gene leads to defects in hematopoiesis ( 52 )—a com-
mon pattern observed in aged individuals ( 53 ). Col3a1 and
its human homolog are linked with type III collagen, which

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae153#supplementary-data
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Figure 2. 2D t -SNE visualizations of the training and testing datasets for fly genes using the network embedding features ( A and D ) and the feature 
representations learned by Sup-GsCL ( B and E ) and Sup-EGsCL; β= 0.3 ( C and F ), respectively. 
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plays a crucial role in normal collagen I fibrillogenesis in the
cardiovascular system, and the deletion of Col3a1 shortens
the lifespan of mouse ( 54 ). 

Among those predicted mouse genes that have an anti-
longevity effect as shown in Table 4 , Grk5 regulates responses
to inflammatory factors ( 55 )—a key factor leading to senes-
cence ( 56 ). Recent research in human and mouse has revealed
that silencing the Grk5 gene could suppress inflammatory
factors ( 55 ). C2cd4b is linked with reactive oxygen species,
which is a well-known ageing-related factor ( 57 ). The over-
expression of C2cd4b leads to an increased risk of type 2
diabetes ( 58 ,59 ), but inhibition of C2CD4B expression pre-
vents hyperglycemia-induced oxidative stress ( 60 ). Sstr3 and
its homologs are linked with the G protein-coupled receptor
(GPCR) signalling pathway. It has been found that GPCRs
play important roles in T-cell-related ageing processes ( 61 ),
and the blockade of SSTR3 in human cells can reduce T-cell re-
sponses ( 62 ). Rab44 is also closely associated with immunose-
nescence. The knockout of Rab44 in mice diminishes ana-
phylaxis ( 63 ), which is a process involving a large number
of mast cells releasing a wide range of inflammatory medi-
ators ( 64 ). Ntsr1 has also been found to regulate apoptotic
processes—the inhibition of NTSR1 in human breast cancer
cell lines leads to reduced ERK 1 / 2 phosphorylation ( 65 ),
which induces apoptotic processes ( 66 ). However, among the
top-ranked genes that are predicted to have an anti-longevity
effect, Apln was actually found to be associated with the pro-
longevity effect, since accelerated senescence was observed in
Apln knockout mice ( 67 ). This shows that of course even
highly accurate models like our Sup-EGsCL-based classifiers
can occasionally make wrong predictions; and so experiments
measuring mouse lifespan need to be done, in future work,
to determine whether the novel pro- / anti-longevity genes pre-
dicted in this work really have their predicted effect. 
Discussion 

Sup-EGsCL successfully learns discriminative 

feature representations based on network 

embedding features leading to better decision 

boundaries 

We compared the raw network embedding features and two 

types of feature representations learned by Sup-EGsCL and 

Sup-GsCL, respectively. Figure 2 shows the 2D t -SNE visual- 
ization of the training and testing datasets for fly genes includ- 
ing the learned SVM decision boundaries. As shown in Figure 
2 A and D, when using the raw network embedding features,
both the training and testing instances bearing different class 
labels are distributed in overlapping areas. The learned deci- 
sion boundary also failed to distinguish the red and green dots 
denoting two different class labels. As shown in Figure 2 B and 

E, Sup-GsRL failed to learn discriminative feature representa- 
tions since the instances bearing different class labels were still 
distributed in the overlapping areas. Analogously, the learning 
SVM decision boundaries also failed to separate the majority 
of the red and green dots. In contrast, Sup-EGsCL with a β
value of 0.3 shows better sample distributions. As shown in 

Figure 2 C and F, both the training and testing instances are 
grouped into two separate areas, whilst the learned SVM deci- 
sion boundaries successfully distinguished more red and green 

dots. 

Augmentation with noises sampled from two 

different Gaussian distributions leads to higher 
predictive accuracy. 

We further discussed the differences in augmentation ap- 
proaches between EGsCL and GsCL. The former samples 
noises from two different Gaussian distributions, i.e. N (μ + 

β, σ ) and N (μ − β, σ ) , whilst the latter samples two noises 
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Figure 3. A heatmap showing the numbers of datasets where the 
methods on the rows obtained higher MCC values than the methods on 
the columns. 
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rom one single Gaussian distribution, e.g. N (μ, σ ) . In gen-
ral, noises sampled from two different Gaussian distribu-
ions lead to higher predictive accuracy, compared with us-
ng noises sampled from one single Gaussian distribution.
igure 3 shows a heatmap for the pairwise comparisons be-
ween different methods according to their MCC values ob-
ained by 12 datasets, i.e. 4 model organisms’ ageing-related
enes described by 3 different feature types. Sup-EGsCL with
oth β values of 0.3 and 0.5 obtained higher MCC values in
ore datasets (i.e. 7 out of 12) than Sup-GsCL with N (μ, σ ) ,
hilst Self-EGsCL with almost all different β values except
.1 also obtained higher MCC values than Self-GsCL with
 (μ, σ ) in more datasets. Sup-EGsCL with a β value of 0.4
btained higher MCC values in the same number of datasets
s Sup-GsCL with N (μ, σ ) , which obtained higher MCC val-
es in more datasets than Sup-EGsCL with β values of 0.1
nd 0.2. 

upervised contrastive learning paradigm leads to 

igher predictive accuracy than self-supervised 

ontrastive learning paradigm 

n terms of the differences between supervised and self-
upervised paradigms, the former leads to higher predictive
ccuracy for both EGsCL and GsCL methods. As shown in
he top right area of Figure 3 , Sup-EGsCL with all different β
alues obtained higher MCC values than Self-EGsCL with all
ifferent β values in the vast majority of the datasets. Analo-
ously, Sup-GsCL with N (μ, σ ) obtained higher MCC values
han Self-GsCL with N (μ, σ ) in 8 out of 12 datasets, whilst
up-GsCL with N (0 , 1) also outperformed Self-GsCL with
 (0 , 1) in 9 out of 12 datasets. 
In terms of the differences between two Gaussian distri-

ution settings, i.e. N (μ, σ ) and N (0 , 1) , the former outper-
ormed the latter using either supervised or self-supervised set-
ings. As shown in Figure 3 , Sup-GsCL with N (μ, σ ) obtained
igher MCC values than Sup-GsCL with N (0 , 1) in 7 out of
2 datasets, whilst Self-GsCL with N (μ, σ ) also outperformed
elf-GsCL with N (0 , 1) in 9 out of 12 datasets. 
Conclusion 

In summary, we proposed two new contrastive learning meth-
ods, i.e. Sup-EGsCL and Self-EGsCL, which successfully learn
a type of discriminative representations based on protein-
protein interaction network data, leading to state-of-the-art
accuracy in predicting pro-longevity or anti-longevity effect
of model organisms’ genes. In addition, we have used Sup-
EGsCL to predict 10 novel pro- / anti-longevity mouse genes,
and have discussed the support for these predictions in the lit-
erature. An interesting future research direction would be to
propose new contrastive learning methods for other features
like Gene Ontology terms or their corresponding hierarchy
embeddings. 
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