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Abstract: Chemoresistance encountered using conventional chemotherapy demands novel treatment
approaches. Asplatin (Asp), a novel platinum (IV) prodrug designed to release cisplatin and aspirin
in a reductive environment, has demonstrated high cytotoxicity at reduced drug resistance. Herein,
we investigated the ability of green-synthesized nanocarriers to enhance Asp’s efficacy. Zinc oxide
nanoparticles (ZnO-NPs) were synthesized using a green microwave-assisted method with the reduc-
ing and capping agent gambogic acid (GA). These nanoparticles were then loaded with Asp, yielding
Asp@ZnO-NPs. Transmission electron microscopy was utilized to study the morphological features
of ZnO-NPs. Cell viability studies conducted on MDA-MB-231 breast cancer cells demonstrated
the ability of the Asp@ZnO-NPs treatment to significantly decrease Asp’s half-maximal inhibitory
concentration (IC50) (5 ± 1 µg/mL). This was further demonstrated using flow cytometric analysis
that revealed the capacity of Asp@ZnO-NPs treatment to significantly increase late apoptotic frac-
tions. Furthermore, in vivo studies carried out using solid Ehrlich carcinoma-bearing mice showed
significant tumor volume reduction with the Asp@ZnO-NPs treatment (156.3 ± 7.6 mm3), compared
to Asp alone (202.3 ± 8.4 mm3) and untreated controls (342.6 ± 10.3 mm3). The histopathological
analysis further demonstrated the increased necrosis in Asp@ZnO-NPs-treated group. This study
revealed that Asp@ZnO-NPs, synthesized using an eco-friendly approach, significantly enhanced
Asp’s anticancer activity, offering a sustainable solution for potent anticancer formulations.

Keywords: cancer therapy; asplatin; zinc oxide nanoparticles; drug delivery; green synthesis; triple-
negative breast cancer
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1. Introduction

Induced resistance against conventional chemotherapy and the ensuing high recur-
rence rates necessitate the exploration of novel cancer treatment approaches [1–3]. Platinum-
based anticancer drugs are among the most extensively used chemotherapies [4]. Platinum-
contained chemotherapies exhibit their anticancer activity through the formation of DNA
cross-links that inhibit the transcription process and induce apoptotic events. Nevertheless,
the observed side effects associated with platinum-based therapies, such as cisplatin and
oxaliplatin, highlight the need for novel, efficient derivatives [5].

Asp, a platinum (IV) aspirin-conjugated prodrug that releases cisplatin under reduc-
tive conditions, has exhibited markedly higher cytotoxicity against tumor cells and reduced
drug resistance in cisplatin-resistant cells [6]. Accordingly, the utilization of Asp could offer
enhanced cytotoxic effects at reduced doses. Furthermore, growing evidence suggests that
low-dose aspirin has anticancer activity, particularly in reducing long-term risk, cancer cell
proliferation, and metastatic potential [7–10]. For instance, Gu et al. previously reported
the aspirin’s ability to induce anti-proliferative and apoptotic effects in PIK3CA-mutant
colon cancer cells [11]. To this end, the Asp-mediated intracellular aspirin and cisplatin
release could provide synergistically derived cytotoxicity. The cytotoxic effects of Asp
against cisplatin were previously evaluated in comparative studies. A lower IC50 was
previously exhibited by Asp than cisplatin against various cancer cell types, including
MCF-7 breast cancer cells and A549 lung cancer cells [6]. Similarly, Asp previously showed
a higher ability to reduce the HeLa cells viability compared to cisplatin or oxoplatin [12].
Additionally, Asp treatment showed higher antitumor activity and lower toxicity than
cisplatin in HepG2 tumor-bearing mice [13]. However, the safe application of Asp in clinical
settings demands achieving effective therapeutic outcomes at low administration doses.
Hence, incorporating Asp into a nanoparticle-based delivery system could address these
limitations by intensifying the cytotoxicity against cancer cells at reduced doses.

Nanosized carriers have demonstrated the capacity to enhance the therapeutic out-
come of the incorporated therapeutic agents against various pathological conditions [14–18].
Additionally, nanoformulations have been utilized in oncology to offer efficient delivery
that could enhance the efficacy of anticancer agents and reduce their side effects [19–24].
Zinc oxide nanoparticles (ZnO-NPs) have exhibited the ability to improve the cellular up-
take of the loaded therapeutic cargo and reduce the resistance induced against chemother-
apies [25,26]. Interestingly, Sharma et al. previously reported the increased uptake of
doxorubicin-loaded onto ZnO-NPs following the incubation with MCF-7 cells [27]. Liu
et al. also reported the ability of the ZnO-NPs to increase the cell uptake of the incorporated
doxorubicin and reduce its efflux following the internalization by MCF-7R cells [28]. In
light of these findings, the features ZnO-NPs possess as a nanocarrier could improve the
deliverability of incorporated Asp and potentiate its cytotoxic activities.

Several methods have been reported for the synthesis of ZnO-NPs. For instance,
using the hydrothermal method, ZnO-NPs could be obtained through the crystallization
from a ZnO solution under pressurized and high-temperature conditions [29]. ZnO-NPs
can also be produced using the chemical vapor deposition method through the reaction
between zinc vapor and oxygen under controlled conditions [30]. Additionally, the pre-
cipitation method is employed to prepare ZnO-NPs by reacting zinc salts with a base in
an aqueous solution under controlled conditions, forming precipitates that, upon subse-
quent calcination, yield ZnO-NPs [31]. The green-synthesized nanoparticles (NPs) have
attracted increasing interest as a sustainable approach that utilizes natural products as well
as plant-derived reducing and capping agents. Gambogic acid (GA) is a natural prenylated
xanthone compound derived from the resin of Garcinia hanburyi tree [32]. Previous studies
have illustrated the potential of Garcinia extracts to be utilized in the green synthesis of
inorganic nanoparticles [33–35]. Using this eco-friendly method, GA could facilitate the
synthesis of ZnO-NPs through the reduction of metal ions and the formation of coordina-
tion complexes, leading to the nucleation and growth of the NPs. GA may also act as a
capping agent to stabilize the NPs and control their size and shape. The green synthesis
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approach offers environmentally friendly conditions that can be conducted at room tem-
perature without utilizing hazardous chemicals and high-energy processes [36–38]. Hence,
exploiting GA in the biosynthesis of ZnO-NPs could offer an eco-friendly cancer therapeutic
approach. In addition, previous studies have reported the ability of microwave-assisted
radiation to nanosize the particles, yielding uniform and monodispersed nanoparticles [39].
Thus, the combination of microwave-assisted synthesis with green chemistry principles
could constitute an attractive strategy for the efficient development of biocompatible and
therapeutically effective nanoparticles.

In this study, we hypothesized that the incorporation of Asp into ZnO-NPs synthesized
using GA via microwave-assisted methods could result in a formulation with superior
anticancer activity compared to free Asp. GA was utilized in the green synthesis of
ZnO-NPs under microwave-assisted radiation conditions. The obtained ZnO-NPs were
incorporated with Asp drug, yielding Asp@ZnO-NPs, and then characterized. Afterwards,
the capability of the obtained ZnO-NPs to potentiate the Asp anticancer activities was
evaluated against MDA-MB-231 breast cancer cells in vitro and in solid Ehrlich carcinoma-
bearing mice. Through the development of green-synthesized chemotherapies-loaded
nanoparticles, the outcomes of this study could provide scalable and environmentally
sustainable solutions for producing potent anticancer formulations.

2. Results and Discussion
2.1. Physicochemical Characterization of the Prepared Nanoparticles

ZnO-NPs were biosynthesized involving gambogic acid (GA) as a natural reductant
combined with microwave energy as a sustainable and eco-friendly method. The XRD
spectrum of the green-synthesized ZnO-NPs (Figure 1A) showed nine diffraction peaks
at 31.79◦, 34.45◦, 36.28◦, 47.59◦, 56.65◦, 62.92◦, 66.45◦, 68.03◦, and 69.17◦, which were
recognized as (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0), (1 0 3), (2 0 0), (1 1 2), and (2 0 1)
reflections, respectively. The obtained sharp and strong XRD peaks are typical for ZnO fine
crystalline structure, according to the Joint Committee on Powder Diffraction Standards
card number 79-2205 [40,41]. The average crystallite size of the ZnO-NPs was computed
from the full width at half maximum (FWHM) of the diffraction peaks obtained using
Debye–Sherer’s equation, i.e., Equation (1), and was found to be 24.50 nm. This nanoscale
size demonstrated the ability of the NPs to passively enter the leaky tumor cells, exerting
their therapeutic effects [20]. The 2θ, FWHM, and nanoparticles’ diameter from the XRD
pattern of the ZnO-NPs are presented in Table 1.

Table 1. 2θ, FWHM, and nanoparticles’ diameter obtained from the XRD pattern of the ZnO-NPs.

Peak # 2 θ (Degree) 2 θ (Radians) Cos (θ) FWHM (Degree) FWHM (Radians) ZnO-NPs’ Diameter (nm)

1 31.79 0.55 0.96 0.32 0.0055 26.16
2 34.45 0.60 0.96 0.31 0.0054 26.87
3 36.28 0.63 0.95 0.33 0.0057 25.49
4 47.59 0.83 0.92 0.35 0.0062 24.53
5 56.65 0.99 0.88 0.38 0.0066 23.76
6 62.93 1.10 0.85 0.42 0.0072 22.44
7 66.45 1.16 0.84 0.36 0.0063 26.40
8 68.03 1.19 0.83 0.43 0.0076 22.04
9 69.17 1.21 0.82 0.42 0.0074 22.80

Asp was conjugated onto the ZnO-NPs, resulting in Asp@ZnO-NPs with
EE% of 79.5% ± 5.7%, suggesting efficient Asp incorporation. The surface charge
of nanoparticles is a critical factor influencing their electrostatic repulsion. Repulsive forces
that exceed the attractive Van der Waals forces could reduce the tendency for nanoparticle
aggregation, thereby promoting dispersion stability [42]. To evaluate the surface charge of
the synthesized ZnO-NPs and Asp@ZnO-NPs, Zeta Potential (ZP) analysis was conducted.
The analysis indicated high negative ZP values, suggesting that the nanoparticle colloids



Molecules 2024, 29, 5327 4 of 16

exhibit high stability upon dispersion. The ZnO-NPs exhibited a ZP of −26.7 ± 2.4 mV,
which is attributed to the presence of capping molecules, such as GA, on the nanoparticle
surfaces. This observation aligns with previous findings [43]. On the other hand, the
Asp@ZnO-NPs displayed a lower ZP of −15.8 ± 1.9 mV upon loading with Asp, which
can be attributed to the cationic nature of Asp [44–46]. In addition, the UV-Vis absorbance
spectrum of Asp@ZnO-NPs showed a peak at 295 nm (Figure 1B) that was blue-shifted
compared to ZnO-NPs that showed an absorbance spectrum at 369 nm and was red-shifted
as compared to free Asp that showed an absorbance spectrum at 282, as presented in
Figure S3 in the Supplementary Materials. Our findings correspond well with previous
reports [45,47]. The observed blue shift could be interpreted as an indication of successful
Asp loading onto the ZnO-NPs [48].
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Figure 1. (A) XRD pattern of ZnO-NPs and (B) UV-Vis absorbance spectrum of Asp@ZnO-NPs.

Transmission electron microscopy (TEM) was utilized to visualize the morphology of
the synthesized Asp@ZnO-NPs, as illustrated in Figure 2A. The prepared NPs unveiled a
spherical morphology with flat surfaces and trivial agglomerations. The TEM examination
of Asp@ZnO-NPs shows a size range of 55–85 nm. The increase in size of Asp@ZnO-NPs,
as compared to the size of plain ZnO-NPs (obtained from the XRD study), was an extra
tool that confirmed the successful loading of Asp onto ZnO-NPs.
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2.2. The Release Profile In Vitro

The release profile of Asp from Asp@ZnO-NPs was evaluated using the dialysis sac
method under physiological conditions (pH 7.4) and acidic conditions mimicking tumor
tissue (pH 5.2) (Figure 2B) [43]. At pH 7.4, the release of Asp from Asp@ZnO-NPs showed
a slow and sustained release profile. The initial release was minimal, with less than 20%
of Asp released within the first 10 h. The release gradually increased over the next 48 h,
reaching approximately 25%. The observed slow and sustained release could decrease the
systemic toxicity, maintain therapeutic drug levels, and reduce the dosing frequency.

At pH 5.2, Asp release from Asp@ZnO-NPs exhibited a rapid release profile compared
to that assessed at pH 7.4. Within the first 10 h, the release at pH 5.2 reached approximately
50%. The release continued to increase rapidly, reaching around 80% by the end of the 48 h
period. This significantly higher release rate in acidic conditions suggests that Asp@ZnO-
NPs could be more effective in releasing the drug in acidic tumor microenvironments [49].
The rapid release in these conditions can enhance the cytotoxic effects on tumor cells, while
the sustained release in physiological conditions may reduce systemic exposure and the
associated adverse effects on normal tissues [50].

2.3. In Vitro Assessment

The main aim of this study was to assess the Asp’s effectiveness following the incor-
poration onto ZnO-NPs, with an average Asp content of 36.8 wt% in the Asp@ZnO-NPs.
The effect of ZnO-NPs, Asp, and Asp@ZnO-NPs on MDA-MB-231 breast cancer cells’
viability after 48 h of incubation was evaluated using the SRB assay. The Asp treatment
showed an IC50 value of 13.81 ± 1.133 µg/mL (Figure 3). Interestingly, the IC50 detected
following treatment with Asp@ZnO-NPs was 5 ± 1 µg/mL. The significantly lower IC50 of
Asp@ZnO-NPs compared to Asp alone (p < 0.05) suggested that the cytotoxic effects of Asp
were boosted when delivered using ZnO-NPs.

Furthermore, the apoptotic and necrotic fractions of MDA-MB-231 cells exposed to
ZnO-NPs, Asp, or Asp@ZnO-NPs for 48 h were assessed (Figure 4). Treatment with Asp
alone significantly reduced cell viability and increased the late apoptotic and necrotic
fractions. However, the incorporation of Asp onto ZnO-NPs significantly amplified the
Asp-induced apoptosis and necrosis, leading to a substantial reduction in viable cell fraction
as well as a marked increase in late apoptotic and necrotic cell fractions compared to Asp
alone or untreated cells (p < 0.001).

The observed enhancements in the Asp anticancer activity could be attributed to sev-
eral factors. ZnO-NPs may facilitate better cellular uptake of Asp, consequently increasing
the intracellular concentration of the drug [27,28]. Moreover, it was previously reported that
ZnO-NPs could limit the ATP-binding cassette transporters’ activity, which is responsible
for the efflux of drugs from cancer cells [51]. By potentially inhibiting these transporters,
ZnO-NPs could help retain more drug molecules within the cells. Furthermore, the sus-
tained release of Asp from the ZnO-NPs could maintain therapeutic drug levels within the
cancer cells over a prolonged period, thus enhancing its efficacy [27,28]. The significant
enhancement in the Asp’s cytotoxic effects mediated via the ZnO-NPs observed in our
study suggests that Asp@ZnO-NPs could potentially be an effective anticancer formulation.

2.4. In Vivo Assessments
2.4.1. Antitumor Activity

The antitumor efficacy was studied in female Swiss albino mice with solid Ehrlich
carcinoma implanted subcutaneously. The findings showed that tumor-bearing mice left
untreated had the highest average tumor size (342.6 ± 10.3 mm3), verifying the aggressive
behavior of solid Ehrlich carcinoma in the absence of treatment [52] (Figure 5A). The use
of Asp led to a notable decrease in tumor size (202.3 ± 8.4 mm3), whereas treatment with
Asp@ZnO-NPs showed the most significant reduction in tumor volume (156.3 ± 7.6 mm3).
A comparable pattern was noted across the different treatments when the weight of the re-
moved tumor was assessed on day 24 after tumor inoculation. In addition, histopathological
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examination corroborated these findings, showing extensive necrosis and reduced cellular
and nuclear pleomorphism in the mice group treated with Asp@ZnO-NPs (Figure 5A). The
untreated group exhibited dense clusters of tumor cells with high nuclear pleomorphism,
indicating aggressive tumor growth. However, the Asp@ZnO-NPs-treated group showed
a marked reduction in cellular density and nuclear pleomorphism, with increased areas
of necrosis [53]. The histopathological findings supported the quantitative data, demon-
strating that the Asp@ZnO-NP treatment leads to significant tumor regression. The Asp’s
ability to significantly retard tumor growth highlights the dual anticancer activity of its
cisplatin and aspirin content [12,54–56]. However, consistent with the in vitro results, the
combination of Asp with ZnO-NPs augmented the antitumor effects, which could be due
to the synergistic effects. The ZnO-NPs likely enhanced the therapeutic efficacy of Asp by
improving cellular uptake and intracellular retention, leading to more effective tumor cell
eradication [25,27,28,51]. Additionally, the extended release of Asp from the Asp@ZnO-
NPs observed in the in vitro studies further supports this enhanced efficacy [27,28]. The
sustained release of Asp from ZnO-NPs could allow for prolonged exposure of the tumor
cells to the therapeutic agent, maximizing its antitumor activity.
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Figure 4. Assessment of MDA-MB-231 cell apoptosis using Annexin V-FITC apoptosis detection kit.
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(n = 5). The tumor-bearing mice were left untreated or intraperitoneally injected with ZnO-NPs, Asp,
or Asp@ZnO-NPs at 6 mg/kg body weight every other day. Normal Swiss albino mice (n = 5) were
included as a control. (A) The weight and volume of the tumors excised from the tumor-bearing
mice on day 24 post-tumor inoculation. (B) Hematological parameter assessment, showing the WBC,
RBC, and hemoglobin levels in blood samples collected from normal or tumor-bearing mice on day
24. (C) Serum levels of the liver enzymes ALT and AST in blood samples collected from the mice
on day 24. Results represent the mean value ± S.D. (n = 5). * p < 0.05; ** p < 0.01; *** p < 0.001.
n.s. is non-significant.

2.4.2. Assessment of Hematological and Biochemical Parameters

The hematological parameters of the female Swiss albino mice were assessed on
day 24 post-tumor inoculation (Figure 5B). The average Hb level in normal mice was
9.2 ± 0.57 g/dL. Mice with tumors that were not treated experienced a significant drop in
Hb levels, measuring at 2.78 ± 0.65 g/dL. Asp-treated mice demonstrated slightly higher
Hb levels, reaching 4.1 ± 0.48 g/dL. The Asp@ZnO-NPs treatment markedly increased Hb
levels to 6.8 ± 0.36, approaching normal levels. The reduction in Hb levels in untreated
tumor-bearing mice indicated significant anemia, a common symptom associated with
advanced cancer due to the reduced ability to produce enough RBCs to counteract the
tumor burden [57]. Asp treatment showed a notable improvement in Hb levels, indicating
its efficacy in alleviating the hematological impact of the tumor [58].

Utilizing Asp@ZnO-NPs for treatment showed significant therapeutic benefits, nearly
restoring Hb levels to normal. Additionally, the tumor-carrying mice that did not receive
treatment exhibited a significant decrease in RBCs of 1.65 ± 0.75 × 106/µL, in contrast to
the healthy mice with a red blood cell count of 5.8 ± 0.84 × 106/µL. The Asp significantly
raised the RBC to 3.9 ± 0.67 × 106/µL. However, the Asp@ZnO-NPs treatment restored RBC
count to near-normal levels at 5.1 ± 0.36 × 106/µL. The significantly reduced RBC count in
untreated tumor-bearing mice confirmed the presence of severe anemia. The Asp@ZnO-NPs
showed the highest improvement, restoring the RBC count to near-normal levels.

Mice treated with Asp@ZnO-NPs exhibited a WBC count of 4.8 ± 0.3 × 106/µL, com-
parable to levels detected in healthy mice. The near-normal WBC count in the Asp@ZnO-
NPs-treated group indicated a substantial reduction in tumor-associated inflammation.
This observation aligned with the well-established anti-inflammatory effects of aspirin, one
of the Asp’s components [59]. On the contrary, untreated tumor-bearing mice showed a
marked increase in WBC count that could be due to the inflammatory reaction induced by
the established tumor [60].

The significant improvements in Hb levels, RBC counts, and normalization of WBC
counts demonstrate the comprehensive benefits of the Asp@ZnO-NPs treatment, highlight-
ing its potential as a potent anticancer therapy.

Moreover, untreated solid Ehrlich carcinoma-inoculated mice showed significantly
elevated levels of ALT and AST, indicating substantial liver damage due to tumor
growth [61,62] (Figure 5C). Nevertheless, the mice group treated with Asp@ZnO-NPs
showed ALT and AST levels that were significantly lower than those detected in untreated
tumor-bearing mice, suggesting reduced liver damage.

The untreated tumor tissue showed densely packed cells with intact cellular archi-
tecture (Figure 6A). Tumor tissue collected from mice injected with ZnO-NPs exhibited
signs of structural disorganization; however, the extent of tissue damage was limited, and
the overall structure remained largely intact. In contrast, the tumor samples excised from
mice treated with Asp@ZnO-NPs displayed the most extensive signs of cellular destruc-
tion, with areas of severe apoptosis characterized by condensed nuclei and cell shrinkage.
Compared to the Asp alone treatment, the Asp@ZnO-NPs treatment significantly amplified
the cytotoxic effect, leading to more extensive necrosis throughout the tumor tissue.

The histopathological analysis of liver tissues further demonstrated the hepatopro-
tective effects of Asp@ZnO-NPs in the mice bearing solid Ehrlich carcinoma (Figure 6B).
The untreated group exhibited severe liver damage characterized by extensive necrosis
and inflammation. This damage is likely due to the tumor burden and associated systemic



Molecules 2024, 29, 5327 9 of 16

effects. Asp treatment improved the liver histology, suggesting its potential to reduce
tumor-induced liver damage. Treatment with Asp@ZnO-NPs resulted in a hepatoprotec-
tive effect, with minimal necrosis, inflammation, and well-preserved liver architecture [63].
These findings were consistent with the observed biochemical markers of liver function,
where the Asp@ZnO-NPs-treated group had the lowest levels of liver enzymes ALT and
AST. The obtained results suggest that the Asp@ZnO-NPs formulation not only enhanced
the therapeutic efficacy against tumors but also provided significant protection to liver
tissues, reducing the systemic toxicity often associated with cancer treatments.
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3. Materials and Methods
3.1. Materials

Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum, penicillin, strepto-
mycin, tris (hydroxymethyl)aminomethane, and Sulforhodamine B colorimetric (SRB) assay
kit were obtained from Lonza (Basel, Switzerland). Annexin V-FITC apoptosis detection
kit was purchased from Abcam Inc. (Cambridge, UK). Aspartate transaminase (AST) and
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alanine transaminase (ALT) assay kits were obtained from Instrumentation Laboratory SpA
(Milan, Italy) and Inova Diagnostics (San Diego, CA, USA). All of the other chemicals were
sourced from Sigma Aldrich (St. Louis, MO, USA).

3.2. Microwave-Assisted Green Synthesis of ZnO-NPs

Following a previously reported procedure, the ZnO-NPs were prepared with some
modifications [39]. In 20 mL of deionized water, GA and zinc acetate dihydrate at a
1:10 ratio were mixed, and the yielded mixture was then exposed to 10 cycles of microwave
irradiation at 30 s per cycle for a total duration of 5 min. Following microwave exposure, a
metal hydroxide paste was produced. Finally, the obtained paste was subsequently calcined
in a muffle furnace at 600 ◦C for 5 h, yielding ZnO-NPs.

3.3. Preparation of Asp@ZnO-NPs

ZnO-NPs were suspended in 15 mL of deionized water, and the mixture was stirred for
15 min. Asp was synthesized as described in the Supplementary Materials and presented
in Figures S1 and S2, following our previously reported method [6]. An aqueous solution
of Asp was then added dropwise under continuous stirring. The Asp and ZnO-NPs
mixture was bath-sonicated for 15 min, centrifuged at 12,000 rpm for 1 h, and subsequently
dialyzed against deionized water for 24 h. The colloidal mixture was freeze-dried to obtain
dry Asp@ZnO-NPs.

3.4. Physicochemical Characterization of the Prepared Nanoparticles
3.4.1. Zeta Potential (ZP) Analysis

To evaluate the charge of the synthesized ZnO-NPs and Asp@ZnO-NPs, Zeta Potential
(ZP) measurements were conducted using a Zetasizer Nano ZS (Malvern Instruments, Her-
renberg, Germany) [40,41]. Initially, the nanoparticles were dispersed in distilled water and
sonicated for 5 min to prevent aggregation and ensure proper dispersion. The measurement
parameters were configured as follows: refractive index: 1.33; water viscosity: 0.887 mPa·s;
HeNe laser power: 10 mW; wavelength: 633 nm; and backscatter detector angle: 173◦.
Zeta Potential measurements were performed using a laser Doppler velocimeter (Malvern
Instruments, Herrenberg, Germany). All experiments were conducted in triplicates, and
standard deviations (SD) were calculated.

3.4.2. Ultraviolet–Visible Spectroscopy (UV-Vis)

UV-Vis spectrophotometry (Peak instruments T-9200, Houston, TX, USA) was em-
ployed to acquire the absorption spectrum of the synthesized ZnO-NPs within the UV-Vis
range. Prior to measurement, the dry samples were suspended in distilled water and dis-
persed by sonication. The UV-Vis absorption spectra were then recorded over a wavelength
range of 200 to 700 nm.

3.5. X-Ray Diffraction Analysis (XRD)

The Bruker D8 Discover X-ray diffractometer (Karlsruhe, Germany) was employed
to detect the X-ray diffraction patterns of ZnO-NPs. The applied parameters were set as
follows: electric potential: 40 KV; electric current: 40 mA; CuKα radiation wavelength (λ):
1.5406 Å; 2 Theta (θ) scale: 10–80◦; and step size for phase recognition: 0.02.

Debye–Scherer’s equation, i.e., Equation (1), was used to calculate the average diame-
ter of the ZnO-NPs [16,19].

D =
0.9λ

β cos θ
(1)

The symbols in Equation (1) refer to the following: D: ZnO-NPs’ diameter; λ: CuKα

radiation wavelength; β: full width at half maximum (FWHM) of the respective diffraction
peak; and θ: Bragg diffraction angle.
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3.6. High-Resolution Transmission Electron Microscopy (HRTEM)

High-Resolution Transmission Electron Microscopy (JEOL JEM-2100, Musashino,
Akishima, Tokyo, Japan, functioning at 140 kV) was employed to visualize the morphology
of the NPs. The synthesized Asp@ZnO-NPs (diluted with deionized water in a ratio of 1:2)
were stained with 2% aqueous phosphotungstic acid and eventually dried over a carbon-
coated copper 200-mesh grid for imaging.

3.7. Entrapment Efficiency (EE%)

The EE% of Asp in Asp@ZnO-NPs was determined by centrifuging 2 mL of the de-
veloped NPs at 14,000 rpm and 4 ◦C for 2 h using an ultracentrifuge (Hermle Z 326 K,
Labortechnik GmbH, Wehingen, Germany). Subsequently, the centrifugate was ultrafil-
trated to remove free Asp, which was quantified using HPLC as described in our previous
study [6]. Equation (2) was employed to calculate the EE% [64]:

EE% =
Total amount of Asp − Free Asp

Total amount of Asp
× 100 (2)

3.8. In Vitro Release

The dialysis sac method was used to assess the release percentage of Asp from
Asp@ZnO-NPs at pH 7.4 (mimicking physiological conditions) and pH 5.2 (mimicking
tumor tissue). Briefly, a known volume of NPs (0.5 mL) was inserted into a dialysis sac
(14 kDa cut-off), submerged into a vessel containing 10 mL of either acetate buffer (pH 5.5)
or PBS (pH 7.4), and shaken at 37 ± 0.5 ◦C for 48 h. The released Asp was quantified using
HPLC, as described in our previous study [6], where 1 mL of the release medium was
collected at precise time intervals and immediately replaced with 1 mL of warmed buffer.
The release percentage of Asp was estimated using Equation (3):

Release% =
Amount of released Asp

Initial amount of loaded Asp
× 100 (3)

3.9. In Vitro Studies
3.9.1. Cells and Culture Media

MDA-MB-231 breast cancer cells sourced from Nawah Scientific Inc., Cairo, Egypt,
were cultured at 37 ◦C in a humidified atmosphere with 5% (v/v) CO2 in DMEM complete
medium containing 100 mg/mL streptomycin, 100 units/mL penicillin, and 10% heat-
inactivated fetal bovine serum.

3.9.2. Cell Viability Studies

MDA-MB-231 cells were plated at a seeding density of 5000 cells in each well of
96-well plates and were cultured with ZnO-NPs, Asp, or Asp@ZnO-NPs for 48 h. Con-
centrations used ranged from 0.01 to 300 µg/mL for both ZnO-NPs and Asp and from
0.001 to 30 µg/mL for Asp@ZnO-NPs. The cells were fixed through incubation at 4 ◦C
for 1 h in 150 µL of 10% complete media. After the complete media was removed, cells
were washed five times with distilled water. Cell viability was determined using SRB
assay, as outlined before [6]. The cells were exposed to SRB solution in the dark for a
duration of 10 min. Following that, the cells were exposed to three rounds of 1% acetic
acid rinses, left to dry in the air overnight, and subsequently dissolved in 150 µL of 10 mM
Tris (hydroxymethyl)aminomethane buffer for each well. The BMGLABTECH®-FLUOstar
Omega microplate reader from Ortenberg (Germany) was used to measure the absorbance
at 540 nm.

3.9.3. Determination of Cell Apoptosis

The apoptotic and necrotic fractions of treated MDA-MB-231 cells were assessed
using an Annexin V-FITC apoptosis detection kit (Abcam Inc., Cambridge Science Park,
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Cambridge, UK). Briefly, MDA-MB-231 cells were left untreated or incubated with ZnO-
NPs, Asp, or Asp@ZnO-NPs for 48 h. Afterwards, the incubated cells (1 × 105) were
harvested and rinsed twice with cold PBS (pH 7.4). Subsequently, the cells were incubated
for 30 min with 0.5 mL of Annexin V-FITC/PI solution in the dark at room temperature. The
cells were then processed using an ACEA Novocyte™ flow cytometer (ACEA Biosciences
Inc., San Diego, CA, USA) to detect the FITC and PI fluorescence in the 12,000 events
acquired for each sample. The ACEA NovoExpress™ software 1.6.2 (ACEA Biosciences
Inc., San Diego, CA, USA) was then used to quantify the FITC- and/or PI-positive cells
through quadrant analysis.

3.10. In Vivo Studies
3.10.1. Animals

All procedures concerning the care and maintenance of the animals were conducted
in accordance with international guidelines for animal research and were approved by the
Bioethics and Animal Ethics Committee of the Faculty of Science, Suez Canal University
(Approval number REC225/2023). Adult female Swiss albino mice obtained from the
Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt, with an average body weight
of 18–23 g, were used in the study. The mice were maintained under a constant 12 h
light/dark cycle in a controlled environment with a temperature of 22 ± 2 ◦C and humidity
regulation. They had unrestricted access to standard laboratory mouse food and water.

3.10.2. Assessment of Antitumor Activity

Solid Ehrlich carcinoma cells were sourced from the National Cancer Institute (Cairo
University, Egypt). The tumor cell line was propagated in mice through serial intraperi-
toneal injections of 0.2 mL physiological saline containing 1 × 106 viable cells that were
administered over a 24 h period. The solid Ehrlich carcinoma cells were harvested 7 days
after intraperitoneal implantation and diluted with saline to achieve a concentration of
5 × 106 viable solid Ehrlich carcinoma cells/mL. A volume of 0.2 mL containing 1 × 106

solid Ehrlich carcinoma cells was then intraperitoneally implanted into each normal mouse.
Additionally, 1 × 106 solid Ehrlich carcinoma cells per mouse were implanted subcuta-
neously into the right thigh of the hind limb. A group of mice (n = 5) that were not injected
with solid Ehrlich carcinoma cells was included in the study as the normal control group.
The mice inoculated with solid Ehrlich carcinoma cells were randomly assigned to four
groups (n = 5). The first group served as the untreated control. The second group was
intraperitoneally injected with ZnO-NPs at a dosage of 6 mg/kg body weight. The third
group was treated with Asp at the same dosage and route. The fourth group was intraperi-
toneally administered with Asp@ZnO-NPs at 6 mg/kg body weight. At the end of the
experiment, animals were anesthetized and sacrificed to evaluate antitumor activity and
histopathological analysis.

3.10.3. Hematological and Biochemical Analyses of Blood Samples

Blood samples were collected from the normal or the solid Ehrlich carcinoma-bearing
mice (n = 5). The complete blood count (CBC), assessing hemoglobin concentration, red
blood cell count, and white blood cell count, was carried out with the Abbott CELL-
DYN® 1800 automated hematology analyzer (USA) and a commercially available kit
(Abbott Laboratories, Chicago, IL, USA). The collected serum samples were analyzed using
commercial assay kits to quantify the levels of AST and ALT.

3.11. Histopathological Analysis

Liver and tumor tissue specimens from sacrificed mice were fixed in 10% formalin.
The fixed samples were then dehydrated through an ascending series of ethyl alcohol and
embedded in paraffin. Sections with a thickness of 5 µm were stained with hematoxylin
and eosin and examined under light microscopy.
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3.12. Statistical Analysis

Analysis using GraphPad Prism version 7.00 (Boston, MA, USA) was conducted.
Results are reported as the average ± standard deviation (S.D.). Statistical differences were
detected using one-way ANOVA and Bonferroni post-test.

4. Conclusions

The findings presented in this study suggest that the significant enhancement in Asp’s
anticancer activities could be achieved upon the utilization of green-synthesized ZnO-NPs
as a nanocarrier. The in vitro studies on MDA-MB-231 breast cancer cells revealed the
ZnO-NPs’ capability to significantly lower Asp’s IC50 and increase its apoptotic effects.
The in vivo studies in solid Ehrlich carcinoma-bearing mice corroborated these findings,
showing significant tumor volume reduction and increased necrosis in the mice group
administered with Asp@ZnO-NPs. Collectively, these findings highlight the potential of
Asp@ZnO-NPs as a potent and sustainable anticancer formulation, offering a promising
alternative to conventional chemotherapy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29225327/s1, Figure S1: Synthesis of Aspirin Anhydride;
Figure S2: Synthesis of Asplatin; Figure S3: UV spectra of (A) Asp, and (B) ZnO-NPs.
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