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We consider head-on collisions at critical coupling of vortices modeled by the Abelian-Higgs model. We
investigate the two-vortex scattering, whereby the vortices are excited by the shape mode causing
fluctuations in the gauge-invariant quantities. When the vortices are excited with a sufficiently large
amplitude the moduli space approximation fails, and we observe an interesting behavior in which the
vortices can become trapped in a quasibound state with multiple bounces. We perform a detailed
investigation on the behavior of these excited vortices and sample a phase space of solutions. Interestingly,
we find a fractal structure dependent on the initial phase of the mode and velocity of the vortices.

DOI: 10.1103/PhysRevD.110.056050

I. INTRODUCTION

The Abelian-Higgs model [1] is a relativistic field theory
whose excitations in (2þ 1) dimensions take the form of
topologically stable solitons known as vortices. The field
theory consists of a complex scalar field Φ coupled to a
Uð1Þ gauge field Aμ. The static theory is equivalent to the
effective Ginzburg-Landau theory [2], describing a mag-
netic field penetrating a superconductor quantized by the
number of vortices. The dynamics of vortex solutions is
where these two theories diverge; the Abelian-Higgs model
exhibits second order dynamics with Lorentz invariance
[3–5], whereas the time dependent Ginzburg-Landau
model exhibits first order dynamics [6,7]. It is the former
second order dynamics that we will focus on in this paper.
Note that in (3þ 1) dimensions vortices appear as string-
like objects, coined cosmic strings, that, if they exist, may
be detected through the gravitational contribution to early
Universe cosmology [8].
Vortex scattering has been well studied for all values of

the single parameter λ [3–5,9,10]. This parameter splits the
model into two types; type I (λ < 1) where vortices exhibit
long-range attraction and type II (λ > 1) where vortices
repel at long range. In contrast, at critical coupling (λ ¼ 1),

there are no static long-range intervortex forces and the
N-vortex solutions can be represented by an unordered set
of dimension 2N or MN ¼ CN=SN where SN is the set of
permutations. At critical coupling, the low energy second
order dynamics can then be approximated as free geodesic
motion on the moduli space MN . This moduli space
naturally captures the most striking result, namely, that
vortices exhibit head on 90° scattering [11].
In this paper we will consider the second order dynamics

of vortices away fromMN by exciting normal modes of the
individual vortices. We will demonstrate that vortices do
exhibit long-range forces at critical coupling when their
normal modes are excited. These long-range interactions
alternate between attractive and repulsive depending on the
phase of the excited normal mode. We will then consider
the effect of these excited modes on the scattering of
vortices.
Several studies have considered the effect of excited

normal modes on the scattering of solitons and antisolitons
in one dimension, coined wobbling kinks [12]. The
scattering of wobbling kink/antikinks (while exhibiting
strong attractive static forces) are shown to bounce off
each other depending on initial velocities and the ampli-
tudes of the excited mode. The number of bounces has also
been shown to be chaotic in nature.
The paper is organized as follows. Section II outlines the

Abelian-Higgs model. Section III discusses the excitation
of the shape mode. Section IV explores the numerical
techniques used in simulating vortex dynamics. Section V
discusses the results we find from scattering vortices with
excited shape modes. Finally, we conclude in Sec. VI with a
summary of the results, as well as proposing some future
ideas to be considered.
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II. THE MODEL AND STATIC VORTEX
SOLUTIONS

The (2þ 1)-dimensional Abelian-Higgs model [1] is
described by the following Lagrangian:

L ¼
Z
R2

�
1

2
DμΦDμΦ −

1

4
fμνfμν −

λ

8
ð1 − jΦj2Þ2

�
d2x;

ð2:1Þ

where Φðt; xÞ is a complex scalar field called the Higgs
field. The Uð1Þ gauge potential is denoted by Aμðt; xÞ,
which is a real one form where Aμ ¼ ðA0; A1; A2Þ, and
Dμ ¼ ∂μ − iAμ is the associated covariant derivative.
Moreover, we denote the 2-form field strength tensor as
fμν ¼ ∂μAν − ∂νAμ, where f12 gives the local magnetic
field orthogonal to the plane. We will ensure that R2þ1 has
the signature ðþ;−;−Þ throughout the paper. Finally, as a
gauged theory, (2.1) is invariant under the following gauge
transformation,

ΦðxÞ ↦ eiαðxÞΦðxÞ; Aμ ↦ Aμ þ ∂μαðxÞ: ð2:2Þ

Note that we have rescaled the model to normalize all
parameters (e.g., the electric charge or vacuum expectation
value of the Higgs field) leaving a single parameter, the
mass of the Higgs field λ. The speed of light is also set to
c ¼ 1. The static energy can then be written as

V½Φ; Ai� ¼
1

2

Z
R2

�
DiΦDiΦþ B2 þ λ

4
ð1 − jΦj2Þ2

�
d2x;

ð2:3Þ

where B is the magnetic field, such that B ¼ f12 ¼
∂1A2 − ∂2A1.
Varying the Lagrangian with respect to the independent

fields ðΦ; AÞ, we obtain the resulting second order dynamic
nonlinear equations of motion,

DμDμΦ −
λ

2
ð1 − jΦj2ÞΦ ¼ 0; ð2:4Þ

∂μfμν þ
i
2
ðΦ̄DνΦ −ΦDνΦÞ ¼ 0: ð2:5Þ

For field configurations to have finite energy we require
that B → 0, DμΦ → 0, and jΦj → 1 as ρ → ∞, where
ρ ¼ jxj. This fixes the Higgs field on the boundary

Φ∞ ≔ lim
ρ→∞

ΦðxÞ

to take values on the unit circle such that Φ∞∶S1∞ → S1,
where S1∞ is the circle on the boundary of R2. This map is
encapsulated by an integer degree or winding number

N ∈Z. This winding number defines the number of zeros
of the continuous Higgs field Φ including multiplicity.
Since a given field configuration cannot be deformed from
one homotopy class into a different one by a continuous
deformation, the field configurations are separated into
infinitely many disjoint components, indexed by the integer
degree N. Therefore, the dynamic field equations must
preserve the integer degree N. Using the boundary con-
ditions above and Stokes’ theorem, we can write the total
magnetic flux in terms of the degree N, which is hence
quantized as

−
1

2π

Z
R2

f12 ¼ N: ð2:6Þ

We will interpret the degree N as counting the number of
vortices in the plane, the positions of which are taken to be
the zeroes of the Higgs field Φ.
In this paper we are interested in the critically coupled

case (λ ¼ 1) for which it can be shown that the static energy
is bounded below by the degree E½Φ; A� ≥ πjNj, called the
Bogomolny bound [13]. This inequality is saturated if and
only if the fields satisfy the Bogomolny equations,

D1Φþ iD2Φ ¼ 0; f12 þ
1

2
ð1 − jΦj2Þ ¼ 0: ð2:7Þ

This set of first order equations were studied in detail by
Taubes [11,14]. The moduli space MN is defined as the
space of all possible vortex configurations of topological
charge N that satisfy Eq. (2.7) and thereby minimize the
energy functional. In fact, the moduli space is a manifold of
dimension 2N, and the kinetic energy induces a natural
metric on MN [15]. When vortices have small velocities,
their scattering dynamics can be well approximated by
geodesic motion on the moduli spaceMN [16]. The moduli
space metric needs to be evaluated numerically. However,
there are analytic results for vortices in hyperbolic
space [17,18].
The moduli space approximation correctly predicts that

two vortices that approach each other head-on will scatter at
right angles which we will confirm numerically in the
following section.
We first consider an axially symmetric static isolated

vortex of degree N at the origin using the following ansatz:

Φ ¼ fðρÞeiNθ; ðA0; Aρ; AθÞ ¼ ð0; 0; aθðρÞÞ; ð2:8Þ

where we chose the temporal gauge A0 ¼ 0 and the radial
gauge Aρ ¼ 0. By the principle of symmetric critically, this
configuration will also be a static solution of the full field
equation. The axially symmetric ansatz reduces the field
equations to
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f00 þ 1

ρ
f0 −

1

ρ2
fð1 − aθÞ −

λ

2
fðf2 − 1Þ ¼ 0; ð2:9Þ

a00θ −
1

ρ
a0θ þ ð1 − aθÞf2 ¼ 0: ð2:10Þ

Regularity gives us the profiles at the origin fð0Þ ¼ 0 and
að0Þ ¼ 0 while the boundary conditions above are now

lim
ρ→∞

fðρÞ ¼ 1 and lim
ρ→∞

aθðρÞ ¼ N:

The coupled system (2.9) and (2.10) is nonlinear and must
be solved numerically, which is done using gradient flow
with fourth order finite difference for derivatives to min-
imize the energy.
Although there is no known analytic solution, we can

study the asymptotic form of the solutions for both ρ ∼ 0
and ρ → ∞. First, we will consider f and aθ near the origin,
which admits the expansion fðρÞ ¼ ρNFðρ2Þ and
aθðρÞ ¼ ρ2Gðρ2Þ, where F and G are power series in ρ2

with a nonzero coefficient for the leading term. Hence, we
can write any general cylindrically symmetric solution of
degree N in the form

Φ ¼ ðx1 þ ix2ÞNFðx21 þ x22Þ;

Aμ ¼ ðA0; A1; A2Þ ¼

0
B@

0

−x2Gðx21 þ x22Þ
x1Gðx21 þ x22Þ

1
CA; ð2:11Þ

where Fðρ2Þ and Gðρ2Þ are now nonlinear functions across
the whole space but can be expanded as a power series near
zero. This reduces the field equations to

8ρ2F00 þ 16F0 − ρ2F3 þ Fð1 − 2ρ2G2 þ 4GÞ ¼ 0; ð2:12Þ

4ρ2G00 þ 8G0 þ F2ð1 − ρ2GÞ ¼ 0: ð2:13Þ

To consider the tails of the solutions, we linearize the
system (2.9) and (2.10) around the vacuum ðf; aÞ ¼ ð1; NÞ
that produces a decoupled system of two ordinary differ-
ential equations that yield the solution

fðρÞ∼1−
q
2π

K0ð
ffiffiffi
λ

p
ρÞ; aθðρÞ∼N−

m
2π

ρK1ðρÞ: ð2:14Þ

We can now understand the long-range static intervortex
forces by assuming that a vortex at long range acts as a
point source [19], each with an associated scalar charge q
and magnetic dipole moment m. These point sources must
satisfy the linear differential equations with solutions given
in (2.14). This leads to the linear interaction energy of two
well separated point sources as

EintðRÞ ¼ −
q
2π

K0ð
ffiffiffi
λ

p
RÞ þ m

2π
K0ðRÞ; ð2:15Þ

where R is the separation. The key result is that the
contribution from the Higgs field interaction is negative
while the magnetic contribution is positive. Hence, for
λ < 1 the Higgs field dominates at long range causing
vortices to attract, while for λ > 1 the magnetic field
dominates at long-range causing vortices to repel [19].
However, we will focus on the critically coupled case
(λ ¼ 1), where the contributions from the Higgs field and
magnetic field cancel each other with q ¼ m, leading to no
long-range interaction between static vortices.

III. NORMAL MODES

In this section we will study the normal modes for an
N ¼ 1 vortex. This was first studied for several values of λ
by Goodband and Hindmarsh in [20], and we will take a
similar approach here. Recently, these modes have been
studied in more detail using different methods for λ ¼ 1
[21,22] and all λ [23]. To proceed we consider perturbations
of the fields ðΦ; AÞ around the background of a static vortex
solution, and hence consider the quantities,

ΨðxÞ ¼ ΦðxÞ −ΦsðxÞ; χμ ¼ Aμ − aμsðxÞ; ð3:1Þ

where ðΦsðxÞ; aμsðxÞÞ is the static solution of (2.4) and (2.5)
for given λ. Hence, the system is close to the static vortex
precisely when the perturbations Ψ and χμ are small. This
gives a correction to the action of the form

S ¼ SðΦs; aμÞ þ ϵ2S2 þOðϵ3Þ; ð3:2Þ

where ϵ is an arbitrary constant such that ϵ ≪ 1, and

S2 ¼
1

2

Z
ξ†Dξd2x;

ξ†ðxÞ ¼ ðχ−eiωt; χþe−iωt; Ψ̄eiωt;Ψe−iωtÞ; ð3:3Þ

where ξ is a vector of the perturbations, ω is the angular
frequency of the linear mode, and t denotes time. Note that
the linear action term vanishes because (Φ; Aμ) is a solution
of (2.4) and (2.5), and as ϵ is small we can neglect all terms
higher than quadratic, leaving only linear corrections to the
equations of motion. We have also expanded the gauge
field in terms of the total angular momentum state such that

a1s ¼ −
sinðθÞ
ρ

aθðρÞ ¼ −
1

2
ðaþs þ a−s Þ;

a2s ¼
cosðθÞ

ρ
aθðρÞ ¼

1

2i
ðaþs − a−s Þ; ð3:4Þ

where
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aþs ¼ iaθðρÞ
ρ

e−iθ; a−s ¼ −
iaθðρÞ

ρ
eiθ; ð3:5Þ

and aθðρÞ is a radial profile function found by solving
(2.10). ðA0; Aρ; AθÞ ¼ ðA0; 0; aθðρÞÞ, where we chose the
radial gauge Aρ ¼ 0. The perturbation on the gauge field χμ

behaves the same. Then the total fields are

ΦðxÞ¼ΦsðxÞþϵΨðxÞe−iωt; Φ̄ðxÞ¼ Φ̄sðxÞþϵΨ̄ðxÞeiωt;
ð3:6Þ

AþðxÞ ¼ aþs ðxÞ þ ϵχþðxÞe−iωt;
A−ðxÞ ¼ a−s ðxÞ þ ϵχ−ðxÞeiωt: ð3:7Þ

In order to set up the eigenvalue problem for the
perturbations, we seek to remove the linear derivative
terms by choosing the background gauge condition [24],

∂μχ
μ − ðΨ̄Φs −ΦsΨÞ ¼ 0: ð3:8Þ

This gauge choice removes the gauge degrees of freedom.

Moreover, the Lorenz gauge ∂μAμ ¼ 0 is satisfied by this
gauge condition. The Lorenz gauge is chosen for the full
field theory dynamics because we found it to be the most
suitable gauge choice for numerical simulations in Sec. IV.
With the above ansatz, we obtain the eigenvalue equation

from D by separating the time derivatives,

DLG

0
BBB@

χþ
χ−

Ψ
Ψ̄

1
CCCA ¼ ω2

0
BBB@

χþ
χ−

Ψ
Ψ̄

1
CCCA; ð3:9Þ

where

DLG ¼

0
BBBB@

D1 0 A B

0 D1 C E

E B D2 V1

C A V2 D3

1
CCCCA;

and

D1 ¼ −Δþ jΦsj2;

D2 ¼ −Δ − iðaþs þ a−s Þ∂x þ ðaþs − aþs Þ∂y þ
λ

2
ð2jΦsj2 − 1Þ þ aþs a−s þ jΦsj2;

D3 ¼ −Δþ iðaþs þ a−s Þ∂x − ðaþs − a−s Þ∂y þ
λ

2
ð2jΦsj2 − 1Þ þ aþs a−s þ jΦsj2;

A ¼ i∂xΦs þ ∂yΦs þΦsaþs ; B ¼ −i∂xΦs − ∂yΦs þΦsaþs ;

C ¼ i∂xΦs − ∂yΦs þΦsa−s ; E ¼ −i∂xΦs þ ∂yΦs þΦa−s ;

V1 ¼
λ

2
Φ2

s −Φ2
s ; V2 ¼

λ

2
Φs

2 −Φs
2: ð3:10Þ

The perturbations are given by [20]

Ψ¼
X
k

skðρÞeiðNþkÞθ; Ψ̄¼
X
k

s�−kðρÞe−iðN−kÞθ; ð3:11Þ

χþ¼
X
k

iαkðρÞeiðk−1Þθ; χ−¼−
X
k

iα�−kðρÞeiðkþ1Þθ;

ð3:12Þ

where N is the topological charge, and k∈Z is the wave
number.
Substituting the ansatz (3.11) for the perturbations, (3.5)

for a�s and (2.8) for Φs, we can reduce the eigenvalue
problem (3.9) to a one-dimensional problem. For the case

of this paper, we are only interested in the N ¼ 1, k ¼ 0
linear mode, in which case s0 ¼ s�−0 and α0 ¼ α�−0. Hence,
for N ¼ 1 and k ¼ 0, the ansatz (3.11) simplifies to

ψ1ðxÞ ¼ cosðθÞ s0ðρÞ; ð3:13Þ

ψ2ðxÞ ¼ sinðθÞ s0ðρÞ; ð3:14Þ

χ1ðxÞ ¼ − sinðθÞ α0ðρÞ; ð3:15Þ

χ2ðxÞ ¼ cosðθÞ α0ðρÞ: ð3:16Þ

Hence, the eigenvalue problem (3.9) becomes
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0
B@−

�
∂ρρ þ 1

ρ ∂ρ

�
þ f2 þ 1

ρ2
2f
ρ ðaθ − 1Þ

2f
ρ ðaθ − 1Þ −

�
∂ρρ þ 1

ρ ∂ρ

�
þ λ

2
ð3f2 − 1Þ þ 1

ρ2
ðaθ − 1Þ2

1
CA
�
α0

s0

�
¼ ω2

�
α0

s0

�
; ð3:17Þ

where we have eigenfunctions of the form ξ ¼ ðα0;
α0; s0; s0Þ, and the system (3.9) has decoupled into two
copies of Eq. (3.17).
We now employ a central second order finite-difference

scheme to discretize the system of coupled ordinary
differential equations (3.17), and write the eigenvalue
problem as a 2 × 2 block matrix, with entries of size
M ×M. We then use MATLAB to find the eigenvalues of
the block matrix. Boundary conditions are discussed in
[21]. We find that for N ¼ 1, we have only one normal
mode, denoted the shape mode, as it is a radially symmetric
mode that causes fluctuations in gauge-invariant quantities.
We find that the mode has the frequency ω2 ¼ 0.77747 and
plot the eigenfunctions in Fig. 1. We have normalized the
eigenfunctions using the L2 norm,

2π

Z
∞

0

ðα0ðρÞ2 þ s0ðρÞ2Þρ dρ ¼ 1: ð3:18Þ

IV. NONLINEAR NUMERICAL METHODS

We seek dynamic solutions of the equations of motion
(2.4) and (2.5), which we find by numerically evolving the
equations of motion from an initial condition of well
separated Lorentz boosted vortices. We discretize the fields
on a regular grid of n1 × n2 lattice sites with spacing h > 0,
where the discretized configuration space is the manifold
C ¼ ðC ×R3Þn1n2 ≈ R5n1n2 . We approximate the first and

second order spatial derivatives using central fourth order
finite difference operators, yielding a discrete approxima-
tion Ldis to the functional L½Φ; A� in (2.1). We then evolved
the discretized fields using a second order Leapfrog method
with time step dt ¼ 0.01. Typical values used were n1 ¼
n2 ¼ 601 and h ¼ 0.1.
Natural boundary conditions (detailed in Appendix B)

have been imposed to allow the phase to wind around the
boundary as the fields evolve. Moreover, since we use a
large amplitude in exciting the vortices, the dynamical
solution exhibit radiation. Therefore, we have implemented
damping boundary conditions near the boundary. We
subtract the first order time derivatives of the fields
orthogonal to the gauge orbit, multiplied by a function,
KðxÞ from the equations of motion. KðxÞ has boundary
conditions Kð0Þ ¼ 0 and Kð∞Þ ¼ 1, and is of the form

KðxÞ ¼ 1 −
�
1 − eαðjx1j−xb1Þ2

��
1 − eαðjx2j−xb2Þ2

�
; ð4:1Þ

where xbi is the location of the boundary. The constant α is
chosen so that the damping boundary conditions only use
10% of the boundary. Although the natural boundary
conditions should allow for the radiation to pass through
the boundary, some is reflected. The damping boundary
conditions ensure that most of the radiation is absorbed so
that it is not reflected back towards the bulk, affecting the
behavior of the mode in which we are interested. Note that
the damping boundary conditions are not perfect and not all
radiation is absorbed. To provide numerically accurate
results, we altered the boundary conditions for a lattice
of size 601 × 601 by varying the constant α, so that the
solution not only matches that of a solution found in a
lattice of size 2001 × 2001, whereby the grid is sufficiently
large that the radiation takes a long time to return to the
system but also fine-tuned the boundary conditions by
choosing the best α so that there is as little radiation as
possible.
During the development of the numerics, we considered

other gauge choices motivated by work on vortex scattering
[3,5,25,26]. Namely the temporal gauge A0 ¼ 0, which can
be achieved either by using a gauge transformation to
impose this condition after the boost or by imposing A1 ¼ 0
via a gauge transformation before a Lorentz boost. This
gauge choice however is not compatible with the natural
boundary conditions, as the temporal gauge provides no
equation for the derivatives of the gauge field on the
boundary. Hence, we chose the Lorenz gauge ∂μAμ ¼ 0, as
it is compatible with the natural boundary conditions
(detailed in Appendix B). Note that we can check the

FIG. 1. Plot of the solutions to (3.17), normalized using the L2

norm (3.18), for the N ¼ 1 vortex shape mode. Here α0ðρÞ and
s0ðρÞ are the radial profile functions of the gauge field and the
Higgs field, respectively.
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numerics for a static vortex by checking that the gauge
invariant quantities remain consistent no matter the gauge
choice.
We chose a second-order symplectic integrator, namely

the leapfrog method, to dynamically evolve the equations
of motion. A symplectic integrator preserves geometric
quantities such as the magnetic flux. This provides advan-
tages in maintaining stability and accuracy during large
integration times. The method is also of second order. As
such, it is more efficient in terms of computational
resources, which is essential in our case due to the volume
of results.
The fourth order Runge-Kutta method generally offers

higher accuracy. However it is more computationally
taxing, making it less suitable in our specific case. An
artifact of the simplicity of the Leapfrog method is that it is

more easily implemented compared to higher order meth-
ods such as RK4 and the Yoshida-Leapfrog method. To
confirm that the Leapfrog method provides suitable accu-
racy, we also simulated solutions using the named higher
order methods and found that the general structure of the
phase space was the same. Even though individual simu-
lations varied due to the chaotic nature of the solutions, as
well as the differences in the integration techniques.
Moreover, we tracked gauge-invariant quantities such as
total energy and magnetic flux, and tracked the separation
of the zeros of the Higgs field to ensure that the methods
were consistent with each other.
We now explore a single vortex solution to the static

equations of motion with excited shape mode. We can
hence generalize an initial configuration for the vortex
fields when the shape mode is excited:

ϕ1ðt; x1; x2Þ ¼ Rððx1 þ ix2ÞNÞFðx21 þ x22Þ þ ϵψ1ðxÞ cos ðωt − σð0ÞÞ;
ϕ2ðt; x1; x2Þ ¼ Iððx1 þ ix2ÞNÞFðx21 þ x22Þ þ ϵψ2ðxÞ cos ðωt − σð0ÞÞ;

Aμðt; x1; x2Þ ¼

0
B@

0

−x2Gðx21 þ x22Þ þ ϵχ1ðxÞ cos ðωt − σð0ÞÞ
x1Gðx21 þ x22Þ þ ϵχ2ðxÞ cos ðωt − σð0ÞÞ

1
CA; ð4:2Þ

where σð0Þ is the initial phase of the mode, ψ i, χi are the
perturbations, F and G are the solutions of (2.12) and
(2.13), respectively, ω is the angular frequency and ϵ is the
magnitude of the perturbation.
We can now simulate a single vortex of degree N, with

excited shape mode. We can hence study the amplitude of
theN ¼ 1 excitation over time, by calculating the amplitude
of the static potential energy, see Fig. 2. Figure 2 shows how
the amplitude of the excitation changes with time. Note that
the energy is conserved. However the damping boundary

conditions remove radiation from the system, hence the
energy is allowed to decrease. The solid black line indicates
the choice of ϵ used for themajority of our results.We denote
the initial amplitude of the excitation Að0Þ, where

Að0Þ ¼ 1

2
ðϵωÞ2: ð4:3Þ

We can see that there is an exponential decay by taking a
logarithm of the amplitude, see Fig. 3, whereby for ϵ < 0.7,

FIG. 2. Change in amplitude of the N ¼ 1 vortex shape mode against time, where the amplitude is the magnitude of the fluctuations in
the static potential energy. The black line with ϵ ¼ 0.9 corresponding to Að0Þ ¼ 0.317 is our default initial amplitude in Sec. V.
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the resulting curves are straight lines. Initially, we see that,
for larger ϵ, the amplitude of the shape mode decays faster.
However, changing the initial amplitude is the same as
shifting through time, see Fig. 2, wherebywe can shift along
the time axis such that all different initial amplitudes can be
considered as a decayed amplitude along the same curve.
Figure 2 gives us a range of suitable amplitudes for the

excitation of the shape mode to scatter excited vortices. To
simulate scattering, we must first impose an initial velocity
for the vortex configuration so that the vortex moves. We
then boost the vortex using a Lorentz transformation.
Our coordinates transform as x̂ ¼ Λx̃ where

Λ¼

0
B@

γ −γv 0

−γv γ 0

0 0 1

1
CA; Λ−1¼

0
B@

γ γv 0

γv γ 0

0 0 1

1
CA; ð4:4Þ

and γ ¼ 1ffiffiffiffiffiffiffiffi
1−v2

p is the Lorentz factor. Consequentially, the

Higgs field and gauge field then transform as

ΦðxÞ↦ Φ̂ðxÞ¼ΦðΛ−1xÞ; AμðxÞ↦ ÂμðxÞ¼ΛAμðΛ−1xÞ:
ð4:5Þ

Hence, we have an initial configuration for our two-
dimensional dynamical numerics, detailing an axially
symmetric vortex with an initial velocity and an excited
shape mode.

ϕ̃1ðt; x1; x2Þ ¼ Rððγðx1 þ vtÞ þ ix2ÞNÞFðγ2ðx1 þ vtÞ2 þ x22Þ þ ϵψ1ðx̃Þ cos ðωγðtþ vx1Þ − σð0ÞÞ;
ϕ̃2ðt; x1; x2Þ ¼ Iððγðx1 þ vtÞ þ ix2ÞNÞFðγ2ðx1 þ vtÞ2 þ x22Þ þ ϵψ2ðx̃Þ cos ðωγðtþ vx1Þ − σð0ÞÞ;

Ãμðt; x1; x2Þ ¼

0
BB@

−γvx2ðγ2ðx1 þ vtÞ2 þ x22Þ þ γvϵχ1ðx̃Þ cos ðωγðtþ vx1Þ − σð0ÞÞ
−γx2ðγ2ðx1 þ vtÞ2 þ x22Þ þ γϵχ1ðx̃Þ cos ðωγðtþ vx1Þ − σð0ÞÞ

γðx1 þ vtÞGðγ2ðx1 þ vtÞ2 þ x22Þ þ ϵχ2ðx̃Þ cos ðωγðtþ vx1Þ − σð0ÞÞ

1
CCA: ð4:6Þ

For large initial amplitudes, the nonlinear terms in (3.2)
become significant, and we observe that the energy is phase
dependant, varying up to order Oðϵ3Þ for a π shift.
It is outlined in Appendix A how to excite the same

mode using a Derrick’s scaling. We find that the mode
excitation can be well approximated by a scaling of the
fields. However, this allows less freedom in the choice of

the initial phase. To alter the phase using the Derrick’s
method, we must evolve the vortex in time to numerically
change the initial phase of the mode, which results in a
small decay in the energy. Using the method by which we
alter the phase in the Derrick’s approximation, we can also
alter the phase the same way for the linearization. By
changing the phase this way, the amplitude of the shape

FIG. 3. Log-plot of the amplitude of the N ¼ 1 shape mode against time, to show the exponential decay of the excitation. The black
line with ϵ ¼ 0.9 corresponding to Að0Þ ¼ 0.317 is our default initial amplitude in Sec. V.
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mode decays by approximately 1e − 4, which is signifi-
cantly less than the contribution to the energy of the higher
order terms in the linearization. Because of this, we will
show in Sec. V the phase space plot for both methods.
The initial field configurations (4.6) are solutions to

the dynamic equations of motion (2.4) and (2.5) and can be
used to simulate a single degree N vortex with excited
shape mode. We seek to study the scattering of these
excited degree N ¼ 1 vortices; hence we must create
multivortex field configurations that are also solutions to
the equations of motion (2.4) and (2.5). The Abikrosov
ansatz [27] allows us to find field configurations detailing
well-separated Lorentz boosted vortices with excited shape
modes. The Abikrosov ansatz for a given vortex solution
ðΦ̃ðt; xÞ; Ãμðt; xÞÞ is

Φ̂ ¼
Y
i

Φ̃ðx − diÞ; Âμ ¼
X
i

Ãμðx − diÞ; ð4:7Þ

where di are the positions of the vortex centers. The
approximation works well when the vortices are well
separated from each other, such that the separation is much
larger that the vortex core size, namely, 2di ≫ 1.
To confirm that our numerics are working correctly, we

can simulate the scattering of vortices at critical coupling,
using the configuration (4.6), and setting the perturbations
to zero. We can then track the zeros of the condensate to
plot the separation for a set of initial velocities. In the
moduli space approximation, the trajectories are indepen-
dent of the initial velocity. This leads us to rescale our
trajectories as t → vint, where vin is the initial velocity of
the vortices. Figure 4 shows the scattering of two vortices
of multiplicity one, with varied initial velocities. As
expected, the trajectories initially lie on the same curve

until t ≈ 8. For small velocities vin < 0.3, our numerics
match the expected behavior from the moduli space
approximation (dotted line) whereby they travel with
constant velocity and scatter at 90°. For larger velocities,
the numerics deviates significantly from the moduli space
approximation which is only valid for small velocities. For
velocities close to 1, the trajectories show new kinds of
behavior, which goes beyond the scope of this paper.

V. SCATTERING OF EXCITED VORTICES

In this section, we study the scattering behavior of two
N ¼ 1 critically coupled vortices with excited shape
modes. The excitation leads to an interesting scattering
behavior dependent on initial velocity, as well as amplitude
and phase of the shape mode. We look at snapshots of a
numerical simulation which show the scattering of the
excited vortices. We also plot different vortex trajectories,
where we vary the initial phase of the shape mode.
Furthermore, we show a plot summarizing a sampling of
scattering outcomes for a fixed amplitude, where we vary
the initial velocity and the phase of the shape mode. We
then discuss how this summary is different if we change the
initial amplitude of the shape mode. Finally, we give a brief
discussion regarding changing the relative phase of the
shape mode between the two vortices.
For all simulations discussed in this section, the vortices

are located at di ¼ �10, where di is defined in (4.7). This
separation was chosen so that the vortices are initially well
separated so that the forces between them can be neglected.
Unless stated otherwise, we consider solutions for a fixed
initial amplitude Að0Þ ¼ 0.317. This corresponds to
ϵ ¼ 0.9, where ϵ is the magnitude of the perturbation,
defined in (3.6). The initial amplitude is calculated from ϵ,
see Eq. (4.3). We choose a sufficiently large initial

FIG. 4. Separation of the zeros of the Higgs field (interpreted as the vortex position) of two vortices scattering at various initial
velocities against time. Here the time is rescaled by the velocity such that t ↦ vint, where vin is the initial velocity of the vortices.
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amplitude Að0Þ such that there is enough energy in the
shape mode for a considerable amount of interesting
behavior in the excited-scattering process. We label the
initial phase of the shape mode by σð0Þ∈ ½0; 2πÞ, defined
in (4.6). Unless stated otherwise, the two vortices are in
phase with each other. We denote the initial velocity of the
vortices by vin.
First, we show snapshots of a simulation for a two-vortex

scattering with excited shape modes in Fig. 5. The initial
phase of the shape mode for each vortex is σð0Þ ¼ 2.2612,
and vin ¼ 0.01. We display the energy density as a heat plot
and overlay the zeros of the Higgs field as black dots. We
can see that the energy density fluctuates as a result of the
excited shape mode. At critical coupling, there are no static
forces between vortices, and vortices scatter at right angles
in agreement with the moduli space approximation. We
find that this is no longer the case for excited vortices. We
refer to this multibounce behavior as a quasibound state.
For a fuller picture of the two-vortex scattering, we can

track the zeros of the Higgs field, as seen in Fig. 6. We plot
the separation of the zeros for a set of solutions to show the
trajectories of the vortices as a function of time. We have
only varied the initial phase σð0Þ for fixed velocity
vin ¼ 0.06725. The solid red line shows the separation,
d, of the zeros of the Higgs field of the two vortices with
excited shape mode, and the solid blue line shows is the
amplitude of the excitation. The dashed red line shows the

separation of two vortices with the same initial configu-
ration, but no excitation. The dashed blue line indicates the
amplitude of a single vortex with the same mode excitation.
First, let us discuss the excited vortex scattering in

general. We can see that the trajectories of the vortices
with excited shape modes is different to that with no
excitation. Initially, there is no deviation between the
trajectories of the vortices with or without excitation.
There is also no curvature in the trajectories before d ≈ 17,
showing that the vortices travel at a constant velocity
initially. This is because the length scale of the mode is
approximately the same as the size of the vortices, which
fall off exponentially at approximately l ¼ 8.5ðd ¼ 2lÞ,
see Fig. 1.
For d < 17, the trajectory of the excited vortices begins

to deviate from that of the standard scattering. We observe
an increasing slope in the trajectory of the excited vortices,
and the excited vortices also collide sooner than with no
excitation. We can hence see that the vortices begin to
accelerate towards each other within this region. This
interaction is similar to the behavior of vortices in type I
superconductors, where vortices are attractive.
We can see in Figs. 6(a), 6(b), and 6(f) scattering

solutions where the vortices only scatter once. More than
this, we can see in Figs. 6(a) and 6(f) that the exit velocity
vout is greater than the initial velocity vin. We hence observe
behaviors of type II superconductors, as the vortices move

FIG. 5. Heat plots of the energy density, showing snapshots through time of an excited vortex scattering, with initial phase
σð0Þ ¼ 2.2612, initial velocity vin ¼ 0.01, and initial separation d ¼ 20. The black dots indicate the zeros of the Higgs field. This figure
shows how the vortices accelerate towards each other and then scatter at 90°. The vortices then slow before accelerating towards each
other and scattering at 90° again, which repeats many times. (a) t ¼ 0, (b) t ¼ 270, (c) t ¼ 280, (d) t ¼ 300, (e) t ¼ 360, (f) t ¼ 370,
(g) t ¼ 400, (h) t ¼ 450.
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apart from each other at a velocity greater than that initially
configured.
We can conjecture that this attraction and repulsion is the

result of the changing length scales of the vortex as it
wobbles. We discussed in Appendix A that the interaction
energy fluctuates between positive and negative but is
mainly negative. We also see that the scalar interaction
fluctuates with a magnitude higher than that of the
magnetic interaction. Since the interaction energy is mainly
negative, see Fig. 11, we can conjecture that the mode
excitation results in an attraction where the scalar inter-
action dominates; however, since the interaction energy
also fluctuates to positive, the mode excitation also pro-
duces a repulsive interaction, where the magnetic inter-
action dominates. This shows that geodesic motion is not
the correct approximation for excited vortex scattering, as it
does not explain attraction due to excitation.
In all tracking plots, the amplitude of the excitation drops

after the vortices collide.We can see that this is a result of the

collision as this is a deviation from the dashed blue line. This
is because energy from the mode is transferred to the kinetic
energy of the vortex. After the excited vortices scatter, the
amplitude increases slightly, suggesting that kinetic energy
from the vortices is transferred back to the excitation. If there
is more energy in the excitation, then the vortices become
more attractive, and hencewe observe that they scatter again.
Near the end of the simulation, we can see that the amplitude
of the excitation has decreased significantly, especially for
Figs. 6(c) and 6(d). It is possible that there is not enough
energy left in the excitation, as it radiates energy due to the
fast decay of the amplitude. This means that not enough
energy can be transferred to the kinetic energy, and hence the
vortices escape.
There are some slight fluctuations in the amplitude after

the vortices collide. We believe this fluctuation to be a
result of the Doppler effect as radiation is emitted from the
vortices as they travel, which we have reproduced by
studying the Doppler effect.

FIG. 6. Tracking of separation of the vortices with time, plotted in red. Blue indicates the amplitude of the excitation per vortex. We
show six plots, with different initial phases, and fixed initial velocity vin ¼ 0.06725. The dashed red line indicates the standard scattering
process with no excitation but with the same initial velocity. The dashed blue line indicates the amplitude of the excitation in the absence
of the scattering. (a) σð0Þ ¼ 0. (b) σð0Þ ¼ 13π

16
. (c) σð0Þ ¼ 15π

16
. (d) σð0Þ ¼ 17π

16
. (e) σð0Þ ¼ 5π

4
. (f) σð0Þ ¼ 25π

16
.
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Figures 6(c)–6(e) display a quasibound state, where we
have multiple bounces. Figure 6(e) shows a 2-bounce
scattering solution, Fig. 6(c) shows a 4-bounce solution,
and Fig. 6(d) shows a 13-bounce solution. We can see from
the trajectories that the size of the bounce windows
increases with time. This could be argued to be a result
of the decay of the mode. As the mode decays, it loses
energy, resulting in a reduced attractive quality as time
progresses. This behavior is expected as it is observed with
kinks that we initially have noticeably short bounces that
become longer as the simulation evolves [12].
Next, we study a phase space of solutions to help identify

any patterns in the behavior of the excited two-vortex
scattering. We find solutions for a range of initial phases
and initial velocities and hence generate a phase space of

solutions, detailing the number of bounces as the number of
times the vortices scatter through each other.
Figure 7(b) shows a sample of solutions for a set

of initial phases σð0Þ∈ ½0; 2πÞ, and initial velocities
vin ∈ ½0.01; 0.13�. The number of bounces is indicated by
the color. The y axis has been extended to be in the
range ½0; 6πÞ.
We observe in Fig. 7(b) regions of solutions that have

multibounce scattering. We also observe in between these
regions sets of solutions that only scatter once. We find a
fractal structure of multibounce solutions. We see that the
lines of solutions that have multibounces also have a
curvature, rather than a fixed slope. This is quite intuitive,
as we have a series of lines of decreasing gradient; however,
we can clearly see that the lines curve. This means that

FIG. 7. Phase space of excited vortex scattering solutions. We show solutions for different initial velocity and initial phase for fixed
ϵ ¼ 0.9. The dark blue space indicates solutions that only have one bounce, i.e., the vortices scatter only once, which is the normal
behavior for vortices at critical coupling. The number of bounces is represented as a heat plot for the color of each simulation, shown by
the color bar. The data are plotted three times along the y axis since the phase coordinate is cyclic, allowing us to get a clearer picture of
the behavior of the phase space. (a) Initial phase altered by the ansatz (4.6). (b) Initial phase altered numerically using a displacement
shift and evolving through time.
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changing the initial phase of the mode is equivalent to
changing the initial velocity, up to a critical value where the
initial velocity dominates the interaction of the vortices,
and they always escape. We can see that this critical
velocity is around the region of vin ¼ 0.13. However, this
is only a rough approximation. Extending the phase space
in the y direction also allows us to see more easily that for
any given initial velocity below the critical region, you can
always choose an initial phase such that the vortices scatter
more than once.
For low velocities, the resolution of the phase space is

too small to reveal the full structure of the phase space;
hence the presence of the parabola in the parameter space of
solutions Fig. 7(b) is a result of the resolution of the data.
We can observe Fig. 8 to show that the fractal structure of
repeated lines is observed for small velocities, but due to
the increasing slope of this pattern at low velocities, it is
hard to capture the pattern at low velocities as the lines
become more vertical and narrow, meaning that it is easy to
miss when scanning the parameter space.
We can hence see that the whole phase space shows a

fractal structure of regions with multiple bounces, ranging
from 2 to 30 bounces. The number of bounces does not
appear to have any correlation to the phase space at large,
but it could be argued that the resolution of the diagram is
too low to give a definitive answer. We now turn to the
question of why this fractal pattern appears. We can
surmise that this is a result of the phase of the shape mode
altering the state of the interaction for different velocities.
We see that, periodically, there are these dark blue regions
(solutions that only scatter once) and then thin slices of
solutions with multiple bounces, increasing in width and
decreasing in slope as the initial velocity increases.
Furthermore, these factors appear to be constant for each
region with respect to the phase.

As stated above in Sec. IV, we can alter the phase of the
mode in two separate ways. We can see the phase space of
solutions for both these methods in Figs. 7(a) and 7(b).
Figure 7(b) shows solutions where the initial phase of the
shape mode has been changed by shifting the initial vortex
position di, and numerically evolve to alter the initial phase,
and Fig. 7(a) shows solutions where the initial phase is
changed using the ansatz (4.6).
Due to the dependence of the energy on ϵ in the ansatz

(4.6), which is maximal at a π shift, we can see in the
Fig. 7(a) that the pattern of the results deviates most at this
value, showing that the difference between these plots is an
artifact of this phase dependence on the energy. We can
hence assume that the plots should be identical, except that
we have this deviation because the method used.
We now discuss other initial amplitudes of the excitation.

Take, for example, ϵ ¼ 0.5, i.e., Að0Þ ¼ 0.097. For this
initial amplitude, the mode decays extremely slowly, hence
nonlinear effects are smaller. We find that, for small
velocities, the vortices escape after one bounce. Hence,
we can assume that for this amplitude, the scattering is
dominated by the velocity, and the mode excitation causes
little interaction between the vortices as they scatter. This
gives further evidence to the proposition that the vortices
escape the bound state due to the decay of the excitation, as
if the amplitude is too small initially; they do not bounce
more than once. Therefore, we examine one more initial
amplitude between these two values already discussed and
take ϵ ¼ 0.75, such that Að0Þ ≈ 0.219, which also decays
slowly. We can see in Fig. 2 that this choice of ϵ
corresponds to an initial amplitude of approximately 60%
of the previous amplitude discussed, where ϵ ¼ 0.9 and
Að0Þ ¼ 0.317.
We see in Fig. 9 that we have the same fractal structure

dominating the phase space. There are some key
differences between the phase space of solutions with
ϵ ¼ 0.9 and ϵ ¼ 0.75. First, we observe in Fig. 9 that
there are only one bounce windows after an initial velocity
of vin ≈ 0.055. This suggests that the interaction imposed
by the mode is weaker than the strength of the initial
velocity, further supporting the conjecture that the mode
requires a certain amount of energy to dominate the
interaction. We further see that the fractal lines are narrower
in Fig. 9 than in Fig. 7(b). However, they are significantly
closer together, which could suggest that this set of
solutions is just a scaled set of solutions compared to
Fig. 7(b). Note that, for small velocities, the line pattern is
harder to see. This is due to the resolution of the phase
space. With higher resolution, this part of the diagram
would appear to fit the pattern of the rest of the data.
We now briefly explore the scattering of vortices where

the excitations for each vortex are out of phase with each
other. Consider the two-vortex scattering with initial
velocity vin ¼ 0.01, and initial amplitude of the mode
Að0Þ ¼ 0.317. We have stated previously that we do not

FIG. 8. A higher resolution plot of the phase space plot. We plot
the highlighted region of Fig. 7(b) but using a smaller step in vin.
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get any bounce windows when the vortices are in phase;
however, we observe some interesting behavior when we
consider a relative phase of σ ¼ π.
Figure 10 shows the separation of the zeros of the Higgs

field for two-vortex scattering with an excited shape mode.

However with a relative phase between the shape modes
per vortex of σ ¼ π. The colors indicate the velocities. Dark
blue corresponds to a velocity of vin ¼ 0.01 and orange
corresponds to an initial velocity of vin ¼ 0.1, with the
colors in between interpolating between these values with a

FIG. 9. Parameter solution space detailing the space of solutions computed using a second order Leapfrog method for time evolution.
We show solutions for different initial velocity and initial phase for fixed ϵ ¼ 0.75. The dark blue space indicates solutions that only
have one bounce, i.e., the vortices scatter only once, which is the normal behavior for vortices at critical coupling. The number of
bounces is represented as a heat plot for the color of each simulation, shown by the color bar. The data are plotted three times along the y
axis since the phase coordinate is cyclic, allowing us to get a clearer picture of the behavior of the phase space.

FIG. 10. Separation of the zeros of two vortices with initial velocity vin ¼ ½0.01; 0.1� and initial magnitude of the perturbation ϵ ¼ 0.9.
The vortices are out of phase in terms of the shape mode by σ ¼ π.

SCATTERING OF VORTICES WITH EXCITED NORMAL MODES PHYS. REV. D 110, 056050 (2024)

056050-13



step of vstep ¼ 0.01. For small velocities we see a clear
repulsion between the vortices, as they do not scatter. We
can see from the slope of the separation that the vortices
slow down when they become close and then repel, as we
can see the change in direction of the lines. We can see that
the faster the velocity, the closer the vortices come together
before repelling, suggesting that the repulsion is not
dependant on the velocity, but fighting against it. This
figure illustrates behaviors of type II superconductors,
which is where vortices are repulsive.
Although not presented here, we find that with a relative

phase of σ ¼ π
2
this mode is highly attractive, with solutions

with up to 50 bounces. This is intriguing, as we previously
only observed one-bounce windows with this initial ampli-
tude. This implies that the behavior of these vortices is
highly dependent on the phase of the mode, since breaking
the symmetry drastically alters the results, as seen in
Fig. 10, where the vortices repel. More research will be
conducted on this out-of-phase scattering to try and under-
stand the effect of breaking the symmetry of the mode.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have provided a detailed outline of how
to develop the numerics for Abelian-Higgs vortices in
(2þ 1) dimensions. We further showed how to excite the
vortex shape mode that causes fluctuations in the gauge-
invariant quantities. We discussed extensive results that
explore the scattering of the excited vortices.
Interestingly, we found that excitation of the shape mode

leads to the scattering exhibiting behavior of both type I and
type II superconductors. When both vortices are in phase,
the attractive properties dominate for most initial phases.
We have provided numerical and analytical evidence of the
nature of the attractive and repulsive properties of the
mode. We then sampled a phase space of solutions and
found a fractal structure dependent on the initial phase of
the shape mode and initial velocity of the vortices. We
found that the number of bounces a solution exhibits shows
signs of chaotic behavior and depends sensitively on the
initial setup of the scattering.
An important result of this paper is that geodesic flow is

not a valid approximation for vortex scattering with excited
shape modes, as it does not explain attraction due to
excitation. During the production of this paper, models
were developed in [28] to explain the motion of vortices
with excited shape mode, whereby geodesic flow on M is
modified by a potential. Interestingly, a fractal pattern is
also found in [28], whereby multiple bounces in two-vortex
collisions are observed, which is in complete agreement
with the result presented in this paper.
This paper opens many avenues for future work. We are

planning to study the dynamics of vortices of higher

multiplicity, specifically, multivortex scattering at critical
coupling. This has many possibilities because higher
degree vortices also have more normal modes to excite.
We also consider scattering excited vortices with a nonzero
impact parameter. Initial calculations show that the vortices
can orbit each other. Remarkably, we can further study the
same two-vortex scattering with excited shape mode briefly
discussed in this paper, namely where the vortices are π out
of phase. This is work in preparation [29], and we find
spectral walls in the Abelian-Higgs model.
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APPENDIX A: DERRICK’S SCALE
APPROXIMATION

This section seeks to show that the shape mode can be
well approximated by a Derrick’s scaling of the fields. First,
we show the initial construction used to excite the mode
this way. We apply Derrick’s scaling argument and consider
a spatial rescaling of the form

x ↦ μx ¼ x̃; ðA1Þ

where μ is the Derrick’s scaling factor. The Higgs field Φ
scales as

Φ̃ ¼ ΦðμxÞ: ðA2Þ

We are working in a gauge theory; hence we require that
both terms of the covariant derivative DjΦ̃ scale consis-
tently. Since

∂jΦ̃ ¼ μð∂jΦÞðμxÞ; ðA3Þ

we impose that the gauge potential Aμ scales as

Ãμ ¼ μAμðμxÞ: ðA4Þ

It is important to perform the Derrick’s scaling on the fields
before applying the Lorentz transformation, and the result-
ing initial condition is as follows:
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Φ̂ðt; x1; x2Þ ¼ ðγðμx1 þ vtÞ þ iμx2ÞNFðγ2ðμx1 þ vtÞ2 þ μ2x22Þ;

Âmuðt; x1; x2Þ ¼ ðÂ0; Â1; Â2Þ ¼

0
B@

Nvγμ2x2Gðγ2ðμx1 þ vtÞ2 þ μ2x22Þ
−Nγμ2x2Gðγ2ðμx1 þ vtÞ2 þ μ2x22Þ

Nγμðμx1 þ vtÞGðγ2ðμx1 þ vtÞ2 þ μ2x22Þ

1
CA; ðA5Þ

Hence we have an initial configuration for our two-
dimensional dynamical numerics, detailing a axially sym-
metric vortex with an initial velocity and a Derrick mode
excitation.
As stated above, we find the frequency of the shape

mode to be ω2
Lin ¼ 0.777476. By studying the potential

energy of the Derrick’s scaled solution, we find a frequency
of the approximated mode to be ω2

Derrick ¼ 0.770076,
which is within 1% of the frequency found through the
linearization of the full field theory. This gives us evidence
that Derrick’s scaling the solution is indeed a good
approximation to the shape mode.
We can calculate the two-dimensional norm of the

perturbation for both methods to model how well the
Derrick’s scaling approximates the mode

hf;gi ¼
Z

f · g d2x; ðA6Þ

where f and g are vectors of the Higgs field and gauge
fields for the Derrick’s scale perturbation, and the lineari-
zation perturbation respectively, such that

f ¼ ðψ̃1ðx; yÞ; ψ̃2ðx; yÞ; χ̃1ðx; yÞ; χ̃2ðx; yÞÞT; ðA7Þ

g ¼ ðψ1ðx; yÞ;ψ2ðx; yÞ; χ1ðx; yÞ; χ2ðx; yÞÞT: ðA8Þ

The Derrick’s scale mode approximation is a particularly
good approximation to the linearization, agreeing up to
95% for small perturbations. As the perturbation grows
larger, we see that the scale approximation begins to
become a less accurate approximation. However, we still
see for significantly high μ, that the approximation covers
91% of the linearization, which is still considerably
accurate. This gives us confidence that the scale approxi-
mation is a suitable method for exciting the mode.
It has been shown in [20] how to find the linear vortex

modes for all coupling λ. Moreover, it is illustrated in [22]
how to find the linear modes for critically coupled vortices,
using a super-symmetry trick to reduce the dimensionality
of the spectral problem. The implementation of a Derrick's
scaling to excite the shape mode is a convenient approxi-
mation that can be used to easily excite the radially
symmetric shape mode for all λ and for all degree N.
By approximating the shape mode by a Derrick’s

scaling, we also begin to gain an understanding of the
properties of interaction of the mode. We can begin to study
the long-range interaction of these excited vortices.

Let

ΦðxÞ ¼ eiNθfðρÞ ¼ x1 þ ix2
ρN

fðρÞ; ðA9Þ

A ¼

0
BB@

0
−x2
ρ2

aθðρÞ
x1
ρ2
aθðρÞ

1
CCA; ðA10Þ

where ρ is the radial coordinate such that ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
,

and fðρÞ and aθðρÞ are profile functions, such that

fðρÞ ¼ ρNFðρ2Þ; ðA11Þ

aθðρÞ ¼ ρ2Gðρ2Þ: ðA12Þ

We can linearize these profile functions near infinity, as
shown in [30,31], such that we get the following decaying
solutions with asymptotic expressions for jρj ≫ 1,

fðρÞ ≈ 1 −
q
2π

K0ð
ffiffiffi
λ

p
ρÞ; ðA13Þ

aθðρÞ ≈ N −
m
2π

ρK1ðρÞ; ðA14Þ

whereK0ðρÞ andK1ðρÞ are modified Bessel functions, with

leading exponential term
ffiffiffiffi
π
2ρ

q
e−ρ for large ρ.

We find the coefficients q and m using numerical
techniques. Furthermore, we can find these coefficients
as the vortex wobbles, and track the changes in the
coefficient to show how the Derrick mode excitation
provides an interactive force.
The interaction energy can be calculated as follows:

EintðsÞ ¼ −
q2

2π
K0ð

ffiffiffi
λ

p
sÞ þm2

2π
K0ðsÞ: ðA15Þ

We can interpret the interaction energy as follows. The q
term in the interaction energy is negative, hence the length
scale associated with the scalar field produces an attraction.
Additionally, the m term is positive; hence the length scale
associated with the magnetic field produces a repulsion.
Thus, when the interaction energy is positive, the magnetic
field dominates the interaction, and the vortices exhibit a
repulsive force, whereas when the interaction energy is
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negative, the scalar field dominates the interaction, and the
vortices exhibit an attractive force.
If we now consider the spatial rescaling (A1), then for

ρ ≫ 1, Eqs. (A13) and (A14) rescale as

fðρÞ → f̃ðρÞ ¼ fðμρÞ ≈ 1 −
q
2π

K0ðμρÞ; ðA16Þ

aθðρÞ → ãθðρÞ ¼ aθðμρÞ ≈ 1 −
m
2π

ρ̃K1ðμρÞ: ðA17Þ

If we consider the magnetic field, then we have that

B ¼ 1

ρ

∂aθðρÞ
∂ρ

;

B̃ ¼ 1

ρ̃
μ
∂ãθðρÞ
∂ρ

;

¼ −
μ

ρ̃

m
2π

ðμK1ðμρÞ þ μρ̃K1
0ðμρÞÞ;

¼ μ2
m
2π

�
1

ρ̃
K0

0ðμρÞ þ K0
00ðμρÞ

�
;

¼ μ2
m
2π

K0ðμρÞ: ðA18Þ

Hence, the interaction energy at critical coupling becomes

EintðRÞ ¼ −
q2

2π
K0ðμRÞ þ μ2

m2

2π
K0ðμRÞ; ðA19Þ

where R is the separation between two vortices.
Therefore, we see that when μ < 1 the magnetic inter-

action is weaker, and hence there will be an attraction.
Moreover, when μ > 1, the magnetic interaction is
stronger, and hence there will be a repulsion between
the vortices. It is important to note that we have also
developed the numerics to excite the shape mode by a

Derrick’s scaling of the fields. Indeed, using a Derrick’s
scaling to excite the mode is only an approximation, and
hence there is more radiation in the system when the
excitation is carried out this way. However, it is much easier
numerically to include a mode excitation of this form.
We can compare this with the numerically calcula-

ted interaction energy, such that Eint ¼ V2ðΦ; AμÞ−
2V1ðΦ; AμÞ, where V2 is the potential energy of a two-
vortex system, where the vortices have been pinned at
fixed positions of di ¼ �8, and V1 is the potential energy
of a single vortex. We have calculated this interaction
energy for the shape mode discussed but have also
calculated the interaction energy for the same mode excited
instead with a Derrick’s scaling, with approximately the
same initial amplitude of the mode.
We can see in Fig. 11 that the fluctuations in the

interaction energy are more stable where the mode has
been excited using the linearization techniques; however,
the interaction energy calculated from the Derrick mode
excitation is still a really good approximation to that of the
linearization, showing further that this mode can be
accurately modeled by a Derrick scaling.
We show the phase space of solutions for a mode

excitation of this form Fig. 12 shows that we can observe
the same behavior as in Fig. 7, showing that using a
Derrick’s scaling to excite the mode is a good enough
approximation.

APPENDIX B: BOUNDARY CONDITIONS

We impose natural boundary conditions [32], so that
radiation may leave the system by passing through the
boundary. We denote the dynamical fields collectively as
ξa, a ¼ 0;…; 5, consisting of the real and imaginary
components of Φ, as well as the three components of
the vector gauge potential. We take the variation of the

FIG. 11. Plot to show the interaction energy for a two-vortex system pinned at di ¼ �8, with initial amplitude of the mode A ¼ 0.006,
corresponding to ϵ ¼ 0.125 and Derrick’s scale factor μ ¼ 0.93.
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energy functional with respect to ξa, so that the energy
varies as

δE¼
Z
Ω

�
∂E
∂ξa

−∂i

�
∂E

∂ð∂iξaÞ
��

δξaþ
Z
∂Ω

�
−ni

∂E
∂ð∂iξaÞ

�
δξa;

ðB1Þ

where Ω is the finite domain that we perform our
simulations on, and ∂Ω is the boundary of the domain.
Furthermore, the divergence theorem has been used such
that the flux of the variation of E through the boundary
curve ∂Ω is the same as the surface integral of the
divergence of the variation of E across the entire region
Ω. It should be noted that n is the inward pointing normal to
∂Ω. We require that δE ¼ 0 be such that ξa satisfies the
Euler-Lagrange equations in Ω. Henceforth, we have the
boundary conditions:

ni
∂E

∂ð∂iξaÞ
¼ 0 ðB2Þ

on the boundary ∂Ω. First, we consider the boundary
x1 ¼ �∞. For the energy (2.3), the boundary condition
(B2) reduces to

�
1

0

�
·

�
∂1ϕ1 þ A1ϕ2

∂2ϕ1 þ A2ϕ2

�
¼ 0 ⇒ ∂1ϕ1 ¼ −A1ϕ2;

�
1

0

�
·

�
∂1ϕ2 − A1ϕ1

∂2ϕ2 − A2ϕ1

�
¼ 0 ⇒ ∂1ϕ2 ¼ A1ϕ1;

�
1

0

�
·

�
∂1A2 − ∂2A1

0

�
¼ 0 ⇒ ∂1A2 ¼ ∂yA1

�
1

0

�
·

�
∂0A1 − ∂1A0

0

�
¼ 0 ⇒ ∂1A0 ¼ ∂0A1: ðB3Þ

We must also consider the boundary x2 ¼ �∞

�
0

1

�
·

�
∂1ϕ1 þ A1ϕ2

∂2ϕ1 þ A2ϕ2

�
¼ 0 ⇒ ∂2ϕ1 ¼ −A2ϕ2;

�
0

1

�
·

�
∂1ϕ2 − A1ϕ1

∂2ϕ2 − A2ϕ1

�
¼ 0 ⇒ ∂2ϕ2 ¼ A2ϕ1;

�
0

1

�
·

�
0

∂1A2 − ∂2A1

�
¼ 0 ⇒ ∂1A2 ¼ ∂2A1

�
0

1

�
·

�
∂0A2 − ∂2A0

0

�
¼ 0 ⇒ ∂2A0 ¼ ∂0A2: ðB4Þ

Furthermore, we are working in a discretized version of a
continuous theory, so we must also discretize our boundary
conditions, which give us equations for ghost points, which
are temporary points that exist past the boundary. These
allow us to calculate the first and second degree finite
difference derivatives on the boundary.
These boundary conditions can be summarized

such that the covariate derivative tends to zero normal to
the boundary at infinity, as well as the magnetic
field, i.e.,

n · ð∇ − iAÞΦ ¼ ni ·DiΦ ¼ 0 on ∂Ω;

curlA ¼ ∇ ×A ¼ B ¼ 0 on ∂Ω; ðB5Þ

where the gauge potential A is a four component 1-form,
with the z dependence set to zero.
We must impose a further constraint on the boundary

such that the first order time derivative of the electric
potential A0 goes to 0 on ∂Ω, i.e., ∂0A0 ¼ 0. This constraint
is necessary for numerical stability.

FIG. 12. Phase space of scattering solutions. We show solutions for different initial velocity and initial phase for fixed Derrick factor
μ ¼ 0.7. The dark blue space indicates solutions that only have one bounce; i.e., the vortices scatter only once, which is the normal
behavior for vortices at critical coupling. The number of bounces is represented as a heat plot for the color of each simulation, shown by
the color bar. The data are plotted three times along the y axis since the phase coordinate is cyclic, allowing us to get a clearer picture of
the behavior of the phase space.
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