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ABSTRACT Anomaly detection is a research field that has been growing in the recent years with emerging
industrial interest shown by the publication of multiple anomaly detection image datasets with a rising
interest in logical anomaly detection. The challenge of logical anomaly detection lies in the nature of these
anomalies which, in contrast to structural anomalies, are hidden in the global relations between the image
components. This work proposes using the graph representation of an image in order to tackle this challenge
by proposing a novel approach called Vision Graph based Logical Anomaly Detection (VIGLAD). Defining
an image as a structure of nodes and edges leverages new possibilities for detecting logical anomalies
by introducing vision graph auto-encoders. Our experiments on public datasets show that using vision
graphs enhances the performance of state-of-the-art teacher-student-auto-encoder neural networks in logical
anomaly detection while keeping a robust performance in structural anomaly detection.

INDEX TERMS Logical anomaly detection, graph neural networks, vision graphs.

I. INTRODUCTION

UT-of-Distribution Detection is an active machine

learning research field that focuses on methods for
detecting if a test data does not belong to a class considered
in a the training phase [1], [2]. Such methods can be used
to enhance the robustness of classifiers by excluding test
data where a trained classifier is probably producing a false
prediction or a prediction with a very low confidence for new
classes, also known as novelty detection [3]. On the other
hand, detecting if a test data belongs to one or multiple classes
in the training data distribution, but deviates in one aspect, is
called anomaly detection. In this context, a normality scope
is defined based on the available data and anomaly data are
the rare deviations that can occur, which can for instance be
related in image data to the structure of certain objects, called
structural anomaly, or the global structure of a scene, called
logical anomaly.

An Anomaly is defined as a deviation from a process,
structure or data distribution. Anomaly detection is the task
of recognizing the deviation in a test data [4], [5] based on
training data. Depending on the context, anomalies can be
categorized in errors [6], intrusions [7], misfunctions [8],
defects [9] or unlikable events [10]. An anomaly detection
data-set has two classes, namely the normal class and the
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anomalous class and is usually unbalanced [11].

Image anomaly detection research has been focusing
on structural anomalies on objects framed by the MvTec
anomaly detection dataset [12], with some approaches, such
as Glass [13] and EfficientAD [14] achieving very high
performance in this benchmark. Recent research has been
shifting to another type of image anomalies, namely logical
anomalies, introduced by the MvTec Logical Constraints [15]
dataset, which represents a challenge for most of the methods
mentioned above. For instance, EfficientAD [14] achieves
an image area under receiver operating characteristic curve
(AUC) value of 0.55 on the "screw bag" subset of this logical
anomaly detection dataset. While a structural anomaly is local
to one object on the image, a logical anomaly is usually hid-
den behind the relation between multiple parts of the image,
hence its global aspect. Logical anomalies cannot be fully
detected with the traditional anomaly detection approaches
based on local features extracted from convolution layers or
embedded in sequences extracted from transformer blocks.
For this reason, logical anomaly detection methods have been
following other approaches focusing on extracting both the
local and global features of the image or on the relation
between its segmented objects.

The nature of the logical anomalies affecting the global re-
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lations of image parts is similar to anomalies that can be found
in graph data. Anomaly detection for graph data is an active
research field that has multiple applications in financial, secu-
rity and biological fields. Until now, graph anomaly detection
has been considered as a separate research field from image
anomaly detection. The idea and aim of our research is to
bring both fields closer and introduce Vision Graph Logical
Anomaly Detection (ViGLAD). Our work proposes a novel
approach in the field of logical anomaly detection in image
data based on the graph representation of an image. Graph
representations for images has been considered in previous
works, however, only in the context of image and point cloud
semantic segmentation [16] and recently for image classi-
fication and object detection. Our idea is to use this graph
representation and the recently introduced vision blocks [17]
for logical anomaly detection in image data. We summarize
the contribution of this work as following:

« We introduce vision graphs to anomaly detection on
image data by proposing a novel approach that uses both
convolution layers and vision graph blocks for logical
anomaly detection.

« We propose a vision graph auto-encoder architecture
based on vision graph deconvolutions inspired by vision
graph convolutions.

« We combine graph auto-encoders with image convo-
Iution neural networks to establish a robust logical
and structural anomaly detection method that outper-
forms state-of-the-art approaches in the most challeng-
ing datasets.

After introducing the considered research challenge and
our idea in this section, we describe the research state in
the novel field of logical anomaly detection and the recent
development of vision graph neural networks. Afterwards, we
explain the ViIGLAD method and present our experimental
work to evaluate its performance in both logical and structural
anomaly detection tasks. Finally, after discussing the results
of the evaluation, we describe the limitations of our approach
to present the potential for future work that can be based on
ViGLAD.

Il. RELATED WORK

In contrast to other computer vision tasks, such as image
classification, object detection or segmentation, anomaly de-
tection training datasets are highly unbalanced, containing
usually no or few anomalous data. For this reason, researchers
are more focused on unsupervised learning approaches [18]
rather than supervised learning methods [19], [20]. Based
on the availability of anomaly data during training, the su-
pervision approach for anomaly detection can vary. While
supervised image classification or object detection are fa-
vorable anomaly detection techniques for balanced datasets,
unsupervised anomaly detection is more researched because
of the usually unbalanced nature of datasets in practice. How-
ever, this based on the assumption that the training set exclu-
sively contains normal data. In practice one cannot exclude
the possibility that some anomaly data has contaminated the
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training set. This setup is called fully unsupervised anomaly
detection [21]. Recently, few-shot anomaly detection [22]
approaches have been emerging, especially with the use of
unified models that are trained on different classes and able
to detect anomalies within a new class of objects.

Based on the nature of the test data, other settings can be
considered. If the anomaly type has not been seen during
training, then supervised approaches are developed to fit the
open-set setup [19], [20]. This is also considered in the Out-
Of-Distribution task, where the unseen anomaly data is from a
novel class that is not considered during training [1]. However
if the unseen test anomaly is from a known class but from
another domain, then the task becomes anomaly detection
under domain or distribution shift [23].

A. LOGICAL ANOMALY DETECTION

The focus of the anomaly detection task has been developing
from detecting structural anomalies on individual objects
inside an image to also consider logical anomalies in the
global context of the image. This development originating
from practical examples has been introduced to research with
novel logical anomaly datasets, such as the MvTec Logical
Constraints dataset [15].

Logical anomaly detection methods can be categorized in
two groups. The first one focuses on detecting anomalies in
the relations between the components of an image defined
in a prior segmentation step. In [24], the authors propose an
approach that uses a histogram matching and an entropy loss
based segmentation to define the image components compos-
ing both a component and a class memory bank parallel to
a patch memory bank used to compute the anomaly score.
In [25], the authors also perform an image segmentation with
the help of a pre-trained model to calculate a component
memory bank during training. In a similar approach, the
authors in [26] use the segmentation of multiple scales in a
decoder to define a foreground and a background component
in each stage and define if the foreground is an anomaly in
the context of the background of each scale.

The second category of logical anomaly detection tech-
niques consider both local and global features of the image.
In [27], the authors introduce a framework to extract local fea-
tures and their corresponding global features through a local-
global bottleneck. In a second stage, local and global feature
estimation networks based on the transformer architecture are
trained on normal data and are used in the inference stage
to compute the anomaly score. In another work, the authors
in [28] define logical anomalies as unpicturable anomalies
that have to be detected based on local and global features
extracted by the teacher-student-auto-encoder architecture of
the EfficientAD approach introduced in [14].

In summary, logical anomaly detection is an active re-
search field with a growing attention. However, unsupervised
approaches are achieving a performance level that is not
consistent over all types of logical anomalies. This can be
discovered in the performance difference over the subsets
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of the MvTec Logical Constraints dataset [15], especially in
"screw bag" and "breakfast box".

B. VISION GRAPH NEURAL NETWORKS

Hypergraph theory, introduced by Berge in 1987, models
complex problems in operational research and combinatorial
optimization. It extends traditional graph theory by repre-
senting multi-way relationships, which are essential in fields
like psychology, biology, and artificial intelligence. Hyper-
graphs are particularly effective for applications involving
network modeling, data structures, process scheduling, and
computational systems due to their ability to capture more
general types of relationships beyond binary ones. In image
analysis, hypergraphs provide a nuanced representation of
interactions between image segments, enhancing the effec-
tiveness in advanced image processing tasks [29]. Graph Neu-
ral Networks (GNNs), introduced by [30] in 2009, are neu-
ral networks specifically designed for graph-structured data.
Unlike traditional neural networks, which handle fixed-size
input vectors or sequences, GNNs can process graphs directly,
making them ideal for applications involving relationships
and interactions between entities. Their key innovation is the
ability to propagate information along graph edges, enabling
the learning of node representations that reflect the structure
and features of their neighborhoods. GNNs have been also
extended to graph convolution networks (GCN) in [31] to
enable effective learning on non-Euclidean domains and to
GNNs with attention mechanisms to enhance their ability to
capture more complex relationships in graphs [32] and be
robust against corrupt test data [33].

GNNs can predict molecular properties, aiding in bio-
logical and chemical computation by analyzing molecular
interactions [34] and they can predict social impacts and links
in social networks and in traffic networks, they accurately
forecast traffic conditions. In neuroscience, they help study
conditions like bipolar disorder and diabetic optic neuropathy.
Additionally, they are used to enhance text categorization
in natural language processing, to improve image and text
classification, to predict drug side effects and to develop
recommender systems [35]. Graph Neural Networks are also
widely used for anomaly detection in social networks like
BlogCatalog and Flickr, as well as academic paper citation
networks such as ACM [36], in traffic networks security de-
tecting attacks and threats [37] or in trust networks to identify
suspicious users in trading networks [38].

Recently, Vision Graph [17] and Vision Hypergraph [39]
networks have been introduced for image classification and
object detection tasks, where an image is represented as a
graph or a hypergraph and fed to an isotropic and pyramid
networks to identify low-level features and their high level
dependencies. With the novel vision graph and hypergraph
blocks, these networks have been able to achieve state-of-the-
art results in both tasks. Analogically, a hypergraph neural
network architecture for electron micrograph classification
has been introduced by [40]. This architecture encodes visual
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hypergraphs to capture structural and feature information, fa-
cilitating the learning of relation structure-aware embeddings.
It identifies discrete visual elements and their dependencies,
optimizing the representation of scale-variant elements for an
improved classification performance.

Our work is inspired by the use of graph structures for
anomaly detection, however for a novel task, namely to cap-
ture logical anomalies in images with the use of the recently
introduced vision graph blocks.

Ill. APPROACH

The proposed appraoch, shown in Figure 1, is composed
of two main branches: a vision graph auto-encoder branch
and an image convolution teacher-student branch. The vision
graph is built with a vision graph constructor based on the
input image and then processed through a vision graph auto-
encoder. The outputs of both branches is combined in a
later step to build a local and global anomaly map. During
inference, the maximum value of this map is combined with
the Mahalanobis distance between the extracted features of
the test image and a representation of the training images to
compute the anomaly score.

A. VISION GRAPH CONSTRUCTOR

The first component of our proposed approach is responsi-
ble of computing the graph representation of the image and
is composed of a tockenization step followed by a nearest
neighbours graph optimization. We set the image graphs to be
both finite, unidirected and connected with no isolated vertex
or nodes [29]. Considering an input image I € RIXW*3,
we first resize the image to I’ € R¥' *W'>3_Following the
structure in Figure 2 /according to [41], we embed the image
into N = % x % patches p; € RP*P with D = 4,
building a feature matrix P = [p1,pa, ..., pn] representing
anodes set V = {v1,vs,...,vy} with the feature vector p;
representing the node v;. For each node v;, the set of its k
nearest neighbours N (p;) is defined based on the distance
between the feature vectors. The edge matrix £ € RY*V is

built as

o — 1 iijE./V}((V,'), 1)
v 0 else.

The graph constructor G outputs then a vision graph
G = (V,€) of the image 1,

G =G(). @)

B. VISION GRAPH BLOCK

In the Convolution Vision Graph (ConvViG) block, we start
a graph convolution step. For each node feature vector p; and
its k neighbours g; € N (p;), we compute the output p! of the
graph convolution step H as

P,/‘ = H(gconv(Pi)) 3)

3
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FIGURE 1: Overall structure of the Vision Graph Logical Anomaly Detection (ViGLAD) approach. For left to right, it is composed of a
graph constructor including an image embedding step, a feature extraction phase composed of a vision graph auto-encoder, a PDN [14]
based student and teacher. The features extracted are extracted to build an anomaly maps used in addition to the mahalanobis distance
of some extracted features in order to compute the anomaly score in inference.

with the basic graph convolution function g, defined as
in [42]. The graph convolution function H is composed of
a multi-head representation of 4 heads and a fully connection
layer FC.,p, with weights W/

conv

conv cony

p: = [headl(gconv(pi))WI}C PRI 7headh(g60nv(pi))W1?C ]
4)

This results in a new feature matrix P’ = [p!, ps, ..., pjy]. We
summarize the graph convolution step as GraphConv

P' = GraphConv(P) )

The GraphConv operation is wrapped by two fully connected
layers FC,p, and FCyo, and an activation function o,. The
output Y of this operation is computed as

Y = FCyou [ag |GraphCony (ch,n(P))H +P (6)

The second component of the ConvViG Block is a Feed-
Forward Network (FFN) with two fully connected layers
FCrpy1 and FCrpyo separated by an activation function
orrn- The output Z of the ConvViG Block can be computed
as

Z = FCrppn2 [UFFN [FCFFNl(Y)H +Y (N

C. VISION GRAPH AUTO-ENCODER

In this work, we introduce the inverse operation of the graph
convolution, which we integrate in the decoder part of the vi-
sion graph auto-encoder. The structure of the Deconvolution
Vision Graph (DeconvViG) block is similar to the ConvViG

4

m- e niel

FIGURE 2: Image embedding procedure according to [41]. The
image input is first resized then transformed with three blocks of
convolution and batch normalization. The non-linear Gaussian
Error Linear Units activation function (GeLu) [43] is added
after the first and second block. The output is a four channel
feature map divided in N patches of size 4 x 4.

Convolution
Convolution
Convolution

BatchNorm

block using a basic transpose convolution function ggecony
instead of the basic convolution function g.,,. Given the
feature vector pf of a node i in a layer [, the output feature
feature vector pﬁ'H = gdecom(p!) is computed as

P = Odecons [norm [TrConv2D(concat p}, pfl])” 8)
with norm being a batch normalization operation [44],
TrConv2D being a transposed convolution operation [45] and
concat being a concatenation of both feature vectors. The
neighbourhood distance vector p!! is computed

Pl = max[qjl- —PHQJZ' € Ni(p)]- ©)

with NV (p!) being the k neighbours set of the feature vector
pl-

Based on the ConvViG and DeconvViG blocks, we build
a vision graph auto-encoder A;. Given the input image /
and the constructed graph G, the output of the vision graph
auto-encoder composed of an encoder E of depth d,,. and a
decoder D of depth dg,, is

Ag(9) = DIE(G)]- (10)
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The output E; in each layer i of the encoder is computed as

E; = downsampling(ConvViG(E;_1)), (11)
Ey = downsampling(ConViG(G)). (12)

For the decoder, the output D; of each layer j is computed as

D; = upsampling(DeconvViG(Dj_1)), (13)
Dy = upsampling(DeconViG(E,,,)). (14)

enc

The downsampling and upsamplinbg operations are based on
convolution and transposed convolution [45] layers followed
by a batch normalization layer [44].

D. VISION GRAPH LOGICAL ANOMALY DETECTION
The architecture of the introduced approach, Vision Graph
Logical Anomaly Detection (ViIGLAD) is inspired from the
EfficientAD unsupervised anomaly detection method [14].
ViGLAD is mainly composed of a teacher network 7, a
student network S based on the Patch Description Network
(PDN) architecture proposed in [14] and our proposed graph
auto-encoder A,. The teacher and student networks have the
same layer structure. The teacher is trained in a first step
based on a knowledge distillation from a WideResNet-101
backbone [46] pretrained on the ImageNet dataset [47] for a
classification task.

The student network is trained to imitate the distilled
teacher network frozen during training by minimizing the Lgy
loss function

1
Lst = g | ST W = SWel; + 2 15Ul ]

c c ( 1 5)
with C being the channel number of the output features and /.
being a random image from the ImageNet dataset [47] used in
the knowledge distillation phase. All losses introduced in this
section are computed based on the ||. ||12p Frobenius norm [48].
With this loss, the student will be able to predict the output of
the teacher for normal images and fails to predict it for images
with structural anomalies.

The vision graph auto-encoder is also trained to imitate
the teacher network frozen during training by minimizing the
La,r loss function

1

Lyp=——
AT = cwH

ST = A©)ll7 - (6)
With this loss, the vision graph auto-encoder will be able to
predict the teacher output except for fine-grained structural
anomalies and will focus on the global structure of the image.
In order to extract the logical anomalies, a third term Lgy, is
added to the loss function describing the distance between the
second half of to the student output S’ and the output of the
vision graph auto-encoder

1 !/
Lo, = e 2 1A5(@)e = S'Dellz - A7)
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The total loss function of ViGLAD during training
L = Lst + La,r + Lsa, is intended to train the network to
detect both structural and especially logical anomalies. The
intention behind using the vision graph auto-encoder instead
of the original auto-encoder of EfficientAD [14] is to increase
the capability of the network to learn features depending on
logical relations from the graph representation in order to
detect logical anomalies.

During inference, the anomaly score is calculated based on
the difference between the output of the teacher and first half
of the student networks, called local anomaly map, as well
as the distance between the output of the vision graph auto-
encoder and the second half of the student network, called
global anomaly map. After an average pooling step over the
channels, both anomaly maps are merged and the maximum
is defined as the reconstruction anomaly score A,. In order
to further highlight the logical anomalies, we add a second
anomaly score component, called feature anomaly score Ar
computed as

Ay =M [s'(D)] (18)

with Mg being the Mahalanobis distance of the second part of
the student output under the Gaussian distribution computed
as in [28]. The total anomaly score of VIGLADis A = A, +Ay.

IV. EXPERIMENTAL WORK

A. DATASETS

The proposed approach ViGLAD is designed to detect log-
ical anomalies in image data in an unsupervised setup. We
evaluate its performance based on the public logical anomaly
datasets MvTec Logical Constraints [15], CAD-SD [49] and
Digit Anatomy [50]. The structure of the selected datasets,
as shown in Table 1, is composed of a training set containing
only normal data, a validation set containing a smaller number
of normal data and a test set composed of normal data and
anomaly data. We split the anomaly data in the test set into
logical and structural anomalies, in order to describe the
performance of our approach for logical anomaly detection
in comparison to structural anomaly detection. We build the
Digit Anatomy dataset based on the procedure described
in [50] and define misorder and flipping of digits as logical
anomalies, while considering missing and novel digits as
structural anomalies.

In addition to the logical anomaly detection datasets,
we execute an evaluation on the structural anomaly dataset
VisA [51], in order to compare our proposed method to state-
of-the-art approaches and evaluate its generalization capabil-
ity to other types of anomalies with a different context than
the objects found in the logical anomaly detection datasets.

B. BASELINES

In this section, we present the results of the experimental work
with the target to describe the performance of our proposed
approach in comparison to state-of-the-art methods in logi-
cal and structural anomaly detection. We select as baselines
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TABLE 1: Structure of the considered datasets. Each dataset
is compose one or multiple subsets. The number of images for
training, validation and testing set of each subset is presented.
Only logical anomalies are considered in testing set.

Dataset Subset Train Validate Test Test
normal  normal normal anomaly
tS)crew 360 60 122 137
ag

MVTec Breakfast 351 62 102 33

Logical box

Constraints | Juice 335 54 94 142
bottle

[15] Pushpins 372 69 138 91

Splicing 360 60 119 108
connectors
Candle 810 90 100 100
Capsule 488 54 60 100
Cashew 405 45 50 100
Chewing 408 45 50 100
gum
Fryum 405 45 50 100

VisA Macaronil 810 90 100 100

[51] Macaroni2 810 90 100 100

Pcbl 814 90 100 100
Pcb2 811 90 100 100
Pcb3 816 90 100 100
Pipe 405 45 50 100
fryum

CAD-

SD [49] Screw 400 72 139 85

Digit .

Anatomy [50] Digits 360 60 110 120

methods based on both feature embedding and reconstruction.
From feature embedding methods, we select PatchCore [46],
Padim [52] and Fastflow [53]. These methods are based on
a pretrained feature extracting backbone that feed different
architectures to transform and cluster these features in order
to build a representation of the normal data, where anomaly
data during inference cannot fit in. These approaches have
been successful in different anomaly detection tasks in the
last years. For reconstruction methods, we select Efficien-
tAD [14] and PUAD [28], since they contain both an auto-
encoder for reconstruction and can be a direct baseline to
compare to our method. With this direct comparison, we can
directly interpret the effect of using graph representation of
images and the effect of convolution and deconvolution vision
graph blocks.

C. IMPLEMENTATION

For the experiments of this article, we build ViGLAD with
a medium PDN for the teacher and student networks as
described in [14]. For the embedding of the input images,
we resize the input images to (224,224,3) and build the
vision graph with dilated knn (k = 12). In the encoder, as
well as in the decoder, we use 12 vision graph blocks with
a downsampling and an upsampling step after the second,
fourth, tenth and twelfth vision blocks of the encoder and
decoder respectively. The number of output channels of the
teacher and auto-encoder is ¢ = 384 and ¢ = 768 for
the student. For graph convolution, we use the max-pooling
graph feature aggregator [42], that we have also adopted for

6

TABLE 2: Image AUC results for experiments on MvTec Logical
Constraints [15], CAD-SD [49] and DigitAnatomy [50] for Effi-
cientAD (EffAD) [14], PUAD [28], PatchCore [46], Padim [52]
and Fastflow [53] and ViGLAD (ours). The architectures of
EfficientAD [14], PUAD [28] and ViGLAD (ours) are based on a
medium PDN [14] the Mahalanobis distance is computed based
on the second half of the student features (average of 5 runs).

Dataset Subset EffAD PUAD PatchCore Padim FastFlow ViGLAD
atase ubse [14] [281 [46] [52] [53]  (ours)

f);;ew 5526 79.47 58.08 4880 6778  81.83

MvTec —Breakfast | o) 19 9944 5704 4551 5807 93.95

Logical box

Constraints g)‘(‘)‘élee 99.97 9998 3593 5430 5552  99.68

(15 Pushpins |98.94 96.61 4943 4886 6446  87.30
Splicing | 9651 9638 5774 4953 7629 9243
connectors

CAD- S 99.63 99.38 7329 4837 6670  99.91

SD [49] Crew . . Jd. . . .

Digit

Anatomy | Digit 9378 96.08 88.66 9439 8627  96.11

[50]

TABLE 3: Image AUC results for experiments on visA [51] sub-
sets for EfficientAD (EffAD) [14], PUAD [28], PatchCore [46],
Padim [52] and Fastflow [53] and ViGLAD (ours). The archi-
tectures of EfficientAD [14], PUAD [28] and ViGLAD (ours)
are based on a medium PDN [14] the Mahalanobis distance
is computed based on the second half of the student features
(average of 5 runs).

EffAD PUAD PatchCore Padim FastFlow ViGLAD
[14] 28] [46] [521 [53]1  (ours)
Candle | 9892 9899 9584 8540 9684  99.08
Capsule | 8593 81.75 4680 4493 71.80 9291
Cashew | 9826 98.87 5527 SLI1 8471  99.01
g’;‘”‘“g 99.96 99.90 3047 3048 9991  99.70
Fryum | 98.82 9874 3072 53.59 9191  98.41
VisA |Macaronil | 99.75 99.61 5548 5591 90.88  99.06
[51] |Macaroni2| 97.70 94.42 7252 5147 4975  92.58

Dataset | Subset

Pcbl 99.98 9996 4372 7480 79.64 99.89
Pcb2 99.84 99.95 4576 56.56 74.43 99.78
Pcb3 99.02 99.03 98.79 37.27 68.95 98.97
Pipe

99.94 99.60 5792 9439 79.27 99.65

fryum

the deconvolution step. We conduct our experiments on an
RTX 4070 Nvidia GPU with 8 GB of memory hardware for
100.000 epochs with a batch size of 1, a starting learning rate
of 10~* and an Adam optimizer. We set the normalization
quantiles introduced in [14] to gy = 0.9 and geg = 0.995
for all experiments, except for Digit Anatomy [50], where
we set the set the normalization quantiles to gy, = 0.9 and
Gend = 0.999.

D. RESULTS

Our evaluation on the logical anomaly datasets reveals two
key results that can be seen in Table 2. First, the methods that
achieve state-of-the-art performance for structural anomaly
detection are not able to detect logical anomalies. In con-
trast, methods that also consider global features and their
relations in their loss functions achieve good results detecting
both types of anomalies, even though they are based on the
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FIGURE 3: Example qualitative results for normal and logical anomaly in the ''breakfast box'' and ''pushpins' from the MvTec
Logical Constraints dataset [15]. Since EfficientAD [14] and PUAD [28] generate the same anomaly map and differ only in the anomaly
score calculation, we present the results for both methods in this figure together.

same feature extracting backbones. Second, incorporating the
graph representation of an image and using graph convo-
lution and deconvolution lead to better results for logical
anomaly detection, especially in subsets that are challenging
for logical anomaly detection methods without the graph
representation of the input image. This can be observed in
the "screw bag" and "breakfast box" subsets, where our ap-
proach achieve 81.83 and 93.95 image AUC compared to the
second best method PUAD [28] that achieves 79.47 and 89.44
image AUC. Regarding the remaining subsets, our approach
achieves comparable results and its performance does not
deteriorate, even in the "juice bottle" subset, whose logical
anomalies are very close to its structural anomalies.

On the other hand, the results of the evaluation on the
structural anomaly detection dataset VisA [51] from Table 3
show that our method also achieve state-of-the-art results and
outperform the baseline methods on multiple subsets. In aver-
age, our approach outperforms the best result of the baseline
methods achieved by EfficientAD [14] with an average image
AUC of 98.09 compared to 98.01.
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V. ABLATION STUDY

In order to analyze the proposed architecture of our approach,
we conduct an ablation study by defining the impact of
different setups on the overall performance on the "screw
bag" subset, which is the most challenging in the MvTec
logical constraints dataset [15]. First, we analyze the graph
representation with the use of vision graph convolution and
deconvolution blocks in different components of ViGLAD.
For this purpose, we test three different implementations:
using vision graph blocks in the teacher and student networks
(GPDN-AE), using vision graph blocks in the auto-encoder
(PDN-ViGAE) and using vision graph blocks in the teacher,
student and auto-encoder (GPDN-ViGAE). The results pre-
sented in Figure 4 show that using the Mahalanobis distance
for the teacher or student output as part of the anomaly score
plays an important role in highlighting the global features
extracted from convolution layers in the student next to the
global features extracted from the vision graph blocks in
the vision graph auto-encoder. As a result, only building
the auto-encoder based on the vision graph blocks (PDN-
ViGAE) in combination with using the Mahalanobis distance
as part of the anomaly score lead to the best results for
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FIGURE 4: Ablation study vision graph blocks use on the
"'screw bag'' logical subset.

TABLE 4: Ablation study PDN [14] size. The architecture of the
network is ViG-AE with Mahalanobis distance computed based
on the second half of the student features.

PDN size small medium
Logical 78.07 81.14
Structural 91.69 90.68
All 84.88 85.91

both logical and structural anomaly detection. the proposed
approach ViGLAD in the evaluation section above is built as
a PDN-ViGAE with the Mahalanobis distance included in the
anomaly score.

Second, we study the influence of the PDN [14] size in
the student and teacher networks. Table 4 shows that using a
deeper PDN [14] leads to better results on logical anomalies.
However, for structural anomalies, using a small PDN [14]
slightly outperforms the medium size. Since our focus in this
paper lies in detecting logical anomalies, we use medium size
PDN [14] in our approach that achieves a better performance
in average.

Table 5 describes the results of using different features
for the computation of the Mahalanobis distance used in the
anomaly score to highlight unpicturable (logical) anomalies.
Using the second half of the student output leads to the best
results on the considered dataset since they are responsible
for training the student to also imitate the graph vision auto-
encoder in learning global features and their higher relations.

For the last part of the ablation study, we focus on the
graph representation of the image and its features through-
out the vision graph auto-encoder. For this purpose, we test
ViGLAD with different k values for the dilated knn based
graph construction step. The results summarized in Table 6
show that using higher k values lead to better results on logical
anomalies. However the performance stagnates with values

8

TABLE 5: Ablation study about the features used for the compu-
tation of the Mahalanobis distance for the unpicturable anomaly
score. The experiments have been conducted on the ''screw bag'
sub-dataset from MvTec logical constraints dataset [15]. The size
of the PDN [14] has been set to medium.

Features Teacher Student former Student second
Logical 64.83 64.15 81.83
Structural 89.27 87.30 90.68
All 77.05 75.72 85.91

TABLE 6: Ablation study about the number of k-neighbours
used for constructing the graph of each image. The experi-
ments have been conducted on the ''screw bag'' sub-dataset from
MvTec logical constraints dataset [15]. The size of the PDN [14]
has been set to medium.

k-neighbours k=3 k=9 k=12 k=15
Logical 77.62 81.14 81.83 79.10
Structural 93.35 90.68 91.64 94.50
All 85.48 85.91 86.73 86.80

higher than 9. Since the k value determines how many nodes
are connected to each other, we opt for the smallest value
being k = 9, in order to limit the complexity of the image
graphs.

VI. DISCUSSION AND LIMITATIONS

The results presented in the previous section confirm our
hypothesis, stating that representing an image as graph and
learning how to reconstruct its graph representation with
graph convolutions and deconvolutions enable the capability
to learn local and global logical relations of the objects of an
image. This allows detecting logical anomalies, which can af-
fect these local and global relations. The graph representation
and processing have been used as a second branch parallel
to an image convolution branch that has been proven to be
efficient in detecting structural anomalies. This combination
has been shown in our work to be efficient in detecting both
logical and structural anomalies and achieve state-of-the-art
results in general image anomaly detection. The conducted
ablation study has shown that the graph representation in
both branches of ViGLAD enhances its performance in com-
parison to the baseline EfficientAD [14] architecture that is
solely based on image convolution. However, it is still to be
studied if using the proposed vision graph convolution and de-
convolution blocks can be transferred to other architectures,
and if it enhances their capability to detect logical anomalies
without decreasing their performance in detecting other types
of anomalies.

Figure 5 shows some example results of our approach and
the development of the graph representation of the image. We
observe for normal images the capability of the vision graph
auto-encoder to reproduce the graph even for the node with
the highest anomaly score. For anomaly images, the vision
graph auto-encoder is not capable to reconstruct the input
graph.

The performance gap experienced by our approach in the
subset "pushpins” from the MvTec logical constraints [15]
can be explained by the presence of multiple objects in the
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FIGURE 5: The graph representation of the node with the highest anomaly score. The first column represents the input graph before
the first vision graph block. The second column represents the output graph of the encoder. The third column represents the output

graph of the decoder.

image in comparison to other subsets. In this case, we experi-
ence an under representation of the possible global relations
in one image between the different objects. This means that
the low complexity of the constructed graph could be not able
to represent all possible global relations in an image with
a high number of objects. This can be explored in further
research in order to find the optimal graph representation for
an image independent from its number of objects.

VIl. CONCLUSION

Logical anomalies are challenging to be detected in images
because they are unpicturable, meaning that they cannot be
directly seen on the individual objects of a scene but have
to be interpreted from the global relations between the ob-
jects of the scene. State-of-the-art anomaly detection meth-
ods, which have been originally developed to detect struc-
tural anomalies related to individual objects, are not able
to achieve good performance in detecting logical anomalies
in images. On the other side, anomaly detection in graph
data have been focusing on detecting the relations between
different nodes of the graph. This has been the motivation
to introduce graph representation which has been recently
introduced to image classification also to logical anomaly
detection in images. Our proposed approach proposes the use
of graph representation and its feature extracting and repre-
sentation in baseline anomaly detection methods. This have
resulted in an enhancement of their ability to detect logical
anomalies without decreasing their performance in detecting
structural anomalies. Our approach achieves state-of-the-art
performance in detecting both types of anomalies with a
remarkable advantage in benchmark datasets. This work lies

VOLUME 11, 2023

the basis for further exploring the advantages and limitations
of this novel framework for logical anomaly detection.
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