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Latency Minimization for MEC-V2X Assisted
Autonomous Vehicles Task Offloading

Yilun Zhang, Changrun Chen, Huiling Zhu, Yijin Pan, and Jiangzhou Wang, Fellow, IEEE

Abstract—Delay-sensitive applications for autonomous vehicles
(AVs) require a substantial amount of computational resources.
However, the onboard computation resources may be insufficient,
resulting in long processing latencies. To deal with this critical
issue, we jointly consider roadside unit (RSU) and assistant
vehicle offloading, along with resource allocation, to minimize
latency for vehicular tasks. This approach also takes into account
frequency reuse among sub-areas for assistant vehicle offloading.
The latency minimization problem can be formulated as a mixed-
integer non-linear programming (MINLP) problem. Given the
inherent complexity of the MINLP problem, we propose a two-
step solution. The first step focuses on the combined decision
of assistant vehicle offloading and transmit power allocation. To
solve this problem, we propose a particle swarm optimization
(PSO) algorithm with low complexity and low average transmit
power. The second step deals with RSU offloading/local compu-
tation decision, bandwidth allocation, and computation resource
allocation. An iterative algorithm is proposed to achieve the opti-
mal solution. Without adding additional computation resources,
simulation results demonstrate that the proposed vehicular task
offloading approach improves overall delay performance than the
adaptive MEC offloading scheme and the pure MEC computing
scheme.

Index Terms—Autonomous vehicle, mobile edge computing,
vehicle-to-everything communication, task offloading, resource
allocation, frequency reuse.

I. INTRODUCTION

THE application of automatic driving has led to a surge
in computation-intensive and delay-sensitive vehicular

applications, including virtual reality (VR) [1], augmented
vehicular reality (AVR) [2], and sensing recognition [3] in
autonomous vehicles (AVs). These applications demand sub-
stantial computation resources to process vast volumes of
raw sensing data in real-time [4], imposing a significant
challenge to AVs with limited computation capabilities. At
the same time, applications such as cooperative perception
[5] raise higher demand for data sharing among vehicles.
Data transmission is facilitated through vehicle-to-everything
(V2X) communications [6], [7], which encompass vehicle-
to-infrastructure (V2I) and vehicle-to-vehicle (V2V) commu-
nication. To support these highly demanded computational
applications, mobile edge computing (MEC) was introduced
[8] [9]. MEC aims to offload computation-oriented tasks from
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end users to computation servers located at the edge of the
radio access network, such as road side units (RSUs) or base
stations (BSs) in close proximity. By offloading tasks to MEC
servers, lower task processing latencies can be achieved due
to the higher processing capabilities of these servers [10].

To mitigate the additional transmission delays introduced
by task offloading, several related studies have focused on
resource allocation of the MEC systems. In [11] and [12],
joint task offloading and resource allocation strategies were
investigated in the multiuser MEC system. In [13], partial com-
putation offloading problem was studied in vehicular networks.
However, in traditional MEC systems with a large number of
users, the computation and communication resources at the
MEC server may be insufficient. To address this limitation,
additional computation resources and new system architectures
were proposed. In [14], computation resources were jointly
deployed on unmanned aerial vehicles and ground vehicles to
reduced overall latency. Similarly, [15] considered a cloud-
assisted MEC system and established a three-tier computing
network to enhance the delay performance of vehicular task
offloading.

However, the deployment of additional computation re-
sources not only is expensive but also increases the burden
on radio resources. Therefore, the utilization of computation
resources from other users was explored through cooperative
computation. Cooperative computation allows for resource
sharing among users and has been extensively studied in
device-to-device (D2D) communication scenarios. A cooper-
ative computation-assisted framework was proposed in [16],
enabling task offloading between devices within the MEC
infrastructure. In [17], a low-complexity iterative algorithm
was introduced in multiuser scenarios. However, both [16]
and [17] overlooked interference among users by relying on
different frequency and time slots, resulting in low spectrum
efficiency. In [18], V2I and V2V communications were intro-
duced for AVR data offloading, where convex optimization and
Kuhn-Munkres algorithm were used for resource allocation.
However, the pairs of V2V an V2I communications assumed
a fixed transmission bandwidth, limiting the improvement of
overall delay.

In the aforementioned MEC and vehicular scenarios, the
feedback of computation results has been disregarded [10]–
[18]. However, with the development of vehicular application,
the latency requirement for autonomous vehicle is sensitive
[19], 10 % of performance improvement can be significant. On
the other hand, compared to the original data size, the feedback
of some vehicular applications is relatively large and can not
be ignored. In data fusion for cooperative sensing [20], LiDAR
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point clouds are extracted as a task for fusion computation. The
computation result is the fused point cloud, whose data size
is similar to the input data size. In [21], both Voxel Feature
Fusion (VFF) and Spatial Feature Fusion (SFF) use features
from LiDAR data as the input data which is similar to the
output data size. Therefore, the delay of feedback should not
be ignored. Additionally, the communication model of vehicles
has been oversimplified [13], [15], [18], assuming all users to
be stationary during task offloading. [22], [23] showed that
the Doppler spread caused by high moving speed degrades the
communication capacity. Considering the mobility of vehicle,
the impact of Doppler spread on offloading performance
cannot be ignored.

Motivated by the significance of serving delay-sensitive
vehicular applications, and considering the merits and limi-
tations of existing research, this paper proposes an assistant
vehicle offloading approach in MEC networks to minimize
the latency of vehicular tasks. Specifically, vacant vehicles’
available computation resources are utilized to assist in task
offloading through V2V communications, thereby alleviating
computation bottlenecks without the need for additional re-
source deployment or modifications to the traditional RSU-
based MEC network. Additionally, the adoption of V2V
communications reduces the transmission bottleneck between
RSUs and users in conventional MEC offloading system.
Similar to cellular D2D communications [24], frequency reuse
among V2V communications is possible in case of the short
transmission distances involved in task offloading between
vehicles. To mitigate interference among V2V communica-
tions, a rectangular sub-area division scheme is designed
based on the physical positions of vehicles on the road. Each
vehicle can only offload its tasks to another nearby vacant
vehicle within its assigned sub-area. Furthermore, this paper
considers the feedback of task processing and investigates the
impact of vehicle movements among sub-areas. In this paper,
we examine MEC and V2X for vehicular task offloading,
encompassing three decisions: local computation, offloading
tasks to RSU through V2I communication, and offloading
tasks to assistant vehicles through V2V communication. The
main contributions of this paper are summarized as follows

• To enable task offloading to both the RSU and vacant
vehicles, we propose a MEC-V2X assisted vehicular task
offloading system. By employing a distance-limited sub-
area division method, frequency reuse is facilitate in V2V
communication which can increase the transmission data
rate and reduce transmission delay.

• Considering the movement of vehicles, we formulate the
communication model with Doppler spread and dynami-
cally allocate resources for offloading and feedback of the
vehicles. A latency minimization problem is formulated
which characterizes the tradeoff between communication
and computation performance.

• Due to the combinatorial nature of the proposed offload-
ing scheme, we propose a two-step solution for the origi-
nal mixed integer nonlinear programming (MINLP) prob-
lem. First, we propose a heuristic algorithm that jointly
determines the offloading decision for assistant vehicles

with low complexity and average power consumption.
Then, utilizing the Lagrange dual method, we present
an iterative algorithm to jointly perform offloading tasks
to the RSU. Simulation results show that our proposed
MEC-V2X offloading scheme outperforms conventional
MEC networks in terms of total latency.

• The sub-area division method is further investigated with
the frequency reuse factor to enhance the performance of
the proposed MEC-V2X offloading scheme. Numerical
results show that with the density of vehicles on the
road changing, the number/range of sub-areas can be
adjusted to balance the assistant vehicles offloading and
RSU offloading. Therefore, optimal sub-area allocation
and frequency reuse factor can be obtained and the lowest
latency can be achieved.

The rest of this paper is organized as follows. In Section
II, we introduce the system model of the proposed MEC-
V2X assisted vehicular task offloading system, along with the
proposed sub-area division strategy. In Section III, we provide
the problem formulation and describe the development of our
joint offloading and resource allocation solutions. Section IV
presents representative simulation results, and finally, Section
V concludes the paper.

II. SYSTEM MODEL

A. Network Model

Consider a MEC-V2X assisted vehicular scenario, as shown
in Fig. 1. A MEC server with a certain amount of computation
resource is integrated into an RSU, covering a one-way road
with multiple lanes. Th distribution model of vehicles in each
lane follows a homogeneous Poisson point process, denoted
by the set K = {1, 2, · · · ,K}. At any given instant, each
vehicle generates a delay-sensitive task with a probability pc,
while the probability of a vehicle being vacant without a task is
pv = 1−pc. The driving status of all vehicles is obtained at the
RSU as auxiliary information for decisions. The road can be
dynamically divided into M sub-areas, and Km represents the
set of vehicles within sub-area m. Within each sub-area, one
pair of proximate vehicles is allowed to operate task offloading
through V2V communications when one of the vehicles is
vacant. The vehicle that receives and processes the offloaded
task is referred to as the assistant vehicle, while the vehicle
offloading its task is the requesting vehicle.

Each vehicle’s task is modeled as Uk = {Dk, Ck}, where
Dk (bits) represents the task data size, and Ck (CPU cycles)
denotes the required computation resource to complete the
task. A task Uk generated by vehicle k can be processed
locally at vehicle k or offloaded to either the RSU or an assis-
tant vehicle in proximity. The status of all vehicle’s compu-
tation requirements and their channel state information (CSI)
is collected at the RSU where the offloading and resource
allocation decision is made. The computation requirements
include the onboard computation resource of each vehicle,
the task size of each vehicle, and the vacancy status of all
vehicles. The communication cost of with transmitting this
information is relatively minor [25] and can be obtained at
the RSU in very short time. The task offloading decision for
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Fig. 1. MEC-V2X assisted vehicular scenario.

Fig. 2. Sub-area division and frequency reuse.

all vehicles is represented as A = {a1, a2, · · · , aK}, where
ak ∈ {alk, ark, avk}. Here, alk, ark, and avk correspond to the
decisions of local computation, RSU offloading, and assistant
vehicle offloading, respectively, indicating whether the task
should be processed locally, at the RSU, or at an assistant
vehicle. In certain applications, tasks may not be divisible
[26], for simplicity, each task can only be processed at one
location [27], satisfying the following conditions

alk, a
r
k, a

v
k ∈ {0, 1}, (1)

alk + ark + avk = 1. (2)

B. Communication Model

In the V2X scenario, similar to [28], dedicated spectrum
is allocated to V2I and V2V communications. Let BR and
BV denote the total bandwidths dedicated to V2I and V2V
transmissions, respectively. Therefore, there is no interference
among V2I and V2V links. Due to the movement of vehicles,
delayed channel gain and Doppler spread are considered. The
channel gain g can be expressed as [29]

g = βĝ + θ, (3)

where ĝ is the delayed channel gain with a feedback delay of τ ,
and θ is the error vector with zero mean Gaussian distribution
and variance σ2

θ . The variance σ2
θ is defined by [30]

σ2
θ = σ2

ĝ(1− |β|2), (4)

where β is the correlation coefficient given by

β = J0(2πfDτ), (5)

J0(·) represents the zeroth order Bessel function of the first
kind, and fD is the maximum Doppler frequency.

Each V2I transmission is allocated a unique channel to avoid
interference between V2I communications. In RSU offloading,

the offloading transmission rate from vehicle k to the RSU can
be obtained as

Rk,r = Bk,r · log2

(
1 +

Pk|ĝk,r|2

σ2 + σ2
θ

)
, (6)

where Pk is the transmit power of vehicle k, Bk,r denotes the
bandwidth of the channel allocated for V2I transmission from
vehicle k to the RSU, and σ2 represents the Gaussian noise
power. Among all vehicles, the total allocated bandwidth must
be equal to or smaller than the specified dedicated bandwidth,
given by ∑

k∈K

arkBk,r ≤ BR. (7)

In (6), ĝk,r is the estimated gain of the channel from vehicle
k to the RSU, defined as: ĝk,r = α

1
2

k,r|hk,r|, where αk,r is the
path loss determined by the distance dk,r between vehicle k
and the RSU, given by αk,r = 128.1 + 37.6 log10(dk,r) [31].
The small-scale fading hk,r is assumed to be exponentially
distributed with a unit mean, following a complex Gaussian
distribution, i.e., hk,r ∼ CN (0, 1).

After the computation period, let the feedback transmission
bandwidth be Br,k. The feedback transmit power from the
RSU to vehicle k is Pr,k. Therefore, the feedback transmission
rate from the RSU to vehicle k is given by

Rr,k = Br,k · log2

(
1 +

Pr,k|ĝr,k|2

σ2 + σ2
θ

)
. (8)

To improve spectrum efficiency and avoid strong interfer-
ence, frequency reuse is adopted among neighboring sub-areas
when assistant vehicle offloading is enabled in sub-areas. The
frequency reuse factor ∆ is defined as ∆ = 1

N , where N is the
number of neighboring sub-areas using different frequencies
for transmission. This means that the same frequency is reused
in every N sub-areas, as shown in Fig. 2. In each sub-
area, only one assistant vehicle offloading is operated at one
instant. As there exists interference among different sub-areas,
when vehicle k chooses to do assistant vehicle offloading,
we use {i, j}, {i, j} ∈ K represent the index of assistant
vehicle, and the respective interfering vehicle from another
sub-area. Therefore, when the requesting vehicle k offloads to
an assistant vehicle i, the transmission rate is given by

Rk,i = Bv · log2

(
1 +

Pk,i|ĝk,i|2

σ2 + σ2
θ +

∑
j∈K\Km δk,jPj,i|gj,i|

2

)
,

(9)
where Bv = BV · ∆ represents the channel bandwidth for

each sub-area. Here, ˆgk,i is the channel gain from vehicle k
to vehicle i, given by: ˆgk,i = α

1
2

k,i|hk,i|, with αk,i denoting the
path loss, given as αk,i = 63.3 + 17.7 log10(dk,i) [32]. dk,i
represents the distance from vehicle k to vehicle i, and hk,i is
the small-scale fading, following a complex Gaussian distribu-
tion. δk,j represents the channel multiplexing factor between
different vehicles. When frequencies are reused between any
two vehicles k and j, δk,j = 1, otherwise 0. In equation (10),
Pk,i is the transmit power of the vehicle k, Pj,i is the transmit
power of the interfering vehicle j, and gj,i is the gain of the
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channel from vehicle j to vehicle i, assuming no consideration
of Doppler spread for simplicity.

After computation, the feedback transmission rate from the
assistant vehicle i to vehicle k is given by

Ri,k = Bv·log2

(
1 +

Pi,k|ĝi,k)|2

σ2 + σ2
θ +

∑
j∈K\Km δk,jPj,k|gj,k|

2

)
.

(10)

In our system, we assume the transmit power of RSU is the
same for each vehicle and consider the allocation of transmit
power of each vehicle by defining Pmax as the maximum
transmit power for all vehicles. The transmit powers of all
vehicles are defined as

P = {P1, P2, · · · , PK}, (11)

subject to the constraint

0 ≤ Pk ≤ Pmax, k ∈ K. (12)

C. Time Delay Model

To reflect the influence of task feedback, the ratio of the
feedback data size to the offloaded data size Dk is defined as a
variable ιk, the feedback data size is ιkDk [33]. Depending on
the task type, ιk can be different. The total delay of completing
a task depends on where the task is processed, which includes
three cases

1) Local computation: If task Uk is processed locally, the
task only experiences computation delay. The local computa-
tion delay can be expressed as

T lk =
Ck
f lk
, (13)

where f lk is the CPU speed (cycles/s) of the on-board compu-
tation resource of vehicle k.

2) RSU offloading: If task Uk is offloaded to the RSU, the
delay includes three parts. The first part is the transmission
delay of the task offloading from the requesting vehicle k to
the RSU, given by

T ok,r =
Dk

Rk,r
, (14)

where Rk,r is the offloading data rate from vehicle k to the
RSU.

The second part is the computation delay at the RSU, given
by

T ck,r =
Ck
frk
, (15)

where frk is the allocated RSU computation resource for
vehicle k.

The third part is caused by the feedback transmission from
the RSU back to vehicle k, given by

T fk,r =
ιkDk

Rr,k
, (16)

where Rr,k represents the feedback data rate from the RSU to
vehicle k.

The total delay for RSU offloading can be calculated as

T rk = T ok,r + T ck,r + T fk,r. (17)

Defining FR as the total computation capacity at the RSU,
the total allocated computation resource must be smaller than
the total computation capacity at the RSU, given by∑

k∈K

arkf
r
k ≤ FR. (18)

3) Assistant vehicle offloading: Consider that the task of
vehicle k in sub-area m is offloaded to one assistant vehicle
within its sub-area. Similar to the RSU offloading, the total
delay is the sum of offloading transmission delay from the
requesting vehicle to the assistant vehicle, computation delays
at the assistant vehicle, and the feedback transmission delay
from the assistant vehicle to the requesting vehicle. The total
delay for assistant vehicle offloading is given by

T vk = T ok,i + T ck,i + T fk,i, k ∈ Km, i ∈ Km, i 6= k, (19)

where T ok,i, T
c
k,i, and T fk,i represent the transmission delay

from the requesting vehicle k to the assistant vehicle i, the
computation delay at the assistant vehicle i, and the transmis-
sion delay from the assistant vehicle i to the requesting vehicle
k, respectively. They are given as follows

T ok,i =
Dk

Rk,i
, (20)

T ck,i =
Ck
f li
, (21)

T fk,i =
ιkDk

Ri,k
, (22)

where Rk,i and Ri,k are the offloading and feedback transmis-
sion rates between requesting vehicle k and assistant vehicle
i, respectively, and f li is the on-board computation resource
of vehicle i.

Finally, considering the task offloading decision A made for
vehicle k, the total delay of processing task Uk is given by

Tk = alkT
l
k + arkT

r
k + avkT

v
k . (23)

III. PROBLEM FORMULATION AND SOLUTION
DEVELOPMENT

A. Problem Formulation

Considering that the offloading decision A, RSU com-
putation resources frk |k ∈ K, RSU offloading and feedback
bandwidths Bk,r, Br,k|k ∈ K, and transmit power P of each
vehicle are adjustable, we jointly adapt task offloading and
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resource allocation to minimize the total delay of all vehicles.
This can be formulated as the following optimization problem

min
{A,frk ,Bk,r,Br,k,P}

∑
k∈K

Tk (24)

s.t. C1 : alk, a
r
k, a

v
k ∈ {0, 1}, ∀k ∈ K, (24a)

C2 : alk + ark + avk = 1, ∀k ∈ K, (24b)

C3 :
∑
k∈K

arkf
r
k ≤ FR, (24c)

C4 : 0 ≤ Pk ≤ Pmax, (24d)

C5 :
∑
k∈K

arkBk,r ≤ BR, (24e)

C6 :
∑
k∈K

arkBr,k ≤ BR, (24f)

C7 :
∑
k∈K

avk ≤M, (24g)

C8 :
∑
k∈Km

avk ≤ 1. (24h)

Constraint C1 and C2 guarantee that each task is processed
in only one location. C3 ensures that the allocated computation
resources at the RSU are within the total computation capacity.
C4 ensures that the transmit power of each vehicle does
not exceed its maximum power. C5 and C6 ensure that
the allocated offloading and feedback bandwidths for RSU
offloading are less than the total V2I bandwidth. C7 and C8
indicate that the number of assistant vehicle offloading should
be less than or equal to the number of sub-areas M , and there
should be at most one assistant vehicle for task offloading in
one sub-area. Due to the combination of the binary constraint
on offloading decision A and other continuous constraints,
problem (24) is a non-convex MINLP problem, which is
generally NP-hard [34].

The complexity of exhaustive search is extremely high,
making it very difficult to obtain the optimal solution, es-
pecially when K is large. In each sub-area, multiple RSU
offloadings can exist with one assistant vehicle offloading at
the same time, and the resources of these two parts do not
interfere. Therefore, to solve the problem iteratively, the first
step of our approach is to find the sole vehicle responsible
doing assistant vehicle offloading and allocate its transmit
power in each sub-area. Then, the remaining problem of RSU
offloading, computation, and bandwidth resource allocation
can be obtained with relatively less complexity.

B. Assistant Vehicle Offloading and Power Allocation

As mentioned in the communication model, interference
only occurs in assistant vehicle offloading. To achieve the
maximum data rate, the RSU offloading employs maximum
transmit power. However, in the case of frequency reuse across
different sub-areas for vehicle offloading, power allocation
becomes crucial to manage interference among vehicles uti-
lizing the same frequency for task offloading. Thus, in order
to minimize the total delay of assistant vehicle offloading,
careful selection of assistant/requesting vehicles and their

corresponding transmit power is critical for each sub-area.
Consequently, the original problem can be transformed into

min
{A′ ,P′}

∑
k∈K

T
′

k,

s.t. C4, C7, C8,

C9′ : T vk ≤ T lk,

(25)

where T
′

k = avkT
v
k . A′ represents the offloading decisions of

vehicles engaging in assistant vehicle offloading, with alk = 0
and ark = 0. P ′ denotes the transmit power of vehicles
participating in assistant vehicle offloading. C9′ ensures that
the delay of assistant vehicle offloading is lower than that
of local computation. This is because the nature of the
optimization problem (25), which aims to select vehicles for
assistant vehicle offloading with the smallest delay. However,
there is a risk of choosing the wrong vehicle for assistant
vehicle offloading when the offloading delay exceeds the local
computation delay, particularly when the task size is very
small. e.g. If the task size of one vehicle is significantly smaller
than that of others, the delay of performing assistant vehicle
offloading may be the smallest among all potential vehicles,
even when the offloading delay exceeds that of processing
the task locally. Consequently, if such a vehicle is chosen to
do assistant vehicle offloading, the overall delay performance
will deteriorate, and the computation resource of the assistant
vehicle will be erroneously occupied therefore unavailable to
assist others. By setting this constrain in the assistant vehicle
offloading, this false selection can be prevented.

If multiple vacant vehicles are present in a sub-area for task
offloading, all of these vehicles are considered as potential
assistant vehicles. The final assistant vehicle is chosen based
on the one with the lowest delay.

For each potential vacant assistant vehicle, the remaining
vehicles with computation tasks are selected as potential
requesting vehicles. By optimizing the offloading decision and
transmit power, the total delay T

′

k can be minimized, leading to
the optimal solution for assistant vehicle offloading. To explore
all possible solutions, the total number of combinations for
assistant vehicle offloading and transmit power allocation can
be calculated as

(NP )2M
M∏
m=1

[(Km − Lm)Lm], (26)

where Km and Lm represent the total number of vehicles
and vacant vehicles in sub-area m, respectively. NP denotes
the number of transmit power choices for each vehicle, i.e.,
Pk ∈ {P 1

k , P
2
k , · · · , P

Np
k }.

It can be seen that the complexity of exhaustive searching
to find the optimal solution is high and impractical when M
and K are large. This is because the selection of vehicles and
their transmit power can affect each other due to interference,
making the problem challenging to solve using traditional
methods. Heuristic algorithms are commonly used search
methods to solve complex programming problems with low
complexity [35]. Particle swarm optimization (PSO) algorithm
[36] is one effective method due to its convergence speed
and fewer parameters compared to other algorithms [37]. To
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address the solution finding and complexity reduction, we
propose a low-complexity heuristic approach inspired by the
search concept of the PSO algorithm.

The PSO algorithm operates by employing multiple parti-
cles to explore the search space and find the best solution.
Each particle represents a potential solution and moves within
a d-dimensional search space. Vectors xi = [xi1,xi2, · · · ,xid]
and vi = [vi1,vi2, · · · ,vid] are used to represent the location
and velocity of the i-th particle, respectively. The location of
each particle represents a potential solution. The velocity of
each particle is updated based on: (1) the best location l

′
the

particle has found so far and (2) the global best location l∗

obtained from all particles in the swarm. By combining the
velocity vector with the location vector, PSO progressively
explores the potential search space. We define the random
function R to generate parameters between 0 and 1. The
updated equations for each particle’s schedule are as follows

vi[t+ 1] =w[t]vi[t] + cc · R · (l
′

i[t]− xi[t])+

cs · R · (l∗[t]− xi[t]),
(27)

xi[t+ 1] = xi[t] + vi[t+ 1], (28)

where cc and cs are predetermined cognitive and social factors,
respectively. l

′

i[t] and l∗[t] represent the best location of
particle i and the best location among all I particles at the t-th
iteration, respectively. The weight factor w[t] controls the step
size of the particle’s velocity. As the iteration step t increases,
w[t] decreases. The weight factor can be computed using

w[t] = wi −
(wi − wf ) · t

T
, (29)

where wi and wf denote the initial and final weight factors,
respectively. T represents the maximum number of iteration
steps.

As problem (25) is still an MINLP problem, the traditional
PSO algorithm cannot be directly applied. This is because the
selection of requesting vehicles is an integer set, while PSO
generates continuous-valued results. Therefore, the original
results of offloading decisions from PSO need to be adjusted
based on A′ . Another issue with PSO is that the initial
particle selection can affect the final results. A good initial
particle selection can improve searching accuracy and overall
performance. Thus, it is necessary to adjust the random initial
particle generation scheme in the original PSO algorithm ac-
cording to the offloading problem. To address these challenges,
we propose a modified PSO algorithm as follows.

The optimization problem is divided into several parts for
the PSO algorithm. In order to minimize the total delay, the
fitness function is defined as

F =
∑
k∈K

T
′

k. (30)

To formulate the particles in our approach, the next step is
to model the offloading decisions and the allocated transmit

power. Our objective is to find the best particle that minimizes
latency. Let the 4M -dimensional vector x represent a solution

x =[r1, r2, · · · , rM , P1, P2, · · · , PM ,
r
′

1, r
′

2, · · · , r
′

M , P
′

1, P
′

2, · · · , P
′

M ]

=[xr,xP ,x
′

r,x
′

P ],

(31)

where xr and xP represent the set of potential requesting
vehicles in M sub-areas and their respective transmit powers.
x
′

r and x
′

P are the sets of assistant vehicles and their transmit
powers. rm = k, r

′

m = i, k, i ∈ Km means vehicle k/i is
the requesting/assistant vehicle. In each particle, to satisfy
constraint C8′, if T vk ≤ T lk, avrm = 1. Otherwise, avrm = 0.

To enhance convergence behavior and reduce complexity,
we select the initial requesting vehicles using roulette wheel
selection based on the channel gains

pk,i =
gk,i∑

k,i∈Km
gk,i

, (32)

where pk,i is the probability of selecting vehicle k as the
initial requesting vehicle of xr and vehicle i as the initial
assistant vehicle of x

′

r. The selection of initial transmit power
is obtained as follows:

Pk = D · (Pmax), (33)

where D is a random value generated between 0.5 and 1.
In each iteration, continuous variables are introduced by

PSO. As rm represents the integer index of vehicle within sub-
area m, we round rm using the truncation function b•c and
let rminm /rmaxm represent the smallest/largest index of vehicle
in sub-area m. Then, xr can be updated

rm =

brmc, brmc ∈ Km,arg min
rminm ,rmaxm

{|rminm − rm|, |rmaxm − rm|}, brmc /∈ Km.

(34)
Similarly, x

′

r is obtained using the same method.
Next, we check the boundary of the transmit power to satisfy

constraint C4. Since the requesting vehicles are offloading
their tasks for computation, the minimum transmit power
should be positive. Let Pmin be the minimum transmit power
among all vehicles. Constraint C4 can be rewritten as

C4 : Pmin ≤ Pk ≤ Pmax. (35)

If the transmit power of a particle exceeds the constraint
bound, xP is adjusted to the constraint bound as follows

Pm =


Pmin, Pm < Pmin,

Pm, P
min ≤ Pm ≤ Pmax,

Pmax, Pm > Pmax.

(36)

x
′

P is obtained similarly.
During the iteration process, the particle with the highest

revenue, representing the best solution of problem (25) so far,
is preserved. After the iterations, the final solution, accepted
by all assistant and requesting vehicles, can be obtained.

In summary, the process of our proposed modified PSO
algorithm is shown in Algorithm 1, and the final solution



7

Algorithm 1 Modified PSO Algorithm
Initialize: At the iteration step t = 0, for particle i, choose
one of the vacant vehicles as the assistant vehicle in each sub-
area as the assistant vehicle vector x

′

r in (31). Using (32) to
choose other vehicles as the requesting vehicles vector xr in
(31). Using (33) to choose the respect transmit power vector
xP and x

′

P in (31). In the same way, initialize the other I−1
particles repetitively.
Input: x and the maximum iteration time TI .
While t < TI do

Fitness value calculation: calculate (30) of each particle.
Local best location: save the particle with the lowest fitness

value as the local best location l
′

i[t] of each particle i.
Global best location: save the particle with the lowest

fitness value as the global best location l∗[t] of the whole
particles.

Update the velocity of each particle using equation (27).
Update the location of each particle using equation (28).
Reform xr and x

′

r of each particle using equation (34), and
xP and x

′

P of each particle using equation (36), respectively.
Update the location of each particle x = [xr,xP ,x

′

r,x
′

P ].
Update the iteration time: t = t+ 1

end while
Output: The global best location l∗[t] which represents the
selection and transmit power of the requesting and assistant
vehicles.

for assistant vehicle offloading decision and transmit power
allocation can be obtained.

For the proposed PSO algorithm, the complexity lies in
search steps and number of particles. Let the TI denote the
maximum number of iterations needed for the PSO algorithm.
The swarm size is I . The dimension of the particle is 4M .
Then, we can conclude that the complexity of PSO algorithm
is O(ITIM).

C. RSU Offloading/Local Computation, Computing and Band-
width Allocation

After obtaining the offloading decisions and power alloca-
tions for assistant vehicles (A′ ,P ′ ) from problem (27), the
next step is to address the RSU offloading and local computa-
tion. In this step, we exclude the results obtained for assistant
vehicles from the original problem (26). The remaining set of
vehicles for RSU offloading and local computation is denoted
as K∗. The formulation of the original optimization problem
is then as follows

min
{A∗,Bk,r,Br,k,P∗}

∑
k∈K∗

T ∗k (37)

s.t. C1∗ : alk, a
r
k ∈ [0, 1], ∀k ∈ K∗, (37a)

C2∗ : alk + ark = 1, ∀k ∈ K∗, (37b)

C3∗ :
∑
k∈K∗

arkf
r
k ≤ FR, (37c)

C4∗ :
∑
k∈K∗

arkBk,r,≤ BR, (37d)

C5∗ :
∑
k∈K∗

arkBr,k,≤ BR, (37e)

where A∗ represents the decisions of vehicles doing local
computation and RSU offloading. P∗ represents the respective
transmit power. In the proposed communication model, we
assume Pr,k is the same for all vehicles. When a vehicle k
is engaged in local computation, the transmit power Pk is set
to 0 since no transmission is required. Conversely, when a
vehicle k is involved in RSU offloading, the transmit power
Pk is set to its maximum value Pmax to achieve the maximum
transmission rate. Therefore,

Pk =

{
0, alk = 1,

Pmax, ark = 1.
(38)

In (39), T ∗k is the delay of local computation and RSU
offloading, given by

T ∗k =alkT
l
k + arkT

r
k = alk

Ck
f lk

+ ark(
Dk

Rk,r
+
Ck
frk

+
ιkDk

Rr,k
)

=alk
Ck
f lk

+ ark(
Dk

Bk,r · log2(1 +
Pk|ĝk,r|2
σ2+σ2

θ
)
+

Ck
frk

+
ιkDk

Br,k · log2(1 +
Pr,k|ĝr,k|2
σ2+σ2

θ
)
).

(39)
From [38], it is known that if a function f(x) = z/x is

convex with respect to x, its perspective function g(y, x) =
yf(y/x) is also convex with respect to (y, x). Therefore, in
order to handle the integer constraint C1∗, we first relax it
and then transform problem (37) into a convex problem by
making specific substitutions. Subsequently, we propose an
iterative algorithm based on the Lagrange dual method to solve
problem (37) with small step sizes. The variable substitutions
are defined as follows

εk = alkf
l
k, φk = arkf

r
k ,

ϕk = arkBk,r, ψk = arkBr,k,

γk = log2(1 +
Pk|ĝk,r|2

σ2 + σ2
θ

), $k = log2(1 +
Pr,k|ĝr,k|2

σ2 + σ2
θ

).

(40)
After applying the introduced substitutions and removing

the integer constraint C1∗, the optimization problem (37) can
be transformed into the following form

min
{A∗,frk ,Bk,r,P∗}

∑
k∈K∗

∗
Tk = (alk)2

Ck
εk

+

(ark)2
Ck
φk

+ (ark)2
Dk

ϕkγk
+ (ark)2

ιkDk

ψk$k
(41)

s.t. C3∗ :
∑
k∈K∗

φk ≤ FR, (41a)

C4∗ :
∑
k∈K∗

ϕk ≤ BR, (41b)

C5∗ :
∑
k∈K∗

ψk ≤ BR, (41c)

C6∗ : εk = f lk. (41d)

Here, a new constraint C5∗ is introduced to ensure that the
computation resource allocated for local computation always
corresponds to the remaining local computation resource. This
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constraint ensures that all of a vehicle’s computation resource
is utilized to minimize the computation latency.

Note that Problem (41) is a convex problem, Proof : see
Appendix A. The Lagrange dual method is employed to solve
it. By introducing non-negative variables ηk, µk, σk, ξk, we can
derive the Lagrange function

L =
∗
Tk +

∑
k∈K∗

ηk(εk − f lk) +
∑
k∈K∗

µk(φk − FR)

+
∑
k∈K∗

σk(ϕk −BR) +
∑
k∈K∗

ξk(ψk −BR).
(42)

Then, by taking the first order derivatives of εk, φk, ϕk, ψk
respectively, one obtains

∂L
∂εk

= −(alk)2
Ck
εk2

+ ηk, (43)

∂L
∂φk

= −(ark)2
Ck

φk
2 + µk, (44)

∂L
∂ϕk

= −(ark)2(
Dk

ϕk2γk
) + σk. (45)

∂L
∂ψk

= −(ark)2(
ιkDk

ψk
2$k

) + ξk. (46)

It can be seen that when alk
∗

= 0, εk
∗ = 0, when

ark
∗ = 0, (φk

∗, ϕk
∗, ψk

∗) = 0, and from C1∗ and C2∗,
when (alk, a

r
k) 6= 0, we can obtain the optimal values of

(εk, φk, ϕk, ψk) respectively

εk
∗ = alk

∗
√
Ck
ηk
, (47)

φk
∗ = ark

∗

√
Ck
µk
, (48)

ϕk
∗ = ark

∗

√
Dk

σkγk
. (49)

ψk
∗ = ark

∗

√
ιkDk

ξk$k
. (50)

Next, by taking the first order derivatives of alk and ark
respectively, we get the equations as follows

∂L
∂alk

= 2
Ck
εk/alk

, (51)

∂L
∂ark

= 2
Ck

φk/ark
+ 2

Dk

ϕkγk/ark
+ 2

ιkDk

ψk$k/ark
. (52)

Define denotations

%k =
∂L
∂alk

(
εk
∗

alk
∗ ), (53)

ζk =
∂L
∂ark

(
φk
∗

ark
∗ ,
ϕk
∗γk
ark
∗ ,

ψk
∗$k

ark
∗ ). (54)

From C2∗, the optimal offloading decision A∗ can be
obtained as {

alk = 1, ark = 0, when %k < ζk,

alk = 0, ark = 1, when ζk < %k.
(55)

Sub-gradient method [39] can be used to obtain the values
of the variables ηk, µk, σk, ξk and it converges to the optimal
result within small steps of iterations. The updated parameters
are shown in Appendix B. Therefore, Problem (37) can be
solved successfully afterwards.

We summarize the above integer constraint relaxation and
iterative method in Algorithm 2.

The proposed ICRI algorithm adopts the Lagrangian dual
subgradient methods. The complexity comes from two parts.
For the first part of optimizing the Lagrangian dual with
given dual variables, the main complexity lies in solving the
transaction equations (43)-(46), as the rest are provided in
closed form. When adopting the Newton method, the required
number of iterations in the worst case is denoted by TL. From
K∗, the number of equations to solve is K−M . For the second
part, the complexity is to find the dual variables that maximize
the Lagrangian using the subgradient method. In Problem (37),
the number of dual variables that need to be updated is 4K−
4M . Let TD be the number of subgradient updates needed.
Thus, the total complexity of the ICRI algorithm is given by
O((K −M)TL(4K − 4M)TD) = O((K −M)2TLTD).

Algorithm 2 Integer Constraint Relaxation Iterative (ICRI)
Algorithm

Initialize: Set ε(0)k = 0, φ
(0)
k = 0, ϕ

(0)
k = 0, ψ

(0)
k = 0, alk =

0, ark = 0 and the precision parameters ε, t = 0.
Get η(0)k , µ

(0)
k , σ

(0)
k , ξ

(0)
k respectively

While |Tk∗(t+1) − Tk∗(t)| < ε do
Using equations (47)-(50) and (55) to obtain

ε
(t)
k , φ

(t)
k , ϕ

(t)
k , ψ

(t)
k , alk

(t) and ark
(t), respectively.

Update η
(t)
k , µ

(t)
k , σ

(t)
k , ξ

(t)
k by using equations (64)-(67)

respectively.
Update the objective function T ∗k

(t) from problem (37).
t = t+ 1

end while
Output: The value of objective function T ∗k .

D. Decentralized Low Complexity/Overhead Algorithm for
RSU Offloading/Local Computation

In the ICRI algorithm, all vehicle’s computation require-
ments such as the onboard computation resource and the task
size of each vehicle, and their CSI should be collected at
the MEC server. This centralized coordination will increase
the overhead for information exchange when the number of
vehicles K is large. In order to further reduce the complexity,
we proposed a decentralized allocation algorithm where the
MEC does not need the computation requirements and CSI of
each vehicle.

The decentralized allocation is a sub-optimal matching
algorithm based on the update of three parameters, namely
offloading gain of each vehicle, index of number of RSU
offloading, and total maximum positive offloading gain. For
simplicity, we adopt equal distribution for the bandwidth
[18] and computation resource between vehicles. The detailed
procedure is presented as follows.
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Step 1: For each vehicle, compute the delay of local
computation with equation (13) and RSU offloading with the
given number of RSU offloading with equation (14)-(17). The
delay of RSU offloading can be written as

T rk =ark(
Dk

BR/N∗ · log2(1 +
Pk|ĝk,r|2
σ2+σ2

θ
)

+
Ck

fR/N∗
+

ιkDk

BR/N∗ · log2(1 +
Pr,k|ĝr,k|2
σ2+σ2

θ
)
,

(56)

where N∗ is the updated number of RSU offloading.
Step 2: Compute the offloading gain of each vehicle using

RSU offloading delay T rk and local computation delay T lk
when it performs local computation as

Gk,r = T rk − T lk. (57)

Update N∗ from 1 to K−M and get the (K−M)×(K−M)
dimension vector of offloading gain of all remaining vehicle
Gk,r.
Step 3: Compute the actual offloading gain of each N∗ with

the maximum N∗ value of Gk,r.

GN∗ =
∑
k∈K

Gk,r. (58)

Step 4: The number of RSU offloading with the total
maximum offloading gain will be selected and these N∗

vehicles are selected for RSU offloading with ark = 1 and
the others for local computation with alk = 1. The total delay
then can be obtained as∑
k∈K

T ∗k =
∑
k∈K

{alk
Ck
f lk

+ ark(
Dk

Rk,r
+
Ck
frk

+
ιkDk

Rr,k
)}

=
∑
k∈K

{alk
Ck
f lk

+ ark(
Dk

BR/N∗ · log2(1 +
Pk|ĝk,r|2
σ2+σ2

θ
)
+

Ck
fR/N∗

+
ιkDk

BR/N∗ · log2(1 +
Pr,k|ĝr,k|2
σ2+σ2

θ
)
)}.

(59)
We summarize the above decentralized offloading allocation

method in Algorithm 3.

Algorithm 3 Decentralized Offloading Allocation Algorithm
Initialize: Set N∗ = 1.
While N∗ ≤ K −M do

Get T lk, T
r
k using (13)-(17) respectively. Then calculate the

total offloading gain Gk,r from (57). Update the offloading
gain vector Gk,r.

N∗ = N∗ + 1
end while
for N∗ < K −M

Calculate the actual offloading gain from (58).
end for

Select the N∗ with the maximum total offloading gain,
and compute the total delay from (59) as the output.

The complexity of the decentralized algorithm lies to the
selection of number of vehicle to do RSU offloading. After
the assistant vehicle offloading in section B, there are (K −

M) remaining vehicles for RSU offloading/local computation.
To find the maximum total offloading gain from Gk,r, the
Bisection method can be adopted. Therefore, the complexity
can be obtained as O((K −M) log(K −M)).

E. Offloading Decision and Power Allocation Combination

As the decentralized allocation for RSU offloading/local
computation in section D is a sub-optimal solution, we obtain
A and P by combining A∗ and P∗ with A′ and P ′ after
obtaining the results of offloading decisions and resource
allocations from sections B and C:{

A = {A∗,A
′
},

P = {P∗,P
′
}.

(60)

Together with frk , Bk,r|k ∈ K from section C, the ad-
justable variables of the offloading decision A, RSU computa-
tion frk |k ∈ K, RSU offloading bandwidth Bk,r|k ∈ K, RSU
feedback bandwidth Br,k|k ∈ K, and transmit power P of the
original problem (24) can then be obtained.

TABLE I
SIMULATION PARAMETERS [40], [41]

Parameter Value
RSU coverage 500 m
V2V bandwidth (BV ) 2 MHz
V2I bandwidth (BR) [20-80] MHz
Number of sub-area (M ) [4, 6, 8]
Frequency reuse factor (N ) [1-3]
MEC capacity (FR) [1-4] ×104 GHz
Maximum transmission power (Pmax) 30 dBm
Noise power (σ2) -114 dBm
Vacant probability (pv) [0.05-0.25]
Ratio of feedback to offloaded data size (ιk) [0.1-0.3]
Distance between RSU and the road 35m
Width of lane 4m
Vehicle distribution model homogeneous Poisson process
RSU antenna height 25m
Absolute vehicle speed [0-110] km/h

TABLE II
MODIFIED PARAMETERS

Parameter Value
Number of particles (I) 512
Number of iteration (T ) 128
Cognitive factor (cc) 2.03
Social factor (cs) 2.03
Weight factor (wi) 0.9
Weight factor (wf ) 0.5

IV. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

In this section, the performance of our proposed MEC-
V2X assisted vehicular task offloading system is evaluated
through simulations. The simulation comprises one RSU and
several vehicles uniformly scattered along the road. The road
is divided into multiple sub-areas. When a task is assigned to a
vehicle, its size is uniformly generated between 5 Mbits and 20
Mbits, and the required computation frequency is distributed
uniformly in the range of [5, 20] Mcycles [33]. Unless noted
otherwise, we set the number of sub-areas M = 4, the
frequency reuse factor ∆ = 1/2, and the vacant probability
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pv = 0.25. The simulation utilizes various parameters summa-
rized in Table I. Furthermore, Table II presents the parameters
employed in our proposed modified PSO algorithm.

To facilitate comparison, we designate our proposed mod-
ified PSO algorithm for assistant vehicle offloading as“V2V-
PSO”. For the second part of RSU offloading/local compu-
tation, the proposed optimal ICRI algorithm is denoted as
“ICRI”. The decentralized algorithm is labelled as “DEC”.
When referring to the entire MEC-V2X offloading scheme
after combining these two parts, we use the term “MEC-
V2X”. Furthermore, we present the performance results of the
following bench mark methods for comparison

• Local computation scheme (labeled as “Local-fixed”): All
tasks of vehicles are executed locally using their own
computation resources.

• Pure MEC offloading scheme (labelled as “Pure-MEC”)
: All tasks of vehicles are sent to the RSU for MEC
processing [42].

• Adaptive MEC offloading scheme (labeled as “MEC-
Local”): The traditional adaptive binary MEC offloading
scheme where vehicles choose to either offload their tasks
to the RSU or perform local computation [14].

Simulations of the assistant vehicle offloading, RSU offload-
ing/local computation, and the final MEC-V2X scheme are
given in the subsequent sub-sections.

A. Assistant Vehicle Offloading

Fig. 3 illustrates the total delay experienced by vehicles per-
forming assistant vehicle offloading under different schemes:
local computation (Local-fixed), random selection of offload-
ing vehicle with maximum transmit power (V2V-random-
fixed) [43], our proposed PSO-based offloading decision and
transmit power allocation (V2V-PSO), optimal offloading de-
cision with maximum transmit power (V2V-optimal-fixed),
and optimal offloading decision and transmit power selection
using exhaustive search (V2V-optimal-exhausted) [16]. It can
be observed that the total delay of vehicles engaged in assistant
vehicle offloading decreases, except for the random offloading
scheme, as the average number of vehicles in each sub-area
increases. As there is only one vehicle offloading in each sub-
area, the reduction of the total delay is attributed to the larger
pool of potential vehicles available for selection as requesting
vehicles when there are more vehicles on the road. Vehicles
with better channel conditions are more likely to be chosen
for assistant vehicle offloading, resulting in reduced delays. In
the case of random offloading, the likelihood of selecting the
optimal assistant vehicle is low, particularly when the number
of vehicles is large. Hence, the performance remains nearly
unchanged. For simplicity and clarity, we assume that all
vehicles possess the same amount of computation resources,
ensuring that the latency associated with local computation
remains constant. Importantly, all the mentioned assistant
vehicle offloading schemes outperform local computation,
demonstrating the effectiveness of our proposed algorithm in
reducing task delays through vehicle selection and transmit
power adjustment.

In Section III, the complexity of exhaustive searching for
offloading selection with maximum transmit power can be
calculated as (6 × 2)4 when there are 6 vehicles with tasks
and 2 vacant vehicles in one sub-area. For exhaustive search-
ing involving both offloading selection and transmit power
selection, the complexity can be estimated as ((6× 2)4 × 58)
when the number of transmit power level NP is set to 5.
In this case, exhaustive searching is considered to provide
the optimal solution. In contrast, the searching complexity
of our proposed modified PSO algorithm is only 512 × 128.
The PSO algorithm outperforms random offloading selection
with maximum transmit power, and its performance is fur-
ther enhanced by adjusting the transmit power compared to
the optimal offloading selection obtained through exhaustive
searching with maximum transmit power. Although the PSO
algorithm’s performance is slightly lower (approximately 4%)
than the optimal solution (V2V-optimal-exhausted), it signif-
icantly reduces the searching complexity. Consequently, we
can conclude that our proposed PSO algorithm achieves near-
optimal performance with low complexity.

Fig. 4 illustrates the impact of the vacant ratio pv on
the total delay, with a total of K = 28 vehicles. As the
ratio of vacant vehicles increases, both random offloading
and our proposed modified PSO method exhibit a decrease
in total delay. This tendency slows down when the ratio
reaches approximately 0.2. This behavior can be attributed
to the higher likelihood of having a vacant assistant vehicle
in a sub-area, which increases the possibility of offloading
to reduce delay. Once the probability is sufficiently high, a
vacant assistant vehicle is always available for offloading.
When the ratio is 0.05, the performance of random offloading
is comparable to that of local computation. This is because
a low ratio of vacant vehicles implies fewer opportunities for
offloading, resulting in the vehicle executing the task locally
in the absence of an assistant vehicle. Furthermore, since the
improvement in reducing delay achieved by random offloading
is relatively small compared to our proposed algorithm, the
overall performance of our PSO method is superior.

Fig. 5 presents the average transmit power, considering
different schemes: our proposed modified PSO algorithm
(PSO), the maximum transmit power scheme (P-max), and
the predefined transmit power [43] obtained through searching
(P-exh). It can be seen that the proposed algorithm exhibits
lower average transmit power compared to the other two
schemes. This reduction can be attributed to the ability of our
PSO algorithm to explore a wider range of transmit power
options beyond the predefined NP choices, thereby reducing
energy consumption. As the number of vehicles in each sub-
area increases, the total power decreases. This is attributed to
the larger pool of potential vehicles available for selection,
vehicles with better channel conditions are more likely to be
chosen for assistant vehicle offloading, resulting in reduced
power.

Fig. 6 demonstrates the impact of the average ratio of data
transmission and local computation on delay. As the ratio of
transmission to local computation increases, the delay also
increases. The random offloading scheme outperforms the
local computation scheme when the ratio is less than 1.4.
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Fig. 3. Total delay of assistant vehicle offloading as a function of the number
of vehicles in one sub-area.
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Fig. 4. Total delay of assistant vehicle offloading as a function of ratio of
vacant vehicles.

However, our assistant vehicle offloading scheme with the
modified PSO algorithm improves delay performance when
the ratio is less than approximately 2.25. This behavior arises
from the fact that when the transmission delay becomes
too long, the benefits gained from assistant computation are
counterbalanced or even worsened. In other words, selecting
the assistant vehicle for offloading is not advisable when the
data size exceeds a certain threshold for transmission.

Fig. 7 illustrates the total delay of assistant vehicle of-
floading as the maximum Doppler frequency varies from 0Hz
to 600Hz. With a carrier frequency of 5.9GHz, the relative
speed is generated uniformly from 0 to 110 km/h. It can be
observed that the total delay increases with the increase in
maximum Doppler frequency especially when the speed of
vehicle is high. This is attributed to the reduction in channel
gain caused by the Doppler effect, resulting in increased
transmission delay. When compared to the local computation
scheme and random offloading scheme, it is seen that the
proposed algorithm effectively reduces the total delay by
allocating the reasonable vehicles and their transmit power
for offloading.

When the offloading vehicle is at the boundary of the sub-
area, there is a probability that the vehicle moves out of its
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Fig. 5. Average transmission power as a function of the number of vehicles
in one sub-area.
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Fig. 6. Total delay of assistant vehicle offloading with the ratio of transmission
and computation delay.

designated sub-area. Fig. 8 illustrates the ratio at which the
requesting vehicle moves to another sub-area for different
choices of the frequency reuse factor ∆ = 1/N with different
Doppler frequency fD(Hz). To compare the influence of
different N , the number of sub-areas M is 6, and N ranges
from 1 to 3. From Fig. 8, it is observed that as the ratio
increases, the total delay remains nearly stable for N = 2 and
N = 3, while it increases for N = 1. This behavior arises
because when adjacent sub-areas use different frequencies
(N = 2, N = 3), the assistant vehicle of the next sub-area
does not cause interference as the requesting vehicle moves to
it. However, when both sub-areas occupy the same frequency
(N = 1), strong interference occurs as the requesting vehicle
approaches the adjacent sub-area. Consequently, the delay
performance significantly deteriorates as the ratio increases.
Nevertheless, even when the ratio equals 0.5, the performances
of the other two choices show only slight changes, with N = 2
consistently exhibiting the best performance. Therefore, we
can conclude that the impact of a requesting vehicle moving
out of its designated sub-area can be mitigated by selecting
N > 1, and under the given conditions, the optimal choice for
N is 2.

Fig. 9 shows the assistant vehicle offloading delay perfor-
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Fig. 7. Total delay of assistant vehicle offloading as a function of maximum
Doppler frequency.

0 0.1 0.2 0.3 0.4 0.5

Ratio of Movement

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

T
o

ta
l 
D

e
la

y
 (

s
)

D
=300

D
=300

D
=300

D
=50

D
=50

D
=50

Fig. 8. Total delay of assistant vehicle offloading with the ratio of requesting
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mance of adopting different frequency reuse factor ∆ = 1/N .
As the number of vehicles increases, the total delays of all
three gradually decrease due to the availability of more choices
for offloading. The lowest latency is achieved when N = 2.
However, when N = 1, where all sub-areas use the same
bandwidth, the delay performance degrades due to strong
interference. On the other hand, for N = 3, the performance
is the worst. This is because while it mitigates interference,
it reduces spectrum efficiency and prolongs task transmission
time. Regardless of number of vehicle in one sub-arean, these
results indicate that N = 2 (frequency reuse factor is 1/2)
strikes the best balance between interference and frequency
efficiency for our assistant vehicle offloading scheme.

B. RSU Offloading/Local Computation

Fig. 10 illustrates the delay performance of our proposed
ICRI and decentralized allocation algorithm as the total num-
ber of vehicles varies. It can be observed that the ICRI
algorithm outperforms the decentralized algorithm and the
pure MEC offloading scheme. As the number of vehicles
increases, the total delay gradually increases due to the higher
task load. However, the ICRI algorithm performs the best
with the lowest delay and the decentralized algorithm second,
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Fig. 9. Total delay of assistant vehicle offloading as a function of number of
vehicles in one sub-area.
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Fig. 10. Total delay of RSU offloading as a function of number of vehicles.

particularly when the number of vehicles is relatively large.
This is achieved by balancing the offloading decision, where
some vehicles offload their tasks while others perform local
computation, and the ICRI can further reduce the delay
along with the allocation of bandwidth and MEC computation
resources. By doing so, our proposed ICRI algorithm obtains
the optimal result and mitigates the impact of computation
insufficiency at the MEC server.

The impact of MEC computation resources and V2I band-
width is depicted in Fig. 11 and Fig. 12, respectively. It can be
observed that the total delay decreases with an increase in the
computation capacity of MEC and the V2I bandwidth. This
is because both parameters enhance the delay performance of
MEC offloading: bandwidth reduces transmission delay, while
MEC capacity reduces computation delay. Furthermore, as
these two parameters increase, the performance gap between
the three schemes narrows, as more tasks are executed at
the MEC server. Our proposed ICRI algorithm consistently
outperforms the decentralized algorithm and the pure MEC
scheme, especially when the MEC computation and bandwidth
resources are limited, which is more realistic, considering that
these resources for MEC are usually limited.
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C. Proposed MEC-V2X Scheme

The convergence performance of the proposed ICRI algo-
rithm, the decentralized algorithm, and the PSO algorithm is
illustrated in Fig. 13. With 32 vehicles and the road divided
into 4 sub-areas, it is evident that the decentralized algorithm
achieves the fastest convergence, completing in 20 iterations,
but it exhibits the worst delay performance. In comparison,
the PSO algorithm converges in approximately 80 iterations,
which is relatively quick and within the specified maximum
iteration limit. Thus, we can conclude that the proposed
algorithms converge rapidly while maintaining good delay
performance.

The total delay performance of our proposed MEC-V2X
scheme, which combines assistant vehicle offloading and RSU
offloading/local computation, is shown in Fig. 14. This is
compared with the adaptive MEC offloading scheme and
the pure MEC computing scheme. Without adding additional
computation resources, our proposed MEC-V2X offloading
scheme exhibits the best performance. Under the given con-
ditions, the improvement gap between our scheme and the
adaptive MEC offloading scheme initially increases as the
average number of vehicles in one sub-area reaches 6, and
then decreases. This can be attributed to two factors. Firstly,
in the assistant vehicle offloading part, the improvement is
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Fig. 13. The convergence performance of ICRBI algorithm, decentralized
algorithm, and PSO algorithm.
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Fig. 14. Total delay of vehicles as a function of number of vehicles in one
sub-area.

limited when the number of vehicles in one sub-area is small,
as shown in Fig. 3. Secondly, in the RSU offloading part, the
computation resources of the MEC for all other vehicles are
relatively sufficient compared to the vacant assistant vehicle.
Therefore, the improvement from assistant vehicle offloading
is also limited. However, as the number of vehicles increases,
the computation resources of the MEC become less powerful,
and the additional assistant vehicles can enhance the overall
performance. On the other hand, when there are too many
vehicles in one sub-area, the improvement achieved by adding
one assistant vehicle in each sub-area becomes relatively small.
Consequently, we conclude that the largest improvement in
our proposed MEC-V2X scheme occurs when the number of
vehicles in one sub-area is 6.

Finally, Fig. 15 illustrates the delay performance of our
proposed MEC-V2X scheme with different sub-area alloca-
tions. It can be observed that all three allocations outperform
the adaptive MEC offloading scheme. The sub-area allocation
with the smallest delay varies as the total number of vehicles
K increases. When K is 24, M = 4 exhibits the smallest
delay, while M = 6 and M = 8 rank second and third,
respectively. This behavior can be attributed to the interaction
between the number of vehicles and the sub-area allocation.
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When M is large and K is small, there are insufficient vehicles
in each sub-area. Consequently, there is a high chance of
not having any vacant assistant vehicles, leading to a lack
of assistant vehicle offloading. Even if one assistant vehicle
is available, as shown in Fig. 3, the improvement achieved
through assistant vehicle offloading is limited. As K increases
to 40 and 48, M = 6 and M = 8 perform the best,
respectively. These findings indicate that the optimal sub-area
allocation for achieving the smallest delay depends on the
vehicle density. The lowest delay can be obtained when there
are approximately 6 vehicles in each sub-area. Therefore, we
can conclude that based on the total number of vehicles, the
optimal number of sub-areas should be adaptively adjusted to
allocate 6 vehicles per sub-area.

V. CONCLUSION

In this paper, we investigated the latency minimization
problem of task offloading and resource allocation in the con-
text of vehicular task offloading with the assistance of MEC
and V2X communication. We proposed a MEC-V2X assisted
scheme for task offloading and resource allocation to enhance
the crucial latency performance. To specify, we first focused
on assistant vehicle offloading, which is tackled with our
proposed modified PSO algorithm. It can achieve near optimal
performance with low complexity and average transmit power
consumption. Then we formulated an ICRI algorithm to solve
the RSU offloading/local computation. The ICRI algorithm can
solve the problem optimally. To further reduce the complexity,
a decentralized sub-optimal algorithm is proposed. We studied
the movement of vehicles by applying Doppler spread and
the moving ratio of vehicles across sub-areas, and took into
consideration of the non-negligible feedback of the offloaded
task. The following conclusions are drawn

• The proposed MEC-V2X offloading scheme outperforms
other comparative offloading schemes in terms of total
delay performance.

• The impact of Doppler spread cannot be ignored, es-
pecially when the speed of the vehicle is high, as it
introduces higher transmission delay.

• The optimal frequency reuse factor for assistant vehicle
offloading to enhance frequency efficiency and reduce
interference is obtained as 1/2.

• There exists an optimal number of sub-areas division
depending on different number of vehicles on the road.
By adjusting the number of sub-areas, assistant vehicle
and RSU offloading can be balanced and lower latency
can be obtained.

APPENDIX A

From (41), T ∗k is the sum of four sub-function

T ∗k = U1(alk, εk) + U2(ark, φk) + U3(ark, ϕk) + U4(ark, ψk)
(61)

The Hessian matrix of U1 can be written as:

∇2U1 =

[
2Ck/εk −2Cka

l
k/(εk)2

−2Cka
l
k/(εk)2 2Ck(alk)2/(εk)3

]
= (2Ck/εk)

[
1

−2Cka
l
k/εk

] [
1 −2Cka

l
k/εk

]
� 0.

(62)
Therefore, U1 is convex. Similarly, we can obtain

U2 � 0, U3 � 0, U4 � 0, (63)

and U2, U3, U4 are convex.
From [38], it is known that if a function f(x) and g(x)

are convex with respect to x, their perspective sum function
h(x) = f(x) + g(x) is also convex. As a result, Problem
(43) is convex, which can be solved by Lagrange dual method
optimally.

APPENDIX B

To update the variables, the (t+ 1)-th iteration of variables
ηk, µk, σk, ξk can be formulated as follows

η
(t+1)
k = [η

(t)
k + τ

(t)
k (

∑
k∈K∗

(ε
(t)
k − f

l
k))]+, (64)

µ
(t+1)
k = [µ

(t)
k + ν

(t)
k (

∑
k∈K∗

(φ
(t)
k − F

R))]+, (65)

σ
(t+1)
k = [σ

(t)
k + ς

(t)
k (

∑
k∈K∗

(ϕ
(t)
k −BR))]+, (66)

ξ
(t+1)
k = [ξ

(t)
k + χ

(t)
k (

∑
k∈K∗

(ψ
(t)
k −BR))]+, (67)

where [i]+ =max{0, i}, and τ
(t)
k , ν

(t)
k , ς

(t)
k , χ

(t)
k represent the

learning step-sizes of t-th iteration.
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