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Abstract 
 

The burgeoning advancements in robotics and Artificial Intelligence (AI) have 

propelled a pervasive application in diverse domains, paving the path towards countless 

different applications ranging from path planning and object detection to autonomous and 

semi-autonomous navigation. However, for autonomy in navigation to be achievable, 

robotic platforms are expected to be able to traverse different types of thoroughfares. For 

this to be achieved, systems should be able to take into account different obstacles that are 

needed and localised in order for them to be avoided. One of the main platforms being 

widely and heavily used are assistive technologies such as mobility scooters, segways, and 

electric-powered wheelchairs (EPWs). Recent advancements in technology have made 

positive obstacle avoidance possible and very accurate, as there have been many stable 

and highly reliable systems with the help of different technologies ranging from 

multimodal sensing techniques to computer vision. However, one of the main challenges 

which persist is negative road anomalies, upward and downward-inclined paths, and 

curbs when it comes to assistive technologies. 

For these systems to be reliable, novel techniques and approaches are a must due to 

the fact that assistive technologies are universally considered safety-critical systems, i.e. 

systems that could directly impact human safety, whereby failure could potentially lead to 

serious injury or death.  

This thesis introduces three different approaches aimed at tackling various problems 

that render autonomous and semi-autonomous navigation possible. The first problem is 

Negative Road Anomalies, depressions, or irregular paths and roads caused by wear and 

tear within the ground surface, including different types of pavement and road 

imperfections. One of the most universal and fundamental examples of road anomalies is 

potholes, or road depressions, which form the highest threat to assistive technologies. As 

a solution to this problem, this thesis proposes a novel object detection and localisation 

algorithm based on deep learning and machine vision. The second problem addressed 

within this thesis is upward and downward path inclinations such as ramps and dropped 
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curbs. This thesis proposes a multimodal sensing technique that uses stereo vision and 

depth vision along with an inertial measurement unit (IMU) in order to detect, localise, and 

assess inclined planes by processing the point cloud generated as a result of the mentioned 

sensing techniques. The proposed approach can detect, segment, and localise the inclined 

plane, whether it is upward-facing or downward-facing. It can also calculate the inclination 

angle and any ground offset, as well as estimate the width of the inclined plane in order to 

assess whether it is traversable or not. 

As for the third problem addressed within this thesis, it is edge detection, localisation, 

and avoidance, in order to avoid the risk of falls. This enables assistive technologies to 

detect the edge of the road whether it is a cliffside, curb, or any physical end of a road or 

path. This can be achieved by using the same sensing techniques proposed for inclined 

planes traversal, but with a completely different assessment logic. 

 The proposed systems were tested in a real-life scenario by mounting them onto a 

widely and heavily used assistive robotic system from the realm of assistive mobility, an 

Electric-Powered Wheelchair, or EPW. The three proposed systems were mounted onto an 

EPW, which was driven in real-life conditions indoors and outdoors as a representative of 

everyday user contexts as well as in isolated and controlled laboratory settings for in-

depth performance assessment of reliability and accuracy. Due to the critical nature of the 

systems, the ground truth has been measured with the use of indisputable techniques such 

as a tape measure and a protractor in order to safely assess the system’s performance to 

the millimetre and decimal degree accuracy.  
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Chapter 1 

 

 

1 .  Introduction 

 

 

The unrelenting march of technological progress, particularly the phenomenal 

advancements in Artificial Intelligence (AI), has ushered in an era of seemingly limitless 

capabilities. Regardless of functionality, AI empowers universal systems to tackle an ever-

expanding range of tasks, irrespective of their complexity. This transformative power 

extends to the realm of autonomous platforms, including self-driving vehicles and 

robotics-based modes of transportation. These advancements hold immense promise for 

everyday use, fostering a more seamless integration into our everyday lives. 

One of AI's most profound impacts is being felt in the field of assistive technologies 

(AT). A term that encompasses a broad spectrum of hardware and software systems 

designed to empower individuals with disabilities. These technologies aim to bridge the 

gap in functional capabilities, fostering greater inclusion within society. By promoting 

independence and participation in daily life activities, AT plays a pivotal role in enhancing 

the overall well-being of people with disabilities. One of the most common limitations 

affecting individuals with disabilities is mobility. Persons with mobility-related disabilities 

often rely on mobility-related ATs such as mobility scooters and Electric-Powered 

Wheelchairs (EPWs). This thesis is focused on mobility-related ATs with the aim of 

embracing AI-related technologies and harnessing their power in order to improve the 
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quality of life for individuals with mobility impairments by facilitating greater ease and 

efficiency in their daily commutes and overall mobility. The proposed systems are versatile 

in their nature and can be deployed on numerous different robotic platforms, including but 

not limited to mobility-related assistive technologies. 

This thesis is an integral part of the ABSAR (AI-Based Socially Assistive Robotics) [1], 

a project that investigates the application of AI techniques for robotic systems to govern 

electric-powered wheelchairs. This project endeavours to develop adaptive intelligent 

systems designed for seamless integration into Electric-Powered Wheelchairs (EPWs). 

These AI-powered enhancements aim to empower individuals with disabilities by 

fostering greater independence and facilitating a more enriching daily life. The integrated 

systems will provide autonomous navigation capabilities, allowing EPWs to traverse 

environments with minimal manual control. Additionally, environmental understanding 

features will equip EPWs to perceive and respond to their surroundings, ensuring a safer, 

smoother, and seamless user experience.  

This thesis focuses on investigating the application of deep learning (DL) techniques 

fused with machine vision to address core challenges that mobility-related assistive 

technology users are constantly exposed to. Those challenges are negative obstacles, a 

term that refers to objects or features that lie below the ground plane, contrasting with 

positive obstacles that are situated above the ground.  potholes, curbs, downward-facing 

stairs, and inclined platforms such as wheelchair ramps, dropped curbs, and other inclined 

planes that can be traversed by a wheelchair or a mobility scooter. 

This goal is achievable via the reliance on real-time visual feedback provided by the 

system and returning accurate information relating to the negative obstacle in question. 

This feedback also includes an assessment of the traversability in order to assist the user 

in deciding whether it is safe to traverse the road before them or not. On the other hand, 

the system also provides sufficient accurate information to the user, informing them of the 

possible safe distance they can traverse before initiating the needed obstacle avoidance 

manoeuvres or, in certain cases, performing a complete early safe stop. 
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Just like other research journeys, numerous obstacles have been envisaged throughout 

the path towards the project’s completion. These challenges range from data availability, 

such as the lack of proper datasets fit-for-purpose when the goal  

is to detect negative obstacles, such as potholes in real-time, to having a reliable 

technique to detect safe traversable paths, to safely, accurately assess upwards and 

downwards-facing inclinations, and to detect and avoid the end of paths and dangerous 

drops such as curbs and downward-facing stairs. The solutions proposed in this thesis are 

aimed at overcoming the described challenges via the use of a lightweight, accurate, and 

robust deep learning object detection and localisation algorithm fused together with depth 

imaging and environment assessment and recognition in order to create a reliable and 

versatile system that can be mounted onto any moving platform capable of performing as 

infallibly as possible in indoor and outdoor scenarios regardless of the time, weather, 

location, or other possible limiting factors. 

This thesis delves into the prevalent challenges, proposing innovative solutions to 

address them. The introduction chapter lays the groundwork for this exploration. It 

commences with a compelling discussion of the research motivations within section 1.1, 

highlighting the impetus for this work. Aims and objectives are then precisely articulated 

in section 1.2, followed by the core research questions the thesis endeavours to answer, 

which are laid out in section 1.3. The thesis emphasises its novel contributions and 

potential to advance the field in section 1.4 and envisions the practical applications and 

benefits of the proposed systems in section 1.5. The scope of the research is delineated in 

section 1.6, ultimately leading to a concise overview of the thesis structure within section 

1.7, providing an as clear as possible roadmap for the reader. 

1.1 Research Motivation 

 

The field of Artificial Intelligence (AI) is experiencing a period of explosive growth 

fuelled by breakthroughs in machine vision. Innovations that once resided in the realm of 

science fiction, such as deep learning, object recognition, and environmental 

understanding, are now the cornerstones of groundbreaking real-world applications.  This 
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progress extends beyond the realm of software. The evolution of powerful yet energy-

efficient processors and Graphics Processing Units (GPUs) has paved the way for the 

seamless integration of sophisticated AI systems into compact robotic platforms. These 

groundbreaking technological strides hold immense potential to revolutionise the lives of 

individuals facing challenges that hinder their full participation in society. 

By harnessing the power of AI and machine vision, assistive technologies such as 

electric-powered wheelchairs and mobility scooters can be transformed. Wheelchairs 

equipped with cutting-edge features like obstacle avoidance, allowing users to navigate 

complex environments with greater confidence and independence, are realistically 

possible with the help of such technologies. Autonomous navigation capabilities could 

further empower individuals by enabling them to travel predetermined routes or explore 

unfamiliar surroundings with minimal assistance. Advanced safety systems could provide 

an extra layer of protection, safeguarding users from potential hazards. These 

advancements, far from science fiction, have the potential to significantly mitigate the 

impact of mobility-related disabilities, fostering a more inclusive and accessible world for 

all. 

This fuels a compelling motivation to improve the status quo by designing and 

implementing the systems discussed in this thesis. To design and implement the advanced 

systems explored in this thesis. Equipping users with such intelligent safety features has 

the potential to significantly reduce the barriers hindering their mobility.  These systems 

could mitigate the risks associated with falls, injuries, and even fatalities caused by 

encounters with unexpected negative obstacles or downward inclines or stairs. This 

envisioned impact also draws inspiration from the growing accessibility and availability of 

driverless cars in the market. The prospect of similarly autonomous or semi-autonomous 

assistive technologies for individuals with disabilities serves as a powerful motivator for 

the implementation of the systems proposed in this thesis.  Furthermore, their 

introduction could act as a springboard for further advancements and breakthroughs in 

the field of autonomous mobility assistance. 
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1.2 Research Questions 

 

This thesis seeks to answer the following core research questions: 

 What impact does the variety of object representation within a negative road 

anomalies dataset have on the performance of the object detection network? 

Given that object detection systems are widely available using different 

technologies and setups, how can the optimal technique be selected? 

 How can deep learning-based object detection networks be utilised to 

accurately detect and classify potholes of varying sizes, shapes, and textures 

under diverse environmental conditions (e.g., lighting, weather, road surface) 

and in real-time? 

 How can the geometric properties extracted from point cloud data be 

harnessed to detect and assess the accessibility of positive and negative 

inclined planes, including wheelchair ramps, in real-time scenarios? 

 How can a point cloud segmentation algorithm be designed to efficiently and 

accurately isolate curb and downward-facing stair edges in real-time scenarios 

within the real world? 

 How can the reliability and robustness of the proposed systems be rigorously 

evaluated under diverse and unpredictable real-world conditions, taking into 

consideration indoor and outdoor scenarios in certain cases? 

 How can the proposed systems be utilised for the purpose of providing an 

additional layer of safety to traditional mobility-focused assistive 

technologies? What benefit do they introduce? 
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1.3 Aim and Objectives 

 

This thesis investigates the potential of leveraging deep learning-based object 

detection techniques along with computer vision systems for comprehensive, real-time 

analysis of diverse negative obstacles with respect to mobile platforms, regardless of their 

nature. 

The key objectives of this thesis are set out below: 

 

 To investigate the viability of developing and implementing intelligent 

computer vision systems powered by deep learning enhanced with a spatial 

understanding of the environment capable of detecting, and localising negative 

road anomalies in real-time.  

 To investigate the viability of developing and implementing a computer vision-

based system capable of assessing the traversability of different paths, taking 

negative inclinations, curbs, and downward-facing stairs into consideration. 

 To assess and examine the dependability, accuracy, and resilience of the 

introduced systems by employing rigorous testing scenarios. 

 To deploy and integrate the proposed systems within real-world applications 

and scenarios. Electric-powered wheelchairs represent a highly suitable 

mobile platform for the deployment and testing of such systems. 
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1.4 Applications 

 

The central goal of this thesis is the development of a versatile framework designed for 

seamless integration with a range of mobility-related assistive technologies (ATs). These 

ATs primarily encompass electric-powered wheelchairs and mobility scooters, two crucial 

means of mobility for individuals with mobility impairments to navigate their 

surroundings independently. The proposed system aims to significantly enhance the 

situational awareness of these ATs by leveraging sensor fusion, a technique that combines 

data from two or more imaging modalities. This multi-sensor approach can potentially 

address limitations inherent in any single sensor, providing a more comprehensive and 

robust understanding of the environment. 

The system's output offers a unique versatility, catering to two distinct yet 

complementary functionalities. It can firstly provide real-time guidance for users who 

operate the ATs manually or in a semi-autonomous mode. This can involve visual or haptic 

feedback mechanisms that alert users to potential obstacles or path deviations. Secondly, 

the system's processed data can serve as a crucial input for a fully autonomous navigation 

algorithm. This paves the way for the development of intelligent ATs that can navigate 

environments independently, significantly improving user mobility and autonomy. 

Following initial deployment and rigorous testing within controlled indoor and 

outdoor environments, the system's adaptability has been demonstrably validated. This 

adaptability allows for customisation to cater to diverse scenarios and the detection of a 

wide range of target objects. Notably, the system can be configured to prioritise specific 

objects relevant to the user's needs, such as identifying accessible doorways or avoiding 

obstacles like curbs or uneven terrain. To ensure generalisability, the system has been 

subjected to thorough evaluation under a variety of real-world conditions. These 

evaluations have consistently yielded positive results, confirming the system's high 
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performance, reliability, and remarkably low error rate. This combination of adaptability, 

versatility, and robust performance positions the proposed framework as a significant 

advancement in the field of assistive technologies. 

 

1.5 Main Contributions 

 

 Designed, implemented, and tested a system that relies on deep learning object 

recognition and depth data in order to detect negative obstacles such as 

potholes in real-time and in real-life scenarios. The system includes a novel 

methodology that localises the detected objects and enables them to be treated 

as positive obstacles, facilitating their integration into obstacle avoidance 

algorithms. 

 Designed, implemented, and tested a system that uses depth data, mainly point 

clouds, to segment and assess positive and negative inclined planes, such as 

wheelchair ramps, in real time to assess their traversability. 

 Designed, implemented, and tested a system that uses depth data to segment 

the ground plane, detect its edge, and avoid it in different scenarios such as 

curbs, downward-facing stairs, etc. 

 Manually connected and annotated a widely covering dataset of pothole images 

that can be used for training and evaluating object detection algorithms. The 

dataset is made publicly available for future reference. 

 The proposed systems offer reconfiguration and retraining capabilities, 

enabling the detection of diverse negative obstacles regardless of their form, 

placement, surface properties, composition, or environmental conditions. This 

presents a novel framework for negative obstacle detection and localisation 

with potential for wide-ranging applications. 
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1.6 Scope of the Thesis 

This thesis delves into the development of a novel computer vision framework 

designed to revolutionise navigation and scene understanding for individuals with 

disabilities. This novel system transcends the limitations of traditional navigation systems 

by leveraging cutting-edge computer vision techniques.  The proposed system can be 

seamlessly integrated into existing mobile platforms, such as powered wheelchairs or 

mobility scooters.  By equipping mobility-related assistive technologies with this smart 

system, users would gain the ability to comprehend their surroundings in real-time.  The 

framework would analyse visual data from the environment, detecting and classifying 

negative objects, obstacles, and pathways.  This enhanced awareness would empower 

users to navigate diverse indoor and outdoor environments with greater confidence and 

independence, whether manoeuvring through crowded corridors or navigating uneven 

outdoor terrains. The developed systems must exhibit adaptability and customisation 

capabilities to achieve this transformative objective.  The framework should be able to 

learn and adjust to individual user preferences, such as preferred cruising speeds or safety 

tolerances.  Additionally, transparency and reliability are paramount attributes.   

 

The scope of this thesis is set out below: 

 

 This thesis leverages a pre-existing deep learning (DL) neural network for object 

detection and recognition. Consequently, the design and implementation of a new 

object detection network therefore falls outside the scope of this work. 

 This thesis does not directly address autonomous systems collision avoidance and 

path tracking, as these areas lie outside its scope. 

 Deep Learning (DL) explanation and visualisation techniques, along with model 

approximation methods, are beyond the scope of this thesis as they typically focus on 
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improving model efficiency or interpretability. The high accuracy achieved, as 

evidenced by the results, suggests that further optimisation of the DL object detection 

technique may not be necessary for the current investigation. 

 This research focuses on evaluating the traversability of various ground and inclined 

planes within the environment. Path planning algorithms are beyond the scope of this 

thesis. 

 The detailed impact of vibrations on the proposed systems will be addressed in future 

work; it is outside of the scope of this thesis. 

 

 

1.7 Structure of the Thesis 

 

The structure of this thesis is set out as follows: 

 Chapter 2 presents an in-depth review of the negative obstacle detection systems 

classified within different groups. The first group being the state-of-the-art pothole 

detection systems organised as vision-based systems (deep learning systems and 

non-deep learning-based systems), and non-vision-based systems, the second being 

state-of-the-art inclined planes detection, segmentation, and assessment systems, 

and the third being curb, downward-facing stairs, and edge of the paths detection and 

localisation systems.  

 Chapter 3 presents a meticulously curated pothole dataset. The dataset was 

manually collected and annotated, ensuring high-quality ground truth labels. It 

encompassed a broad range of pothole characteristics (shape, depth, colour, filling, 

type) and was imaged under diverse lighting and weather conditions. This dataset 

will prove invaluable for benchmarking and advancing algorithms in object 

recognition, localisation, and semantic segmentation, with particular relevance to 

road infrastructure assessment and autonomous systems. It can be used for assistive 

technologies-related projects, robotics, or even road surveying. 
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 Chapter 4 presents a novel algorithm for real-time detection and localisation of 

negative road anomalies, specifically potholes. The algorithm leverages a deep 

learning convolutional neural network (CNN) pre-trained on a meticulously curated 

pothole dataset (introduced in Chapter 3).  This pre-training step ensures high 

confidence and low latency detection.  Uniquely, the algorithm fuses pothole 

detection with a spatial understanding of the surrounding environment obtained via 

depth imaging. 

The chapter commences with a detailed benchmarking process. Three state-of-the-

art object detection CNNs are evaluated on the pothole dataset, and the optimal 

network is selected based on performance metrics.  This ensures that the chosen CNN 

is the most effective for the proposed implementation.  Subsequently, the chapter 

delves into the training and validation process, a crucial step guaranteeing the 

accuracy and reliability of the CNN's results.  The chapter then details the innovative 

localisation process achieved through depth imaging.  This integration of depth data 

allows for precise spatial understanding of the pothole's position within the 

environment. Finally, the chapter presents a rigorous testing and evaluation process 

where the system’s accuracy and performance are assessed to illustrate its strengths 

and weaknesses. 

The proposed algorithm offers significant advancements for several reasons. First, it 

introduces a novel localisation technique for negative obstacles, employing 

unconventional measurements.  This enables any navigation system, whether 

autonomous, semi-autonomous, or manual, to treat these negative obstacles as 

positive ones.  Consequently, the avoidance process becomes significantly less 

complex and more efficient.  Second, the algorithm establishes a versatile framework.  

The CNN can be efficiently retrained to detect various negative road obstacles, 

transforming them into "positive" obstacles within the algorithm or from the user's 

perspective.  This adaptability broadens the algorithm's applicability to other 

negative road anomalies. 

 Chapter 5 introduces an innovative algorithm designed for the detection, 

segmentation, and localisation of upwards and downwards-inclined planes. This 

detailed chapter outlines the implementation process and presents a rigorous 
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experimental methodology. The system was subjected to both real-world and 

controlled in-lab environments, enabling a comprehensive assessment of its 

performance in diverse conditions.  Such a system holds significant value for various 

applications. In assistive technologies, robotics, and surveying, accurate detection 

and assessment of inclined planes are crucial for determining the safe traversal of 

mobile platforms.  The proposed algorithm demonstrates exceptional accuracy, 

coupled with low latency and computational requirements. This optimised design 

allows for its integration into a wide range of systems with varying computational 

capabilities. 

 Chapter 6 presents a novel algorithm for real-time detection and localisation of the 

end of the path within a road.  The system goes beyond simple edge detection, 

encompassing features like curbs and downward-facing stairs.  It critically assesses 

the safe, traversable distance between the mounted platform and the detected edge.  

The chapter delves into the technical details of the algorithm, outlining the various 

real-time measurements employed to ensure accuracy and safety throughout the 

navigation process. A rigorous assessment process is presented to comprehensively 

evaluate the system's performance. Testing encompasses diverse locations, time 

periods, and weather conditions. This multifaceted approach ensures the system's 

reliability and generalisability across various real-world scenarios. 

The proposed algorithm offers significant value for a broad spectrum of platforms.  

Its applicability extends from assistive technologies such as electric and manual 

wheelchairs and mobility scooters to larger platforms like cars and other 

transportation systems.  By enabling robust road edge detection and localisation, the 

algorithm ensures these platforms maintain a safe braking distance from the 

road/path edge, thereby enhancing overall safety in navigation tasks. 

 Chapter 8 serves as the culminating point of the thesis. It revisits the central research 

questions and demonstrates how the findings offer compelling answers or solutions.  

The chapter also highlights the broader contributions of the work to the field and 

identifies promising areas for future research endeavours
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2 .  Chapter 2 

 

A Review on Negative Obstacles and 

Inclines Detection 

 

 

2.1 Introduction 

 

Navigation within complex environments is a fundamental challenge for nearly all 

types of moving platforms, whether on-road vehicles, assistive technologies (AT) [2], 

autonomous or semi-autonomous systems such as robots, self-driving vehicles [3], or 

assisted mobility devices [4]. These different systems must operate in a wide range of 

environments, from structured indoor settings in the case of assistive technologies or 

robotic platforms to unpredictable outdoor landscapes with respect to robotic platforms 

and self-driven and semi-autonomous vehicles.   

Assistive technologies (AT) designed to enhance mobility encompass a range of 

devices. These include traditional wheelchairs (manually propelled devices), electric-

powered wheelchairs (offering motorised movement), and mobility scooters (generally 

three or four-wheeled, steered with a tiller). The World Health Organisation (WHO), in its 

2023 report, estimates that at least 80 million people globally, representing approximately 

1% of the population, utilise wheelchairs for mobility assistance [5]. However, significant 

barriers to unobstructed access persist, including the lack of infrastructure adapted for 
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wheelchair use, uneven surfaces, potholes and other types of road anomalies. Current 

innovations in AT focus on advancements in powered mobility options and the integration 

of smart technology for increased user independence. 

Current perception systems employed in autonomous technologies, such as self-

driving vehicles and assistive robots, often prioritise the detection and avoidance of 

"positive obstacles" – physical objects protruding into their environment. However, this 

focus neglects the equally critical challenge posed by "negative obstacles" (e.g., potholes, 

downwards-facing stairs, curbs) [6] [7] and inclines (e.g.,  wheelchair ramps and inclined 

road surfaces) is critical for ensuring safe and efficient traversal of varied terrain. Unlike 

positive obstacles, which typically result in collisions, negative obstacles can cause falls, 

system damage, or mission failure. The consequences of encountering negative obstacles 

can be particularly severe for ATs designed to assist individuals with mobility limitations. 

For instance, a wheelchair traversing a curb without proper safety features or 

encountering a deep pothole is at risk of tipping over, potentially causing user injury and 

equipment damage. Similarly, self-driving vehicles navigating an undetected pothole could 

sustain suspension damage or veer off course, jeopardising passenger safety. dangerous 

as accidents caused by a collision with a positive obstacle are the ones resulting from a fall 

off of a curb or on downwards-facing stairs or a ramp without safety borders are a 

completely higher level of risk. Not to forget the dangerous risks caused by driving through 

a deep pothole. The wheelchair might fall, and the wheels could be broken, putting the user 

at a severe risk of harm and injury. 

This highlights a critical limitation in current state-of-the-art autonomous, semi-

autonomous, and guidance-assisted systems. To ensure the safe and reliable operation of 

ATs, robust algorithms capable of accurately identifying and navigating negative obstacles 

and inclines are crucial. Research efforts should prioritise the development of such 

capabilities to enhance the safety and efficacy of autonomous technologies across diverse 

operational environments. 

This chapter focuses on the challenges and current novel advancements in the field. It 

will delve into the important and critical motivation behind the use of assistive 

technologies (2.2), followed by a detailed examination of the limitations of existing 

negative road anomalies detection and localisation technologies (2.4), incline estimation 
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and assessment techniques (2.4), the ground plane, curbs, and downwards-facing stairs 

detection and localisation techniques (2.5). This chapter then concludes by exploring 

future research directions and outlining potential systems that hold promise for achieving 

the stated research goals. 

 

2.2 Assistive Technologies, the motivation 

 

Assistive technologies, such as electric-powered wheelchairs (EPWs), offer 

multifaceted benefits to individuals with disabilities. Beyond the central advantage of 

improved mobility, EPWs facilitate increased productivity, participation in leisure 

activities, and enhanced independence  [8].  Therefore, the design of assistive devices 

should focus on maximising user autonomy and enriching quality of life.  Inadequately 

designed or malfunctioning assistive technologies, however, can significantly detract from 

the user experience [8]. 

 Clinical observations indicate a near parity between patients able and unable to 

operate electric-powered wheelchairs (EPWs) [9] independently.  Navigation within 

confined indoor spaces, particularly when manoeuvring through doorways, presents 

significant challenges for users. Furthermore, clinicians report that 40% of EPW users 

experience difficulty with steering tasks, with 5-9% finding them entirely unmanageable.  

A substantial 85% of individuals unable to operate EPWs independently are attributed to 

factors such as visual impairments, cognitive limitations, or motor skill deficits. The 

potential of automated navigation systems to reduce this percentage by half offers 

promising implications for greater accessibility and user autonomy [9]. 

Computer vision-based navigation systems present a transformative opportunity for 

enhancing the autonomy and safety of electric-powered wheelchair (EPW) users, offering 

both semi-autonomous and fully autonomous functionality.  Innovative approaches 

include control mechanisms that leverage facial tracking [10] as well as precise eye and 

iris movement detection [11, 12].   Additionally,  collision detection and avoidance 

technologies play a crucial role in assisting EPW users with obstacle negotiation [13, 14]. 
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  A navigation system utilising 3D stereo-vision to detect potential object collisions 

proactively was notably proposed [15], halting movement to prevent impact. Their system 

further incorporates visual odometry for path planning towards user-defined goals. 

Importantly, it offers adaptive navigation prompts tailored to the user's level of awareness, 

ensuring optimal support. A thorough examination of the most recent research directions 

in smart wheelchairs concluded that smart wheelchairs introduce a promising 

improvement to the well-being of their users as long as the users are able to confidently 

trust the system [16]. Another recent comprehensive review was conducted with the aim 

of studying the design and implementation of the sensory systems that can be used within 

EPWs, highlighting the importance of sensor fusion, novelty, interaction between the user 

and the system, cost, and other factors. These are to be considered critical for the 

advancement of smart assistive technologies [17]. 

 The evolution of the state-of-the-art systems, as expected, did not stop at positive 

obstacles, as it was realised that although safe autonomous or semi-autonomous 

navigation of EPWs requires positive obstacle avoidance, the objective cannot be achieved 

without taking negative obstacles into consideration. Hence, negative obstacles were also 

addressed within the technological advancements. Some attempts to tackle the problem 

were made via the use of thermal imaging to detect negative obstacles [18], other attempts 

were made using the cloning-based approach to traverse negative obstacles [19]. As 

innovative as these systems are, they fall behind expectations when the platform to be 

utilised as a host to the system is an EPW or a mobility scooters. The mentioned system in 

[18] would fail in the case of water-filled negative obstacles, or during significantly hot 

days, whilst the system proposed in [19] would not be usable in the case of critical health-

related systems such as assistive technologies as they would require obstacle avoidance 

rather than safe traversal due to the significant risk of harm to which users could be 

exposed. 

 This showcases the importance of employing advanced sensory and navigation 

systems on assistive technologies in order to ensure safe and reliable navigation. It also 

highlights the importance of addressing the negative obstacles problem, as a system 

cannot be considered safe and cleared for a fully autonomous, semi-autonomous, or 

assisted navigation if it does not address the negative obstacles problem as these obstacles, 
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in their nature, are considered a significantly challenging task due to the fact that they 

cannot be detected with traditional positive obstacle detection methods.  

 The proposed system, unlike others, aims at harnessing the benefits of sensor fusion, 

with deep learning, computer vision, and spatial understanding of the environment in 

order to detect, localise, and assess negative obstacles. The system is capable of accurately 

detecting and localising negative road anomalies in real-time, it is also capable of detecting 

and assessing upwards and downwards inclined planes to decide whether they are safe to 

traverse or not, it is also capable of accurately assessing the traversable area within a 

normal flat ground taking into consideration the end of the traversable area where a 

negative obstacle would be present either in the form of a curb, or a set of downwards-

facing stairs. 

Subsequent sections delve into contemporary systems engineered to mitigate the risks 

posed by negative road anomalies, with a particular emphasis on potholes. The detection 

and skilful circumnavigation of such obstacles are underscored as paramount for safe 

navigation. Moreover, a meticulous examination is conducted on systems capable of 

evaluating the traversability of both upward and downward inclined planes. This is 

followed by, a discussion illuminating novel methodologies within path traversability 

analysis, encompassing the complexities of curbs and downwards-facing stairs. 

2.3 Negative Road Anomalies Detection Techniques 

 

Negative road anomalies, such as cracks and potholes, present a significant 

obstacle to autonomous, semi-autonomous, and manual navigation of systems due to 

their inherent variability and the limitations of current sensor technologies and detection 

algorithms. The stochastic nature of these anomalies – their unpredictable shapes, 

depths, locations, and environmental contexts (e.g., lighting, weather, standing water) – 

renders traditional sensing techniques prone to false negatives. This challenge is 

compounded by the fact that anomalies occur year-round in public spaces, where 

detectors may be adversely affected by factors like light intensity, fog, or rain.  

Furthermore, their random patterns and depths pose difficulties for techniques 
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optimised for specific forms. The potential for standing water within anomalies further 

obfuscates detection. Timely identification of negative road anomalies is essential for 

efficient road maintenance, enhanced safety and comfort in autonomous driving, the 

well-being of wheelchair users, and the general expansion of safe vehicle automation. 

 This section presents a critical analysis of contemporary techniques, offering a 

thorough and objective assessment of their performance, reliability, and scalability. To 

facilitate a methodical comparison, the strengths and weaknesses of each technique will 

be systematically evaluated. Additional details about every assessed system can be found 

within the Appendices respectively. 

2.3.1 Review Strategy and Performance Measures 

 

In this section, a critical review of existing detection and localisation techniques for 

negative road anomalies detection and localisation will be conducted. Each method will be 

summarised with a focus on its underlying technology.  Strengths and weaknesses will be 

evaluated based on key design criteria, including accuracy, precision, environmental 

robustness, and computational efficiency. The goal is to synthesise insights from this 

analysis, allowing the development of a novel detection and localisation algorithm that 

leverages the strengths of current techniques while offering superior accuracy and 

reliability.  Where available, performance metrics such as Accuracy, Precision, Recall, and 

F1-Score will be extracted from the research literature to support the evaluation. 

1. Accuracy: Ratio of the correctly predicted observations to the total observations: 

Accuracy= 
்ା்ே

்ାிାிேା்ே
          (2.1) 

 

2. Precision: Ratio of the observations correctly predicted divided by the total 

positive observations predicted:  

Precision (P)= 
்

்ାி
          (2.2) 
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3.  Recall: Or sensitivity, Ratio of the positive observations correctly predicted 

divided by the total observations:      

Recall (R)= 
்

்ାி
          (2.3) 

 
4.    F1-Score: Average of the Precision and Recall: 

 

F1-Score= 
ଶ × (ோ × )

 (ோା )
          (2.4) 

 

In addition to performance measures, the following technical criteria will be 

evaluated: efϐiciency, real-time functionality, computational requirements, power 

consumption requirements, system size, and suitability for mass production. 

 

2.3.2 Vision-Based Systems 

   

2.3.2.1 Deep Learning-Based Techniques 

 

Deep learning, as described by F. Chollet [20], is a foundational subfield of machine 

learning and artificial intelligence. It centres on the use of artificial neural networks 

composed of successive "layers" that extract increasingly abstract and meaningful 

representations from raw data. These networks, while loosely inspired by the biological 

structure of the brain, function as complex mathematical models.  Each layer within a deep 

learning architecture acts as a filter, progressively refining the input data to isolate the 

features most relevant to the desired outcome. This hierarchical, multistage process allows 

deep learning models to "learn" complex patterns and relationships, often surpassing the 

accuracy of traditional machine learning technique. 

The recent surge in Artificial Intelligence (AI) research has been fueled by several 

factors, including: (1) increasingly successful applications demonstrating AI's potential, 

(2) significant advancements in processing power enabling more complex models, (3) the 

growing availability and accessibility of vast datasets, and (4) the positive impact of AI 
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research on various scientific fields. This confluence of advancements has spurred 

significant interest in utilising machine learning (ML) techniques for automated detection 

of negative road anomalies, particularly potholes. This focus stems from the substantial 

economic and safety concerns associated with road surface deterioration. 

Visible-Light RGB Camera as Input: 

Pereira et al. [21] proposed a deep learning solution for pothole detection, specifically 

designed to be cost-effective. Their approach utilises a convolutional neural network 

(CNN) architecture to extract and analyse image features relevant to pothole identification. 

The proposed network consists of four convolutional and pooling layer pairs, followed by 

a fully connected layer. A Rectified Linear Unit (ReLU) serves as the activation function 

within this layer of the form 𝑓(𝑥) = max  (𝑥 , 0), known for its computational efficiency and 

ability to mitigate the vanishing gradient problem. The output layer employs a sigmoid 

function 𝑆(𝑥) =
ଵ

ଵାషೣ =
ଵ

ೣାଵ
, introducing non-linearity and mapping outputs to the 

probability of pothole presence. The authors likely experimented with various 

hyperparameters, including filter types, to optimise the network's performance.   

The obtained result can be summarised as follows:  

 Accuracy: 99.8% 
 Precision: 100% 
 Recall: 99.6% 
 F1-score: 99.6% 

 

As per the assessment criteria described earlier, this method is evaluated as follows: 

 Efficiency: Results indicate strong performance efficiency. 

 Real-time Functionality: Currently limited to still images, hindering real-time 
use. 

 Computing Power: Manageable with specialised processors (e.g., Intel Neural 
Compute Stick). However, potential issues arise with larger image sizes. 

 Power Consumption: Varies based on processor and overall equipment choice. 

 System Size: Adaptable due to the nature of deep learning systems. 

 Mass Production: Feasible, with the high-resolution camera as a potential cost 
bottleneck. 

 



48 
 

Anand et al. [22] propose a deep learning-based method for detecting cracks and 

potholes in road surfaces. Their method leverages convolutional neural networks (CNNs) 

to analyse textural and spatial features.  The system comprises several stages: 

 

 Road Segmentation: A SegNet network [23, 24, 25] isolates the road surface from 
the image. 

 Edge Detection and Enhancement: Canny edge detection generates a second 
mask, followed by edge dilation to enhance connectivity. 

 Candidate Region Extraction and Filtering: The combined masks define 
candidate regions, resized to 64x64 patches. Filtering removes false positives (e.g., 
shadows, vehicles). 

 Feature Encoding: The authors replace the final convolutional layer of 
SqueezeNet [26], a compact CNN architecture, modified version of [27], with a 
custom dictionary-based residual encoding layer. This layer facilitates weighted 
assignment of image descriptors to codewords, acting as a pooling mechanism. 

 Classification: Supervised learning trains the network on labelled data. A fully 
connected layer performs classification, followed by a Softmax layer for mutually 
exclusive class assignment. Binary cross-entropy is used as the loss function. 

 

Based on the established criteria, the system demonstrates the following 

characteristics: 

 

 Efficiency: Accuracy ranges from 92.37% to 99.99%. While achieving high 
accuracy in certain contexts, this variability indicates potential limitations that 
may impact overall efficiency in real-world deployment. 

 Real-time Functionality: The system is capable of processing both images and 
videos, making it suitable for real-time applications. 

 Computing Requirements: Compatibility with portable deep learning 
processors (e.g., Intel Neural Compute Stick) suggests manageable computational 
demands. 

 Power Consumption: Power needs are dependent on the specific processor and 
associated hardware. A thorough power analysis is required to determine 
suitability for the intended use case. 

 System Size: The deep learning architecture allows for flexibility in system size 
based on hardware choices. 

 Mass Production Potential: The general availability of required components 
supports potential mass production. However, the cost and performance 
implications of a high-resolution camera necessitate careful consideration. 
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Gopalakrishnan et al. [29] propose a method for automated pavement crack detection 

utilising transfer learning with pre-trained deep learning models. Their approach 

leverages image datasets from the Federal Highway Administration (FHA) and the Long-

Term Pavement Performance (LTPP) program in the United States, along with a Canadian 

database. The dataset is comprised of 1056 images organised as follows: 

- Training: 760 images 
- Validation: 84 images 
- Testing: 212 images  

 
 

Gopalakrishnan et al. employ a transfer learning approach utilising the Keras 

implementation of VGG-16 [30], a deep convolutional neural network (CNN) pre-trained 

on ImageNet [31].  

The obtained result via the use of a Single NN Classiϐier can be summarised as follows:  

 Accuracy: 90.0% 
 Precision: 90.0% 
 Recall: 90.0% 
 F1-score: 90.0% 

 

Based on established criteria, the system demonstrates the following characteristics: 

 Efficiency: With 90% reported accuracy, the system exhibits partial efficiency. 
However, this metric alone doesn't guarantee consistent performance under real-
world conditions. 

 Real-time Functionality: The potential for real-time processing (images and 
videos) is promising. 

 Computational Requirements: The ability to run on portable deep learning 
processors indicates manageable computational demands. 

 Power Consumption: Power needs will vary based on specific hardware 
components. 

 System Size: The deep learning architecture allows for flexibility in system size, 
adaptable to available equipment. 

 Mass Production: Feasibility for mass production is likely, given the availability 
of standard components. The potential cost implications of a high-resolution 
camera require further consideration. 
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Suong et al. [38] developed a pothole detection and identification system employing 

YOLO (You Only Look Once) version 2 as its deep convolutional neural network (CNN) 

foundation. Their work explored two YOLO architectural variants: the established Darknet 

YOLO v2 architecture [39] and a novel architecture proposed by the authors, designed to 

optimise computational efficiency and reduce model size. The proposed architecture 

achieves its goals with 18 million parameters, a significant reduction from the 48 million 

required by the Darknet counterpart 

To facilitate multi-object detection, the authors integrated the Anchor Box Model, 

predicting  (5 + 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑙𝑎𝑠𝑠 ) × 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐴𝑛𝑐ℎ𝑜𝑟𝑏𝑜𝑥𝑒𝑠. Each box is specialised for 

detecting objects of varying sizes and aspect ratios.  K-means clustering was applied to the 

training dataset, yielding five distinct anchor boxes tailored to the specific characteristics 

of the data. These dataset-oriented anchor boxes further refine the system. 

Table 2.1: Suong et. al. Results 

Model Average 
Precision 

Recall Parameters Frame per 
Second 

YoLo v2 60.14% 65.61%  48 million 23 
Authors' 
models and 
anchors 

67.74% 74.93% 18 million 32 

Authors 
model and 
Den-anchor 

83.43% 83.72% 18 million 21 

 

 

Based on established criteria, the system demonstrates the following characteristics: 

 

 Efficiency:  The reported accuracy of 82.43% indicates limited efficiency, 
potentially hindering reliable real-world performance. 

 Real-time Functionality: While theoretically capable of real-time operation, 
insufficient testing raises concerns about performance under dynamic 
conditions. 

 Computational Requirements: The suitability for deployment on compact deep 
learning processors suggests manageable computational demands. 

 Power Consumption: Power requirements are contingent upon specific 
hardware and peripherals; detailed analysis is warranted 
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 System Size: The deep learning architecture allows for flexibility in physical form 
factor, though hardware constraints must be considered. 

 Mass-Production Feasibility: The system's reliance on standard components 
supports potential mass production. However, the cost and availability of high-
resolution cameras pose a crucial economic consideration. 

 

Furthermore, while recent studies utilising YOLO networks for pothole detection 

demonstrate promising results [40, 41, 42], relying on publicly available datasets such as 

[43, 44, 45] several limitations warrant consideration: 

 Precision Limitations: Maximum-reported mean average precision (mAP) 
values of 94% suggest room for improvement in system reliability, as false 
positives or missed detections could still occur. 

 Localisation Scope: The focus of these systems is primarily on detection; 
precise localisation functionalities remain to be addressed to provide 
actionable guidance for avoidance or repair. 

 Computational Demands: Reliance on the full YOLO architecture often 
necessitates high computational power and may limit real-time frame rates, 
impacting practical deployment. 

 Robustness to Occlusions: The ability to handle water-filled potholes, a 
common real-world challenge, is not addressed in these studies. 

 Dataset Inadequacy:  Insufficient testing data limits the ability to draw 
definitive conclusions about system performance in diverse real-world 
scenarios. 

 

In summary, while these efforts represent progress in the field, advancements in 

precision, localisation, computational efficiency, robustness to occlusions, and more 

comprehensive real-world testing are needed for reliable practical applications. 

 

Based on the discussed criteria, these attempts would be assessed as follows: 

 Efficiency: The limited mean average precision (mAP) (<94%) indicates 
potential for false positives or missed detections, impacting overall 
efficiency. 

 Real-time Functionality: Theoretical real-time potential exists, but 
rigorous testing under dynamic conditions is required for validation. 

 Computational Requirements: The use of a full YOLO network suggests 
substantial computational demands, potentially necessitating specialised 
hardware. 
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 Power Consumption: Comprehensive power analysis is needed, as the 
choice of processor and peripherals will significantly impact consumption. 

 System Size: While the deep learning architecture offers flexibility, 
hardware requirements and the necessary camera specifications must be 
considered for real-world deployment. 

 Mass-Production Feasibility: The reliance on high-end components for 
real-time YOLO execution raises cost concerns for potential mass 
production. 

 

Thermal Imaging as Input: 

 

Aparna et al. [46] introduce a real-time pothole detection system leveraging thermal 

imaging and convolutional neural networks (CNNs). Their methodology comprises several 

key components: 

 

1. Custom CNN Architecture: 

 Sequential Design: The core of their approach is a sequential CNN model 

where normalised input undergoes processing by a series of 2D convolutional 

layers. Each convolution employs a 3x4 kernel with ReLU activation. 

 Pooling and Normalisation: Max pooling layers follow each convolution, with 

outputs subsequently normalised through batch normalisation. Global average 

pooling then prepares the data for the final classification stage. 

 Classification and Optimisation: A dense layer with sigmoid activation 

performs binary classification (pothole or no pothole). The model utilises 

cross-entropy (logarithmic) loss and the Adam optimiser for training. 

2. Transfer Learning with ResNet: 

Model Adaptation: To complement their custom CNN, the authors explore transfer 

learning with various ResNet architectures [47]. This leverages the pre-trained features of 

ResNet models. 
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Training Refinement: Techniques like cyclic and differential learning rates, along 

with the Fastai library (built on PyTorch), are employed to optimise training, aiming for 

improved accuracy and reduced overfitting. 

3. Image Acquisition and Enhancement: 

 

Thermal Imaging: A FLIR ONE thermal camera, featuring patented Multispectral 

Dynamic Imaging (MSX) technology [48], is used for image capture. MSX blends thermal 

and visible image data to enhance detail. 

Data Collection: Images are collected in Chandigarh, India, under diverse conditions 

(time of day, lighting, temperature). The 500-image dataset includes potholes (dry, water-

filled, wet) and potential confounders like shadows. 

Metadata: Each image is annotated with metadata including temperature 

measurements, severity classification, water presence, shade, location, and a unique 

identifier. 

4. Preprocessing: 

Image Preparation: Images undergo cropping, resizing, and data augmentation 

techniques (e.g., zooming, rotation, mirroring, blurring, contrast enhancement, noise 

addition). This prepares them for input into both the custom CNN and ResNet models. 

 

Overall, the work presents valuable insights, but further research is needed to address the 

identified limitations and ensure the system's reliability across a wider range of 

environmental scenarios. 

 

Based on established criteria, the system demonstrates the following characteristics: 

 

 Efficiency: The reported accuracy of over 95%, along with the use of thermal imaging 
for robust detection, suggests high efficiency. 
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 Real-time Functionality: The potential for real-time operation is promising. 

 Computational Requirements: Significant computational power is likely required 
for model training. However, deployment can be flexible, accommodating various 
hardware configurations. 

 Power Consumption: The system appears to have modest power requirements, 
utilising a controller (potentially low-power options like Intel Neural Compute Stick 
or Raspberry Pi) and a thermal camera. 

 System Size: The deep learning architecture allows for adaptability in system size, 
contingent on the chosen hardware. 

 Mass-Production Feasibility: The system's reliance on readily available 
components (controller, thermal camera) and lack of proprietary software enhances 
its suitability for mass production. 

 

 

Laser Imaging as Input: 

Yu et. al. [49] suggested a different approach that uses the imaging processing 

technique in order to extract laser-coloured regions within an image.  

The image processing pipeline begins with noise reduction and laser region 

extraction. A multi-window median ϐilter, employing four masks, mitigates noise within 

the image. This specialised ϐilter likely uses different window sizes or orientations to 

tackle various noise patterns.  Next, Otsu's method [50] dynamically calculates a 

threshold to convert the image into a binary representation, separating the laser from 

the background. This intelligent algorithm analyses the image's histogram (pixel 

intensity distribution) to determine an optimal threshold that maximises the distinction 

between the two classes. To further reϐine this representation, morphological closing is 

employed. Dilation (expanding white laser regions) followed by erosion (contracting 

them) ϐills gaps, connects nearby laser pixels, and smooths boundaries without 

signiϐicantly altering the target area's size. This process uses a line-shaped structuring 

element (20 pixels) to match the laser's projection. Finally, connected components 

analysis labels groups of connected foreground pixels. Components with pixel counts 
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below a predeϐined threshold are deemed as residual noise and discarded, ensuring a 

cleaner representation of the laser region. 

The ϐinal decision is then made via a neural network conϐigured as follows: 

 Number of input nodes: 4 
 Number of hidden nodes: 8 
 Number of output nodes: 5 

 

This neural network deduces the distress classification as per the author’s predefined 

guidelines. 

Based on the provided information, the system exhibits the following characteristics: 

 Efϐiciency:  Insufϐicient data exists to evaluate the system's computational 

efϐiciency and suitability for real-time navigation. 

 Real-time Functionality: The presented information is inadequate to determine 

whether the system can operate under real-time constraints. 

 Computational Requirements: The reliance on MATLAB suggests signiϐicant 

computational demands. Resource-intensive deep learning frameworks and 

image processing pipelines typically require substantial processing power and 

memory. 

 Power Consumption: The use of laser imaging equipment and MATLAB incurs a 

high-power consumption overhead. This presents challenges for deployment on 

mobile platforms with limited power resources. 

 System Size: While deep learning architectures offer some ϐlexibility in physical 

form factor, the speciϐic hardware requirements remain to be detailed. 

 Mass-Production Feasibility:  The use of MATLAB, with its associated licensing 

costs, poses a signiϐicant barrier to cost-effective mass production. Additionally, 

the cost and availability of specialised laser imaging equipment further limit 

scalability. 
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2.3.2.2 Non-Deep Learning-Based Techniques 

 

Visible-Light RGB Camera as Input: 

Azhar et al. [51] introduced a supervised learning approach for the detection and 

localisation of potholes within asphalt pavement images. Their method analyses image 

features to classify image regions as either "pothole" or "non-pothole," while providing the 

pothole's location within the image. 

The technique employs Histogram of Oriented Gradients (HOG) feature extraction, a 

method emphasising object shape representation. This involves calculating the frequency of 

gradient orientations within localised image portions. 

The system was tested with the help of a dataset of 120 images [53] where 50 images 

were used for training leaving the remaining 70 images to be used for validation. 

The results obtained were as follows: 

 Accuracy: 90.0% 

 Precision: 86.5% 

 Recall: 94.1% 

 

As per the chosen criteria, the system can be assessed as follows:  

 Efficiency:  The system is fundamentally inefficient. A high false-negative rate, 
low accuracy, and the inability to process high-resolution images significantly 
compromise its utility in navigation tasks. 

 Real-time Functionality: The restriction to static image analysis precludes 
real-time operation. This severely limits potential for integration into 
autonomous navigation systems. 

 Computational Demands: The system's excessive computational overhead 
(0.673 seconds for a low-resolution 200 × 200 image) underscores its 
impracticality. Modern image sensors generate far larger image data, making 
real-time performance unattainable. 

 Power Consumption: High computational requirements translate directly 
into substantial power consumption, rendering the system incompatible with 
battery-powered platforms commonly used in mobile applications. 
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 System Size: While the core components (processor, camera) suggest a 
manageable physical footprint, the need for significant processing power 
indirectly limits the system's form factor. 

 Mass-Production Feasibility:  The potential need for a high-resolution 
camera poses a significant economic barrier to mass production. This cost 
factor could severely limit the system's scalability and market viability. 

 

Koch et al. [53] proposed a pothole detection system combining image segmentation, 

shape analysis, and texture comparison. Their system employs a fish-eye camera mounted 

on a moving vehicle to capture road images.  The core methodology consists of three 

primary stages, Segmentation, Shape Analysis, and Texture Comparison detailed within 

Appendix A.1.2 

 

The results obtained were as follows: 

 Accuracy: 95.9% 

 Precision: 81.6% 

 Recall: 86.1% 

 

It is worth mentioning Ryu et. al. [55] whom attempted to replicate Koch et. al’s method 

with some minor changes including “Candidate Region Extraction” and “Decision”.  

Although the technique they attempted to implement was promising, the results were not 

as expected. Their performance was significantly less than Koch. et al. with an accuracy of 

73.5%. Their system is also not usable in real-time scenarios which prevents it from being 

a technique to consider. 

 

Schiopu et al. [56] developed a video-based pothole detection and tracking system 

designed for use with standard cameras. Their approach capitalises on the observation 

that potholes tend to appear as high-intensity (bright) regions within images 

The system was evaluated using a Samsung Galaxy S4 front camera, collecting 34 

minutes of footage under clear, dry conditions. Their MATLAB implementation 
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successfully detected 55 potholes with six false positives and zero false negatives, 

demonstrating the promising potential for real-world applications. 

The results were as follows: 

 Precision: 90% 

 Recall: 100% 

 

Although the system provides promising results,  several key questions remain 

regarding its real-world viability: 

 

 Efficiency:  While promising, the current precision level necessitates 

improvement to ensure reliable pothole detection, a crucial factor for time-

sensitive navigation tasks. 

 Real-time Functionality: The video-based approach suggests real-time 

potential. However, rigorous testing is needed to determine whether detection 

and tracking can occur within the time constraints of real-world navigation 

scenarios. 

 Computational Requirements: The reported runtime is encouraging, but a 

detailed analysis of resource usage (CPU, memory) is essential to assess 

suitability for resource-constrained platforms. 

 Power Consumption: The reliance on a camera and processor suggests the 

potential for low power operation, but this needs to be empirically verified. 

 System Size: The core components offer flexibility for physical 

implementation. 

 Mass-Production Feasibility:  The system's reliance on MATLAB poses 

potential challenges for mass production. Porting the algorithm to a non-

proprietary framework would be necessary for wider scalability and cost-

effectiveness. 
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Dihao et. al. [57] developed an innovative crack detection method that leverages the 

power of probabilistic modeling and multi-scale analysis. Their system begins by analysing 

image data at the pixel level.  Using a Probabilistic Generative Model (PGM), they calculate 

a probability map where each pixel's value indicates its likelihood of belonging to a crack 

based on its intensity.  The authors demonstrated that the PGM outperforms the traditional 

Otsu thresholding method [50] for this task.  To complement this intensity-based analysis, 

the system also examines the neighbourhood surrounding each pixel.  Using a custom 

algorithm, it generates a second probability map, capturing the likelihood of a crack based 

on local patterns and textures.  Fusing these two probability maps allows the system to 

achieve enhanced detection accuracy.  Finally, to address the issue of border pixels (which 

might have lower probabilities), the authors employ a weighted dilation technique.  This 

technique leverages the probability information to selectively expand crack regions, 

improving continuity without artificially increasing crack width. 

The system’s results were as follows: 

 Precision: 90.7% 

 Recall: 84.6% 

 F1-Score: 87.0% 

 

Assessing the system within the specified criteria yields the following: 

 Efficiency:  Insufficient efficiency significantly compromises the system's 
viability for time-sensitive navigational tasks. 

 Real-time Functionality: Presumed high computational demands pose severe 
challenges for real-time operation. The lack of runtime data from the authors 
further obscures the system's performance characteristics. 

 Computational Requirements: The system appears to necessitate significant 
computational resources. A rigorous analysis of resource usage (CPU, memory) 
is essential to confirm this and to assess the feasibility of optimisation. 

 Power Consumption: High computational requirements strongly suggest 
substantial power consumption. Empirical verification remains necessary. 

 System Size:  The core components offer flexibility for physical 
implementation. 

 Mass-Production Feasibility:  While fundamentally feasible, the mass 
production of this system likely hinges upon reducing computational overhead. 
The reliance on a powerful processor could significantly impact production 
costs. 
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Stereo Vision as Input: 

 He Youquan et. al. [59] proposed a pothole detection system based on three-

dimensional projection transformation to extract geometric features of the pothole. Their 

approach combines image preprocessing (binarisation, thinning), 3D reconstruction, and 

error analysis. System calibration, achieved with binocular stereovision, establishes a 

mapping between real-world coordinates and image coordinates. Noise reduction via 

neighbourhood averaging and Otsu thresholding  [50] prepares the image for light band 

extraction.  Geometric calculations transform image coordinates into real-world 

coordinates, yielding pothole measurements. The authors report a 2mm measurement 

discrepancy. 

 

The present information raises significant concerns about the system's real-world 

suitability while offering some insights into its logistical feasibility: 

 Efficiency: Insufficient data exists to determine the system's computational 
efficiency and its potential for real-time navigational tasks. 

 Real-time Functionality: Limited functionality (detection without precise 
localisation) and the lack of runtime data severely hinder the assessment of 
real-time viability. Additionally, the requirement for close proximity to the 
pothole introduces operational constraints. 

 Computational Requirements: Based on the system's components, 
computational demands appear manageable for potential deployment on 
mobile platforms. However, a detailed analysis is unavailable. 

 Power Consumption:  The system's design suggests the potential for 
integration with a mobile platform's power source.  Quantitative power usage 
data is needed to confirm. 

 System Size:  The core components (LED light, CCD camera, processor) 
indicate manageable physical dimensions. 

 Mass-Production Feasibility:  The system's fundamental design suggests 
scalability. However, the potential need for a high-resolution CCD camera could 
significantly impact production costs. 
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Zhang et. al. [60] developed a real-time pothole detection system employing stereo 

vision for depth perception.  Their approach begins with a custom disparity calculation 

algorithm designed to determine the pixel-level shift between two camera views.  This 

disparity data is crucial for reconstructing 3D information about the road.  Next, they 

employ a robust least-squares fitting method [61, 62, 63] to estimate the typical road 

surface, even in the presence of noise.  To model the potentially curved road surface, they 

define a mathematical equation.  Regions deviating significantly from this model (beyond 

a 0.04m threshold) are classified as potholes.  Connected component labelling is then used 

to isolate and identify individual potholes.  To achieve real-time performance, subsequent 

work [64] introduced optimisations including algorithm streamlining (removing a noise 

filtering step, RANSAC-based sampling),  efficient coding practices (lookup tables, loop 

unrolling), and code parallelisation using OpenMP for multi-core processors. 

The achieved optimised results are as follows: 

 Accuracy: 98.0% 

 Recall: 100% 

As per the established criteria, this system can be assessed as follows: 

 Efficiency: Insufficient data exists to determine the system's computational 
efficiency, a crucial factor for real-time navigational tasks. 

 Real-time Functionality: The presented methods suggest the potential for 
real-time operation, especially as optimisations were introduced. However, a 
rigorous runtime analysis is lacking. 

 Computational Requirements: The system's components indicate 
manageable computational demands, potentially suitable for mobile platform 
integration. Detailed resource usage analysis is needed for confirmation. 

 Power Consumption: The system's design suggests compatibility with a 
mobile platform's power source, but quantitative power consumption data is 
required. 

 System Size:  The core components (stereo camera, processor) imply a 
manageable physical footprint. 

 Mass-Production Feasibility:  The fundamental system design appears 
scalable for mass production. 

 

Li et. al [65] developed a stereo vision-based pothole detection method designed to 

extract 3D geometric features. Their approach involves an offline calibration step and an 
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online detection pipeline.  Offline, they employ Zhang's calibration method with a 

checkerboard pattern (8 × 6, 24.5mm squares) to determine intrinsic and extrinsic camera 

parameters.  During online operation, the system first acquires images from the calibrated 

stereo setup. A custom algorithm then calculates a disparity map based on geometric 

relationships.  Triangulation is used to re-project the disparity map into 3D space, yielding 

coordinates for each image point.  To model the expected road surface, a bi-square 

weighted robust least-squares method [61] is employed, minimising the influence of 

outliers.  Regions deviating significantly from this surface are labelled as potholes using 

connected component labelling [66] . The authors tested their system with two USB 

cameras mounted on a cart and a Raspberry Pi 2 for processing. Using 640 × 480 images, 

pothole detection took approximately 4.94 seconds. 

The authors did not provide any data which relates to the success and failure rates of 

the system which makes assessing the performance of the system hard. 

In summary, as per our criteria, the system’s assessment is as follows: 

 Efficiency: Not enough evidence has been provided in order to assess this 
criterion. 

 Real-time Functionality: This system can be used in real-time. 

 Computational Requirements: The systems’ computing power required is 
manageable on a moving platform.  

 Power Consumption: This system can be mounted to a moving platform’s 
battery. 

 System Size: This system’s size is acceptable as it relies on a stereo imaging 
camera along with the required processor. 

 Mass-Production Feasibility: This system can be eligible for mass-production 
due to the nature of the equipment needed. 

 

 

Depth Camera as Input: 

Moazzam et. al. [67] proposed a pothole detection system utilising a Microsoft Kinect 

depth sensor [68, 69, 70].  Positioned 0.8-0.9 meters above ground, the sensor provides 

data processed within MATLAB.  Potholes are identified as local minima within each image 

column.  Depth (Z-axis) is directly measured in millimetres, while pixel-based X and Y 



63 
 

coordinates are converted to real-world units using calibration parameters.  MATLAB 

functions calculate descriptive statistics for detected potholes (mean depth, maximum 

depth, standard deviation). 

The system’s assessment according to the discussed criteria is as follows: 

 Efficiency: While providing extensive measurements, the 15% error rate 
necessitates improvement for reliable deployment. Optimisation strategies 
should be explored to enhance accuracy without sacrificing computational 
efficiency. 

 Real-time Functionality: Insufficient data exists to determine the system's 
real-time suitability.  Runtime analysis on representative hardware is essential. 

 Computational Requirements: The overall system design suggests 
manageable computational demands for potential use on mobile platforms. 
However, the reliance on MATLAB introduces potential bottlenecks and 
licensing requirements. 

 Power Consumption:  The system appears compatible with a mobile 
platform's power source, but detailed analysis would be needed to confirm this 
assumption. 

 System Size:  The core components (depth camera, processor) indicate a 
manageable physical footprint. 

 Mass-Production Feasibility:  The system's fundamental design suggests 
scalability. However, the MATLAB dependency poses a significant barrier to 
cost-effective mass production. Porting the core algorithms to an open-source 
framework or a language without licensing constraints would be crucial. 

 

 

 

 

 

 

 

2.3.3 Non-Vision Based Systems 
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Tire Pressure / Vibration as Input: 

Researchers have explored various approaches for pothole detection using 

smartphone sensors and specialised hardware.  Some methods [71, 72, 73, 74] focus on 

changes in accelerometer readings, as potholes induce distinctive vibrations, along with 

potential use of ultrasonic sensors and GPS.  Variations exist, such as analysing tyre sounds, 

pressure fluctuations [75, 76, 77] and even deep learning techniques [78].  A common goal 

is the calculation of the International Roughness Index (IRI).  However, these methods 

share a fundamental limitation: they inherently rely on the vehicle having already 

encountered the pothole. This reactive approach precludes their use in real-time obstacle 

avoidance for autonomous vehicles. 

The techniques described so far have been summarised in the comparison table below: 
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Table 2.2: Vision-based systems comparison table 
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Table 2.3: Non-vision-based systems comparison table 
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2.4 Incline Detection and Assessment Techniques 

 

Navigating the world presents a unique set of challenges for individuals who rely on 

wheelchairs for mobility. Seemingly ordinary features of the built environment, such as 

inclines and uneven terrain, can transform into significant obstacles.  The absence of 

properly designed wheelchair ramps further exacerbates these difficulties, limiting access 

to public spaces and hindering social participation. These limitations have a profound 

impact on a person's sense of independence, dignity, and overall inclusion within their 

community. 

Upward inclines pose a significant physical challenge for wheelchair users.  The 

steeper the incline, the greater the exertion required to propel the wheelchair, leading to 

fatigue and potentially exceeding an individual's upper body strength.  Downward inclines 

can be equally problematic, presenting difficulties in maintaining control and increasing 

the risk of accidental falls.  Uneven surfaces further complicate navigation, creating 

instability and potentially causing damage to wheelchairs. 

The lack of properly designed wheelchair ramps presents another critical barrier.  

Inadequate ramp slopes, excessively narrow widths, or missing handrails can render a 

ramp unusable or unsafe for individuals with varying mobility needs. Assessing whether 

the ramp is safe or not is not as easy as it may seem. A ramp can be considered 

untraversable and unsafe when its inclination is more than one degree higher than the 

standard set by the local regulators.  This often results in forced detours, social exclusion, 

and a constant undercurrent of anxiety about encountering unexpected obstacles, as well 

as the challenges present when attempting to assess their traversability. 

The limitations imposed by inclines and inadequate wheelchair ramps extend beyond 

manual navigation for individuals with disabilities. They also pose significant challenges 

for the ongoing development of autonomous and semi-autonomous vehicles.  This section 

presents a critical analysis of existing techniques for addressing these challenges, offering 

a comprehensive and unbiased assessment of their performance, reliability, and 

scalability. To facilitate a rigorous comparison, a systematic evaluation of each technique's 

strengths and weaknesses will be conducted. 
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2.4.1 Review Strategy and Performance Measures 

 

This section delves into a critical examination of existing techniques for detecting and 

localising upwards and downwards inclines. The review will encompass not only incline 

identification but also segmentation, which involves precisely delineating the incline's 

boundaries, and assessment, which refers to measuring its characteristics like inclination 

angle or slope.  A core focus will be placed on understanding the underlying technological 

principles that drive each approach. 

A rigorous evaluation framework will be established to provide a comprehensive 

comparison. This framework will assess the strengths and weaknesses of each method 

based on key design criteria crucial for real-world applications, particularly those 

involving detection and localisation.  Here's a breakdown of these criteria: 

 Accuracy: This criterion assesses how well a technique can correctly identify 

the presence of inclines and accurately measure their characteristics. Metrics 

such as accuracy and confidence will be employed to reflect the number of 

times a non-incline is mistakenly identified as one and will be employed from 

the research literature whenever available to quantify accuracy. 

 Precision:  This criterion focuses on how precisely a technique can locate and 

define the exact boundaries of an incline.  For segmentation techniques that 

involve delineating incline borders and assessing the difference between the 

ground truth and the measured values. 

 Environmental Robustness: Real-world environments present challenges 

like varying lighting conditions, weather fluctuations, and potential occlusions 

from objects or other terrain features.  This criterion evaluates how well a 

technique maintains its performance under such complexities.  For instance, 

techniques relying solely on vision might be more susceptible to lighting 

variations compared to those that incorporate depth sensors, which can 

provide more robust incline detection regardless of lighting conditions. 



70 
 

 Computational Efficiency:  This criterion assesses the computational 

resources required by the technique.  For applications such as autonomous 

navigation, real-time processing capabilities are essential. Techniques that rely 

on computationally intensive models might not be suitable for real-time 

deployment on resource-constrained platforms like autonomous vehicles. 

By synthesising the insights gained from analysing the strengths and weaknesses of 

existing techniques, the goal is to pave the way for the development of a novel detection 

and localisation algorithm for inclines. This novel approach will aim to leverage the 

strengths of current methodologies, potentially by combining functionalities from 

different techniques, while offering superior accuracy and reliability for incline detection 

tasks, exceeding the limitations identified in the reviewed methods.  Furthermore, the 

review will integrate relevant performance metrics like accuracy, error rate, processing 

time, and power consumption from the research literature to support the evaluation, 

providing a quantitative basis for assessing the effectiveness of existing techniques. 

Additional information can be found within Appendix B. 

 

2.4.2 Vision or Radar-Based Systems 

 

2.3.2.1 Point-Cloud-Based Techniques 

 

Qiu et. al [79], and Heckman et. al [80] introduced a real-time algorithm for off-road 

terrain estimation using laser data that generates a point-cloud representation of the 

surrounding environment. addressing the challenges of complex calculation and object 

abstraction faced by the Gaussian mixture algorithm (GMA) in practical applications. The 

modified GMA introduces three key enhancements: a selection window based on the 

dominant-ellipse-principle to limit the probability distribution area, a clustering approach 

for efficient object distinction, and a virtual point vector to reduce the computational load 

of the mean square error matrix. These modifications improve the algorithm's real-time 
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performance and potential obstacle detection capability, as demonstrated through 

experiments on a tracked mobile robot.  

Furthermore, Qiu et al. demonstrated the algorithm's efficiency in distinguishing 

obstacle contours and its computational speed compared to the ordinary GMA. Introducing 

the selection window, clustering strategy, and virtual point vector significantly enhances 

the algorithm's real-time feasibility and object-abstraction capability, addressing the 

limitations of the original GMA. The appendix provides a detailed explanation of the 

derivation process for the virtual point vector, offering a comprehensive insight into the 

algorithm's technical intricacies and implementation. 

As per the introduced criteria, the system can be assessed as follows: 

 

 Accuracy: The system's accuracy remains indeterminate due to a paucity of 
test cases. The reliance on simulated data limits the generalisability of 
performance claims. 

 Precision: The lack of comprehensive metric data prevents a conclusive 
assessment of the system's precision. Further quantitative analysis is required. 

 Environmental Robustness:  Limitations inherent to the chosen sensing 
technique raise concerns about real-world implementation. Robustness cannot 
be verified without empirical testing in diverse environmental conditions. 

 Computational Efficiency: The system exhibits real-time functionality, 
evidenced by a response time of 42.4531 ms. This suggests computational 
efficiency. 

 

 

Zhend et. al [81] presented a method for real-time slope detection of planetary surfaces 

in the context of autonomous obstacle avoidance for planetary rovers via the use of LiDAR 

sensing. 

The system is based on a slope detection method involving the down-sampling of 

original point clouds, voxel mesh filtering, 3D point cloud clipping and segmentation, local 

ground plane fitting estimation, and the classification of slopes based on predetermined 

thresholds.  The system utilises sensor fusion by carrying different onboard sensors, 

including passive sensor measurement and active sensor measurement, and by using its 

multi-sensor fusion measurement technique, real-time results are obtained. Slope 
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estimation methods proposed include the Kalman filtering method, least square method, 

edge slope detection method, 3D point cloud fast segmentation method, data acquisition 

method of slope detection based on Trimble GX 3D laser scanner, and LiDAR method. 

  

By employing the performance criteria discussed, the system can be assessed as follows: 

 Accuracy: The limited number of test cases renders the system's accuracy 
indeterminate. Over-reliance on simulated data restricts the extrapolation of 
performance claims to real-world scenarios. 

 Precision:  The absence of comprehensive metric data impedes a definitive 
evaluation of the system's precision. Robust quantitative analysis is essential 
for an informed assessment. 

 Environmental Robustness: Constraints inherent to the chosen sensing 
technique necessitate empirical testing in diverse environmental conditions to 
ascertain real-world robustness. 

 Computational Efficiency: While the experiment suggests real-time 
functionality, further analysis is required to establish the consistency and 
computational efficiency of the system under varying workloads. 

 

 

Meng et al. [82] presented a slope detection method tailored for quadruped robots 

equipped with 3D LiDAR sensors. 

The proposed slope detection method leverages bilateral filtering and Random Sample 

Consensus (RANSAC) algorithms to analyse point cloud data obtained from the 3D LiDAR 

sensor. By fitting planes to the data using RANSAC, the method can accurately detect slopes 

in the environment. The RANSAC algorithm iteratively identifies inliers that fit the plane 

model while excluding outliers, ultimately estimating the slope angle and position. This 

approach allows for robust slope detection even in the presence of noisy data or outliers, 

enhancing the reliability of the results. 

As per the criteria discussed, the system can be assessed as below: 

 Accuracy: Observed detection rates suggest acceptable accuracy, however, 
additional rigorous testing is required for a comprehensive evaluation. 

 Precision:  The system exhibits precision within the acceptable low-end 
expected range (± 2 degrees), though a broader range of measurements would 
strengthen this claim. 
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 Environmental Robustness: Inherent constraints of the sensing technique 
raise concerns about the system's robustness across diverse environmental 
conditions. Empirical testing in variable environments is essential. 

 Computational Efficiency: The experiment indicates real-time functionality, 
but further analysis under diverse workloads is needed to confirm consistency 
and computational efficiency. 

 

Rusu et al.  [83], Gutmann et. al. [84], and Snigh et al. [85]  presented a stereo-vision 

technique, later improved by Murarka et. al [86, 87] presented a stereo vision-based 

mapping algorithm fused with image segmentation, and motion cues, focusing on enabling 

wheeled mobile robots to navigate safely in urban environments by detecting inclines, 

drop-offs, and obstacles 

The algorithm segments the 3D grid into potentially traversable ground regions and 

fits planes to these segments using linear least squares, distinguishing between level, 

inclined, and non-traversable areas. 

 

By applying the discussed criteria, the system can be assessed as follows: 

 

 Accuracy: Even though the test results show a promising accuracy with the 
True Positive and True Negative rate being high (90%+), the results remain 
acceptable as this should be improved for the system to be usable by the public. 

 Precision:  The precision of the system is not addressed as the system provides 
w binary solution of the problem without a precise measurement of the 
inclination angle and the width of the plane. 

 Environmental Robustness: The inherent characteristics of the sensing 
technique suggest potential vulnerabilities to varying environmental 
conditions, particularly changes in lighting. Rigorous empirical testing across 
diverse scenarios is crucial to determine the system's true robustness. 

 Computational Efficiency: Whilst the experimental results imply real-time 
capability,  comprehensive testing under varied workloads is necessary to 
confirm both the consistency of the system's real-time performance and its 
overall computational efficiency. 

 

Brossette et al. [88], Cockrell et al. [89], and Tseng et. al. [90]  presented an RGB-D-

based algorithm for ramp and incline detection, which was later improved by Nejati et al. 

[91] whom presented an algorithm for automated real-time ramp detection using 3D point 

cloud data for powered wheelchairs, focusing on addressing the challenges faced by 
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individuals with severe motor impairments using binary control interfaces. The algorithm 

uses point cloud data collected from an RGB-D sensor to detect the orientation, slope, and 

width of traversable ramps without visual fiducial requirements and environmental 

customisation.  

Based on the specified criteria, the system can be assessed as follows: 

 Accuracy: The system’s accuracy raises concerns as the average accuracy is 
only limited to 87.9% which prevents it from being real-world usable.  

 Precision:  The system provides precise measurements when the outcome is 
a True Positive. However, this remains limited to the region-growing 
algorithm’s performance as false readings as possible due to overlapping 
objects 

 Environmental Robustness: The inherent characteristics of the sensing 
technique suggest acceptable performance in real-world scenarios if the 
accuracy of the detection is sufficient. RGB-D image sensors are considered 
reliable in most cases. 

 Computational Efficiency: Whilst the experimental results imply real-time 
capability,  the system is at risk of inadequate performance due to the fact that 
the region-growing algorithm is the chosen segmentation algorithm. The 
chosen technique is also computationally expensive which is another issue that 
needs to be addressed. 

 

 

 

2.3.2.2 Non-Point-Cloud-Based Techniques 

 

 

J. Wu et. al [92] proposed implementation of Convolutional Neural Networks (CNN) to 

identify buildings with ramp entrances, as required by the Americans with Disabilities Act 

(ADA) to ensure equal access for individuals with disabilities. The aim is to develop an 

artificially intelligent system capable of classifying building images to determine the 

presence or absence of a ramp at the entrance, utilising CNNs for image classification. 

 

By applying the discussed criteria, the system can be assessed as follows: 

 

 Accuracy: The system’s result reflect a reliable accuracy as it reaches 95.6%. 
This means that the accuracy is within the acceptable ranges. 
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 Precision:  The system does not provide any measurements of the inclination 
angle and width of the incline plane which limits its capability in terms of 
precision. 

 Environmental Robustness: The inherent characteristics of the sensing 
technique pose a limitation to the system’s performance and usability as it 
cannot perform adequately in low-light scenarios. 

 Computational Efficiency: The system utilises a CNN in order to perform its 
core detection and classification functions, hence, it requires computational 
power even though it can perform in real-time. 

 

 

 

B. Wu et. al [93] presented an uphill safety controller for intelligent wheelchairs, 

incorporating deep learning-based ramp detection via the use of a CNN. The controller 

system consists of user buttons, ramp classes, and real-time camera screens. The 

controller algorithm is divided into two parts: fuzzy rule calculation of target speed based 

on user input and current speed and Q-learning-based ANFIS controller for computing the 

final output speed. The system employs a voting system and gyroscope data assistance to 

improve accuracy, resulting in a higher classification rate of ramp detection. 

 

Based on the presented criteria, the system can be assessed as follows: 

 

 Accuracy: The system’s result reflects a reliable detection of 92.1%. This 
means that the accuracy is within the acceptable ranges. 

 Precision:  The system does not provide detailed measurements of the 
inclination angle of the detected planes as estimated by the system making the 
data available below the needed requirements. 

 Environmental Robustness: The intrinsic limitations of the chosen sensing 
technique compromise the system's performance and practical utility, 
particularly in low-light and limited-visibility environments. This dependence 
on specific environmental conditions hinders reliable operation in diverse 
real-world settings. 

 Computational Efficiency: The system's utilisation of a CNN for core detection 
and classification tasks, while enabling real-time performance, necessitates 
significant computational resources.  This trade-off highlights the inherent 
tension between accuracy, often achieved by computationally complex models, 
and the constraints of real-time operation. 
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Lutz et al. [94] proposed a technique enabling a humanoid robot, specifically the Nao 

robot, to autonomously navigate ramps using only vision and inertial data. By integrating 

monocular vision and inertial measurements, the Nao robot successfully walks down a 

2.10 m long ramp inclined at 20 degrees. The approach involves recognising the 

boundaries of the ramp by detecting the top and bottom edges using image processing 

techniques like the Canny edge detection algorithm and the probabilistic Hough transform. 

This allows the robot to carefully enter and exit the ramp without falling. 

Based on the specified criteria, the system can be assessed as follows: 

 

 Accuracy: Information given about the experiment is not sufficient to make 
this judgement. 

 Precision:  The system does not take into account the pre-measurement of the 
inclination angle of the ramp, which means that precision cannot be measured. 

 Environmental Robustness: The intrinsic limitations of the chosen sensing 
technique limit the system’s performance due to problems such as ambiguous 
scale and low-light scenarios. 

 Computational Efficiency: The system was used on the NAO robot’s internal 
processor, which means that it is not very computationally expensive, it can 
perform in real-time, and can be mounted onto an EPW. 

 

 

 

 

2.4.3 Non-Vision or Radar-Based Systems 

 

Tareen et al. [95] proposed two low-cost slope detection and calculation techniques 

using ultrasonic range finders, implemented on a robot named "The ROBUST," enabling it 

to differentiate between objects and sloppy paths. The first technique, Technique A 

involves fixed ultrasonic range finders and is limited in its applicability to a specific range 

of inclination/declination angles due to the deflection of ultrasonic waves from smooth 

surfaces. In contrast, Technique B, which involves a rotatable platform, offers more 

versatile and remote sensing of different orientations of slopes, including ditch detection 

and avoidance. The discussion also addresses the challenges and limitations associated 
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with ultrasonic range finders, including their susceptibility to interference, environmental 

conditions, and the need for signal conditioning to fine-tune the sensors for accurate slope 

detection. 

 

By applying the discussed criteria, the system can be assessed as follows: 

 

 Accuracy: The system’s accuracy is not reliable due to the many limitation to 
the detection rate caused by the inherent limitations of the sensor technology 
used. 

 Precision:  The system, although not reliable to succeed in every detection, has 
an acceptable precision with a very low error margin. 

 Environmental Robustness: The intrinsic limitations of the chosen sensing 
technique render the system unreliable due to the high risk of failure that 
ultrasound sensors face. 

 Computational Efficiency: The system is not computationally expensive and 
therefore can be run in real-time without issues. 

 

     

Yu et al. [96] proposed a technique for dead reckoning of a mobile robot in complex 

terrain based on proprioceptive sensors such as fibre optic gyro and tilt sensors. It 

emphasises the importance of accurate and reliable dead reckoning for mobile robot 

navigation and proposes a method that integrates multiple proprioceptive sensors' 

information to estimate the relative motion trajectory of a mobile robot. The proposed 

method involves the analysis of the kinematic model of a mobile robot and suggests the 

integration of the wheel-ground contact angle for more accurate estimation. The paper 

also discusses the dead reckoning algorithm, outlining the steps involved in sensor data 

pretreatment, rigid-body transformation, estimation of wheel-ground contact angles, 

calculation of velocity components, and the update of dead reckoning. Furthermore, the 

document presents the results of motion simulation and experimental analysis conducted 

to validate the proposed dead reckoning method using an experimental platform of a 

mobile robot with two rocker-bogie suspensions and four drive wheels. 

By applying the discussed criteria, the system can be assessed as follows: 
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 Accuracy: The system exhibits limited accuracy in incline detection. This stems 
from inherent limitations within the chosen sensor technology, restricting the 
achievable detection rate. 

 Precision: the system does not explicitly incorporate inclination 
measurement, precluding a detailed analysis of its precision in this regard. 

 Environmental Robustness: The system demonstrates reduced 
environmental robustness due to the intrinsic limitations of the chosen sensing 
methodology.  Specifically, IMUs are known to suffer from accuracy 
degradation and potential failure under specific environmental conditions. 

 Computational Efficiency: The system demonstrates favourable 
computational efficiency, enabling real-time operation without significant 
computational overhead. 

 

Zhiblin et al. [97] proposed an integrated control framework designed to enhance 

humanoid robot stability on uneven terrain. This framework seamlessly merges 

stabilisation control with terrain inclination estimation. Stabilisation is realised through 

passivity-based admittance control, leveraging force/torque feedback within the feet to 

modulate compliance actively. Terrain estimation is conducted via a logic-based algorithm 

that employs the feet as probes to determine surface inclination. This algorithm effectively 

manages under-actuation phases from foot tilting on the contact surface. The admittance 

controller dynamically adjusts equilibrium positions to facilitate balance recovery on 

sloped surfaces. As most robotic systems utilise position-controlled actuators, the study 

investigates an c that exploits force/torque feedback in the feet to alter joint position 

references, thereby promoting passivity substantiate the capabilities of the framework in 

terrain inclination estimation, slope-based balance adaptation, and upright posture 

maintenance. 

 

As per the assessment criteria proposed, the system’s performance is evaluated as 

below: 

 Accuracy: The system exhibits limited accuracy in incline detection. This 
limitation arises from constraints inherent to the chosen sensor technology, 
restricting the achievable detection rate. 

 Precision: The system does not explicitly address inclination measurement, 
precluding a detailed analysis of its precision in this respect. 
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 Environmental Robustness: The system demonstrates reduced 
environmental robustness due to intrinsic limitations of the chosen sensing 
methodology.  Specifically, the contact exploration technique employed is 
known to suffer from accuracy degradation and potential failure under specific 
environmental conditions. 

 Computational Efficiency: The system possesses favourable computational 
efficiency, facilitating real-time operation without imposing significant 
computational overhead. 

 

 

 

In order to provide a comparative framework for the discussed techniques, the table 

below is assimilated: 

 

Table 2.4: Incline detection and assessment techniques comparison table 

Authors Sensory 
Method 

Main Limitation Accuracy Precision Environmental 
Robustness 

Computational 
Efficiency 

Qiu et 
al. 

Laser Vision Environmental 
Sensitivity 

NED NED Limited Real-Time 
Detection 

Zheng et 
al. 

LiDAR Sensing Environmental 
Sensitivity 

NED NED Limited NED 

Mend et 
al. 

LiDAR Sensing Environmental 
Sensitivity 

Acceptable Acceptable Limited Real-Time 
Detection 

Murarka 
et al. 

Stereo Vision Binary 
Solution 

Acceptable NM NED Real-Time 
Detection 

Nejati et 
al. 

RGB-D Sensor Computational 
Power 

Average High Acceptable NED 

J. Wu et 
al. 

RGB Sensor Binary 
Solution 

Acceptable NM Limited Real-Time 
Detection 

B Wu et 
al. 

RGB Sensor Sensor 
Reliability 

Acceptable NM Limited Real-Time 
Detection 

Lutz et 
al. 

Monocular 
Vision + IMU 

Sensor 
Reliability 

NED NM Limited Real-Time 
Detection 

Tareen 
et al. 

Ultrasonic 
Sensors 

Sensor 
Reliability 

Not 
Reliable 

Acceptable Limited Real-Time 
Detection 

Yu et al. Proprioceptive 
Sensors 

Sensor 
Reliability 

Limited NM Limited Real-Time 
Detection 

Zhiblin 
et al. 

Admittance 
Controller 

Sensor 
Reliability 

Limited NM Limited Real-Time 
Detection 



80 
 

 

 

 

 

 

 

 

 

2.5 Downwards-facing Stairs and Curbs Detection and 

Localisation Techniques 

 

Individuals with mobility impairments often rely on electric-powered wheelchairs 

(EPWs) and other assistive technologies (ATs) to navigate their daily lives, to them, every 

day poses a new challenge to the previous with numerous obstacles and limitations. 

Despite the advancements in these technologies, users continue to face a multitude of 

challenges that hinder their independence, inclusion, and overall quality of life. These 

challenges stem from limitations within the built environment, societal attitudes, and the 

inherent constraints of current assistive devices. 

The built environment presents numerous obstacles for EPW and AT users. 

Architectural barriers such as uneven terrain,  lack of proper wheelchair-accessible curbs 

and their cuts, the lack of proper safety markings to warn from downwards-facing stairs, 

and other everyday challenges severely restrict mobility and access to essential spaces. 

Social stigma and negative assumptions about ability can create further barriers, leading 

to discrimination and reduced participation in social activities. Additionally, while ATs 

offer significant benefits, they can have limitations regarding manoeuvrability, 

adaptability to diverse environments, and ease of use. 

NM: Not Mentioned 

NR: Not Relevant 

NED: Not Enough Data 
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Downwards-facing stairs and curbs present particularly hazardous obstacles, 

introducing risks of falls, collisions, and a significant curtailment of independent mobility. 

The development of reliable and accurate downwards-facing stairs and curb detection and 

localisation techniques is crucial for enhancing the safety, autonomy, and overall quality 

of life for EPW and AT users. 

Existing literature offers a range of approaches to address this challenge. Traditional 

computer vision techniques often rely on geometric feature extraction and pattern 

recognition. These methods can be computationally efficient but may struggle with 

adaptability under varying lighting conditions or complex environments.  Alternatively, 

sensor-based solutions using ultrasonic sensors, depth cameras, or LiDAR can provide 

more robust depth perception. The recent surge in machine learning, particularly deep 

learning, has driven innovation in this field. Convolutional neural networks (CNNs) have 

demonstrated promising results in image-based obstacle classification, including stairs 

and curbs. However, challenges persist in dataset acquisition, the need for large 

computational resources, and ensuring system generalisation across diverse real-world 

scenarios. 

Beyond obstacle detection, accurate localisation is essential for safe and effective 

navigation by EPWs and ATs. Research in this area explores techniques such as sensor 

fusion, simultaneous localisation and mapping (SLAM) algorithms, and the integration of 

GPS data. These approaches aim to provide precise real-time information about the 

position and orientation of obstacles relative to the assistive device. 

 

 

2.5.1 Review Strategy and Performance Measures 

 

This section critically examines the state-of-the-art techniques for downwards-facing 

stairs, curb detection, and localisation specifically designed for assistive technologies and 

EPWs. It will analyse the strengths and limitations of existing methodologies across a range 

of parameters, including accuracy, reliability, computational efficiency, adaptability, and 
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cost-effectiveness. Additionally, the review will identify key research gaps and potential 

directions for future innovation. 

A robust evaluation framework will be established to facilitate a rigorous comparative 

analysis of incline detection and localisation methods. This framework will systematically 

assess the merits and limitations of each technique according to core design criteria 

essential for real-world deployment. Key criteria include: 

 Accuracy: The technique's ability to correctly classify curbs and downward-

facing stairs while accurately measuring their dimensions. Metrics such as 

classification accuracy (percentage of correct classifications) and confidence 

scores will be used to quantify accuracy. 

 Precision: The technique's ability to precisely delineate the boundaries of a 

traversable path, taking into account the spatial relationship between curbs, 

downward-facing stairs, and the path itself. Segmentation techniques will be 

evaluated using metrics that compare the deviation between predicted 

boundaries and ground truth. 

 Environmental Robustness: The technique's performance under real-world 

complexities such as varying lighting, weather conditions, and potential 

occlusions. This evaluation will consider the potential benefits of multi-sensor 

fusion (e.g., combining vision and depth sensors) for enhanced resilience 

compared to vision-only approaches. 

 Computational Efficiency: An assessment of the computational resources 

required by each technique. Real-time path planning for autonomous 

navigation demands efficient algorithms. Techniques with high computational 

overhead might necessitate specialised hardware or be unsuitable for 

resource-constrained platforms. 

 

A critical synthesis of the strengths and weaknesses identified within existing curbs 

and downwards-facing stairs detection and localisation techniques will serve as the 

foundation for the development of a novel algorithm. This novel approach will strategically 



83 
 

leverage the identified advantages of current methodologies.  One potential approach 

could involve the fusion of functionalities from complementary techniques. The primary 

objective will be to surpass the limitations of reviewed methods by achieving superior 

accuracy, precision, and robustness in incline detection tasks. 

The proposed evaluation framework will play a pivotal role in this development 

process. By integrating relevant performance metrics from the research literature (e.g., 

accuracy, error rate, processing time, power consumption), the framework will provide a 

quantitative basis for objectively assessing the effectiveness of existing techniques. This 

comparative analysis will serve as a guiding principle for strategically combining the 

strengths of existing methodologies and ultimately inform the design of the novel 

algorithm. Additional information can be found within Appendix C. 

2.5.2  Vision or Radar-Based Systems 

 

 

2.3.2.1 Point-Cloud-Based Techniques 

 

Ashraf et al. [98] introduced a system that performs the autonomous detection of stair 

dimensions for motion planning of stair-climbing robots. . The proposed approach uses a 

depth camera to determine stair features necessary for autonomous motion planning. It 

involves computing the point cloud of the perceived environment using a pinhole camera 

model and organising the data into horizontal and vertical clusters to generate classes for 

each step. The Maximum Likelihood Estimation Sample Consensus (MLESAC) algorithm is 

used to fit a plane on each class to accurately determine stair dimensions. Various existing 

methods using sensors like monocular cameras, stereo cameras, and LIDAR are also briefly 

discussed, highlighting their advantages and limitations. The proposed approach with a 

depth camera is described as accurate, low-cost, and suitable for real-time operation with 

high precision 
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As per the discussed performance assessment criteria, the system can be evaluated as 
follows: 

 

 Accuracy: The system achieved an average accuracy of 93.63% when tested in 
a simulation environment which suggests an acceptable accuracy. 

 Precision: The detection precision is not mentioned within the experimental 
results which suggests that further testing in required. 

 Environmental Robustness: The detection method’s inherent limitations 
form a serious limitation to the system. Mainly the issue of the field of view, 
and the low-light performance. 

 Computational Efficiency: The system is computationally expensive, which 
means that it not the answer for a real-time detection algorithm.  

 

 

Apellániz et al. [99] proposed a technique for detecting 3D curbs in point cloud data 

from LiDAR sensors through a process involving the use of deep neural networks and 

odometry information. The detections generated can serve as pre-annotations for 

annotation tools, reducing manual annotation time by about 50%. The methodology 

includes scan-level curb detection using a DNN, transforming 2D predictions to 3D curb 

points, reconstructing 3D curbs for entire sequences, and post-processing steps like 

clustering, skeletonisation, and simplification to generate final polylines. The goal is to 

provide standardised curb annotations that can be utilised in annotation tools efficiently.  

 

By applying the discussed criteria, the system can be assessed as follows: 

 

 Accuracy: The system exhibits an acceptable accuracy of 87.8%. This limits its 
usability in assistive technologies, however, it remains a proportionally high 
rate. 

 Precision: The system’s precision peaks at 90.7% making it acceptably precise. 

 Environmental Robustness: The inherent limitations caused by the chosen 
sensing technique (LiDAR) render the system susceptible to environmental 
challenges. 

 Computational Efficiency: The system requires a significantly high 
computational power making it a less favourable candidate for real-time 
detection tasks. 
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Zhao et al. [100], Hata et al. [101], Zhang et al. [102, 103], Huang et al. [104],  Horváth 

et al. [105] , Yao et. al. [106], Yu et al. [107], Wang et al. [108], Guo et al. [109] , Zhu et al. 

[110], Jung et al [111],  and Yamamoto et al. [112] utilised the LiDAR technology to detect 

curbs. This was also used and improved by Gurrero et al. [113] who presented a technique 

for road curb detection using a LIDAR 3D sensor in urban environments for autonomous 

vehicle technology. The method includes ground segmentation, geometrical feature 

extraction, and the utilisation of LIDAR 3D reflectance features for curb detection. 

The system includes methods for 2D translation and yaw angle determination using 

calibration patterns on an autonomous shuttle. It utilises ground segmentation techniques 

using LIDAR data to detect road curbs, emphasising the importance of accurate 

segmentation in detecting road boundaries. The system also includes an algorithm for 

ground segmentation based on specific criteria and an approach for road curb detection 

with consideration of geometric features and LiDAR reflectance data. Experimental tests 

were conducted to validate the road curb detection method on an autonomous shuttle 

vehicle. Additionally, reflectance data is used to improve the precision and sensitivity of 

road curb detection algorithms. 

 

As per the mentioned criteria, the system can be assessed as follows: 

 

 Accuracy: The system’s accuracy (83.34%) falls below the minimum 
expectations for real-time detection performed whilst being mounted onto an 
electric-powered wheelchair (EPW) 

 Precision: The system’s precision is acceptably high (90.56%). Even though it 
falls below expectations, it can still be used for less critical systems. 

 Environmental Robustness: The inherent limitations of the LiDAR sensor 
prevent the technique from being considered environmentally robust  

 Computational Efficiency: The system requires high computational power 
which brings it to being less favourable when it comes to real-time detection. 

 

 

 

 



86 
 

2.3.2.2 Non-Point-Cloud-Based Techniques 

 

Zou et al. [114] chose deep learning, a technique previously used by Patil et al. [115] to 

detect stairs. Zou et al.’s method performs road curb detection using a deep learning 

framework, particularly focusing on detecting curbs in single road images for autonomous 

driving. The method utilises a customised convolutional neural network (CNN) based on 

ResNet18 for feature extraction to classify curb and no-curb regions within a boundary 

box.  

By employing the mentioned criteria, the system can be assessed as follows: 

 Accuracy: The system’s reported accuracy is  99.4%. However, there remains 
concerns about its validity. 

 Precision: The system’s reported precision is  100%. However, concerns are 
raised as this is not illustrated in the provided test results. 

 Environmental Robustness: The inherent limitations of the RGB sensor 
render the technique environmentally unrobust . 

 Computational Efficiency: The system requires high computational power 
which brings it to being less favourable when it comes to real-time detection. 

 

 

Zhou et al. [116] presented LaCNet, a network dedicated to real-time detection of 

arbitrary-shaped lanes and curbs through instance segmentation. This network combines 

lane and curb detection tasks, addressing challenges such as differentiating various 

instances with tiny gaps and complex spatial relationships encountered in real driving 

scenarios.  

As per the discussed criteria, the system can be assessed as follows: 

 Accuracy: The system’s accuracy is represented by its F1-Score 98.65% which 
is a notable result. 

 Precision: The system’s reported precision is  98.42%, which is a notable 
result.  

 Environmental Robustness: The inherent limitations of the RGB sensor 
render the technique environmentally unrobust . 
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 Computational Efficiency: The system performs in real-time. Howeverm it 
requires high computational power making it unsuitable for assistive 
technologies. 

 

 

Mihankhah et al. [117] utilised laser sensors to detect stairs in real time. This was later 

used by Byun et al. [118] to detect curbs, and improved by Pollard et al. [119] who 

proposed a system for step and curb detection using laser sensors for Personal Mobility 

Vehicles (PMV) in urban areas where steps and curbs can be barriers for individuals with 

mobility issues. The system is based on an algebraic derivative method applied to laser 

sensor data to detect steps in front of the vehicle.  

With the help of the mentioned criteria, the system can be assessed as follows: 

 Accuracy: The accuracy of the system was not reported. Although the resultant 
experiment shows an acceptable accuracy. 

 Precision: The reported precision of the system is 98.42%. 

 Environmental Robustness: The inherent limitations of the RGB sensor 
render the technique environmentally unstable . 

 Computational Efficiency: The system requires high computational power 
which brings it to being less favourable when it comes to real-time detection. 

 

 

Manuel et al. [120], Cai et al. [121] and Panev et al. [122] attempted to use an RGB 

camera to tackle the problem. However, Panev et. al used the monocular forward-view 

camera already fitted on many cars as a standard. This camera is usually fitted with a 

fisheye lens. He proposed method combines 3-D geometric reasoning with advanced 

vision-based detection methods to estimate the size, location, and orientation of road 

curbs. This technology is crucial for advanced driver assistance systems to prevent 

collisions and damages during parking manoeuvres. The system involves curb detection in 

individual video frames and temporal analysis for false positive rejection.  

 

 By applying the assessment criteria discussed before, the system can be evaluated as 
follows: 
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 Accuracy: The accuracy of the system, as reported (91.4%) is acceptable 

 Precision: The reported precision of the system is represented by the F1-Score 
and calculated as 92.3%, making it acceptable. 

 Environmental Robustness: The inherent limitations of the RGB sensor 
render the technique environmentally unstable. The reported testing weather 
conditions only account for clear and cloudy weather. 

 Computational Efficiency: The system requires high computational power 
which brings it to being less favourable when it comes to real-time detection. 

 

Cheng et al. [123] introduced a curb detection for road and sidewalk detection in urban 

residential areas using stereo vision. The method involves estimating flat areas, creating a 

16-dimensional descriptor for curbs, employing a vanishing point-constrained model for 

road detection, utilising a region-growing method for sidewalk detection, and 

implementing a classification framework with Support Vector Machines (SVM) for curb 

point detection. Curb points are detected using a classification framework with a Support 

Vector Machine (SVM) model and how false positives are removed. 

 
By employing the discussed evaluation criteria, the system is assessed as follows: 
 

 Accuracy: The accuracy of the system is represented by its maximum F1-Score 
of 95.27%, which makes it considerably acceptable. 

 Precision: The reported precision of the system 94.57%, making it notable. 

 Environmental Robustness: The inherent limitations of the segmentation 
and classification techniques make it environmentally unstable.  

 Computational Efficiency: The system requires high computational power 
which brings it to being less favourable when it comes to real-time detection. 

 

 

2.5.3 Non-Vision or Radar-Based Systems 

 

Rhee et al. [124] utilised ultrasonic sensors for curb detection whilst Bouhamed et al. [125], 

Razavi et al. [126] utilised them for staircase detection. This was improved later by Hatua et 

al. [127] who introduced a system implemented to detect universal staircases of dimensions 
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within a specific standard. The algorithm for stair detection is developed based on a 

comparative study of different dimensions of stairs. The ultrasonic sensor emits sound pulses 

to compute distances to the target object.  

To assess the system, the evaluation criteria is applied: 

 Accuracy: Not enough data has been supplied to assess the accuracy of the 
system. 

 Precision: Not enough data has been supplied to assess the precision of the 
system. 

 Environmental Robustness: The inherent limitations of the used techniques 
make it environmentally unstable.  

 Computational Efficiency: The system requires low computational power 
which means that it can be used in real-time scenarios. 

 

In order to provide a comparative framework for the discussed techniques, the table 

below is assimilated: 

 

Table 2.5: Stairs and curbs detection and localisation techniques comparison table. 

Authors Sensory 
Method 

Main Limitation Accuracy Precision Environmental 
Robustness 

Computational 
Efficiency 

Ashraf et 
al. 

Depth 
Camera & 
Point 
Cloud 

Scope of the 
detection 

Acceptable NM Limited Not Real-
Time 

Apellániz 
et al. 

LiDAR 
Sensing & 
DNN 

Environmental 
Sensitivity 

Acceptable Acceptable Limited Not Real-
Time 

Gurrero 
et al. 

LiDAR 
Sensing 

Environmental 
Sensitivity 

Insufficient Acceptable Limited Real-Time 
Detection 

Zou et al. RGB & 
CNN 

Detection Only Acceptable Acceptable Limited Not Real-
Time 

Zhou et 
al. 

RGB & 
CNN 

Environmental 
Sensitivity 

High High Limited Real-Time, 
High Power 
Consumption 

Pollard 
et al. 

Laser 
Sensor 

Sensor 
Reliability 

NM High Limited Not Real-
Time 

Panev et 
al. 

Monocular 
Vision 

Sensor 
Reliability 

Acceptable Acceptable Limited Real-Time, 
High Power 
Consumption 

Cheng et 
al. 

Stereo 
Vision 

Sensor 
Reliability 

High High Limited Real-Time, 
High Power 
Consumption 
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Rhee et 
al. 

Ultrasonic 
Sensors 

Sensor 
Reliability 

NED NED Limited Real-Time 
Detection 

 

 

 

 

2.6 Discussion and Conclusion 

 

A review of existing literature unveils a heavy emphasis on machine vision for obstacle 

detection in autonomous, semi-autonomous, and manually driven vehicles and assistive 

technologies. However, each method suffers from limitations that could endanger users, 

rendering them fallacious for real-time navigation. Achieving a truly autonomous obstacle 

avoidance remains a significant challenge due to the complexities of the environment. 

Unpredictable variations in pavements and diverse curb configurations present difficulties 

for detection algorithms. Additionally, the deceptive similarity between wheelchair ramps 

and potentially hazardous bicycle ramps poses a significant risk for assistive technologies. 

In addition to the previous, the irregular presence and varied shapes of potholes and 

cracks, potentially filled with water, ice, or reflecting bright light, rastically preclude the 

performance of individual sensor systems. 

These environmental elements highlight the limitations inherent in singular sensor 

modalities. RGB cameras struggle with water, ice, low light, and strong light. Thermal 

cameras are hampered via high temperatures. Reflective lasers are susceptible to 

reflections caused by water and ice. LiDAR sensors face limitations in weather sensitivity 

and handling reflective surfaces. Processing power and energy consumption pose further 

constraints. Some systems require intensive computational resources, while others 

demand substantial power to operate sensors and processors. 

Real-time functionality is important for safe navigation. Detection should be near-

instant for accurate obstacle avoidance or safe path traversal, a must that is not met by 

current systems. Finally, the overall system size can be a limiting factor, with bulky 

equipment or large power sources incompatible with assistive technologies' size and 

weight constraints. Whilst design optimisation can often address this, it remains a 

NM: Not Mentioned 

NR: Not Relevant 

NED: Not Enough Data 
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significant consideration. Mass production feasibility is another factor. Although 

manufacturability is generally achievable, the final system cost might be a significant 

barrier to universal adoption. 

In conclusion, the limitations associated with individual obstacle detection and safe 

path traversal techniques necessitate a shift towards a multimodal approach. By 

intelligently combining various sensor modalities and robust processing algorithms, we 

can strive to achieve a more comprehensive and reliable obstacle detection system for 

autonomous vehicles, ultimately enhancing safety and paving the way for the widespread 

adoption of this technology. 

In order to seamlessly overcome the numerous challenges posed, different approaches 

are to be taken for every obstacle’s case: 

 Negative Road Anomalies: This challenge will be overcome by implementing an 

algorithm that fuses data obtained using a CNN trained to detect potholes accurately. To 

accurately localise the detected objects, data from a depth sensor will be fused with the 

RGB sensor’s data to add spatial understanding to the algorithm. The CNN detector to be 

chosen must be light and minimally complex to avoid computational power limitation.   

 Inclines and Wheelchair Ramps: This challenge will be overcome by implementing an 

algorithm that uses point cloud data obtained via a depth sensor. This will reduce the 

system's power consumption and computational cost, enabling it to be used in 

conjunction with the detection of negative road anomalies and the localisation system. 

The point cloud data will be segmented, and the inclination angle of the candidate plane 

will be calculated. Its traversability will be assessed, taking into consideration its 

inclination angle and width, to ensure it is safely traversable. 

 Downwards-facing Stairs and Curbs: This challenge will be overcome by implementing 

an algorithm that uses point cloud data obtained via a depth sensor. Instead of detecting 

downwards-facing stairs and curbs, and to reduce the complexity, the traversable area 

will be detected, segmented, and assessed. A safe distance will be determined to ensure 

that the user’s mobility platform is kept at a safe distance from the edge of the traversable 

area. 
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Employing the presented methodologies enables a holistic system to be designed and 

implemented. This system would constitute a comprehensive novel framework that provides 

users and autonomous, or semi-autonomous navigation systems with sufficient crucial 

information enabling them to safely avoid negative obstacles, and to prudently traverse 

upwards and downwards-facing inclines and ramps. 
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3 .   

Chapter 3 

 

A Manually Collected Potholes 

Images Dataset 

 

 

3.1 Introduction 

 

Potholes present a significant challenge for autonomous systems, particularly assistive 

technologies like Electric-Powered Wheelchairs (EPWs) and mobility scooters. Their 

unpredictable shapes, variable reflectivity when water-filled, and potential for dangerous 

user falls highlight the need for robust detection solutions. Deep learning has emerged as 

a promising technique for pothole detection, offering the potential to adapt to diverse 

visual conditions. However, existing datasets are mainly focused on potholes observed 

from a dashcam or driver’s perspective and are mostly directed towards on-road vehicles 

such as cars, vans, motorbikes, and other on-the-road vehicles. They also often lack 

sufficient representation of water-filled, debris-filled, and diversely coloured potholes. 

This limitation hinders model training for real-world scenarios. This dataset addresses this 

gap by providing 713 high-quality, manually collected images featuring 1152 manually 

annotated potholes following a pre-processing phase where images undergo a number of 

improvements before being processed within the labelling phase. Every image has been 

manually labelled via the use of an open-source labelling software “LabelIMG” [128]. 

Images were annotated with meticulous bounding boxes, ensuring maximum tangency to 

the target objects (potholes).  This approach aimed to precisely constrain the objects while 
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simultaneously preserving sufficient background context for robust analysis of 

surrounding conditions.   This UK-focused dataset emphasises  diverse conditions, 

enhancing the potential for training robust detection models within real-world mobility 

scenarios. Additionally, the inclusion of images obtained from Kent County Council (KCC) 

adds valuable real-world data to complement the manually collected images. The 

proposed dataset has been publicly made available in [129], and extensively described 

within the already-published article [130]. 

This chapter is organised as follows: statement of problem is described in section 3.2. 

The data collection is discussed in section 3.3. The  motivation is discussed in section 3.4, 

the manually-collected dataset is illustrated and described in section 3.5, and the chapter’s 

conclusion, and future improvements are presented in section 3.6 

 

3.2 Statement of Problem 

 

The highly variable nature of potholes poses significant research and engineering 

challenges. Potholes, or surface depressions or failures, lack uniformity in their 

morphology and distribution. They may present diverse shapes, depths, locations, 

orientations, and textural characteristics. The presence of occluding materials further 

complicates the issue. This variability highlights the limitations of standardised detection 

techniques and necessitates innovative solutions. The challenges posed by potholes extend 

beyond detection, impacting both public safety and infrastructure integrity.  They 

represent a considerable hazard to motorists, contributing to vehicular damage and 

potentially dangerous accidents. Traditional methods of manual inspection for potholes 

are notoriously inefficient and susceptible to human error. While automated detection 

systems offer promise, existing algorithms often struggle to accommodate the extensive 

variability in pothole manifestations.  The lack of sufficiently diverse image datasets for 

pothole detection further compounds this problem, hindering the development and 

rigorous evaluation of machine learning models capable of accurately generalising to the 

complexities of real-world environments. 
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3.3 Data Collection 

 

The dataset was constructed using images collected with a Samsung Galaxy Note 8 (13-

megapixel camera).  To ensure representativeness, image collection spanned various 

locations within Kent County, United Kingdom, including urban and rural roads and 

footpaths.  Data was collected under diverse weather conditions (sunny, cloudy, and rainy) 

during both daytime and nighttime, enhancing the dataset's complexity. Potholes were 

photographed from four arbitrary heights and positions within a minimal distance of 50 

centimeters, and a maximum distance of two meters.  In addition, to the images taken via 

the phone sensor, a small number of images have been obtained through Kent County 

Council (KCC) who provided a small sample of pothole images submitted to the council 

within different claims. Collected images were resized to 412 x 412 pixels when possible, 

if not, either the height or width of the image was limited to 412 pixels (whichever 

possible). This enables the dataset to be versatile and usable in any deep learning network 

training scenario. On certain occasions, and in order to improve the understanding of the 

potholes’ stochastic nature, images of the same pothole were taken from different angles 

and heights. This is to enable potential systems to be trained by using the dataset to have 

a clearer spatial understanding of the nature of the object to be detected.  

 

3.4 Motivation 

 

While publicly available datasets often contain substantial image quantities, many 

exhibit limitations stemming from their acquisition methods or content. Datasets derived 

exclusively from dashcam footage may offer limited viewpoints, while others lack diverse 

representations of pothole manifestations, including those filled with water, debris, or 

exhibiting irregular textures. Although models trained on these datasets may achieve 

acceptable performance on similar images, their detection capabilities become 

constrained when exposed to real-world scenarios with greater variability. This highlights 

the crucial need for a new, comprehensive dataset that encompasses the full spectrum of 
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pothole appearances. Such a dataset would be instrumental in developing robust detection 

algorithms adaptable to complex and less predictable environments. 

As below, the dataset covers different cases of pothole instances, with additional cases 

not limited to what is showcased. 

 

 

 

Figure 1 illustrates a small sample of the potholes contained within the proposed 

dataset, these images can be described as below: 

(a) Semi-circular Tarmac Depression: A classic pothole morphology, characterised by 

a semi-circular depression in the asphalt surface. This well-defined shape may be 

detectable by various systems unless occlusions are present. 

(b) Shallow Surface Degradation:  A widespread form of pavement deterioration, 

exhibiting surface cracking without significant depth.  The lack of depth cues poses 

challenges for laser-based detection systems that rely on geometric profiling. 

(c) Irregular Pothole with Occlusions: Presents a complex detection scenario due to its 

irregular shape and the presence of water, dirt, and debris. These occluding materials can 

interfere with laser, lidar, and sonar-based systems. 

 
Figure 3.1: Sample images taken from the manually-collected dataset 
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(d) Water-filled Pothole with Low Contrast: The near-transparent water and location 

near yellow lines creates a low-contrast environment, challenging image-based systems. 

Additionally, laser, sonar, and lidar systems may be affected by the reflective properties of 

water. 

(e) Complex Occluded Pavement Failure: Marked by irregular shape, water, debris 

(rabble, leaves), and its location within a marked parking bay. This combination creates a 

highly challenging scenario for image processing, laser, lidar, and sonar-based detection 

due to reflections, lack of geometric cues, and the diverse nature of the occluding materials. 

 

 

3.5 The Manually-Collected Dataset 

 

The proposed dataset consists of 713 meticulously hand-annotated images, 

encompassing a total of 1157 potholes with their distribution visualised in Figure 3.2.  A 

notable finding is the predominance of water-filled potholes within the dataset, addressing 

a critical gap in publicly available datasets which often lack sufficient representation of 

this challenging pothole type with its characteristic reflectivity and variable water clarity. 

Figure 3.3 further illustrates the distribution of potholes per image, revealing that the 

majority of images contain a single pothole, while a smaller proportion contain multiple 

potholes. This distribution is valuable for understanding the complexity of real-world 

detection scenarios. Additionally, analysis of the bounding box areas relative to the total 

image area allows for the calculation of average pothole-to-image ratios, providing 

quantitative insights into the relative size and density of potholes within the dataset.  

To quantify the average spatial extent of potholes within the dataset, the ratio of each 

bounding box area to its respective image area is calculated.  This yields the average 

pothole-to-image area ratio as defined by the equation: 

𝑅𝑎𝑡𝑖𝑜 = 
𝐻𝑒𝑖𝑔ℎ𝑡 (௨ௗ ௫)  ×  𝑊𝑖𝑑𝑡ℎ (௨ௗ ௫)

𝐻𝑒𝑖𝑔ℎ𝑡 (ூ)  ×  𝑊𝑖𝑑𝑡ℎ (ூ)
= 28.7529 %          (3.1)     
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This means that the image dataset offers sufficient visual information to facilitate 

accurate pothole segmentation from the background, provided that the detection system 

adequately models the surrounding context. 

 

Figure 3.2: Distribution of potholes in the proposed dataset. 

 

 

 

 

Figure 3.3: Number of potholes in images. 
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As a first step, the pre-processing stage took place whereby the collected images were 

downscaled to 30% of their original size. his targeted a width of approximately 415 pixels, 

ensuring compatibility with the input requirements of most contemporary, state-of-the-

art object detection algorithms. Images were then individually annotated using LabelImg 

[128] an open-source Python labeling software. During the annotation process, bounding 

boxes were rigorously drawn to precisely enclose the pothole contours. This approach 

minimises the inclusion of extraneous background pixels within the bounding boxes (as 

shown in Figure 3.4), aiding in the prevention of divergence during the model training 

process. 

 

Figure 3.4: Image labelling as completed using the open-source software described in this section. 
In the image, the pothole object has been surrounded by a manually-drawn bounding box labelled as 
“pothole”. This will serve as an indication to the object detector during the training process. 

 

The annotations were saved in two distinct formats. First, YOLO Darknet [131], 

a text-based format, was used. Each corresponding .TXT file (sharing the image's 

name) contains the following: the class number (in this case, a single class, 

"Pothole"), the bounding box coordinates (X1, Y1, X2, Y2), and the bounding box's 

height and width (as illustrated in Figure 3.5). 
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Figure 3.5: YOLO Darknet Annotation Format. 

 

In addition to the YOLO Darknet format, images were annotated using the PASCAL VOC 

XML format, a widely recognised standard for object detection tasks. This format employs 

XML files that share the name of their corresponding image. Within the "<annotation>" tag, 

the file stores the image's file name, location, and dimensions (width, height, and depth). 

The object's bounding box is defined within the "<bndbox>" tag, using coordinates xmin, 

ymin, xmax, and ymax (equivalent to YOLO Darknet's x1, y1, x2, y2).  Other tags, such as 

"truncated," "segmented," and "difficult," are set to 0 as they are inapplicable in this 

specific case. The PASCAL VOC format offers flexibility for future extensions; if necessary, 

researchers could incorporate these additional tags to describe more complex image 

characteristics. Figure 3.6 provides an illustrative example of a PASCAL VOC XML file. 
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Figure 3.6: Pascal VOC XML Annotation Format 

 

The selected annotation formats—YOLO Darknet and PASCAL VOC XML—reflect their 

widespread adoption within popular object detection environments. This strategic choice 

empowers researchers to seamlessly integrate the proposed dataset into their work, 

facilitating the swift training of object detection models without the added burden of 

format conversions. 

The proposed dataset offers raw data with minimal preprocessing, limited to resizing 

images to approximately 412 x 412 pixels (prioritising a 412-pixel width or height). This 

approach preserves flexibility for future developers, allowing them to tailor application 

methods and preprocessing techniques to the specific demands of their research. For 

training and validation, an 80/20 ratio was employed, with 80% of images randomly 

assigned for training and the remaining 20% for validation. We recommend replicating 

this random split after shuffling the images to avoid potential biases. The dataset's diverse 

backgrounds and objects, coupled with the relatively small average pothole-to-image area 

ratio (28.7529%), provide ample context for deep learning and AI algorithms, facilitating 

accurate pothole recognition across various conditions (time of day, weather, location).  

It's important to note that while the dataset offers a strong foundation, developers may 

need to consider additional augmentations (e.g., rotations, brightness adjustments) to 

further enhance algorithm robustness, particularly in challenging real-world scenarios. 
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3.6 Conclusion  

 

The proposed dataset's diverse pothole conditions (shapes, light conditions, water-

filled or dry) offer a crucial foundation for robust AI-based pothole detection systems, 

providing them with the extensive training data necessary to handle real-world variability. 

This comprehensive dataset holds significant value for researchers in computer vision, 

robotics, autonomous vehicles, and road safety, facilitating the development of systems 

that can reliably identify potholes in varied environments. Notably, it uniquely addresses 

both wet and dry potholes, addressing a critical gap in existing datasets. The dataset's 

potential applications are wide-ranging: from enhancing the navigation capabilities of 

autonomous vehicles and driverless cars to supporting path planning algorithms and 

enabling proactive pothole reporting for local authorities to optimse road maintenance. 

Additionally, the data has the potential to resolve limitations and challenges identified in 

previous research [132].  The dataset was collected the aim to fill the gap in modern 

publicly-available datasets. It contains a comprehensive amount of data covering many of 

the overlooked cases of pothole existence which can be an Achilles’ heel to many AI-based 

object detection algorithms that lack the coverage of such neglected cases of stochastic 

existence of potholes within different shapes, textures, filling, and depth. 

Future work within this dataset will focus on including more cases of ice-filled potholes 

as these are practically rare in the South-East England region, additionally, future 

annotation methods will include additional data representing an estimated depth of the 

pothole in order to enable potentially training a network that detects the depth of a pothole 

by simply detecting it within an RGB feed obtained via a nomal widely-available RGB-

Camera. 
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Figure 3.7: Supplemental dataset samples. These samples demonstrate the range of real-world 
conditions covered within the dataset. The demonstrated samples illustrate different challenging 
scenarios of pothole instances ranging from potholes located within road markings to rabble-filled 
potholes, water-filled potholes, rabble and water-filled potholes, and shallow potholes. 

 

 



 
 

  



106 
 

 

 

4 .  Chapter 4 

 

Negative Road Anomalies (Potholes) 

Detection and Localisation 

 

 

 

4.1 Introduction 

 

Negative Road Anomalies have long posed a significant challenge to the safety of both 

road and pavement users. Defined as irregularities or deviations from an ideal pavement 

or road surface, negative road anomalies entail potholes, cracks, uneven surfaces, rutting, 

and other road or pavement imperfections. Potholes, or depressions in road surfaces, are 

the universal and most general road anomalies that pose the highest risk of adverse 

negative effects to all moving platforms driven on pavements and roads due to the diverse 

detrimental results that could occur, ranging from severe damage to the tyres, mechanical 

faults within the car, or total breakdown. The impact of any of those negative effects is 

grave when it comes to moving platform users, whether the moving platform is a road-

based platform such as cars, lorries, etc. or a pavement-based platform such as a 

wheelchair, a mobility scooter, an electric scooter, or a bicycle. This could vary from 

discomfort to serious neck, or back injuries, and in some cases death. Not to forget the 

financial impact to users and local authorities when serious damage is inflicted onto the 
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moving platform as the users will need to repair their moving platform, and in the case of 

pothole damage to vehicles driven on the road, the local authority will be liable to pay 

compensation to the impacted persons. As there is not a single universal database to 

record injuries, falls, or damage caused by potholes, the only source of statistics is Freedom 

of Information (FOI) requests made by different sources to local authorities around 

England. Local authorities keep records of the number of potholes in their areas, the 

number of claims made, and compensations paid to members of the public for injuries, or 

damage resulted from potholes. In a recent study made by RAC [133], one of the major 

roadside assistance providers in the United Kingdom, there have been a recorded increase 

of 46% (+ 1893 cases) in car breakdowns caused by potholes in a period of one year, 

between the first quarter of 2022 and the first quarter of 2023. According to RAC, a recent 

FOI request made to 185 district and county councils, to which only 81 councils replied, 

shows that 556,658 potholes were reported in England during the period between Q1 

2021, and Q1 2022. Another FOI request made by the Liberal Democrats [134] shows that 

a total of £1.77 million was paid in compensation to motorists between 2022 and 2023 by 

85 local authorities who responded to the request. Claim numbers rose to 23,042 in 

2022/23, nearly double the 13,579 claims made in 2021/22. As mentioned before, the data 

discussed only reflects the reported incidents recorded by only 85 out of 185 local 

authorities.  

Whilst a large vehicle such as a car is more likely not to be severely damaged when 

crossing a pothole, assistive platforms such as EPWs and mobility scooters do not share 

the same likelihood. Users who rely on those platforms are at a higher risk of injury and in 

certain cases death when driving through a pothole, which means that assistive robotics 

cannot be considered safe for consumer use unless this issue is tackled. Due to the 

stochasticity in the occurrence of potholes, their non-linear shapes, sizes, depth, and 

texture, conventional detection techniques cannot be used and relied upon to safely 

navigate a platform. This brings the need for a more modern and novel technology that can 

bring forward a solution to this issue. As discussed in the previous chapter, and after 

discussing the different technologies which were used to detect potholes, it was concluded 

that the most promising solution is the one that involves deep learning. A solution to this 
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problem will form a significant leap towards a fully autonomous, or semi-autonomous 

(common control). 

This chapter presents a multilayered computer vision system that uses machine vision 

fused with deep learning technology, more specifically, a convolutional neural network, 

and spatial understanding to detect and localise potholes in real-time scenarios.  The first 

layer of the system consists of a trained neural network that detects potholes in real-time 

with the use of an RGB feed acquired via the an RGB-D camera. The network was trained 

on a manually collected dataset described in a previous chapter. The network is capable of 

achieving very high confidence rates with very high frame rates. The second layer of the 

system consists of a novel spatial measurement approach that uses depth imaging 

acquired via the depth feed of the RGB-D Camera. By using the depth feed, the system 

extracts the 3D real-world coordinates of certain points of interests from the objects 

detected within the first layer of the system and labelled as potholes. After aligning both 

frames together, the system will provide the user with accurate early warnings if the 

platform is within a distance that is considered risky to the safety of the user, providing 

the user, and the moving platform with the ability to safely navigate away from the pothole. 

This system can be trained to detect any negative object and will extract all the necessary 

information so that the negative object can be treated as a positive object when it comes 

to avoidance, whether it is within an autonomously driven system, or in a semi-

autonomous one. 

This chapter is organised as follows: statement of problem, system architecture, the 

training process are described in section 4.2. The results are discussed in section 4.3. The 

system’s limitations are discussed in section 4.4, A live experiment of the system is 

illustrated in section 4.5, and the chapter’s conclusion, and future improvements are 

presented in section 4.6 

 

4.2 Methodology 
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4.2.1  Statement of Problem 

 

Potholes are a challenge in their nature due to many different factors. Defined as 

depression and degradation within the road, or pavement surface, potholes are naturally 

stochastic and do not follow any defined pattern. They could have different shapes, depths, 

locations, orientations, and textures. Some potholes might be filled with rabble, leaves, dirt, 

and virtually anything else. This poses a severe challenge when it comes to detection 

rendering a significant number of the general detection techniques inadequate.  

During the training process, the network would require a large input database to be 

used during the training and validation process. Due to the fact that potholes are 

serendipitous in nature and existence, collecting enough images to describe every instance 

of potholes existence is a very challenging task and requires images to be taken from 

different angles, distances, light and weather conditions, and potholes instances will need 

to vary from empty potholes to rabble-filled potholes, to water, or ice-filled potholed etc.  

Most of the datasets currently available lack the universal coverage of the majority of 

the different stochastic appearances of potholes. Hence, the manually-collected dataset 

described  in the previous chapter was assimilated. 

The range of the detection also plays a very important role in assessing whether the 

system is usable or not. As the system can be mounted onto assistive vehicles such as 

mobility scooters or Electric-Powered Wheelchairs (EPWs), the system must detect 

objects at a high accuracy and within an adequate range to allow safe avoidance of the 

obstacle. The proposed system, as mentioned before, relies on an RGB-D camera instead of 

other conventional sensing techniques, the average range of RGB-D cameras is usually  5 

to 10 meters when using professional, mid-range RGB-D cameras such as Intel RealSense 

D435i, Occipital Structure Core, or Zivid M400. 

Not to forget the inevitable trade-off between speed and accuracy of the detection. As 

the system is to be mounted on autonomous or semi-autonomous platforms, real-time 

detection is mandatory, so the frame rate is pivotal when it comes to considerations to be 

taken when designing the system. To address this issue, a rigorous comparative 
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analysis of neural network performance will be undertaken.  The primary selection 

criteria will prioritise models demonstrating exceptional accuracy and reliability, 

along with minimal computational overhead and complexity.  Candidate 

architectures include DenseNet201, ResNet-50, and TinyYolo V4. Each network 

will undergo extensive training and evaluation to determine the optimal solution, 

balancing superior performance with efficient runtime characteristics. 

4.2.2  System Architecture 

 

Built upon a two-pronged architecture, the proposed system is represented in 

the figure below: 

 

Figure 4.1: Top-Level System Architecture 
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The first layer of the system consists of a deep learning neural network whose 

input is an RGB continuous video feed provided via an RGB-D camera, a special RGB 

camera that provides an additional dedicated depth data feed. The camera can be 

mounted onto any platform regardless of its nature, whether it is a manually 

controlled vehicle, an Electric-powered wheelchair, a mobility scooter, an electric 

scooter, or a fully autonomous robot.  

The acquired RGB data is processed by the core controller of the system and is 

fed into the real-time object detection network that identifies the candidate objects 

of interests and localises them within the 2D RGB frame. For every confirmed 

candidate where the detection confidence level is higher than 60%, four points of 

interests are identified and their X, and Y coordinates are recorded. Those four 

points are denoted by a, b, c, and d. These points represent the four corners of the 

rectangular bounding box that surrounds every successful detection. The 2D 

coordinates of the four points mentioned and the confidence level are recorded and 

passed onto the second layer for further processing and analysis. At this stage, the 

detection confidence, and speed should both be as high as possible, with a strong 

emphasis on the framerate or detection speed as the system is expected to run in 

real-time. For this, the network architecture chosen to perform the detection task 

is expected to be relatively small without compromising on the detection accuracy. 
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Figure 4.2: Diagram representing the first layer of the system 
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The second layer of the system comprises a novel spatial measurement 

approach that combines both the first layer, and the depth feed provided by the 

RGB-D camera after aligning both of them together in order to provide the 

necessary information to enable the negative obstacle to be treated as a positive 

one when applying any obstacle avoidance algorithm when it comes to 

autonomous driving, or to provide sufficient information to enable the user to 

safely avoid the negative obstacle in the case of semi-autonomous or manual 

systems. Aligning both frames essentially achieves a 3D projection from 2D 

coordinates to the 3D plane so that the system can provide real-life spatial 

measurements of the distance at which the four points of interest are located. The 

distance of every point from the centre of the camera is measured after acquiring 

the real-world X,Y and Z 3D-coordinates of every point within the four points of 

interest. A safety distance threshold of 1 meter have been chosen in order to 

provide sufficient time for the obstacle to be avoided no matter what driving mode 

is employed (manual, semi-autonomous, or full-autonomous). 

The next sections cover more information about the neural network choice, 

training, and validation, as well as more detailed explanation on how the detection 

and localisation processes are achieved.  

 

4.2.2.1  The Neural Network 

 

Due to the complexity of the negative obstacle detection task, and the need for 

a high accuracy, and a very fast detection rate, three main object detection 

networks have been tested. The first network chosen was DenseNet-201 [135], the 

powerhouse image processing model widely known for its meticulously connected 

201 layers whereby every layer receives specific pre-knowledge from the layer that 

precedes it. This empowers efficiency by reusing previous information about the 
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extracted features from different steps within the detection process. This network 

is renowned for achieving high accuracy in object detection and classification, it 

also enables the understanding of every single pixel’s classification based on the 

objects that are detected. However, this network.  

The next network that was used was ResNet50 [136], an object detection 

network famous for allowing the flow of data in two different directions, up and 

down, and allowing “connection skipping” whereby some layers are bypassed to 

avoid detection rate losses and gradients degradation. The network is formed of 50 

residual blocks that, with the help of connection skipping enables the network to 

accurately pinpoint the objects of interest within an image with a very high 

precision. Every residual block as represented in Figure 4.3 is formed of three 

consecutive convolutional layers, the first one compresses the input channels in 

order to reduce the computational needs of the network, the next one performs 

feature extraction, focusing on spatial relationships and patterns within the image, 

and the third one decompresses the channels back to their original size. Then, 

identity mapping, or connection skipping takes place by adding the original input 

to the output of the last convolutional layer. 

 

Figure 4.3: ResNet residual block 
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The third network chosen to be trained to perform the object detection task is 

the infamous You Only Look Once (YOLO) v4 [137]. YOLO is known for its fair blend 

of accuracy and speed. This network, unlike the other two networks used, 

combines the detection and classification processes into one making it a leading 

solution when it comes to real-time scenarios. It is composed of three main layers, 

the Backbone that performs feature extraction from the images via the 

“CSPDarkNet53”, an innovative architecture that relies on residual connections 

along with a Cross Stage Partial (CSP) connections that enhances the flow of 

information and reduces complexity. The second layer of the network is the Neck, 

and it is where feature maps are refined and combined via two processes, the 

Spatial Pyramid Pooling (SPP) where information from different stages is 

aggregated, and a Path Aggregation Network (PAN) that combines high-level 

information or low-level ones. This means that it combines the semantic and the 

spatial features obtained. The last layer of the network is the head, where the 

prediction and classification is achieved, and where the bounding box, and 

confidence stores are determined. YOLO has many significant innovations that 

improve the gradient flow, accuracy, bounding box localisation. It also reduces 

computation cost and runtime and increases the training variability via data 

augmentation.  

Due to the importance of the real-time detection and the need for a high 

framerate to be achieved, one of YOLO’s compressed version Tiny YOLO, was 

chosen. Tiny YOLO’s structure is simpler with reduced parameters. The network 

only has two YOLO heads at the detector level unlike its full version that has three, 

it also encompasses 29 pre-trained convolutional layers as opposed to 137 pre-

trained convolutional layers as it is the case with the full version. However, Tiny 

YOLO can achieve approximately an 8-times faster framerate than YOLO v4, and 

when trained to detect a small number of classes, it is known to perform as good as 

its full version but with a very high frame rate enabling its use in real-time 

scenarios. 
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Figure 4.4: Tiny YOLO Network Architecture 

 

 The three chosen networks have been trained by using the manually collected dataset 

described in the previous chapter as the input dataset. This experiment was realised by 

using an AMD Ryzen 9 desktop computer with an 8-core/16-thread processor and an 

NVIDIA RTX3080 graphical processing unit (GPU) with 9GBs of Memory. The computer 

uses Linux as operating system and Darknet [137] as an open-source neural network 

framework.  

 

4.2.2.2 Spatial Understanding of the Environment 

 

Spatial understanding is achieved through the use of an RGB-D camera that provides, 

in addition to the normal RGB parameters, a layer of information representing the distance 

at which every pixel in the image is located with respect to the camera’s sensor. This 

enables the system to have a clear understanding of its surroundings by mapping 

individual pixels to their respective distances from the camera. For this, the Intel D435i 

RGB-D camera was chosen as it offers accurate depth perception with a range of up to 10 

meters. It utilises a global shutter sensor that enables the camera to produce high quality 

video frames even in low-light environments.  
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The first step consists of aligning the Depth feed with the RGB feed. This can be 

achieved via intel’s own per-pixel geometric transformation algorithm via intrinsic and 

extrinsic calibrations. The intrinsic calibration ensures that the RGB and Depth sensors are 

calibrated to adhere to distortions and to improve accuracy, the extrinsic calibration 

determines the accurate spatial relationship between both sensors (RGB and Depth), this 

is achieved by finding the rotation and translation needed to align both feeds together. As 

a result, the 2D (X,Y) coordinates are projected onto spatial 3D (X,Y,Z) coordinates within 

the real-world. This means that the distance at which every pixel is located with respect to 

the camera sensor is calculated. 

 

Figure 4.5: Pothole as seen by the RGB-D Camera. This represents the resultant of the alignment of 
the RGB and the Depth frames together. The Intel RealSense D435i camera’s sensor is capable of 
measuring the distance between its sensor and any pixel within the detected frame. 

 
In order to provide an accurate measurement, the chosen camera’s specifications have 

been taken into account. It has been concluded that the camera’s design and build do not 

affect the measurements and no model-specific adjustments are needed based on the 

below: 

The origin of the camera is 17.5mm from the centreline of the left imaging sensor which 

as per Figure 4.9,  this distance is a negligible value.  
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Figure 4.6: Location of the imaging sensor within the Intel D435i Camera [138] 

 

The measured depth of the point of interest is obtained via the depth frame. This 

process involves a fusion between two methods, stereo vision, and an infrared sensor (IR) 

in order to improve accuracy. RealSense D435i’s depth measurement start point is the 

surface of its sensor covered by a protective covering glass with a thickness of 4.2mm. As 

this is a negligible value, the depth calculation starting point is considered the surface of 

the glass cover of the camera. 

 

Figure 4.7: Depth calculation start point [138] 

With the camera’s specifications being taken into consideration, the system’s spatial 

understanding is achieved by first measuring the distance between the camera’s origin and 

each of the corners of the bounding box starting from the upper-left side of the observed 

and detected bounding box, denoted by A in figure 4.11, the next point of interest is the 

lower-left corner denoted by B, followed by the upper-right corner denoted by C, and the 

lower-right corner denoted by D. The distance between the camera and the centre of the 

detected object is also measured and denoted by E in order to provide additional 

knowledge and potentially estimate the depth of the negative object if needed. It is 
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important to note that the corner points of interests are named according to the point of 

view (POV) of the camera with respect to the detected objects. 

 

Figure 4.8: The four main points of interest (POIs), in addition to the centre point. These points are 
denoted by A, B, C, D, and the centre point E named based on the point of view of the camera. 

 

Irrespective of the camera’s POV, and the moving platform’s location, only three POIs 

will need to be considered to achieve safe navigation and avoidance. Based on Figure 4.11’s 

POV, the main points to be considered are B, D, and C as B, and D are the closest points to 

the moving platform and if the user keeps a safe distance from those points, the user is 

safe. If the user or the autonomous driving algorithm decides to go right, which is the 

driving orientation that is taken upon observing the pothole represented in the figure,  

point C will be of interest along with D as the user or algorithm will need to keep a safe 

distance from both points. For added safety and security and to minimise the risk of errors, 

1 meter is considered to be the safe distance threshold, i.e. the user or algorithm are 

prompted to begin the safe avoidance process as soon as the distance between the camera 

and any of the three POIs is less than or equal to 1 meter. This novel avoidance approach 

will ensure that the moving platform, regardless of its type, will consistently be kept at a 

safe distance from the negative obstacle. The system will also provide the user or the 

navigating algorithm with enough information to treat the negative obstacle the same way 

a positive obstacle is treated without the need to significant changes to be added to the 

autonomous algorithm, or to the semi-autonomous, or manual navigation systems. 

 

4.3 Experiment 
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A real-life experimental apparatus has been set up in order to evaluate the system’s 

performance in different conditions and scenarios. For this, the Intel RealSense D435i 

camera has been mounted onto top the left foot holder of a Salsa M2 Electric-powered 

wheelchair at a height of 35cm from the ground as per Figure 4.12. The tilting angle of the 

camera is 35 degrees to ensure that the camera can have a clear POV covering the front 

side of the footrests up to a 4-meter distance. The EPW was driven around the University 

of Kent’s Canterbury Campus during different periods of the day, and different weather 

conditions within the area represented in Figure 4.13. 
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Figure 4.9: RGB-D Camera mounted onto the EPW. 

 

 

Figure 4.10: Experiment location and boundary. The University of Kent Canterbury Campus at which 
the experiment took place within the boundary marked in red in different periods of the day and in 
different weather conditions. 
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4.4 Results and Discussion 

 

4.4.1  Network Training 

In order to classify the detection as a True Positive, the detection will need its maximal 

overlap of the detected boundary box with the ground truth to be larger then or equal the 

Intersection over Union (IoU) ratio defined within the training process. The IoU is 

calculated via the equation below: 

 

𝐼𝑜𝑈 (𝛼, 𝛽) =  
|ఈ∩ఉ|

|ఈ∪ఉ|
          (4.1) 

Where α represents the detected bounding box, and β represents the ground truth. The 

next step is to calculate the precision for every detection in order to obtain a unified 

measure of precision performance assessment, the mean average precision (mAP). This 

involves outlining a precision envelope, which essentially captures the total area under the 

curve by focusing on specific points where recall values shift. 

The precision, recall, and F-1 Score are calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்

்ାி
          (4.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
        (4.3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
        (4.4) 

 

Where TP is the number of correct detections, or true positives, FP is the number of 

incorrect detections, or false positives, and FN is the number of incorrect rejections, or 

false negatives. 

The mean average precision is then obtained by summing the average precision (AP), 

or the area under the precision-recall curve obtained within the training process which 

obtained by calculating the average of all the Precision values, and diving AP by the total 

number of detections: 
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𝑚𝐴𝑃 =
∑ ಿ

సభ

ே
          (4.5) 

To mitigate the risk of overfitting and encourage robust learning, the dataset was 

randomly split into training (80%) and validation (20%) sets. This stratified sampling 

approach ensures the model encounters diverse examples during both training and 

evaluation. 

The parameters were uniϐied for all three networks, and are as follows: 

• IoU = 70 i.e. a detection is classiϐied as a true positive if the overlap between the 
detected bounding box, and the ground truth is 70% or more. 

• Learning Rate = 1e-4 

• Training Images = 570 randomised (80% of the dataset) 

• Validation Images = 143 randomised (20% of the dataset) 

DenseNet201: 

The network training took 27.5 hours and was completed after 45000 epochs with an 

average loss of 0.0227 , and an mAP of 98.3% as illustrated in Figure 4.11. 
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Figure 4.11: DenseNet 201 training resulting graph. The graph illustrates the valuation loss, and the 
mean average precision (mAP) across 45000 iterations. The blue line represents the valuation loss, and 
the red line represents the mean average precision 

 

 

  

 

 

Resnet50: 

The training ended after 21.7 hours at 23000 epochs with an average loss of 0.0391, 

and a mean average precision mAP of 95.9% as illustrated in Figure 4.12. 
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Figure 4.12:  ResNet50 training resulting graph. The graph illustrates the valuation loss, and the mean 
average precision (mAP) across 23000 iterations. The blue line represents the valuation loss, and the 
red line represents the mean average precision 

  

Tiny YOLO:  

The training ended at 2000 epochs after 8.7 with an average loss of 0.3332, and a mean 

average precision mAP of 97.7% as illustrated in Figure 4.13. 
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Figure 4.13: Tiny YOLO training resulting graph. The graph illustrates the valuation loss, and the 
mean average precision (mAP) across 2000 iterations. The blue line represents the valuation loss, and 
the red line represents the mean average precision. 

  

The performance metrics of the networks are illustrated below: 

 

Table 4.1: Performance metrics for all the custom-trained networks.  

                   Metric 
 
Network 

AP TP FP FN Precision Recall F1-Score 

Densenet 201 98.34% 1116 64 23 0.945 0.979 0.961 

Resnet 50 95.90% 1117 112 22 0.908 0.980 0.943 

Tiny YOLO 98.85% 1118 30 20 0.964 0.98 0.982 

 

 

  

Several different inputs were given to all three networks in order to assess its 

performance, samples of those results are represented within Table 4.2. 
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Table 4.2: Detection accuracy comparison table for all three networks. This table illustrates the 
performance of all three networks, DenseNet201, ResNet50, and Tiny YOLO v4, when applied to four 
different photos. The first row represents the performance on a clear reflective water-filled pothole; the 
second row represents the performance of all three networks when applied to a photo showing two semi-
reflective water-filled potholes. The third row represents the performance of the networks when applied 
to a photo showing one rabble-filled pothole, and the last row represents a challenging scenario, 
numerous reflective water-filled potholes with a contour that is very difficult to see and identify. 

        DenseNet 201         ResNet 50        Tiny YOLO V4 

 
 

  

 

 

Table 4.1 illustrates the three chosen networks DenseNet 201, ResNet 50, and 

TinyYOLO v4 in four different scenarios. The first row is a clear reflective water-filled 

pothole, the second row represents two semi-reflective water filled potholes, whilst the 

third row represents one rabble-filled pothole. The last row in the table represents what 

is considered a challenging case whereby the scene contains numerous water-over-filled 
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reflective potholes  with their contours being almost embedded with the road. It is obvious 

that TinyYOLO is the highest-achieving network with more objects being detected and high 

detection rates achieved with 96% confidence rate achieved on the first scenario, 100% 

and 68% confidence for the second scenario, 99% on the third, and 6 potholes detected 

within the fourth scenario with confidence rates ranging between 34% for one very 

challenging pothole and 95%. DenseNet 201 comes in second with 81% detection rate 

achieved within the first scenario, 94% and 69% in the second, 92% in the third scenario, 

, and only two detections within the fourth scenario with 94% and 33% as confidences. As 

for ResNet 50, it comes in third, with 81% confidence in the first scenario, no detection in 

the second and third scenarios, four detections in the fourth scenario with confidence rates 

ranging between 30% and 72%. 

In order to better assess the networks, another testing attempt has been made. A a 

publically-available online video [6] has been applied onto DenseNet201, ResNet50, and 

Tiny YOLO v4. The video contained different instances of potholes. Three consecutive 

frames were extracted and used within the comparison process as represented in Figure 

4.14. TinyYOLO v4 came in first with nine potholes detected in the first frame with 

confidences ranging between 34% and 97%, eight potholes detected in the second frame 

with confidences ranging between 60% and 100%, and eight potholes detected in the third 

frame with confidences ranging between 30% and 99%. DenseNet 201 came in second 

with five detections in the first frame, and confidences ranging between 27% and 90%, five 

detections in the second frame, and confidences ranging between 42% and 87%, and six 

detections within the third frame, and confidence levels ranging between 47%, and 87%. 

ResNet 50 came in last with four detections in the first frame having confidences ranging 

between 58% and 89%, four detections in the second frame with confidences ranging 

between 67% and 89%, and five detections in the third frame with confidences ranging 

between 43% and 85%.  



129 
 

 

Figure 4.14: Video comparison of the three networks. Tests results on a publically-available online 
video [139] with three consecutive frames extracted. Tiny YOLO v4 clearly shows  

 

After assessing DenseNet201, ResNet50, and TinyYOLO v4, it can be concluded that 

TinyYOLO v4 is a better and more robust and reliable detector for the autonomous, semi-

autonomous, or manual avoidance of potholes in different scenarios in real-life situations. 

Tiny YOLO v4 was chosen as the detector for the first layer of the system. For additional 

reassurance, Tiny YOLO v4 was subjected to further testing with more challenging 

scenarios as represented in Figure 4.15 
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Figure 4.15: Tiny YOLO v4 Confidence Rate. Tests results when applied onto different cases of  triple 
clear (a), and muddy (b) water-filled potholes, and on a large number of reflective water-filled (c) 
potholes, and non-reflective water-filled potholes (d). 

Tiny YOLO’s result evidently shows that the confidence achieved is very high as it can be 

seen from the Figure 4.9. The accuracy of the detection in the case of clear and reflective 

water-filled potholes (a), and muddy water-filled potholes (b), the confidence rate is higher 

than 94% in 2 out of 3 potholes in (a), and in all of three potholes in (b). As for the cases of 

multiple water-filled potholed (c), and (d), the results confidence rate is always higher than 

60% except for some minor individual cases where the pothole is barely noticeable for the 

naked eye. 

Assessing the speed of the detection is vital to ensure that the system can run in real-

time, for this, the speed limit for on-road vehicles in residential areas in England (30 mph) 

has been considered within the assessment. This speed is equivalent to 48.28 km/h or 

14.411 m/s. As for assistive technologies, the maximum speed of an electric-powered 

wheelchair is 4 mph, or 6 km/h, 1.67 m/s. In addition, upon testing the network with an 

RGB live video feed as an input, the processing rate in frames per second, or inference rate 

obtained is 1050 FPS.  

The above values are incorporated within the detection rate equation: 

𝐹𝑟𝑎𝑚𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (𝑓𝑟𝑎𝑚𝑒𝑠 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟) =
ி ோ௧ (௦)

ெ௫ ௌௗ (


ೞ
)

 fpm  (4.6) 
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By applying the different speeds discussed earlier, along with the framerate obtained, 

the Frame Processing Rate (FPR) can be assessed as follows 

𝐹𝑟𝑎𝑚𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑎𝑡𝑒  1 (𝐹𝑃𝑅1) =  
1050

14.411
= 78.29 𝑓𝑝𝑚 𝑓𝑜𝑟 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑡 30 𝑚𝑝ℎ          (4.6) 

𝐹𝑟𝑎𝑚𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑎𝑡𝑒  2 (𝐹𝑃𝑅2) =
1050

4.3333
= 315.03 𝑓𝑝𝑚 𝑓𝑜𝑟 𝑎𝑛 𝐸𝑃𝑊 𝑎𝑡 8 𝑚𝑝ℎ             (4.7) 

𝐹𝑟𝑎𝑚𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑅𝑎𝑡𝑒  3 (𝐹𝑃𝑅3) =
1050

1.97
= 532.99 𝑓𝑝𝑚 𝑓𝑜𝑟 𝑎𝑛 𝐸𝑃𝑊 𝑎𝑡 4 𝑚𝑝ℎ                (4.8) 

 

It is commonly known that a detection is considered real-time if the framerate of the 

detection is 30 fps. Tiny YOLO achieved a 30-times faster detection rate achieving a 

processing rate 78.29 frames every meter when mounted onto a vehicle moving at a speed 

of 30 mph, it has achieved 315.03 frames every meter when mounted onto an EPW, or a 

mobility scooter moving at 8 mph, and 532.99 frames every meter when the EPW or 

mobility scooter is cruising at 4 mph. This provides the user, or the avoidance algorithm 

sufficient time to perform the required avoidance manoeuvers. The achieved speeds 

confirm that Tiny YOLO is the optimal choice providing the efficacious equilibrium 

between high confidence, and high detection rate, or speed. This frame-rate along with the 

mentioned accuracy were obtained when Tiny YOLO was evaluated with the publically-

available online video [6] published on YouTube by the BBC. Three additional frames other 

than the ones used in Figure 4.14 have been extracted and illustrated in Figure 4.16.  
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Figure 4.16: Real-time testing of the YOLO Network. Tiny YOLO with a publically-available online 
video [139] used as input, with three consecutive frames have been extracted. In the test above, the 
precision rate of the detection is respectively: pothole 1.a: 85%, pothole 1.b: 73%, and pothole 1.c: 95% 
pothole 2.a: 56%, pothole 2.b: 82%, and pothole 2.c: 97%. Pothole 3.a: 53%, pothole 3.b: 70%, and 
pothole 3.c: 96%. The Average Frame Rate achieved is 52 fps which is considered real-time. 

 

Thus far, the system’s detector, Tiny YOLO, chosen, is able to accurately detect potholes 

in real-time, and early enough to safely avoid them. The output of the network is the X, Y 

coordinates of every point within the four corners of the bounding box, in 2D form, along 

with the confidence percentage, or detection accuracy for every pothole object detected. 

However, there is no spatial knowledge of the surrounding environment, which means that 

the system lacks important information needed as part of the avoidance process. The next 

section discusses the second layer of the system, where the spatial understanding is 

performed, providing the system with the last crucial datum. 
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4.4.2  Spatial Understanding of the Environment 

 

During the experiment that took place in the University of Kent, Canterbury Campus as 

described in Section 4.3 within the path illustrated in Figure 4.16, detected potholes were 

observed from three different positions. As a result, three points of interest were 

pinpointed and the distance between them and the centre of the camera measured by the 

system was recorded along with two additional points for an added assessment of the 

performance of the system. The results obtained by the system were recorded and labelled 

“Algorithm”, or “ALG”. The resulting dataset contains 105 different test cases. 

A tape measure was used to measure the ground truth which was recorded as “Ground 

Truth” or “GT”. The accuracy of the detection, or confidence returned by the system was 

also recorded. 

A live demonstration of the system’s performance in real-time is presented within the 

following video (video). This video exhibits the system’s performance when the 

wheelchair is driven at its maximum speed (6 mph). 

Another video (video) is provided to illustrate the system’s performance in the case of 

water-filled potholes  

The resultant dataset is illustrated within Table 4.2. 

 

 

P
o

th
o

le #
 

A
c

cu
ra

cy
 

T
o

p
 L

e
ft – C

A
M

 

T
o

p
 L

e
ft – R

E
A

L
 

T
o

p
 R

ig
h

t –
 C

A
M

 

T
o

p
 R

ig
h

t –
 R

E
A

L
 

B
o

tto
m

 L
eft – C

A
M

 

B
o

tto
m

 L
eft – R

E
A

L
 

B
o

tto
m

 R
ig

h
t – C

A
M

 

B
o

tto
m

 R
ig

h
t – R

E
A

L
 

C
e

n
ter –

 C
A

M
 

C
e

n
ter –

 R
E

A
L

 

1 99.29 2.52 2.38 2.384 2.46 1.826 1.84 1.63 1.68 2.243 2.3 

1 94.53 1.84 1.9 1.73 1.72 1.141 1.17 1.03 1.03 1.48 1.4 

1 89.78 1.892 1.8 1.591 1.6 1.087 1.1 0.98 1 1.32 1.3 

Table 4.4.3: Experiment Results. This table represents the results obtained within the experiment described in 
Section 4.3 in 105 different test cases. Each examined pothole is assessed from three different points of view 
representing three unique test cases. 
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2 75.23 1.673 1.64 1.652 1.66 1.124 1.131 0.979 1.13 1.405 1.4 

2 74.56 2.86 2.1 1.968 1.93 1.19 1.25 1.159 1.17 1.575 1.61 

2 81.363 1.98 1.91 1.879 1.82 1.284 1.31 1.23 1.27 1.646 1.6 

3 83.753 2.929 2.78 2.677 2.64 1.955 1.94 1.851 1.84 2.39 2.32 

3 91.76 2.418 2.36 1.962 1.93 1.399 1.41 1.19 1.24 1.782 1.74 

3 73.9 1.529 1.51 1.434 1.42 0 0.87 0 0.82 1.202 1.21 

4 96.138 3.336 3.21 2.797 2.73 2.032 2.03 1.808 1.9 2.495 2.41 

4 98.84 2.019 1.97 2.025 2.06 1.368 1.34 1.356 1.34 1.655 1.65 

4 93.758 2.327 2.3 2.1 2.12 1.35 1.37 1.245 1.25 1.757 1.77 

5 90.958 2.136 2.1 2.345 2.2 1.51 1.56 1.587 1.58 1.857 1.8 

5 94.556 1.591 1.56 1.629 1.61 1.202 1.19 1.211 1.26 1.441 1.41 

5 96.124 1.454 1.43 1.468 1.43 1.033 1.04 1.052 1.05 1.214 1.22 

6 99.25 1.587 1.55 1.633 1.61 1.238 1.25 1.268 1.26 1.478 1.455 

6 97.249 1.718 1.71 1.767 1.72 1.04 1.05 1.066 1.07 1.368 1.36 

6 98.8 1.5 1.47 1.548 1.52 0.981 0.9 0.975 0.97 1.223 1.26 

7 70.39 1.742 1.72 1.777 1.77 0.996 0.99 0.998 0.99 1.322 1.32 

7 76.449 1.798 1.79 2.039 2.02 1.177 1.17 1.258 1.24 1.51 1.51 

7 69.56 1.612 1.56 1.704 1.7 1.098 1.1 1.116 1.117 1.368 1.34 

8 86.317 1.84 1.79 2.019 1.99 1.3 1.32 1.431 1.42 1.591 1.59 

8 96.357 1.914 1.87 1.902 1.89 1.281 1.271 1.289 1.289 1.642 1.62 

8 79.231 1.612 1.59 1.563 1.53 1.098 1.1 1.043 1.05 1.302 1.3 

9 96.492 1.482 1.44 1.521 1.49 1.106 1.1 1.14 1.16 1.327 1.32 

9 95.017 1.955 1.9 1.782 1.75 1.431 1.42 1.347 1.35 1.629 1.61 

9 97.689 1.485 1.45 1.408 1.41 1.235 1.22 1.118 1.118 1.322 1.32 

10 66.37 1.71 1.71 1.591 1.6 1.313 1.3 1.235 1.26 1.548 1.52 

10 86.237 1.485 1.46 1.56 1.52 1.057 1.05 1.116 1.113 1.305 1.3 

10 89.207 1.457 1.42 1.536 1.53 1.102 1.11 1.136 1.13 1.292 1.29 

11 99.1 1.819 1.81 1.824 1.82 1.233 1.23 1.228 1.22 1.507 1.5 

11 96.949 2.122 2.1 1.949 1.94 1.302 1.3 1.223 1.23 1.1563 1.55 

11 99.223 2.1 2 1.691 1.69 1.253 1.25 1.145 1.14 1.478 1.48 

12 95.555 1.808 1.78 1.681 1.67 1.132 1.28 1.068 1.07 1.5 1.5 

12 94.8609 1.993 1.99 1.862 1.86 1.308 1.3 1.104 1.12 1.587 1.57 

12 90.3716 2.144 2.1 1.824 1.83 1.629 1.61 1.336 1.33 1.868 1.85 

13 97.118 1.793 1.75 1.808 1.79 1.153 1.15 1.136 1.13 1.421 1.41 

13 93.9 2.985 2.94 2.942 2.93 2.293 2.29 2.229 2.223 2.66 2.254 
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13 95.624 3.354 3.39 3.088 3.1 2.557 2.55 2.336 2.3 2.561 2.52 

14 93.722 3.135 2.96 3.007 2.94 2.427 2.4 2.456 2.4 2.415 2.6 

14 95.133 1.945 1.92 1.987 1.97 1.447 1.44 1.444 1.45 1.686 1.68 

14 96.142 1.885 1.82 1.777 1.77 1.35 1.35 1.294 1.31 1.552 1.54 

15 93.163 1.587 1.57 1.583 1.58 1.38 1.38 1.431 1.43 1.5 1.5 

15 94.749 1.51 1.51 1.503 1.5 1.248 1.25 1.209 1.21 1.405 1.4 

15 92.987 1.868 1.84 1.925 1.87 1.579 1.58 1.62 1.63 1.764 1.77 

16 91.96 1.974 1.95 2.045 1.97 1.7 1.67 1.646 1.65 1.882 1.84 

16 92.85 1.962 1.93 1.931 1.92 1.563 1.56 1.567 1.56 1.662 1.7 

16 96.183 2.174 2.05 2.244 2.1 1.846 1.8 1.902 1.899 1.965 1.97 

17 74.224 3.199 3 3.318 3.1 2.418 2.4 2.425 2.43 2.524 2.51 

17 85.286 2.39 2.35 2.336 2.3 1.742 1.74 1.695 1.7 1.992 2 

17 78.214 2.252 2.25 2.42 2.39 1.51 1.52 1.63 1.64 1.902 1.89 

18 81.122 2.039 1.99 2.399 2.2 1.347 1.35 1.461 1.46 1.782 1.78 

18 92.3 2.174 2.1 1.782 1.77 1.431 1.43 1.281 1.28 1.718 1.67 

18 92.34 2.22 2.15 1.955 1.94 1.374 1.37 1.276 1.27 1.681 1.68 

19 71.6822 1.943 1.9 1.879 1.86 1.386 1.38 1.402 1.4 1.723 1.71 

19 69.8 1.782 1.77 1.908 1.9 1.308 1.3 1.35 1.35 1.699 1.67 

19 67.5 1.968 1.9 1.595 1.58 1.019 1 0.857 0.96 1.258 1.24 

20 84.19 1.937 1.89 1.851 1.84 1.444 1.44 1.402 1.4 1.659 1.63 

20 67.6 1.955 1.94 2.032 2 1.365 1.36 1.353 1.35 1.7 1.66 

20 94.09 1.772 1.76 1.808 1.8 1.162 1.16 1.083 1.1 1.399 1.4 

21 98.281 1.604 1.59 1.604 1.59 1.245 1.24 1.218 1.21 1.461 1.46 

21 92.55 1.798 1.79 1.84 1.82 1.437 1.43 1.399 1.4 1672 1.66 

21 91.419 1.686 1.67 1.668 1.68 1.389 1.38 1.204 1.2 1.51 1.5 

22 95.325 2.252 2.22 2.31 2.28 1.762 1.76 1.728 1.72 1.832 1.88 

22 91.09 1.999 1.94 1.925 1.9 1.646 1.64 1.552 1.5 1.722 1.72 

22 89.722 1.444 1.47 1.389 1.41 1.207 1.2 1.193 1.19 1.26 1.28 

23 83.667 2.032 1.97 1.908 1.88 1.514 1.51 1.451 1.45 1.709 1.7 

23 84.574 1.89 1.86 1.835 1.83 1.386 1.38 1.356 1.35 1.762 1.71 

23 81.61 1.7 1.66 1.599 1.57 1.353 1.35 1.27 1.27 1.503 1.5 

24 99.267 2.167 2.1 2.129 2 1.284 1.28 1.27 1.27 1.591 1.6 

24 95.407 2.066 1.99 1.829 1.81 1.193 1.19 1.214 1.21 1.482 1.48 

24 91.925 1.813 1.79 1.686 1.82 1.281 1.28 1.184 1.18 1.418 1.4 

25 98.717 1.681 1.62 1.604 1.61 1.265 1.26 1.228 1.22 1.533 1.53 
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25 96.388 1.738 1.73 1.851 1.82 1.281 1.28 1.336 1.33 1.51 1.51 

25 98.77 1.777 1.75 1.757 1.75 1.353 1.35 1.365 1.36 1.616 1.6 

26 98.681 2.136 2.4 2.032 2.4 1.276 1.27 1.23 1.23 1.604 1.62 

26 99.53 2.26 2.2 2.166 2.13 1.544 1.54 1.478 1.47 1.914 1.9 

26 96.62 1.862 1.85 1.762 1.79 1.211 1.21 1.175 1.17 1.503 1.5 

27 96.185 2.712 2.66 2.319 2.34 1.377 1.37 1.27 1.27 1.808 1.8 

27 89.58 3.073 2.95 2.505 2.5 1.548 1.55 1.424 1.42 2.006 1.99 

27 98.732 2.76 2.71 2.654 2.62 1.23 1.23 1.177 1.17 1.709 1.709 

28 93.613 2.446 2.44 1.999 2 1.396 1.39 1.253 1.25 1747 1.72 

28 87.257 2.236 2.2 2.1 2.1 1.26 1.26 1.168 1.17 1.672 1.67 

28 87.428 2.019 2 1.767 1.75 1.122 1.22 1.061 1 1.461 1.44 

29 77.426 2.144 2.1 1.937 1.96 1.544 1.54 1.415 1.41 1.808 1.8 

29 84.25 2.05 2 1.704 1.7 1.362 1.36 1.195 1.19 1.529 1.53 

29 74.298 1.949 1.89 1.624 1.64 1.396 1.39 1.124 1.124 1.503 1.49 

30 99.8984 1.955 1.95 1.879 1.9 1.289 1.29 1.216 1.21 1.595 1.59 

30 99.916 2.244 2.2 1.896 2 1.344 1.34 1.233 1.23 1.646 1.65 

30 99.876 1.857 1.84 1.752 1.76 1.26 1.26 1.177 1.8 1.525 1.51 

31 74.137 2.236 2.2 1.943 2 1.377 1.37 1.305 1.3 1.777 1.77 

31 73.59 1.896 1.9 1.793 1.8 1.065 1 1.001 1 1.454 1.45 

31 82.7 2.115 2.1 1.793 1.8 1.168 1.17 1.092 1.09 1.591 1.54 

32 98.889 1.536 1.53 1.556 1.59 1.116 1.12 1.122 1.12 1.35 1.35 

32 99.111 1.974 1.9 2.006 2 1.454 1.45 1.441 1.44 1.752 1.74 

32 98.006 1.782 1.7 1.686 1.69 1.202 1.2 1.149 1.15 1.468 1.47 

33 83.515 2.086 2 1.98 1.99 1.278 1.28 1.214 1.21 1.604 1.6 

33 97.678 2.204 2.2 1.955 2 1.457 1.46 1.302 1.3 1.782 1.74 

33 96.319 2.345 2.3 2.158 2.15 1.305 1.3 1.273 1.27 1.695 1.7 

34 99.524 2.399 2.38 2.319 2.31 1.54 1.54 1.457 1.46 1.89 1.86 

34 92.413 2.277 2.2 2.115 2.1 1.383 1.38 1.33 1.33 1.762 1.7 

34 88.912 2.204 2.2 2.151 2.13 1.359 1.36 1.324 1.32 1.637 1.63 

35 87.637 2.666 2.6 2.427 2.37 1.65 1.65 1.514 1.51 1.993 2 

35 78.019 2.302 2.25 2.174 2.11 1.25 1.25 1.177 1.18 1.612 1.61 

35 86.373 2.115 2.1 2.045 2 1.27 1.27 1.211 1.21 1.567 1.56 

 

The average accuracy of the algorithm’s detection has been calculated: 
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Average Confidence = 89.67542%. 

This indicates that the average detection of the system throughout the 105 test cases 

is almost 90% despite the challenging scenarios being chosen whereby in many cases, 

some potholes are barely noticeable to the naked eye. The experiment that took place was 

done within different times of the day, and within different weather conditions. 

The average error distance of the system was calculated by subtracting the detected 

distance from the ground truth distance across all the different detections. The average of 

all these values was then calculated as per equation (4.9): 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐸𝑟𝑟𝑜𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

=  ቆ
|(𝐺𝑇 − 𝐴𝐿𝐺)்| + |(𝐺𝑇 − 𝐴𝐿𝐺)| +  |(𝐺𝑇 − 𝐴𝐿𝐺)்ோ| + |(𝐺𝑇 − 𝐴𝐿𝐺)ோ| +  |(𝐺𝑇 − 𝐴𝐿𝐺)|

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠
ቇ

= 0.008758667meters        (4.9) 

 

Where: GT is the Ground Truth distance 

 ALG is the Algorithm-measured distance 

TL is Top Left 

BL is Bottom Left 

TR is Top Right 

BR is Bottom Right 

C is Center 

 

This indicates that the average error rate of the system is 0.00875 meters. The error 

distribution is illustrated in Figure 4.17. 
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Figure 4.17: Error distribution of the system’s detection rate. 

 

It can be evident from Figure 4.17 that only two cases out of 105 test cases returned a 

result with a deviation less than 0.4 meters from the ground truth. This means that only 

two cases exhibited an undesired behaviour whereby the detected distance is higher than 

0.4 meters from the ground truth. In the cases where the detected distance is higher than 

the ground truth distance, the result is still considered desirable as the avoidance prompts 

would be made earlier than the expected time, a behaviour that is still desirable as the 

pothole would still be avoided safely regardless of whether it was premature. Conversely, 

overestimations of the detection distance would trigger avoidance protocols beyond the 

optimal window, resulting in a missed opportunity to maintain a safe distance from the 

pothole at the designated threshold which is 1 meter. 

The error rate has been calculated via the equation below: 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  
2

105
= 0.019047 𝑜𝑟 1.9047%        (4.10) 

 

 The minimum frame rate achieved within the measured detections is 816.92 Frames 

per Second. 
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By applying the minimum frame rate achieved within the Detection Rate (frames per 

meter,fpm) described earlier, the detection rate is calculated as follows: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒  1 =  
816.92

14.411
= 60.91 𝑓𝑝𝑚 𝑓𝑜𝑟 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑡 30 𝑚𝑝ℎ        (4.11) 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒  2 =
816.92

4.3333
= 245.07 𝑓𝑝𝑚 𝑓𝑜𝑟 𝑎𝑛 𝐸𝑃𝑊 𝑎𝑡 8 𝑚𝑝ℎ        (4.12) 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒  3 =
816.92

1.97
= 414.68 𝑓𝑝𝑚 𝑓𝑜𝑟 𝑎𝑛 𝐸𝑃𝑊 𝑎𝑡 4 𝑚𝑝ℎ        (4.13) 

 

Notably, the system's minimum achievable frame rate of 816.92 fps surpasses the real-

time detection threshold of 30 fps. This signifies that even under worst-case scenarios, the 

system can capture and process data at a rate sufficient for real-time obstacle detection. 

Furthermore, even when simulating wheelchair speeds comparable to car speeds in 

civilian areas (around 30 mph), the system exhibits a notable detection rate of 60.91 

frames per meter. This high frame rate translates to a dense stream of information about 

the surrounding environment, exceeding the minimum required for reliable outcome 

prediction. Consequently, the system can achieve an error rate of less than 2%, 

demonstrating its ability to deliver accurate and trustworthy results for obstacle 

avoidance. 

 

4.5 System’s Limitations 

 

            Although the system has achieved a significantly groundbreaking and robust result, 

whether it is within the detection rate and accuracy, or the localisation and avoidance 

distance measurement, the system is still susceptible to certain limitations such as the 

extremely poor light conditions such as a path with absolutely no light as it relies on an 

RGB-D input feed whereby the depth feed would not return a reliable result without the 

RGB feed being able to perform well. In addition, ambient light, reflective surfaces, and 

shadows can impact depth accuracy, which is why the location of the camera is important 

to ensure optimal performance of the system. Furthermore, it is worth noting that the 
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minimal detection of the camera used is 0.5 meters which means that if the same camera 

were to be chosen, the system would not be ideal for any detections that are less than 0.5 

meters, hence the safety distance being set to 1 meter. 

Finally, the narrow field of view (84° horizontal, 53° vertical) of the camera might limit 

coverage in certain scenarios and could require the use of more cameras if the specified 

installation location cannot be used due to different reasons. 

With all the mentioned limitations being discussed, the system is still considered 

reliable and most of the limitations can be mitigated by abiding by the set up instructions 

as they are, or by substituting the chosen camera with different models or technology that 

exceeds the Intel RealSense’s performance. 

Future work will focus on improving the system’s accuracy by expanding the manually-

collected dataset to include more examples of potholes from all around the world, not only 

the United Kingdom. This could potentially be done within a crowdsourcing project where 

individuals within the public can upload photos of negative road anomalies to expand the 

training dataset. 

In addition, future work will focus on improving the versatility of the system by 

including less risky negative road anomalies such as cracks, patches, ravelling, and rutting. 

These anomalies, even though are not risky, but would cause certain discomfort to the 

user.  

 

4.6 Conclusion  

 

A groundbreaking technique for negative obstacle detection and localisation has been 

introduced within this chapter, leveraging the combined power of RGB photography and 

depth perception. This sensor fusion approach provides a comprehensive understanding 

of the environment, enabling the system to accurately identify and locate potential 

hazards, even those absent or poorly represented in traditional RGB images (e.g., potholes, 

hidden ledges, transparent obstacles). 
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The system's performance shines in real-time scenarios, achieving an exceptional 

minimum processing rate of 816.92 frames per second with an RGB-D Camera having an 

RGB frame rate of 30 frames per second, and a D (depth) frame rate of 90 frames per 

second. This rapid processing speed ensures near-instantaneous obstacle detection, 

crucial for timely avoidance manoeuvrers in dynamic environments. Furthermore, the 

system boasts a meager distance estimation error rate of 1.9047%, demonstrating its 

ability to pinpoint the location of hazards precisely with minimal margin for error. This 

accuracy is further underscored by the impressive mean average precision of 97.7%, 

highlighting the system's reliable detection of a wide range of negative obstacles. 

Beyond its notable performance, the system is noteworthily scalable. Its reliance on 

readily available sensors minimises equipment requirements, making it easily mountable 

onto various moving platforms (e.g., electric-powered wheelchairs, mobility scooters, 

robots, and autonomous vehicles). This versatility enhances its applicability across diverse 

domains where obstacle avoidance is paramount. Additionally, the system's retainability 

further expands its potential. With minimal effort, it can be adapted to different 

environments and types of negative obstacles, ensuring adaptability and long-term utility. 

In conclusion, this novel sensor fusion-based technique presents a significant leap 

forward in negative obstacle detection and localisation. Its exceptional performance, 

scalability, and adaptability position it as a promising solution for diverse applications 

demanding enhanced safety and precision in navigating dynamic environments. 

Future work will be focused on including more negative road anomalies such as cracks 

and dips. It will also be focused on calculating the depth of the pothole in order to assess 

whether it can be traversed in the event where safe avoidance is unachievable and the only 

possible options are either to drive through it, or to engage in a full emergency stop. 
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5 .  Chapter 5 

 

Incline Detection and Localisation 

via Point Cloud Imaging 

 

 

5.1 Introduction 

 

Assistive technologies are increasingly becoming a need for many individuals with 

disabilities regardless of what the disability is. One of the main heavily used assistive 

technologies is motor-related technologies such as electric-powered wheelchairs and 

mobility scooters. These technologies form an integral part of the user’s everyday life; 

certain individuals might be full-time wheelchair or mobility scooter users depending on 

their disability. Others could be part-time users, the ones who have milder disabilities or 

chronic conditions.  The number of registered wheelchair users in the United Kingdom 

according to the National Health Service, NHS [140] is 741,903 as of the second quarter of 

2023 According to a study conducted by [141] in an average day, wheelchair users spend 

between 13.6 and 7.6 hours in a day on their wheelchairs.  

For users who rely heavily or partially on assistive technologies, navigating within a 

physical environment often presents a complex interplay of barriers. Whilst key 

breakthroughs have been accomplished in the field of autonomous and semi-autonomous 

navigation of moving platforms, the accessibility infrastructure remains largely stagnant, 

with only minor to no improvements. In particular, the ubiquitous presence of wheelchair 
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ramps, inclined wheelchairs, accessible paths, dropped curbs, and other elevation changes 

remains a significant impediment and a never-ending challenge. Relying on visual cues, 

external assistance, or cumbersome manual manoeuvres requires a significant 

compromise on independence and confidence, casting an endless shadow over the 

promise of unimpeded mobility. This plants the seed for a new approach that centres 

around the presence of a novel system able to detect and assess traversable areas when 

faced with an incline or a decline, envisioning a future where individuals using wheelchairs 

can conquer such limitations with newfound autonomy and confidence.  

This chapter presents a novel system that relies on depth data obtained from an RGB-

D camera that uses multi-sensor fusion, combining stereo imaging with laser vision in 

order to generate an accurate point cloud describing the surrounding environment. The 

system processes the point cloud data in order to detect the inclined plane, whether it is 

upward-facing or downward-facing. Once the candidate plane is detected, the plane is then 

segmented in order to detect the dimensions of the plane and to split it from the normal 

ground. This is then followed by the estimation of the width of the plane, and its inclination 

angle. The system additionally factors in the offset ground inclination when pre-inclination 

is employed. Such pre-inclinations are used to mitigate the occurrence of sudden, steep 

slopes by generating a more gradual ascent/descent plane, improving manoeuvrability for 

wheelchair and mobility scooter users. If the width of the plane is larger than the assistive 

platform’s width by a safe factor, and the inclination angle combined with the pre-

inclination angle (if any) are within the legal limits of accessibility slopes designated by the 

local authorities and governing bodies, then the inclined plane is considered traversable. 

The resulting point cloud would be passed onto any autonomous or semi-autonomous 

navigation algorithm or simply returned as a visual guidance for the platform user in order 

to benefit from the assisted or manual navigation. 

This chapter is organised as follows: statement of problem and system architecture are 

described in section 5.2. The results are discussed in section 5.3. The system’s limitations 

are discussed in section 5.4, A real-life experiment to assess the system’s performance is 

illustrated in section 5.5, and the chapter’s conclusion is presented section 5.6 
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5.2 Methodology 

 

 

5.2.1   Statement of Problem 

 

The detection of inclined planes in a real-world environment is challenging in its 

nature due to many factors. The first factor lies in the fact that accessible ramps should be 

distinguished from bicycle ramps which have steeper slopes that cannot be traversed by 

wheelchairs, mobility scooters, or other assistive technologies. Although such ramps 

almost look the same as the accessible ramps, they should be clearly avoided as they could 

almost certainly result in falls potentially causing serious harm and injuries to the users. 

Accessible ramps should also be distinguished from naturally occurring inclines such as 

the ones found in parks and certain natural public areas. Furthermore, accessible ramps 

must possess adequate width to comfortably accommodate the passage of wheelchairs and 

mobility scooters, ensuring safe manoeuvring and preventing unintended contact with 

adjacent walls, or being at risk of impeded movement or potential obstruction by being 

trapped in between two narrow walls or edges. Moreover, the edges of the detected plane 

must be accurately segmented in order to ensure safe navigation throughout the ramp 

with no risk of falls in the case of ramps that have no borders, such as threshold ramps, 

folding ramps, and suitcase ramps. Such ramps typically have no railing, walls or any safety 

boundaries. For safety to be ensured, the system should be able to safely detect the edges 

providing the user or the navigation algorithm with enough information about the safety 

boundaries in order to avoid the risk of falls. Another important challenge is downward-

facing inclines, where the user is located at the elevation terminus of the ramp with a 

downward-facing point of view. Consequently, limitations in the field of view of the 

imaging sensor and the user's visual perception may hinder the complete visibility of the 

inclined plane. 

 

5.2.2   System Architecture 
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The proposed system comprises of the image acquisition module that relies on the Intel 

RealSense D435i RGB-D camera, and the Point Cloud Library [142]. The RGB-D camera 

scans the surrounding environment in order to generate the point cloud representation 

which is then fed into the Point Cloud Library API in order to generate the necessary 

detections and analysis. Exhibiting notable versatility, the RGB-D camera can be mounted 

on diverse platforms, from bicycles and mobility scooters to electric wheelchairs and even 

self-driving vehicles. To attain real-time processing and maintain low resource utilisation, 

and low complexity, the system focuses on the depth information provided by the RGB-D 

sensor, disregarding the RGB data stream. The input point cloud undergoes certain 

preparation steps. The initial data processing stage leverages a passthrough filter to refine 

the obtained point cloud. This filter selectively removes points with Z-coordinates outside 

the 0-2 meter range, corresponding to the expected ground plane and ceiling height based 

on sensor specifications. This targeted filtering eliminates approximately 30% of the data, 

primarily sensor noise and reflections, significantly reducing the computational burden 

and processing time for subsequent stages. Furthermore, it mitigates the influence of 

potential anomalies like stray points above the ceiling or noise below the ground, 

improving the accuracy and reliability of downstream detection algorithms. This initial 

filtering lays the foundation for further refinement through spatial and statistical filters, 

ensuring robust and accurate point cloud representation for subsequent tasks. After initial 

filtering, the Statistical Outlier Removal (SOR) filter is applied with refined parameters. 

While retaining the neighbourhood size of 50, the standard deviation multiplier is 

increased to 7. This adjustment effectively removes points whose distance from the mean 

distance within their neighbourhood exceeds seven standard deviations, identifying them 

as statistically significant outliers and subsequently filtering them out. Efficient processing 

with crucial information preservation is imperative for the system's successful 

performance; for this, the next step is focused on downsampling the filtered point cloud 

data. This is achieved by leveraging the voxel grid downsampling technique, where points 

within the predefined voxel size, or leaf size, of 0.07 meters are grouped together. This 

aims to balance the data reduction without sacrificing detail, mitigating potential 

processing delays due to large point cloud sizes whilst minimising information loss and 

maintaining high fidelity. This leads to a filtered and downsized ‘clean’ point cloud ready 
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to be processed by the algorithm. Following the downsampling stage, the analysis pipeline 

transitions to segmenting and analysing the identified inclined plane. This crucial step 

involves determining each point's surface orientation, or normal vector, within the point 

cloud. This is achieved with the help of the Tree search method with 50 nearest neighbours 

based on the average density of our point cloud detected. 

The input cloud undergoes a segmentation process via the normal plane model 

estimation technique, This process aims to identify the dominant inclined plane where 

inliers reside close to each other. The Random Sample Consensus (RANSAC) is used as a 

robust iterative estimator aiming to estimate the plane inliers. For a candidate plane to 

qualify as an output plane, it must satisfy the strict criteria below: 

Parallel Surface Normals: At each inlier point, the surface normal must be parallel to 

the surface normal of the output plane in order to ensure geometric consistency. 

Angular Deviation Threshold: The maximum angular deviation between inlier point 

normals and the plane's normal must not exceed  


ଶ
 or 90 degrees, preserving planar 

integrity. 

Distance Threshold: Each inlier point must be within a 0.01-meter (1-centimetre) 

threshold from the segmented model, guaranteeing proximity and coherence. 

 

 

Figure 5.1: Segmented Plane. This figure represents the incline as it is seen after upon a successful 
segmentation. 

 

Upon successful segmentation and identification of the region of interest (dominant 

plane), its estimated plane coefficients are extracted in Hessian form for further analysis 

and manipulation: 
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𝑎. 𝑥 + 𝑏. 𝑦 + 𝑐. 𝑧 − 𝑑 = 0        (5.1) 

 

The angle between the segmented plane and the ground is calculated with the help of 

the equation below: 

 

C = 𝐶𝑜𝑠(𝜃) =  ฬ
ሬ⃗ ⋅ሬ⃗

|ሬ⃗ |⋅หሬ⃗ ห
ฬ                   (5.2) 

 

𝑛ሬ⃗ (0,0,1) 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑙𝑎𝑛𝑒 (�⃗� = 0,  𝑦ሬሬሬ⃗ = 0, 𝑧 = 1) 

𝑃ሬ⃗ (𝑎, 𝑏, 𝑐) being the normal vector of the segmented plane, where a, b, and c are the 

estimated coefficients returned by the algorithms in the hessian form as per equation (5.1). 

 

By applying the coefficients estimated within equation (5.1) within equation (5.2), 𝜃 

can be calculated within equation (5.3) as follows: 

 

𝜃 = 𝑎𝑟𝑐𝑜𝑠(𝑐)
180

𝛱
        (5.3) 

 

𝜃 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑙𝑎𝑛𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑 𝑝𝑙𝑎𝑛𝑒 

In addition to the inclination angle, 𝜃′ the pre-inclination angle, is recorded. The pre-

inclination angle represents the angle of the small distance just before the slope change 

whether it is positive or negative. This distance serves as an intermediary surface that 

helps in avoiding sudden sharp changes in the slope when attempting to traverse an 

inclined plane. This angle is obtained via the Inertial Measurement Unit (IMU) of the 

RealSense camera bearing in mind an offset value equal to the tilting of the camera which 

is, in this case, 30 degrees, as per the tilting angle of the camera when installed on the 

electric-powered wheelchair used during the testing stage of the system. The pre-

inclination angle is calculated with the help of equation (5.4):  
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𝜃ᇱ = 𝑃𝑖𝑡𝑐ℎ − 30        (5.4) 

 

The inclination and pre-inclination angles are not the only important values for the 

safe traversal of the inclined plane. Another important aspect to measure is the width of 

the plane in order to ensure that it is wide enough for the moving platform to traverse it 

without the risk of colliding with the walls of the platform or, worse, being wedged 

between them. The measured distance should be greater than or equal to the chosen safe 

distance of 1 meter: knowing that the wheelchair’s width is 60cm as per Figure 5.2, an 

additional 40 centimetres distance is added to take account for any unexpected errors.  

 

Figure 5.2: Width of the Electric-Powered Wheelchair. 

For the width of the segmented plane to be calculated with minimal-to-no errors, its 

concave hull is calculated. Due to its nature, being a polygon that encloses a set of points in 

a plane or an n-dimensional space, and unlike a convex hull, it can have concave angles and 

a smaller area, the concave hull can better capture the shape and boundary of a point set 

than a convex hull. For this, the alpha-shape value ∝ is set to 0.9 in order to estimate the 

most detailed, and the smoothest-possible representation of the edges of the segmented 

plane. 
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The estimated concave hull of the plane of interest is then used to calculated the 

coordinates of two key points of interest A(Xmin, Ymax, Zmin), and B(Xmax ,Ymax , Zmax) 

that represent the width of the plane at the closest point from the camera. The distance 

between both points A, and B is measured using the point cloud. This distance is then 

compared to the safe distance threshold of 1 meter, that is 40 cm, in addition to the width 

of the electric-powered wheelchair used to ensure safe traversal throughout the plane. 

 

Figure 5.3: A segmented plane(green), its concave hull (in red), and the estimated width of the 
plane (in blue). The estimated width obtained by combining both points A, and B mentioned earlier is 
represented in a thin blue line and is measured in order to assess whether the plane is traversable or not. 

 

Figure 5.4: The plane as observed by the RGB-D Camera (left) and its resulting segmented plane 
(right). This shows the plane as seen by the camera’s RGB-D stream, and the resulting segmented plane 
represented with its normal vector (shown in red). 

 

With the inclination angle, pre-inclination angle, and the width made available, the 

final step is to assess the traversability of the inclined plane. For an inclined plane to be 

traversable by a socially assistive technology, the plane’s angle and inclination angle 

should be less than or equal to the maximum slope, or inclination angle allowed within the 

A B 
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local laws. In the case of electric-powered wheelchairs or manual wheelchairs, the 

maximum allowed slope for existing buildings with alteration difficulties is up to 1:12 

(approximately 8.33 degrees) with additional safety measures like level landings at 

intervals and handrails on both sides, which means that the maximum inclination angle is 

8.33 degrees for assisted wheelchairs used over short distances as per the British 

Standards 8300-1:2018. As mentioned earlier, the safety threshold for the width was set 

to 1 meter. Moreover, to account for minor errors, an additional safety offset of 0.33 

degrees is deducted from the maximum inclination angle. This means that for the system 

to classify a segmented inclined plane as traversable, the inclination angle should be less 

than or equal to 8 degrees, and its width must be greater than or equal to 1 meter. 

Traversable planes are given the colour green, whilst unsafe ones are marked in red. Figure 

5.5: Wheelchair ramp as seen by the Intel RealSense D435i camera sensors 

represents a wheelchair ramp as seen by the RGB-D camera’s sensors. The figure 

illustrates how the wheelchair appears within the RGB Camera, and how the resultant 

depth feed appears along with the IMU readings. This view is passed onto the proposed 

system. The output is represented in Figure 5.6: The wheelchair ramp from Figure 5.4 

after segmentation and assessment. The ramp is considered safe and marked in green 

as it has a width of 1.37 meters and an inclination of approximately 5.73 degrees. The 

system concluded that the ramp is around 1.37 meters wide and has an inclination angle 

of 5.73 degrees.  

 

 

Figure 5.5: Wheelchair ramp as seen by the Intel RealSense D435i camera sensors 
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Figure 5.6: The wheelchair ramp from Figure 5.4 after segmentation and assessment. The ramp is 
considered safe and marked in green as it has a width of 1.37 meters and an inclination of approximately 
5.73 degrees 

 

Finally, to mitigate the impact of movement vibrations and any sudden changes in the 

camera’s tilt, the system uses one of Intel RealSense’s built-in calibration functions. The 

calibrations rely on the IMU to determine the rotation angles of the camera around all three 

3D-Axis: 

 

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ௫ ×  𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ௬ ×  𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ௭ (5.5) 

 

Where the rotations are calculated as follows: 

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ௫ =  อ

1 0 0
0 𝑐𝑜𝑠 (𝛼) −𝑠𝑖𝑛 (𝛼)
0 𝑠𝑖𝑛 (𝛼) 𝑐𝑜𝑠 (𝛼)

อ       (5.6) 

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ௬ =  อ
cos(𝛽) 0 sin(𝛽)

0 1 0
− sin(𝛽) 0 cos(𝛽)

อ         (5.7) 

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ௭ =  อ
cos(𝛾) − sin(𝛾) 0
sin(𝛾) cos(𝛾) 0

0 0 1

อ          (5.8) 

 

Where 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 are the counterclockwise rotation angles returned by the Intel 

RealSense’s gyroscope otherwise known as pitch, yaw, and roll. 
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With Equation (5) calculated, the calculated rotation is used to generate the 

transformed cloud that constitutes the original point cloud redrawn based on an affine 

defined by an Eigen transformation matrix of all three rotations. This point cloud will 

constantly be generated whenever the pitch, yaw, or roll change making sure that the point 

cloud detected is not subject to any changes in these rotations. By doing as such, the 

resulting cloud will take into account any changes in the camera’s rotation or tilt providing 

the system with the added capability to perform well even when the moving platform is 

exposed to movement vibrations or any other types of outside factors that could affect the 

camera’s original tilt or performance. Consequently, the system culminates in a point cloud 

that remains invariant to changes in camera rotation, bolstering its robustness and 

reliability. 

 

 

 

5.3 Experiment 

 

To assess the system’s performance and identify its limitations, a real-life experiment 

was set up using a Salsa M2 Electric-Powered Wheelchair (Figure 5.7: Experiment setup. 

The Salsa M2 Electric-Powered Wheelchair) as the chosen platform to be used within the 

trial process. The Intel RealSense D435i RGB-D camera was fitted on the left footrest upper 

hinge at an exact height of 53 cm from the floor with a tilt of 30 degrees (Figure 5.8). 
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Figure 5.7: Experiment setup. The Salsa M2 Electric-Powered Wheelchair 

 

 

Figure 5.8: Experiment setup. Intel RealSense D435i fitted at 53 cm from the ground. 

 

The wheelchair was driven around the University of Kent Canterbury Campus at 

different times and days. During the experiment, the estimated width of the detected 

inclined plane, and the estimated inclination angle of the plane were recorded along with 

the pre-inclination angle in the case of negative inclines. In addition, the decision of 

whether the inclined plane is traversable or not is also recorded. During this experiment, 

every wheelchair ramp was assessed from two different perspectives, the upwards angle 

where the wheelchair was located at the lower part of the ramp with the camera facing 

towards the ramp with an upwards perspective, and the downwards angle where the 

wheelchair was parked at the upper side of the ramp with the camera observing the 
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inclination from a downwards-perspective. Within this case, pre-inclination angle 

measurement also took place as pre-inclinations are usually introduced before downward-

facing ramps in order to provide a pre-slope that makes traversing the ramp easier and 

safer. The EPW was also exposed to “dangerous” inclines that cannot be traversable, such 

as bicycle ramps with a significantly high slope. During the experiment, the ground truth 

for the width was measured with the help of a tape measure. The inclination and pre-

inclination angles were measured with the help of a third-party mobile application named 

“Clinometer” by a company called SmartToolFactory [143]. The mobile application utilises 

the mobile phone’s Inertial Measurement Unit (IMU) to measure ground inclination. 

An additional experiment was conducted within the School of Engineering’s Robotics 

Lab at the University of Kent. This experiment’s aim was to assess the system’s 

performance in an isolated environment, and to assess whether “Clinometer” which was 

used for measuring the ground truth is accurate of not. 

During the second experiment, a ramp was built corrugated plastic sheet with a 

protractor and some firm supports that are used to create different inclination angle. The 

protractor was used in order to measure the accurate ground-truth inclination angle of the 

plane so that the system, and “Clinometer” can both be assessed accurately. Different 

angles were simulated starting 2 degrees up to 17 degrees (Figure 5.9). 

 

 

Figure 5.9: Isolated environment experiment. The wheelchair was parked in front of a manually built 
inclined platform with variable inclinations measured by a protractor in order to provide the ground 
truth information. 
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5.4 Results and Discussion 

 

The resultant estimated width, inclination, and pre-inclination angles for the outdoor 

experiment are illustrated in Error! Reference source not found. along with their ground 

truths. 

The average accuracy for the inclination angle, and the estimated traversable width 

estimation was calculated via the equations below: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑛𝑔𝑙𝑒 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ∑
ାି௧

ோ 
 ×  100  (5.9)  

= 97.7142 %   

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑖𝑑𝑡ℎ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑊𝑖𝑑𝑡ℎ

𝑅𝑒𝑎𝑙 𝑊𝑖𝑑𝑡ℎ
  ×  100                 (5.10)

 
 

          = 89.572% 
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Biosc1 5.95929 0 1.51047 6 1.63 YES YES 

Biosc2 3.73 2.2 1.5322 4 1.63 YES YES 

Jennison1 7.88 0 1.462 7.2 1.5 YES YES 

Jennison2 3.528 4.2 0.869 4 1.5 YES YES 

Antro1 6.25325 0 1.72661 6 2.6 YES YES 

Antro2 6.022 0 1.921 6 2.6 YES YES 

lib1 6.71555 0 1.84885 7 2.6 YES YES 

lib2 6.99947 0 1.96561 7 2.6 YES YES 
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libside1 7.89807 0 1.51398 8 1.9 YES YES 

libside2 8.41011 0 1.52968 8 1.9 YES YES 

libsidefirst 7.33087 0 1.49056 7 1.9 YES YES 

libsidefirst2 5.15738 0 1.33629 7 1.9 YES YES 

senate1 7.31708 0 1.01528 7 1.2 YES YES 

senate2 7.19154 0 1.42423 7 1.2 YES YES 

elliot1 6.57773 0 0.585713 6 1 YES YES 

elliot2 4.48959 2 1.06041 6 1 YES YES 

gymincline1 6.68141 0 1.39841 7 1.41 YES YES 

Gymincline1-2 4.4744 2 1.1567 7 1.41 YES YES 

gymincline2 7.08282 0 1.38108 7 1.4 YES YES 

Gymincline2-1 4.47 2 0.94904 7 1.4 YES YES 

gymside 6.94269 0 2.19341 7 2.4 YES YES 

gymside2 3.28635 4 1.4589 7 2.4 YES YES 

lawschool 6.71481 0 1.44498 7 1.2 YES YES 

Lawschool1 4.62755 2 1.16812 7 1.2 YES YES 

lawschool2 5.0835 0 1.59744 5 1.3 YES YES 

Lawschool2_1 4.95316 0 0.586313 5 1.3 YES YES 

footpath 6.07014 0 1.50575 6 2.3 YES YES 

footpath1 3.41714 3 1.74725 6 2.3 YES YES 

libback 4.17975 3 1.06886 7.22 2 YES YES 

libback1 7.2022 0 0.7601 7.22 2 YES YES 

rutherford 6.89014 0 1.0961 7 1.2 YES YES 

rutherford1 5.09558 2 1.56582 7 1.2 YES YES 

parkwood 3.86911 3 1.63383 7 1.7 YES YES 

parkwood1 6.20163 1 2.00969 7 2 YES YES 

parkwood2 3.55286 6 1.32485 6 1.6 YES YES 

parkwood3 5.3335 4 2.44769 6 1.6 YES YES 

bioscdown 6.56107 0 1.262 6 1.2 YES YES 

bioscdown1 4.8091 1 1.52693 6 1.2 YES YES 

librarygrimond 5.20859 0 0.978582 5 1.3 YES YES 

librarygrimond1 2.06885 3 1.28856 5 1.3 YES YES 

registry 7.10328 2 1.73094 5 1.7 YES YES 

registry1 2.51276 3 1.03141 5 1.7 YES YES 

registry2 7.12527 2 1.19771 5 1.5 YES YES 

registry3 1.63226 3 1.64483 5 1.5 YES YES 

rutherfordrampup 5.73349 0 1.33474 6 1.1 YES YES 

rutherfordrampdown 5.83276 0 1.01953 6 1.1 YES YES 

rutherfordramp2up 5.57491 1 1.17654 7 1.1 YES YES 

rutherfordramp2down 5.68286 1 1.12606 7 1.1 YES YES 

darwinbikeup 9.01418 2 1.51953 11 1.5 NO NO 

dawinbikedown 9.06534 2 1.74813 11 1.5 NO NO 

reject1 10.4669 0 0.476506 10 0.5 NO NO 

reject1down 9.3599 1 0.48501 10 0.5 NO NO 
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The system achieved a commendable average accuracy of 97.7142% in estimating 

inclined plane width, and an average width estimation accuracy of 89.572%. The 

proportionally low average width estimation achieved can be attributed to various factors, 

including the camera's positioning relative to the plane, leading to perspective distortion, 

and partial occlusion of the surface by leaves or other objects, impeding accurate width 

determination. Importantly, all estimated width values remained below the ground truth, 

indicating a very low tendency towards false negatives (missing potentially traversable 

planes) but eliminating the serious and dangerous risk of false positives (misclassifying 

untraversable planes as usable). In order to mitigate the width detection discrepancy and 

to decrease the risk of false positives and negatives, an additional safe distance was applied 

to the safety threshold, as discussed earlier in this chapter. This significantly reduces the 

risk of false positives and negatives. 

The average error distance was calculated as follows: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ ቀ
|ீ்ି(ಲಽಸା∝ಲಽಸ )|

்௧ ்௦௧ ௦௦
ቁ = 0.23094803        (5.11) 

 

Where GT is the Ground Truth angle 

 ALG is the Algorithm-measured angle 

∝ is the Inclination Angle 

P is the Pre-Inclination 

 



159 
 

 

Figure 5.10: Average angle estimation error. This graph shows that only one instance out of 67 had a 
difference of more than 0.5 degrees from the ground truth. 

 

As per Figure 5.10, only one instance had a difference of more than 0.5 degrees from 

the ground truth, hence, the error rate can be calculated as: 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  
1

67
= 0.01492 𝑜𝑟 1.492%        (5.12) 

As for the isolated in-lab experiment, the results are illustrated in Table 5.1. 

 

Table 5.1: Second experiment results. The table shows 16 different inclination angles simulated with 
the help of the platform built to imitate real-life scenarios. The table represents the angle and width 
estimated by the algorithm, the inclination angle measured by the “Clinometer” app, the ground truth 
measured with a protractor and a tape measure, and the binary of the traversability of the inclined 
plane. 
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Lab4 5.10811 5 1.04523 5 1.04 YES YES 

Lab5 3.92468 4 0.811413 4 1.04 YES YES 

Lab6 2.92331 3 0.987194 3 1.04 YES YES 

Lab7 2.14143 2 0.988317 2 1.04 YES YES 

Lab8 9.00659 9 1.05934 9 1.04 NO NO 

Lab9 10.1735 10 1.02439 10 1.04 NO NO 

Lab10 11.3384 11 1.15517 11 1.04 NO NO 

Lab11 12.3482 12 1.03774 12 1.04 NO NO 

Lab12 13.1313 13 0.82224 13 1.04 NO NO 

Lab13 14.0093 14 1.13368 14 1.04 NO NO 

Lab14 15.0831 15 0.81986 15 1.04 NO NO 

Lab15 16.2719 16 1.05 16 1.04 NO NO 

Lab16 17.2117 17 0.830948 17 1.04 NO NO 

 

 

 

Figure 5.11: "Rutherford" ramp as seen by the Intel RealSense D435i camera. The inclined plane 
was perceived with an upward-facing perspective, labelled as “Rutherfordrampup” within Error! 
Reference source not found.. 
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Figure 5.12: "Rutherfordrampup" segmented (left) with its inclination and width estimated by 
the proposed algorithm (right). As the figure shows, the segmented plane was marked in green, 
indicating that it is traversable as its inclination is less than 7.2 degrees and its width is more than 1 
meter. 

 

 

 

Figure 5.13: Stiff bicycle ramp as seen by the Intel RealSense D435i Camera. Labelled as “reject1” 
within Error! Reference source not found.. 
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Figure 5.14: "Reject 1" test results as returned by the proposed algorithm. This figure demonstrates 
the segmented plane (left) and the algorithms’ output (right). It is evident that the inclination angle is 
more than 7 degrees, and the width of the plane is less than 1 meter making it not traversable hence the 
colour red. 

 

Figure 5.15: "Reject 1" ground truth as measured by "Clinometer" 
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Figure 5.16: "Lab 2" experiment instance within the indoors scenario as represented in Table 5.1. 
This figure represents the ground truth as measured by the protractor. 

 

Figure 5.17: Ground truth for "Lab 2" instance as measured by the "Clinometer" mobile 
application. As illustrated, the inclination angle of the plane is 7 degrees, as measured by the protractor 
within Figure 5.15. 

 

Figure 5.18: "Lab 2" experiment instance output returned by the proposed 

algorithm. The shows the segmented inclined plane (right), and the proposed algorithm’s 

output (left) clearly shows that the estimated inclination angle is 6.97 degrees (ground 

truth is 7 degrees) and the estimated width is approximately 1.15 meters (ground truth is 

1..04 meters), hence concluding that the inclined plane is traversable. 
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Figure 5.19: Second experiment's "Lab 16" instance inclination angle as measured by the 
protractor. 

 

 

Figure 5.20: "Lab 16" instance as measured by "Clinometer". 

 

 

Figure 5.21: "Lab 16" Instance experiment result as returned by the proposed algorithm. The 
figure represents the segmented plane (right) and the returned results (left). The estimated inclination 
as measured by the algorithm is more than 17 degrees, and the angle width is less than 1 meter, hence 
the ramp being considered as not traversable. 

 

Figure 5.11 and Figure 5.12 illustrate the “Rutherfordrampup” experiment instance 

where the ramp near the Rutherford College at the University of Kent Canterbury campus 



165 
 

was measured. The estimated inclination angle is 5.73349 degrees, and the width is 

1.33474. As the estimated inclination angle is less than 7 degrees, and the width is more 

than 1 meter, the ramp is considered traversable and is marked in green. This has been 

verified within the ground truth as the inclination angle is 6 degrees, and the width is 1.1 

meters.  

Figure 5.13 and Figure 5.14 on the other hand represent the “reject1”, a bicycle ramp 

that is located next to the School of Biosciences within the Canterbury Campus of the 

University of Kent. The estimated inclination angle of the ramp is 10.4669 degrees, and the 

width is 0.476506 meters. The inclination angle is more than 8 degrees, and the width is 

less than 1 meter which makes this ramp not traversable. This has been verified within the 

ground truth measurements as the inclination angle is 10 degrees as per Figure 5.15 and 

the width is 0.5 meters. 

Figure 5.16, Figure 5.17, and Figure 5.18 represent the “Lab2” indoors isolated 

experiment whereby an angle of 7 degrees was produced with the help of the protractor. 

The inclination of the angle was measured within the proposed system. The system’s 

output clearly shows that the estimated inclination angle is 6.97122 degrees and the width 

is 1.17131. As the inclination is less than 8 degrees, and the width is more than 1 meter, 

the ramp is considered traversable and is marked in green. As for the ground truth 

measured by “Clinometer”, and by the protractor, the real inclination angle is 7 degrees, 

and the real width is 1.04 degrees. The ramp is considered traversable as concluded by the 

proposed algorithm. 

Figure 5.19, Figure 5.20, and Figure 5.21 represent the “Lab 16” indoors experiment 

whereby a ramp with an inclination angle of 17 degrees was produced. The algorithm’s 

measured inclination is 17.2117 degrees, and the width is 0.950948. As the inclination 

angle is more than 8 degrees, the ramp is considered not traversable. This has been verified 

within the ground truth as the inclination angle as measured by the protractor and 

“Clinometer” is 17 degrees. 

By leveraging equations (5.5) and (5.6), the average accuracy of inclination angle 

estimation reached 99.4785%, and the average accuracy of width estimation reached 

94.003%. These results were obtained in a controlled environment with minimal external 
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interference, suggesting the system's potential for high reliability. Furthermore, the results 

demonstrate that the “Clinometer” mobile application can indeed be considered as an 

accurate ground-truth measurement tool for the experiments that were conducted. 

 A video is provided to showcase the system’s performance when traversing upwards 

facing icnlines. This video (video) is a demonstration of the BIOSC1 test case as represented 

in the Table 5.1. BIOSC2, a downwards-facing incline traversal demonstration is also 

illustrated within video (video). It can be observed within the video that the system is 

detecting the pre-inclination angle represented as Ground Inclination, and the actual 

inclination angle of the ramp itself. Pre-inclinations are used to minimise the impact of the 

downwards slope making the ramp easier and safer to access.  

 

 

 

5.5 System’s Limitations 

 

Despite the system’s significantly high performance and reliability in detecting, 

segmenting, and assessing upwards and downwards-inclined planes, the system is still 

prone to certain limitations, such as noise in low-light scenarios. Even though the system 

uses infrared imaging along with stereo imaging, it can still be affected by extremely low-

light scenarios where certain false-positive points could appear within the detected point 

cloud. These points, if abundant, could potentially lead to the system falsely returning a 

width that is larger than the actual width of the plane which could lead to certain 

difficulties in traversing the system. Certain environmental factors could also impact the 

system’s performance. Such factors could include smoke, dust, and certain highly reflective 

surfaces. These could impact the quality of the resultant point cloud or, in certain 

occasions, cause obstruction to the camera’s viewpoint, leading to an empty or incomplete 

point cloud. 

Finally, the Intel RealSense D435i requires a reasonably good processing device as it 

requires a relatively high power in comparison to other cameras. This is due to its 
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multimodal sensing technique and built-in IMU. For this, the system requires a medium-

class processor to ensure the highest performance. This could potentially be considered a 

limitation depending on the moving platform chosen to host the system. 

Although certain limitations could hinder the system’s performance, these limitations 

remain minimal and uncommon. The system did prove its reliability in every test case 

within the conducted experiments making it a significantly good candidate for real-life 

implementations. 

Future work and research would focus on investigating potentially expanding the 

sensory list to include an array of Time-of-Flight sensors fused with a LiDAR. This would 

significantly improve the system’s reliability. One factor would still remain limiting is the 

system’s computational requirements as it still needs to be able to be fitted onto a moving 

platform with minimal processing power, and with limited resources when it comes to 

electric power. 

 

5.6  Conclusion 

 

This chapter introduced a robust technique that enables autonomous, semi-

autonomous, and manually-driven assistive technology platforms such as electric-

powered wheelchairs, mobility scooters, or manually-driven wheelchairs to safely 

navigate around upwards-facing, and downwards-facing inclinations such as ramps and 

dropped curbs. The system leverages sensor fusion of RGB-D image acquisition systems 

and Inertial Measurement Units (IMUs) in order to capture a point cloud in the 3D 

environment. The system is not susceptible to surface vibrations or changes in its imaging 

sensor tilt due to its capability to recalibrate its resultant point cloud based on all possible 

3D rotations. 

A real-time accurate and highly-performing detection rate of 97.7142 % has been 

achieved  with a significantly low error rate of 1.492%. 

The proposed system is highly scalable as it solely relies on a core computing unit with 

medium-class computing power along with an RGB-D camera and an IMU. The system 
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boasts inherent adaptability, requiring no platform-specific modifications for integration 

onto diverse moving platforms. This scalability and adaptability render the system a 

versatile solution for various applications requiring robust navigation capabilities. 

The system’s performance has been subjected to a wide-spectrum experiment 

whereby it was tested in isolated and real-life environments, making sure that it can 

perform as expected within any possible scenario with high accuracy and a low error rate. 

In conclusion, the proposed system presents a highly notable milestone that has been 

achieved, delivering enhanced safety to assistive technologies, making them more stable, 

and more autonomous, bringing the current technological advancements one step forward 

towards the ultimate goal of achieving a fully autonomous moving platform with no human 

intervention and minimal supervision. 
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6 .  Chapter 6 

 

 

Curb and Downward-facing stairs 

Detection and Localisation 

 

 

6.1 Introduction 

 

Curbs and downward-facing stairs, seemingly unremarkable features of today’s 

world’s built environment, pose multifaceted challenges and are considered perilous 

obstacles for assistive technology users. Far from mundane, these ubiquitous features 

present complex navigation hurdles that necessitate a deeper understanding of their 

impact on mobility and safety.  Examining these presumably simple structures through the 

lens of accessibility reveals intricate nuances. Curbs, intended to control traffic flow and 

delineate pedestrian areas, create sudden changes in elevation that can easily destabilise 

wheelchairs, increasing the risk of tipping or loss of control. Downward-facing stairs, 

designed for vertical movement, enabling individuals who do not rely on wheelchairs and 

other mobility-related technologies to easily and quickly change elevation, present an 
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insurmountable limitation for wheelchair users, effectively severing access to specific 

locations or even entire segments of the built environment.  

Falls from these barriers represent a prevalent public health concern, inflicting 

physical injuries, hindering social participation, and incurring significant healthcare costs. 

Due to the lack of a specific National Health Service (NHS) database that records injuries 

caused by wheelchair falls in the United Kingdom, an alternative database, the National 

Electronic Injury Surveillance System 2003 in the United States, was accessed and it was 

found that it estimates that in 2003 [144], more than 102,300 individuals suffered injuries 

caused by wheelchair-related injuries. 65 – 80% of those injuries across all age groups are 

related to wheelchair falls [145]. Beyond the immediate physical danger, these obstacles 

have a profound psychological impact. The fear of falls from curbs and stairs can lead to 

anxiety, reduced confidence, and self-imposed limitations on mobility. This can translate 

to restricted participation in social activities, limited access to employment opportunities, 

and a diminished sense of independence. Additionally, these restrictive obstacles 

constitute an Achilles heel to the advancement of autonomous and semi-autonomous 

assistive technologies focusing on mobility. Their ubiquitous presence across various 

locations and scenarios makes them particularly problematic. They essentially represent 

the abrupt termination of a seemingly continuous pathway, often characterised by a sharp 

change in elevation. This inherent ambiguity makes accurate differentiation from 

traversable surfaces a hurdle for many detection techniques. Downward-facing stairs pose 

additional challenges due to their potential misidentification as ramps or inclined planes. 

Accessible ramps often share similar visual features, such as gradual inclines and smooth 

transitions, further complicating accurate detection. This difficulty in distinguishing 

between safe inclines and potentially dangerous drops presents a significant risk for 

wheelchair users. 

Overcoming these challenges requires innovative approaches in curb and stair 

detection systems. Advanced image processing algorithms are crucial for discerning subtle 

visual cues and incorporating contextual information. Additionally, accurate spatial 

understanding is essential to accurately identify elevation changes and distinguish curbs 

and stairs from safe inclines. 
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This chapter addresses these limitations, by putting forward a robust and reliable 

traversable area detection system that empowers wheelchair users to navigate their 

environment with greater confidence and safety. This state-of-the-art environmental 

perception system utilises an RGB-D camera with built-in multi-sensor fusion techniques. 

By harnessing the combined strengths of stereo imaging and laser vision, the system 

generates accurate point clouds, offering detailed representations of the surrounding 

environment, enabling it to easily detect and assess curbs, downward-facing stairs, and 

other end-of-path edges by detecting the candidate planes, segmenting the traversable 

area making sure that the area is flat and unobstructed. This means that the system can 

provide an accurate estimation of the sharp change in slopes that could lead to severe 

harm. During the segmentation process, the system not only identifies the edge of the 

traversable area but also measures the safe traversable distance, making sure that the 

platform user is within the allowable safe distance as far away as possible from the risk of 

harm or injury. The system ensures that the user is constantly at a distance that is higher 

than the safety threshold set to make sure that all the users of such mobility assistive 

technologies are safe. 

Moreover, the resultant point cloud would be used as an input to any autonomous or 

semi-autonomous assisted moving platform to enable it to move one step closer towards 

achieving the fully autonomous moving platform dream. 

This chapter is organised as follows: statement of problem and system architecture are 

described in section 6.2. The results are discussed in section 6.3. The system’s limitations 

are discussed in section 6.4, A real-life experiment to assess the system’s performance is 

illustrated in section 6.5, and the chapter’s conclusion is presented in section 6.6 
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6.2 Methodology 

 

 

6.2.1   Statement of Problem 

 

Due to the nature of the problem being addressed, traditional detection techniques 

cannot be considered. Downward-facing stairs, curbs, and the sharp ends of a path or road 

pose a significant limitation to most detection techniques widely used due to many 

reasons. 

The first reason is visual ambiguity, as curbs and downward-facing stairs often blend 

in a seamless way within the surrounding environment, almost unnoticeable to the naked 

eye. This ambiguity, especially in poorly lit or uneven terrain, creates difficulties for 

existing detection systems based on image recognition. The second reason is the nature of 

existence of such obstacles. These sharp ends of different paths do not have a static 

warning sign of their existence, they could exist at the end of a grass-filled path, a tarmac-

covered path, a cemented path, or even a tile-covered path in the case of downward-facing 

stairs. This renders techniques that rely on early detection unreliable. In addition to the 

previous, these obstacles usually have numerous and different characteristics. They 

exhibit considerable diversity in terms of size, shape, location, and materials. This poses a 

challenge for generic detection algorithms, requiring adaptability and context awareness. 

Not to forget the limitations of sensor technology. Traditionally-used sensors such as 

ultrasonic, and sonar-based systems have limited accuracy and range. This is clearly 

noticeable when such sensors struggle to differentiate between curbs, downward-facing 

stairs, and uneven surfaces. Furthermore, these sensors are highly susceptible to 

environmental factors like rain or dust, which can further hinder performance. Addressing 

the numerous challenges posed by curb and downward-facing stair detection is crucial for 

promoting safety, independence, and inclusivity for wheelchair and other mobility 

assistive technology users. 
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6.2.2  System Architecture 

 

 

The proposed system encompasses the curb, and downward-stairs avoidance via the 

traversable area detection module. This module leverages the Point Cloud Library (PCL) 

as a foundational framework for analysing and processing Point Cloud data acquired via 

the Intel RealSense D435i camera. In order to overcome the visual ambiguity discussed 

earlier, the system exclusively relies on the on the depth information provided by the 

depth camera, disregarding the RGB colour data. This approach focuses solely on the 

estimation of the traversable area’s shape, maximising computational efficiency, and 

minimising potential noise introduced by unnecessary colour information. The input 

depth data is processed through different stages in order to produce the expected results. 

The first stage consists of a passthrough filter that filters any noise out of the input cloud. 

For a point within the point cloud to be considered noise, its Z-coordinate must be outside 

of the [-2,2] range.  Points that are not included within the threshold range are filtered out 

and removed from the input point cloud. After filtering the point cloud based on the Z-axis, 

the passthrough filter is reapplied to filter out points based on the X-axis with their 

coordinates not being within the [-5,5] range. This step ensures that the input cloud 

contains a limited amount of noise and that it lies within the focal length limitation of the 

camera. This also means that the segmented plane will have a width of 10 units, a distance 

that surpasses 1 meter, which is more than the width of most assistive technologies. Due 

to the fact that laser scans typically generate measurement errors that lead to numerous 

sparse outliers and irregular measurements and representations, the input point cloud 

must undergo an additional filtering stage. The input data is filtered with the use of a 

Statistical Outlier Removal (SOR) filter. This filter analyses each point's distance from its 

k-nearest neighbours (k=50 in this case) and compares it to the local standard deviation. 

Any point exceeding the mean distance by a predefined multiplier (8 in this case) is 

categorised as an outlier and subsequently removed. This approach effectively mitigates 

the impact of erroneous measurements, promoting a more refined and reliable point cloud 

representation for subsequent analysis. Following the filtering process, a parallel plane 

segmentation algorithm is applied to the input point cloud to isolate the ground plane. This 
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technique operates by identifying the pair of planes exhibiting the closest proximity while 

maintaining perpendicularity to the z-axis (representing the vertical direction).  The 

algorithm seeks parallel planes, like the ground and a flat roof, that are close in proximity. 

The perpendicularity constraint to the z-axis ensures these planes are correctly aligned 

relative to the vertical direction. Due to this segmentation, distinct elevation changes (such 

as those representing curbs and initial downward stair steps) become readily detectable, 

enabling the system to differentiate the walkable ground plane from other elements in the 

environment. 

Similar to other segmentation methodologies, 3D point cloud segmentation relies on 

identifying points of interest within a point cloud and grouping those that satisfy specific 

criteria into delineated objects or categories. This fundamental principle of segmentation 

applies across various domains, from image processing to robotics. In this instance, the 

target category comprises two parallel planes, both perpendicular to the Z-axis. Points 

residing within these planes are classified as inliers, adhering to the parameters of the 

segmentation algorithm. 

 

To accomplish this plane detection, a robust model parameter estimator is essential.  

Estimators of this type fit a mathematical model to the point cloud data. Here, the Random 

Sample Consensus (RANSAC) algorithm provided by the point cloud library (PCL) is 

selected for its iterative nature and resilience to errors and outliers. RANSAC's iterative 

approach involves repeatedly sampling subsets of the point cloud, fitting a model, and 

evaluating the fit against the entire dataset.  This allows it to effectively isolate the most 

representative inlier points in the presence of substantial noise or erroneous 

measurements. Additionally, RANSAC's computational efficiency is ideal for real-time 

applications. A distance threshold of 0.05 (5cm) ensures both the accuracy of the 

segmented planes and maximises point inclusion while preserving real-time processing 

capabilities. This threshold determines how tightly points must cluster around the model 

plane to be considered inliers.  Choosing the optimal threshold involves a balance between 

precision and the need to accommodate some inherent point cloud variation. Upon the 

completion of the segmentation phase, one or two parallel planes would emerge as outputs 
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of this step. These planes are returned with their estimated plane coefficients that are 

represented in Hessian form:  

𝑎. 𝑥 + 𝑏. 𝑦 + 𝑐. 𝑧 − 𝑑 = 0         (6.1) 

 

This step provides sufficient data to initiate the analysis and calculations phase that 

ensures a full understanding and assessment of the surrounding environment is fulfilled.  

The subsequent stage involves the determination of specific points of interest (PoIs). 

The first is the centroid of the segmented planes, whose coordinates are derived from the 

previously introduced Hessian normal form. We denote this centroid as C (a, b, c).  An 

additional PoI is selected as an arbitrary point in proximity to the centroid 

A (𝒙𝐦𝐚𝐱,
𝒚𝒎𝒊𝒏ା𝒚𝐦𝐚𝐱

𝟐
 , 𝒛𝒎𝒊𝒏 ). The minimum and maximum points located within the Z-axis 

are recorded as Zmin and Zmax. 

Finally, the distances between the camera and the previously determined points of 

interest are calculated. The distance between the camera and the centroid is denoted as 

DC, while the distance between the camera and the arbitrary point is denoted as DA. These 

distances are computed using the squared Euclidean distance equation: 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ඥ(𝑥 −  𝑥)ଶ + (𝑦 −  𝑦)ଶ + (𝑧 −  𝑧)ଶ          (6.2) 

 

With 𝒙𝟎 =  𝒚𝟎 =  𝒛𝟎 = 𝟎 as the coordinates of the origin point, and x,y and z being the 

coordinates of both points C and A, respectively. However, the distance between the centre 

of the camera and the centroid A is not enough as there are cases where the centroid could 

be very close to the edge of the traversable area, or in other cases, it could be mistaken 

with the centroid of the lower-side of the road that is situated under the curb. In order to 

avoid this, an additional measurement is introduced, this measurement value is named 

mD, or minSafeDistance is also calculated via the equation below: 

minSafeDistance =  ฬ
CamHeight

sin(180 − CamTilt)
ฬ         (6.3) 
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with CamHeight being 0.5324 or 53.24 cm, and 𝐶𝑎𝑚𝑇𝑖𝑙𝑡 =  ቀ𝑝𝑖𝑡𝑐ℎ ×
ଵ଼


ቁ. Pitch is 

provided by the IMU of the Intel RealSense D435i. 

The detected plane is considered traversable if  

(i) DC > minSafeDistance 

(ii)  minSafeDistance>1 

(iii) Zmin < 1.97 

(iv) Zmax > 1. 

 

Zmin and Zmax are used to limit the traversable plane to the closest plane to the 

camera in the case where the camera observes a traversable plane and a curb. 

 
Figure 6.1: Centroid A, Zmin, Zman, and mD (minimumSafeDistance). Zmin and Zmax are used 
to accurately pinpoint the traversable area. mD is a safe distance that relies solely on the camera’s 
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tilt and height to avoid cases where A is too close to the edge of the curb or A is mistakenly 
estimated as the centroid of the lower side of the curb. 

 

If the detected plane satisfies the criteria for traversability, the system determines the 

traversable distance. This distance is calculated as the length between the camera and the 

plane's furthest point, while maintaining a predetermined safety margin of 1 meter.  

Conversely, if the plane fails to meet the specified traversability conditions, the system will 

generate a "STOP" message and associated command. 

 

Figure 6.2: Traversable area. Illustration of what a traversable area would look like. The distance 
between the centre of the camera and Zmin, Zmax, A, and mD are measured and checked against 
the traversability conditions to ensure that the area in green is traversable. 
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Figure 6.3: Curb scenario as seen by the RealSense D435i camera. 

 

 

Figure 6.4: Curb scenario after being assessed by the proposed method. 

 

 

6.3 Experiment 

 

To rigorously evaluate the system's functionality and delineate its potential 

constraints, a field experiment was devised utilising a Salsa M2 Electric-Powered 

Wheelchair (Figure 6.5) as the primary platform for testing. An Intel RealSense D435i RGB-

D camera was meticulously mounted on the left footrest's upper hinge, positioned at a 

precise height of 53 cm from the ground and angled at a 30-degree tilt. 
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Figure 6.5: Experiment setup. The Salsa M2 Electric-Powered Wheelchair with the D435i 
mounted onto the left footrest upper hinge. 

 

Throughout the experiment, the wheelchair was navigated across various footpaths 

and curbs within the University of Kent Canterbury Campus, during different times of the 

day and in different weather conditions. The maximum traversable distance was measured 

and documented, with notations made upon encountering a curb or descending stairway. 

To establish ground truth, a tape measure was employed to precisely determine the 

distances from the camera to minSafeDistance, DC, and the overall Traversable Distance. 

The results are illustrated in Table 6.1. The system’s point cloud processing rate achieved 

was 1350 FPS. 

The average accuracy of the results was calculated via the equation: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   ൮
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𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠
൲          (6.4) 

=  0.999701723 

The system's average error distance was also calculated. This involved subtracting the 

detected distance from the ground truth distance for each measurement. The resulting 

differences were then averaged, yielding an average error of 0.0034150 meters, as 

calculated using the following equation: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

=   ቆ
|(𝐺𝑇 − 𝐴𝐿𝐺) +  (𝐺𝑇 − 𝐴𝐿𝐺) +  (𝐺𝑇 − 𝐴𝐿𝐺)ௌ|

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠
ቇ         (6.5) 

Where: GT is the Ground Truth distance 

 ALG is the Algorithm-measured distance 

D is the traversable distance 

C is the Distance Center 

SD is minSafeDistance 
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PEARS1 2.22264 2.22 1.236543 1.23 0.516372615 0.51 

PEARS2 1.27807 1.23 0.712293 0.73 0.61602974 0.6 

PEARS3 1.3046 1.13 0.873954 0.87 0.54488172 0.53 

PEARS4 STOP 0.92 1.58059 1.574 0.5302 0.52 

PEARS5 STOP 0.75 1.58421 1.58 0.76358922 0.76 

SIBSON1 1.18095 1.18 0.896952 0.89 0.8054079 0.8 

SIBSON2 1.15564 1.15 0.867901 0.86 0.55701848 0.54 

SIBSON3 STOP 0.8 1.0824 1.08 0.5217168 0.51 

SIBSON4 STOP 0.755 1.09778 1.1 0.52912996 0.53 

SIBSON5 STOP 0.665 1.05706 1.05 0.50950292 0.5 

JENSTAIRS1 1.63388 1.63 N/A N/A 0.594018 0.59 

JENSTAIRS2 1.15823 1.15 0.893078 0.89 0.676326 0.67 

JENSTAIRS3 1.57875 1.57 N/A N/A 0.98117 0.98 

JENSTAIRS4 1.23509 1.23 
N/ 
A N/A 0.959871 0.96 

JENSTAIRS5 STOP 0.755 2.05189 2.05 0.680821 0.68 

SPORTS1 1.16524 1.16 0.769902 0.77 0.722119 0.72 

SPORTS2 1.63563 1.63 0.67394 0.69 0.64089 0.67 

SPORTS3 1.16023 1.16 0.77168 0.77 0.584358 0.59 

SPORTS4 STOP 0.705 1.13042 1.13 0.685053 0.68 

Table 6.1: Experiment Results. 
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SPORTS5 STOP 0.635 1.07448 1.07 0.642584 0.64 

SPORTSPARK1 1.0447 1.04 0.698315 0.7 0.586733 0.6 

SPORTSPARK2 1.1328 1.13 0.713909 0.7 0.546109 0.58 

SPORTSPARK3 1.15269 1.15 0.736138 0.73 0.588344 0.6 

SPORTSPARK4 STOP 0.7 1.1873 1.18 0.5462 0.57 

SPORTSPARK5 STOP 0.68 0.998157 1 0.540937 0.57 

KENEDYST1 1.13189 1.13 1.02761 1.02 0.782063 0.78 

KENEDYST2 1.81466 1.81 1.04778 1.04 0.532813 0.57 

KENEDYST3 1.38437 1.39 1.3266 1.32 0.652921 0.65 

KENEDYST4 STOP 0.94 1.10903 1.1 0.717108 0.72 

KENEDYST5 STOP 0.88 1.13729 1.14 0.734616 0.75 

SIBSONST1 1.60949 1.61 0.868737 0.87 0.69413 0.7 

SIBSONST2 1.65768 1.66 0.79776 0.8 0.559229 0.57 

SIBSONST3 STOP 0.98 1.2376 1.23 0.53512 0.53 

SIBSONST4 STOP 0.92 1.37691 1.37 0.65368 0.65 

SIBSONST5 STOP 0.99 1.29322 1.29 0.646958 0.65 

SIBSONFIRSTST1 1.87634 1.87 0.942054 0.95 0.837664 0.83 

SIBSONFIRSTST2 1.23737 1.24 1.02813 1.03 0.85112 0.85 

SIBSONFIRSTST3 1.32985 1.33 0.655989 0.65 0.597375 0.6 

SIBSONFIRSTST4 STOP 0.75 0.974753 1 0.728602 0.73 

SIBSONFIRSTST5 STOP 0.69 1.81702 1.8 0.560262 0.57 

GRIMONDST1 1.42437 1.43 1.17402 1.17 0.730168 0.73 

GRIMONDST2 1.70371 1.7 1.56025 1.56 0.558409 0.56 

GRIMONDST3 STOP 0.93 1.30105 1.32 0.900026 0.9 

GRIMONDST4 STOP 0.7 1.44742 1.45 0.935804 0.94 

GRIMONDST5 STOP 0.86 1.39197 1.41 0.53621 0.55 

GRIMOND1 1.62911 1.62 1.35331 1.35 0.556353 0.56 

GRIMOND2 1.53203 1.54 1.3249 1.32 0.544911 0.55 

GRIMOND3 STOP 0.96 1.12884 1.12 0.72941 0.73 

GRIMOND4 STOP 0.99 1.3263 1.32 0.812264 0.81 

GRIMOND5 STOP 0.86 1.14381 1.14 0.810194 0.81 

JEN1 2.11382 2.1 1.4123176 1.41 0.576650096 0.57 

JEN2 1.50665 1.5 1.0064422 1.02 0.48510514 0.48 

JEN3 1.30535 1.3 0.8719738 0.87 0.420291372 0.42 

JEN4 STOP 0.8 0.5344 0.53 0.4575808 0.45 

JEN5 1.11326 1.1 0.74365768 0.72 0.53659132 0.53 

GRIM1 1.14841 1.15 0.76713788 0.77 0.55353362 0.55 

GRIM2 1.6663 1.65 1.1130884 1.1 0.8031566 0.8 

GRIM3 1.07769 1.05 0.71989692 0.72 0.51944658 0.52 

GRIM4 STOP 0.86 0.57448 0.57 0.51542 0.51 

GRIM5 STOP 0.9 0.6012 0.61 0.5338 0.54 
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The system's average error distance was calculated throughout the entire experiment. 

The results are represented within Figure 6.6. 

 

 

Figure 6.6: Distance Error Distribution. This ϐigure describes the distribution of the distance 
estimation error throughout the conducted experiment. 

 

Analysis of the table reveals that only two test cases exhibited a traversable distance 

discrepancy exceeding 0.01 m. Consequently, among the 60 test cases, only two instances 

demonstrated a measured distance deviating from the ground truth by more than 1 cm, 

with a maximum difference of 0.02769 m. Given the 1-meter safe distance threshold, this 

3 cm measurement error is negligible. At worst, it represents less than 5% of the safe 

distance, ensuring the wheelchair will maintain a minimum 95 cm buffer from the curb. 

Only a single test case out of 60 demonstrated a detection error exceeding 0.04 meters 

when compared to the established ground truth. This leads to a calculated detection error 

rate as follows: 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  
1

60
= 0.0167 𝑜𝑟 1.67%         (6.6) 
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Liot 

 

Figure 6.7: Jen 2 test case as seen by the image input device sensor. 

 

Figure 6.8: Jen 2 post-assessment as measured by the proposed algorithm. The algorithm 
estimated the traversable distance to be around 1.50 meters and segmented the traversable plane 
based on the camera’s ϐield of view. 
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Figure 6.9: Jen 2 ground truth. As measured by the tape measure, it can be observed that the 
traversable distance is 1.5 meters. 

Figure 6.7 illustrates one of the test cases recorded within Table 6.1, named Jen2. In 

this test case, the depicted scenario is one of the curbs that are situated near the Jennison 

Building within the University of Kent Canterbury Campus. It represents a normal curb in 

one of its simple forms of existence. The traversable distance as per the proposed method 

is estimated as 1.5 meters as illustrated in Figure 6.8, and as the traversable distance is 

more than 1 meter, the segmented plane is considered traversable and coloured in green. 

This has been verified Figure 6.9, the ground truth as measured with the tape measure is 

1.5 meters which confirms the algorithm’s findings. 

 

Figure 6.11: GRIMOND 2 test case as seen by the imaging sensor. As illustrated, the curb has a 
minor inclination and is not straight. 

 

Figure 6.10: GRIMOND2 test case as observed by the algorithm. The camera is at 0.5324 meters from the ground, 
it is tilted at 44.66 degrees, the minSafeDistance is 0.544911, the distance centre is 1.3249 meters, and the 
traversable area is 1.53203 meters. 
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Figure 6.12: GRIMOND2 - Distance Centre. The ground truth for the distance from the camera 
sensor to the centroid of the segmented plane observed via the algorithm as measured by the tape 
measure. The measured distance is 1.32 meters. 

 

Figure 6.13: GRIMOND2 Min Safe Distance. The ground truth for minSafeDistance, the distance 
to be estimated via Equation (6.3) as measured by the tape measure. The distance is 0.555 meters.  
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Figure 6.14: GRIMOND2 Traversable Area. The traversable area ground truth as measured by 
the tape measure. The distance is 1.54 meters. 

 

Figure 6.10 illustrates another test case, GRIMOND2 recorded within Table 6.1. 

GRIMOND2 is a curb located at the end of a semi-inclined ground surface. The electric-

powered wheelchair and the input camera are located on the upper side of the curb, on the 

surface that is being assessed. Figure 6.16: KENEDYST1 test case as observed by the 

algorithm. The camera is at 0.5324 meters from the ground, it is tilted at 31.0599 degrees, 

the minSafeDistance is 0.78096, the distance centre is 1.02528 meters, and the traversable 

area is 1.13189 meters illustrates the algorithm’s returned results after assessing the 

ground surface. According to the system, The camera is 0.5324 meters above the ground, 

its tilt is 44.66 degrees, which means that according to equation (6.3), the minSafeDistance 

is 0.544911 meters. The distance between the camera and the centroid of the segmented 

plane is 1.3249 meters whilst the traversable distance is 1.53203 meters. Upon assessing 

the ground truth with the use of a tape measure, Figure 6.12 confirms that the ground truth 

for the distance between the camera and the centroid is 1.32 meters. In addition, according 

to Figure 6.13, the measured ground truth for the minSafeDistance is 0.555 meters. As for 
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Figure 6.14, the measured traversable distance ground truth is 1.54 meters. The 

segmented area is more than 1 meter long, hence, the area is considered traversable and 

is marked in green. Upon comparing the ground truth to the estimated value, it can be 

evident that the system is highly accurate and reliable as the estimated traversable area is 

1.53203 meters whilst the ground truth is 1.54 meters. This means that the error rate in 

this detection is 0.00797 meters, this enables the error rate calculation that is 0.00797 

divided by 1.54. The result is 0.5175% which can safely be considered negligible.  

 
Figure 6.15: KENEDYST1 test case as seen by the imaging sensor. As illustrated, a downward-
facing set of stairs located indoor within the Kenedy Building at the University of Kent Canterbury 
Campus. 

 

 

Figure 6.16: KENEDYST1 test case as observed by the algorithm. The camera is at 0.5324 
meters from the ground, it is tilted at 31.0599 degrees, the minSafeDistance is 0.78096, the 
distance centre is 1.02528 meters, and the traversable area is 1.13189 meters 

 



189 
 

 
Figure 6.17: KENEDYST1 - Distance Centre. The ground truth for the distance from the camera 
sensor to the centroid of the segmented plane observed via the algorithm as measured by the tape 
measure. The measured distance is 1.02 meters. 

 

 
Figure 6.18: KENEDYST1 Min Safe Distance. The ground truth for minSafeDistance, the distance 
to be estimated via equation (6.3) as measured by the tape measure. The distance is 0.78 meters. 
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Figure 6.19: KENEDYST1 Traversable Area. The traversable area ground truth as measured by 
the tape measure. The distance is 1.13 meters. 

 

Figure 6.15: KENEDYST1 test case as seen by the imaging sensor. As illustrated, a 

downward-facing set of stairs located indoor within the Kenedy Building at the University 

of Kent Canterbury Campus.  illustrates another test case, KENEDYST1 recorded within 

Table 6.1. 

KENEDYST1 represents a set of indoor downward-facing stairs located within the 

Kenedy Building at the University of Kent in Canterbury. The electric-powered wheelchair 

and the camera are both located on the top of the stairs, as per the previous example, with 

a tilt of 31.0599 degrees. According to the system, the camera is 0.5324 meters from the 

ground, which means that according to equation (6.3), minSafeDistance is 0.78096 meters. 

The distance between the camera and the centroid is 1.02528 meters, and the traversable 

area is 1.13189 meters. Upon assessing the ground truth by using a tape measure, it is 

observed that, as per Figure 6.17, it can be observed that the real distance between the 

camera sensor and the 1.02 meters. The minSafeDistance, as per Figure 6.18 is 0.78 meters 
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as calculated by equation (6.2). The segmented area is more than 1.13 meters long, which 

means that the area is traversable and that it is marked in green. The estimated traversable 

area is 1.13189 meters whilst the ground truth is 1.13 meters. The difference in calculation 

is 0.00189 meters. This enables the calculation of the error rate, which is 0.00189 divided 

by 1.13 meters, which yields to 0. 167% as error rate, which can be considered negligible. 

 

 

Figure 6.20: PEARS2 test case as seen by the imaging sensor. As illustrated, a curb located next 
to the Pears Building at the University of Kent Canterbury Campus was observed from a distance. 

 

 

Figure 6.21: PEARS2 test case as observed by the algorithm. The camera is at 0.5324 meters 
from the ground, it is tilted at 31.0599 degrees, the minSafeDistance is 0.61602974, the distance 
centre is 0.712293 meters, and the traversable area is 1.27807 
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Figure 6.22: PEARS2 Traversable Area. The traversable area ground truth as measured by the 
tape measure. The distance is 1.23 meters. 

 

 

PEARS2 represents a curb located outside of the Pears Building at the University of 

Kent in Canterbury. The electric-powered wheelchair and the camera are both located on 

the upper side of the curb, as per the demonstrated test case, with a tilt of 31.0599 degrees. 

According to the system, the camera is 0.5324 meters from the ground, which means that 

according to equation (6.3), minSafeDistance is 0.61602974. The distance between the 

camera and the centroid is 0.712293 meters, and the traversable distance is 1.27807 

meters. Upon performing the ground truth assessment with the help of the tape measure, 

it is found that the real traversable distance is 1.23 meters, the distance to the centroid is 

0.73 meters, and the minSafeDistance is 0.6 meters. It is obvious that the estimated 

distance is 0.04807 meters more than the real distance; this means that the error rate, 

which is 0.04807 divided by 1.23 meters, yields 3.9%. According to Table 6.1, PEARS2 is 

the test case with the highest difference from the ground truth, which means it is the worst-

case scenario result. This scenario was detected with an error rate of 3.9%. As the safe 

distance threshold is set to 1 meter, and the minSafeDistance is 0.6 meters, the system will 

return the STOP command earlier than the detected traversable area becomes 0.04807 
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meters, this means that the user will be prompted to stop long before the anomaly in the 

detection is considered a risk to the safe navigation process. 

6.4 System’s Limitations 

  

Due to the fact that the system uses stereo vision fused with infrared imaging, the 

system is still subject to a number of limitations. Despite employing both stereo and 

infrared vision, the system remains vulnerable to limitations inherent in optical sensing 

technologies. Dim lighting can compromise the integrity of the point cloud, hindering 

accurate curb detection. Infrared imaging provides additional fault tolerance by mitigating 

low-level scenarios where stereo vision fails. In addition to IR vision, the 1-meter safe 

distance threshold aims to mitigate any inaccurate readings by giving the user enough 

distance and time to intervene manually. 

In addition, obscuring objects like debris or vegetation can disrupt the system's 

calculation of the traversable plane and could potentially provide false readings when it 

comes to the traversable distance or the “DC” or distance-centre value. This means that the 

traversable plane is augmented by merging litter or other objects with the ground level on 

the top side of the curb. This is where minSafeDistance plays a crucial role as it can detect 

a distance as the hypothenuse of the right triangle formed by the camera’s tilt of 31.0599 

degrees, and its height of 0.5324 meters would be, according to equation (6.3), 0.62151 

meters. This means that the system will accurately determine when to stop more than half 

a meter away from the true end of the curb.  

Future work will focus on improving the system’s performance by investigating the use 

of Simultaneous Location and Mapping (SLAM) technology to better understand the 

surrounding when assessing ground planes and traversable areas. This would also enable 

the system to become more versatile and could potentially allow the system to navigate 

safely at a distance shorter than the 1-meter safe distance currently adopted. 
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6.5 Conclusion 

 

This chapter presented a robust technique designed to enhance the safe navigation of 

curbs and downward-facing stairs for assistive technology platforms, including electric-

powered wheelchairs, mobility scooters, and manually driven wheelchairs. This technique 

has potential applications in autonomous, semi-autonomous, and manual modes of 

operation. The system employs sensor fusion, combining RGB-D image acquisition and 

Inertial Measurement Units (IMUs) to generate robust 3D environmental point clouds. By 

incorporating IMU data, the system can dynamically recalibrate the point cloud to 

compensate for surface vibrations or changes in sensor tilt, ensuring accurate spatial 

representation. 

The system exhibits a statistically significant detection accuracy rate of 99.97%. This 

is further underscored by a minimal error rate of 1.67%.  

The proposed system demonstrates both scalability and adaptability. Its reliance on a 

standard computing unit, RGB-D camera, and IMU ensures minimal hardware 

requirements.  This, combined with the system's platform-agnostic design, facilitates 

seamless integration onto various moving platforms without the need for extensive 

customisation. These characteristics make the system a versatile and cost-effective 

solution for diverse applications demanding reliable navigation. 

In conclusion, the proposed system represents a significant advancement in assistive 

technology safety and autonomy. By enhancing stability and enabling greater autonomy, 

this work contributes to the ongoing development of fully autonomous moving platforms 

that prioritise user safety and minimise the need for human supervision.  This system has 

the potential to expand the accessibility and functionality of assistive devices, improving 

mobility and independence for individuals with disabilities. Additionally, the principles 

and techniques demonstrated in this work could inform the development of autonomous 

systems across various domains, from self-driving vehicles to industrial automation. 

Further refinement and real-world testing will be crucial to ensure reliability and address 

any remaining challenges on the path to fully autonomous operation.
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7 .  Chapter 7 

 

 

Conclusion 

 

 

7.1 Concluding Comments 

 

This chapter provides a concise discussion of the research and its outcome. The 

incorporation of deep learning technologies along with machine vision has profoundly 

transformed the landscape of computer vision applications, fostering challenges and new 

lines of investigation, ushering in countless applications within different spectrums of life. 

One of the notable applications of deep learning and machine vision, whether they are 

fused or used separately, is the field of assistive technologies (AT). Harnessing the power 

of such technologies within AT can provide a significant improvement to the quality of life 

of its users, empowering more freedom of mobility and independence.  One of the main 

limitations that AT users face is mobility and safe navigation of their mobile platform. For 

this reason, deep learning and machine vision technologies can potentially alleviate this 

challenge by providing guidance and assistance via spatial understanding of the 

environment in order to ensure safe navigation. This can be beneficial to manual, semi-

autonomous, or autonomous navigation of assistive technologies.  
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This thesis introduces multiple algorithms based on deep learning machine vision 

techniques for detecting and localising negative road anomalies, as well as onboard 

computer vision point cloud segmentation and spatial understanding for upwards and 

downwards inclines, end of paths such as curbs, or downwards-facing stairs detection and 

localisation. The proposed systems do not require manual handling or intervention and 

are capable of achieving notable high performance and accuracy together with reliable 

real-time application. 

The proposed systems are versatile and are not only limited to AT as they can be 

mounted onto any moving platform, whether it is a bicycle, motorbike, car, van, robotic 

platform, etc.  

 This thesis culminates in Section 7.2, where the key findings are presented and 

critically discussed. Additionally, Section 7.3 outlines promising avenues for future 

research and development. 

 

7.2 Main Contributions and Research Findings 

 

The answers to the research questions raised within the introduction are set out 

below: 

 What impact does the variety of object representation within a negative road 

anomalies dataset have on the performance of the object detection network? 

Given that object detection systems are widely available using different 

technologies and setups, how can the optimal technique be selected? 

Existing datasets are mainly focused on representing potholes from a car driver's or 

dashcam’s perspective. They are mainly dedicated to on-the-road vehicles such as cars, 

vans, and other vehicles in an attempt to improve the field of driverless vehicles. These 

datasets often lack sufficient representation of water-filled, debris-filled, and diversely 

coloured. For this, a manually collected dataset was proposed in Chapter 3. The dataset is 

more aimed at potholes in their different forms and from different perspectives, usually 

the perspective of a pedestrian or an assistive technology user, whether a mobility scooter, 
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a wheelchair, or other ATs. The proposed dataset provides a wide coverage of potholes in 

different shapes, textures, and fillings, whether they are water-filled potholes, debris-

filled, or rabble-filled, which bestows an integral role on the dataset for the successful 

completion of the desired application. 

 Chapter 2 provided a comprehensive review of the current literature, showcasing the 

different technologies used, their application, performance, and computational 

requirements. This comparison concluded that vision-based deep-learning techniques are 

the judicious choice for an accurate and reliable system designated for negative road 

anomalies or potholes detection and localisation.  

 Within Chapter 4, a comparison between three of the most prominent and widely 

used object detection convolutional neural networks was performed. The proposed 

dataset was applied to the chosen network, and the resultant detectors were compared. It 

was concluded that the most optimal network would be the one with the highest accuracy 

and least computational power requirements, as the network would need to be ported 

onto a low-performing processor with power limitations. Yet, the network is expected to 

perform in real-time with minimal to no latency. The resultant of the training process was 

represented and analysed, and the framerate performance was assessed via the 

application of the resultant networks onto a recorded video that serves as a real-time input 

to the network. 

 In conclusion, the manually collected dataset was essential for the designated task as 

it encompasses a wide variety of cases of pothole existence, taking into consideration the 

stochasticity of its nature and condition.  As for the best-performing network chosen, the 

Tiny YOLO (You Only Look Once) convolutional neural network was chosen due to its high 

mean average precision, or mAP of 97.7%, and a significantly high detection rate of 532.99 

frames per minute.  

 

 How can deep learning-based object detection networks be utilised to 

accurately detect and classify potholes of varying sizes, shapes, and textures 

under diverse environmental conditions (e.g., lighting, weather, road surface) 

and in real-time? 
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Chapter 4 illustrates the process of choosing and training the most optimal 

convolutional neural network for pothole detection and localisation within a given video 

feed. After rigorous comparison and analysis, one network was chosen. The chosen 

network was then cascaded within a larger system where the input is not only an RGB feed 

but also a depth feed. RGB feed was applied to the chosen pre-trained network, and the 

resultant video frame was aligned with the depth feed in order to extract the measurement 

of the distance between the camera and certain points of interest within the real 3D world. 

The presented novel approach is a breakthrough in negative object detection and 

localisation. It enables the system to accurately provide precise distance readings that 

enable any negative obstacle to be treated as a positive obstacle when using the output as 

sensory data for any autonomous or semi-autonomous navigation algorithm. In addition, 

the proposed system provides accurate real-time feedback to the user, which enables AT 

users to safely navigate their way around potholes and negative obstacles whilst mitigating 

the risks associated with falls.  

The system underwent rigorous testing designed to simulate a wide range of 

challenging real-world scenarios. These included adverse weather conditions, variations 

in time of day, and operation at high mobility speeds. Despite these challenges, the system 

demonstrated exceptional performance in the detection of potholes.  It achieved a 

remarkably high confidence rate of 89.67542% in real-time operation. Furthermore, the 

system exhibited outstanding precision in distance measurement, with an average error of 

only 0.008758667 meters. These results offer compelling evidence that negative obstacle 

detection is feasible.  Moreover, they validate the potential of treating negative obstacles 

as positive entities when utilising systems like the one presented. 

 

 How can the geometric properties extracted from point cloud data be 

harnessed to detect and assess the accessibility of positive and negative 

inclined planes, including wheelchair ramps, in real-time scenarios? 

Chapter 5 introduces an advanced computer vision system that leverages a unique 

fusion of depth camera data and Inertial Measurement Unit (IMU) readings to generate a 

comprehensive point cloud representation of the environment. This system is expressly 
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designed to detect, segment, and evaluate the characteristics of both upward and 

downward-inclined planes. Central to its operation is a sophisticated suite of filtering and 

segmentation algorithms, which precisely isolate the inclined planes of interest. The 

system then rigorously calculates the plane's inclination, taking into account the pre-

inclination angle—a subtle change in the ground slope often preceding negative 

inclinations. Finally, a careful assessment of the segmented plane's width determines its 

traversability. The proposed system can mitigate sudden changes in the camera’s tilting 

that could be caused by the exposure to continuous vibrations or other sudden shocks as 

it uses the IMU data to automatically calibrate and normalise the resultant point cloud in 

its real-life representation. This provides an accurate and reliable depiction of the real-

world environment surrounding the platform hosting the system. 

The proposed system achieved a noteworthy detection accuracy rate of 97.7142% 

with a significantly low error rate of 1.492%. The system does not require any substantial 

computing power and is capable of running on almost any processing unit that is capable 

of running a real-time point cloud representation of the surrounding environment.  

In conclusion, the collected geometric properties obtained via an RGB-D camera can be 

used within the proposed algorithm to segment an inclined plane and obtain its plain 

coordinates in Hessian form. The coordinates are then used to calculate its inclination 

angle. This, along with additional distance-related and pre-inclination related 

measurements can be fused in order to detect and assess the traversability of inclined 

planes such as wheelchair ramps, curb drops, and other accessibility-related inclined 

planes. 

 

 How can a point cloud segmentation algorithm be designed to efficiently and 

accurately segment curb and downward-facing stair edges in real-time 

scenarios within the real world? 

Chapter 6 provides a comprehensive exploration of the design and implementation of 

a novel point cloud segmentation algorithm. This algorithm leverages a unique fusion of 

RGB-D camera data and Inertial Measurement Unit (IMU) readings, alongside innovative 

calculation techniques, to achieve robust segmentation and assessment of ground planes.  



201 
 

The system commences its operation with precise segmentation of the ground plane, 

followed by a rigorous traversability assessment. It detects the clear, traversable area 

leading up to the plane's termination point, where a curb or downward-facing stairs 

typically present a potential hazard. 

To provide the user with vital situational awareness, the system meticulously 

calculates crucial measurements. These include the minimum safe distance and the total 

traversable distance from the camera's perspective to the plane's edge.  By equipping the 

user with this precise information, the system facilitates the manoeuvres necessary for 

effective obstacle avoidance and fall prevention.  Furthermore, this system holds the 

potential to serve as a valuable input for autonomous navigation algorithms, opening up 

new avenues for the safe and independent operation of assistive technologies. 

The system demonstrated notable performance, achieving a noteworthy detection 

accuracy of 99.97% while maintaining a significantly low error rate of only 1.67%.  

Furthermore, this groundbreaking system couples high performance with substantial 

efficiency. Its low complexity enables real-time operation on standard central processors, 

capable of generating point cloud representations of the environment. 

In conclusion, the proposed methodology makes it possible to design a point cloud 

segmentation algorithm aimed at efficiently and accurately segmenting curb and 

downward-facing stair edges in real-time scenarios within the real world. The system 

proved highly performing and reliable. It is also highly scalable and versatile in its nature. 

 

 How can the reliability and robustness of the proposed systems be rigorously 

evaluated under diverse and unpredictable real-world conditions, taking into 

consideration indoor and outdoor scenarios in certain cases? 

 

To comprehensively assess the reliability and robustness of the algorithm presented 

in Chapter 4, a rigorous, multi-stage stress test was conducted in diverse real-time 

scenarios around the University of Kent's Canterbury campus.  The evaluation protocol 

encompassed two distinct phases. Initially, the object detection neural network's 
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performance was meticulously tested using a curated image dataset containing a wide 

variety of pothole examples.  Subsequently, the system was evaluated using a publicly 

available, real-time video recording, enabling analysis of the network's performance under 

dynamic conditions.  During these initial phases, key metrics including accuracy, frame 

rate, and detection rate were carefully calculated. 

The system was then deployed in the field, undergoing trials at various times of day, 

under diverse weather conditions, and while operating at different speeds.  Throughout 

these tests, 105 cases were meticulously documented, with detection confidence and 

relevant measurements recorded for each instance making sure that the ground truth is 

obtained with a strict and rigorous measurement method, that is ensured via using a tape 

measure. Analysis of the resulting dataset yielded the average accuracy, average error rate, 

and overall detection rate, providing valuable insights into the system's performance.  The 

proposed system demonstrated salient reliability and versatility across these challenging 

conditions, validating the potential of this innovative technique for real-world 

implementation. 

To comprehensively assess the system presented in Chapter 5, it underwent a rigorous 

two-stage evaluation process.  Firstly, 67 outdoor test instances were conducted across 

the university campus.  The system was deployed to detect and assess the characteristics 

of existing wheelchair and bicycle ramps. During these field tests, the system's calculated 

inclination angle, pre-inclination angle, and width measurements were meticulously 

recorded.  To ensure the validity of these calculations, ground truth data was obtained 

using a tape measure and a digital inclinometer. 

The second stage of the evaluation took place within a controlled environment. Here, 

the system was subjected to 16 carefully designed test cases, with each case representing 

a precise, one-degree increment in the inclination angle. In every instance, ground truth 

measurements were meticulously established. Width measurements were verified using a 

tape measure, while inclination accuracy was rigorously validated through the use of both 

a digital inclinometer and a protractor for cross-referencing.  Throughout both the field 

and controlled experiments, average detection accuracy and error rate were meticulously 

documented. These metrics provide compelling evidence to assert the system's robust 

performance and unwavering reliability. 
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To rigorously evaluate the algorithm proposed in Chapter 6, 60 test cases across 

diverse indoor and outdoor environments were conducted. These tests were designed to 

expose the system to a wide range of curbs and downward-facing stairs,  meticulously 

assessing its reliability. Ground truth measurements were carefully obtained using a tape 

measure, providing an accurate benchmark to validate the system's performance. 

Individual test results were then subjected to thorough analysis, with a focus on the 

precision of the system's measurements.  This comprehensive evaluation confirmed the 

system's reliability and demonstrated its successful achievement of the intended design 

goals. 

In conclusion, achieving a rigorous and comprehensive evaluation of a system's 

reliability and robustness necessitates meticulous testing procedures that encompass a 

broad spectrum of real-world conditions. Employing a multitude of carefully designed test 

cases is paramount. These test cases should ideally represent the vast array of potential 

scenarios the system may encounter in actual deployment. This comprehensive approach 

ensures that the system's performance is not merely optimised for a limited set of 

circumstances but rather demonstrates a consistent ability to function effectively under 

diverse and often unpredictable real-world constraints. It is important to acknowledge 

that certain systems may necessitate additional testing within controlled, isolated 

environments to assess their capabilities and limitations fully.  

 

 How can the proposed systems be utilised for the purpose of providing an 

additional layer of safety to traditional mobility-focused assistive 

technologies? What benefit do they introduce? 

 

The systems presented in this thesis demonstrate salient reliability and scalability. 

Their adaptability enables seamless integration with a wide range of assistive technologies 

(ATs), particularly those designed to enhance mobility. These systems have the ability to 

provide real-time, spatially accurate representations of the surrounding environment, 

offering crucial insights for safe navigation. They effectively detect hazards such as 

negative road anomalies, inclines (both upwards and downwards), curbs, ramps, drops, 
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and stairs, mitigating the risk of falls and injuries, whether the assistive device relies on 

autonomous, semi-autonomous, or manual control. 

By utilising these innovative systems, users of mobility-related ATs gain a newfound 

level of freedom and independence.  No longer constrained by the limitations that once 

restricted their movement and safety, they can navigate their surroundings with greater 

confidence. These systems represent a significant step towards breaking down barriers 

caused by mobility impairments, promoting inclusivity and enabling individuals to engage 

more fully in society. Moreover, by making autonomous navigation more achievable, these 

systems liberate AT users from the need to focus constantly on mobility limitations, 

allowing them to dedicate their attention to what truly matters. 

In conclusion, the systems introduced in this thesis introduce an additional layer of 

safety to mobility-related assistive technologies. They empower individuals by making 

safe navigation a priority, significantly reducing the potential for falls and injuries. 

Furthermore, these systems pave the path towards both autonomous and semi-

autonomous navigation solutions in the field of assistive technologies. As a result, users of 

mobility-related ATs are granted greater freedom of movement, enabling them to 

participate more actively in the world around them. 

 

7.3 Future Work Recommendations 

 

This research presents several avenues for further development and refinement, 

including: 

Expanding the Negative Road Anomaly Dataset: The manually annotated dataset 

can be significantly expanded to encompass a wider range of pothole examples, including 

those captured under extremely low-light conditions. Furthermore, incorporating 

additional classes of negative road anomalies, such as cracks, drops, ravelling, rutting, edge 

breaks, and corrugations, would greatly enhance the system's versatility and robustness. 

Depth Assessment and Traversal Analysis: A critical future research goal is to 

augment the negative road anomaly detection system by incorporating depth estimation 
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capabilities. This will empower the system to determine whether a detected obstacle is 

traversable in a worst-case scenario where avoidance strategies are not feasible.  Careful 

consideration must be given to the trade-offs between additional sensing modalities, 

accuracy improvements, computational complexity, and real-time performance 

requirements. 

Enhancing the Inclination Detection System: Exploring the integration of LiDAR 

technology holds the potential to improve the accuracy of the inclination detection system 

significantly.  A key focus of this exploration will be robust segmentation and refined width 

estimation techniques, specifically addressing performance under ultra-low light 

conditions. 

Optimising Traversal Area Detection: To further enhance the performance of the 

curb and downward-facing stairs avoidance system, future research will investigate the 

use of Time-of-Flight (ToF) sensor arrays. This approach promises to enhance 

measurement accuracy and increase fault tolerance, leading to a more reliable and robust 

system. 

Providing a detailed assessment of the impact of vibrations on the proposed 

systems: Although vibration mitigation was included in the design and implementation of 

all three proposed systems, the impact of vibration on the performance of the systems was 

not assessed. Future work will include an in-depth analysis of the impact of vibration on 

all three systems including an assessment of the systems’ behaviour with and without the 

vibration mitigation process. 
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[71]  D. A. Casas Avellaneda and J. F. López-Parra, Detection and localization of potholes 
in roadways using smartphones, vol. 83, 2016, pp. 156-162. 

[72]  W. Buttlar and S. Islam, “Integration of Smart-Phone-Based Pavement Roughness 
Data Collection Tool With Asset Management System,” Islam2014. [Online]. 
Available: https://rosap.ntl.bts.gov/view/dot/38287. 

[73]  Roadroid, “ Road conditioning monitoring using smart phones. Quick Start Version 
1.2.1,” 2013. [Online]. Available: www.roadroid.com.. [Accessed 20 08 2020]. 

[74]  C. Chellaswamy, H. Famitha, T. Anusuya and S. B. Amirthavarshini, IoT Based Humps 
and Pothole Detection on Roads and Information Sharing, IEEE, 2018, pp. 084-090. 

[75]  A. Mednis, G. Strazdins, M. Liepins, A. Gordjusins and L. Selavo, RoadMic: Road 
Surface Monitoring Using Vehicular Sensor Networks with Microphones, 2010, pp. 
417-429. 

[76]  M. Wang, R. Birken and S. Shahini Shamsabadi, Implementation of a multi-modal 
mobile sensor system for surface and subsurface assessment of roadways, K. J. 
Peters, Ed., 2015, p. 943607. 

[77]  W. Kongrattanaprasert, H. Nomura, T. Kamakura and K. Ueda, Detection of Road 
Surface States from Tire Noise Using Neural Network Analysis, vol. 130, 2010, pp. 
920-925. 
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Appendix A 

Negative Road Anomalies Detection Techniques - Additional 

Information 

A.1 Vision-Based Systems 

   

A.1.1 Deep Learning-Based Techniques 

 

Visible-Light RGB Camera as Input: 

 

 

Pereira et al. [21] training process employed the following parameters: 

- Number of epochs: 200 
- Number of images in the training set: 13,244 
- Number of images in the validation set: 3,250 
- Batch size: 16 
- Optimiser: Adam Optimiser (cost-function reduction method) 
- Learning Rate: 0.0001 
- β1=0 .9 
- β2=0 .999 
- epsilon= 1𝑒ି଼ 
- Cost-function: 𝐶 =  −𝑦𝑖 log 𝑎𝑖 − (−1 − 𝑦𝑖)log (1 − 𝑎𝑖) 

Over-ϐitting avoidance: 20% dropout (random dropping of neurons when training) 

 

Pereira et al. demonstrated promising results. However, their approach exhibits 

several limitations requiring further development: 

 Real-time Applicability: The method lacks real-time detection capabilities, 
operating solely on still images. This hinders its use in dynamic traffic scenarios. 

 Dataset Transparency: The lack of a publicly shared dataset and limited visual 
examples in the publication impede reproducibility and raise questions regarding 
the training and testing data's representativeness. 



219 
 

 Environmental Robustness: The absence of testing under low-light or high-
brightness conditions raises concerns about the system's reliability in diverse real-
world environments. 

 Safety and Redundancy: Sole reliance on machine vision for pothole detection 
poses potential risks in real-time scenarios due to the susceptibility of imaging 
systems to environmental factors. The lack of failsafe mechanisms warrants 
further consideration. 

 

Anand et al [22] achieved their training process within the below parameters: 

- Number of epochs: 20 
- Batch size: 64 
- Optimiser: Adam Optimiser (cost-function reduction method) 
- Learning Rate: 0.00001 
- Codewords K = 32 
- Momentum: 0.9 
- Training data: The authors have used 2 different sets in order to test their system: 

o GAPs dataset: Image Size 1920x1080 pixels 
▪ Number of images in the training set: 1,418 
▪ Number of images in the testing and validation set: 551 

o Zhang dataset: Image Size 3264x2448 pixels [28] 
▪ Number of images in the training set: 1.3 million 
▪ Number of images in the testing and validation set: 0.7 million 

 

By training the network using both datasets, the achieved results are: 

  GAPs Dataset: 

 Accuracy: 99.893% 
 F1-score: 72.14% 

ICIP Dataset: 

 Accuracy: 92.37% 
 F1-score: 93.01% 

 

The method proposed by Anand et al. demonstrates promising experimental results. 

However, several limitations warrant careful consideration for real-world 

implementation: 

 Environmental Robustness: The method's performance under low-light or 
extreme brightness conditions remains untested. Such variations could 
significantly degrade image quality, hindering accurate detection. 
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 Contextual Factors: The experimental setting (time of day, weather, location) 
is unspecified. These factors can profoundly influence image characteristics 
and system reliability. 

 Texture-Based Vulnerability: The system's reliance on texture creates 
susceptibility to false positives from surfaces with similar textural qualities to 
potholes. 

 Water-Filled Potholes: The system may fail to detect potholes filled with 
opaque water, as this would obscure the characteristic texture. 

 

Gopalakrishenan et al [29] employed a training process that involves: 

 

 Preprocessing: Pavement images are preprocessed, likely through cropping or 
downsampling, to reduce dimensions and remove extraneous edges. 

 Labelling: Images are manually labelled to establish ground truth for supervised 
learning. 

 Transfer Learning: The pre-trained VGG-16 model's weights are fine-tuned on 
the pavement image dataset, adapting its learned features to the crack detection 
task. 

 Classifier Evaluation: The fine-tuned VGG-16 is used as a feature extractor, with 
its outputs fed into various classifiers for performance comparison. These 
classifiers include Single Nearest Neighbor [32], Random Forest [33], Extremely 
Randomised Trees [34], Support Vector Machines [35], and Logistic Regression 
[36]. 

 

Training took place with the parameters below: 

- For the Single NN: 
o Image Size: 224x224 pixels 
o Number of Neurons in Hidden Layer: 256 
o Dropout value: 0.5 
o Hidden Layer Activation: ReLU 
o Output Layer Activation: softmax 
o Image Batch Size: 32 
o Number of Epochs: 50 
 

- All the other classiϐiers: ‘scikit-learn’ machine library in Python [37] was used with its out-
of-the-box parameters. 

 

Gopalakrishnan et al. report promising experimental results using their proposed 

method. However, several limitations warrant consideration: 
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 Environmental Robustness: The system's performance under challenging lighting 
conditions (low-light or extreme brightness) and in the presence of water-filled or 
reflective cracks remains untested. These factors could significantly degrade image 
quality and hinder accurate detection. 

 Real-World Validation: The presented results are based solely on controlled dataset 
samples. Evaluation in real-world scenarios is essential to assess the system's 
robustness to real-time variations and potential failure modes. 

 Robustness to Occlusions and Diverse Textures: The system's ability to reliably 
detect potholes obscured by water, debris, or irregular textures remains untested. 
This raises concerns about its robustness in real-world scenarios, where such 
conditions are likely to be encountered. 

 

Suong et al [38] introduced modifications to the baseline YOLO architecture, resulting 

in their custom-designed variant. These modifications include: 

 Layer Elimination: Removal of layers 23, 24, and 29, resulting in a substantial 
reduction of approximately 30 million parameter computations. 

 Filter Expansion: Incorporation of a 2048-sized filter into layer 23. This was 
realised by increasing the filter count of the 26th convolutional layer from 64 to 
256. 

 Depth Reorganisation: Restructuring of layer 24's depth to 13 x 13 x 1024, 
consequently modifying layer 25's depth to 1024. 

 Routing Layer Integration: Routing of layers 25 and 26 with the 22nd 
convolutional layer. 

 Anchor Box Adaptation: Adjustment of the baseline model's anchor box 
dimensions (width and height) to establish anchors specific to the novel 
architecture. 

 

The authors enhanced their proposed YOLO architecture with a self-implemented 

"den-anchor" component, synthesised by integrating elements from denser grid and 

anchor box models. To train their networks, the authors compiled a dataset reflecting 

diverse conditions and employed the following parameters: 

- Existing YoLo Architecture: 
o 996 training images containing 1796 potholes and 203 testing images. 
o Learning rate: 1e-5 (from 0 to 100 epochs) and then 1e-6 (from 100 to 200 

epochs) 
o Retrained for another 300 epochs 

- Proprietary architecture: 
o 996 training images containing 1796 potholes and 203 testing images. 
o Learning rate: 1e-5 (from 0 to 100 epochs) and then 1e-6 (from 200 to 600 

epochs) 
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o Trained for another 100 epochs using the Den-anchor  
 
 

Despite promising experimental results, the work of Suone et al. exhibits significant 

limitations warranting consideration: 

 Lack of Real-Time Evaluation: The authors fail to assess their system under 
real-time constraints. Their results are derived from offline analysis, precluding 
conclusions about real-world performance. 

 Inherent Vulnerability of Vision-Reliant Systems: The exclusive reliance on 
machine vision for pothole detection raises concerns for real-time deployment. 
Environmental factors  (e.g., lighting, weather) can degrade image quality, 
potentially compromising the system's reliability and posing safety risks to users 
who lack redundant safeguards. 

 Insufficient Precision for Safe Application: The reported precision of 
approximately 82.5%  is inadequate for reliable navigation. This level of accuracy 
leaves substantial room for misclassification, which could have dangerous 
consequences in a safety-critical system. 

 
 
 

Thermal Imaging as Input: 

 

Aparna et al.’s [46] proprietary CNN was configured as follows: 

 Train-validation split: 90:10 
 Image size: 240 × 295 
 Total categories: 2. 
 Total images: 4904 
 Training dataset size: 4320 
 Validation dataset size: 480 
 Test dataset size: 104 
 Kernel: 3 × 3 for convolution layers 
 Activation: ReLU for convolution layers 
 Loss function: binary cross entropy 

 
 
 

As for ResNet, 3 different ratios were used during training and validation: 

 60:40 

 80:20 
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 90:10 

 

An attempt by using different ResNet models was also tested: 

 ResNet18 

 ResNet34 

 ResNet50 

 ResNet101 

 ResNet152 

 

Publically-available results are as follows:: 

Proprietary Network:  

 Average training accuracy: 55.74% 

 Average validation accuracy: 68.99% 

 Training and Validation losses on still higher side 

 Test accuracy: 73.06% 

 

ResNet: 

 ResNet18: Best accuracy 90.52% and validation loss of 27.37% 

 ResNet34: Best accuracy 89.42% and validation loss of 27.57% 

 ResNet50: Best accuracy 91.77% and validation loss of 24.07% 

 ResNet101: Best accuracy 92.50% and validation loss of 22.40% 

 ResNet152: Best accuracy 91.66% and validation loss of 22.28% 

 

To further optimise the system, the the top-performing ResNet architectures 

(ResNet50, 101, and 152) were selected and re-evaluated using an 80:20 

training/validation split and experimented with image sizes of 224x224 and 240x240 

pixels. Larger image sizes encountered out-of-memory errors, highlighting potential 

hardware limitations. This refined testing resulted in improved accuracy, with "almost 

similar" performance observed between the two tested image sizes. 



224 
 

 

The achieved results were as follows: 

Proprietary Model: 

o Average Training Accuracy: 62.63% 

o Average Validation Accuracy: 69.8% 

ResNet: 

o Average Training Accuracy: 94.64% 

o Average Validation Accuracy: 95.52% 

 

 

Several significant findings were reported: 

 

 ResNet Superiority: ResNet-based CNN architectures outperformed the 
properietary custom-built model. ResNet50 and ResNet101 demonstrated 
particularly strong performance, suggesting their suitability for this pothole 
detection task. 

 Image Dimensions: An input image size of 224x224 pixels appears optimal for 
ResNet models in this context. 

 Training Refinement: Employing cyclic learning rates led to a noticeable 
improvement in model accuracy. 

 Low False Positives: The system exhibited a low false-positive rate, indicating 
a promising level of reliability. 

 

Limitations 

 Insufficient Specificity: All test cases were grouped, obscuring the system's 
performance specifically with wet or reflective potholes. This raises concerns 
about robustness under diverse real-world conditions. 

 Environmental Sensitivity: Thermal camera images can be adversely affected 
by weather conditions, potentially leading to degraded input and compromised 
system performance. 
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Laser Imaging as Input: 

Yu et. al’s [49] method has been tested using a set of 100 images which includes ten 

examples of each distress. The results were not clear as they are simply represented with 

a table comparing three samples (2 potholes and one crack) and showing that the severity 

level / crack type were the same between the manual assessment and the method 

proposed. 

The proposed system presents several critical limitations, raising concerns about 

its applicability and performance in real-world road conditions: 

 Inadequate Evidentiary Basis: The authors fail to provide sufϐicient data to 

substantiate claims about the system's effectiveness, hindering a 

comprehensive performance assessment. 

 Absence of Essential Metrics: The lack of reported false-positive and false-

negative rates obscures the system's reliability. These metrics are crucial 

for quantifying the potential for incorrect distress identiϐication, which has 

signiϐicant implications for road maintenance decisions. 

 Unexplored Environmental Constraints: The reliance on laser imaging 

introduces inherent limitations. The system's ability to detect water-ϐilled 

potholes, a common real-world scenario, remains untested and is likely 

compromised due to optical interference. 

 Limited Training Dataset: The use of only 100 images for neural network 

training raises signiϐicant concerns about overϐitting and the model's 

ability to generalise to the diverse range of pothole manifestations 

encountered in practice. 

 Disregard for Real-World Variability: The system neglects the inherent 

unevenness of road surfaces. This oversight renders it susceptible to 
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substantial errors induced by irregular surfaces and image instability, 

factors not reϐlected in the presented results. 

 Lack of Transparency:  The authors' omission of information regarding 

the allocation of images between training and testing sets undermines the 

ability to evaluate the work's methodological rigor and the validity of the 

reported results. 

 

 

A.1.2 Non Deep Learning-Based Techniques 

 

Visible-Light RGB Camera as Input: 

 

Azhar et. al’s [51] the system follows the steps set out below: 

 Grayscale Conversion:  Images are initially converted from the RGB color space 

to grayscale. 

 Resizing & Normalisation: Images are resized to a uniform 200 × 200 pixel 

dimension. Orientation is normalised between 0 and 180 degrees. 

 Cell Division: The image is divided into a grid of 625 non-overlapping cells (25 

× 25 pixels). 

 Block Formation: Each 8 × 8 pixel cell is further subdivided into four smaller 4 

× 4 pixel blocks. 

The resultant vector with the help of the HOG technique is of size 1 × 20,000 (625 × 4 

× 8). This vector fulfils the image classification task with the help of the Naïve Bayes 

classifier labelling the image with the help of the “maximum posterior probability” 

technique. 

The system then employs the "normalised cuts" image segmentation technique, 

introduced by Shi and Malik [52], to partition the image. This technique groups visually 
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similar regions by analysing global image features, measuring the overall similarity and 

dissimilarity between potential groupings.  Following segmentation, the image is divided 

into 12 distinct regions. Regions with a mean intensity threshold below 80 are classified 

as potholes, suggesting that potholes generally exhibit darker pixel values compared to 

intact pavement. 

 

In addition to its suboptimal reliability, the system exhibits the following critical 

weaknesses: 

 Computational Overhead: The system's intensive computational requirements 

preclude deployment on power-constrained, battery-operated platforms. The 

reported processing time (0.673 seconds for a 200x200 image) underscores 

the system's inability to scale to contemporary high-resolution images. 

 High False-Negative Rate:  A significant number of false negatives compromise 

the system's dependability for automated navigation.  This indicates frequent 

failures in pothole detection, posing safety risks. 

 Sensitivity to Illumination: The reliance on HOG features introduces inherent 

vulnerabilities to variable lighting conditions. Performance degradation in low 

light or overly bright scenarios is a well-documented limitation of this feature 

extraction technique. 

 Shadow Misclassification: The technique's tendency to misclassify shadows as 

potholes, as noted in the paper, further diminishes its reliability. This highlights 

the need for more robust feature representations to distinguish between true 

potholes and shadow-induced artefacts. 

 

Koch et al. [53]’s core methodology stages are as follows: 

Segmentation: 

 Noise Reduction: A 5x5 median filter mitigates noise. 
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 Histogram-based Thresholding: The "triangle algorithm" [37] dynamically 

determines a threshold based on histogram shape. Further refinement with a 

1D median filter reduces histogram peak interference. Binarisation follows, 

separating foreground (potential potholes) from background. 

Shape Analysis: 

 Pothole Candidate Extraction: Linear artifacts and regions deemed too small 

are eliminated. Geometric properties of remaining regions (major axis length, 

centroid position, orientation angle) are used for preliminary pothole 

identification. 

 Elliptical Shape Approximation: "Morphological thinning" reduces potential 

pothole regions to their skeletal form. Branching points are used to determine 

the major path, and elliptic regression [54] approximates the elliptical shape of 

the pothole's shadow. 

Texture Comparison: 

The results obtained were as follows: 

 Filtering and Dilation: A sequence of filters prepares the image, followed by 

morphological dilation to mitigate filter artefacts. 

 Feature Extraction: Texture features are extracted from both the candidate 

pothole region and its surrounding background. 

 Classification: If the candidate region exhibits a coarser, grainier texture 

compared to the background, it is classified as a pothole. 

 Dataset & Evaluation: The system was trained on 50 images and tested on 70 

images.  Thresholds were manually tuned to optimise performance. 

 

Schiopu et al.’s [56] system works in several key stages: 
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 Region of Interest (ROI) Selection: To focus computational effort, the system 

first defines a Region of Interest (ROI) within each video frame. This ROI is 

determined offline using cues like estimated road edges (which converge at a 

vanishing point) and the maximum distance at which potholes are reliably 

visible. 

 Intensity-Based Candidate Generation:  Within the ROI, a thresholding 

algorithm is applied to identify pixels with unusually high-intensity values. 

These pixels form the initial set of potential pothole candidates. 

 Wayside Removal:  To eliminate roadside objects that might also be bright, 

the system calculates an intensity threshold and removes pixels below it, as 

these likely represent non-pothole elements. 

 Reflection Filtering:  Reflections from other vehicles or structures can create 

false positives. The system addresses this with an offline procedure that 

compares consecutive frames, analyses the mean intensity, and calculates a 

depth matrix to detect and remove reflections. 

 Shadow Discrimination:  Shadows, like potholes, can appear dark. The 

system distinguishes between them by analysing properties like shape 

regularity (shadows tend to follow object outlines), depth (estimated from the 

number of dark pixels), contour length and shape, and whether the candidate 

appears consistently over multiple frames. 

 Pothole Identification & Tracking:  Candidates that successfully pass all 

these filters are labelled as potholes.  The system then tracks these potholes 

across consecutive frames, using car speed, camera parameters, and Euclidean 

distance calculations to estimate their movement and maintain a live record of 

their positions. 

 

The presented method exhibits several limitations that warrant careful consideration, 

particularly for deployment in safety-critical applications: 
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 Suboptimal Precision: While a precision of 90% is encouraging, it may not be 

sufficient for a system responsible for real-time navigational decisions on 

moving platforms. The remaining 10% error rate could lead to 

misidentification of potholes, posing risks to users. 

 Speed-Dependent Tracking: The reliance on estimated speed for tracking 

calculations introduces potential vulnerabilities.  Accuracy may degrade at 

varying speeds, hindering the system's ability to reliably track pothole 

positions. 

 Vulnerability to Lighting Variation: The method's performance under 

inconsistent lighting conditions remains untested. Sudden, intense light could 

significantly alter frame characteristics, potentially compromising the system's 

reliability. 

 Unexplored Nighttime Performance: The lack of testing in nighttime 

conditions raises concerns about the system's ability to cope with a drastically 

different image profile. The abundance of dark pixels could pose significant 

challenges to the detection and tracking algorithms. 

 

Dihao et. al.’s [57] proposed method was implemented in Python for evaluation and 

testing.  The following parameters were used: 

 Dataset:  The CFD dataset [58] was employed, consisting of 118 images.  This 

dataset presents challenges for crack detection algorithms due to the presence 

of noise artefacts (e.g., oil stains, watermarks, and variable lighting conditions). 

 Data Allocation: The dataset was partitioned into a training set (70 images) and 

a testing set (48 images) 

 

The presented method exhibits several limitations that warrant careful consideration, 

particularly for deployment in safety-critical applications: 
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 Suboptimal Precision: While a precision of 90% is encouraging, it may not be 
sufficient for a system responsible for real-time navigational decisions on 
moving platforms. The remaining 10% error rate could lead to 
misidentification of cracks, posing risks to users. 

 Computational Overhead: The reliance on computationally intensive 
operations raises concerns about real-time viability and power demands.  
Further optimisation or alternative algorithmic approaches are needed to 
address this potential bottleneck. 

 Unexplored Robustness:  The lack of comprehensive testing under diverse 
conditions, including water-filled cracks and other image noise, obscures the 
method's ability to maintain performance in real-world scenarios. 

 Nighttime Performance: The absence of nighttime testing leaves 
uncertainties about the system's ability to cope with drastically different image 
profiles where dark pixels predominate, presenting a significant challenge to 
crack detection. 

 Performance Metrics: The omission of runtime data and resource usage 
analysis (e.g., CPU, memory) hinders a concrete assessment of the method's 
real-world suitability. 

 

Stereo Vision as Input: 

 

 

He Youquan et. al.’s [59]system exhibits significant weaknesses that compromise its 

practical utility: 

 Detection without Localisation: The system detects potholes but lacks the 
ability to precisely determine their location. 

 Sensitivity to Lighting:  Results are highly dependent on the intensity of the 
LED light source and ambient lighting conditions, negatively impacting 
reliability in uncontrolled environments. 

 Hardware Dependence: The system's accuracy is directly tied to CCD camera 
resolution and performance, introducing potential for variability. 

 Lack of Robustness:  The method provides no mitigation strategies for 
external light interference. 

 Insufficient Evaluation: The paper offers limited performance data, with only 
a single discrepancy result. 

 Missing Context:  The paper omits crucial details about the testing 
environment (location, time, weather), hindering an assessment of the 
system's true capabilities. 

 Unknown Error Rate:  The absence of error rate data obscures the method's 
potential for misdetection. 
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Zhang et. al.’s [60] presented method (including its optimised version) exhibits several 

limitations that raise concerns about its robustness and performance in real-world 

scenarios: 

 Sensitivity to Lighting Conditions:  The system's reliance on visual input 
introduces susceptibility to errors induced by variable light intensity.  
Performance degradation in low-light or overly bright conditions is a 
significant drawback. 

 Challenges with Water or Ice:  The core detection principle likely fails when 
encountering water-filled or ice-covered potholes, as these disrupt the 
expected surface geometry upon which the method relies. 

 Insufficient Evaluation Data: The lack of comprehensive results and accuracy 
metrics obscures the system's true reliability and error potential under diverse 
conditions. 

 Missing Environmental Context: The omission of testing details (location, 
time, weather) hinders assessment of the system's adaptability to variable real-
world environments. 

 Unknown Error Rate:  The absence of error rate data (false positives, false 
negatives) leaves critical questions about the system's reliability unanswered. 

 

Li et. al’s [65]method has had some noticeable weaknesses: 

 The system’s performance relies on two stereo cameras, which need to be 

calibrated every time the code runs. 

 The system will fail when trying to detect water or ice-filled potholes as the 

cameras will not be able to produce a valid output. 

 The system’s performance will be severely affected by the light intensity as it 

relies solely on two RGB cameras. 

 The paper did not provide any data which can be used to assess the success and 

failure rates of the system. 

 The paper only mentions the location where the system is tested but does not 

contain any data which describes the time and weather conditions in which the 

system was tested. 
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Depth Camera as Input: 

Moazzam et. al.’s [67] method is comprised of the steps below:  

 Area Calculation:   Depth images are binarised at millimetre increments. Pixel 

counts transformed to real-world units, yield area estimates at each depth 

level. 

 Volume Approximation:  An area vs. depth curve is generated, and the 

trapezoidal rule (unit spacing) is applied to approximate pothole volume. 

 Visualisation: Contour plots represent depth slices, and 3D plots depict pothole 

geometry in real-world coordinates (mm). 

 Classification:  The system classifies potholes as "Squared Decay", 

"Longitudinal", or "Cube-like" based on area decay patterns and calculated 

geometric properties (centroid, eccentricity, orientation). 

The proposed system includes some noteworthy limitations: 

 Sensitivity to Lighting:  The system's reliance on camera-based depth sensing 
introduces vulnerability to errors induced by variable light intensity (low light 
or overly bright conditions). 

 Challenges with Water or Ice:  Water-filled or ice-covered potholes disrupt 
the surface geometry upon which the method relies, likely leading to detection 
failures. 

 Error Rate:  The reported error rate of 15% raises concerns about the system's 
reliability in real-world applications. 

 

A.2 Non-vision-Based Systems 

 

Tire Pressure / Vibration as Input: 

 

The weaknesses of such systems are as follows: 

 Post-Detection Limitation:  By detecting potholes only after impact, these 
systems offer no pre-emptive avoidance capability. 
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 Confounding Factors:  Reliance on tyre pressure or vibrations introduces 
susceptibility to false positives triggered by uneven roads, curbs, and other 
non-pothole events. 

 Lack of Localisation:  Such systems typically provide no precise localisation 
information necessary for an autonomous vehicle to navigate around a pothole. 

 Environmental Vulnerability:  Performance is likely to be heavily influenced 
by external factors such as vehicle speed, tyre type, and road conditions. 

 Assessment Inapplicability:  Due to their reactive nature, these methods 
cannot fulfil the core requirement of pre-detection necessary for autonomous 
vehicle safety.  Therefore, they are not suitable for assessment under your 
proposed criteria. 

 

Appendix B 

Incline Detection and Assessment Techniques  - Additional 

Information 

 

B.1 Vision or Radar-Based Systems 

 

B.1.1 Point-Cloud-Based Techniques 

Qiu et. al [79], and Heckman et. al’s [80] system was tested in a simulation-based 

environment and in real-time scenarios. However, the provided results do not illustrate 

the system’s performance in different scenarios or its capabilities for assessing the 

inclination angle of the detected plane. 

The method seems promising; however, some major weaknesses are identified: 

There is not enough evidence to illustrate the system’s performance in angle 

estimation 

Only one scenario was used to test the system in real-time, the rest is just simulation 

data 
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 Environmental Sensitivity: Laser scanning systems demonstrate 
susceptibility to bright sunlight, which compromises performance by 
diminishing the strength of the return signal. 

 Reflectivity-Induced Errors: The presence of highly reflective surfaces can 
lead to false readings, undermining the accuracy of laser scanning 
measurements. 

 Geometric Limitations: Targets with steep inclinations may prove 
challenging to detect with laser scanning systems, highlighting the influence of 
target geometry on system efficacy. 

 Safety Constraints: The deployment of accurate laser rangefinders is often  
restricted due to ocular safety concerns, with many models exceeding safe 
exposure limits, precluding their use in public areas. 

  

Zhend et. al’s [81] system limitations are present:  

 Reliance on LiDAR and Laser Sensing: The system's exclusive use of LiDAR and 
laser sensing introduces vulnerabilities to false and erroneous readings, particularly 
when encountering reflective surfaces (e.g., water-covered inclined planes) or ultra-
bright environments. 

 Power Consumption: The combined use of LiDAR and laser sensing raises concerns 
about high power consumption, potentially limiting operational time or requiring 
substantial power infrastructure. 

 Real-time Performance Uncertainty: While real-time performance is suggested, 
insufficient data prevents a conclusive assessment. Rigorous testing under diverse 
conditions is needed to verify real-time capabilities. 

 

Meng et al.’s [82] experimental findings provided reveal that the estimated slope 

angles closely align with the actual values, with acceptable variances, highlighting the 

method's rotational invariance to some extent. This rotational invariance is crucial for 

ensuring consistent and reliable slope detection across different observation orientations. 

The small errors in angle estimation and low variance in estimated angles further 

underscore the method's effectiveness in accurately detecting slopes using 3D LiDAR data, 

showcasing its potential for enhancing the capabilities of quadruped robots in navigating 

complex environments. 

Although the system demonstrated reliable results, important limitations still exist: 

 

Reflectiveness limitations: LiDAR sensing techniques, as mentioned previously, are 
prone to many false positives and false negatives in scenarios involving reflective surfaces 
and water-covered surfaces. 
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Bright Sunlight: Intense ambient light can overwhelm the returning laser signal, 
making it difficult to distinguish the target, especially at long distances. 

Atmospheric Interference: Weather conditions such as fog, rain, snow, and dust can 
scatter or absorb the laser pulses, reducing accuracy, range, or even preventing 
measurements entirely. 

Power-consumption: LiDAR is known to require high-power consumption which 
could affect the performance level required of the system. 

 

Rusu et al.  [83], Gutmann et. al. [84], Snigh et al. [85], and Murarka et. al’s [86, 87] 

method employed a segmentation algorithm the 3D grid that is crucial for identifying 

distinct ground regions that may be potentially traversable by the robot. The algorithm 

considers voxel columns within a planning radius around the robot's current pose, 

focusing on horizontal or slightly inclined surfaces suitable for wheeled mobile robots. 

Surfaces with high inclines are deemed non-traversable, and segments are defined as 

collections of voxel columns with the same height, representing level and inclined ground 

regions. Non-segmented voxel columns are considered obstacles or unreachable areas, 

aiding in creating a local safety map for path planning. 

The local safety map generated by the algorithm annotates cells with labels such as 

Level, Inclined, Non-ground, or Unknown, based on the safety and traversability of the 

corresponding regions. Level and Inclined cells are considered safe for navigation, while 

Non-ground cells indicate obstacles or unsafe areas. Safe cells can further be annotated as 

Potential Drop-off Edges if a drop-off is detected, providing detailed information for path 

planning. By utilising stereo vision as the primary sensor, the algorithm offers a cost-

effective and information-rich alternative to laser sensors, enabling comprehensive hazard 

detection in urban environments. 

The system provides promising results, however, certain weaknesses have been 

identified: 

 Binary Solution: The described approach only addresses the problem in a 
binary technique. This means that the exact inclination angle, and width of the 
plane are not extensively monitored and accurately measured. 

 Disparity Matching: Stereo vision requires computationally expensive 
algorithms (e.g., Semi-Global Matching) to find corresponding pixels between 
the left and right images, which can strain embedded systems or necessitate 
specialised hardware acceleration. 
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 Real-time performance limitations: The use of the occupancy grid 
techniques introduces significant limitations and latency to the system as it 
could, on many occasions, cause significant delays and require a high 
computational power. 

 Error-rate and fault - tolerance: Although the system produces a decent 
accuracy, the error rate is higher than or almost equal to 5% whether it is with 
False Positives or False Ngeatives. 

 

Brossette et al. [88], Cockrell et al. [89], and Tseng et. al. [90], and Nejati et al.’s [91] 

algorithm consists of two main steps: identifying inclined planes in the vicinity of the robot 

and determining if these planes are navigable. The algorithm segments the candidate 

ramps via the region-growing algorithm and then detects traversable ramps by finding the 

convex hull and defining the four corners of the incline. Additionally, the algorithm 

provides information on the location, orientation, dimensions, incline amount, and length 

of the ramp, enabling the wheelchair to safely navigate the identified ramp. 

Even though the described algorithm returns promising results, some weaknesses 

remain as its Achille’s Heel: 

 Limited Real-World Applicability: An average accuracy of 87.9% raises 
concerns about the system's reliability in practical applications. For 
deployment in safety-critical or precision-dependent scenarios, a 
segmentation algorithm should demonstrate a significantly higher degree of 
accuracy to ensure the fidelity of the resulting segmentation masks. 

 Non-Uniform Point Density: Large variations in point density can make it 
challenging to establish consistent and reliable similarity criteria across the 
point cloud. 

 Overlapping Objects: Region growing may struggle to distinguish closely 
spaced objects or objects with subtle boundaries, leading to merging of distinct 
regions which could affect the width estimation of the plane. 

 Computational Power: The system's reliance on a region-growing algorithm 
for candidate plane segmentation raises concerns about its computational 
efficiency. The inherent iterative nature of region-growing techniques can 
introduce significant computational overhead, potentially jeopardising the 
system's ability to perform reliably in real-time scenarios where timely 
processing is critical 
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B.1.2 Non-Point-Cloud-Based Techniques 

 

J. Wu et. al’s [92] methodology used in the research project involved building an 

artificial intelligent system using Convolutional Neural Networks (CNN) to classify 

building images based on whether they have a handicap ramp or not. The researchers 

recruited volunteers, mainly graduate students, to collect images of building entrances 

from urban areas like Milwaukee, Chicago, and Los Angeles. The images were then used to 

train the CNN model for image classification of building accessibility. The CNN model 

consisted of convolution layers and pooling layers, which scanned each pixel of the image 

to extract main features. These features were then sent to the fully connected layer where 

the probabilities of each class (accessible or inaccessible) were calculated based on the 

extracted features 

Additionally, the Wu et al. followed a structured approach for model construction: 

 Specifying the input shape for images in the first layer. 

 Adding layers with hyperparameters using functions like add() provided by 
Sequential(). 

 Compiling the model by specifying the optimiser, loss function, and metrics. 

 Fitting the neural network with the training dataset, epochs, and batch size for 
training purposes 

Furthermore, the research incorporated the use of Dropout function in the CNN model 

to reduce overfitting. This function helps in avoiding overfitting by randomly removing 

neurons during training and making the model less sensitive to specific neurons, thus 

improving generalisation and model performance. 

Although the system’s accuracy was high (95.6%), many limitations hinder the 

system’s overall performance: 

 Specificity and Safety: The binary classification approach fails to address 
crucial geometric parameters (inclination, width) essential for distinguishing 
wheelchair ramps from potentially hazardous alternatives like bicycle ramps. 
This oversight poses a significant safety risk. 

 Environmental Robustness: Exclusive reliance on an RGB camera introduces 
vulnerability to low-light conditions, potentially leading to failures in poorly lit 
environments. This constraint significantly restricts real-world usability. 
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 Computational Demands: The system's utilisation of a CNN necessitates a 
powerful GPU-based processor. This introduces constraints in terms of power 
consumption and hardware requirements, hindering practical deployment in 
mobile or resource-limited settings. 

 Real-Time Performance: The observed latency in the system's operation 
excludes it from use cases requiring real-time decision-making for safe and 
effective navigation. 

 

B. Wu et. al’s [93] system also addresses the L-type narrow ramp scenario, where the 

system adjusts the speed to ensure safety while turning corners. The gyroscope data is 

used to estimate the wheelchair's inclination on the ramp. Experimental results show that 

the controller with ramp detection significantly outperforms the system without ramp 

detection in terms of travel time and energy consumption. 

The system employs a deep learning-based ramp detection model, which is trained 

using the CNN-4 structure and the Q-learning-based ANFIS controller. The ramp detection 

model demonstrates high accuracy in classifying ramps of different appearances, while the 

controller calculates safe speeds based on the ramp classification results. The controller is 

able to prevent overturning and optimise the riding experience by considering 

environmental information and wheelchair feedback. 

Although the system presents a significant improvement over other systems, it still 

falls below the expected performance due to the reasons below: 

 Input Sensor Limitations: The system relies on an RGB sensor as an input 
source, this means that the system’s performance will be significantly hindered 
in low-light, and limited visibility scenarios. 

 Classification Limitations: The system only relies on RGB data and assesses 
inclination post-traversal via the use of the gyroscope. This means that the 
system is prone to many errors such as considering bicycle ramps as 
wheelchair ramps until the wheelchair actually accesses the ramp putting the 
user under the risk of significant harm. 

 Computational Requirements: The system utilises a CNN with a fuzzy logic-
based decision network; this means that a highly-performing processor is 
required; hence, the system could not be utilised in real-life scenarios.  

 

Lutz et al.’s [94] method addresses challenges such as foot slippage, inaccurate 

hardware calibration, and joint backlash affecting the robot's motion, the study 

emphasises the need for the robot to correct its heading regularly while walking down the 
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ramp. The robot's heading is corrected based on IMU data to prevent collisions with the 

handrail or falls due to changes in yaw resulting from the ramp's inclination. Statically 

stable steps are executed on the ramp, and heading corrections are made to ensure safe 

navigation. The method also includes learning basic motions for the Nao robot to navigate 

ramps effectively. Kinesthetic teaching is applied to teach the robot single-stepping 

motions, optimising them for static stability on the ramp. By manually moving the robot to 

statically stable poses and recording keyframes, smooth movements are created using 

Bezier curves. The learned motions include entering and exiting the ramp, walking steps 

on the ramp, and small correction steps to account for drift and correct the robot's 

orientation. 

This technique although successful, has many limitations such as: 

 Ambiguous Scale: A single camera image lacks direct cues about the absolute 
distance to objects. This can lead to misinterpretation of object sizes and 
distances, complicating navigation tasks and collision avoidance. 

 Difficulty with Stationary Objects: Without motion cues (e.g., parallax) 
provided by stereo or multi-view setups, monocular systems may struggle to 
reliably detect and estimate the distance to stationary objects. 

 Lack of important criteria: The proposed system does not take into 
consideration the inclination of a plane until the robot traverses it so that the 
inclination is picked up by the IMU. This means that the robot could be exposed 
to a bicycle ramp and it will attempt to traverse it putting the user at risk of 
falls. 

 

 

 

B.2 Non-Vision or Radar-Based Systems 

 

Tareen et al.’s [95] technique, although can be achieved at a low cost, is prone to many 

limitations such as: 

 Temperature and Humidity: The speed of sound, on which ultrasound 
sensors rely, is affected by the temperature and humidity of the air. Changes in 
these conditions can lead to measurement inaccuracies. 

 Air Turbulence: Wind and air currents can distort or deflect the sound waves, 
leading to unreliable readings and making it harder to track objects accurately. 
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 Susceptibility to Noise: Background noise, especially at frequencies similar to 
the sensor's operating frequency, can interfere with the emitted signals and 
make it difficult for the sensor to detect its intended targets. 

 Soft or Angled Surfaces: Soft materials (like fabric) tend to absorb sound 
waves rather than reflect them. Angled surfaces may deflect sound waves away 
from the sensor. This makes reliable detection very difficult. 

 

Yu et al.’s [96] technique is prone to many limitations due to the following: 

 Vibration Sensitivity: Accelerometers cannot distinguish true tilt changes 
from the vibrations. This makes them unreliable on moving platforms. 

 Drift: Over time, accelerometers can suffer from drift in their readings, leading 
to growing inaccuracies in incline calculations. 

 Need for Initial Reference: Gyroscopes don't give absolute incline. They can 
only detect changes from the starting point. Without a good initial reference 
point, the incline estimates will become inaccurate. 

 Sensitivity to Magnetic Interference: If included, magnetometers (which 
sense magnetic fields) can improve accuracy, but they are highly susceptible to 
interference from nearby metal objects or magnetic fields. 

 

Zhiblin et al.’s [97] proposed technique is prone to many limitations, as per below: 

 Surface Irregularities: Real-world surfaces aren't perfectly smooth. Bumps, 
textures, and small obstacles can all skew contact sensor readings, leading to 
inaccurate incline estimations. 

 Contact Point Variation: The exact point of contact between the sensor and 
the surface can shift slightly. This variability affects the measurements and thus 
the calculated incline. 

 Sensor Wear: Over time, contact sensors can wear down due to friction and 
abrasion, leading to a gradual decline in their accuracy. 

 Calibration and Maintenance: The mechanical components used in contact 
exploration systems may need regular calibration and maintenance to ensure 
accuracy. 

 Vibrations and Movement: Unexpected vibrations or movements of either 
the robot or the environment can disrupt the contact and impact measurement 
reliability. 
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Appendix C 

Downwards-facing Stairs and Curbs Detection and 

Localisation Techniques 

 

C.1 Vision or Radar-Based Systems 

 

C.1.1 Point-Cloud-Based Techniques 

 

Ashraf et al. [98] presented the main framework of the proposed approach, including 

steps such as clustering data based on the normal vector and utilising the Pinhole Camera 

Model to compute the point cloud. 

Although the proposed approach achieved a good level of accuracy, some drawbacks 

have been identified: 

 Scope: The proposed approach exclusively addresses the detection of 
upwards-facing stairs, neglecting the complexities inherent in detecting 
downwards-facing stairs. Downwards-facing stairs often present distinct 
challenges due to varying perspectives and potential for occlusions. 

 Experimental Rigor: The system's efficacy has been evaluated solely within a 
simulation environment. To comprehensively gauge the system's capabilities, 
it is crucial to conduct rigorous testing in real-world scenarios with their 
inherent complexities. 

 Computational Efficiency: Simulation results indicate that the system 
necessitates substantial computational resources. This potential limitation 
underscores the need for optimisation or alternative approaches to facilitate 
real-time applications. 

 Field of View Constraints: The intrinsic design of pinhole cameras results in 
a limited field of view. This characteristic might hinder the system's suitability 
for applications demanding comprehensive situational awareness. 

 Low-Light Performance: The restricted aperture of pinhole cameras can 
compromise performance in low-light environments, potentially leading to 
image noise and a loss of detail critical for accurate stair detection. 

 Occlusion Sensitivity: The reliance of stereo vision on establishing 
correspondences between images renders the system vulnerable to occlusions. 
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Obstructions can impede the matching process, compromising the accuracy of 
the generated depth map. 

 

Apellániz et al. [99] also covered related works in curb detection using LiDAR data and 

the methodology's experimental results, demonstrating a significant reduction in manual 

annotation time. The process involves annotating curbs in a 3D point cloud reconstruction 

map. Two datasets are introduced, the first one with imprecise estimations in line format 

and the second one with annotations in point format. A DNN training and testing process 

using a DeepLabv3+ model is described for identifying and separating different curb 

instances. The dataset distribution for training, validation, and testing is outlined with 

approximately 80% for training, 15% for validation, and 5% for testing. 

Although the system exhibits a high accuracy rate, it is prone to some limitations: 

 Precision Constraints: The system's maximum precision of 87.8% renders it 
unsuitable for deployment in critical assistive technologies, where 
exceptionally high reliability is paramount for user safety. 

 Functionality: The system only performs the detection task. It lacks the 
localisation task that enables it to determine the safe traversable area 
accurately. 

 Data Density and Processing: LiDAR generates large point clouds. Processing 
these vast datasets in real-time for curb detection can be computationally 
demanding, requiring powerful hardware. 

 Sensitivity to Weather: Adverse weather conditions like fog, heavy rain, or 
snow can affect LiDAR's performance. These conditions can scatter or absorb 
the laser beams, leading to less accurate or incomplete data. 

 False Positives from Small Objects: LiDAR can sometimes struggle to 
distinguish between curbs and other similar-height objects along the roadside, 
such as low walls, raised planters, or debris. This can lead to false positives in 
curb detection. 

 Cost Implications: LiDAR sensors can be significantly more expensive than 
traditional camera-based systems. This cost factor might be a barrier to 
widespread adoption in certain applications. 

 

 

Zhao et al. [100], Hata et al. [101], Zhang et al. [102, 103], Huang et al. [104],  Horváth 

et al. [105] , Yao et. al. [106], Yu et al. [107], Wang et al. [108], Guo et al. [109] , Zhu et al. 

[110], Jung et al [111],  Yamamoto et al. [112], and Gurrero et al. [113] technique’s 

limitations are as follows: 
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 Inadequate Performance: The system performance (83.34% accuracy) falls 
below the minimum accuracy expectations for it to be considered usable for 
assistive technologies. 

 Weather Limitations: LiDAR, as mentioned in previous sections, is prone to 
many false and inaccurate readings when the weather conditions are 
challenging due to the nature of the sensing technique. 

 Data Density and Processing Power: LiDAR returns highly dense point 
clouds, which means that a high computational power is required making it 
unsuitable for real-time detection on assistive technologies. 

 Cost Implications: LiDAR is one of the most expensive sensors and utilising it 
would bring new cost implications to the system’s cost. 

 

C.1.2 Non-Point-Cloud-Based Techniques 

Zou et al.’s [114] approach involves training and evaluating the feature extractor 

models, selecting the best model for curb detection based on the Faster R-CNN framework, 

and conducting experiments to assess performance metrics such as accuracy, sensitivity, 

specificity, F1 score, precision, area under the curve (AUC), and prediction time. The 

results obtained illustrated that the customised CNN network outperforms the original 

ResNet18 network in terms of accuracy, sensitivity, F1-score, AUC, and prediction time. 

Additionally, the detection framework using the customised CNN network shows an 

improved average precision (AP) compared to the original ResNet18 detector. However, 

the presence of noise in input images affects the detection results, suggesting the need for 

pre-processing images in the future to enhance performance. 

Although the system’s accuracy and precision reported are high, the system has many 

weaknesses: 

 Insufficient Empirical Validation: Whilst the reported accuracy appears 
promising, the combination of low average confidence scores and numerous 
false positives as illustrated in the figure presented raises concerns regarding 
the representativeness of the reported metrics.  To establish a robust 
assessment of the system's performance, a more comprehensive testing regime 
is necessary. 

 Functional Limitations: The system only performs the detection task, it lacks 
the localisation capabilities. 

 Lack of Segmentation: The system's reliance on manually specified bounding 
boxes for curb detection indicates a lack of object segmentation capabilities. 
This constraint hinders its ability to autonomously isolate the curb within the 
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image, even when the curb occupies a small portion of the provided bounding 
box. 

 Weather Limitations: The sensory method used (RGB Camera) is highly 
susceptible to weather limitations as it is prone to failure in severe weather 
conditions, and low-light scenarios. 

 Processing Power Limitations: The system detects curb via the use of a CNN, 
a method that requires high computational power, leading to more power 
consumption which limits the system’s usability. 

 

Zhou et al.’s [116] LaCNet utilises deep metric learning to map lane and curb pixels into 

an embedding space for accurate differentiation. The network includes components for 

class segmentation and pixel grouping to rebuild instances and distinguish between lanes 

and curbs. The overall architecture and loss functions of LaCNet are detailed, with an equal 

weighting distribution among the loss components. Experimental evaluation on different 

datasets shows the effectiveness of LaCNet in detecting random number and arbitrary-

shaped lanes and curbs in real-time. The network performed well when exposed to 

arbitrary-shaped lanes and curbs irrespective of the vehicle's angle, achieving a processing 

speed of 32 FPS and more than 98% F1 measure on a self-collected dataset. 

The system achieved a good accuracy at a real-time pace, however, some limitations 

render it not usable for assistive technologies: 

 Lighting: Dramatic changes in lighting (harsh shadows, extreme brightness, 
nighttime) significantly alter image appearance, making it difficult for the CNN 
to generalize well. 

 Weather: Rain, snow, fog, and glare can obscure curbs or create misleading 
visual cues, impacting detection accuracy. 

 Image Quality: Poor focus, motion blur, or camera noise can degrade image 
quality, hindering the CNN's ability to extract meaningful features. 

 Textureless Curbs: Curbs with minimal colour or texture variation provide 
fewer visual cues for the CNN to learn from, making detection more 
challenging. 

 Low or Gradual Curbs: The visual distinction between road surfaces and very 
low or gradually sloping curbs might be too subtle for the CNN to reliably 
detect. 

 Power Consumption: Although the system performs in real-time, it requires 
an advanced processor with a good graphical processor unit (GPU), this 
requires a high power consumption render it not mountable of platforms with 
limited battery power.  
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Mihankhah et al. [117] designed their system configuration with three laser sensors, 

the use of a first derivative of altitude for detecting steps and stairs, and the challenges of 

segmenting steps accurately. The approach involves calculating the first derivative of 

altitude for each data point obtained by the laser sensors. This also includes deriving the 

altitude based on the travelled distance over the scanning angle. The system also addresses 

the challenges posed by variable point density and noise in the data. 

The system also includes a stair detection algorithm for pedestrians using laser 

sensors. It uses a recursive line fitting algorithm and sliding window length considerations 

for calculating the first derivative of altitude. The detection of peaks in the first derivative 

of altitude is explained along with the method to detect steps. The process involves peak 

detection in a noisy environment to identify changes in ground orientation. The system 

basically ensures peak detection and merging information from two sensors. 

Although the technique seems promising, many limitations exist: 

 Oblique Angles: Laser beams oriented at very shallow angles to the curb might 
not reflect enough energy back to the sensor, making detection difficult, 
especially for lower curbs. 

 Occlusions: Obstructions like parked cars, vegetation, or pedestrians can block 
the laser beams and hinder curb detection. 

 Curb Types: Laser range functions might struggle to reliably detect curbs with 
irregular shapes, very gradual slopes, or those made from materials with low 
reflectivity. 

 Weather: Rain, fog, snow, or dust can scatter or absorb laser beams, 
significantly reducing the range and accuracy of the sensor. 

 Sunlight: Bright ambient light can introduce noise and affect the accuracy of 
laser range measurements. 

 Sensor Cost: High-resolution laser sensors, especially those with multiple 
beams or long ranges, can be significantly expensive. This can limit their use in 
budget-constrained applications. 

 

Manuel et al. [120], Cai et al. [121] and Panev et al.’s [122] approach includes curb edge 

extraction, parameterised 3-D curb template fitting, and the use of support vector 

machine classifiers. The system was tested on a database of 11 videos, validated with 

LIDAR measurements and manual labels. The system uses computer vision techniques, 

machine learning, and temporal filtering for real-time accuracy and flexibility in detecting 
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curbs. The comparative analysis shows the effectiveness of this method compared to other 

techniques like LIDARs, ToF cameras, laser range finders, and stereo cameras in detecting 

curbs accurately in a variety of conditions. 

Although the system achieved an acceptable average accuracy, some limitations 

prevent it from being chosen as a potential solution to be mounted onto assistive 

technologies for the reasons set out below: 

 Non-linear Distortion: Fisheye lenses introduce significant barrel distortion, 
where straight lines appear curved. This complicates algorithms designed for 
traditional cameras and makes geometric reasoning about the scene more 
challenging. 

 Depth Distortion: The non-uniform stretching of the image distorts the 
perception of depth and distances, making accurate curb localisation difficult. 

 Concentration of Pixels: Fisheye lenses concentrate a large amount of the 
field of view into the centre of the image. This leads to significantly lower 
resolution at the image edges, where important curb details might be lost. 

 Complex Distortion Models: Calibrating fisheye cameras requires more 
complex distortion models than standard pinhole cameras. Small calibration 
errors can significantly impact the accuracy of curb detection. 

 Computational Resource Constraints: The system exhibits a substantial 
demand for computational power, necessitating a high-performance GPU. This 
requirement translates to high energy consumption, rendering it unsuitable for 
integration with assistive technologies that rely on limited-capacity batteries 
lacking regenerative braking capabilities. 

 

 

Cheng et al.’s [123] system uses spatial features to refine the detection and eliminate 

false curb points found in areas like the border of grass. Curb-like areas are eliminated by 

considering their location relative to curbs. Vanishing point detection is described along 

with the creation of a cost map for the road detection using different types of information 

such as flatness, gradient, curb position, and path link, and how these contribute to finding 

optimal road borders. The method also ensures the construction of the weighted graph 

cost map and the importance of curb-induced cost in enhancing road detection 

performance. A voting mechanism is used to identify the vanishing point and calculate 

various costs for road detection such as flatness, gradient, curb, and link costs. The 

algorithm outlines steps for identifying the two base points with the smallest average cost 

paths and determines road borders. Following this, sidewalk detection is discussed, 
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wherein initial sidewalk points are chosen based on geometry features. A region-growing 

method is employed to identify the sidewalk region, with a refinement strategy to remove 

false points. The process includes setting height and geometry constraints, comparing 

points for selection, and analysing error margins for curb detection accuracy using the F1-

measure.  

 Although the system provides a promising result, its weaknesses render it not 

suitable for assistive technologies: 

 Descriptor Specificity: The chosen descriptor might not capture all variations in 
curb appearance (different materials, textures, or damaged curbs). 

 Ambiguity: Other objects with similar geometric characteristics to curbs might lead 
to misclassifications. 

 Vanishing Point Accuracy: Inaccurate vanishing point estimation, especially in 
complex urban scenes, will affect the reliability of the road model. 

 Planar Road Assumption: The method may struggle in areas where the road surface 
is significantly non-planar. 

 Texture Variations: Sidewalk textures can vary widely (concrete, brick, etc.). This 
might impact the seed selection and growth process within the region-growing 
method. 

 Seed Point Requirements: Incorrect seed points, especially in complex scenes, can 
lead to inaccurate sidewalk segmentation. 

 Computational Constraints: The system's reliance on computationally intensive 
segmentation and classification algorithms renders it unsuitable for deployment in 
assistive technologies with limited power resources. 
 

 

 

C.2 Non-Vision or Radar-Based Systems 

 

Rhee et al. [124], Bouhamed et al. [125], Razavi et al. [126], and Hatua et al. [127]’s system’s 

modelling hierarchy consists of two phases: Comparative Study and Detection Approach. The 

Comparative Study phase involves proper height selection and length identification for 

constructing the basic structure of the algorithm. Real-time measurements are taken from 

twelve different staircases to analyse the average height and length. Proper height selection 

ensures sensors are placed correctly. The Detection Approach involves implementing an 
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automated stair detection algorithm based on mathematical criteria. The system is tested on 

stairs of differing dimensions, producing positive results.  

Although the system exhibits acceptable result, it is limited due to the following: 

 Reflections from Multiple Surfaces: Ultrasound waves can bounce off multiple 
surfaces in the environment (e.g., walls, handrails), leading to ambiguous distance 
measurements and potential misinterpretations. 

 Angle Dependence: Such sensors are heavily dependent on the tilting angle. This 
means that  curbs or stairs, especially those with curved or irregular treads, might 
not reflect the ultrasonic waves directly back to the sensor, leading to inaccurate 
distance readings. 

 Material Composition: Stair materials that absorb sound (like carpets) can 
significantly reduce the effectiveness Temperature and Air Pressure: The speed of 
sound is affected by temperature and air pressure. Uncompensated environmental 
changes can lead to measurement errors. 

 Air Currents or Obstructions: Air drafts or small objects within the sensor's range 
can disrupt the acoustic signal and skew the readings of ultrasonic sensors. 

 

 

 


