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A B S T R A C T

The use of algorithmic decision-making systems based on machine learning models has led to a need for
fair (unbiased) and explainable classification outcomes. In particular, machine learning algorithms can encode
biases, which might result in discriminatory decisions for certain groups such as gender, race, or age. Although
a number of works on decision tree learning have been proposed to decrease the chance of discrimination,
they usually focus on the use of a single fairness metric. In general, creating a model based on a single fairness
metric is not a sufficient way to mitigate discrimination since bias can originate from various sources—e.g.,
the data itself or the optimization process. In this paper, we propose a novel decision tree learning process
that utilizes multiple fairness metrics to address both group and individual discrimination. This is achieved
by extending the attribute selection procedure to consider not only information gain but also gain in fairness.
Computational experiments on fourteen different datasets with various sensitive features demonstrate that
the proposed Fair-C4.5 models improve fairness without a loss in predictive accuracy when compared to the
well-known C4.5 and the fairness-aware FFTree algorithms.
1. Introduction

It is difficult to identify an application area where Artificial Intelli-
gence (AI) does not have a role to play—AI methods have become inte-
gral to many real-world applications. While AI has been very successful
in recent years through the application of the supervised learning
paradigm, it is becoming apparent that many of the popular methods
create black-box (opaque) models that are prone to generating biased
predictions, which could be racist and sexist [1–3]. This also limits their
applicability in life-related situations, such as medical diagnoses, where
understanding how AI methods reach a specific decision is crucial.

Supervised learning involves AI methods that learn based on data
gathered from past experiences. In supervised learning, the goal is to
build a model by finding patterns in the data that accurately represent
the relationships between a set of predictors and an outcome of interest.
The vast majority of learning methods rely solely on finding repeated
patterns or correlations occurring in the data. This approach leads
to several problems. First, in many cases, relationships supported by
domain knowledge do not appear frequently enough in the data and
therefore are not represented in the learned model. Second, the use
of unrepresentative or biased data leads to the detection of accidental
correlations, which are not useful to domain experts. Additionally,
training data is often biased concerning potentially discriminatory
attributes (e.g., gender, religion, race), which could lead to the cre-
ation of discriminatory models. In such cases, discriminatory bias can

∗ Corresponding author.
E-mail address: mb2076@kent.ac.uk (M. Bagriacik).

occur in different flavours: direct discrimination, where the model’s
predictions are based on discriminatory attributes, and indirect discrim-
ination, where the model’s predictions are based on attributes that are
correlated with discriminatory attributes.

There are different aspects of fairness discussed in the literature:
(i) fairness should consider specific individual pairs instead of average
groups; (ii) similar individual groups should be treated in a similar way;
and (iii) less-featured individuals should not be favoured over individ-
uals with more features [4–6]. Fairness is defined in the literature as
the absence of any prejudice or favouritism towards an individual or a
group based on their inherent or acquired characteristics [7]. While a
number of different fairness metrics have been previously proposed in
the literature [8–10], it is becoming apparent that no single metric can
be considered the best overall, as metrics capture fairness in different
ways. Therefore, there is a clear motivation to employ multiple metrics
in the creation of a model to achieve a more robust outcome—this is
the focus of this paper.

Decision trees are widely used classification models. One of their
main advantages is that they represent a comprehensible (white-box)
model that can be interpreted by experts and users. A common ap-
proach to creating decision trees automatically from data is known as
the divide-and-conquer approach [11], which consists of an iterative
top-down procedure of selecting the best attribute to label an internal
node of the tree. It starts by selecting an attribute to represent the
https://doi.org/10.1016/j.asoc.2024.112313
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Applied Soft Computing 167 (2024) 112313 
root of the tree. After selecting the first attribute, a branch for each
possible (set of) value(s) of the attribute is created, and the data
set is divided into subsets according to the examples’ values of the
selected attribute. The selection procedure is then recursively applied to
each branch of the node using the corresponding subset of examples—
i.e., the subset with examples that have the attribute’s value associated
with the branch. It stops for a given branch when all examples from the
subset have the same class label or when another stopping criterion is
satisfied, creating a leaf node to represent a class label to be predicted.

Current research aimed at reducing discrimination in decision tree
learning mainly focuses on addressing bias through a single, specific
fairness metric [12–16]. However, this approach has limitations, as
various fairness metrics capture different dimensions of fairness and
may not always align. In other words, a model deemed fair accord-
ing to one metric might be considered unfair by another. Moreover,
while efforts to improve fairness in these models have been made,
such approaches often result in diminished accuracy. They generally
overlook the potential for balancing fairness with accuracy, neglecting
the opportunity to develop models that aim to meet fairness criteria
while minimizing the impact on accuracy [12,14,15,17]. To overcome
these limitations in the fairness literature, we propose extending the
way attributes are selected during the decision tree learning process to
consider their impact on the fairness of the model being created. This
is achieved by using multiple fairness criteria for selecting attributes
during tree creation. Attributes are then selected not only based on
their impact on predictive performance but also on the fairness of the
model. Computational results using fourteen datasets with different
combinations of sensitive attributes (a total of twenty-three variants)
show that the proposed Fair-C4.5 improves the fairness of the created

odels without negatively impacting their predictive accuracy.
The rest of the paper is organized as follows. Section 2 presents

elated work on fairness metrics and fairness-aware decision tree ap-
roaches. In Section 3, we discuss fairness-aware splitting procedures
nd algorithms for attribute selection to build fair and accurate decision
ree models. Section 4 presents the datasets and experimental results.
inally, Section 5 presents the conclusion and direction for future
esearch.

. Related work

One of the initial studies on fairness in decision tree learning ad-
ressed discrimination within historical data and introduced a
iscrimination-Aware Decision Tree model [13]. This model employed
easures of accuracy and discrimination to guide the creation process

or node splitting during the tree’s construction, aiming to balance both
ccuracy and fairness. The objective was to develop a decision tree
haracterized by high accuracy and minimal discrimination concerning
sensitive attribute—i.e., the likelihood of a positive outcome remains

onstant irrespective of the sensitive attribute’s value.
In another study based on adversarial training of decision trees, [14]

eveloped a FATT (Fairness-Aware Tree Training) approach extended
rom the Meta-Silvae decision tree ensemble method according to
he genetic algorithm as defined in [18]. Their work is based on an
bstract interpretation that focuses on robust decision tree training
y including similar individuals in the input space. Inspired by the
ndividual fairness description in [4], they developed a fairness metric
o find similarity relations. The new approach provides maximized
airness and accuracy for decision tree training and individual fairness
erification of the decision tree. Experiments on CART and Random
orest show that this approach increased fairness by around 40% with
low decrease in accuracy, approximately 3%, while producing more

nterpretable and compact tree models.
Many studies focusing on decision tree learning for online streaming

ata employ statistical parity (or discrimination score) as a fairness
etric. One of the first works addressing both fairness and concept
rift is FEAT, which extends the Hoeffding Tree (HT) model [19]. FEAT
2 
is specifically designed to adapt to concept drift, taking into account
non-stationary streaming data that may exhibit discrimination. This is
achieved by reformulating the information gain metric to incorporate
a fairness metric, resulting in fair-enhancing information gain (FEIG)
for fair-splitting criteria. The first online Fair Random Forest (FARF)
was proposed in [20] as a fair and adaptive random forest designed to
manage fairness in online stream classification through fair statistical
parity measurement. This is particularly important as online streaming
data is subject to change over time. They designed an accumulative
statistical parity as a fairness metric to assess online fairness, incor-
porating a single hyper-parameter to balance the trade-off between
fairness and accuracy. In another study [12], a fairness-aware online
decision tree was proposed. This tree is capable of processing data
in a streaming environment without bias towards sensitive attributes,
achieved by employing a fair information gain splitting procedure for
tree construction.

In the method described in [21], Fairness-Aware Decision Tree
Editing (FADE) employs Mixed-Integer Linear (MIL) optimization to
minimize the discrimination score as part of a post-processing pro-
cedure. This involves modifying the decision tree by either deleting
branches or altering labels on leaf nodes to adhere to fairness con-
straints. In a more recent study [22], Mixed-Integer Optimization (MIO)
is utilized to derive optimal decision tree models. This approach inte-
grates fairness constraints with MIO formulation to develop FairOCT.
The study emphasizes five distinct group fairness metrics to ensure the
learned tree meets fairness criteria. These metrics include statistical
and conditional statistical parity, predictive equality (False Positive
Rate), equalized opportunity (True Positive Rate), and equalized odds
(a combination of True Positive and False Positive Rates).

Dynamic Programming (DP) is generally applied to design efficient
optimal decision tree models, leveraging the separability or indepen-
dence rule between left and right subtrees to achieve optimal accuracy.
However, when considering fairness in decision tree models, those
redesigned with DP fail to meet fairness criteria. This failure arises
because fairness constraints cannot treat the left and right subtrees
independently. Addressing this issue, [16] introduced DP Fair, which
incorporates a global fairness constraint into Dynamic Programming.
This is achieved by calculating the upper and lower bounds of the last
fairness value in the partial solution, enabling early pruning of the
tree to enhance fairness in the optimal decision tree. In this proposed
approach, demographic parity, defined as equal positive prediction
outcomes across all sensitive groups, is employed as the group fairness
metric within the constraint.

The work in [23] combines demographic parity with ROC-AUC to
develop the Splitting Criterion AUC for Fairness (SCAFF). This approach
establishes a fair splitting criterion for fairness-aware learning from
biased training datasets, ensuring that prediction outcomes are not
influenced by sensitive attributes such as age or race. Moreover, their
work demonstrates strong performance in both fairness and prediction
accuracy by optimizing demographic parity across multiple sensitive
attributes.

FairRepair, proposed in [24], aims to rectify unfairness in deci-
sion tree algorithms by modifying specific parts of the tree model
in alignment with fairness constraints and semantic difference con-
siderations. The method involves flipping leaves and refining paths
after identifying unfair paths within the model using a MaxSMT-based
tool. This approach employs a group fairness metric similar to the
impact ratio for the flip and refine phases. Another method, known as
Enforcing Fairness in Forests by Flipping Leaves (EiFFFeL) [25], focuses
on flipping leaves in selected decision trees within a random forest,
either by flipping all leaves or specifically those exhibiting the highest
discrimination. The goal is to achieve group fairness while minimizing
accuracy loss.

In a recent work [26], the authors introduced FFTree, a decision
tree framework characterized by its transparency, flexibility, and sensi-

tivity to fairness. FFTree incorporates multiple fairness metrics to filter
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Applied Soft Computing 167 (2024) 112313 
attributes before selection, with the final selection criterion being the
maximization of information gain. For an attribute to be considered
for selection, it must meet a fairness threshold, with all its fairness
values falling below a predefined discrimination level denoted by 𝛿. In
nstances where no attribute meets this criterion, the framework opts to
reate a leaf node instead. Thus, fairness indirectly influences attribute
election by acting as a filter for eligible attributes, although it does not
irectly determine the final choice of attribute.

Current research primarily focuses on mitigating discrimination
hrough the application of single fairness metrics, which may not
ufficiently address both direct and indirect forms of discrimination.
dditionally, previous works often concentrated on enhancing the fair-
ess of binary decision trees, accepting a certain degree of accuracy
oss as a trade-off. In contrast, our methodology incorporates a variety
f fairness metrics, including both group and individual fairness, to
ackle different occurrences of discrimination more effectively. It em-
loys a fairness-aware attribute selection procedure designed to balance
ccuracy and fairness, providing equal consideration to both aspects
imultaneously. Finally, the proposed model extends the C4.5 decision
ree algorithm to handle multi-valued attributes and missing values.

. Learning fair decision trees

In this section, we introduce our proposed Fair-C4.5 decision tree
lgorithm. Since bias or discrimination can occur at different degrees
n data, and each fairness criterion might address discrimination dif-
erently, the proposed algorithm is designed to use a combination
f multiple fairness criteria to guide the construction process. The
ationale is to find an optimal balance between the different fairness
easurements and predictive performance.
Fair-C4.5 uses the concept of sensitive attributes to assess the fairness

f a model. The goal is to generate a model that does not show bias in
elation to the value of a sensitive attribute—i.e., the likelihood of a
articular classification should not change due to a particular value of
he sensitive attribute.

.1. Fairness metrics

Let us consider 𝑆 our set of instances, and |𝑆𝑃 | and |𝑆𝑈 | the number
f privileged and unprivileged instances for a sensitive attribute, re-
pectively. The number of privileged instances in the sensitive attribute
abelled with the positive class is given by |𝑆+

𝑃 |; similarly, |𝑆+
𝑈 | is the

umber of positively labelled unprivileged instances in the sensitive
ttribute.

In order to cope with missing values, we first determine the total
umber of missing values |𝑆𝑀 |, and then positively labelled missing
alues |𝑆+

𝑀 |. These values are used to estimate the fraction of missing
alues that belong to the privileged and unprivileged sets as follows:

+
𝑃 = |𝑆+

𝑀 | ∗
|𝑆+

𝑃 |

|𝑆+
| − |𝑆+

𝑀 |

(1)

𝐹+
𝑈 = |𝑆+

𝑀 | ∗
|𝑆+

𝑈 |

|𝑆+
| − |𝑆+

𝑀 |

(2)

where 𝐹+
𝑃 is the estimated fraction of the missing values in the sensitive

attribute that are labelled with the positive class and belonging to a
privileged group, while 𝐹+

𝑈 is the fraction of the missing values in the
ensitive attribute that are labelled with the positive class belonging to
unprivileged group.

To calculate whether the classification is unfair or not based on
ifferent fairness metrics, we will use the probability of an instance
ith a privileged value being associated with the positive label 𝑃𝑟(𝑆+

𝑃 )
and the probability of an instance with an unprivileged value being
associated with the positive label 𝑃𝑟(𝑆+

𝑈 ), as follows:

𝑃𝑟(𝑆+) =
|𝑆+

𝑃 | + 𝐹+
𝑃 (3)
𝑃

|𝑆𝑃 | + |𝑆𝑀 |

a

3 
𝑃𝑟(𝑆+
𝑈 ) =

|𝑆+
𝑈 | + 𝐹+

𝑈
|𝑆𝑈 | + |𝑆𝑀 |

(4)

The definitions above are used to calculate four fairness measure-
ents:

1. Disparate Impact Ratio (DI): This metric, which was defined
in [9,27], focuses on the rate of positive classification results
across the unprivileged and privileged groups of a sensitive
attribute. It has an optional value of 1, when both privileged
and unprivileged groups have the same number of positive clas-
sifications, which can be interpreted as the case where the
sensitive attribute does not introduce bias into the outcome of
the classification. In our proposed approach, it is calculated as:

𝐷𝐼(𝑆) =
𝑃𝑟(𝑆+

𝑈 )

𝑃𝑟(𝑆+
𝑃 )

(5)

2. Discrimination Score (CV): As used in [28–31], this metric
represents the differences between the number of positively
labelled instances in each group of the sensitive attribute. In this
case, as the result approaches 0, the discrimination reduces since
both groups have a similar number of positive classifications. It
is calculated as:

𝐶𝑉 (𝑆) = 𝑃𝑟(𝑆+
𝑃 ) − 𝑃𝑟(𝑆+

𝑈 ) (6)

3. Consistency: This metric compares the prediction of each in-
stance to their k-nearest neighbours (kNN). A kNN result of 1 in-
dicates completely consistent predictions, i.e., similar instances
are classified the same way, while 0 would be a maximally
inconsistent model. Consistency has been used as a fairness
metric in [32]. It is calculated as:

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(𝑆) = 1 − 1
𝑁𝑘

𝑁
∑

𝑖

∑

𝑗∈kNN(𝑖)
|�̂�𝑛 − �̂�𝑗 | (7)

where 𝑁 is the total number of instances and 𝑘 is the number of
neighbours to compare.

4. Disparate Treatment (DT): This metric measures whether there
is a difference in the classifier output when the sensitive at-
tribute is taken into consideration or not, while other features
are the same or similar; if the probability of predictions does
not change, then there is no disparate treatment:

𝐷𝑇 (𝑆) =𝑃𝑟(𝐶+ ∣ 𝐴𝑖, 𝑆𝑃 )

+𝑃𝑟(𝐶+ ∣ 𝐴𝑖, 𝑆𝑈 )
(8)

where 𝑃𝑟(𝐶+ ∣ 𝐴𝑖, 𝑆𝑃 ) is the probability of a positive classifica-
tion for privileged instances on the partition of a non-sensitive
attribute 𝐴𝑖; 𝑃𝑟(𝐶+ ∣ 𝐴𝑖, 𝑆𝑈 ) is the probability of a positive
classification for unprivileged instances on the partition of a non-
sensitive attribute 𝐴𝑖. The details of the metric can be found
in [10].

.2. Fairness-based attribute selection

In our proposed work, we use multiple criteria to split the data
uring the decision tree creation; we, therefore, modified the attribute
election procedure. Firstly, the values for each criteria are calculated
or all available attributes. Then, attributes’ values for each criteria
re ranked according to their gain—a matrix 𝐴 × 𝐶, where 𝐴 is the
umber of attributes and 𝐶 is the number of criteria, is created. In order
o eliminate attributes that have a low chance of being selected, we
dentify attributes that are dominated by other attributes. An attribute
𝑥 is considered dominated by another attribute 𝑎𝑦 if for every criteria
alue, their values are equal or lower to the values of 𝑎𝑦 and there is at
east one value lower. At the end of this procedure, only non-dominated
ttributes are available for selection. Table 1 presents an example of
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Table 1
Example of dominated attribute 𝑎4 after the splitting criteria are calculated.

Attribute Entropy DI CV CS DT

𝑎1 4 1 3 1 4
𝑎2 1 2 2 2 1
𝑎3 1 4 1 4 2
Dominated by 𝑎2
𝑎4 3 3 4 2 3

the rank matrix, where attribute 𝑎2 dominates attribute 𝑎4. In this case,
attribute 𝑎4 will not be considered for selection.

We employ three different strategies to select the attribute to split
the data using the information of all criteria:

Lexicographic. In the lexicographic strategy, the selection follows a
pre-defined order of metrics preference given by the user—the order
dictates how attributes are compared. For example, consider a lexico-
graphic strategy with {Entropy → CV → DI → CS → DT} and the rank
values presented in Table 1. In this case, the attribute selected would
be 𝑎3, since it ranks (jointly) first on Entropy and first on CV ; there is
no need to continue the comparison since at this point it is clearly the
highest ranked attribute given the pre-defined order.

Constraint. The constraint strategy combines the rankings of the en-
tropy metric with all other fairness metrics, subject to a constraint: only
attributes where the sum of fairness metrics ranks is below a predefined
threshold 𝜃 are considered; the attribute selected is the one that has the
highest ranking overall. The rank of an attribute 𝑎 is given by:

𝑅𝑎𝑛𝑘(𝑎) = 𝑅𝑎𝑛𝑘(𝑎, 𝑒𝑛𝑡𝑟𝑜𝑝𝑦) ×
𝑀
∑

𝑚=1
𝑅𝑎𝑛𝑘(𝑎, 𝑚)

s.t.
𝑀
∑

𝑚=1
𝑅𝑎𝑛𝑘(𝑎, 𝑚) ≤ 𝜃

(9)

where 𝑀 is the set of fairness metrics. The rationale of this strategy is
to only consider attributes that have a clear contribution in improving
the fairness of the model, regardless of whether they have a high rank
for the entropy metric.

GRXFR. In the GRXFR strategy, the selection uses the original informa-
tion gain in combination with the fairness metrics by multiplying the
entropy rank with the average ranks of the fairness metrics. The rank
used in the selection is given by:

𝐺𝑅𝑋𝐹𝑅(𝑎) = 𝑅𝑎𝑛𝑘(𝑎, 𝑒𝑛𝑡𝑟𝑜𝑝𝑦) ×
∑𝑀

𝑚=1 𝑅𝑎𝑛𝑘(𝑎, 𝑚)
|𝑀|

(10)

where 𝑀 is the set of fairness metrics. The rationale of this strategy
is to maximize the information (entropy) gain while taking into con-
sideration the impact on fairness. Once the GRXFR value is calculated,
the attribute with the lowest value is selected, which corresponds to
the attribute with the best ranking.

4. Computational experiments

To evaluate the proposed Fair-C4.5, we used fourteen datasets
that are widely used in the fairness literature. The datasets are Adult
(Adu) [33]; German (Ger) [33]; Propublica Recidivism (Prop) and
Propublica Violent Recidivism (ProV) [34]; NYPD SQF CPW (NYP)—
related to racially-biased policy, NYPD: New York Police Department,
SQF: stop, question, and frisk, CPW: Criminal Possession of a
Weapon [35]; Student Mathematics (StuM) and Portuguese Perfor-
mances (StuP) [36]; Drug Consumption (Dru) [37]; Ricci (Ric) [27];
Wine taste data (Win) [38]; Bank (Bank) [39]; Dutch (Dut) [13];
Law School admission (Law) [40]; UFRGS (UF)—Federal University
of Rio Grande do Sul entrance exam and GPA data in Brazil—[24].
Table 2 provides the details of each dataset used in our experiments:

the number of instances (Size); number of features (#); target class h

4 
attribute (Attribute) and the value representing the positive class label
(Value(+)); sensitive attribute’s name (Name), privileged and unpriv-
ileged values (P and U), respectively. Each combination of dataset
and sensitive attribute defines a variant, therefore, the algorithms
are evaluated over twenty-three different variants. We compared the
performance of Fair-C4.5 using the three proposed attribute selection
strategies against the original C4.5 algorithm and FFTree [26] to
evaluate the impact of extending its attribute selection to take into
consideration fairness metrics. All algorithms were evaluated using a
10-fold cross-validation process, which consists of splitting the dataset
into 10 partitions. Then, each partition is used as a test set, while the re-
maining nine are used as the training set. The final performance is then
the average of the 10 executions.1 All experiments are implemented in
Python and run on a Windows PC 1.70 GHz Intel i5 with 16 GB of RAM.

In the result Tables 3–6, each dataset variation is represented by
the abbreviated dataset name and sensitive attribute in parenthesis.
For example, ‘‘Adu(G)’’ indicated the dataset ‘‘Adult’’ and the ‘‘Gender’’
sensitive attribute. The last line on each table presents the average rank
of the Friedman statistical test with Hommel’s post-hoc test [41,42].
We present the statistical test results at the bottom of the tables, 𝑝
and 𝐻𝑜𝑚𝑚𝑒𝑙 control value. The best result for each dataset variant is
highlighted in boldface.

4.1. Performance and fairness results

In this section, we present the evaluation of our different fairness-
aware splitting algorithms that are generated based on fairness mea-
sures and accuracy on the fourteen different datasets. We compared
the fairness and predictive performance of three Fair-C4.5 tree-splitting
variations that combine multiple fairness metrics and gain ratio against
the standard C4.5 splitting method that uses only gain ratio. Ad-
ditionally, to compare our proposed algorithm against an existing
fairness-aware decision tree from the literature, we added results of
the FFTree [26]. FFTree has been developed as a flexible fair decision
tree algorithm to handle multiple fairness criteria by maximizing infor-
mation gain among features that satisfy permitted discrimination-level
fairness constraints. If fairness constraints are not satisfied during the
selection of a node, the node added to the tree is a leaf—i.e., a class
prediction. While the original paper proposing FFTree presented exper-
iments with different discrimination levels, such as 0, 0.05, 0.1, 0.15,
and 0.20, in our experiments they either generated default prediction
without building a tree, or the same results for all available thresholds.
Therefore, we only present FFTree results for 0.2 discrimination level
when a decision tree is created; otherwise, a dash (-) represents the case
where no decision tree was created.

Considering the prediction accuracy as shown in Table 3, the
Constrain-based splitting procedure outperforms all other algorithms,
including standard C4.5 and FFTree, with an average rank of 2.48.
Additionally, the Constrain-based algorithm performance is statistically
significantly better than FFTree, according to the non-parametric Fried-
man test. All of Fair-C4.5 approaches achieved better accuracy than
the C4.5 and FFTree baseline algorithms for most datasets. In terms
of ROC results, Lexicographic search shows the highest performance
with a 2.39 average rank, and it is statistically significant better than
FFTree. The ROC results of all Fair-C4.5 approaches are better than the
standard C4.5 tree and FFTree for most of the datasets.

Table 4 indicates that GRXFR (Gain Ratio-Fairness) approach out-
performed for False Positive Rates (FPR) and False Negative Rates
(FNR) compared to C4.5 and other discrimination-aware algorithms,
with average ranks of 2.48 and 2.61, respectively. Regarding Disparate
Impact and CV Score results in Table 5, the Constrain-based model gave
the best results, achieving average ranks of 2.48 and 2.61, respectively.

1 All datasets and algorithms used in the evaluation can be found at:
ttps://github.com/meryem1030/Fair-C4.5.git.

https://github.com/meryem1030/Fair-C4.5.git
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Table 2
Summary of the data sets used in the experiments.

Data set # Class Size Sensitive Attribute

Variant Attribute Value (+ ) Name 𝑃 𝑈

Adu 15 Income > 50𝑘 48 842
Adu(G) Gender Male Female
Adu(R) Race White Non-White
Adu(A) Age ≥ 25 < 25

Ger 22 Credit Status 2 1000
Ger(G) Gender Male Female
Ger(A) Age ≥ 25 < 25

Prop 51 Two Year Recid 0 7214
Prop(G) Gender Male Female
Prop(R) Race White Non-White
ProV 54 Two Year Recid 0 4743
ProV(G) Gender Male Female
ProV(R) Race White Non-White
NYP 25 Weapon Found Flag N 9826
NYP(G) Gender Male Female
NYP(R) Race White Non-White
StuM 33 G3-binary Pass 395
StuM(G) Gender Male Female
StuM(A) Age ≥ 17 < 17

StuP 33 G3-binary Pass 649
StuP(G) Gender Male Female
StuP(A) Age ≥ 17 < 17

Dru 32 Meth 1 1885
Dru(G) Gender Male Female
Dru(R) Race White Non-White
Ric 5 Combine ≥ 70 118
Ric(R) Race White Non-White
Win 13 binned quality good 6497
Win(T) Type White Red
Bank 17 y yes 40 004
Bank(A) Age (33 <, 60 >) (33 ≥, 60 ≤)

Dut 12 occupation 1 60 420
Dut(G) Gender Male Female
Law 17 pass bar 1 22 407
Law(G) Race White Non-White
UF 11 Mean GPA ≥ 3 43 303
UF(G) Gender Male Female
Table 3
Predictive performance of C4.5, FFTree and Fair-C4.5 variants. The best result for each metric is shown in bold. Average ranks and statistical
test results are displayed at the bottom.
Variant C4.5 Lexicographic Constraint GRXFX FFTree

ACC ROC ACC ROC ACC ROC ACC ROC ACC ROC

Adu(G) 0.850 0.756 0.850 0.756 0.823 0.691 0.831 0.694 0.803 0.584
Adu(R) 0.850 0.756 0.850 0.756 0.842 0.714 0.828 0.699 0.803 0.584
Adu(A) 0.850 0.756 0.850 0.755 0.851 0.756 0.851 0.755 0.803 0.584
Ger(G) 0.681 0.603 0.679 0.598 0.692 0.617 0.683 0.599 – –
Ger(A) 0.681 0.603 0.677 0.598 0.685 0.602 0.677 0.598 – –
Ric(R) 0.873 0.875 0.873 0.875 0.864 0.866 0.874 0.878 0.610 0.595
Win(T) 0.637 0.617 0.637 0.618 0.652 0.632 0.649 0.630 0.640 0.588
StuM(G) 0.896 0.886 0.896 0.887 0.896 0.884 0.902 0.893 0.909 0.916
StuM(A) 0.896 0.886 0.907 0.901 0.902 0.891 0.899 0.891 – –
StuP(G) 0.898 0.821 0.900 0.826 0.894 0.814 0.901 0.831 0.912 0.838
StuP(A) 0.898 0.821 0.897 0.824 0.886 0.798 0.891 0.809 – –
NYP(G) 0.720 0.541 0.721 0.543 0.737 0.519 0.709 0.541 – –
NYP(R) 0.720 0.541 0.719 0.539 0.731 0.518 0.737 0.530 – –
ProV(G) 0.809 0.559 0.811 0.561 0.805 0.550 0.818 0.571 0.834 0.507
ProV(R) 0.809 0.559 0.810 0.560 0.812 0.553 0.810 0.555 0.837 0.500
Bank(A) 0.653 0.494 0.653 0.494 0.770 0.583 0.685 0.509 – –
Prop(G) 0.654 0.642 0.655 0.643 0.661 0.649 0.659 0.646 0.646 0.635
Prop(R) 0.654 0.642 0.654 0.642 0.655 0.643 0.654 0.641 0.668 0.664
Dru(R) 0.788 0.721 0.786 0.718 0.791 0.728 0.787 0.720 – –
Dru(G) 0.788 0.721 0.789 0.721 0.786 0.723 0.782 0.716 – –
Dut(G) 0.729 0.730 0.829 0.828 0.811 0.809 0.808 0.805 0.587 0.604
Law(G) 0.904 0.538 0.904 0.538 0.905 0.528 0.913 0.531 0.945 0.554
UF(G) 0.644 0.638 0.644 0.638 0.644 0.638 0.642 0.636 0.538 0.507

Avg. rank 3.15 2.65 2.80 2.39 2.48 2.78 2.70 2.87 3.87 4.30
𝑝 0.148 0.576 0.484 – – 0.401 0.641 0.305 0.002 4.1E−05
Hommel 0.017 0.0125 0.025 – – 0.025 0.05 0.017 0.0125 0.0125
5 
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Table 4
False Positive and False Negative Rates (fairness) performances of C4.5, FFTree and Fair-C4.5 variants. The best result for each metric is shown in bold. Average
ranks and statistical test results are displayed at the bottom.
Variant C4.5 Lexicographic Constraint GRXFX FFTree

FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

Adu(G) 0.071 0.174 0.071 0.175 0.049 0.144 0.011 0.033 0.000 0.016
Adu(R) 0.036 0.042 0.036 0.048 0.021 0.049 0.034 0.072 0.000 0.012
Adu(A) 0.084 0.298 0.084 0.297 0.083 0.265 0.081 0.295 0.001 0.034
Ger(G) 0.108 0.203 0.133 0.198 0.089 0.160 0.117 0.087 – –
Ger(A) 0.160 0.112 0.170 0.136 0.160 0.144 0.167 0.172 – –
Ric(R) 0.113 0.167 0.113 0.142 0.113 0.183 0.080 0.167 0.100 0.233
Win(T) 0.417 0.307 0.413 0.308 0.405 0.298 0.407 0.297 0.534 0.213
StuM(G) 0.132 0.082 0.116 0.093 0.167 0.096 0.130 0.072 0.124 0.087
StuM(A) 0.145 0.189 0.134 0.198 0.1372 0.186 0.130 0.194 – –
StuP(G) 0.185 0.084 0.290 0.077 0.280 0.077 0.238 0.075 0.140 0.062
StuP(A) 0.275 0.050 0.284 0.070 0.284 0.118 0.323 0.115 – –
NYP(G) 0.139 0.042 0.144 0.047 0.154 0.048 0.118 0.048 – –
NYP(R) 0.081 0.058 0.084 0.058 0.075 0.033 0.105 0.072 – –
ProV(G) 0.115 0.035 0.118 0.037 0.138 0.047 0.109 0.035 0.015 0.006
ProV(R) 0.201 0.047 0.798 0.076 0.188 0.037 0.127 0.048 0.000 0.000
Bank(A) 0.043 0.065 0.039 0.066 0.041 0.071 0.041 0.052 – –
Prop(G) 0.148 0.099 0.154 0.098 0.122 0.101 0.120 0.094 0.115 0.107
Prop(R) 0.193 0.079 0.181 0.080 0.180 0.078 0.189 0.079 0.128 0.113
Dru(R) 0.325 0.132 0.306 0.103 0.307 0.093 0.300 0.120 – –
Dru(G) 0.103 0.082 0.111 0.077 0.100 0.079 0.138 0.079 – –
Dut(G) 0.289 0.423 0.202 0.070 0.040 0.048 0.043 0.048 0.049 0.032
Law(G) 0.108 0.064 0.103 0.063 0.113 0.055 0.092 0.059 0.178 0.038
UF(G) 0.439 0.368 0.439 0.368 0.446 0.364 0.446 0.363 0.004 0.984

Avg. rank 3.37 3.04 3.26 3.22 2.80 2.78 2.48 2.61 3.09 3.35
𝑝 0.056 0.351 0.093 0.192 0.484 0.709 – – 0.192 0.113
Hommel 0.0125 0.025 0.017 0.017 0.05 0.05 – – 0.025 0.0125
Table 5
Disparate Impact and CV score (fairness) performances of C4.5, FFTree and Fair-C4.5 variants. The best result for each metric is shown in bold. Average ranks
and statistical test results are displayed at the bottom.
Variant C4.5 Lexicographic Constraint GRXFX FFTree

DI CV DI CV DI CV DI CV DI CV

Adu(G) 0.269 0.180 0.269 0.180 0.319 0.133 0.474 0.088 0.410 0.029
Adu(R) 2.157 −0.105 2.171 −0.106 2.159 −0.082 2.364 −0.092 2.002 −0.021
Adu(A) 0.016 0.223 0.016 0.221 0.017 0.220 0.016 0.219 0.073 0.045
Ger(G) 1.280 −0.052 1.370 −0.067 1.270 −0.062 1.262 −0.026 – –
Ger(A) 1.192 −0.025 1.217 −0.024 1.546 −0.103 1.288 −0.049 – –
Ric(R) 0.461 0.400 0.503 0.365 0.461 0.387 0.518 0.356 0.238 0.031
Win(T) 0.259 0.532 0.261 0.531 0.229 0.558 0.266 0.532 0.227 0.682
StuM(G) 0.927 0.079 0.959 0.066 0.958 0.060 0.921 0.084 0.959 0.065
StuM(A) 0.469 −0.008 0.467 0.004 0.473 −0.015 0.473 −0.007 – –
StuP(G) 1.104 −0.063 1.110 −0.063 1.098 −0.055 1.099 −0.058 1.059 −0.021
StuP(A) 1.300 0.026 1.276 0.046 1.284 0.040 1.279 0.041 – –
NYP(G) 1.042 −0.034 1.040 −0.032 1.015 −0.013 1.022 −0.019 – –
NYP(R) 0.961 0.035 0.971 0.026 1.002 −0.001 0.935 0.064 – –
ProV(G) 1.058 −0.052 1.056 −0.050 1.055 −0.049 1.054 −0.049 1.009 −0.008
ProV(R) 0.993 0.010 1.057 −0.051 0.986 0.016 0.952 0.048 1.000 0.000
Bank(A) 1.545 −0.033 1.543 −0.030 1.150 −0.031 1.401 −0.035 – –
Prop(G) 1.233 −0.142 1.234 −0.143 1.222 −0.135 1.213 −0.132 1.236 −0.139
Prop(R) 0.827 0.135 0.833 0.130 0.832 0.129 0.822 0.140 0.809 0.136
Dru(R) 1.036 −0.031 1.032 −0.029 1.048 −0.040 1.036 −0.031 – –
Dru(G) 0.845 0.131 0.853 0.124 0.860 0.118 0.847 0.129 – –
Dut(G) 0.378 0.459 0.483 0.323 0.646 0.183 0.644 0.182 0.941 0.053
Law(G) 0.917 0.078 0.918 0.078 0.926 0.069 0.926 0.070 0.935 0.064
UF(G) 0.480 0.288 0.481 0.287 0.475 0.292 0.480 0.291 0.086 0.002

Avg. rank 3.46 3.52 2.95 3.04 2.48 2.61 2.63 2.83 3.48 3
𝑝 0.036 0.0502 0.305 0.3512 – – 0.744 0.641 0.032 0.401
Hommel 0.0167 0.0125 0.025 0.0167 – – 0.05 0.05 0.0125 0.025
Comparing consistency results as shown in Table 6, the FFTree
aseline algorithm outperformed all other algorithms with an average
ank of 2.57, although the differences are not statistically significant.
owever, FFTree did not build a decision tree for nine datasets and

nstead provided a leaf node according to the majority class value.
his occurs when none of the attribute splits satisfy FFTree’s fairness
riteria. In the case of Disparate Treatment, an individual fairness
etric, the results provided an interesting insight. FFTree’s approach to
andle disparate treatment is to omit the sensitive attribute from the
6 
information gain calculation, thereby not influencing attribute selec-
tion. The rationale is to provide fairness through blindness, also referred
to as Fairness Through Unawareness [26,43], which explicitly avoids
using the sensitive attribute in the decision tree. Our results show that
this might not necessarily improve fairness, as it does not prevent non-
sensitive attributes correlated to the sensitive attribute from being used.
The Lexicographic variation obtained the best average rank of 2.65 for
Disparate Treatment, as shown in Table 6, while FFTree had the worst
average rank of 3.57—although the differences are not statistically

significant.
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Table 6
Consistency and Disparate Treatment (fairness) performances of C4.5, FFTree and Fair-C4.5 variants. The best result for each metric is shown in bold. Average
ranks and statistical test results are displayed at the bottom.
Variant C4.5 Lexicographic Constraint GRXFX FFTree

CO DT CO DT CO DT CO DT CO DT

Adu(G) 0.841 0.676 0.841 0.676 0.870 0.625 0.874 0.643 0.993 0.214
Adu(R) 0.842 0.640 0.842 0.634 0.889 0.512 0.886 0.535 0.991 0.213
Adu(A) 0.887 0.219 0.887 0.219 0.887 0.217 0.887 0.211 0.996 0.122
Ger(G) 0.696 0.765 0.696 0.769 0.683 0.803 0.691 0.735 – –
Ger(A) 0.671 0.702 0.673 0.709 0.683 0.852 0.674 0.781 – –
Ric(R) 0.738 0.651 0.730 0.636 0.739 0.645 0.722 0.698 0.882 0.206
Win(T) 0.537 0.390 0.536 0.387 0.540 0.362 0.541 0.395 0.599 0.420
StuM(G) 0.814 1.345 0.820 1.328 0.815 1.347 0.822 1.327 0.825 1.286
StuM(A) 0.703 0.694 0.707 0.689 0.703 0.695 0.670 0.695 – –
StuP(G) 0.865 1.742 0.869 1.739 0.863 1.738 0.870 1.737 0.898 1.795
StuP(A) 0.798 1.373 0.801 1.331 0.796 1.360 0.795 1.364 – –
NYP(G) 0.797 5.903 0.794 5.876 0.844 6.143 0.802 5.646 – –
NYP(R) 0.807 5.273 0.799 5.242 0.833 5.378 0.856 5.564 – –
ProV(G) 0.919 4.490 0.918 4.491 0.923 4.499 0.928 4.531 0.997 4.829
ProV(R) 0.907 2.739 0.918 4.497 0.918 2.748 0.931 2.863 1.000 3.082
Bank(A) 0.811 1.015 0.809 1.010 0.856 0.720 0.816 0.925 – –
Prop(G) 0.862 1.676 0.864 1.685 0.863 1.662 0.872 1.667 0.940 1.640
Prop(R) 0.844 1.439 0.844 1.431 0.836 1.412 0.846 1.450 0.895 1.216
Dru(R) 0.796 2.317 0.790 2.314 0.787 2.330 0.787 2.315 – –
Dru(G) 0.786 2.919 0.787 2.904 0.786 2.866 0.783 2.898 – –
Dut(G) 0.917 1.719 0.930 1.617 0.930 1.543 0.927 1.527 0.978 3.166
Law(G) 0.914 2.519 0.914 2.514 0.913 2.556 0.925 2.569 0.975 2.672
UF(G) 0.849 1.038 0.849 1.038 0.849 1.042 0.845 1.044 0.995 0.042

Avg. rank 3.48 3.17 3.30 2.65 2.94 2.71 2.72 2.89 2.57 3.57
𝑝 0.0502 0.263 0.113 – 0.428 0.8888 0.744 0.608 – 0.0502
Hommel 0.0125 0.0167 0.0167 – 0.025 0.05 0.05 0.025 – 0.0125
Table 7
Size of the decision trees created by each algorithm used in our experiments.

Variant C4.5 Lexicographic Constraint GRXFR FFTree (0.2)

𝐴𝑑𝑢(𝐺) 2138 2125 2908 1641 2
𝐴𝑑𝑢(𝑅) 2138 2125 935 2463 2
𝐴𝑑𝑢(𝐴) 2138 2125 2248 2259 2
𝐺𝑒𝑟(𝐺) 352.3 347.9 362.9 353.9 1
𝐺𝑒𝑟(𝐴) 352.3 348.9 358 342.3 1
𝑅𝑖𝑐(𝑅) 1 4 1 4 2
𝑊 𝑖𝑛(𝑇 ) 469.8 476.7 510 462.8 6.1
𝑆𝑡𝑢𝑀(𝐺) 31.2 31.7 31.4 32.2 7.2
𝑆𝑡𝑢𝑀(𝐴) 31.2 31.1 31 31.8 1
𝑆𝑡𝑢𝑃 (𝐺) 41 42.8 41.9 41.7 11.6
𝑆𝑡𝑢𝑃 (𝐴) 41 42.8 43 42.1 1.5
𝑁𝑌 𝑃 (𝐺) 63 470.3 54 691.8 44 336.9 31 708.3 1
𝑁𝑌 𝑃 (𝑅) 63 470.3 55 170.7 48 542.5 71149.4 1
𝑃𝑟𝑜𝑉 (𝐺) 879.9 873.4 937.8 3361 2.2
𝑃𝑟𝑜𝑉 (𝑅) 879.9 880.5 987.1 5878.6 2
𝐵𝑎𝑛𝑘(𝐴) 3579.5 3581.1 3328 4297.2 1.3
𝑃𝑟𝑜𝑝(𝐺) 554.9 555.8 519.3 524.9 2.4
𝑃𝑟𝑜𝑝(𝑅) 554.9 553.3 515.2 550.9 5.9
𝐷𝑟𝑢(𝑅) 626.5 642.8 644.7 639.2 1
𝐷𝑟𝑢(𝐺) 626.5 641.6 654.2 638.1 1
𝐷𝑢𝑡(𝐺) 383.7 3188.5 3213.9 4126.6 2
𝐿𝑎𝑤(𝐺) 331.6 330.4 348.7 351 8.2
𝑈𝐹 (𝐺) 296.9 297.6 300.4 309.4 2
Looking at the size of the trees in Table 7, particularly for FFTree,
e observe that setting a strict threshold to enhance fairness leads to
negative impact on tree construction due to the early stopping of

he decision tree growth. It is clear for most of the datasets that our
roposed fair tree-building approaches produced trees of similar size
o the standard C4.5 algorithm, without significantly increasing the
umber of nodes.

.2. Discussion

Our aim is not only to decrease discrimination but also to maintain
he same level of predictive accuracy as possible. As seen in the
esults presented, the Lexicographic approach provides higher accu-
acy and lower discrimination scores compared to C4.5, although the
7 
Lexicographic approach prioritizes the gain ratio, making it slightly
different from C4.5. This shows the advantage of combining fairness
metrics with gain ratio during the selection of attributes. Based on the
numerical results presented in Tables 3, 4, 5 and 6, the Constraint-
based variation achieved the highest predictive accuracy and the lowest
discrimination scores for most of the datasets. GRXFR is one of the
proposed discrimination-aware splitting approaches generated based
on the idea of fair information gain [12,15,19,20]. It shows better
predictive accuracy and lower discrimination scores when compared
to C4.5 and FFTree algorithms.

Overall, both models outperformed the standard C4.5 and FFTree
algorithms for most of the datasets—the latter being a fairness-aware
decision tree proposed in the literature. Considering the accuracy-
fairness trade-off, existing works [13,15,26,44] reported a drop in
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accuracy to achieve an improvement in fairness. In contrast, for most
of the datasets—in particular the Adult, Propublica, and Bank datasets
used by other works in the literature—our Fair-C4.5 models achieved
a good balance between accuracy and fairness. This is particularly
evident in the results achieved by the Constraint approach.

Considering the computational time complexity, both the proposed
Fair-C4.5 and FFTree have a higher time complexity than the C4.5
algorithm. In general, decision tree algorithms following a divide-and-
conquer approach have the following time complexity. To split the
input data and select a node of the tree, the algorithm needs to deter-
mine the class distribution of 𝑛 data inputs; the cost of this step is 𝑂(𝑛).
Since the algorithm has 𝑚 attributes to choose from, and for numeric
attributes the values must be sorted, the cost of this step is 𝑂(𝑚𝑛 log2 𝑛).
Finally, the cost complexity to evaluate each partition of the data, given
the recursive nature of the divide-and-conquer process, is 𝑂(𝑛 log2 𝑛).

herefore, the total time complexity for C4.5 algorithm can be defined
s the combination of each step, 𝑂(𝑛) +𝑂(𝑚𝑛 log2 𝑛) +𝑂(𝑛 log2 𝑛), where

𝑂(𝑚𝑛 log2 𝑛) is the dominant factor for the time complexity. Since
Fair-C4.5 and FFTree incorporate the use of fairness metrics into the
evaluation of each split point, the second step the process described
above is expanded to include 𝑡 metrics, resulting in the cost being
𝑂(𝑡𝑚𝑛 log2 𝑛)—𝑡 in most cases is smaller than 𝑚 and 𝑛, and therefore
𝑛 is still the variable with the highest influence in the time complexity
of the algorithms.

As a result of the increase in time complexity, Fair-C4.5 training
times are approximately four times higher than C4.5 and two times
higher than FFTree—this is due to the factor 𝑡, which represents the
multiple fairness metrics. It is important to note that training times
have a relatively small importance in applications where fairness of the
model is a requirement. Additionally, many data mining applications
involve off-line execution and the time spent collection and preparing
the data is usually much greater than the time required to train a
model. There are also opportunities to improve the computation time
of Fair-C4.5 by parallelizing the evaluation of each fairness metric for
application where training time becomes a significant issue.

5. Conclusion and future work

In this paper, we proposed a novel fairness-aware decision tree
algorithm aimed at creating discrimination-aware decision tree models
to improve the overall fairness of their predictions. While various
studies have employed the CART binary splitting approach in develop-
ing discrimination-aware decision trees, our algorithm uses non-binary
splitting inspired by the C4.5 decision tree algorithm. Moreover, our
approach utilizes a variety of fairness metrics, categorized into group
and individual fairness measures, to improve both types of fairness,
unlike previous works in the literature.

To address the trade-off between accuracy and fairness, we pro-
posed attribute selection approaches that balance information gain and
fairness. Our empirical evaluations across various datasets showed that
our proposed algorithm improved the overall fairness of the models
while maintaining the same level of accuracy. This is particularly
evident with our Constraint-based approach, which demonstrates sta-
tistically significant improvements in accuracy compared to FFTree, a
fairness-aware decision tree algorithm from the literature.

There are several potential avenues for future research. Currently,
the fairness metrics only influence the selection of attributes during
decision tree construction. A natural future research direction would
be to extend their influence to the selection of continuous attribute
thresholds, favouring threshold values that improve fairness, and to the
pruning of the decision tree. Additionally, it would be interesting to
investigate different ways to combine fairness metrics and information
gain, beyond the approaches proposed. Exploring how to combine
multiple fairness metrics in decision tree-based ensemble models is a
research direction worth further exploration.
8 
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