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Internet-of-Things (IoT) refers to low-memory connected devices used in

various new technologies, including drones, autonomous machines, and

robotics. The article aims to understand better cyber risks in low-memory

devices and the challenges in IoT risk management. The article includes a critical

reflection on current risk methods and their level of appropriateness for IoT. We

present a dependency model tailored in context toward current challenges in

data strategies and make recommendations for the cybersecurity community.

The model can be used for cyber risk estimation and assessment and generic

risk impact assessment. The model is developed for cyber risk insurance for new

technologies (e.g., drones, robots). Still, practitioners can apply it to estimate

and assess cyber risks in organizations and enterprises. Furthermore, this paper

critically discusses why risk assessment and management are crucial in this

domain and what open questions on IoT risk assessment and risk management

remain areas for further research. The paper then presents a more holistic

understanding of cyber risks in the IoT. We explain how the industry can use

new risk assessment, and management approaches to deal with the challenges

posed by emerging IoT cyber risks. We explain how these approaches influence

policy on cyber risk and data strategy. We also present a new approach for cyber

risk assessment that incorporates IoT risks through dependency modeling. The

paper describes why this approach is well suited to estimate IoT risks.

KEYWORDS

artificial intelligence, Internet-of-Things (IoT), cyber risk management, cyber risk

assessment, cyber risk estimation, cyber risk insurance, risk impact assessment, AI

security

1 Introduction—Defining the Internet of Things
(IoT)

The fast Internet of Things (IoT) adoption has transformed modern industries and

daily life, creating interconnected environments that deliver unprecedented efficiency

and convenience. However, this extensive integration of IoT devices has also introduced

significant cybersecurity risks. The Internet of Things (IoT) has attracted the attention

of cybersecurity professionals after cyber-attackers started using IoT devices as botnets

(Palekar and Radhika, 2022). IoT devices are often vulnerable to various cyber threats,

including distributed denial-of-service (DDoS) attacks, botnet exploitation, and data

breaches, all of which can compromise critical systems’ integrity, confidentiality, and

availability. Understanding and mitigating the risks associated with IoT deployments is

crucial in this evolving landscape, especially given the interdependencies between IoT

components and systems.
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1.1 Motivation

The primary motivation for this research arises from the

pressing need to develop a comprehensive framework for assessing

cyber risks in IoT environments. While several risk assessment

models have been developed, only some fully capture the unique

dependencies and interactions between IoT devices, networks,

and services. These dependencies introduce cascading risks, where

vulnerabilities in one component can propagate through the entire

system, amplifying the impact of an attack.

Additionally, existing risk models often need more real-time

adaptability and need to consider the heterogeneity of IoT systems,

where devices from different manufacturers and platforms interact

in dynamic and unpredictable ways. Given the increasing reliance

on IoT in critical sectors such as healthcare, industrial automation,

and smart cities, a more robust, adaptable, and scalable risk

assessment model is urgently needed.

The research also addresses the gap in effectively utilizing

AI/ML techniques for real-time risk assessment in IoT

environments while ensuring these models are explainable

and transparent to decision-makers. This is particularly important

for building trust in AI-driven cybersecurity solutions and ensuring

their alignment with organizational goals.

1.2 Contributions

This paper makes the following key contributions:

1. A dependency-based cyber risk model for IoT systems: we

propose a novel dependency-based risk assessment framework

that captures the interdependencies between IoT components

and their cascading effects on overall system security. The

model systematically quantifies and mitigates risks based on

the interaction between devices, networks, and services.

2. Incorporation of AI/ML for dynamic risk estimation: the

proposed model integrates AI/ML techniques to enable real-

time risk assessment. The machine learning models are

trained on diverse data sources, including network traffic,

vulnerability databases, and incident logs, to predict and

prioritize risks in dynamic IoT environments. Explainable

AI (XAI) ensures that these predictions are transparent and

interpretable to cybersecurity professionals.

3. Generalization of the risk framework across IoT domains:

we demonstrate the applicability of the proposed model across

various IoT domains, including smart cities, healthcare, and

industrial IoT. The framework is adaptable to different types

of IoT systems, regardless of device heterogeneity or scale,

making it a versatile tool for risk assessment in diverse settings.

4. Integration of risk transference strategies: this research

explores risk transference mechanisms, such as cyber

insurance and third-party liability agreements, to mitigate

IoT cyber risks’ financial and operational impact. We discuss

how these strategies can be effectively implemented within the

proposed framework.

5. Empirical validation using the BoT-IoT dataset: the

proposed model is validated using the BoT-IoT dataset, a

comprehensive and realistic representation of IoT network

traffic and attack scenarios.We provide an in-depth analysis of

the model’s performance in detecting andmitigating risks, and

we compare it with alternative risk assessment frameworks to

highlight its effectiveness.

IoT-based cyber-attacks often take the form of distributed

denial of service (DDoS) attacks, where the attacker uses the

hacked IoT devices as clones to infect or stop operations in

other parts of the network. Various cybersecurity solutions have

been proposed, including “deep learning based malicious behavior

detection in cloud computing” (Bhingarkar et al., 2022), “sensing

and detection algorithms” (Zhang, 2021) and the “intelligent

warehouse monitoring based on distributed system and edge

computing” (Lin et al., 2021). IoT is defined as networked objects

communicating data between networks and humans (The PETRAS

National Centre of Excellence – PETRAS, 2022). The development

of IoT has provided opportunities for social and economic

interaction in many areas, such as supply chain management,

social media, medicine, and energy consumption (for example,

smart health devices). IoT employs sensors and actuators and

applies to various protocols, domains, and applications, e.g. cyber-

physical systems, technologies related to smart grids, smart homes,

intelligent transportation and smart cities. Some technologies

used daily are currently not connected to the Internet, such as

gas meters, house lights, healthcare devices, water distribution

systems, cars, and other road transport vehicles. However,

such devices are increasingly becoming digitally connected and

can communicate through mobile (or wireless) networks, e.g.,

connected spaces, smart meters and autonomous cars. Ultimately,

IoT may revolutionize the existing business ecosystem because

connected objects can reduce costs, optimize processes, and

enable new business models by automating data flow, centralized

processing of data, and intelligent use of the data.

With the increased relevance of IoT for business, cyber

security importance is growing (Pigman, 2019) and there are

increasing security and privacy challenges (Maras and Wandt,

2019). New technologies also come with new risks (Constance,

2017) that traditional risk assessment/management methods have

not anticipated or predicted (Crawford and Sherman, 2018). It has

been argued that quantitative risk assessments do not necessarily

offer a unique rationality that pinpoints a single right course of

action but rather probabilities that require moral assessment for

action (Adams, 1995). This kind of assessment can vary across

domains and populations. For example, in financial markets, the

complexity aspect of risk is of major importance. In contrast, in

consumer markets, people are increasingly trained and habituated

to act in the present regarding future risks (Caplan, 2000).

Different cyber risk valuation models have emerged recently,

including a model based on “computationally efficient solution..

operating under the probable impact of typed cyber-physical attacks”

(Kovtun et al., 2022), or applying deep learning to detect “Trojan

malware in bio-cyber attacks” (Islam et al., 2022). However, in

evaluating the impact of risk, conventionally, it is considered,

essentially, that Risk = Likelihood × Consequences. However, we

do not have probabilistic data on the likelihood or consequences,

and without such data, the industry’s understanding of IoT cyber

risk is still in its infancy (Aggarwal and Reddie, 2018). Empirical
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results have found that the aggregate frequency of data breaches

is stable over time (Edwards et al., 2016; Wheatley et al., 2016).

Still, future attacks are expected to increase (Leverett and Kaplan,

2017) with IoT systems and other digital infrastructure. Digital

expansion also changes the cyber risk profile, making it difficult

to quantify with historical measures. In addition, there are no

standards, regulations, or policies on risk assessment that measure

the impact, cost, and probabilities of cyber-attacks in specific IoT

systems (Srinivas et al., 2019). For example, if we consider cyber

risk in general, the estimates of impact range from 300 bn and $1 tn

(Biener et al., 2014), $400 bn to over $575 bn (DiMase et al., 2015),

or $400 bn to over $2 tn (Shackelford, 2016). Although these figures

could be correct in the parameters of the assessments, the difference

presents a rationale for some literature to argue that the real impact

of cyber risk is unknown (Shackelford, 2016). This motivates our

attempt to define a process for standardizing a unified cyber risk

assessment approach.

In an IoT context, the most challenging aspects are risk’s

dynamic and complex aspects, including assessment of safety

and security, co-existing of different producers and vintages,

common cause failures and cascading risks. Although, like cyber

risk in general, IoT risk can be decomposed into different risk

verticals. For example, because of the low cost of IoT devices, it is

generally assumed that IoT devices cannot be adequately secured

and, therefore, logical placement of security capability is in the

communications network (Anthi et al., 2018). To emphasize these

differences, this paper articulates some of the possible security

risks in the communications network, particularly the risk from

distributed ownership and control of IoT systems. To develop and

test the new approach for cyber risk estimation and assessment, in

this study we used the “BoT-IoT” dataset1, designed by the Cyber

Range Lab of UNSW Canberra Cyber.

1.3 Justification for the use of the BoT-IoT
dataset

The BoT-IoT dataset was chosen for this study due to its

comprehensive and realistic representation of IoT network traffic,

which includes a wide range of attack scenarios. Developed by

the Cyber Range Lab of UNSW Canberra, this dataset is designed

explicitly for IoT environments. It includes various simulated

attacks such as distributed denial-of-service (DDoS), keylogging,

data theft, and information gathering. The dataset’s diversity in

attack types and network traffic allows for a holistic analysis of IoT-

related cyber risks, particularly in botnet-driven attacks, which are

among the most prevalent in IoT systems.

Moreover, the BoT-IoT dataset offers the following advantages:

• Realistic traffic simulation: the dataset captures real-

world IoT traffic patterns, making it highly suitable for

testing intrusion detection and risk assessment methods in

heterogeneous IoT environments.

1 https://ieee-dataport.org/documents/bot-iot-dataset

• Diverse attack vectors: it includes multiple attacks, such as

DDoS, brute force, and OS and service scanning, relevant to

understanding a wide array of IoT cyber risks.

• Detailed labeling: the dataset is labeled, allowing for

supervised machine learning approaches in identifying

and mitigating threats, which is crucial for assessing the

effectiveness of AI-based risk assessment models.

2 Alternative datasets

Several alternative datasets could have been considered for this

study, though they have certain limitations compared to BoT-IoT.

These include:

1. Kitsune dataset: this dataset focuses on the network traffic of

IoT devices and has been widely used in anomaly detection.

However, it is more limited in terms of attack variety and lacks

certain botnet-specific data that is crucial for understanding

large-scale distributed IoT attacks.

2. TON_IoT dataset: another comprehensive dataset developed

by UNSW Canberra, the TON_IoT dataset contains IoT

telemetry data, network traffic, and operating system logs.

While useful, it is geared more toward industrial IoT (IIoT)

environments and does not focus as heavily on botnet

behavior, which is the primary threat discussed in this paper.

3. IoT-23 dataset: this dataset provides labeled IoT traffic

data with malware analysis, but it is more focused on

malware rather than the broad spectrum of cyber risks in IoT

environments, making it less suitable for this study’s goals.

While other datasets exist, the BoT-IoT dataset was chosen for

its relevance to the focus of this study (evaluating the risks of IoT-

based botnet attacks) and for its detailed attack scenarios that allow

for robust risk estimation and assessment.

2.1 Organization of the paper

The rest of this paper is organized as follows:

• Section 2: Background and related work: this section reviews

the current state of IoT cybersecurity, including existing risk

assessment models and their limitations. We also discuss the

use of AI/ML in cybersecurity and highlight the gap that this

research addresses.

• Section 3: Proposed dependency-based risk assessment

model: in this section, we detail the proposed model,

explaining the methodology behind dependency analysis,

the incorporation of AI/ML, and the use of explainable AI

techniques. We also provide a formal definition of the risk

estimation process.

• Section 4: Data sources and AI/ML implementation:

this section describes the data sources used for training

the machine learning models, including network traffic,

device telemetry, vulnerability databases, and external threat

intelligence. We explain the model’s architecture and the

machine-learning techniques employed.
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• Section 5: Empirical evaluation and results: here, we present

the results of the empirical validation using the BoT-IoT

dataset. We compare the performance of the proposed model

against existing frameworks and discuss its effectiveness in

detecting and mitigating IoT-related cyber risks.

• Section 6: Discussion and generalization: this section

discusses the generalisability of the proposed model

across various IoT domains. We provide case studies in

healthcare, smart cities, and industrial IoT to demonstrate its

broad applicability.

• Section 7: Conclusion and future work: we conclude

the paper by summarizing the key findings and outlining

potential areas for future research, particularly in refining the

AI/ML techniques and further validating the model in live

IoT environments.

3 Artificial intelligence and the
Internet of Things (IoT)

The merging of Artificial Intelligence (AI) with Internet of

Things (IoT) technology brings about a new era in cyber risk.

This is marked by a complex interweaving of sophisticated threats

that require an equally advanced approach to manage and mitigate

them. This chapter delves into specific, technologically advanced

examples that highlight the unique cyber risks brought about by AI

in IoT environments, drawing from the foundational concepts in

“Cyber Risk in IoT Systems.”

One of the challenges posed by the use of AI in IoT is

autonomous decision-making, which can amplify cyber risk. For

example, AI-driven IoT devices in smart cities could autonomously

manage traffic flow based on real-time data. However, a

compromised AI algorithm could create chaotic traffic patterns,

causing widespread disruption.

Data integrity is vital in AI-IoT systems, and data manipulation

poses a risk. For instance, in healthcare IoT devices, AI

algorithms process patient data for predictive diagnostics. The AI’s

predictive outcomes could be dangerously inaccurate if these data

streams are manipulated—say through a man-in-the-middle attack

intercepting and altering data from IoT health monitors. Similarly,

AI model poisoning, where the AI’s learning inputs are subtly

tainted, could lead to erroneous learning, echoing the data integrity

and manipulation concerns highlighted in the article.

Integrating AI into IoT brings unique AI-specific risks, such

as adversarial machine learning. For example, in a network of

interconnected smart home devices, an adversary could manipulate

input data to an AI-powered security camera, causing it to

misidentify or overlook intrusions. These AI-specific threats

necessitate a novel approach to cybersecurity, diverging from

traditional risk management strategies.

Addressing these enhanced risks requires a multifaceted and

advanced approach. There is a need for risk assessment frameworks

that specifically account for AI components in IoT ecosystems.

This would involve understanding not only physical and data flow

dependencies but also the AI algorithmic dependencies. Leveraging

AI’s capabilities for security in IoT networks presents a proactive

defense mechanism. However, the implementation of such AI-

driven security measures must be carefully managed to ensure they

do not introduce new vulnerabilities. The integration of AI into

IoT amplifies the need for comprehensive regulatory and ethical

frameworks, addressing not only data privacy and security concerns

but also the ethical implications of AI decisions, particularly in

areas where these decisions impact human safety.

Given the complexity of AI in IoT, collaboration across

disciplines is essential. Cybersecurity experts, AI researchers,

IoT developers, and policymakers must work together to create

advanced and resilient cybersecurity solutions that address the

unique challenges posed by the AI-IoT convergence. In conclusion,

the combination of AI and IoT presents a complex array of

cyber risks that require advanced, specific, and comprehensive

management strategies. Future research and practical approaches

should focus on developing sophisticated AI-resilient security

frameworks, enhancing regulatory standards, and promoting

interdisciplinary collaborations, thus ensuring the secure

advancement of AI within IoT systems.

4 Cyber risk from distributed
ownership and control of IoT systems

The distributed ownership and control of IoT systems is

considered the one factor contributing to the number of zero-day

exploits exacerbated by IoT (Meakins, 2019). Although there are

many different cybersecurity approaches, they seem insufficient or

not targeted at the right areas. This leads to a lack of security

that creates unnecessary difficulty for IoT-connected producers

and customers. The growth of the IoT market could increase

significantly if policymakers have the methodology to assess,

predict, analyze, and address the risks of IoT-related cyber-attacks

in the communications network.

Without the appropriate risk assessment methodology, cyber

risk could have costly consequences. Connecting cyber risk with

IoT through impact models can provide feedback sensors and

real-time data mechanisms to assist and enable industries and

policymakers to understand and visualize the problem and address

the risk created by IoT-related cyber-attacks.

4.1 Defining cyber risk

IoT risk and the risk of cyber-attacks can be explained by

established methods for calculating risk. Risk = Likelihood ×

Consequences, and cyber-risk can be defined as a function of:

R = {si, pi, xi}, i = 1, 2, ..., N,

Where R—risk; s—the description of a scenario (undesirable

event); p—the probability of a scenario; x—the measure of

consequences or damage caused by a scenario; N—the number of

possible scenarios that may cause damage to a system.

The model above for calculating risk is classical (DoD, 2017),

but the question remains how IoT risk and cyber-attack risk can

be estimated. Since we do not have the precise measurements

and concrete number of IoT cyber risks, an answer is difficult to

present and justify with a desirable degree of certainty that the
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estimation is correct. Therefore, we discuss how IoT risk and the

risk of cyber-attacks can be estimated assuming possession of the

required data.

Businesses face strategic, compliance, operational, financial,

and reputational risks regularly, all of which could affect their

profitability or ability to function. Many businesses are looking

to adopt new forms of technology (such as IoT, Blockchain and

Artificial Intelligence) to increase the efficiency and effectiveness

of their services. This exposes them to the risks that accompany

these technologies. While these technologies have the potential

to improve their productivity, there is also the potential for the

business to become increasingly susceptible to a series of security

risks—this is the aspect of focus in this paper.

In the following table, we explore the main cyber risks that

many businesses face, and we define definitions for different types

of cyber risks. We use the term “cyber risk” in line with the

Institute for Risk Management definition of: “Cyber risk means any

risk of financial loss, disruption or damage to the reputation of an

organization from some sort of failure of its information technology

systems.” (Institute of Risk Management, 2019). In Table 1, we

provide insights on how companies can manage the IoT cyber risk,

and we include real world examples in each risk category.

Table 1 summarizes and explores the ethical, privacy, security,

and technical aspects of cyber risk. To relate the findings, an IoT-

based example of this is the probability of a phishing attack on a

connected corporate device occurring, like a company laptop or a

smart phone, which then leads to the infection of that device. This

infection could propagate to other IoT sensors in the company and

consequently cause the disruption of their manufacturing plant’s

production line. While there are many application domains for

IoT, for organizations to consider cyber security risk solely in the

context of their domain would give misinformed results, since IoT

is an ecosystem with platforms and services shared by different

application domains.

4.2 IoT risk assessment

Understanding what is meant by risk is only the first step when

we are considering the potential risks in IoT. The next step is to be

able to assess the risk, which involves the tasks of: (1) identifying (or

defining) the risk—the action of developing a clear understanding

of what organizational IoT assets are targeted by which threats and

what harm could happen if those attacks are successful (Tanczer

et al., 2018).

(2) Estimating the risk—this task aims to measure IoT risk

based on the likelihood of the threat occurring and the impact on

the organization’s infrastructure if it does occur. These measures

can be qualitative (e.g., ratings using the levels, high, medium,

and low) or quantitative (e.g., based on mathematical estimations

and calculations).

(3) Prioritizing the risk; once we have a list of the risks and

each one has been estimated, the next task is for a company to

prioritize the risks. This essentially provides a ranking of the risks

based on their estimated levels. We interpreted that identifying the

risk, estimating the risk, and prioritizing the risk are three tasks of

IoT risk assessment. Figure 1, below, sets this out, and demonstrates

that this is a continuous process.

4.3 IoT risk management

The risk assessment process described above is part of

risk management. While risk management techniques are well

developed and used in various IT areas, there remains a significant

challenge in managing IoT risk. Here, we include our findings in

the form of four basic ways to resolve IoT risk:

IoT risk mitigation involves either reducing the likelihood of

the risk happening or reducing the impact of the risk. In IoT risk

management, this might include implementing IoT risk controls.

IoT risk transfer—this involves outsourcing the risk to a third

party. In this instance, via cyber insurance for example;

IoT risk avoidance—this involves removing the risk. An

example would be to remove IoT asset where the risk has

originated; and IoT risk acceptance—this involves accepting the

risk as it stands, due to either the risk falling within the

organizational risk appetite or the aggregated risk being sufficiently

within the accepted risk levels.

The type of treatment selected for each risk is based on its

estimated level, the costs associated with the treatment, and the

organization’s overall tolerance for risk. In IoT, these factors are

constantly changing, and this aspect represents one of the unique

challenges when managing risks in dynamic IoT environments.

5 How IoT transforms the nature of
risk

IoT represents interconnected technologies continuously

communicating and sharing data. This technology creates serious

safety risks and ethical concerns. For example, IoT incorporated

into autonomous vehicles introduces safety risk, however, the

device owner and the data owner are not necessarily the same

(Anthonysamy et al., 2017), because there is no legal basis to

actually own data. The data owner is the data curator or controller.

Here we are making the point about the legal impossibility to own

data. Because there is no owner of data, but rather an entity that

has the legal right to control and steward the data. In following

sections, we discuss how the existing risk assessment approaches

can be adapted to assess the nature of IoT risk.

These designs need data to support, and the data is very

sensitive and private. There has been a number of suggestions on

how to resolve this concern. Back in 2014, the original “Cyber

Supply Chain Management and Transparency Act of 2014” (Royce,

2014) was proposed and suggested that that US government

agencies obtain a software bill of materials’ (SBOMs) for all

new software. This led to the “Internet of Things Cybersecurity

Improvement Act of 2017” (Howard, 2017), and more recently,

“The US Executive Order on Improving the Nation’s Cybersecurity

of May 12, 2021, (Biden, 2021) ordered The National Institute

of Standards and Technology (NIST) to issue guidance on

“providing a purchaser a Software Bill of Materials (SBOM) for

each product.” These efforts in the US are related to resolving the

specific issue of sharing sensitive and private company data on

cyber vulnerabilities, exploits, threats, and this has been a very

sensitive topic for a long time. The most recent effort that we

are making to resolve these issues is the new the Vulnerability

Exploitability eXchange (VEX) (NTIA, 2021), which has already

been adopted as a profile in the Common Security Advisory
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TABLE 1 Defining the types of cyber risk from IoT systems.

Types of
cyber risk

Definition Key words Example

Ethical An action that falls short of what is considered morally

right or outside of a professional standard. So, an

ethical risk for an institution is the unintended harm

caused by an unethical action.

Integrity, honesty, fraud,

moral, standards,

compliance, misconduct

Volkswagen develop and install software to cheat diesel

emissions tests. This compromises organization and

industry standards and results in massive reputational and

financial losses (Fracarolli Nunes and Lee Park, 2016).

Privacy Most information about people is digitized. Keeping

this private and confidential is important. So, a privacy

risk is when there is a temporary or permanent loss of

control over data that may causes some form of harm to

the individual and the business, organization or

government that holds the data.

Trust, transparency,

data, confidentiality,

cyberattack, hacking,

data breach, phishing,

pharming, ransomware,

spam

In May 2014 145 million eBay customers have their names,

addresses, date of birth and passwords accessed (Ranganthan

et al., 2018). Yahoo was the victim of a massive data breach

in 2013–2014. In 2017 they finally admitted that all 3 billion

user accounts had been compromised (Gupta, 2018).

Security This is to do with vulnerabilities and gaps in security

programmes and systems. These vulnerabilities can be

exploited in order to gain access to assets causing

damage, harm or loss. Types of attack include physical,

network, software and encryption attacks.

Vulnerability, weakness,

protection, attacks,

breaches, DDoS

(distributed denial of

service), botnets,

malware, virus

In October 2016 the Mirai Botnet launched a DDoS attack

on DYN which led to parts of the internet going down and

affected Twitter, Netflix, CNN, Reddit (along with many

others) (Dubois, 2018; Payton, 2018). Building management

systems were attacked in a Finnish town of Lappeenranta,

causing the heating in two buildings to fail (Scott and

Winter, 2016).

Technical The failure of hardware or software due to poor design,

construction, or evaluation.

Compliance, regulation,

testing, evaluation

It was recently discovered that computer chips produced in

the last 20 years all contain fundamental security flaws

(Conte et al., 2018), some related to the chip variation, e.g.,

Specter and Meltdown.

Interoperability Refers to the challenges in ensuring that IoT devices,

software platforms, or services can communicate

effectively with each other. Interoperability risks can

lead to system miscommunications or data integration

failures, especially in environments with heterogeneous

devices and platforms.

Compatibility,

integration,

communication

breakdown, data silos

A healthcare system relying on IoT medical devices that

operate on different protocols fails to integrate data from

wearable sensors and in-hospital monitors, leading to

incomplete or inaccurate patient health records.

Safety Risks that directly affect the physical well-being of

individuals or groups due to IoT device misuse,

malfunction, or cyber-attacks. These risks include

bodily harm or fatalities resulting from compromised

safety-critical systems.

Physical harm, injury,

malfunction,

cyber-physical systems,

personal safety

A compromised autonomous vehicle causes accidents due to

failure in its IoT control systems, leading to injuries and

potential fatalities. Similarly, hacked smart home devices

such as IoT-connected thermostats cause fires or unsafe

temperature regulation.

Framework (CSAF) (OASIS, 2022). This article however, is

more closely related to the updated version of the Common

Vulnerability Scoring System Calculator (CVSS) (NIST, 2022),

which is the Stakeholder-Specific Vulnerability Categorization

(CISA-SSVC) (CISA, 2022) and it relates to the SSVC

decision threes.

5.1 Security risk assessment for IoT systems

One of the main problems with IoT is that this technology

is developing at a fast rate and in multiple directions so that

governments and national and international institutions face

difficulties to standardize and enforce regulations in this field.

These difficulties are related, for example, with the continuing

changing environment of IoT (Brass et al., 2018) or with the

relatively much slower legislative and standardization processes

(e.g., Schindler et al., 2013; Brass et al., 2019). We found that there

are currently no risk assessment standards to govern companies

in assessing the new types of risk before implementing IoT

technologies and solutions. In the present climate, given the

lack of unified global standards and regulations, businesses are

pursuing economic profits from IoT solutions, but as it pertains

to understanding the risk to their operations, businesses are often

lacking in their approach to security.

FIGURE 1

The IoT risk assessment process.

5.2 Analysis of cyber risk assessment
approaches

As part of our research, we conducted an analysis of the existing

cyber risk assessment approaches to enable us to provide basic

guidance on how to develop a unified approach to risk assessment.

Most cyber risk assessment approaches represent some similarities

and after reviewing one we tend to get the general feeling that

they all seem familiar. Hence, for differentiating these frameworks,

for the reader and for our own research, in the Table 2 we tried

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2024.1402745
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Radanliev et al. 10.3389/fdata.2024.1402745

to define the main differences between the cyber risk assessment

frameworks that we reviewed in this article. In Table 2, we also

include references to all of the frameworks as a source for further

information on these frameworks. The selection process involved

firstly conducting a literature review on the topic of “most used”

and “most prominent” cyber risk assessment approaches.

5.2.1 Secondary data: “most used” and “most
prominent”

The selection of the “most used” and “most prominent”

cyber risk assessment frameworks for this study was based on a

combination of several key criteria that ensured relevance, industry

adoption, and scholarly significance. These criteria were established

following a comprehensive literature review and consultation with

experts in cybersecurity, including those from Cisco Systems. The

following criteria guided our framework selection:

1. Industry adoption and standardization: one of the primary

indicators of prominence was the degree of adoption within

industry sectors and standardization by international bodies.

Frameworks such as NIST Cybersecurity Framework and

ISO/IEC 27001 were included because they are widely

recognized and applied across various industries and sectors

as global standards for cybersecurity risk management. Their

extensive use across governmental, industrial, and private

sectors made them foundational to this study.

2. Scholarly citations and academic relevance: frameworks

that have been heavily cited in academic research and

peer-reviewed journals were also prioritized. For example,

frameworks like OCTAVE and FAIR have been the focus of

numerous scholarly articles, making them prominent in the

research community. The high citation count, particularly

in the context of IoT cybersecurity and risk assessment,

reinforced their relevance to this study’s objectives.

3. Expert recommendations: insights from cybersecurity

professionals and experts consulted during the research

process, particularly those from Cisco Systems, played a

crucial role in identifying frameworks that are “most used”

in practice. These experts, with hands-on experience in cyber

risk management, highlighted which frameworks they relied

on in real-world scenarios, giving us a practical understanding

of which frameworks are most relevant and widely applied

across various sectors.

4. Diversity of application: frameworks that demonstrated

applicability across a wide range of environments, including

traditional IT infrastructures, IoT systems, and cloud

computing, were considered more prominent. Frameworks

such as FAIR (Factor Analysis of Information Risk)

and CVSS (Common Vulnerability Scoring System)

were selected because they are adaptable to different risk

environments, including both qualitative and quantitative

risk assessment contexts.

5. Ease of use and implementation: in practice, the complexity

of a framework can influence its adoption. Frameworks that

are well-documented, easy to use, and backed by automated

tools or platforms were considered more prominent. For

instance, CVSS, which provides a widely accessible scoring

system for vulnerabilities, and RiskLens, which integrates

FAIR for quantitative risk analysis, were selected for their ease

of implementation in enterprise and IoT environments.

6. Comprehensive risk coverage: finally, frameworks that

cover a broad spectrum of risk factors, including technical,

operational, strategic, and reputational risks, were included.

The NIST Cybersecurity Framework, for example, is notable

for its comprehensive approach, addressing everything from

threat identification to incident response, which aligns with

the holistic perspective of this study on IoT cyber risks.

The selection of frameworks was based on a multifaceted

approach combining:

• Industry recognition and standardization,

• Scholarly citation and academic significance,

• Expert recommendations from cybersecurity practitioners,

• Diversity and applicability across environments,

• Ease of implementation,

• Comprehensive risk coverage.

This selection process ensured that the frameworks chosen for

analysis and inclusion in the study were not only theoretically

sound but also practically relevant and widely used in the

real world.

5.2.2 Primary data: expert consultations
Secondly, we consulted a number of experts in the field

from Cisco Systems that are responsible for this function. This

consultation was conducted in the period between year 2018

and 2023, initiated with a scoping workshop in June 2018

and concluded with a closing workshop in January 2023. The

consultation was conducted as case study action research, and

included personal interviews with 43 cybersecurity experts, 13

workshops, two demonstration projects for gathering feedback, and

6 months long action research at Cisco locations.

The resulting list of approaches is not complete, but its

representative of the “most used” and “most prominent” cyber

risk assessment frameworks, models, and methodologies—as

determined in literature and by the experts from Cisco Systems.

The Cisco Systems experts consulted during this study

represented a broad range of cybersecurity specialties, including,

but not limited to, cyber risk assessment frameworks. Their

involvement was crucial in providing a comprehensive and multi-

faceted view of IoT cyber risks and the development of robust risk

assessment methodologies.

Specifically, a subset of the consulted experts specialized

directly in cyber risk assessment, focusing on frameworks such

as CVSS, CoSAI, OCTAVE, FAIR, and NIST Cybersecurity

Framework, which were critical for refining the dependency

model presented in this study. These experts were responsible

for implementing and managing cyber risk strategies within

Cisco’s cybersecurity operations, making their insights particularly

valuable in aligning the proposed model with industry practices

and standards.
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TABLE 2 Analysis of cyber risk assessment approaches.

Name References to
author(s) or
Institution

What is it Type

OCTAVE (Caralli et al., 2007) This is a standardized questionnaire that can be applied to investigate and categorize recovery

impact areas. However, the OCTAVE method is complex and takes time to understand

Qualitative

TARA (Wynn et al., 2011) This is a predictive framework that enables targeting of the most crucial exposures, as opposed

to promoting the defense of all possible vulnerabilities

Qualitative

CVSS (Common

Vulnerability Scoring

System)

(CVSS, 2019) A scoring system “that provides a way to capture the principal characteristics of a vulnerability

and produce a numerical score reflecting its severity”. It is relatively easy to use and translate

results although, the calculator is based on experts’ opinion and do not represent an ultimate

precision, the calculator represents a guiding point.

Qualitative

Exostar System (Shaw et al., 2017) This system enables enterprises to assess, measure, and mitigate risk across multi-tier partner

and supplier networks and determines the gaps between cybersecurity posture and regulatory

compliance.

Qualitative

Capability Maturity

Model Integration

(CMMI)

(CMMI, 2017) This combines a set of best practices in the disciplines of systems analysis and design, software

engineering and management. CMMI can simultaneously address multiple as opposed to stand

alone improvements. This enables improvement in the entire enterprise risk and the full product

development life cycle risk.

Qualitative

NIST Cybersecurity

Framework

(NIST, 2014) This is a framework based on an extensive use of acronyms, which can be confusing and require

a detailed understanding of the standards referred to in the acronyms. At present, the NIST

framework is documented, not an automated tool.

Qualitative

ISO/IEC 27001 (ISO, 2017) This risk management framework promotes standardization of cyber risk and reflects

international experience and knowledge. It is based on voluntary shared knowledge and is

consensus based.

Qualitative

RiskLens (FAIR, 2020) This is a quantitative assessment method based on FAIR (Factor Analysis of Information Risk)

and “provides a model for understanding,

analyzing and quantifying information risk in financial terms”.

Quantitative

CyVaR (Cyber Value at

Risk)

(Erola et al., 2022) This presents a method to quantitatively assess risk with Monte Carlo simulations. CyVaR needs

to be adapted and modified to include units of measurement for IoT cyber risk vectors.

Quantitative

FAIR (FAIR, 2017) This model promotes a quantitative, risk based, acceptable level of loss exposure. Quantitative

Additionally, the consultation involved professionals with

expertise in IoT security, network infrastructure vulnerabilities,

and incident response frameworks. Their contributions ensured

that the proposed model incorporated a holistic understanding

of the various layers of IoT ecosystems, including the unique

challenges posed by real-time data flows, network management,

and preventing cascading failures in IoT systems.

By engaging with a diverse group of experts, the study benefited

from a broad spectrum of knowledge across different cybersecurity

domains, ensuring that the proposed model focused on risk

assessment and addressed practical implementation concerns, such

as real-time threat detection, system recovery, and mitigation

strategies. This interdisciplinary consultation strengthened the

model’s applicability to real-world IoT environments and enhanced

its generalization to diverse risk scenarios.

The analysis in Table 2 provides guidance and concludes that

most of the cyber security frameworks today apply qualitative

approaches to measuring cyber risk, while quantitative approaches

are mostly present in the cyber security models. The analysis

in Table 2 also confirms that none of these approaches resolves

adequately the cyber risk assessment in IoT, at least not individually

or in isolation. Presented with the diversity of cyber risk assessment

approaches analyzed in Table 2 and given that existing riskmethods

do not address entirely the cyber risk from IoT, questions emerge

on: (a). how can these approaches be combined into a unified

model, and (b). how can we be certain that a unified model

addresses IoT context. We try to address these questions in Section

4.2 through a dependency model that presents a unified approach

for improved standards, governance, and policy on data strategies.

6 Dependency modeling for creating
a unified model

In this section, a unified cyber risk assessment approach for

IoT risk is explored via dependency modeling (DM) approach and

a step-by-step process is included, enabling other companies to

replicate this cyber risk assessment process. Dependency modeling

(DM) is a goal-oriented method of representing the interactions

and inter-reliance amongst system components or elements using

same to reason about the scope of risk feasible (Cherdantseva

et al., 2022). DM works on the assumption that risks emerge from

interactions and interdependencies which need to be recognized

in order to effectively manage and guard against the impacts of the

risks (Alpcan and Bambos, 2009). DM for security risk assessment

can work through analyzing the vulnerabilities that can be found in

IoT network/system components—evaluating the interactions and

service flow amongst connected components including hardware

infrastructure, software platforms (applications), processes,

services, users, etc., and how these threats and vulnerabilities affect

both the target components and others connected. Generally,

these are explored considering how the entire system functions

and objectives are impacted. Security threats and vulnerabilities

can emerge or exist in diverse forms, ranging from design flaws
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in hardware, software, and processes, as well as competency

limitation in users, which can easily be exploited by malware, social

engineering, etc. Thus, the service or functional dependencies

amongst IoT system components can be used to design a unified

approach for IoT risk assessment. In doing this, we consider

contexts from IoT literature and use cases in the model definition

and verification.

Interactions within IoT can be seen as complex, tightly coupled

relationship structures amongst the systems, sub-systems, and

components. This means that IoT subsystems and components

inter-cooperate to fulfill desired service objectives, which each

sub-system or components is unable to achieve in isolation. To

function appropriately, one or more sub-systems rely considerably

on the appropriate functions of another system or sub-system

they connect to and receive command or instruction input. Thus,

a dependency relationship (shown in Figure 2) exists between

connected systems with a mechanism characterized by the transfer

of data or control from one component to another (Callo Arias

et al., 2011), and which can either be direct (a first order) or

indirect (a higher order) (Laugé et al., 2015), physical or non-

physical (O’Neill, 2013), and involve any constituent of the wider

IoT System operational ecosystem.

Graph theoretical approach can be used to represent

dependencies in IoT networks as shown in Figure 2. This presents

a directed graph structure G as an ordered pair (C, T), where C

represents a finite set of vertices referring to IoT components, T

representing a binary relation on C. T imply edges which represent

“context transfer or flow” along successive IoT components.

These edges form an ordered pair t = (ci, ck), where ci, ck ∈ C

represent interacting or cooperating IoT components on specific

functional objective. t can represent the dependency flow of data,

service, or functionality from an originating IoT component ci to a

destination IoT component ck (see Figure 2).

This dependency relationship could apply to different types

of cyber risks. Since our efforts are focused on different types

of risk assessment, including cyber risk assessment in general,

we have used examples specific to IoT risk. Firstly, take,

for example, an industrial Internet-of-Things (IIoT) production

line involving a robotic arm and a conveyor belt system for

product identification, transfer, and packing, following the analogy.

To optimize packing performance, desired analytics functions

by cloud-based components and services such as HMI and

performance dashboard on the application layer (AL), which can

represent ci of C in an IIoT system, would typically depend on

the appropriate functioning of transmitted data ti, tj ∈ T through

the network layer (NL) components such as communication

switches and Programmable Logic Controllers (cj). Dependency

could also extend to perception layer (PL) components such as the

Photoelectric sensors that detect items and actuator switches that

move conveyor belts (ck).

Like in other digital systems, IoT security risks typically

depend on the existence/exploitation of vulnerabilities in system

components at any layers of the architecture. Exploiting vulnerable

components can cause them to malfunction or fail to deliver the

desired processes initially configured. If an attacker gains control

of sensing and/or actuating service functions and flow tj on a PL,

wrong data could be transmitted to and through N, and worse,

data flow could be completely stopped. The impact on process data

can reach AL components such as HMI and performance analytics

dashboard system, and can in turn impact on the functions or

outputs (ti) desired from components in AL. The impacts can

include a failure to reach the final goal of passing down correct item

processing data for analysis and optimisation functions to support

decision-making. If a vulnerability on a host IoT component

is exploited, potential functional dependency-based impact can

be estimated quantitative as a proportion of an overall flow of

component functional dependencies along the part of compromise.

A functional dependency index can be evaluated by analyzing the

number of components that are included along a path following the

edges from the originating component. Depending on the existence

or otherwise of a functional dependency link, initial impact(s) of the

attack is typically expressed in the origin and flows through to other

connected components along the same path.

A logical switch function ϕ (v) can be used to evaluate the

conditional existence of a functional dependency between any two

nodes on the network, a logical 0 (FALSE) to indicate “connection

not configured”, and a 1 (TRUE) to indicated connection

configured as shown in Equation 1. For a tree network structure

for IoT, the functional dependency index fdv of a component v

can be evaluated by summing the functional dependency indices

of components connected to component v with a “connection

configured” settings, as shown in Equation 2.

The proportion of impact dependency can be evaluated in

relations to the highest possible dependency, which represents

worse case impact of a vulnerability exploitation max (fdv). A

worst-case scenario can involve a dependency that runs through all

the components in IoT network, enabling negative impacts to also

flow along the same path when a certain vulnerability is exploited.

Here, the impact dependency proportion would be 1. A 0 would

mean no component is affected. An impact dependency proportion,

(Pfdv ) can be estimated as the degree of dependency impact which

can occur when a certain vulnerability is exploited relative to the

worst-case dependency impact (see Equation 3).

Thus, an IoT security risk landscape need not consider the

failure of a single IoT component alone, but the failure of other IoT

components (devices or services) due to abnormal events and/or

impacts on a component they rely on. Functional dependency

relationships amongst IoT sub-systems can also cause impacts or

failures to cascade from one affected system or component onto

another; aggravating the impacts (Bloomfield et al., 2010).

Depending on the evaluation approach, security and safety-

critical impacts typically vary amongst assets, their functionalities

(services), placement positions, and configurations within

industrial networked systems, including IoT. However, to

support effective decision-making from both security and safety

perspectives, IoT adopters need to adopt risk assessment methods

that goes beyond considering vulnerability/risk scenarios one-

by-one, qualitatively or statically, to considering the relationship

between the risk factors. This can provide a more thoughtful

understanding of the scale of impacts involved and drive

appropriate prioritization of security controls and responses. The

dependency relationships are indicated by the directional arrows

(in Figure 2), where the expressed dependencies describe a model

for addressing IoT security risks.

The process of measuring the probability of things breaking

down or dependencies is well understood in cyber economics
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FIGURE 2

Dependency modeling for IoT risk assessment. (A) Dependency relationships among IoT components (C1, C2, C3, C4, C5, C6). The circles (C1, C2, C3,

etc.) represent di�erent IoT components. The directional arrows (t1, t2, t3, etc.) represent dependency flows between components. For example: t1 is

the dependency flow from component C1 to component C3. t2 is the dependency flow from component C1 to C4. t4 represents a dependency from

C2 to C4. This structure shows how the functioning of one IoT component is dependent on the successful function of another connected

component. (B) Layer-based dependencies in an IoT system. AL (Application Layer), Represents higher-level software components and services (e.g.,

analytics functions or cloud services); NL (Network Layer), Represents components such as communication switches or Programmable Logic

Controllers (PLCs), through which data (t1, f1, etc.) is transmitted; PL (Perception Layer), Represents sensors or actuators, such as photoelectric

sensors or conveyor belt switches, which interact with the physical world. The arrows in this part show how dependencies flow through these layers,

with t1 and f1 representing di�erent types of functional or data dependencies between the layers.

(Figure 3), and many papers have made an effort to calculate

these numbers and provide ROI. Although some would argue that

they are limited (Figure 4), but the evidence of such publication

confirms that the lack of probabilistic data has not stopped either

firms or researchers to make an effort. Hence, in this paper we try to

relate similar efforts toward the assessment of IoT risk, by repeating

similar thoughts throughout the paper.

To be impactful, risk assessment method needs to consider

intrinsic capabilities as well as the more general characteristics

of the IoT system which enable security risks. Capabilities can

range from sensing, processing, actuating, interfacing, storage, and

usage management. Characteristics can range from component

heterogeneity, scale variability, connection temporality, low power

retention, and intelligence generation/fusion.

This way, they can achieve the quantification of security-related

dependencies that can help provide deeper and better security

insights. Some of these insights include understanding how the

impact of exploiting certain security vulnerability(ies) in an IoT

infrastructure component or subsystem prevents it from delivering

the relevant and required service(s), and how such affects the

performance of other connected sub-systems that connect to,

require data/service flows from, and rely on an affected target.

This can help in the development and adoption of effective

security incident response and recovery (Laugé et al., 2015), as well

as help reduce and manage the effects of IoT disruptions.

7 Cyber risk acceptance and
transference—Response and recovery

The argument for using the dependency model to assess risk

in IoT sub-systems is that we can also assess the impacts caused

by failures that cascade through the system and understand the

scale of such impact in relation to the fulfillment of operation

objectives. Depending on the outcome of evaluating functional

dependencies, after all possible states have been considered, often,

there is a possibility of a “no-win” incidents, where each scenario

leads to a risk that cannot be totally controlled or eliminated. The

FIGURE 3

Connection configured.

next states would be risk acceptance and risk transference. In the

following section, we give an overview of the steps involved in

risk acceptance—which includes incident response, recovery (Van

Kleek et al., 2018), andwe end this section with a discussion of cyber

insurance, which represents a method for risk transference.

7.1 Risk acceptance—Incident response
and recovery

In this section, we provide insights on how companies can

manage risk through their incident response and recovery. One

form to describe risk acceptance is a state where adding additional

defenses becomes too expensive within a certain dependency

model. In such a state, it could be rational to accept that future

attacks will happen. Then, an initial zero defense configuration

is supported with a reactive defense that is activated when a

vulnerability is exploited (Woods and Simpson, 2018). Incident

response and recovery for IoT can follow similar approaches

already common to digital and computing systems. Key phases

of an incident response and recovery procedure for IoT systems

include planning, detection, analysis and response formulation,

containment, eradication, recovery, and post-incident activity. The

diagram in Figure 5 (below) illustrates this process.

Companies can use the Planning phase or Incident Response

(IR) Preparation, which involves activities that ensure IoT-user
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FIGURE 4

Worst-case dependency impact.

FIGURE 5

The new emerging security incident response approach.

organizations are in a state of readiness for the prompt handling

of incidents. Example activities include:

• Setting and training IoT incident response teams;

• Defining appropriate security response and escalation policies;

• Forensic evidence management in line with relevant security

guidelines and practices;

• Awareness and response strategies to common security threats

such as Denial of Service, Worms/Trojans, Phishing, web-

based and web application attacks, insider threats, exploit kits,

information leakage, and identity theft.

However, the scope and number of questions that need

consideration and answers have only increased in planning for an

effective response to IoT security incidents compared to traditional

IT systems. For example, a self-driving vehicle relies on radar

sensors to detect obstacles, which evidently can fail (Breza et al.,

2018), resulting in a crash. This is a complex human-machine

system relying on many different systems owned by a variety

of enterprises. A good solution path would include viewing IoT

incident response considering the mission process of IoT devices

and system. This can support understanding of how malicious

actors might exploit the normal infrastructure (device or system)

functionality failures and impacts to hidemalicious actions. Greater

understanding can be achieved through ensuring that security

experts responsible for securing the operations of IoT systems

clearly understand the threat models that drive the systems (Russell

and Van Duren, 2016). Security experts also need to be conscious

and responsive to the dynamic states of the security threats to

provide effective response actions.

Several conventional IR methodologies and frameworks can be

adapted for IoT. While it may not be feasible to prevent all security

compromises in IoT, effective threat response and management

are needed. These must be built on well-structured and holistic

incident response plans and procedures and on the respective

dependency models assumed/used.

Companies can also use the Detection phase of IR, which

emphasizes the importance of promptly recognizing the beginning

of what is considered a “threat” in an IoT system for which critical

decisions and actions are required. Since IoT relies on cloud-hosted

infrastructures and often includes limited-functionality devices

(from an events and log management perspective), it is necessary

to include in the infrastructure monitoring design a capacity to

capture instrumentation data directly from IoT devices, as well as

from supporting cloud service providers. IoT devices use trusted

credentials for exchanges, which, when compromised, can result

in significant impacts across the system. As described above, only

complex monitoring can provide the visibility necessary to spur

timely decisions and responses. There is an increasingly significant

role for computational intelligence in supporting risk assessment

through identifying risk, capitalizing on opportunities, and gaining

a deep understanding of a business through reports, dashboards,

visualizations, and information analysis.

Traditional security information and event management

(SIEM) systems, although powerful and well-advanced for standard

networks, are unable to handle the complexities involved in IoT,

where massive numbers of nodes and millions of data are involved.

Hence, the need for newer, more tailored IoT-centric systems.

Instead, Companies can use the Analysis and Response

formulation phase, which focuses on understanding the

characteristics of security threats or incidents to learn the

most suitable strategy or method for handling future incidents;

again, traditional systems struggle, and IoT-specific digital forensic

and incident response tools are necessary. In IoT, analysis of

threats should consider both system-wide and component-specific

perspectives. Using effective threat intelligence tools and processes

that relate to IoT application sector is a good place to start, as

threat indicators and protective patterns are often shared and made

available on threat intelligence platforms.

From these, further analysis can be explored evaluating

the scope of compromise, activities, timelines, and attacker

identities related to certain breaches. However, recognition of the

potential for attacks to employ anonymity and other anti-forensic

capabilities characterized in the IoT domain is required. Since

IoT systems are data-intensive, data compromise analysis with

respect to confidentiality, integrity, and availability is also crucial.

These mechanisms for assuring integrity and availability can be

complemented with IoT devices and gateway forensic analysis to

provide acceptable proof of the breach of IoT devices and systems.

Alternatively, companies can use the Containment phase,

which aims to ensure prompt, interim resolution to a security

incident by engaging in attempts to restrict further damage

to the system. Typical actions in traditional IT systems may

include disabling affected services, disconnecting or swapping out

compromised devices and systems with new ones, revising access

credential values such as passwords, disabling affected accounts or,
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at worst, initiating a temporary shut-down. Some of these activities

do not translate to incidents in IoT systems; here we list them as

descriptive examples. The main task in this phase is for affected

devices, services, or systems to be isolated from the operations IoT

network as quickly as possible while allowing for forensic analysis

of affected systems.

Companies can also use the Eradication phase, which leads

from the containment phase, focuses on the long-term removal of

threats, and ensures that the system is no longer vulnerable to the

threat. Typical activities in this phase include policy updates and

independent security audits. This can be achieved in IoT systems by

evaluating whether existing security policies can sufficiently address

any threats that have been identified; if not, security policy upgrades

need to be adopted and implemented. For example, automated

software/firmware updates and patching are challenging in today’s

IoT. It is necessary to devise and adopt policies and approaches

for security patching that would provide the necessary security

without disrupting operations and functionality. With reference

to the need to support forensic analysis, it is desirable to track

the activities of a malicious actor in a network. IoT can benefit

from gateway devices that support the establishment of logical

rules for automated isolation of compromised infrastructure based

on monitored commands or traffic flow patterns without alerting

an active attacker on the network (Craggs and Rashid, 2017). In

this way, the attacker’s actions and activities can be observed and

studied to inform decisions for necessary security improvements.

Companies can use the Recovery phase to restore the

system to normal working order. Typical actions may include

restoring systems using backups, system re-configurations, or fresh

installations. These must be considered for both cloud and on-

premises infrastructure, and restoration must be initiated in a way

that does not cause significant delays or disruptions to the normal

operation of the IoT system.

Companies can use the Post-Incident Activity phase, which

includes a combined process of drawing lessons from breaches

and reporting these lessons in a structured way that helps to

form capability for future occurrences. Typically, this should be

conducted through reflective meetings that bring together senior

executives and technical experts (Falco et al., 2019). In the reflective

reviews, privacy checks, root cause analysis, and after-incident

forensics can be performed in relation to the compromised system.

Using root cause analysis, organizations can easily understand

the failure of their security and determine how to strengthen the

weaknesses as well as produce true assessments of what happened,

how it happened, how well or poor the response went and why,

and what a better response may look like in the future. Overall,

lessons learned should be evaluated and amended as required,

including the incident response plan, the network access control

(NAC) plan, existing tools and resources to enhance security,

deficiencies in cloud service providers and the on-premises incident

response process.

IoT brings inherent cyber risks spanning multiple functional

sectors with varied dependencies. Further, IoT systems often

operate on platforms that cut across geographical boundaries for

which appropriate cyber incident response and recovery plans

and strategies are required. Collaborative Incident Response and

Recovery (IR&R) utilizes shared threat intelligence and should

evolve based on this intelligence. This is required since the security

risk landscape is continually evolving, so an incident response

plan which was appropriate yesterday might not be today; a plan

that seems effective today could also be ineffective tomorrow.

Effective IR&R should (1) be designed to fit the dependency

model chosen to assess risk in the respective IoT environment

or service, and (2) be characterized by continuous refinements

of processes and procedures. This represents a move from a

reactive response to the management of security incidents in a

way that fosters cooperation through the exchange and sharing

of incident management information among several distinct IoT-

adopter organizations. Such an approach should enable both

proactive and reactive capacities and enforce and assure trust and

privacy among IoT infrastructures and cooperating organizations.

These findings represent a key insight that refers to a wide

variety of enterprises, and it addresses a missing discussion of the

impact of IoT cyber risk on liability and insurance risk ownership.

The answer must be partially addressed by virtual reality cyber

assessment (Furfaro et al., 2017) and cost and frequency analysis

of cyber-attacks. Such analysis would complement building

frameworks and methodologies for mitigating the impact of cyber

risk and assessing cyber risk in IoT-connected products and

services. This would resolve the previously discussed lack of

standardized methods for measuring the cost and probabilities of

cyber-attacks in IoT systems and the impact of such (IoT product,

service or platform-related) cyber risk. The lack of empirical data

to construct actuarial tables applies to cyber risk in general. Adding

to this, the growth of IoT cyber risk markets in the finance and

insurance sectors is impeded by the lack of empirical data to

construct actuarial tables (Egan et al., 2019). We could also argue

that actuarial tables are irrelevant in many emergent risk markets—

for example, cyber insurance creates what is called “reliance”—that

is, reliance that insurance companies take care of possible risks or

financial risk depends not necessarily on actuarial tables, but rather

on specific mechanisms such as how the markets price the potential

hazards and price the consequences.

Nevertheless, the highly dynamic systems in these sectors make

it difficult for businesses to formulate significant assumptions on

the nature of risk, as even the possible knowledge of risks can

further affect them. Despite the development of models related to

the impact of cyber risk (Jalali et al., 2019; Evans, 2019), there is a

lack of such models related to specific IoT verticals. Hence, banks

and insurers cannot price IoT cyber risk with the same precision as

in traditional insurance lines (Camillo, 2017).

8 Case study discussion on estimation
and valuation of IoT cyber risk

While conducting this research, we used the case study and

action research methods to apply our research findings in practice.

Since this research was co-funded by Cisco Systems, one of the

main benefits of this research was the access and engagement with

their cyber risk management. We used their risk management tools

as a platform to test, verify and advance our understanding of the

role IoT is playing in their risk management operations. One of

the first case study discoveries was related to risk transference and

how companies are dealing with such unpredictable risks. Cyber

risk insurance represents risk transference and is categorized as a

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2024.1402745
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Radanliev et al. 10.3389/fdata.2024.1402745

risk management operation. IoT technologies are becoming more

prevalent, and we can observe cyber risks worldwide, increasingly

impacting physical property and challenging present notions of

accountability and liability.

Consequently, cyber insurance has often been investigated

as a possible market-based solution to cyber security problems.

For example, in dynamic systems, cyber insurance is meant to

control financial risk and thus depends on how the markets price

the possible hazards and the consequences. However, the cyber

insurance market needs help in measuring and assessing risks and

designing and managing cyber risks efficiently. Some of the major

problems cyber insurers face is the lack of historical data on risks,

a lack of claims data, the volatility of the rather immature IoT

technology and markets and the increased scope for cyber security

risks. From a broader perspective, governments and the insurance

industry are far from a working public-private partnership for

cyber insurance.

• To identify how a company can deal with such risk scenarios,

we conducted action research with Cisco Systems. From

our case study research, we identified that our model for

risk assessment could be applied if we had the probabilistic

data we do not have. Therefore, in our action research, we

focused on the data strategy. We have worked with Cisco

Systems for three years and developed a data strategy to

deliver the probabilistic data needed for risk assessment. This

data strategy was presented to the FAIR Institute webinars,

and we gathered further feedback from other companies.

The advantage of participating with the FAIR Institute was

that we gained access to many different companies’ specific

cyber risk departments. In Figure 6, we include a snapshot

of the simulation of the proposed goal-oriented approach.

The original table is a much larger document, and the image

we see in Figure 6 is just a small sample to demonstrate the

process. What we can see in the demonstration is a unique

code for each risk category (on the left side), where each risk

category is allocated to a specific principle, and principles

are categorized in areas of focus. Individual principles are

allocated weights from 0 to 3, and the weight is determined

by the risk exploitability of the vulnerabilities allocated to

the specific principle. Applying the design to the previously

described goal-oriented approach is necessary, which also

operates as a decision three in this scenario.

In Figure 6, we can visualize the process of applying the

proposed goal-oriented approach. The unique code is also a unique

reference to a specific vulnerability that is found in the National

Vulnerability Database (NVD), which are stored as JSON files.

The unique code is included to resolve the product naming

problem, which is one of the most difficult issues to solve in

the new software bill of materials (SBOM) and the proposed

integration with the vulnerability exploitability exchange (VEX).

This work relates to the ongoing efforts of the Common Security

Advisory Framework (CSAF) and the new Stakeholder-Specific

Vulnerability Categorization (SSVC), which is an updated version

of the Common Vulnerability Scoring System Calculator (CVSS).

Still, it’s based on a decision threes and qualitative data.

8.1 Advantages of SSVC’s decision trees
and qualitative data for prioritizing
vulnerabilities

The Stakeholder-Specific Vulnerability Categorization (SSVC)

applies decision trees and qualitative data, and offers several

key advantages for prioritizing vulnerabilities in a goal-oriented

approach to IoT cyber risk management. While traditional risk

assessment methods often rely heavily on quantitative data,

the inclusion of qualitative assessments through SSVC enhances

flexibility, adaptability, and relevance to real-world IoT systems,

where data may not always be complete or measurable in a purely

quantitative form. Below are the primary advantages of SSVC in

this context:

1. Tailored decision-making process

One of the strengths of SSVC’s reliance on decision trees is

that it enables the prioritization of vulnerabilities based on context-

specific factors relevant to each organization’s risk tolerance

and operational environment. The decision tree methodology

provides clear decision points, such as whether a vulnerability

needs immediate patching or whether it can be delayed based on

factors like:

• The potential impact on critical services,

• The presence of mitigations, or

• The likelihood of exploitation.

By guiding stakeholders through a structured series of

questions, the decision tree helps ensure that the decision to

prioritize or defer mitigation efforts aligns with the organization’s

overall goals and resource constraints. In goal-oriented approaches,

this helps organizations avoid “one-size-fits-all” risk assessments

and instead tailor their responses based on unique operational

needs and priorities.

2. Handling of uncertain or incomplete data

In IoT environments, there are often scenarios where precise

quantitative data about vulnerabilities, likelihoods, or impacts are

unavailable. SSVC’s use of qualitative data offers a practical solution

for addressing these uncertainties. By enabling decision-makers to

categorize risks using qualitative descriptors, such as high, medium,

or low impact,the SSVC framework facilitates risk prioritization

even when probabilistic data may be lacking or incomplete. This

flexibility is particularly useful in dynamic IoT ecosystems, where

new vulnerabilities may emerge faster than they can be quantified

through traditional metrics.

For example, in a situation where a vulnerability is known to

exist, but the exploitability is unclear due to a lack of historical

data, SSVC allows stakeholders to make informed decisions based

on qualitative assessments (e.g., whether the vulnerability is in a

critical system or whether mitigations are already in place), rather

than waiting for complete quantitative data.

3. Enhanced collaboration and communication

SSVC’s decision tree structure simplifies the communication

of risk decisions across multidisciplinary teams, including

cybersecurity professionals, management, and other stakeholders.

The step-by-step nature of the decision trees makes the reasoning

behind prioritization decisions more transparent and accessible,
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FIGURE 6

Simulation of the goal-oriented approach.

enabling better collaboration between technical and non-technical

team members. In a goal-oriented approach, where aligning

cybersecurity objectives with business and operational goals is

crucial, the decision tree’s clarity facilitates shared understanding

and decision-making across different levels of the organization.

By providing clear rationales for prioritizing certain

vulnerabilities over others, SSVC enhances the alignment

between cybersecurity efforts and organizational goals, ensuring

that resources are focused on the most critical vulnerabilities that

pose the greatest threat to achieving those goals.

4. Rapid and adaptive response to emerging threats

Decision trees offer the advantage of enabling a more rapid

and adaptive response to newly identified vulnerabilities. In fast-

paced IoT environments, where new devices and technologies are

frequently deployed, waiting for complete quantitative risk data

may delay critical vulnerability mitigations. SSVC’s decision trees

provide an immediate framework for determining the severity

of a vulnerability and the urgency of required action, allowing

organizations to act quickly and adjust their strategies as new

threats emerge.

For instance, if a new vulnerability in a widely used IoT device

is discovered, the SSVC framework can quickly guide decision-

makers through prioritization steps, such as assessing whether

the vulnerability affects critical operations or whether there are

feasible mitigations in place. This agility is crucial in dynamic IoT

environments, where the rapid identification and prioritization of

risks can prevent widespread system disruptions.

5. Alignment with existing risk management standards

SSVC’s qualitative approach aligns well with existing

cybersecurity standards, such as the NIST Cybersecurity

Framework and ISO/IEC 27001, which also incorporate

qualitative elements in their risk management processes. This

makes SSVC compatible with widely used risk assessment

methodologies, allowing organizations to integrate the SSVC

decision tree approach into their broader cybersecurity

management efforts seamlessly.

In a goal-oriented framework, this compatibility ensures

that organizations can apply SSVC while still adhering to

broader regulatory or compliance requirements, thus enhancing

its practical application in both industry-standard and custom-

tailored riskmanagement strategies.

8.2 SSVC’s in a goal-oriented approach

SSVC’s reliance on decision trees and qualitative data

offers significant advantages for prioritizing vulnerabilities in a

goal-oriented approach. By allowing tailored decision-making,

handling uncertainty, enhancing communication, and enabling
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rapid response, SSVC helps organizations align their cybersecurity

efforts with operational goals more effectively. Its flexibility and

adaptability make it a valuable tool for IoT environments where

risks are constantly evolving, and quantitative data may not

always be immediately available. The integration of SSVC into

the proposed goal-oriented model strengthens the model’s ability

to assess and mitigate IoT cyber risks in a comprehensive and

practical manner.

8.3 Simulation of the goal-oriented
approach

Figure 6 presents a critical simulation of the proposed goal-

oriented approach to risk assessment, specifically focusing on

the allocation of risk categories, principles, and their associated

weightings. This table is an essential part of the research as it

demonstrates how the proposed model can be applied in real-world

settings for effective cyber risk assessment and mitigation in IoT

environments. The following points elaborate on the significance

and interpretation of Figure 6:

1. Categorization of risk principles

Figure 6 is structured to categorize risks based on specific

principles that reflect different dimensions of IoT security. Each

risk category is allocated a unique code, which corresponds to a

specific vulnerability or risk scenario identified in IoT systems.

These principles encompass a wide range of security concerns,

from technical vulnerabilities (e.g., device compromise) to broader

strategic risks (e.g., reputational damage from data breaches).

The inclusion of these principles allows for a comprehensive

assessment that goes beyond individual technical vulnerabilities,

offering a more holistic view of the organization’s overall risk

posture. This categorization enables organizations to prioritize

risks based on their relevance and severity in different IoT

environments, such as smart cities, industrial IoT, or healthcare.

2. Weighting system

Each risk category is assigned a weight ranging from 0 to

3, depending on the likelihood and impact of the associated

vulnerability or threat. The weighting is determined by evaluating

the exploitability of the vulnerability and its potential to cause

cascading failures across interconnected IoT devices and systems.

• Weight 0 indicates minimal risk or low likelihood

of exploitation.

• Weight 1 indicates a moderate level of risk that requires

monitoring but may not necessitate immediate intervention.

• Weight 2 reflects a higher probability of exploitation with

potentially significant consequences, warranting proactive

risk mitigation.

• Weight 3 indicates a critical risk that requires immediate

action due to its potential to cause widespread disruptions or

severe financial and operational damage.

The weighting system allows organizations to focus resources

on the most pressing risks, enabling efficient allocation of security

budgets and efforts to mitigate IoT-related cyber threats.

Definition of Risk Exploitability and Weight Determination in

Figure 6.

Risk exploitability refers to the likelihood that a vulnerability

or risk in an IoT system can be successfully exploited by a threat

actor. In the context of IoT cybersecurity, exploitability is a crucial

factor because not all identified vulnerabilities carry the same

probability of being exploited. For instance, certain vulnerabilities

may require advanced skills, specific conditions, or access to specific

network segments to be exploited, while others can be easily

exploited with widely available tools.

In this work, risk exploitability is determined based on several

key factors:

1. Access complexity: the ease or difficulty with which a threat

actor can access the vulnerable component. This includes

whether the vulnerability is exposed to the internet or resides

behind secure layers like firewalls.

2. Required privileges: the level of privileges or access

control required to exploit the vulnerability. For example, a

vulnerability that requires administrative privileges is typically

harder to exploit than one that can be exploited by a

standard user.

3. Publicly available exploits: whether or not there are existing

tools or scripts available to exploit the vulnerability. If

an exploit is readily available and easy to use, the risk

exploitability is higher.

4. Attack vector: the means through which the attack is

executed. For instance, vulnerabilities that can be exploited

remotely over a network generally have higher exploitability

than those requiring physical access to the device.

5. Patch availability and mitigation: whether there are patches

or mitigation strategies in place. A vulnerability with

no available patch or limited mitigation options is more

exploitable than one for which a patch exists and has been

widely applied.

Further detail on the weight determination in Figure 6.

The weights assigned to vulnerabilities in Figure 6 are based

on an estimation of risk exploitability. Each risk category is

evaluated using the factors mentioned above, and a numerical

weight (ranging from 0 to 3) is assigned to represent the likelihood

of exploitation. The weights correspond to the following levels

of exploitability:

• Weight 0 (low exploitability): this weight is assigned to

vulnerabilities that have extremely low risk of being exploited.

This may include vulnerabilities that require highly specialized

skills, physical access to the device, or complex conditions

that are unlikely to occur. For example, vulnerabilities that

exist only in closed networks or require multiple layers of

compromise to access would receive this weighting.

• Weight 1 (moderate exploitability): vulnerabilities with

moderate risk of being exploited are assigned this weight.

These might require some level of specialized knowledge or

access but are feasible for an attacker to exploit under the right

conditions. An example would be a vulnerability that requires

privilege escalation within a network but does not have readily

available public exploits.
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• Weight 2 (high exploitability): this weight is assigned to

vulnerabilities that are relatively easy to exploit and are

likely to be targeted by attackers. These may involve publicly

available exploits, easily accessible devices, or remote attack

vectors. For instance, a vulnerability in an IoT device exposed

to the internet without sufficient patching or protective

measures would typically fall into this category.

• Weight 3 (critical exploitability): vulnerabilities that are

extremely easy to exploit and carry severe consequences are

assigned the highest weight. These include vulnerabilities

for which widely used exploit kits are available, or where

a remote attacker can easily gain control over a device or

network segment. An example would be an unpatched zero-

day vulnerability in an IoT system that is exposed to the

public internet.

Example of weight assignment in Figure 6.

For example, in Figure 6, if a particular IoT vulnerability

exists in a publicly accessible smart device that requires minimal

technical knowledge to exploit and has a widely available exploit

tool, it would be assigned a weight of 3 (critical exploitability).

In contrast, a vulnerability in a back-end server that requires

significant expertise and internal network access might be assigned

a weight of 1 (moderate exploitability).

The weighting is also influenced by the dependency

relationships in the IoT system. If a vulnerability in one

device can cause a cascading effect across multiple interconnected

devices, its exploitability may be weighted higher due to the

broader system-wide impact. Conversely, isolated vulnerabilities

with limited impact are weighted lower.

Integration with AI/ML models.

The exploitability weights are incorporated into the proposed

AI/ML-based risk assessment framework to dynamically adjust the

risk scores of IoT components. The AI model processes these

weights along with other input data (e.g., network traffic patterns,

device telemetry) to produce real-time risk assessments. The use

of exploitability weights ensures that the model prioritizes the

most severe and actionable risks, helping organizations focus their

mitigation efforts on vulnerabilities that pose the highest threat.

By defining risk exploitability and assigning corresponding

weights, this work introduces a structured and transparent method

for prioritizing vulnerabilities within IoT systems. This approach

ensures that both easily exploitable and high-impact vulnerabilities

receive the attention they warrant, while lower-risk issues are

deprioritized. This allows for more efficient allocation of resources

inmitigating IoT cyber risks, enhancing the overall security posture

of IoT deployments.

3. Vulnerability exploitability and decision trees

Figure 6 links each risk category to the concept of vulnerability

exploitability. By incorporating the Stakeholder-Specific

Vulnerability Categorization (SSVC) decision tree methodology,

the table provides a dynamic assessment of risk scenarios. SSVC

helps assess the decision points around patching vulnerabilities

or applying other mitigation measures based on the risk’s

exploitability and the organization’s tolerance for risk.

This approach allows organizations to decide whether to

accept, mitigate, or transfer a specific risk. For instance, for highly

exploitable vulnerabilities that pose significant risk (assigned a

weight of 3), the organization might opt for immediate patching or

enhanced monitoring. In contrast, less severe vulnerabilities with

a lower weight might be mitigated over time or transferred via

cyber insurance.

4. Real-world application of the goal-oriented approach

Figure 6 demonstrates the practical applicability of the goal-

oriented approach by simulating real-world scenarios where

organizations need to assess and prioritize IoT-related risks. For

example, in industrial IoT (IIoT) environments, the risk of a

compromised sensor leading to downtime in a production line

would be assigned a high weight due to the potential cascading

impact on production processes. Similarly, in smart cities, the

failure of IoT-connected traffic control systems could lead to

significant public safety risks, requiring immediate mitigation

strategies.

This simulation shows how the proposed framework can be

applied across different domains and provides a clear roadmap

for decision-makers to follow when assessing IoT risks. It enables

them to make informed choices about where to allocate resources,

how to prioritize risks, and which mitigation strategies (e.g., risk

acceptance, transference, or mitigation) to adopt.

5. Alignment with global standards

The principles and weightings in Figure 6 align with widely

accepted cybersecurity frameworks, such as ISO/IEC 27001

and NIST Cybersecurity Framework, making the table highly

adaptable to different organizational contexts. The integration

of global standards ensures that the approach is applicable not

only to Cisco’s operational environment but also to a wide

range of industries and sectors, from healthcare to manufacturing

and beyond.

6. Future refinements

Figure 6 provides a snapshot of the current state of the

proposed goal-oriented approach, but it also points to potential

areas for future refinement. For example, as new IoT vulnerabilities

emerge or regulatory environments evolve, the weightings and

principles in Figure 6 can be updated to reflect the latest threat

landscape. The flexibility of this framework allows it to remain

relevant in the face of rapid technological change, ensuring that it

can accommodate new developments in IoT security.

Figure 6 illustrates the practical applicability and flexibility of

the goal-oriented approach for IoT risk assessment. By categorizing

risks, applying weightings based on vulnerability exploitability,

and integrating decision trees, this table offers a structured and

actionable framework for organizations to assess and prioritize

cyber risks in their IoT ecosystems. The alignment with global

standards and the potential for future refinements ensure that the

approach remains adaptable and generalizable to a wide range of

operational contexts.

This case study brought forward the limitations of current

exchange mechanisms on vulnerability data, with the main

concern being around the fact that sharing exploitability data on

vulnerabilities that have not been patched, exposes the risk of this

data being intersected by hackers, enabling them to use exploits

in real time before cybersecurity experts had sufficient time to

patch the vulnerability. This is the main concern in terms of cyber

risk, and this concern has been in circulation since 1990s. VEX

is the latest attempt to resolve this long-term issue in cyber risk

assessment of third-party risk.
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8.4 CSAF/VEX and cyber insurance

However, comparing our arguments of targeted data strategy

for risk assessment, with the current model of cyber insurance

works as a risk mitigation tool and covers the costs of losses caused

by human malicious activity or natural disasters. In this context,

many of the problems in the banking and financial sector and their

failures of the past decade can be directly tied to model failure

or overly optimistic judgments in the setting of assumptions or

the parameterization of a model. Now, a new public policy has

emerged in which insurance companies act as clearing houses

for information, integrate different security services and provide

guidance on appropriate security investments to businesses seeking

liability coverage (Allodi and Massacci, 2017). For example, new

and traditional insurers can outsource important parts of the

forensic investigation to different consultancies such as software or

networking companies. However, recent research shows that this

view of cyber insurance as a delegated policy tool has limitations

in producing the anticipated coordination benefits and indeed may

erode the aggregate level of security investment undertaken by

targets in different insurance markets (Allodi and Massacci, 2017).

These limitations are reflective of the previously discussed issue that

insurance markets are lacking empirical data to construct actuarial

tables. Thus, resulting with banks and insurers being unable to price

IoT cyber risk with the same precision as in traditional insurance

lines. While new and recent quantitative models partially address

this issue, it may still be some time before these new approaches are

widely adapted in the banking and cyber insurance sectors.

It should be recognized that IoT represents a huge opportunity

for insurers to harness and understand cyber risks. IoT can thus

represent a part of the solution to improved coverage and liability

of non-tangible digital assets and to the dynamic nature of cyber-

attacks. IoT can provide a part of the response to the general

agreement that there is not enough data to understand the risks

and reduce resource allocation problems arising from incomplete

information regarding parties’ actions (e.g., moral hazard) and

characteristics (e.g., adverse selection). However, the analysis and

correlation of large IoT data sources and new digital forensics

and methods might sometimes be insufficient. For example, even

though algorithms used to calculate cyber-risk metrics can analyze

and correlate vast amounts of data, the methodologies that inform

actuarial models may still struggle to make sense of and integrate

the real-time information available from IoT devices.

Over-reliance on modeling in cyber insurance can also conceal

difficult-to-detect processes, such as in the “normalization of

deviance” case. The normalization of deviance defines the processes

that socially organize and systematically reproduce mistakes related

to complex technological solutions. In this context, IoT can help

by making use of data to increase transparency and predictability

of such processes, understand the limitations of computational

modeling and techniques and improve the assumptions that these

models are based on. The constant inspection of granular IoT

data and the possibility of sharing aggregates of IoT data and

increasing transparency between parties can help insurers and re-

insurers understand strict liability and its sharing across complex

ecosystems. Parties can collaborate to prevent risks from cascading

and to investigate possible “black swan” events (an event that is

unprecedented and unpredicted) in relation to the use of digital

devices, which are likely to increase in number, at least in the short

term. Formal methods for trustworthiness assessment may then

help inform insurance models for complex IoT ecosystems. Such

developments would temper the proliferation of false beliefs due

to over-reliance on the “accuracy” of the outputs from computing

models, which can lend an apparent objectivity to the results that

can then justify inappropriate actions and policies.

From a risk management point of view, one important question

is: what architectural improvements of a company’s IT data system

might increase resilience to cyber risk? We tend to think of

cyber security as pertaining to IT companies, but digitalization

is currently extending well beyond the existing IT systems to

manufacturing floors and other production activities that only a

few people normally associate with IT data strategy. Thus, the

boundaries between IT systems and operational activities, such

as manufacturing, may not be obvious. Then, data processing is

mobile and is constrained by the environment where the system

operates. For example, when complex systems interact, it is very

difficult to predict the system’s behavior and, in particular, the

failure modes in operational conditions because of the emergent

nature and the created feedback loops. This represents a particular

challenge as, despite new investments in IoT and broad concerns

with cyber risks, the manufacturing industry is still fragmented

in its approach to managing cyber-related risks and having the

organizational ownership to do so effectively (Van Wieren et al.,

2016).

More general risks pertain to the vulnerability that IoT

solutions currently have in relation to cyber-attacks and the

capability of such solutions to establish and maintain different

sorts of rights, such as the right to privacy. The relatively

recent DDoS attacks that exploited simple, but poorly secured

IoT end devices, such as baby monitors with immutable default

passwords, show that: (a). the model of low-cost, low-security

IoT solutions is not sustainable, and that (b). organizations and

individuals need to protect themselves through collaborations,

increased transparency, re-drawing of the current accountability

and liability domains, and so forth. However, the mechanisms

needed to implement these aspects need to work in a globalized

context and across jurisdictions.

From a public policy point of view, insurers have become

“de facto regulators” by establishing a minimum-security level to

gain cyber coverage. This argument emerges from research that

links security controls and cyber insurance proposal forms. In this

context, IoT can help shape public policies that are beneficial for

the insurance sector and the society at large. For example, one

important opportunity is represented by businesses using IoT to

demonstrate their compliance with both national and international

industry standards as well as internal policies. The challenges

facing organizations in standards compliance for IoT systems are

significant (Christensen et al., 2019).

However, insurers can design dynamic insurance policies that

would not only reflect the changes in behavior and characteristics of

businesses and the contexts in which they operate but will also allow

the creation of insured ecosystems where dynamic mechanisms

such as double rewarding mechanisms and adaptive incentives

can be operationalized. In such ecosystems, network-specific risks
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could be transferred between businesses and insurers (or re-

insurers) in near real time, e.g., by using smart contracts. However,

there are important limitations here as these systems operate in

environments that are too complex to manage, cannot be rationally

understood and pose specific moral questions such as those around

privacy and data protection. The difficulty is that each of these

aspects helps the system to evolve but it can also change the a

priori allocation of risks. Nevertheless, dynamic risk assessment

and dynamic insurance policies can improve some of the current

challenges in cyber risk mentioned in this paper and can represent

opportunities to improve the existing regulation, public policies

and government interventions in the cyber insurance market.

Current developments in IoT ecosystems allow innovative ways

to design cyber insurance services that would utilize IoT data to:

• Design of a tailored data strategy for IoT and cyber

risk assessment;

• Mitigate risk management and facilitate new developments in

this area, such as risk engineering;

• Increase transparency and predictability of the cyber

insurance processes, including near real-time evidence-based

explanations meant to increase trust and reduce risks;

• Increase the flexibility and adaptability of the current business

environments, including the correlation of multi-model

information such as risk, anomaly scores and liability;

• Enable co-evolution of systems, where learning and

knowledge are distributed between the insurance company

and the insured parties toward a still more efficient allocation

of risk and responsibility, and

• Investigate the use of Smart Contracts to manage cyber risks

within the insured environment.

The use of Smart Contracts raises one critical question

on how empirical data can be collected and used with the

dependency model to provide quantitative assessments. More

comprehensive and systematic understanding of this question will

arise when AI/ML technologies are migrated to the periphery

of the internet and into local IoT networks. By integrating

AI/ML in the dependency risk analytics, we can anticipate

that real time intelligence data would enable dependency

systems to recover and become more robust. AI/ML in the

dependency risk analytics would also enable an understanding

how and when compromises happen and enable systems to adapt

and continue to operate safely and securely when they have

been compromised.

8.5 Data sources for gathering probabilistic
information in the proposed data strategy

Given the complexity and dynamic nature of IoT systems,

the data sources included in the data strategy are drawn from

diverse domains to ensure robust probabilistic risk assessments.

The data strategy integrates real-time and historical data from

multiple layers of IoT infrastructure, allowing for more accurate

predictions and risk estimations. The key data sources are

outlined below:

a. Network traffic data: one of the primary data sources is

real-time network traffic data generated by IoT devices and

networks. This includes data on the types, frequency, and

volume of communications between IoT devices, servers,

and external systems. Analyzing network traffic enables the

identification of anomalies, such as unusual patterns of data

transmission, which could indicate cyber threats like botnet

activity, distributed denial-of-service (DDoS) attacks, or data

exfiltration. Tools such as intrusion detection systems (IDS)

and network monitoring platforms provide raw traffic data,

which is processed to extract probabilistic insights on attack

likelihood and impact.

b. Device telemetry data: telemetry data from IoT devices

includes metrics related to device health, performance, and

operational status. This data is crucial for understanding the

normal operational baseline of IoT devices and detecting

deviations that could signal a cyber-attack or device

malfunction. For example, abnormal energy consumption

or processing delays could indicate that a device is

compromised. Telemetry data is gathered through device

management platforms and cloud-based IoT hubs that

aggregate information from multiple devices in real-time.

c. Incident logs and historical attack data: historical incident

logs from security breaches, cyber-attacks, and device failures

serve as a valuable source of probabilistic information.

These logs provide insights into attack vectors, timelines,

and vulnerabilities exploited in past incidents. By examining

patterns in historical data, the proposed model can estimate

the likelihood of future attacks. Data sources such as Security

Information and Event Management (SIEM) systems,

firewall logs, and threat intelligence platforms are critical for

gathering and analyzing this historical information.

d. Vulnerability databases: publicly available vulnerability

databases, such as the National Vulnerability Database

(NVD) and the Common Vulnerability Scoring System

(CVSS), provide critical data on known vulnerabilities in

IoT devices, software, and protocols. These databases are

constantly updated with information on newly discovered

vulnerabilities, enabling organizations to assess the likelihood

of exploitation based on the severity and type of vulnerability.

These data sources are used to quantify the risk of unpatched

vulnerabilities being exploited in a probabilistic framework.

e. Threat intelligence feeds: external threat intelligence feeds,

such as those provided by commercial security vendors

or open-source platforms, offer real-time information on

emerging cyber threats, attack techniques, and indicators

of compromise (IoCs). These feeds are crucial for staying

updated on new attack patterns targeting IoT ecosystems.

Integrating threat intelligence feeds allows the model to

dynamically adjust its risk estimates based on real-time threat

levels. Sources include MITER ATT&CK, FireEye, Palo Alto

Networks, and IBM X-Force.

f. IoT-specific sensor data: in environments where IoT devices

are deeply integrated with physical systems, such as smart

cities, industrial automation, and healthcare, sensor data

plays a key role in identifying risk scenarios. For example,

sensor data from smart meters, connected vehicles, or

industrial equipment can indicate when devices are behaving
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abnormally, allowing for early detection of potential threats.

SCADA systems and IoT platforms typically aggregate this

data, which can then be used to estimate the likelihood of

equipment failure or cyber-physical attacks.

g. Third-party security audits and compliance reports:

organizations often conduct security audits and assessments

of their IoT infrastructure to ensure compliance with industry

standards such as ISO/IEC 27001 or NIST Cybersecurity

Framework. These audits provide valuable data on system

weaknesses, compliance gaps, and potential threats. The

results of these audits are included in the probabilistic model

to help determine the organization’s overall cyber risk posture

and identify areas where additional mitigation measures

are necessary.

h. Cyber insurance claims data: data from cyber insurance

claims offers a unique perspective on the financial impact and

frequency of cyber incidents. Claims data can provide insights

into the types of attacks that lead to significant financial

losses and the effectiveness of risk transfer mechanisms, such

as insurance. This data can be aggregated from insurance

companies, brokers, and industry reports, and can help

calibrate the financial risk models in the proposed strategy.

8.6 Combining data sources for enhanced
probabilistic assessment

The proposed data strategy leverages these multiple data

sources to create a comprehensive dataset for probabilistic analysis.

The data is processed using machine learning algorithms and

statisticalmodels to estimate the likelihood of various cyber threats

and their potential impact. By integrating real-time data with

historical trends and external threat intelligence, the model can

dynamically adjust risk estimates and provide a more accurate and

proactive assessment of IoT cyber risks.

This approach ensures that organizations can move beyond

static, qualitative assessments and rely on data-driven, probabilistic

insights to inform their IoT security strategies. The inclusion of

diverse data sources also makes the model adaptable to different

IoT environments and threat landscapes.

8.7 Adoption and impact of VEX on
third-party cyber risk assessment

8.7.1 Current level of VEX adoption in the
cybersecurity community

The Vulnerability Exploitability eXchange (VEX) has

emerged as a relatively new but increasingly important tool

in the cybersecurity community for improving the precision

of vulnerability management and third-party risk assessments.

Developed in response to the long-standing challenge of assessing

the exploitability of known vulnerabilities in real-time, VEX is

being gradually adopted, especially in industries where supply

chain security and third-party risk are critical.

As of the time of writing, VEX adoption is still in its early stages

but gaining traction, particularly in the following areas:

1. Adoption in software supply chain security: with growing

concerns over supply chain vulnerabilities, VEX is being

increasingly integrated into Software Bill of Materials

(SBOM) frameworks to provide more granular and

timely information about which vulnerabilities in a

software component are exploitable. The U.S. National

Telecommunications and Information Administration

(NTIA) andNational Institute of Standards andTechnology

(NIST) have both recognized the importance of VEX in their

cybersecurity guidance, and its use is being advocated in

sectors such as healthcare, critical infrastructure, and defense,

where software supply chain risks are particularly high.

2. Industry adoption: several major vendors and cybersecurity

providers, including those in cloud services and IT

management, are beginning to incorporate VEX profiles

into their vulnerability management tools. For example,

leading providers of vulnerability assessment platforms and

risk management solutions are adding support for VEX

to improve the precision of vulnerability prioritization,

particularly when assessing the security of third-party

software and services.

3. Regulatory push for adoption: the inclusion of VEX in

key U.S. government initiatives, such as Executive Order

14028 on improving national cybersecurity, is driving broader

adoption across critical industries. The Executive Order

calls for improved transparency in software components

through SBOMs, with VEX providing essential details

on the real-world exploitability of vulnerabilities. This

regulatory push is influencing sectors such as energy, finance,

and telecommunications to adopt VEX as part of their

vulnerability management and compliance efforts.

8.7.2 Assessment of VEX’s impact on improving
third-party cyber risk assessment

AlthoughVEX is relatively new, initial assessments of its impact

suggest that it has the potential to significantly improve the way

third-party cyber risks are assessed and managed. Some of the

key benefits and emerging impacts of VEX on third-party risk

assessments are as follows:

1. Precision in vulnerability prioritization: one of the primary

advantages of VEX is that it allows organizations to focus on

vulnerabilities that are truly exploitable, rather than wasting

resources on vulnerabilities that may not pose a real threat.

In third-party risk assessments, this added precision helps

organizations more effectively evaluate the security posture of

their vendors and partners by identifying which vulnerabilities

in third-party software are exploitable within their operational

environment. This shift reduces false positives and minimizes

the burden of patching non-critical vulnerabilities.

2. Reduction of patch fatigue: third-party vendors often release

patches for vulnerabilities that may not be exploitable in all

environments. With VEX, organizations can more effectively

prioritize which patches to apply based on actual exploitability

data, reducing “patch fatigue” among IT and security teams.

This has been especially impactful in environments with
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extensive vendor relationships and dependencies, such as

cloud computing and SaaS providers, where constant

updates and patches can be overwhelming.

3. Improved supply chain risk management: VEX improves

transparency across the software supply chain by providing

explicit, machine-readable information about whether a

vulnerability in a software component is exploitable. This

enhanced visibility allows organizations to better manage

risks across their third-party ecosystem, which is crucial for

mitigating supply chain attacks such as those seen in incidents

like SolarWinds or Log4j. Initial industry feedback indicates

that organizations using VEX-enabled SBOMs can more

effectively respond to vulnerability disclosures and reduce

their exposure to third-party risks.

4. Integration with cyber insurance models: another emerging

impact of VEX is its potential role in cyber insurance

underwriting. By providing more precise data on the

exploitability of vulnerabilities in third-party software, VEX

enables insurance providers to better assess the cyber risk

posture of insured parties. This could lead to more accurate

pricing of cyber insurance policies and incentivise better

vulnerability management practices across the supply chain.

5. Enhanced regulatory compliance: VEX’s machine-readable

format aligns well with the increasing demands for

transparency and accountability in cybersecurity regulations.

In industries where compliance with security standards is

essential (e.g., healthcare, financial services), VEX can help

organizations demonstrate that they are addressing truly

exploitable vulnerabilities, thereby enhancing compliance

with frameworks like NIST 800-53 or ISO/IEC 27001. This

impact is particularly important in the context of third-party

risk management, where regulatory bodies are increasingly

requiring organizations to take greater responsibility for the

security of their entire supply chain.

8.7.3 Challenges to VEX adoption and its future
prospects

While VEX shows great promise, its adoption is still facing

several challenges:

• Standardization and Interoperability: although VEX is being

promoted as a standard, different vendors may interpret or

implement it differently, leading to issues with interoperability

between tools and platforms. Efforts are underway to establish

more unified standards and guidelines to streamline VEX’s use

across the industry.

• Education and awareness: many organizations are still

unfamiliar with VEX and its benefits. As with any new

standard, significant efforts are required to educate both

vendors and users on how to implement and leverage VEX for

more effective vulnerability management.

Nevertheless, with the continued regulatory push for software

transparency, the increasing complexity of supply chain attacks,

and the growing emphasis on third-party risk management, VEX

is likely to see broader adoption in the coming years. As more

organizations incorporate VEX into their SBOMs and vulnerability

management processes, its impact on improving third-party cyber

risk assessments will become more evident, contributing to a more

resilient cybersecurity ecosystem.

9 Discussion

9.1 Generalization of the proposed model
to real-world scenarios

While the BoT-IoT dataset provides a valuable basis for

developing and testing the proposed model for IoT cyber risk

assessment, it is essential to acknowledge that the model is designed

to be generalisable to a wide range of real-world IoT environments.

The challenges posed by the BoT-IoT dataset, such as botnet

attacks, DDoS scenarios, and other cyber threats, reflect a subset

of the broader set of cyber risks faced by IoT systems. However, the

proposed model is not limited to the specific characteristics of this

dataset and can be applied to other real-world scenarios in various

IoT ecosystems.

The key features of the model that enable its

generalization include:

a. Dependency modeling: the use of dependency modeling in

the proposed approach is highly flexible and can accommodate

different types of IoT systems, from smart homes to industrial

IoT (IIoT) environments. By focusing on the interactions and

interdependencies between IoT components, such as devices,

networks, and data flows,the model can be adapted to capture

cyber risks in complex, real-world systems where threats arise

from diverse sources. This is particularly important in real-

world deployments where different vendors, protocols, and

device architectures coexist, creating unique vulnerabilities.

b. Scalability to heterogeneous IoT environments: IoT systems

in real-world scenarios often involve heterogeneous devices

with varying levels of security and functionality. The proposed

model, by abstracting key risk factors such as network

topology, communication protocols, and device types, is well-

suited for application in environments where these elements

differ significantly. For example, in smart city infrastructure,

the same dependency-based risk assessment methodology

can be used to assess risks in traffic management systems,

connected energy grids, or public safety networks, despite the

differences in the nature of devices and data flows involved.

c. Inclusion of multiple attack vectors: the model is adaptable

to multiple attack vectors, beyond the botnet attacks simulated

in the BoT-IoT dataset. In real-world applications, IoT

systems are susceptible to a wide range of attacks, such as

malware infections, ransomware, zero-day vulnerabilities, and

data breaches. The proposed model’s flexible risk estimation

framework can be extended to incorporate new attack vectors

as they emerge, ensuring that it remains relevant in the ever-

evolving threat landscape.

d. Applicability to different IoT domains: although this study

focused on a dataset tailored to a specific subset of IoT

risks, the model can be applied to other critical domains

such as healthcare, industrial automation, and connected
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transportation. For instance, in healthcare IoT, where safety

and data integrity are paramount, the same risk estimation

principles can be applied to assess the cyber risks posed

by compromised medical devices or the failure of patient-

monitoring systems. Similarly, in IIoT environments, the

model can be adapted to assess risks in the context of supply

chain disruptions or physical damage caused by cyber-physical

system failures.

e. Adaptability to emerging IoT cybersecurity standards: the

model’s framework can also be integrated with evolving

IoT cybersecurity standards and regulatory frameworks. For

example, the NIST Cybersecurity Framework for IoT and

ISO/IEC 27001 standards provide guidelines that can be

mapped onto the proposed model’s structure, ensuring that

it remains aligned with industry best practices and can be

easily adopted by organizations seeking compliance with

these standards.

9.1.1 Real-world application examples
To illustrate the potential for generalization, consider the

following real-world examples where the model could be applied:

• Smart cities: the proposed model could assess the risks in

smart traffic systems, where compromised IoT devices like

traffic lights or surveillance cameras could lead to large-

scale disruptions.

• Healthcare IoT: In a hospital setting, the model could help

assess the risk of data breaches in IoT-connected medical

devices, such as insulin pumps or heart monitors, which could

have serious implications for patient safety.

• Industrial IoT: The model could be used in a factory setting

to assess risks to connected machinery, where a failure in one

system could cascade through others, disrupting the entire

production line.

In these cases, the dependency-based risk assessment and

mitigation strategies proposed in this model would be applicable

even when faced with varying device types, communication

protocols, and risk profiles.

While the BoT-IoT dataset served as a valuable starting point

for evaluating the model’s performance, the model is inherently

designed to be adaptable to real-world IoT environments that

extend beyond this dataset. Its flexibility, scalability, and ability

to accommodate new attack vectors make it highly generalisable

across a variety of sectors and use cases. Future work will focus

on further testing and refinement of the model in live IoT

environments to validate its effectiveness in mitigating cyber risks

across different domains.

9.2 Generalizability of findings on IoT and
risk transference

While this research benefited from substantial input and access

to Cisco’s cyber risk management environment, the findings on IoT

cyber risks and risk transference are designed to be generalizable to

a wide range of organizations beyond Cisco. Several factors support

this generalizability:

a. Common IoT risk factors: the IoT-specific risks identified

in this research, such as interoperability challenges, cascading

failures, and vulnerabilities in connected devices, are common

across many industries and sectors. These risks are not unique

to Cisco’s operational environment but reflect broader trends

observed in IoT ecosystems worldwide, such as in healthcare,

industrial automation, and smart cities. Therefore, the risk

transference strategies proposed in this research can be applied

to any organization facing similar challenges in managing

interconnected IoT devices.

b. Industry-agnostic risk transference strategies: the concept

of risk transference, particularly through mechanisms like

cyber insurance, is not exclusive to Cisco’s environment. Risk

transference frameworks, such as the ones discussed in this

study, apply universally to organizations that seek to mitigate

the financial and operational risks posed by IoT-related cyber

threats. For instance, cyber insurance policies, third-party

liability agreements, and outsourcing of security functions are

strategies used acrossmultiple industries to shift risk exposure.

As such, the recommendations made in this research can be

adopted by a variety of organizations seeking to develop robust

IoT risk management strategies.

c. Framework applicability across diverse IoT environments:

the dependency modeling approach used in this research

is flexible and adaptable, making it applicable to different

types of IoT deployments and architectures beyond Cisco.

By focusing on interdependencies between IoT devices,

data flows, and cyber-physical systems, this model can

be tailored to various operational environments, such as

connected manufacturing lines, smart healthcare systems,

and autonomous vehicle networks. The IoT risks and

mitigation strategies discussed in this research therefore

extend well beyond Cisco’s specific use case and are relevant

for organizations with similar IoT-driven infrastructures.

d. Global cybersecurity standards and practices: the findings

of this research are grounded in widely accepted cybersecurity

standards, such as the NIST Cybersecurity Framework and

ISO/IEC 27001, which are globally applicable and not specific

to Cisco’s internal practices. These standards promote best

practices in cyber risk management and can be adapted by

organizations of all sizes and sectors. The alignment of this

study’s findings with these international frameworks further

reinforces the generalisability of the results across different

organizational contexts.

e. Broader input from multiple experts: although Cisco

provided valuable insights, the research also incorporated

feedback from a variety of cybersecurity experts, representing

different specializations beyond Cisco’s operational

environment. This helped ensure that the findings,

particularly those related to risk transference and IoT

cyber risks, were not limited by the perspective of a single

organization. The collaboration with experts in IoT security,

network vulnerabilities, and cyber risk frameworks has

made the findings more applicable to a broader range

of organizations.
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The findings of this research are designed to be applicable

to organizations across various industries and sectors. The

identified IoT risks, dependency modeling, and risk transference

strategies reflect global trends and are supported by widely

accepted cybersecurity standards, making them highly relevant to

organizations seeking to mitigate IoT risks in diverse operational

environments. Future research could explore additional case

studies in different sectors to further validate the generalisability

of these findings.

9.3 Ensuring explainability and
transparency in AI/ML for dependency risk
analysis

The integration of AI/ML in dependency risk analysis

offers significant advantages, particularly in identifying complex

relationships and patterns that may not be apparent through

traditional risk assessment methods. However, one of the key

challenges associated with AI/ML in cybersecurity, and specifically

in IoT dependency risk analysis, is ensuring that the decision-

making process remains explainable and transparent. Stakeholders,

including cybersecurity professionals and decision-makers, must be

able to understand how AI/ML systems arrive at their conclusions,

especially in high-stakes environments like IoT, where decisions

may affect safety and critical operations.

To address these challenges, several strategies and best practices

can be implemented to improve explainability and transparency:

1. Use of explainable AI (XAI) techniques

Explainable AI (XAI) is an emerging field that focuses on

making AI and ML models more interpretable without sacrificing

performance. XAI techniques ensure that decisions made by AI

models can be traced back to understandable factors. When

applying XAI to dependency risk analysis in IoT systems, the

following methods can be utilized:

• Feature importance: in dependency risk analysis, ML

models typically analyze multiple features (e.g., network

traffic, device telemetry, historical attack data). Feature

importance techniques, such as SHAP (SHapley Additive

exPlanations) or LIME (Local Interpretable Model-agnostic

Explanations), can help explain which features had the most

significant impact on the model’s decision. For example, if the

model flags a specific IoT device as a high-risk point in the

network, the feature importance analysis can show whether

this is due to abnormal data traffic, historical vulnerabilities,

or dependency with critical systems.

• Model-agnostic approaches: these approaches enable the

analysis of complex models (e.g., deep learning or ensemble

methods) by generating interpretable approximations. LIME,

for instance, creates a locally interpretable linear model

around the prediction, helping to clarify how a black-

box model arrived at a specific conclusion regarding risk

dependencies in IoT systems.

2. Interpretable ML models

In some cases, using inherently interpretable models can be an

effective way to ensure transparency. While deep learning models

or complex neural networks may offer high accuracy, they can be

difficult to explain. Instead, opting for more interpretable models,

such as decision trees, random forests, or logistic regression, can

provide a clearer path from input data to decision output. These

models, though potentially less complex, offer higher explainability

in decision-making processes for dependency analysis.

For example, decision trees, which mimic human decision-

making logic, can be used to illustrate how specific vulnerabilities

or IoT device dependencies lead to a higher overall risk score. Each

branching point in the tree reflects a critical decision, making the

process transparent and easy to follow.

3. Traceability and auditability

For any AI/ML-based risk assessment model, it is crucial to

ensure traceability and auditability. This involves maintaining

logs and records that track every decision made by the AI/ML

system. These records allow cybersecurity analysts to trace the steps

leading to a specific risk prediction, ensuring that every decision

can be reviewed and validated post-decision.

• Traceable workflows: implementing a workflow that

tracks every action, from data ingestion to model training

and prediction, ensures that the decision-making process

remains transparent. These workflows can include detailed

documentation of which models were used, the data they were

trained on, and how predictions evolved over time.

• Model audits: regular audits of the AI/ML models used

for dependency risk analysis should be conducted to ensure

their outputs remain aligned with real-world data and

organizational goals. This process can involve reviewing how

new data affects predictions and making adjustments to the

models as necessary to maintain accuracy and transparency.

4. Human-in-the-loop systems

To maintain a high level of trust and transparency, many

AI/ML systems in cybersecurity integrate a human-in-the-loop

approach. This method involves human analysts in critical decision

points, allowing them to validate, refine, or override AI/ML-

generated risk assessments. This hybrid approach combines the

efficiency of automated analysis with the intuition and domain

expertise of human cybersecurity professionals.

In dependency risk analysis, human experts can review key AI-

driven decisions, particularly in cases where the model’s output

is uncertain or where the risks involve critical infrastructure.

By keeping humans engaged in the decision-making process,

organizations can ensure that all decisions are explainable and

supported by both machine intelligence and human judgment.

5. Transparency in data sources and model inputs

Ensuring transparency begins with the data inputs used to

train and operate AI/ML models. The types of data used for

dependency risk analysis, such as network traffic logs, vulnerability

databases, and IoT telemetry data, should be well-documented

and made available for inspection. This transparency ensures that

stakeholders understand the source of the model’s knowledge and

can assess whether the data used is relevant, up-to-date, and of

sufficient quality.

• Data provenance: documenting the origin of data, such as

which vulnerability feeds or IoT device logs were used, ensures
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that all stakeholders can understand the foundation of the

AI/ML model’s decisions. This is particularly important when

models incorporate third-party data, as the reliability of this

data directly affects the model’s output.

• Open datasets: wherever possible, using open datasets or

sharing anonymized data sources improves transparency

and allows third parties to verify the models. For instance,

the use of datasets like BoT-IoT or open vulnerability

databases ensures that the data sources can be scrutinized and

understood by a wider audience.

6. Clear risk reporting and visualization

One of the key ways to ensure transparency in AI/ML models

is to provide clear and understandable visualizations of the model’s

risk assessments. Dashboards that visualize key risk metrics, such

as the likelihood of exploitability, device dependencies, and impact

of failures, make AI/ML-driven decisions more interpretable for

non-experts. These dashboards should offer:

• Visual representations of how different IoT devices

are interconnected,

• Risk scores for individual devices or systems,

• Explanations of how changes in dependencies influence

overall system risk.

By providing clear and detailed risk visualizations,

organizations can help all stakeholders, from technical staff

to decision-makers, understand and trust the AI/ML outputs.

7. Model testing and validation

To ensure that AI/ML models used in dependency risk

analysis are both accurate and explainable, it is essential to

rigorously test and validate the models against real-world data. This

process involves:

• Benchmarking against known outcomes: testing the model

against historical data to ensure it makes accurate predictions

based on past incidents.

• Cross-validation: ensuring that the model’s predictions

generalize across different datasets and scenarios, helping

to confirm that it is robust and transparent in different

IoT environments.

• Regular updates: continuously updating the models with

new data and testing their performance ensures that the

AI/ML models stay relevant and interpretable as new IoT

vulnerabilities emerge.

Ensuring explainability and transparency in AI/ML models

for dependency risk analysis is crucial for maintaining trust in

the decision-making process. By leveraging XAI techniques, using

interpretable models, implementing human-in-the-loop systems,

ensuring transparency in data sources, and providing clear risk

visualizations, organizations can ensure that the AI/ML-driven

decisions are understandable and actionable. These steps allow

stakeholders to gain insight into how AI/ML models arrive

at their conclusions, building confidence in the overall risk

assessment process.

10 Conclusion

The findings of this research emphasize the critical need

for a comprehensive risk assessment framework tailored to

the unique challenges of IoT environments. Through the

development of a dependency-based cyber risk model, this

study highlights the significance of interdependencies among

IoT components in understanding and mitigating cyber risks.

The integration of AI/ML techniques enhances the model’s

adaptability, offering dynamic risk assessments based on real-

time data, while ensuring transparency through explainable

AI (XAI) methodologies. Furthermore, the exploration of risk

transference strategies such as cyber insurance demonstrates

practical approaches for mitigating financial and operational

impacts. By empirically validating the model using the BoT-IoT

dataset, the research provides a robust tool that can be generalized

across diverse IoT domains, contributing to the development of

a more secure and resilient IoT ecosystem. These contributions

lay the groundwork for future advancements in IoT cybersecurity,

particularly in refining AI-driven solutions and addressing the

evolving landscape of IoT threats.

This article reviews existing literature on emerging trends in

IoT risk assessment, including the emergence of the Software Bill

of Materials (SBOM), the Vulnerability Exploitability eXchange

(VEX) and the Common Security Advisory Framework (CSAF).

Although there is a wealth of research on the values of a Bill

of Materials in cyber risk assessment, there is very little work

on the software components used in low-cost IoT devices. The

Software Bill of Materials (SBOM) was developed to address this

issue, but analyzing vulnerabilities from SBOMs usually results in

a serious workload for cybersecurity professionals. Much of this

process can be automated, and in this article, we reviewed some

potential solutions for such automation. The article proposes a

dependency model based on the goal-oriented approach, designed

to be compliant and supportive of the new Stakeholder-Specific

Vulnerability Categorization (SSVC) based on decision trees.

Through reviewing existing risk methods, in this paper, we

determined that the existing models, individually, do not provide

solutions for impact estimation of IoT cyber risk in autonomous

systems. This research builds upon integrating the existing models

and presents a unifying model incorporating IoT cyber risks in

the impact estimation. The challenge in testing and verifying this

new “combined/unified model” and ensuring that the new model

addresses the IoT context is resolved with dependency modeling.

To test and verify the new model, we designed dependency

relationships. In Figure 2 we describe what the connections

(arrows) mean, and how dependencies are expressed, and we give a

description of dependency presented in the paper. The proposed

cyber risk assessment with a unified model and dependency

modeling is designed to estimate IoT risks, the impacts caused by

failures that cascade and aggravate the impacts from one affected

system or component to another. Since IoT risks are decentralized

through networked objects, such risk is often invisible in the risk

assessments with methodologies designed for general cyber risk

assessment. Our approach is designed to advance the IoT risk

assessment discipline. It considers the dependencies in “no-win”
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scenarios, where each scenario leads to a risk we cannot protect

from. The dependency states we considered are risk acceptance and

risk transference.

This paper provides an overview of the current IoT cyber risk

assessment research, with specific newmodels on this topic, such as

dependency modeling and cyber risk mitigation and transference

strategies (e.g., cyber risk insurance). The paper refers to several

models and risk assessment articles and technical publications that

have emerged recently in the research literature. This research is

important because it covers the lack of specific standards to govern

the assessment of IoT cyber risk. The paper contributes to the

current efforts to advance the understanding of risk in IoT systems

and to produce a standardized design and a holistic approach

for IoT risk assessment. Although our unified approach though

dependency modeling does not resolve all the issues we identified

in this article, this work represents an important step forward for

the discipline.

In this article, what we argue is that what is really needed

to improve cyber risk assessment, are rigorous mathematical and

verifiable experimental results. Hence, we have conducted this

work in collaboration with the FAIR Institute (Factor Analysis of

Information Risk), the North Carolina Chapter of FAIR (2023),

and we applied the FAIR by design principles (Wilkinson et al.,

2016). We are one of the leading protagonists in using quantitative

methods, instead of the currently used qualitative and hybrid

cyber risk assessment methods. That, however, needs confidence

intervals, time bound ranges, frequency, distribution, and many

other data inputs that we currently do not have. We argue that

when AI/ML can be shifted to the IoT devices operating at

the edge of the network, this data could be possible to collect

autonomously, and that would enable moving on from qualitative

and hybrid assessment, into a qualitative cyber risk assessment

that uses rigorous mathematical reasoning to deliver verifiable

experimental results.

10.1 Limitations of this study and
opportunities for further research

Using the new design of a unified and holistic model for IoT risk

assessment and riskmanagement without the required probabilistic

risk data remains a challenge. To test and verify the new design,

this study applied the case study research method, conducted

individual interviews, and conducted workshops with Cisco experts

in cybersecurity. To prove the new design further, we also

conducted 6-month long action research with Cisco and recorded

the performance of the design, then made iterative improvements

to ensure functionality in different real-world environments. The

solution presented in this paper is the final version of the new

design; multiple versions were tested in the process. However, most

failed in the application stage, usually because they have proven

challenging to implement or even to understand by experts who

didn’t build the method. The selection criteria were based on

the experts’ ability to understand and use the new process. The

rationale behind this was that if a cybersecurity expert cannot use

the system, it would be almost impossible to train a non-expert to

use the system, and occasionally, we require different expertise in

the risk assessment process.

Prior to attempting to use the new unified/holistic model,

appropriate data strategies should be developed that would enable

the collection of probabilistic data. Given the lack of standards

and regulations on developing the required data strategies (for

IoT cyber risk), it seems that private sector is leading these efforts

rather than national statistical offices. However, without standards,

regulations, and policies in place, it is hard to see how individual

data strategies of private companies could be synchronized

to enable sufficient probabilistic data for a comprehensive

understanding of IoT cyber risks. To promote advancements in

collection of probabilistic data through appropriate data strategies,

further research should focus on the combination of regulations,

standards, and policies on data collection of IoT risk, artificial

intelligence for data collection from IoT sensor networks, IoT data

safety, IoT cyber security and data collection from IoT equipment,

along with ethics of machine learning in IoT cyber risk data

collection. Interdisciplinary research such as this would benefit the

process of identify a dynamic and self-adapting system supported

with AI/ML and real-time intelligence for predictive cyber risk

analytics for edge computing. The current state of our knowledge

on this topic is that ‘overcoming the alleged limitation of model-

centric AI may well require paying extra attention to the alternative

data-centric approach’ (Hamid, 2022). In other words, the current

position in existing literature is that to resolve the problem with

absence of probabilistic data, we need to look at how we structure

our data strategies, and then consider the algorithms we use, in

combination with the data states and properties. We must note

that applying the proposed holistic model for IoT risk assessment

and risk management is a challenge in the absence of relevant

probabilistic data. This in turn requires developing appropriate

data strategies to enable the collection and processing of required

probabilistic data. This links to the currently increasing demands

on developing data-centric approaches in the development of

AI technologies which, with machine learning (ML) techniques,

forward to the development of the IoT. This would enhance our

capacity for a comprehensive understanding of the opportunities

and threats that arise when edge computing nodes are deployed,

and when AI/ML technologies are migrated to the periphery of the

internet and into local IoT networks.
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