
Pears, Jonah, Bocchi, Laura and Hu, Raymond (2024) Erlang on TOAST: Generating
Erlang Stubs with Inline TOAST Monitors. In: Erlang 2024: Proceedings of the
23rd ACM SIGPLAN International Workshop on Erlang. . pp. 33-44. ACM ISBN
979-8-4007-1098-8.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/107136/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3677995.3678192

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/107136/
https://doi.org/10.1145/3677995.3678192
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Erlang on TOAST: Generating Erlang Stubs with Inline
TOAST Monitors∗

Jonah Pears
University of Kent

Canterbury, United Kingdom
jjp38@kent.ac.uk

Laura Bocchi
University of Kent

Canterbury, United Kingdom
l.bocchi@kent.ac.uk

Raymond Hu
Queen Mary University of London

London, United Kingdom
r.hu@qmul.ac.uk

Abstract

Implementing concurrent systems based on asynchronous
communications is intrinsically complex. In this work, we
consider the formal framework TOAST for timed asynchro-
nous interactions featuring mixed-choice states. TOAST ex-
tends the theory of timed asynchronous session types to
support modelling of communication protocols featuring
timeouts, which despite being commonplace in practice were
previously out of reach for session type theory. We present
ongoing work towards a practical toolchain that (a) auto-
mates the generation of correct-by-construction program
stubs with timeouts in Erlang from TOAST processes that
implement a TOAST protocol, and (b) provides an inline
monitoring framework for TOAST protocols integrated with
Erlang supervisors. Our toolchain generates Erlang code
with a close correspondence to the source TOAST model by
building on a formal correspondence between session types
and Communicating Finite State Machines. The monitoring
framework can be con�gured to perform either runtime ver-
i�cation or enforcement with respect to the source protocol,
ensuring communication safety.

CCS Concepts: • Theory of computation→ Formal lan-

guages and automata theory; Concurrency; • Software and

its engineering → Source code generation; Monitors; •
Networks→ Network protocols.

Keywords: Code generation, Erlang, Timed Protocols, Run-
time monitors, Asynchronous Communication

ACM Reference Format:

Jonah Pears, Laura Bocchi, and Raymond Hu. 2024. Erlang on

TOAST: Generating Erlang Stubs with Inline TOAST Monitors.

In Proceedings of the 23rd ACM SIGPLAN International Workshop on

∗This work has been partially supported by EPSRC project EP/T014512/1

(STARDUST) and the BehAPI project funded by the EU H2020 RISE under

the Marie Sklodowska-Curie action (No: 778233).

Erlang ’24, September 2, 2024, Milan, Italy

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1098-8/24/09

h�ps://doi.org/10.1145/3677995.3678192

Erlang (Erlang ’24), September 2, 2024, Milan, Italy. ACM, New York,

NY, USA, 12 pages. h�ps://doi.org/10.1145/3677995.3678192

1 Introduction

Implementing concurrent systems with asynchronous com-
munication is intrinsically complex. Such systems are often
distributed and prone to failure [18]. Session types [4, 16, 17]
is a type theory for concurrent communicating processes
that o�ers formal methods for specifying and verifying the
communication protocol between the processes.
Recently proposed in [26] is a formal framework called

TOAST, standing for TimeOut Asynchronous Session Types.
It extends the theory of timed asynchronous session types [6,
8] to support safe instances of mixed states. A protocol state
is ‘mixed’ if the next action can be chosen from a set in-
cluding both send and receive actions. In contrast, session
types normally feature states that are either just sending or
just receiving. TOAST enables modelling of an important
class of protocols that feature interactions with timeouts,
and supports reasoning about safety properties of such time-
sensitive protocols, i.e., that the protocol is free of errors
such as reception-errors and deadlocks. Previously, the re-
strictions imposed by asynchronous session types to ensure
safety prohibited mixed-choice states and timeouts.
In this paper, we build on TOAST theory [26] to present

our ongoing work towards a practical toolchain [1] for speci-
fying and verifying asynchronous communication protocols
featuring timeouts in Erlang. Our toolchain aims to (a) au-
tomate the generation of correct-by-construction program
stubs with timeouts (and other mixed-choice) in Erlang from
TOAST processes that implement TOAST protocols, and
(b) provide a transparent inline monitoring framework for
TOAST protocols that can be integrated with Erlang super-
vision trees, to ensure our stubs continue to adhere to their
source TOAST model once users expand upon them with
functionality for their speci�c use case. The code genera-
tion builds upon the formal correspondence between session
types and Communicating Finite State Machines (CFSM) [12]
to build the stubs incrementally.
Altogether, our toolchain ensures that the Erlang imple-

mentation and execution of a TOAST process that correctly
implements a well-designed TOAST protocol is safe by a
combination of correct-by-construction code generation and
inline monitoring: the protocol is free of stuck-errors such
as deadlocks, and all communication behaviours are either

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

33

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4492-4072
https://orcid.org/0000-0002-7177-9395
https://orcid.org/0000-0003-4361-6772
https://doi.org/10.1145/3677995.3678192
https://doi.org/10.1145/3677995.3678192
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677995.3678192&domain=pdf&date_stamp=2024-08-28

Erlang ’24, September 2, 2024, Milan, Italy Jonah Pears, Laura Bocchi, and Raymond Hu

veri�ed or enforced to comply with the protocol (dependent
on con�guration). We show that our toolchain can (a) fa-
cilitate the design of application-level protocols, (b) o�er
formal guarantees of safety, and (c) aid in the development
of implementations whose behaviour is faithful to the model.

Toolchain Overview. Shown in (1) is an overview of the
toolchain we present in this work, for generating Erlang stub
programs with runtime monitors from TOAST models.

(1)

Our work builds upon the theoretical work aof [26, 27]
which presented TOAST types and TOAST processes.

Hereafter, we refer to TOAST types as protocols. An ex-
tension of [26] is currently in progress [27], which presents
b a typing system checking a TOAST process correctly im-
plements a given TOAST protocol. Our toolchain c can take
as input either a TOAST process formulated using our Er-
lang API, or the TOAST process itself which our tool can
automatically translate into our Erlang API. We discuss the
di�erences between the two in Section 3 and Section 8.

Contribution Outline. Section 2 provides an introduction
to the theoretical background of TOAST. An outline of our
toolchain is presented in Section 3, and Section 4 provides de-
tails on how we generate stubs with some examples, and Sec-
tion 5 describes our runtime monitors. In Section 6 we study
a use case protocol, ‘Two Factor Authentication’ and discuss
the di�culties that can arise when bridging the gap between
designing and implementing time-sensitive protocols. Sec-
tion 7 discusses related work. In Section 8 we conclude with
a closing discussion and outline future work.

2 Background on TOAST

Session types [4, 16, 17] formally model the behaviour of
processes in concurrent systems that interact via message-
passing as part of an ongoing communication session. A ses-
sion type speci�es how interactions should occur in a session:
send or receive, the message types, and their causality with
other interactions. Timed session types [6, 8] further express
timing constraints for the interactions. TOAST [26, 27] is
an extension with safe mixed-choice that enables modelling
behaviours previously out of reach, such as timeouts.
In TOAST protocols, each interaction consists of: (i) a di-

rection of communication, either sending (!) or receiving (?),

(ii) a message label, (iii) a condition tuple of time constraints
and a set of virtual clocks to reset, and (iv) are pre�xed by
‘.’ to the continuation protocol. Eventually, a protocol either
reaches with an ‘end’ or loops recursively.
As an example, in (2) (is a TOAST protocol modelling a

server that waits for a message a with a timeout of 5 time
units (seconds, say). If a is not received within 5 seconds,
then (instead sends a noti�cation b and retries to execute (.

(=

{
?a(G � 5,∅) .end, !b(G = 5, {G}).(

}
(2)

Concretely, the behaviour of (as de�ned in (2), is a choice
(curly brackets) between: (i) to receive a message a within
5s and then terminate, or (ii) to send a message b at any
time after 5 seconds and continue as ((recursively).1 Such
choices are called ‘mixed-choice’ since they o�er a ‘mix’ of
both send and receive actions. Time constraints are expressed
on a clock G that is local to (and is initially set to 0. A clock
can be reset to express relative time constraints. For instance,
in (, clock G is reset after the sending of b. Since G is reset
before each iteration of the loop, this de�nes the behaviour
of (as repeatedly send b at a rate of 5s until a is received
and then (terminates.2

Safety. One advantage of timed session types is the notion
of well-formedness [26], which acts as a sanity check that
protocols are not intrinsically �awed, namely that they are
safe. In the scope of this paper, we say a protocol is safe if it
satis�es two properties: feasibility and stuck-freedom.

Feasibility. A protocol is feasible if there exists an imple-
mentation that satis�es its constraints. For example, in (3)
(� models a server that waits for a request that will arrive
by time 5, and then replies by time 3. In a contract between a
client and server, the server is guaranteed to receive request
by time 5, yet is required to send a response by time 3.

(� = ?request(G ≤ 5). !response(G ≤ 3).end (3)

While there are instances where (� is able to progress and
terminate successfully, the protocol is infeasible since, if
request arrives at time 4, then the server is unable to ful�l
its obligation of sending response by time 3.

In order to amend the protocol in (3), one could, for exam-
ple, reset G after receiving request, or postpone the deadline
for sending response.3 Unlike the protocol in (2), (� does
not have a ‘timeout branch’ specifying how the server should
behave if no request arrives by time 5.

Stuck-freedom. A protocol is stuck-free if neither client
nor server ever get stuck in a state due to waiting to receive
a message that will never arrive. Consider the protocol ((
together with its dual client �(in (4). We say �(and ((are

1Note: for accessibility we use a simpli�ed notation to the standard in [26].
2In line with the semantics of receive-after in Erlang, the timeout action

(!b) can only happen if no message matching a is received while (G < 5) .
3Latency can be encoded into the model but it not shown here for simplicity.

34

Erlang on TOAST: Generating Erlang Stubs with Inline TOAST Monitors Erlang ’24, September 2, 2024, Milan, Italy

dual since they share the same interaction structure and tim-
ing constraints but have opposing communication directions
(and they have independent local clocks G and ~).

((=

{
?a(G ≤ 5).end,

!b(G ¡ 0, {G}).?a(G ¡ 0).?c(G ¡ 0).end

}

�(=

{
!a(~ ≤ 5).end,

?b(~ ¡ 0, {~}).!a(~ ¡ 0).!c(~ ¡ 0).end

} (4)

((is not stuck-free: if after 2 seconds both parties decide
to send a and b, respectively, then the client will terminate
while the server will consume a and wait to receive c forever,
getting stuck. Stuck-freedom also rules out deadlocks, where
a party gets stuck waiting to receive from the other party.

Safe Mixed-choice and Timeouts. The expressive power
of TOAST lies within its ability to model safe mixed-choice,
which encapsulate the behaviour of timeouts and dually,
co-timeouts along with other behaviours. (We discuss co-
timeouts in Section 4.4. Put brie�y, while a timeout waits
to receive before sending, a co-timeout must send within a
given time range before then waiting to receive.) A mixed-
choice is an interaction pattern where a process is able to
perform either a send or receive action from the same state.
For example, both (2) and (4) feature mixed-choice be-

tween exchanging a or b from one party to another. Mixed-
choice, especially when combined with asynchronous com-
munication, have been ruled out by previous work on session
types, as they may be unsafe. In fact, we observed in (4) that
mixed-choice with unruly time-constraints can even lead
dual participants to get stuck by becoming incompatible.

The main contribution of TOAST [26] is how to structure
mixed-choice in such a way that it is safe and hence, capable
of modelling timeouts, by using a notion of well-formedness.
Concretely, well-formedness is a decidable algorithm that, for
each state, ensures: there is always at least one viable future
(feasibility) and, there only actions of the same direction may
occur at the same time, and actions with di�ering directions
must occur in disjoint periods of time (stuck-freedom).

For example, recall protocol (4) is not stuck-free since there
is a mixed-choice between the client sending a and receiving
b at the same time, since (G ≤ 5) and (~ ¡ 0) are both true
when initially G = ~ = 0 and (~ = G) ≤ 5. By contrast,
protocol (2) is stuck-free, since the timing constraints on
sending and receiving actions have no intersection.
TOAST allows us to express mixed-choice, which under-

pin a very common programming pattern: timeouts, both
those that would yield a termination of a session, and those
with continuations such as ones that could be expressed
with the Erlang ‘receive-after’ expression. More complex
behaviour can also be expressed, such as more than one in-
terleaved sending and receiving intervals (nested timeouts)
and, interactions with multiple clocks (useful to model ab-
solute and relative constraints in the same protocol). The
main contribution of the (under review) extension [27] of

TOAST [26] is a typing system for checking TOAST pro-
cesses adhere to TOAST protocols. Both the well-formedness
and the type-checking algorithm rely on a Simple Theorem
Prover (STP) Solver to reason on time constraints. Put brie�y:
(i) a well-formed TOAST protocol is guaranteed to be free
from deadlocks and enjoy progress [26]; (ii) a well-typed

TOAST process has been statically type-checked to only
behave as prescribed by a TOAST protocol.
In this paper we address the problem of generating safe

implementations and monitors from safe TOAST processes.
We assume that a given TOAST process is well-typed against
a well-formed TOAST protocol.

3 A TOAST-to-Erlang Toolchain

3.1 TOAST Processes in Erlang by Example

Our toolchain relies on an Erlang API for de�ning TOAST
processes which implement TOAST protocols. Following [26,
27], our Erlang API supports the construction of protocol
implementations composed of send and receive actions with
time constraints, safe mixed-choice and recursion.

We require the following adaptations to the time-sensitive
components of TOAST in order to integrate with Erlang.
Firstly, due to the behaviour of the ‘receive-after’ pattern in
Erlang, we can model the behaviour of inclusive constraints
(i.e., ≥, ≤ and =) but not exclusive constraints (i.e., ¡,� or ≠).

Secondly, the timers native to Erlang count downwards
from a set value, and upon reaching 0 send a message to a
prede�ned process. However, the timers in TOAST processes
count upwards from 0 when set, and their values can be
used for conditional statements for time-sensitive selection.
Therefore, when de�ning a TOAST process using our Erlang
API, it is typical to de�ne a new timer in the Erlang API
for each condition imposed on a timer, as this provides the
upper-bound necessary. (See Example 3.1.) In practice, either
can be used as input since our toolchain can automatically
translate TOAST processes to our Erlang API.

Example 3.1 (TOAST Process Timers & Erlang API). For
example, consider the following TOAST process:

% = set(G).delay(C ≤ 7).if (G = 0)then &1

else if (G � 5)then &2

else &3

(5)

In (5), some TOAST process % sets a timer G and experiences
a non-deterministic delay of up to 7 time units in duration. If
there is no delay (i.e., G = 0) then % proceeds as process &1.
Else, % proceeds as &2 if G � 5 and otherwise as &3. Such a
TOAST process translates to the following Erlang API:

1 _P() ->{timer ,"x0",1,{timer ,"x5" ,5000,_P1()}}.

2 _P1()->{delay ,7000,{if_timer ,"x0",_P2(),_Q1()}}.

3 _P2()->{if_timer ,"x5",_Q2(),_Q3()}.

where _Q1(), _Q2() and _Q3() are further Erlang API which
correspond to &1, &2 and &3 in (5) respectively. Notice on
line 1 of the above: (a) timer x0 is set with duration 1, and (b)

35

Erlang ’24, September 2, 2024, Milan, Italy Jonah Pears, Laura Bocchi, and Raymond Hu

for each occurrence of G in the time constraints of the TOAST
process in (5), we de�ned distinct timers in the Erlang API.
For both (a) and (b), consider the Erlang snippet below:

1 P() -> erlang:start_timer (1,self(),timer_x0),

2 erlang:start_timer (5000, self(),timer_x5),P1().

3 P1() -> timer:sleep(rand:uniform_real () *7000) ,

4 receive {timeout ,_TID ,timer_x0} -> P2()

5 after 0 -> Q1() end.

6 P2() -> receive {timeout ,_TID ,timer_x5} -> Q2()

7 after 0 -> Q3() end.

The above corresponds to (5) and the previously shown Er-
lang API. (Note: the above is a simpli�ed Erlang code snippet
implementing (5), and only serves to expose the approach
used by our tool when generating Erlang stubs.)

As before, P() (lines 1–2) initialises the timers and proceeds
to P1(). While it is possible to read the value of an Erlang
timer, since an upper-bound is always required, this approach
has shown to be simple and e�ective for our purposes.

Observe P1() on lines 3–5 which reads, delay for a random
duration between 0 and 7 seconds, if ‘timer_x0’ has completed,
then proceed to P2(), since following (5) we should only
proceed to Q1() if no delay has been experienced. Otherwise,
in the case of a delay we proceed to P2(). Similarly, observe
P2() on lines 6–7, which more intuitively follows (5) and
reads, if ‘timer_x5’ has completed then proceed to Q2(), else
Q3(). The use of after 0 enables the mailbox to be checked
for the message from the timer in a non-blocking manner. If
the timer has not completed yet (i.e., less than 5 time units
have passed) then we are able to proceed to perform the
corresponding action in Q3(). △

Example 3.2 (Simple Timeout). Recall the TOAST protocol
in (2). We de�ne an implementation using the Erlang API:

1 S() -> {timer ,"x5" ,5000, {rec ,"A", {

2 act ,r_a ,endP , aft ,"x5", {

3 act ,s_b ,{timer ,"x5" ,5000, {rvar ,"A"}}}}}}.

While in the theory all clocks are initially 0, in our Erlang
API, all timers must be set to an initial value. Above, we set
timer x5 to 5000 milliseconds, de�ne a recursive point A and
then, wait to receive a until timer x5 reaches 0, at which point
if a has not been received, we then send b. After sending b,
we then reset timer x5 before then looping back to A.

Alternatively, (2) can be expressed without using timers:

1 S() -> {rec , "A", {act , r_a , endP ,

2 aft , 5000, {act , s_b , {rvar , "A"}}}}.

We discuss when timers must be used in Section 4. △

Remark 3.3 (Equality Constraints). Recall Example 3.1,
where for the constraint (G = 0) we utilise a timer with
minimal duration (1ms) to determine if there had been any
delay at all. When implementing the behaviour of other such
constraints, where for some timer ~, we say (~ = =), then
we follow similarly to Example 3.1, by de�ning two timers,
one set to = in milliseconds and the other of = + 1ms. △

3.2 From TOAST Processes to Finite-State Machines

Given a TOAST process de�ned using our Erlang API, our
tool begins by extracting a �nite-state machine (FSM) which
is used internally for generating code. This is common in
other works that generate code from session types [5, 9,
10, 13, 20–22, 25] following the close correspondence be-
tween session types and communicating �nite state ma-
chines (CFSM) [12]. Due to the encoding of TOAST clocks
and constraints using Erlang timers discussed in Section 3.1,
we use an intermediate representation of FSMs that di�ers
from the formal Communicating TimedAutomata (CTA) [19]
that most directly correspond to TOAST theory. This inter-
mediate representation is only used internally by the tool,
for the joint purposes of generating: (a) Erlang stubs and, (b)
protocol speci�cations used by our monitors.
The internal FSM representation is untimed since we do

not model the behaviour of clocks. Instead, we extend the
kinds of edges the FSM supports to encapsulate the additional
information. For example, (2) is equivalent to:

S1 S0

?a (x < 5, ∅)
!b (x = 5, {x})

(6)

where (= (1. However, upon using as input to our tool (2)
written using the Erlang API (shown in Example 3.2), our
tool instead produces the following internal representation:

S1 S0 S′

0

?a τ : (x = 5, {x})

!b (7)

As shown in (7), mixed-choice are transformed from one
‘mixed’ state, to a series of non-mixed states, connected via
silent actions (g) that correspond to an interval between send-
ing or receiving actions. The FSM representation simpli�es
the process of generating our stubs, by allowing each edge
to be built in isolation from Erlang snippets.

3.3 From FSMs to Erlang Stubs

Using the internal FSM extracted from a given protocol, our
tool then proceeds to traverse the FSM depth-�rst in order
to generate the stubs. Put brie�y, we handle each state de-
pending on a classi�cation that re�ects the kinds of outgoing
edges it has. We build our stubs by combining snippets that
correspond to both the state as a whole, and each outgoing
edge. We handle recursion by moving the body of the loop
into a new tail-recursive function, which is entered via a
function call in the outer-scope. We discuss this in Section 4.

3.4 From FSMs to Runtime Monitoring

Once we have obtained the internal FSM, our tool then con-
verts it to a more accessible format that our monitoring
template can use to either perform runtime veri�cation of a
process, or runtime enforcement. (For more details on run-
time monitoring see [2, 14].) Our monitors are intended to be
used within Erlang supervision trees, so that any violation

36

Erlang on TOAST: Generating Erlang Stubs with Inline TOAST Monitors Erlang ’24, September 2, 2024, Milan, Italy

of their prescribed protocol yields a measured response from
the system, as speci�ed. Our monitors are a single Erlang
�le template, and are capable of monitoring the interactions
of an assigned process against a protocol speci�cation auto-
matically generated from the Erlang API when generating
the stub programs. As part of our toolchain, this protocol
speci�cation is derived from our TOAST protocols, via the
internal FSM. We discuss our monitors further in Section 5.

4 Erlang Stub Generation

We explain how our toolchain generates program stubs from
TOAST processes that are well-typed against a well-formed
TOAST protocol. We �rst provide further details of our Er-
lang API which our tool uses as input and can be automat-
ically translated from TOAST processes. We rely upon the
fact that a TOAST process that is well-typed against a well-
formed TOAST protocol, since it provides us with certain
guarantees of the behaviour of the TOAST process, without
having to worry about reasoning on the potentially far more
complex timing constraints of TOAST protocols in Erlang.
This streamlines the process of going from the theory of
TOAST processes to our Erlang API, and ultimately, Erlang
stubs. The mapping between TOAST processes and our Er-
lang API is included in the tool [1]. This section provides a
conceptual overview of the mapping between these two.

Erlang API for TOAST Processes. Below we provide an
overview of the constructors provided by our Erlang API:
(a) {timer, t, n, S} creates an Erlang timer named t with a
duration n and continues to S. (b) {act, a, S} allows action
a to be performed with continuation S. (c) A simple time-
out: {act, a, S1, aft, d, S2} behaves similarly to (b) except
action a must be performed before duration d elapses, where
d is either: an integer duration in milliseconds or, a timer

t from (a). Output selection and input branching are speci-
�ed by {select, [{a1, S1},...]} and {branch, [{a1, S1},...]}

respectfully. Both are capable of specifying a timeout, as
in (c). Beyond timeouts, {if_timer, t, S1, S2} behaves as S1

if timer t has completed, or as S2 otherwise. The opposite
behaviour is corresponds to {if_not_timer, t, S1, S2}. Re-
cursive de�nitions and calls are speci�ed by {rec, r, S} and
{rvar, r} respectfully, where r is a recursive variable. Delays
are speci�ed by {delay, d, S}which behave as S after delay d.
Successful terminations are denoted by endP while protocol
violations are denoted by error.

In the following subsections, we explain how behaviour
speci�ed by TOAST protocols and TOAST processes corre-
sponds to Erlang code through examples of core communica-
tion protocol patterns and interaction structures, and aim to
provide some insight into how our tool builds Erlang stubs.

4.1 Delays, Constraints & Errors

Consider the protocol below, which features two interactions,
each constrained by an upper and lower bound:

� =

{
?a(1 � G ≤ 5,∅).end, !b(7 � G ≤ 9,∅).end

}
(8)

The time constraints of � describe two intervals, (1, 5) and
(7, 9), separated by a gap of 2s. The protocol in (8) can be
written using the Erlang API as follows:

1 E() -> {delay , 1000, {

2 act , r_a , endP , aft , 4000, {delay , 2000, {

3 act , s_b , endP , aft , 2000, error}}}}.

Above, the delay requires that the process waits 1 second
before starting to receive a, matching the lower bound of
constraint (1 � G ≤ 5) in (8). The upper bound is rendered
using aft. Next, we model the lower-bound of sending bwith
a 2s delay. Finally, in order to capture the upper-bound of
9s for sending b, we introduce a timeout leading to error .
Here, reaching error corresponds to violating the protocol,
and can be handled by adding appropriate action at the level
of the implementation. An alternative way to write � using
the Erlang API is by using explicit timers as shown in (8):

1 E() -> {timer , "x5", 5000, {timer , "x7", 7000,

2 {timer , "x9", 9000, {delay , 1000, {

3 act , r_a , endP , aft , "x5", {delay , "x7", {

4 act , s_b , endP , aft , "x9", error}}}}}}}.

While either of the above could be valid mappings of (8), in
our automation of the mapping we are opting for the latter
for generality, to rely on the �exibility of timers with respect
to hard-coded constraints. A hard-coded value for an ‘after’
branch is prone to allowing a process to receive for longer
than intended, in the case where the process experiences
prior delays. However, we can use timers to address this
issue, since they are a separate process, they are una�ected by
delays the main process experiences (intended or otherwise).

Interleaved Mixed-choice. TOAST allows for protocols
where a mixed state has multiple intervals in which send
and receive action interleave. For example:

(1 =

{
?a(G ≤ 5,∅) .(2, !b(5 � G ≤ 7,∅) .(3, ?c(G ¡ 7,∅) .(4

}

Implementing the behaviour of such a protocol (or its dual)
as a TOAST process is straightforward, by using timers com-
bined with time-sensitive conditional statements. Such a
TOAST process maps to the following Erlang API:

1 S1() -> {timer ,"x5" ,5000, {timer ,"x7" ,7000,

2 {act ,r_a ,S2(), aft ,"x5", {if_timer ,"x7",

3 {act ,s_b ,S3()}, {act ,r_c ,S4()}}}}}.

Basically, S1() behaves as a timeout in interval (0, 5) and as a
co-timeout in interval (5, 7) (namely as the party that has to
provide a message bwithin a deadline). The input notation of
S1() uses a conditional statement on a timer x7 to express this
situation: if you are in time then send b otherwise receive c.

37

Erlang ’24, September 2, 2024, Milan, Italy Jonah Pears, Laura Bocchi, and Raymond Hu

Multiple clocks. The following example illustrates the map-
ping of a recursive feeds-server that uses multiple clocks.

(� =

{
!stop(20 ≤ ~).end, !feed(G ≤ 1 ∧ ~ � 20, {G}).(�

}

(� models a server that repeatedly produces feeds at the pace
of 1s and stops after 20s. The feeds-server corresponds to a
TOAST process which maps to the following Erlang API:

1 Sf() -> {timer ,"x1" ,1000, {timer ,"y20" ,20000,

2 {rec ,"Sf", {if_timer ,"y20",

3 {act ,s_stop ,endP},

4 {delay ,"x1", {act , s_feed ,

5 {timer ,"x1" ,1000, {rvar ,"Sf"}}}}}}}.

Above, the timer y20 is used to track the total amount of
time the feeds-server has been looping. Only once 20s have
elapsed does the feeds-server send stop. Before y20 reaches 0,
the feeds-server sends feed at a rate no faster than every 1s.

4.2 Stub Behaviour

By default, generated stubs include a �le named stub.hrl

which contains a palette of useful functions utilised by our
tool during generations.We choose tomove this behaviour to
an Erlang header �le to improve the readability and mitigate
duplicated code. Each function in our stubs take two param-
eters: (1) the process ID of the other party in the sessions
(CoParty) and, (2) a map to store necessary data accumulated
as the program runs (Data). When initially generated, the
map Data is intended to store the timers started and any mes-
sages received by the program; although, the user may store
additional information in Data when they extend the stub.

4.3 Simple Timeout Stub

Erlang is capable of implementing the behaviour of a timeout
directly, thanks to the ‘receive-after’ expression. A program-
mer may choose to implement the behaviour of (2) using:

1 S(CoParty , Data) ->

2 receive {CoParty ,a,Payload} -> exit(normal)

3 after 5000 -> CoParty ! {self(),b,some_data},

4 S(CoParty , Data) end.

Note the format of the messages exchanged: a triple com-
prised of the process ID, message label and message payload.
Our tool utilises the ‘receive-after’ expression of Erlang,

and also systematically implements functionality to aid the
user when expanding the stubs, including: (1) State-by-state
date isolation, providing the user with a distinct Data variable
for each state, before any actions are performed. (2) Auto-
matic saving of received messages to Data. (3) Placeholder
functions for acquiring payloads to send as part of a message.

Below is an example of the kind of code generated by our
tool from the protocol (with timers) in Example 3.2 for (2):

1 main(CoParty ,Data) ->

2 {Data1 ,_TID_x5} = set_timer(x5 ,5000, Data),

3 S(CoParty ,Data1).

The function call (set_timer(x5,5000,Data) on line 2 will cre-
ate a new timer (via erlang:start_timer(x5,self(),5000) and
returns the process ID of the timer process and the updated
Data containing the timer under the name x5. If a timer under
that name already exists, then it is cancelled and replaced
with the new one (e�ectively acting as a reset). On line 3
we enter a function S since, recall in (2) and (6), the initial
state is immediately re-entered after sending b. Therefore,
we must begin a new scope:

4 S(CoParty , Data) ->

5 {ok, _TID_x5} = get_timer(x5,Data),

6 receive {CoParty ,a,Payload_A} ->

7 Data2 = save_msg(a,Payload_A ,Data1),

8 stopping(CoParty ,Data2);

9 {timeout , _TID_x5 , timer_x5} ->

10 {Data2 ,Payload_B} = get_payload_b(Data1),

11 CoParty ! {self(), b, Payload_B},

12 {Data3 ,_TID_x5} = set_timer(x5 ,5000, Data2),

13 S(CoParty , Data3) end.

Following (2) or (6), the process must �rst wait to receive a for
the duration of 5s. Shown above, the process �rst retrieves
the process ID for the corresponding timer (_TID_x5) and
proceeds to wait for the duration. If a is received from CoParty,
then the message is saved to Data2 and the process terminates
successfully (via stopping(...)). Otherwise, if timer _TID_x5

completes, then the process: (1) sends b (along with some
payload Payload_B) to CoParty (2) resets the timer x5, and, (3)
loops via tail-recursion.

Functions such as get_payload_b can introduce vulnerabili-
ties into processes, if get_payload_b never completes. These
vulnerabilities are somehow orthogonal to the problem space
of TOAST that only guarantees stuck-freedom of the interac-
tion structure. However, in the design of a TOAST protocol,
if one foresees that some actions are likely to be diverging, a
timeout should be introduced.

Remark 4.1 (Timer Timeouts). Shown on line 9 in the code
snippet above is amethod for using Erlang timers as timeouts,
rather than the value-based timeout of the ‘receive-after’
expression. To reiterate Section 4.1, while both approaches
are functionally equivalent, using timers as in this approach
can be more robust in the presence of delays. △

4.4 Co-Timeouts

We will now discuss stub generation for timeouts from the
perspective of the other role involved: the one that needs to
provide a timely message. We will refer to these co-parties as
co-timeouts. First, consider the dual � of the protocol in (2):

� =

{
!a(~ � 5).end, ?b(~ = 5, {~}).�

}
(9)

Naturally, (9) describes a client that is either able to send a

within 5 time units, or afterwards wait to receive b. Receiving
b causes clock ~ to be reset, and loops back to the start.
The implementation of a co-timeout is less intuitive than
the one of its co-party. There are three possible ways of

38

Erlang on TOAST: Generating Erlang Stubs with Inline TOAST Monitors Erlang ’24, September 2, 2024, Milan, Italy

implementing � : (a) The process that is always too late to
send a. (b) The process that is always early and sends a. (c)
The process that can send a by the deadline sometimes. The
case of (b) e�ectively makes receiving b redundant. We now
discuss how to implement cases (a) and (c).

Arriving Too Late. In the case of (a) some prior delay must
have occurred, causing the upper-bound of sending a to be
missed. Following Remark 4.1, we implement using timers:

1 D(CoParty ,Data) -> TID_x5 = get_timer(x5, Data),

2 receive {timeout , TID_x5 , timer_x5} ->

3 receive {CoParty , b, Payload_B} ->

4 Data1 = save_msg(b, Payload_B , Data),

5 D(CoParty , Data1) end;

6 after 0 ->

7 {Data1 , Payload_A} = get_payload_a(Data),

8 CoParty ! {self(), a, Payload_A},

9 {Data2 , _TID_x5} = set_timer(x5 ,5000, Data1),

10 D(CoParty , Data2) end.

Above, we implement a non-blocking receive-after by having
a timeout of duration of 0s, ensuring that D must be able to
receive the signal that the timer x5 has completed immedi-

ately. In the case that timer x5 has completed and D is able to
receive {timeout, TID_x5, timer_x5}, then D begins to wait to
receive b. Otherwise, less than 5s have passed, and D is able
to go ahead and prepare to send a. What if get_payload_a is
unreliable and may get stuck? Such a scenario falls under (c).

Unreliable Dependencies. In the case of (c) then there is
some factor that sending a is dependant upon. Such as, a func-
tion for obtaining the payload to send along with a which is
unreliable or in the least, not guaranteed to complete within
the time frame. In our case, this is function get_payload_a. We
need a way of calling get_payload_a while ensuring the main
process remains non-blocked and responsive.
We present an Erlang snippet below:

1 nonblocking_payload(Fun , Args , PID , Timeout)

2 when is_integer(Timeout) -> spawn(fun() ->

3 Waiter = self(),

4 Timer= erlang:start_timer(Timeout ,self(),nb_p),

5 TimeConsumer = spawn(fun() ->

6 Waiter ! {self(), ok, Fun(Args)} end),

7 receive {TimeConsumer , ok, Result} ->

8 PID ! {self(), ok, Result};

9 {timeout ,Timeout ,nb_p} ->

10 PID ! {self(), ko},

11 exit(TimeConsumer , normal) end end);

Above, nonblocking_payload creates a new timer for the dura-
tion of Timeout and spawns a process TimeConsumer to complete
the potentially unreliable function Fun(Args), and send the
results back to itself. If Fun(Args) completes before Timer, then
the Result is sent back to the main process via PID with label
ok. Otherwise, the message ko is returned, signalling it took
too long and in the case of (9), that D should begin waiting
to receive b. Below is another clause of nonblocking_payload

which takes a timer, reads the value and re-enters through
the function previously shown.

1 nonblocking_payload(Fun , Args , PID , Timer)

2 when is_pid(Timer) ->

3 Value = erlang:read_timer(Timer),

4 nonblocking_payload(Fun , Args , PID , Value).

In practice, our tool utilises nonblocking_payload for the case
of co-timeouts in the following way:

1 send_before(CoParty ,{Label ,{Fun ,Args}},Timeout)

2 when is_integer(Timeout) ->

3 NonBlocking =

4 nonblocking_payload(Fun ,Args ,self(),Timeout),

5 receive {NonBlocking , ok, Result} ->

6 send(CoParty , {Label , Result});

7 {NonBlocking , ko} -> ko end.

This snippet above outsources the potentially blocking be-
haviour to another process spawned within the same node,
and waits to either receive ok and a payload Result, which is
then sent to CoParty, or receive ko which indicates the func-
tion took too long to complete. The snippet above is utilised
by our tool to generate code corresponding to co-timeouts.
Similarly to before, we also support the use of timers:

1 send_before(CoParty ,{Label ,{Fun ,Args}},Timer)

2 when is_pid(Timer) ->

3 Value = erlang:read_timer(Timer),

4 IsKo =

5 send_before(CoParty ,{Label ,{Fun ,Args}},Value),

6 case IsKo of ko ->

7 receive {timeout , Timer , _Name} -> ko end;

8 _Else -> _Else end.

Since the value of the Timer is passed through and used by
the spawned process to determine if the function �nishes on
time, in the case that ko is returned, the original timer will
have also reached 0 and so we remove this message from the
mailbox of our main process D.

4.5 Producer-Consumer Pattern

Next, we illustrate recursion using the Producer-Consumer
pattern. We only show the producer behaviour in (10):

%(= ?start(true, {G}) .% ′
(

% ′
(
=

{
?stop(G ≤ 1).end, !data(G ¡ 1, {G}) .% ′

(

} (10)

Since the producer must both send and receive from the same
state, this behaviour is clearly mixed-choice. The mixed-
choice are inherently safe, as illustrated in (10). Note, the
constraint ‘true’ indicates no upper or lower bound.
After receiving start, the producer �rst waits to receive

a stop signal for 1s. If stop is received, the producer ter-
minates. Otherwise, the producer is to send data, and then
reset G and recursively loop to % ′

(
. For the �rst second of

each iteration, the producer must wait in case a stop signal
can be received. The producer in (10) can be written using
the Erlang API as follows:

39

Erlang ’24, September 2, 2024, Milan, Italy Jonah Pears, Laura Bocchi, and Raymond Hu

1 Ps() -> {timer ,"x1" ,1000,{act ,r_start ,{rec ,"Ps",

2 {act ,r_stop ,endP , aft ,"x1", {act ,s_data ,

3 {timer ,"x1" ,1000, {rvar ,"Ps"}}}}}}}.

Above, when x1 completes the producer can send data. Since
in (10) there is no upper-bound constraint for the producer
sending data, the protocol allows this to take potentially
forever. It is plausible that the use case for implementing a
protocol with a Producer-Consumer pattern, the producer is
dependant on some other service for obtaining the data to
send. Since this is the latest possible action, if this service
encountered an error and the producer was unable to send
data, then the producer would become stuck, as would the
consumer. Ideally, the latest action should be a dependency-
free timeout signal used to provide ameans to stop a program
from being stuck when another process has seized [28].
For example, we can amend % ′

(
in (10):

% ′
(=





?stop(G ≤ 1).end,

!data(1 � G � 99, {G}) .% ′
(
,

!pass(G ¡ 100, {G}).% ′
(





Above, instead of a timeout, we have added the option to
send pass if data on time. In practice, our tool would utilise
the nonblocking_payload function discussed in Section 4.4.

5 Runtime Monitor Generation

A Monitoring Template. The runtime monitors in our
tool are not themselves generated. Instead, our tool provides
a single monitoring template program, and generates the
protocol speci�cation in the form of an Erlang map, which is
derived from the internal FSM representation. We choose to
use this map representation since it allows us to more easily
make use of pattern matching in function guard sequences.

Protocol Speci�cation. Currently, the protocol speci�ca-
tion provided for our monitors is derived from TOAST pro-
cesses rather than TOAST protocols. In some cases it is pos-
sible to have a TOAST process that is a maximal implemen-

tation of a TOAST protocol, and in such cases the process
encapsulates the full range of behaviour described by the
protocol. Therefore, it follows that a protocol speci�cation
derived from a maximal TOAST process is also capable of be-
ing used to monitor Erlang stubs derived from non-maximal

TOAST processes. (Discussed further in Section 8.)

Transparency. Our monitors act as transparent mediators
for communication, and can be inlined at either party within
a session. Being transparent, our monitors do not modify the
contents of the messages exchanged and therefore, neither
party in a session has to be aware of whether the other party,
or even if they themselves are being monitored.

Con�gurability. Our monitors are highly con�gurable, ca-
pable of performing both runtime veri�cation and runtime
enforcement. Runtime veri�cation is the default, where they

remain transparent and any violation will result in the super-
visor being noti�ed. For runtime enforcement, we provide
several presets in the project documentation [1], such as:

Enforce (strong) is a are more �exible preset than veri�ca-
tion that allows the timing of interactions to be minimally
adjusted to be more lenient, whilst still ensuring that the
protocol is not violated. (I.e., allowing sending and receiv-
ing actions to be re-tried at the next available state, in the
case they were received a state too early.)

Enforce (weak) preset allows the monitor to fully handle
the timing of interactions for their monitored process
within a session. In e�ect, this preset causes a monitor to
only strictly enforce that interactions occur as prescribed
by the protocol, and does not verify when the process
actually attempts to perform certain actions.

The con�gurability of our monitors enable them to be useful
outside the application of our toolchain. The enforce (weak)
preset allows developers to write completely time unaware

programs that can adhere to time-sensitive protocols, since
the timing of interactions is handled by the monitor.

Handling Events. Our template uses Erlang gen_statem
behaviour to traverse the FSM map. By using callback mode
handle_event_function we are able to describe how each kind
of event should be handled, rather than describing each and
every event that happens for each state (as it would be using
state_functions callback mode). Therefore, the programs of
the monitors themselves are of a �xed size with minimal
code duplication, compared to generated monitors using
state_functions, whose size grows with the number of states
and edges of the FSM.
For example we only de�ne once how the monitors han-

dles message receptions, which is by checking if the current
state has a receiving action matching the label of the message
received. In the case where the reception is not prescribed,
then the monitor will signal to the supervisor that Otherwise,
if the reception is prescribed then, the monitor will forward
the message to the monitored process and proceed to the
next state (just as an FSM would behave). Continuing the
example of (2), the internal FSM in (7) becomes:

1 #{init => state1a_recv_a ,

2 map => #{state1a_recv_a =>

3 #{recv => #{a => stop_state}},

4 state1b_send_b =>

5 #{send => #{b => state1a_recv_a}}},

6 timeouts => #{

7 state1a_recv_a => {x5, state1b_send_b},

8 state1b_send_b => {?EQ_LIMIT_MS , error} },

9 resets => #{state1a_recv_a => {x5 => 5000}},

10 errors => #{state1b_send_b => took_too_long} }.

In the above FSM map: (i) line 1 speci�es the initial state.
(ii) lines 2–5 is a map between states, where each state has
a set of send or recv actions, each with their own labels and
resulting states. (iii) lines 6–8 is a map between states and a

40

Erlang on TOAST: Generating Erlang Stubs with Inline TOAST Monitors Erlang ’24, September 2, 2024, Milan, Italy

tuple that de�nes a timeout, with a duration and destination,
where the duration can be an integer value for milliseconds,
or reference an Erlang timer. (iv) line 9 shows a map for
specifying upon entering a state, which Erlang timers to
start (if any) and what value to start them with. (v) line 10
shows a map between states and error messages, which are
to be returned if state error is reached from any of the states.
The macro ?EQ_LIMIT_MS is the degree of leniency given

to actions that are meant to be performed at an exact time.
Since constraints use integers as constants, we allow the user
to specify how precise these constraints should be. However,
a user should note that these values should be the same in
practical scenarios where both participants are monitored.
For example, in the case of (2), sending b must happen

when (G = 5). Once state state_1b_send_b is reached, a time-
out is set for the duration of ?EQ_LIMIT_MS which when trig-
gered will automatically state-transition to error, signalling
to the supervisor that the protocol has been violated. How-
ever, if the monitored process performs the action of sending
b, then the subsequent state-transition to state1a_recv_a can-
cels the current timeout that leads to error.

Extensibility. Our template speci�es how events should be
handled by the monitor in general, providing a foundation
for runtime monitoring of an Erlang program against the
speci�cation derived from the Erlang API.

The event handlers found in the template are speci�ed as
generically as possible in order to facilitate as many states
as possible. Each kind of event handler function is separated
and clearly annotated within the template. In the case where
the user requires more speci�c or unique behaviour from
an event handler, it is simply a matter of: (1) re-de�ning the
event handler on the lines above the generic behaviour, using
the original handler as a basis, and then (2) amending the
pattern matching guard sequence of the function to specify
the distinct and identi�able circumstances this de�nition
should handle (e.g., specifying the speci�c state where this
should be called). Finally, (3) add the desired functionality
to the body of the newly de�ne event handler function. If
done correctly, all other instances of the even will be unaf-
fected by the new addition, and be routed through the to the
same function clauses as before. By default, the monitoring
template �le features an example of this unique behaviour
with a set of event handler functions that serve to ‘reserve’ a
transition with the label ‘emergency_signal’. In the case that a
monitor performs an action with the label ‘emergency_signal’
(initiated by the monitored process) then, regardless of the
protocol speci�cation, the monitor will create a �le contain-
ing all of it’s logs, and signal to the supervisor that an error
has occurred. This is just one example of how the generic
event handling behaviour of our template can be extended to
handle speci�c use cases, even beyond those prescribed by
the protocols. Naturally, such behaviour is also a violation
of protocols, and is merely o�ered as a debugging tool.

6 Use Case: Two Factor Authentication

In this section we discuss the design and implementation
of a Two Factor Authentication (2FA) protocol. For services
that need to be secure, such as online banking, it is crucial
to ensure that a given user is who they claim to be. Such
services typically employ 2FA to verify the integrity of a
users claimed identity, and it is common for such protocols
to enforce timing constraints for the user’s response.
In (11) we present a mock-up 2FA protocol which de-

scribes, upon a login request from a User, a Bank sending
two di�erent codes to the User, one via SMS and the other
to their email. (11) speci�es that the User must send these
codes back to the bank within 10 minutes, after which the
bank will determine if the login was a success of failure.

(11)

The symbol (⊖) indicates that
the SMS and Email interac-
tions can occur in parallel,
and the symbol (⊕) indicates
a choice between the bank
sending either Success or
Failure. It can be interpreted
that these initial messages
sent by the bank are assumed
to occur instantly.
In (12), we model (11) as a

TOAST protocol, where we ‘collapse’ the parallelism into a
single sequence of actions since otherwise, we would need
to specify all possible interleavings:

*0 = !login(true, {G,~})

.?email_code(true).!email_auth(true)

.?SMS_code(true).!SMS_auth(true)

.

{
?success(G � 10 ∧ ~ � 10).*1,

?failure(G ≥ 10 ∨ ~ ≥ 10).end

} (12)

Above, (12) speci�es that email_code will be received be-
fore the SMS_code, and SMS_code will not be received be-
fore the email_auth is sent back. While capturing the par-
allel behaviour in (11) using TOAST is possible, it would be
cumbersome. Thankfully, the mailboxes of Erlang processes
enable (12) to be a plausible model of (11) since messages
may be received slightly out of order, and the end result of
sending either success or failure depends on the parallel
interactions both completing. (See fork and join in [12].)

However, to deploy runtimemonitoring for veri�cation the
monitor requires an extended description of (12), detailing
all possible traces, since veri�cation does not allow message
receptions to be postponed (discussed in Section 8).

Misleading Timing Constraints. Notably, in (12) there are
no timing constraints for how promptly the user is required
to respond to the bank. Instead, the timing constraints deter-
mine whether a success or failure are returned to the user,
which is misleading since the contents of the codes are also
crucial in determining whether the user is authenticated or

41

Erlang ’24, September 2, 2024, Milan, Italy Jonah Pears, Laura Bocchi, and Raymond Hu

not. Therefore, (12) could be improved by adding a timeout
branch at each point of the protocol to determine if the bank
should continue to wait for the users codes if its is already
guaranteed that they will result in failure.
Below we provide an input protocol for our tool corre-

sponding to behaviour of (11) and: (1) the additional timeouts
on the user responding within 10 minutes, (2) the full paral-
lelised behaviour that was missing (or ‘collapsed’) in (12):

1 u0() -> {act ,s_login , {rec , "retry", {

2 timer ,"x600" ,600000, {

3 branch , [u0(branch_r_email),

4 u0(branch_r_sms)]}}}}.

where timer x600 is used to enforce an overarching timeout
of 10 minutes for the user to send back sms and email.

4 u0(branch_r_email) -> {act ,r_email , {

5 act ,s_email , {act ,r_sms , {

6 act ,s_sms , {

7 branch , [{act ,r_success ,u1()},

8 {act ,r_failure ,endP}]},

9 aft ,"x600", {act ,r_timeout ,{rvar ,"retry"}}}},

10 aft ,"x600", {act ,r_timeout ,{rvar ,"retry"}}}};

Note that in the case above, the protocol speci�es that the
user must respond to email before receiving sms. In practice,
the bank and the user are not dual and therefore, the bank
will likely send both email and sms in sequence, before waiting
to receive either success or failure. Below is the other branch:

11 u0(branch_r_sms) -> {act ,r_sms , {

12 act ,s_sms , {act ,r_email , {

13 act ,s_email , {

14 branch , [{act ,r_success ,u1()},

15 {act ,r_failure ,endP}]},

16 aft ,"x600", {act ,r_timeout ,{rvar ,"retry"}}}},

17 aft ,"x600", {act ,r_timeout ,{rvar ,"retry"}}}}.

Note that each user’s sending action to the bank, is now a
co-timeout. If timer x600 completes at any point before the
user has sent both codes, then they must stop and wait to
receive a timeout from the bank, and will be able to retry.

7 Related Work

Protocol re-engineering. We build on the tool that accom-
panies [7], which takes an untimed process as input and
generates Erlang gen_statem stubs for API implementation.
In the original tool [7] an internal FSM is extracted from
the input, which is used to generate the stubs. Our tool [1]
extends [7] from here, using the extracted FSMs to gener-
ate (non-gen_statem) Erlang stub implementations. While
gen_statem o�ers a close correlation with the theory, or-
dinary stubs are more intuitive, easier to interpret and ex-
tend for programmers unfamiliar with gen_statem. We use
gen_statem for our monitor template. We have dropped cer-
tain features present in [7] that do not correspond to TOAST,
i.e., ‘assert’, ‘require’ and ‘consume’.

Runtime Monitoring. Runtime monitoring [2, 3, 14, 15] is
a form of dynamic veri�cation that observes the behaviour
of a program as it executes. An in-depth discussion can be
found in [11]. Put brie�y: (1) Runtime veri�cation monitors
analyse the trace of the program as it executes, and report
any violations to the system. In Erlang/OTP, this could be
a supervisor, which would then deploy a prede�ned recov-
ery strategy. (2) Runtime adaptation monitors also detect
violations, but instead will reactively attempt to change the
behaviour of the monitored process to stop the error from
occurring again. (3) Runtime enforcement monitors fully
mediate the communication of the monitored process, act-
ing on their behalf and ensuring no violation occurs. Our
monitors support runtime veri�cation and enforcement (1 &
3). Presented in [13] is a tool (based on [23]) for generating
runtime monitors for Erlang from Scribble protocols [29],
which is based on Multiparty Session Types [17] (MPST).
Both our tool and [13] derive monitors from the theory of
asynchronous session types, and utilise the supervision tree
structure of Erlang for session coordination, instantiation
and reporting violations. Our work only focuses on single
binary sessions, [13] allows for multiple multiparty sessions.
Outside of Erlang, Scribble [20, 21, 25] has been used to

generate runtime monitors for Python from MPST. As in
our work, [20, 21, 25] encode session types into a CFSM,
following the correspondence established in [12]. Notably,
only [21] is in the timed setting, and presents runtime en-
forcement to our monitors similar to our own.
Outside of session types, [2] generates runtime moni-

tors which are then inlined into a program via code injec-
tion at compile-time. Our work achieves inlining di�erently;
by spawning the monitor within the same node the moni-
tored process interacts with their monitor synchronously.
Unlike [2, 5, 9, 10, 13, 20, 21, 25], we do not generate our mon-
itors. Instead, our monitors are spawned from a single tem-
plate, which either veri�es or enforces the behaviour speci-
�ed by an automata notation derived from session types.
While session types present systems in their theory for

static type-checking, in practice this is often infeasible. For
example, large, highly concurrent and often distributed sys-
tems, such as those in Erlang/OTP are typically unable to
be statically checked due to the sheer scale of asynchronous
interactions between processes. Since we are in the timed
setting, dynamic veri�cation remains the only feasible op-
tion, as we encounter a similar issue of checking interactions
over a continuous period of time. For this reason, our work
joins many others [5, 9, 10, 13, 20, 21, 25] which use session
types for dynamic veri�cation.

Code Generation & Session Types. Presented in [22] is a
toolchain for generating F# code from Scribble protocols [29].
[22] o�ers a more immersive, intuitive and accessible ‘inter-
face’ for their code generation, which takes the form of code
snippet hints/suggestions of the next action to be performed.

42

Erlang on TOAST: Generating Erlang Stubs with Inline TOAST Monitors Erlang ’24, September 2, 2024, Milan, Italy

This provides the programmer with ‘live’ feedback as they
build their own implementation and insert the generated
code snippets as they progress. By contrast, our tool is more
straightforward by only producing an Erlang �le for a pro-
grammer to extend. Naturally, our tool shares similarities
with the one in [7]. Our tool uses an extended de�nition of
the original protocol notation used to generate code, which
in [7] was based o� a calculus for designing protocols outside
of session types. Beyond the generation of an FSM describing
a given protocol, the process of code generation is funda-
mentally di�erent, since our stubs do not follow Erlang/OTP
gen_statem behaviour. Additionally, our tool produces stubs
programs capable of being executed from the command-line
almost immediately, allowing programmers to begin devel-
oping and testing the program. (See the project page [1].)

8 Conclusion

The Toolchain. Our tool [1] generates Erlang stub pro-
grams from an Erlang API that can be obtained via a map-
ping from TOAST processes [26, 27]. When obtaining an
Erlang API from a TOAST process, we rely on the TOAST
processes being well-typed against a well-formed TOAST
protocol in order to ensure a good interaction structure, and
certain guarantees of its behavioural properties. The gener-
ated programs can be con�gured to automatically start their
own inline monitor, and when used within the ‘sample_app’
directory in the project folder, are able to be run from the
command-line immediately. (See the project README.md.)

Session Initiation. Sessions are started in an Erlang/OTP
supervision tree, with a supervisor for each party. Each gen-
erated stub features the macro ?MONITORED which if set true
will cause the stub to automatically start their inline monitor,
which by default acts as a transparent mediator.

Session Con�guration. Since our monitors act as trans-
parent mediators within a session, the data exchanged is
una�ected, and either party does not have to accommodate
if the other is or isn’t monitored. Therefore, our monitors can
be used in: (1) Fully symmetric sessions, where both parties
are monitored and veri�ed. (2) Asymmetric sessions, where
only one party is monitored and veri�ed. In the latter case,
it would be the sole responsibility of the un-monitored party
to adhere to all of the timing constraints of the protocol.

Limitations. Our toolchain follows the theory in [26, 27]
and therefore, is limited to binary sessions. Additionally, in
Erlang we cannot distinguish between inclusive (≥, ≤) and
exclusive (¡, �) bounds featured in the time constraints of
both TOAST protocols and processes.

Supported features. Table 1 illustrates the descriptive capa-
bilities of TOAST protocols, TOAST processes and our Erlang
API; where (✓) denotes supported, (×) unsupported and (^)
indicates the feature or pattern is indirectly supported.

Table 1. Interaction features & patterns in TOAST models.

Features & Patterns TOAST [26]

Protocols

TOAST [26]

Processes

Erlang

API

Timeouts ✓ ✓ ✓

Co-timeouts ✓ ✓ ✓

Selection ✓ × ✓

Safe Mixed-choice ✓ ✓ ✓

Unsafe Mixed-choice × × ×

Producer-Consumer ✓ ✓ ✓

Diagonal Constraints ✓ ^ ^

Complex Constraints ✓ ^ ^

In [26, 27], TOAST processes do not support output se-
lection (i.e., the ability to select one sending action from
several options). However, our Erlang API has not inher-
ited this limitation and is fully capable of describing selec-
tion. Additionally, our toolchain is fully capable of gener-
ating Erlang stubs with selections and, in a similar fash-
ion to non-blocking payloads, will automatically provide
a means of making the selection in a non-blocking man-
ner. For example, the protocol ‘!a(G � 3,∅) .end’ can be
directly expressed with a maximal implementation TOAST
process ‘delay(C � 3).? ◁ a.0’, and de�ned using the Er-
lang API ‘{act, s_a, aft, 3000, error}’. While, for the pro-
tocol ‘{!b(true,∅) .(, !c(true,∅) .(′}’ there are no TOAST
processes that are maximal implementations, since TOAST
processes require sending actions to be explicitly de�ned.

Supporting Complex Constraints. TOAST processes and
our Erlang API can indirectly (^) implement diagonal con-
straints, constraints with multiple upper-bounds and con-
straints with negation. Both TOAST processes and our Erlang
API do not support such constraints to be de�ned directly.
However, since we can rely on our TOAST process being
well-typed against a well-formed TOAST protocol that does
support these constraints, and may feature them, then we
know that such a TOAST process (and the corresponding
Erlang API) are guaranteed to adhere to these constraints,
even if they themselves do not feature them. This can either
be achieved: (a) by using a non-maximal implementation (i.e.,
where not all of the interactions actions are implemented
into the process); or, (b) by making use of the time-sensitive
structures in the processes, as shown in Section 6; or (c) by
simplifying the time constraints to use fewer process timers.

Future Work. Our primary objectives in future work will
be to: (a) aid users in designing TOAST protocols (b) semi-
automate the process of extracting TOAST processes from
TOAST protocols and (c) derive our monitor speci�cation
directly from TOAST protocols. We would also like to extend
this tool with multiparty sessions, which would naturally fol-
low the theory. Other work with session types [24] presents
an alternative recovery strategy where the process, and all
those causally related within the session, are reverted to
an earlier point in the protocol, before the error occurred.

43

https://github.com/jonahpears/Erlang-on-TOAST/blob/main/README.md

Erlang ’24, September 2, 2024, Milan, Italy Jonah Pears, Laura Bocchi, and Raymond Hu

Exploring other recovery strategies for time-sensitive proto-
cols would be interesting future work. Another consideration
would take inspiration from the tool in [22], which instead of
generating code to a �le, provides the user with responsive
feedback and suggestions. It would be crucial to consider
how any functionality added by the programmer outside the
scope of the protocol could a�ect the timings of interactions.

Benchmarks. In future work we hope to conduct a more
thorough evaluation of our toolchain by comparing the per-
formance of di�erent generated implementations, the e�ec-
tiveness, accuracy and performance overhead of our moni-
tors and provide a wider range of examples and benchmarks.

Acknowledgments

We thank Simon Thompson for his insightful feedback on
early versions of this work.

References
[1] 2024. Tool. h�ps://github.com/jonahpears/Erlang-on-TOAST

[2] Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard,

Adrian Francalanza, and Anna Ingólfsdóttir. 2024. A monitoring tool

for linear-time `HML. SCP (2024), 103031. h�ps://doi.org/10.1016/j.

scico.2023.103031

[3] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger.

2018. Introduction to Runtime Veri�cation. Springer, 1–33. h�ps:

//doi.org/10.1007/978-3-319-75632-5_1

[4] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Marian-

giola Dezani-Ciancaglini, and Nobuko Yoshida. 2008. Global Progress

in Dynamically Interleaved Multiparty Sessions. In CONCUR (LNCS).

Springer, 418–433. h�ps://doi.org/10.1007/978-3-540-85361-9_33

[5] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda,

and Nobuko Yoshida. 2013. Monitoring Networks through Multiparty

Session Types. In FTDS. Springer, 50–65. h�ps://doi.org/10.1007/978-

3-642-38592-6_5

[6] Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and

Nobuko Yoshida. 2019. Asynchronous timed session types: from du-

ality to time-sensitive processes. In ESOP (LNCS). Springer, 583–610.

h�ps://doi.org/10.1007/978-3-030-17184-1_21

[7] Laura Bocchi, Dominic Orchard, and A. Laura Voinea. 2023. A The-

ory of Composing Protocols. ACM (2023). h�ps://doi.org/10.22152/

programming-journal.org/2023/7/6

[8] Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. 2014. Timed

Multiparty Session Types. In CONCUR (LNCS). Springer, 419–434.

h�ps://doi.org/10.1007/978-3-662-44584-6_29

[9] Christian Bartolo Burlò, Adrian Francalanza, and Alceste Scalas. 2021.

On the Monitorability of Session Types, in Theory and Practice. In

ECOOP (LIPIcs). Schloss Dagstuhl, 20:1–20:30. h�ps://doi.org/10.4230/

LIPIcs.ECOOP.2021.20

[10] Christian Bartolo Burlò, Adrian Francalanza, Alceste Scalas, Catia

Trubiani, and Emilio Tuosto. 2022. PSTMonitor: Monitor synthesis

from probabilistic session types. SCP (2022), 102847. h�ps://doi.org/

10.1016/j.scico.2022.102847

[11] Ian Cassar, Adrian Francalanza, Duncan Attard, Luca Aceto, and Anna

Ingólfsdóttir. 2017. A Suite of Monitoring Tools for Erlang. In RV-

CuBES. EasyChair, 41–47. h�ps://doi.org/10.29007/7lrd

[12] Pierre-Malo Deniélou and Nobuko Yoshida. 2012. Multiparty Session

Types Meet Communicating Automata. In ESOP (LNCS). Springer,

194–213. h�ps://doi.org/10.1007/978-3-642-28869-2_10

[13] Simon Fowler. 2016. An Erlang Implementation of Multiparty Session

Actors. EPTCS (2016), 36–50. h�ps://doi.org/10.4204/eptcs.223.3
[14] Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul At-

tard, Ian Cassar, Dario Della Monica, and Anna Ingólfsdóttir. 2017. A

Foundation for Runtime Monitoring. In RV. Springer, 8–29. h�ps:

//doi.org/10.1007/978-3-319-67531-2_2

[15] Adrian Francalanza, Jorge A. Pérez, and César Sánchez. 2018. Runtime

Veri�cation for Decentralised and Distributed Systems. Springer, 176–

210. h�ps://doi.org/10.1007/978-3-319-75632-5_6

[16] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo.

1998. Language Primitives and Type Discipline for Structured

Communication-Based Programming. In ESOP (LNCS). Springer, 122–

138. h�ps://doi.org/10.1007/BFB0053567

[17] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty

asynchronous session types. In POPL. ACM, 273–284. h�ps://doi.org/

10.1145/1328438.1328472

[18] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong

Dang, Murali Chintalapati, and Randolph Yao. 2017. Gray Failure:

The Achilles’ Heel of Cloud-Scale Systems. In HTOS. ACM, 150–155.

h�ps://doi.org/10.1145/3102980.3103005

[19] Pavel Krcál and Wang Yi. 2006. Communicating Timed Automata:

The More Synchronous, the More Di�cult to Verify. In CAV (LNCS).

Springer, 249–262. h�ps://doi.org/10.1007/11817963_24

[20] Rumyana Neykova. 2013. Session Types Go Dynamic or How to

Verify Your Python Conversations. EPTCS (2013), 95–102. h�ps:

//doi.org/10.4204/EPTCS.137.8

[21] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2017. Timed

runtime monitoring for multiparty conversations. FAC (2017), 877–910.

h�ps://doi.org/10.1007/s00165-017-0420-8

[22] Rumyana Neykova, Raymond Hu, Noboku Yoshida, and Fahd Abdel-

jallal. 2018. A session type provider: compile-time API generation of

distributed protocols with re�nements in F#. In CC. ACM, 128–138.

h�ps://doi.org/10.1145/3178372.3179495

[23] Rumyana Neykova and Nobuko Yoshida. 2014. Multiparty Session

Actors. In COORDINATION (LNCS). Springer, 131–146. h�ps://doi.

org/10.1007/978-3-662-43376-8_9

[24] Rumyana Neykova and Nobuko Yoshida. 2017. Let it recover: mul-

tiparty protocol-induced recovery. In CC. ACM, 98–108. h�ps:

//doi.org/10.1145/3033019.3033031

[25] Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. 2013. SPY:

Local Veri�cation of Global Protocols. In RV (LNCS). Springer, 358–363.

h�ps://doi.org/10.1007/978-3-642-40787-1_25

[26] Jonah Pears, Laura Bocchi, and Andy King. 2023. Safe asynchro-

nous mixed-choice for timed interactions. In COORDINATION (LNCS).

Springer, 214–231. h�ps://doi.org/10.1007/978-3-031-35361-1_12

[27] Jonah Pears, Laura Bocchi, Maurizio Murgia, and Andy King. 2024.

Introducing TOAST: Safe Asynchronous Mixed-Choice For Timed

Interactions. arXiv:2401.11197 h�ps://arxiv.org/abs/2401.11197

[28] J. Peralta, P. Anussornnitisarn, and S. Y. Nof. 2003. Analysis of a time-

out protocol and its applications in a single server environment. IJCIM

(2003), 1–13. h�ps://doi.org/10.1080/713804980

[29] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng.

2014. The Scribble Protocol Language. In TGC. Springer, 22–41. h�ps:

//doi.org/10.1007/978-3-319-05119-2_3

Received 2024-05-30; accepted 2024-06-27

44

https://github.com/jonahpears/Erlang-on-TOAST
https://doi.org/10.1016/j.scico.2023.103031
https://doi.org/10.1016/j.scico.2023.103031
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-642-38592-6_5
https://doi.org/10.1007/978-3-642-38592-6_5
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.22152/programming-journal.org/2023/7/6
https://doi.org/10.22152/programming-journal.org/2023/7/6
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.1016/j.scico.2022.102847
https://doi.org/10.1016/j.scico.2022.102847
https://doi.org/10.29007/7lrd
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.4204/eptcs.223.3
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/3102980.3103005
https://doi.org/10.1007/11817963_24
https://doi.org/10.4204/EPTCS.137.8
https://doi.org/10.4204/EPTCS.137.8
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-662-43376-8_9
https://doi.org/10.1007/978-3-662-43376-8_9
https://doi.org/10.1145/3033019.3033031
https://doi.org/10.1145/3033019.3033031
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-031-35361-1_12
https://arxiv.org/abs/2401.11197
https://arxiv.org/abs/2401.11197
https://doi.org/10.1080/713804980
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3

