
 Expressions of Expertness: The Virtuous Circle of Natural
Language for Access Control Policy Specification
Philip Inglesant, M. Angela Sasse

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{p.inglesant, a.sasse}@cs.ucl.ac.uk

+44 20 7679 3039

David Chadwick, Lei Lei Shi
Computing Laboratory

University of Kent
Canterbury, Kent, CT2 7NZ, UK

{d.w.chadwick@kent.ac.uk,L.L.Shi}@kent.ac.uk

ABSTRACT
The implementation of usable security is particularly challenging
in the growing field of Grid computing, where control is
decentralised, systems are heterogeneous, and authorization
applies across administrative domains. PERMIS, based on the
Role-Based Access Control (RBAC) model, provides a unified,
scalable infrastructure to address these challenges. Previous
research has found that resource owners generally do not
understand the PERMIS RBAC model and consequently have
difficulty expressing access control policies. We have addressed
this issue by investigating the use of a controlled natural language
parser for expressing these policies. In this paper, we describe our
experiences in the design, implementation, and evaluation of this
parser for the PERMIS Editor. We began by understanding the
ways in which non-security specialists express their Grid access
control needs, through interviews and focus groups with 45
resource owners. We found that the many areas of Grid
computing use present varied security requirements; this suggests
a minimal, open design. We designed and implemented a
controlled natural language system to support these needs, which
we evaluated with a cross-section of 17 target users. We found
that the interface is highly usable for interaction: participants
were not daunted by the text editor, and understood the syntax
easily. However, some strict requirements of the controlled
language were problematic. Using natural language helps
overcome some conceptual mis-matches between PERMIS RBAC
and older paradigms; however, there are still subtleties which are
not always understood. In conclusion, the parser is not sufficient
on its own, and should be seen in the interplay with other parts of
the PERMIS Editor, so that, iteratively, users are helped to
understand the underlying PERMIS model and to express their
security policies more accurately and more completely.

Categories and Subject Descriptors
H5.2. Information interfaces and presentation: User Interfaces:
Natural Language

General Terms
Design; Security; Qualitative Methods; Observations

Keywords
Authorization; Access Control; Grid computing; RBAC;
Controlled Natural Language

1. INTRODUCTION
It should be indisputable that security and usability must co-exist.
As long ago as 1975, Saltzer and Schroeder [22] promoted the
principle of psychological acceptability of security mechanisms:
protection mechanisms must be easily applicable by their target
users. Security which is not usable is likely to lead to errors [24]
and the creation of workarounds [1], and ultimately to a reduction
in security.

The arguments for usable security mechanisms are well-known
even if they are not always easy to put into practice. This paper
presents an effort to improve usability of a tool for a fundamental
aspect of security – access control. Controlling access to
resources is one of the most effective security measures, but is
currently often given a low priority by resource owners because
of the difficulties they find in using existing authorization
methods [3]. The challenge, then, is to produce interfaces to
access control tools that are accessible, and to enable resource
owners to correctly set controls that reflect their security needs.

PERMIS [9] offers a basis for achieving usable access control. In
essence, PERMIS is an integrated, Role-Based Access Control
(RBAC) [23] infrastructure which provides all the necessary
facilities for resource owners to manage authorization policies,
and for these policies to be implemented in e-Science
applications.

Recognising the inherent difficulties in setting access control
policies, PERMIS provides a Policy Editor with several
complementary interfaces. The earliest interface was a Graphical
User Interface (GUI), with tabs and drop-down menus. Later, a
wizard for creating new policies and a policy tester were added.

These interfaces successfully reduce the burden of maintenance of
large and complex policies, but a vital aspect of policy
specification is to ensure that the resource owner avoids mistakes
arising from basic misconceptions [8]. To some extent, this need
can be met by matching the language of the Editor to that of the
target users [18]; earlier work using Conceptual Design enhanced
its usability of the GUI [5]. However, we also realised that
although careful design of an interface can help resource owners
to understand what has to be done to write access control policies,
they still have to work out how to state those policies correctly.

The new PERMIS user interface presented in this paper takes a
different approach: it uses controlled natural language to reduce
the “distance” [19] between resource owners’ familiar, real-world
access control needs and their expression in computer terms. This
is not a replacement for the older interfaces, but is complementary
to them. It aims to “match the users’ world” [18], not by
incorporating their language into an interface which still reflects

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee.

Symposium On Usable Privacy and Security (SOUPS) 2008, July 23-25,
2008, Pittsburgh, PA, USA.

the underlying computer logic, but more fundamentally, by
enabling resource owners to express policies in their own natural
ways of thinking.

The remainder of this paper is organised as follows. Section 2
reviews previous research in usable security policy specification
and identifies key issues in Grid and RBAC authorization. Section
3 describes the first phase of our work to address these issues, in
which we gained an understanding of the ways in which resource
owners express their access control needs, and used these findings
in the design of a controlled natural language interface. We
evaluated the usability of our interface in scenario-based
observations as detailed in section 4. In section 5, we relate our
results from this evaluation to the key issues identified in section
2. We conclude by considering ways in which usability of our
interface might be improved and give brief pointers for future
work.

2. BACKGROUND: FROM USER VALUES
TO ACCESS CONTROL POLICIES
The overall problem which this paper addresses is that it is often
difficult for resource owners to bridge the gap between their
security needs, which might be understood in quite general terms,
and the expression of those needs in concrete, computer terms
[14]. This problem has been addressed by the usable security
research community over the past 10 years; in this section we
review the key previous work.

The application domain and target user community for our work
was Grid computing; we address problems which have been found
in the specification of Grid authorization policies [5]. We
consider ways in which resource owners’ natural expertise can be
engaged, and we show that controlled natural language has been
used in similar areas and is a good candidate to enable the
expression of access control policies in an intuitive way.

We conclude our review of the background to our research by
identifying the usability challenges of policy specification in our
underlying PERMIS RBAC authorization model.

2.1 What the Resource Owner Intends
It is important to clarify the direct, but often obscure, path from
the intentions of resource owners through to low-level actions by
IT systems.

Resource owners (including developers, system administrators,
end users, and others) generally have good knowledge of the
assets under their control and of who should be allowed to do
what [12]. This is at the level where, if asked whether person A
should be allowed to use a resource X, most can answer “yes” or
“no”, based on their knowledge about the person and rules about
how the resources should be used. The problem is not, then, that
resource owners lack knowledge of their access control needs, but
that they may have difficulty in “programming” them correctly in
an authorization system [14].

Moreover, emerging security needs must work in a context very
different from that for which security paradigms were designed.
In contrast to a conventional mainframe system, where security
was essentially under the control of a single system administrator,
today it is often required to secure resources on a decentralised
network with no single point of control. Security policies may

need to account for new parameters, such as the location of a
requestor [15]. Whilst the concept is easy to understand, the
parameters are often difficult for resource owners to express in the
computer security policy language, particularly if, as is most often
the case, they do not have security expertise [14].

2.2 Authorization Reaches Out
In practical implementation, these emerging paradigms can only
be made tractable with a clear understanding of the differences
and interplay between authentication and authorization.
Authentication is the process of determining and verifying the
identity of the user (or other actor) making a request, whilst
authorization is determining whether to grant a user (or other
actor) a particular form of access to a resource [22].

In practice, authorization is far more important than
authentication, but, perhaps paradoxically, authentication has, to
date, been studied in more depth. This could be because usable
and fully-verifiable authentication systems are a prerequisite for
authorization, which depends upon them in order to function
correctly. Authorization and authentication are inter-dependent;
privacy invasions, for example, can result from designers’ (and
implementers’) inability to foresee how, or by whom, data might
be used [2]. But authorization presents its own usability issues. In
this paper, we focus on the usability of the interface for setting the
authorization or access control policy.

Traditionally, access control – whether a policy-based model or
lists on each resource - has not been controlled directly by “end
users” of the system, but rather by system administrators.
Increasingly, for example in WebDAV or NTFS security [6], end
users, as resource owners, are indeed responsible for setting the
access controls. There is, then, not always such a great distance
between the people who set access control policies and those who
are subject to them. This reinforces the observation of Yee [25]
and others that responsibility for setting and maintaining security
controls often falls to non-specialists, who are primarily
concerned with other more immediately pressing tasks. A usable
way to express access control is essential if it is to be followed
reliably, but there is the additional danger that users may not fully
understand the implications of their security actions.

2.3 Authorization in Grid computing
Setting access controls in ways which are comprehensible and
clear for non-specialists is all the more important in the growing
area of Grid computing. Here, the systems being protected, and
the applications running on them, are heterogeneous, and include
very expensive or highly confidential resources. Grids may
expand to very large computer systems, potentially accessed by
many users or by other computers. This large, complex network
of actors, resources, actions, permissions, and constraints leads to
a correspondingly dynamic and complex security configuration.

Moreover, because the computers in a Grid are spread across
administrative domains, a resource owner will usually not grant
access directly to an individual known to him or her. Conversely,
with the use of schedulers, a person requesting use of Grid
resources might not know in advance the particular set of hosts on
which his or her request will be actioned [16].

Applying these kinds of complex configurations resembles end-
user programming rather more than it resembles interactions

which are commonly performed using a GUI. To the extent that
this is a form of programming, it is a process of transforming a
conceptual plan “in the head” of the user/programmer in familiar,
informal terms, into a form which is compatible with a computer.
There is long-standing empirical research into how non-
programmers “naturally” think about programming [19]. More
recently, Rode, Rosson, and Quiñones [21] have made a study of
how non-programmer webmasters think about some common
processing needs in web applications. They discovered many
mis-conceptions and unconsidered assumptions; of particular
relevance to this present research, they found that non-
programmer webmasters can usually devise a simple
authorization scheme, but it is almost always incomplete.

2.4 Language and Human Intentions
The same authors who have pointed out the distance between
users’ mental plans and the expression of those plans in terms
which are compatible with a computer have also suggested
natural-like language as a way to decrease this “distance” and
increase the “naturalness” [19,21]. Pulman [20] suggested that
controlled natural language might be a way to enable experts in
some domain to express their expertise in a way which could
translated into a portable, computer-readable form. The problem
of expressing access control policies is similar, but is more
immediate since information systems are growing rapidly in
complexity, with consequent access control challenges.

Natural-ness is not necessarily best achieved by a full natural
language [19]; controlled natural language is not in any way a
compromise. Controlled language can be tailored for specific
uses, such as web service protocol descriptions or the construction
of ontologies, as has been done by the General Architecture for
Text Engineering (GATE) team in the Semantic Knowledge
Technology (SEKT) project1. Significantly, these have compared
favourably with a GUI-style ontology editor [13].

The use of controlled languages has been found elsewhere to be
highly usable for end-user specification of security and/or privacy
policies. SPARCLE is designed for natural expression of privacy
policies [4]. Adage includes a formal logical language alongside a
GUI for the expression of RBAC policies [26]. However, the
motivation and approach behind PERMIS is quite specific. We
have already seen (section 2.3) that Grid computing presents
particular authorization challenges. PERMIS is designed to
address these challenges on the basis of RBAC. As the following
subsection shows, RBAC provides a means to make Grid security
manageable, but also presents new conceptual difficulties for
non-specialist users.

2.5 Challenges in RBAC Policy Specification
Access control in PERMIS is based on a well understood, unified
access control model, a variant of RBAC. One of the advantages
of such an authorization policy is that, unlike access control
applied at the level of each subject or each target resource (such
as access control lists or Unix-style read-write-execute), a unified
policy is therefore more maintainable and more scalable [7].

1 http://gate.ac.uk/; http://www.sekt-project.com/

As well as providing a solid foundation for security
implementations, RBAC is applicable to completely general
situations, rather than being drawn from the privacy or security
needs of particular application domains. This is one of its strong
points, but without careful interface design this could place a
correspondingly greater onus on the resource owner.

Unfortunately, it has been found that resource owners generally
are not familiar with RBAC, and consequently have a partial
understanding of “what-needs-to-be-done” [5] to implement
access control; this would lead to policies which are incomplete
or which contain unnecessary elements. In particular, Brostoff,
Sasse, Chadwick, Cunningham, Mbanaso & Otenko [5] identified
two classes of problems which they labelled the “policy
components” and “policy paradigms” problems.By “policy
components problem”, they mean that resource owners do not
understand some of the basic structure of the PERMIS RBAC
policy space, such as Subject Domains (the domains from which
users can be allowed to access resources) and role assignments
around Source of Authority (SOA) or domain administrators.

By “policy paradigm problem”, they mean that resource owners
are unsure which objects should be included in a policy, and
which left out, if they follow the mental model of traditional
access control such as “explicitly grant and explicitly deny
access”. Because PERMIS RBAC policies exclude by default all
permissions which are not explicitly granted (the deny all access
except model), policies are likely to be inefficient rather than non-
functioning or insecure, or might unnecessarily deny access to
groups of users who should have access but who were not
mentioned in the policy. Nevertheless, there is a risk of
unintended outcomes whenever a resource owner does not
understand a key aspect of policy specification.

There are, then, two sources of risk arising from mistakes in
setting access control policies. Mistakes can be due to the
complexity of the policy, with a consequent likelihood of
omissions, ambiguities or inconsistencies [8]. There can also be
mistakes which follow from a basic mis-understanding of the
underlying security model, as Brostoff et al. identified [5]. These
new classes of “programming” error do not, of course, diminish
the possibility of simple “slips”, lapses or spelling errors, which
also have to be eliminated if the policy is to function as the user
intends.

For the reasons we discussed above, we believe that constrained
natural language can overcome problems for users of knowing
“what-needs-to-be-done” and can enable “slips” to be easily
detected. At the same time, once conceptual shortcomings have
been addressed, users still need to be supported to know how to
use the interface to express their policy. The challenge for us,
then, was to allow resource owners to express policies without
requiring them to have any specialist knowledge of RBAC or
access control models, and to design an interface which is usable
in this more conventional HCI sense.

3. EASY EXPRESSION OF
AUTHORISATION POLICIES
This was the point of departure for the Easy Expression of
Authorisation Policies (EEAP) project. As part of the PERMIS
infrastructure, EEAP is particularly concerned with security
issues in e-Science, Grid computing, and web services generally.

3.1 The Virtuous Circle of Authorization
Policy Specification
The fundamental idea underlying EEAP is the virtuous circle of
expressing authorization policies, a concept developed
particularly to support resource owners in Grid computing
throughout the entire process of policy specification [8]. The
virtuous circle is based on the realisation that language stands in a
special relationship to human understanding. GUI visualisations,
from this viewpoint, are complementary to natural language,
rather than being the only means of reporting the meaning of
access control policies. The user can choose either, or can switch
between the two, so that checking is completely available for both
visual and linguistic cognition.

We started the project with the natural language output for the
virtuous circle already in place, as part of the PERMIS Editor
GUI. Policies expressed using the GUI or a Wizard, are
transformed into machine-processable form in XML according to
the PERMIS DTD [7]. The XML is then transformed (using an
XSL stylesheet) back to the user as natural language. The final
policy is therefore available to the user in three forms: raw XML,
the familiar GUI screens, and the natural language output.
Crucially, the natural language display also shows diagnostic
error and warning messages, a point to which we shall return
later. Because the output, in whichever form they prefer, is
generated directly from the computer-readable form of the policy,
the user can be confident that it reflects the authorization that will
actually be enforced by the system.

In a paper published at the beginning of the PERMIS Natural
Language development, Chadwick & Sasse [8] assumed that
completing the virtuous circle by enabling the use of controlled
natural language input of security policies as well as for their
display would greatly reduce the scope for misconceptions of the
sort discussed in the previous section, and would enable “slips” to
be more easily detected. However, at that early stage, this
remained to be investigated empirically. In this paper, we revisit
these assertions, in the light of our experiences with applying
these ideas in practice.

3.2 Grid Security in the Wild
The process of developing a natural language input for the
PERMIS Editor began by interviewing 45 e-science practitioners
across the range of e-science application areas: the hard sciences,
medical research and bioinformatics, earth sciences, and arts and
humanities. Interviews were semi-structured, with an average
length of about 45 minutes. They were voice-recorded for
transcription using Grounded Theory [10]. 18 participants were
interviewed individually and the others in small focus groups (2-4
participants).

This first phase of the research had three main purposes:

1. To understand the major requirements in Grid security, and
how they are expressed by Grid resource owners;

2. To inform the design of the ontology which underlies
PERMIS access control policies and is the first stage of
natural language processing; and

3. To inform suitable scenarios for the later evaluation of the
natural language interface.

3.2.1 Grid Security: Varied Uses, Complex Needs
From the interviews, it was evident that Grid security policies are
hard to specify, not only because access control is not well
understood by resource owners, but because real-world situations
are complex and changeable.

Grid computing has varied and sometimes incompatible
requirements: access to large volumes of data, fine-grained access
control, making specialised data or software widely available to
the research community, providing very high-powered computer
processing, and maintaining the confidentiality of data. Data
integrity is always important, but especially where data volumes
are very large. In some areas, for example some kinds of
humanities data, there are commercial considerations; data may
be restricted because it has gained a high commercial value in
electronic form, even if it is public data. Conversely, the
availability of electronic images of artefacts such as rare
documents may remove restrictions imposed by the physical
vulnerability of the originals.

3.2.2 R-what? Implications for Ontology design
We already knew that knowledge of RBAC is not widespread
among Grid users, apart from security specialists. The findings
from the interviews re-enforce this, but, in the absence of easily
specified security policies which fit their needs, resource owners
are adopting simpler, all-or-nothing policies.

The means for expressing and maintaining access control policies
must be flexible enough to handle very different needs in different
applications, while remaining comprehensible by the intended
users. Our original intention was to extract security terms (words
and phrases), synonyms, and antonyms, and relate them to the
model formalized in the ontology. However, our findings from
this first phase suggested the need to keep the ontology as general
as possible by defining only the basic classes and sub-classes,
avoiding application-specific instances.

3.3 Putting the Virtuous Circle into Practice
Underpinned by our ontology, the last link in the chain of a
virtuous circle of authorization policies has been now put in
place: the Policy Editor supports controlled natural language [20]
input of the most essential features of the RBAC model. It is now
possible to express an access control policy in controlled natural
language, to have this transformed in to XML, and for this to be
re-presented back to the user as a diagnostic display, in natural
language or another form of his or her choice. However, the
parser does not yet include the full functionality of the PERMIS
RBAC specification.

The constrained natural language interface provides a simple
layout. On the left-hand side, the user types sentences, each of
which represents a rule in the natural language form of the policy.
These sentences do not have to correspond to sections of the final
computer-readable policy, but are in any order which makes sense
to the user. Indeed, rules can be combined using comma-separated
lists:

Manager, owner, and clerk are roles.
Managers and owners can print on LPT1 and HP Laserjet.

The space for entry of the natural language text is a simple editor,
with functions such as cut/copy and paste and insert or over-write,

and shortcuts Ctrl+X, Ctrl+V, Ctrl+C (Figure 1). The right-hand
side of the same window shows an example of a policy in
constrained natural language. This is a key part of the interface;
resource owners should be able to express security policies guided
by a few example rules and only minimal other guidance.

Figure 1: The controlled natural language interface

3.4 PERMIS Controlled Natural Language
It is important to understand that this is controlled natural
language processing. We have already shown that it is
natural-ness, not natural language in itself, which is of interest as
a means of reducing the distance between users’ intentions and
their formal expression. From the implementation point of view,
natural language is ambiguous and complex, and consequently
very hard to process and translate by machines, and such tools
that do exist are usually not freely available. Controlled natural
language, in contrast, provides a strictly limited vocabulary and/or
grammar. This makes machine processing much easier [8], while
still being tailored to the specific requirements of the interface.

Our natural language processor has made use of a GATE
implementation, Controlled Language for Ontology Editing
(CLOnE), itself built on earlier work of the GATE team,
Controlled Language for Information Extractions (CLIE). Details
of the ten syntactic rules of CLOnE are given in [13].

In effect, specifying an authorization policy is very similar to
defining an ontology. The critical point, though, is that this is
transparent to the user.

3.4.1 The Controlled Natural Language Interface
Some powerful usability features of CLOnE have been carried
over into our natural language interface. For example, the parser
can identify matching nouns differing in singularity or plurality,
and can handle irregular forms or non-English loan words (“There
are Children. Xavier is a child”). This feature is further enhanced
in our implementation, which is more lax than natural English in
terms of grammatical agreement of singular or plural of subject
and verb (“supervisors and office staff are an employee” is
acceptable even though it is incorrect English).

In our constrained natural language, we have extended CLOnE in
four respects which pertain specifically to authorization policies:

1. A simple way, using triples, to allocate permissions to roles:
<Role> can <Action> on <Target>; for example, “Staff can
print on HP Laserjet 1.”;

2. Linking the special “can assign” permissions to role/attribute
administrators: <Admin> can assign the <Role> to
<Subject>; for example, “David can assign the manager role
to Alice.”, or “John can assign the clerk role to users from
department A.”;

3. Using “trust” as a variation of 2) in “I trust <Administrator>
to say who <Role> are; for example, “I trust David to say
who managers are.”;

4. Conditions to constrain a permission: <Subject> can
<Action> on <Target> if <Condition>; for example, “Staff
can print on HP Laserjet 1 if copies is less than 10.”

New rule 4) is only partially implemented in the current early
version of the language parser and so it did not feature in the
evaluations.

3.4.2 Classes and Instances: New Entities from Old
Grouping of types within categories is a suggestion of Karat et al.
[17] as a means to overcome scaling issues. Our natural language
parser provides two useful grouping features, which allow users to
refer concisely to properties which apply to the whole group.

When an entity class is created, a special pseudo-instance is
automatically created at the first time, called “all_<class>” (eg.
“all_Printer”). This can be used later to define properties of every
object of that type (every instance of the class). For example,

There are printers.
Managers can print on [all] printers.

A related feature, native to CLOnE, is that entities can be created
as a “type of” some already existing entity (as a sub-class of a
class). The sub-class inherits the properties of the super-class; for
example, a type of resource inherits the actions property.

3.4.3 Language is Parsed in Context
This ability to create new types of entity from existing ones is
used in PERMIS so that the process of specifying a policy does
not start from an empty ontology, but builds on a small set of
hidden and pre-defined classes and relationships. The user is, in
effect, creating instances of classes and defining new classes from
existing ones, but is unaware of the inbuilt definitions. This
means that the sentences written by users are parsed in the context
of an access control policy for which the outline is already pre-
loaded.

This context is also in the form of natural language with exactly
the same syntax:

There are users, roles, resources, actions, parameters
and permissions.
Resources are also called targets.

Users have roles.
Roles have permissions.

Permissions have resources and actions.
Resources have actions.
…

These rules, which describe the underlying RBAC model, are
loaded and parsed before any user input, to build an ontology
model with pre-defined classes and relationships from the
authors’ background knowledge of RBAC and PERMIS.

This background context removes from the user the burden of
defining from scratch the ontology of the RBAC model. But a
more important purpose of the context is to align the security
model in user’s mind with the RBAC model used in the computer
system. There might be a different model in their mind; by
providing a pre-defined RBAC model of Roles, Permissions, and
other elements, the user is enabled to specify a policy in these
terms and with their own variations, which can then be exported
to the final computer-readable format.

It is important to emphasise that users are not expected to know,
or to need to know, anything about the underlying ontology,
RBAC model, or rulesets; we discuss these here only to clarify
the connection between natural language and the final policy
expression. Classes, properties, pre-defined elements, and the
relationships between them, and from them to the final policy, are
transparent to the users; they need only to learn a few simple rules
and follow the example text.

4. EVALUATION
In the first phase of the research we interviewed a wide selection
of e-science users and administrators, used this as the basis for
requirements and for enhancements to the ontology design, and
implemented a controlled natural language interface to reflect the
requirements and the ontology. We now turn to the evaluation of
our interface.

From the review of previous research and our beliefs outlined
above, we derived four research questions:

1. Overall usability: can target users understand the syntax of
the controlled natural language, using the example?

2. Can target users understand the “building blocks” of a
PERMIS policy (resources, actions, roles, and administrator
and role assignments)?

3. Can target users avoid misconceptions in the
RBAC/PERMIS model when using the PERMIS natural
language editor?

And, finally, the overall question:

4. Using controlled natural language, with the simple examples
provided, are target users able to specify policies accurately,
reflecting their real-world intentions?

This is a quite specific understanding of usability, tailored to the
needs of access control specification. At this stage, we did not
attempt to measure other aspects of usability, such as subjective
satisfaction or efficiency. We chose a scenario-based approach,
recorded and observed in a controlled environment.

The first scenario (Figure 2) was designed to reflect common
real-world access control needs without making reference to any

particular field of application. Where time allowed this was
followed by a more complex scenario; for participants with prior
e-science experience, this second scenario was drawn from their
field of work, based on the interviews conducted in phase one; for
others, the second scenario was a variant of the first.

These scenarios were quite specific in terms of access control, but
in a form which could not be simply entered verbatim into the
natural language processor. In taking this approach, we assume
that real-world users know what they want to control; our interest
is in their ability to express their intentions. This requires a
careful methodological balance between the need to be clear
about what the policy should say, and the risk of simply giving
users a set of words they can copy.

4.1.1 Participants
Seventeen participants were recruited in three complementary
ways: using internal email lists; a request to IT-related staff
working internally in the college library; and from a database of
e-scientists built up during earlier phases of the research.

Target users are e-scientists (researchers with knowledge of their
research domain and some understanding of Grid computing),
senior research management (Principal Investigators) and
administrators (possibly departmental administrators or
information systems staff). Although they have good computer
skills, they are not computer security specialists. All of the
participants were fluent in written and spoken English, although
not all had English as a first language.

All 17 participants were from our target group of users; all were
highly computer-literate and working in a variety of computer-
related areas. They are target users, even though not all of the
participants had specific e-Science experience. This reflects likely
usage in the real world, where security policy authoring is often
handled by team members who are not e-science or security
specialists.

Participants included 7 e-science researchers in Earth Sciences,
Medical, Crystallography/Chemistry, Physics, and Arts &
Humanities; and 10 participants without specific e-Science
experience, of whom 4 were computer science researchers and 6
library computer professionals (web and database administrators,
project managers).

4.1.2 Conducting the observations
We already know that resource owners, as non-security
specialists, usually do not have any formal understanding of
access control models, particularly RBAC [5]. However, we
believe it is realistic to expect that resource owners would have
informal knowledge of basic access control concepts, perhaps
from the PERMIS Editor tutorial which new users are encouraged
to follow. To ensure that these basic ideas were understood, rather
than asking participants to complete the tutorial we prepared a
short (1 page) description of the basic RBAC concepts.

This was read to them by the experimenter, rather than asking
participants to read it for themselves; this was to overcome
different abilities in grasping written information and to allow the
experimenter to check understanding at key points.

Each participant was then given, in printed form, the first scenario
presented in two formats, as a simple written list of requirements
and in diagrammatic form (Figure 2).

To reflect what we believe to be the common point from which
policy authoring starts, we presented participants with scenarios
as both words and a diagram. We hoped the participants would
work mainly from the diagram. However, we found that in
practice, they mostly ignored the diagram and worked from the
verbal description; in future, we would use diagram-only for
similar scenarios.

Participants were told that they could take as much time, and as
many attempts as they needed to complete a scenario and to
produce a working access control policy. (In practice, with two
exceptions, the sessions were limited to one hour.) Two general
scenarios were prepared without any reference to a specific
application area. We aimed to avoid any real-world references, to
avoid participants making assumptions about levels of seniority or
other aspects.

The first, simpler, scenario contained three roles, three resources
with three possible actions on them, and one administrator. The
second scenario was only a little more complex, adding the
concept of users’ domains. The scenarios were phrased to include
concepts which are not normally expressed directly in RBAC:
access denials; access to “all” instances of a resource type; and
“groupings” – different elements which are specified as being of a
type, as well as “background” elements such as a database
containing the resources.

Interactions, every action on the screen, keyboard and mouse, as
well as voice, were recorded using Camtasia Studio2. We did not
use a formal think-aloud protocol because this can be distracting,

2 http://www.techsmith.com/camtasia.asp

but we did encourage participants to make comments, and
occasionally the experimenter would ask a participant to explain
an action. These comments and questions were noted during
analysis and form a valuable input to the results.

4.1.3 Analysing the Observation Data
The analysis proceeded as follows. Each of the recordings was
replayed as many times as necessary, with the analyst noting in a
spreadsheet the times at which key events occurred, and each time
the participant clicked “Convert”; this is considered to be a “try”.

Measured times include the time taken for the participant to read
the scenario, but not the time taken for the observer to read out
the background description of basic RBAC concepts. We call this
the elapsed time since “handover”, the point at which the observer
finished reading the introduction and RBAC overview and
explicitly made clear to the participant that the observation was
now under way.

We expected the participants to continue until a workable policy
was produced, within the time constraint of one hour overall.
Therefore, rather than a metric for scoring rules, our measure of
the accuracy of policy specification is the number of “tries” made
by each participant. This needs to be considered in conjunction
with the overall time, since some participants chose to correct
errors themselves, before clicking “Convert”.

At the same time as recording the timings and number of “tries”,
the analyst noted significant questions and comments by the
participants, used in the qualitative analysis which follows.

5. RESULTS

5.1 Overall results
Overall the results are encouraging: all 17 participants grasped the
basic concept of expressing policies in controlled language
without difficulty. The time taken and number of attempts to
produce a complete working policy in the first scenario was
higher than we would like in real use (average 35:45 minutes and
6.6 tries), but we expect that this will fall as users learn the simple
grammar of the constrained language, and as they re-use and
amend existing “scripts”.

We now address in more detail the questions raised at the
beginning of section 4.

5.2 Usability of Controlled Natural Language
The constrained vocabulary and the names of objects in the
predefined ontology (resources, actions, roles, permissions) are
well understood. Participants did not need to understand the
relation between verbs such as “can” or “assign” and the creation
of entities in the ontology in order to specify workable policies.
Some participants considered the language almost as a “script”,
using that term in feedback to the observer.

5.2.1 Usability of the Editing Space
Our first concern in overall usability was that presenting
participants with an almost empty space on which to type, with
minimal editing controls and only an example text as a guide,
might be daunting.

Figure 2: General scenario 1 (diagrammatic form)

Name
DoB
Address
Postcode

Database

Analysts can
see only
DoB and
Postcode

Clerks can add and
change Name, date
of birth, Address
and Postcode

Owners
cannot
change any
data but
can read it
all

However, this does not appear to have been a problem for our
participants. Measured as the time taken between the “handover”
of the session and the participant starting to type on the text
editing space, this was average of 4:20 minutes. We believe that
this is a sufficiently short time, including the time to read the
instructions and scenario, to indicate that participants were not
daunted by the emptiness of the screen.

The majority (15 of 17) of the participants were able to specify an
accurate, workable access control policy for at least the simple
scenario within 45 minutes and 10 tries. Excluding the two
outliers, mean times for completion of the first scenario fall to
26:45 minutes in 5.125 tries.

We hope that the overall times will fall as target users learn the
requirements of our constrained natural language. There is some
evidence to support this. Of the 7 non-specialist participants who
proceeded to the second, slightly more advanced, scenario, the
mean time was 12:36 minutes in 2.5 tries, significantly better than
the first. However, note that this second scenario was conducted
immediately after the first, and was very similar, adding only two
additional user administrative domains.

5.2.2 Usability in Specifying Policy Elements
It is clear from the detailed timings that some task elements are
more readily understood than others. Adding the three roles,
Clerk, Owner, and Analyst seems to have caused little problem.
Similarly, almost all participants managed to say “John is an
administrator.” on the first attempt.

There is a specific issue which caused some problems; this relates
to accuracy, and is also a part of the general usability of the
interface. This follows a design feature of the controlled
language: it is strict with regard to the pre-definition of entities.
References to entities do not cause that entity to be created; if it
has not been defined earlier in the policy, then this is an error.

This is by design; it applies to all entities – resources, resource
types, roles, actions, users, and permissions; the aim is to prevent
mistakes introduced by typing errors. For example

Clerk can read databsae”
will be reported as an error, rather than creating an incorrect
resource instance “databsae”. However, this does, naturally, add
to users’ workload by requiring that each instance must be
explicitly defined before it can be referenced.

5.2.3 A Parsing Problem: Prepositions
The quantitative data does not show why some of the rules proved
difficult to specify. But analysis of the qualitative data shows one
of the most common problems: forgetting to add prepositions
between verbs and the corresponding object:

Owners can read Name.

instead of

Owners can read from Name.

It might be expected that this would be more of a problem where
the verb usually does not require a preposition in natural English
than with other verbs, but our observations do not support this.

Part of the scenario required a combination of write/add/change –
the scenario said:

Clerks can add and change Name, date of
birth, Address and Postcode

- given like this, without prepositions. Change and add do not
normally have prepositions, so the parser requires some slightly
“un-natural” English such as “Clerks can change on Name ...”.

The need for prepositions is a feature of the parser which would
require a deep re-design to change; the appropriate design
response is to guide users to follow it correctly. This is not a
fundamental issue in the gap between users’ intentions and their
expressions of them in language. The problems found here are,
however, suggestive of the ways in which participants make use
of the example text. As we describe in the following subsection, a
more critical incident led us to change the text slightly, to remove
a more fundamental problem.

5.2.4 The Importance of the Example
An early version of the example text showed a sentence
specifying a parameter for an action:

Print has Pagenum
That is, the print action can take a pagenum parameter.

One participant attempted to specify a policy in which the
resources to be acted upon were given as parameters to the action,
for example:

Write with Address.
where Address is a parameter of the Write action. Superficially,
this seems reasonable, since actions can have parameters;
however, in our ontology it is not possible to restrict access
according to the parameters to an action – properties apply to
classes/subclasses and their instances, that is, to objects, not
parameters.

This line in the example text was removed from the example text
for later trials, and, not surprisingly, no further participants
attempted to express the policy in this way. Our point here is not
that using parameters is or should be incorporated into the
ontology as a way to control access; the point is that this incident
throws light on the use made by participants of the example text.
However, in a later subsection we give a contrasting example.

5.3 Specifying Policies in Terms of the
Ontology Elements
We found that participants had little difficulty in understanding
the basic elements, the pre-defined entities which are the
“building blocks” of an RBAC policy: roles, actions, and
resources. This in itself is a positive result, since RBAC revolves
around these concepts, which are unfamiliar, as access control
elements, to most of our participants.

We did, however, identify two common classes of problem in the
use of these pre-defined building blocks. These both concern
users’ conception of elements of the underlying ontology, and so
present a design question about how best to guide users, without
explicitly exposing the design of the ontology.

5.3.1 Understanding the policy “building blocks”
Participants should not have to know about the pre-defined
entities (ontology classes – see section 3.4.3), which are the
“building blocks” of an access control policy. However, they do
need to understand that, although they are free to define the
names of new entities (classes and instances), these new entities
must be defined in terms of the existing entities.

For example, in order to say “dirac is a computer”, it is necessary
for “computer” to be previously defined as a class, or, more
workably, as a sub-class of resource:

Computers are a type of resource.
Dirac is a computer.

Some participants attempted to use this approach to define records
or fields in the database as instances, but defined them instead as
a type of resource, that is, as a subclass in the ontology, rather
than as instances:

Postcode is a type of resource.

instead of

Postcode is a resource.

This could point to a more fundamental problem, which is that
users do not appreciate the difference between classes and
instances, which can be and often are used interchangeably. For
example, in a different access control policy, Postcode might be
a class; AA1 1BQ could be an instance of this class. This point is
further illustrated in the next subsection.

5.3.2 Aggregating Elements at too High a Level
The “grouping” feature of our natural language, described in
section 3.4.2, is a powerful tool for users but also presents users
with the possibility of unproductive choices. In the scenario,
fields which are the subject of access control are said to be within
a database. This is best considered as “background”, not specified
in the policy; it is the object to which the policy as a whole
applies.

Several participants attempted to define the database as the basic
resource. This approach does not lead to a workable access
control policy. Although grouping is suitable for entities which
share common properties, the level of grouping needs to be
sufficiently fine-grained that some useful statements can be made
about the commonalities. If the boundaries are too broad, then
users may find that they give away more authority than they
intend.

Conceptually, we believe that both of these cases suggest that
users are confused by the subtle distinction between objects which
are naturally understood as one object (one instance), and objects
which actually represent many objects (which could be classes or
instances, depending on the circumstances). Example of the
former: one named computer (eg. “Dirac”), a database, a piece of
hardware. Example of the latter: a set of records, fields in a
database. Each of the latter has many (unquantified) instances, but
in access control terms, permissions are (implicitly) to the set of
objects. Yet in the controlled language, this set of objects must be
specified as an instance, since permissions are on instances and
not on types (classes), which are regarded as being empty in the

ontology. To handle this, we introduced all_instances (section
3.4.2): actions can be given to all instances of a resource class.

The question of how to bridge the subtle distinction between
classes and instances for non-specialists raises difficult usability
issues and requires further study.

5.4 Overcoming Misconceptions
The third question concerns the usability of controlled natural
language in overcoming users’ misconceptions about the access
control model

Notably, the participants showed no confusions around the target
domain/subject domain distinction which was a source of
misconception for Brostoff et al [5] (the first aspect of their policy
components problem); it becomes intuitively obvious that
DepartmentA is the domain from which requests originate, the
subject domain, in statements such as:

John can assign Analyst to users from DepartmentA.
This is despite some problems in practical application; the syntax
at this point is strict, and spaces in particular seem to cause
problems.

However, concerning another point of misconception identified
by Brostoff et al. [5], the function of domain administrators and
the separation of roles from end-users, the evidence is less clear.

5.4.1 Understanding Roles and Assignments
This second aspect of policy components concerns the special
Role Assignment Permission, and the associated action
“<administrator> can assign <role> to users [from <domain>]”.
Many participants attempted to express administrators in terms of
normal roles and actions; but roles and users are different from
resources, and assignment of users to roles cannot be expressed in
these terms.

Fundamentally this suggests that users have not understood the
difference between RBAC user-role assignment (which are
normally done by an administrator) and RBAC role-permission
assignments (which are the access control part of the policy).

This is a likely explanation for the observation that participants
made this mistake even though the example text gave two clear
examples of user-role assignment sentences. This disparity
suggests that the example text is not followed closely. However,
the observation discussed in section 5.2.4 suggests otherwise.
Although there was only a single occurrence early in the trials, the
difference between the two cases is striking. It suggests that an
example text, no matter how well-written, is unlikely to solve all
of the users’ conceptual difficulties.

5.4.2 Deny-all-access-except
Another point at which the requirements of PERMIS RBAC
diverge from the intuitive expectations of non-specialist users is
that, in PERMIS RBAC, the inbuilt default permission is
effectively “deny-all-except”; exclusions do not, therefore, need
to be explicitly stated, unless it is to reduce the scope of a
permission already granted (Brostoff et al’s [5] policy paradigm
problem).

To investigate this, we had taken care to include some exclusions
in the scenarios:

Owners cannot change any data but can read it all
However, in contrast with Brostoff et al.’s [5] findings using the
GUI, none of our participants attempted to express this using an
“exclude” clause; a few asked about it, verbally during the trials,
but only for clarification, rather than as a conceptual difficulty.

This very positive result suggests that natural language has the
potential to overcome conceptual problems which are intractable
using more traditional interfaces.

5.5 Analysis
At the end of this subsection we revisit the usability needs which
led us to explore the potential of controlled natural language.
Before doing so, however, we draw a wider lesson from the
results which relate to basic questions in HCI.

5.5.1 Abstraction: What Do They Need to Know?
One of the basic aims of using controlled natural language is that
users should be able to specify policies by following examples,
with a short learning curve and minimal other guidance [20]. Our
investigation asks to what extent this has been achieved in the
specific case of the specification of access control policies.

We started from the belief that our target users are “experts” in
the access control requirements of the resources under their
control. In this research, we found that evaluation participants can
follow the PERMIS Policy Editor “dialect” of controlled natural
language without difficulty. However, we also found that they
needed to know something about the pre-defined “building
blocks”, while at the same time we have been concerned that they
should not have to understand the underlying complexities of the
RBAC ontology.

In sections 5.2.4 and 5.4.1, we provided two contrasting
examples: in one, participants followed their own partial
understanding based on previous experience, while in the other a
participant followed the text example in a way which turned out
not to be helpful.

The point here is that contents, as well as the phrasing, of the
information provided to users are crucial. The example content
should naturally lead resource owners to express policies in
keeping with the underlying access control model. Yet it should
always be possible for a resource owner to express a policy by
adapting lines from the example text. Seen in this way, the writing
of the example text is a question of abstraction. We agree with
Witten & Tygar [24] that computer security management, like
more conventional programming, is a process of manipulation of
abstract rules, and consequently alien and unintuitive for non-
programmers. However, abstraction is also the means by which
complexity is made manageable [11]. In preparing the example
text, the writer/designer is deciding to selectively hide or reveal
specific complexities of the underlying system.

5.5.2 Revisiting the Problem
We are now in a position to revisit the usability issues which we
identified in section 2.5. Recall that we were concerned with risks
in access control specification arising from uncertainty about
“what needs to be done” [5]. We summarise these as

misconceptions: security policies are difficult to understand; and
complexities: the size of the system being controlled makes it
difficult to ensure completeness. The user also needs to
understand how to do what needs to be done. The interface
therefore needs to guide a user to produce policies which are
accurate, complete, and do not contain security vulnerabilities,
and do so this in a way which is intuitive or is available for the
user to discover from examples.

In terms of misconceptions, our evidence suggests that controlled
natural language can reduce the risk and bypass some of the
problems found with the GUI interface. In some aspects, such as
excluding all permissions by default and being clear about the
distinction between subjects (“end users”) and targets (resources),
it seems reasonable to believe that the logic of the user is
intuitively closer to the model when expressing policies in natural
language than when using the GUI. On the other hand, not all of
the elements of Brostoff et al’s [5] policy components problem
and policy paradigm problems are overcome: the distinction
between assignments of users to roles and assignment of
permissions to roles is still not intuitively understood. Nor is the
difference between classes of objects and instances of objects.

A second class of error arises not from misconceptions but from
simple “slips” or lapses [8]. In section 5.2.2, we describe the
common problem of participants forgetting to pre-specify policy
objects, or of being unaware of the need to do so. Yet, as we
noted above, this “problem” is also a powerful means to
overcome simple errors; it is immediately clear to a user that a
mistake has been made. With better feedback, the small problem
would be easily overcome, while a larger risk, that of accidentally
mis-specifying a policy, is avoided.

In terms of knowing how to do it, we feel that the times and
numbers of “tries”, both overall and for the individual task
elements, suggest that controlled natural language allows users to
specify accurate and complete policies easily and in a reasonable
time. The syntax of the controlled language corresponds well to
users’ “natural” way of thinking [19] at least in the most basic
elements of access control policies: who can perform which
actions on which resources. However, there were some common
problems which, although ostensibly simple “mistakes”, may
reflect underlying conceptual difficulties.

6. CONCLUSIONS
Based on the results of the study, constrained natural language is
a promising avenue to enable resource owners in Grid computing
to express their access control needs more easily. Overall, it
provides a usable interface, but some conceptual and usability
issues remain. We do not believe that these are insurmountable.
We conclude with some pointers, drawn from the results
presented here, for ways in which future work can address these
issues, and some features which remain to be implemented in our
controlled language parser.

6.1 Informing the User
In our analysis (section 5.5.1), we find that designing an interface
which supports the user in the cognitive tasks of specifying access
control policies, without requiring specialist expertise, is at root a
question of abstraction, of ensuring that the user knows enough to
avoid mistakes, without becoming overcome by the complexities

of the system [24]. In these concluding paragraphs, we move
beyond “what does the user need to know”, to consider “how does
the user know what they need to know?”.

The first point of reference which gives guidance to the user is the
example text (Figure 1). By design, this text makes no reference
to any particular access control context so as to be generally
applicable. An obvious response would be to change the design to
one in which the example text varies in context. However, this
would add complexities of its own and possibly be more
confusing for a user. A possible solution would give multiple
“typical” examples for different application areas, displayed in
tabs; the user would choose the most appropriate example.

The basic problem is to enable the user to understand what is
happening when they specify access control polices; if there are
rules that fail to parse, the user needs to be able to understand
why. Dourish & Button [11] have pointed out that, unlike the real
world, computational abstractions are not available to be “pushed
and prodded” and explored; a static text, by its nature
unresponsive and unchanging, exemplifies this problem, but our
observations suggest a solution.

In a more dynamic way than the example text, the language parser
could provide specific feedback to a user. The diagnostic log as
currently implemented is only likely to be of interest to a
developer. For users, it functions more like a progress bar
informing them that processing is still in progress; it provides
reassurance that the NLP is not hanging or crashing. However,
this log also provides the basis for more useable feedback; several
participants drew a comparison with compilers, which provide a
comprehensive error report for the benefit of the programmer. It
would be helpful if the log could switch between developer mode
and user mode. Feedback provided appropriately in this way
would immediately overcome the more basic problems, such as
that of missing prepositions (section 5.2.3).

6.1.1 Return to the Virtuous Circle
Feedback is not, however, limited to diagnostic output from the
language parser. This returns us to the virtuous circle of policy
specification. We started from the premise that natural language
output enables the user to check that the machine’s understanding
of a policy matches with what is intended [8]. With the
implementation of controlled natural language input, the virtuous
circle is complete.

The diagnostic messages in the natural language output are a key
part of helping the user to understand; but the natural language
should not be seen as separate from the other interfaces of the
PERMIS Policy Editor. During the evaluation, we observed that
the existing GUI interface, which we had considered to be a
separate part of the PERMIS Editor, was used by participants to
understand which parts of their policies had been successfully
specified and which had failed. In future work, we plan to link the
GUI more closely with the natural language editor, so that
modifications made in the GUI are reflected in the natural
language text, just as natural language text is already reflected in
the GUI. Real-life users also have the availability of the PERMIS
Policy Tester, although this did not form part of our evaluations.
Thus, as they came to understand the rationality not only of the
natural language parser, but of the PERMIS access control system

as a whole, participants made use of the interplay between each of
the various interfaces to the PERMIS Editor.

The virtuous circle, then, can be re-conceived to extend to the
PERMIS system as a whole. The specification of policies, like
programming, is an iterative process, in which the user is
informed by an assemblage of interfaces, working together to
ensure accurate and easy expression of authorization policies.

6.2 Remaining issues
6.2.1 Other Access Control
PERMIS is specifically concerned with authorization, but must
work alongside other access control mechanisms, such as
firewalls and database-level security.

In addition, there are Grid access control requirements that are
difficult to implement using RBAC. From our interviews, we
noted fine grained-ness and flexibility as core requirements. To
support real-world requirements, the variant of RBAC defined by
PERMIS supports not only the ANSI standard RBAC features of
role hierarchies and dynamic and static separation of duties3, but
also includes enhancements to allow policies to specify other
constraints (such as time of day), the use of non-role attributes
such as Level of Assurance4 and delegation of authority.
However, at the current time, only role hierarchies, non-role
attributes, conditions, and action parameters are expressible in the
constrained natural language.

6.2.2 Unique Names in Grid: LDAP
A pre-condition of Grid authorization, and of Grid security as a
whole, is that users are uniquely identified, at least within the
scope of a Grid [16]. In PERMIS, as elsewhere, this is typically
implemented by having items in the policy referred to by
Lightweight Directory Access Protocol (LDAP)5 distinguished
names (DNs).

Brostoff et al [5] found that, while the need for unique names is
intuitively understood by target users, they are usually not able to
correctly specify LDAP DNs; nor should they have to, since the
use of LDAP implies that there is a repository which can be
searched or browsed for entries.

The GUI part of the PERMIS Editor provides the ability to
connect and browse in an LDAP repository. Currently, the
controlled language interface does not have any LDAP support,
since LDAP is not a part of natural language; users have to
browse LDAP via the GUI after they have finished inputting their
natural language policy. The natural language output issues
warnings that a unique name cannot be found, prompting them to
do this. Implementing direct support for LDAP in the language
interface will require changes which could also increase the basic
usability of the Editor; for example, drop-down menus or hyper-
links from which a user could browse an LDAP directory.

3 ANSI INCITS 359-2004 available at: http://webstore.ansi.org/
4 NIST Electronic Assurance Guideline 800-63

http://csrc.nist.gov/publications/nistpubs/800-63/SP800-
63V1_0_2.pdf

5 http://tools.ietf.org/html/rfc4510

6.2.3 PERMIS Natural Language in Use
How will people use it? From remarks made by participants
during the evaluations and from our interviews and focus groups,
we suggest that in real life, people will maintain “scripts” which
can be loaded into the natural language interface and amended as
needed. If this is correct, then our natural language interface
might prove more supportive of maintainability and scalability in
Grid access control than the existing GUI interfaces.

7. REFERENCES
[1] Adams, A. and Sasse, M. A. 1999 Users Are Not The

Enemy. Communications of the ACM 42,12 (December,
1999), 41-46

[2] Adams, A. and Sasse, M. A. 2001 Privacy in Multimedia
Communications : Protecting Users, not Just Data. In: People
and Computers XV - Interaction without frontiers. Joint
Proceedings of HCI 2001 and ICM 2001 (Lille, France,
September, 2001), Springer, Berlin, 49-64

[3] Barman, S., Writing Information Security Policies. New
Riders, Indianapolis, IN, USA, 2001

[4] Brodie, C. A., Karat, C.-M., and Karat, J. 2006 An Empirical
Study of Natural Language Parsing of Privacy Policy Rules
Using the SPARCLE Policy Workbench. In: Proceedings of
Symposium On Usable Privacy and Security (SOUPS)
(Pittsburgh, PA, USA, July, 2006)

[5] Brostoff, S., Sasse, M. A., Chadwick, D., Cunningham, J.,
Mbanaso, U., and Otenko, O. 2005 "R-what?" Development
of a Role-Based Access Control (RBAC) Policy-Writing
Tool for e-Scientists. Software - Practice and Experience
35,9 (2005), 835-856

[6] Cao, X. and Iverson, L. 2006 Intentional Access
Management: Making Access Control Usable for End-Users.
In: Symposium On Usable Privacy and Security (Pittsburgh,
PA, USA, July, 2006), 20-31

[7] Chadwick, D. and Otenko, O. 2002 RBAC Policies in XML
for X.509 Based Privilege Management. In: Security in the
Information Society: Visions and Perspectives: IFIP TC11
17th International Conference on Information Security
(SEC2002) (Cairo, Egypt, May, 2002), Kluwer Academic
Publishers, 39-53

[8] Chadwick, D. and Sasse, M. A. 2006 The Virtuous Circle of
Expressing Authorisation Policies. In: Proceedings of
Second Semantic Web Policy Workshop (SWPW'06)
(Athens, GA, USA, November, 2006)

[9] Chadwick, D., Zhao, G., Otenko, O., Laborde, R., Su, L., and
Nguyen, T. A. A. 2008 PERMIS: a modular authorization
infrastructure. Concurrency and Computation: Practice and
Experience Forthcoming (2008)

[10] Charmaz, K., Constructing Grounded Theory: A Practical
Guide Through Qualitative Analysis. SAGE Publications,
London, UK; Thousand Oaks, CA, USA; New Delhi, India,
2006

[11] Dourish, P. and Button, G. 1998 On "Technomethodology":
Foundational Relationships between Ethnomethodology and
System Design. Human-Computer Interaction 13,4 (1998),
395-432

[12] Fléchais, I., Mascolo, C., and Sasse, M. A. 2007 Integrating
security and usability into the requirements and design
process. International Journal of Security and Digital
Forensics 1,1 (2007), 12-26

[13] Funk, A., Tablan, V., Bontcheva, K., Cunningham, H.,
Davis, B., and Handschuh, S. 2007 CLOnE: Controlled
Language for Ontology Editing. In: Proceedings of 6th
International Semantic Web Conference (ISWC) (Busan,
Korea, November, 2007)

[14] Gollmann, D., Computer Security. John Wiley & Sons Ltd.,
Chichester, UK, 1999

[15] Gollmann, D. 2000 New paradigms - old paradigms? Future
Generations Computer Systems 16,4 (2000), 343-349

[16] Humphrey, M. and Thompson, M. R. 2002 Security
Implications of Typical Grid Computing Usage Scenarios.
Cluster Computing 5,3 (2002), 257-264

[17] Karat, C.-M., Karat, J., Brodie, C., and Feng, J. 2006
Evaluating Interfaces for Privacy Policy Rule Authoring. In:
Proceeding of CHI 2006 (Montréal, QC, Canada, April,
2006), ACM

[18] Nielsen, J. Ten Usability Heuristics
http://www.useit.com/papers/heuristic/heuristic_list.html

[19] Pane, J. F., Ratanamahatana, C. A., and Myers, B. A. 2001
Studying the language and structure in non-programmers'
solutions to programming problems. International Journal of
Human-Computer Studies 54,2 (2001), 237-264

[20] Pulman, S. G. 1996 Controlled Language for Knowledge
Representation. In: CLAW96: Proceedings of the First
International Workshop on Controlled Language
Applications (Leuven, Belgium, March, 1996), 233-242

[21] Rode, J., Rosson, M. B., and Pérez-Quiñones, M. A. 2004
End-users' Mental Models of Concepts Critical to Web
Application Development. In: IEEE Symposium on Visual
Languages and Human Centric Computing (VLHCC'04)
(Washington, DC, USA, September, 2004), IEEE Computer
Society, 215-222

[22] Saltzer, J. H. and Schroeder, M. D. 1975 The Protection of
Information in Computer Systems. Proceedings of the IEEE
63,9 (1975), 1278-1308

[23] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. 1996 Role-Based Access Control Models. IEEE
Computer 29,2 (1996), 38-47

[24] Whitten, A. and Tygar, J. D. 1999 Why Johnny Can't
Encrypt. In: Proceedings of the 8th USENIX Security
Symposium (Washington, DC, USA, August, 1999), 169-184

[25] Yee, K.-P. 2002 User Interaction Design for Secure Systems.
In: Proceedings of 4th International Conference on
Information and Communication Security (Singapore,
December, 2002), Springer

[26] Zurko, M. E., Simon, R., and Sanfilippo, T. 1999 A User-
Centered, Modular Authorization Service Built on an RBAC
Foundation. In: IEEE Symposium on Security and Privacy
(Oakland, CA, USA, May, 1999), IEEE, 57-71

