
Champion, Théophile, Grzes, Marek and Bowman, Howard (2024) Multimodal
and Multifactor Branching Time Active Inference. Neural Computation . pp.
1-26. ISSN 1530-888X.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/107152/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1162/neco_a_01703

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/107152/
https://doi.org/10.1162/neco_a_01703
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Multi-Modal and Multi-Factor Branching Time Active Inference.

Abstract

Active inference is a state-of-the-art framework for modelling the brain that explains a wide range of mechanisms.
Recently, two versions of branching time active inference (BTAI) have been developed to handle the exponential (space
and time) complexity class that occurs when computing the prior over all possible policies up to the time horizon.
However, those two versions of BTAI still suffer from an exponential complexity class w.r.t the number of observed
and latent variables being modelled. We resolve this limitation by allowing each observation to have its own likelihood
mapping, and each latent variable to have its own transition mapping. The implicit mean field approximation was
tested — in terms of its efficiency and computational cost — using a dSprites environment in which the metadata of
the dSprites dataset was used as input to the model. In this setting, earlier implementations of branching time active
inference (namely, BTAIVMP and BTAIBF) underperformed in relation to the mean field approximation (BTAI3MF);
both in terms of performance and computational efficiency. Specifically, BTAIVMP was able to solve 96.9% of the task
in 5.1 seconds, and BTAIBF was able to solve 98.6% of the task in 17.5 seconds. Our new approach outperformed both
of its predecessors by solving the task completely (100%) in only 2.559 seconds.

Keywords: Branching Time Active Inference, Monte-Carlo Tree Search, Belief Propagation, Bayesian Prediction,
Temporal Slice

1. Introduction

Active inference applies the free energy principle to gen-
erative models with actions (Friston et al., 2016; Costa
et al., 2020; Champion et al., 2021b) and can be regarded
as a form of planning as inference (Botvinick and Tous-
saint, 2012). This framework has successfully explained a
wide range of neuro-cognitive phenomena, such as habit
formation (Friston et al., 2016), Bayesian surprise (Itti
and Baldi, 2009), curiosity (Schwartenbeck et al., 2018),
and dopaminergic discharges (FitzGerald et al., 2015). It
has also been applied to a variety of tasks, such as animal
navigation (Fountas et al., 2020), robotic control (Pez-
zato et al., 2020; Sancaktar et al., 2020), the mountain
car problem (Çatal et al., 2020), the game DOOM (Cullen
et al., 2018) and the cart pole problem (Millidge, 2019).

However, active inference suffers from an exponential
(space and time) complexity class that occurs when com-
puting the prior — i.e., expected free energy — over all
possible policies up to the time horizon. Recently, two
versions of branching time active inference (BTAI) based
on Monte-Carlo tree search (Browne et al., 2012) have
been developed to handle this exponential growth. In the
original formulation of the framework (Champion et al.,
2022b,a), inference was performed using the variational
message passing (VMP) algorithm (Winn and Bishop,
2005; Champion et al., 2021b). In a follow up paper, VMP
was then replaced by a Bayesian filtering (Fox et al., 2003)
scheme leading to a faster inference process (Champion
et al., 2021a).

In this paper, we develop an extension of Branching
Time Active Inference (BTAI), to allow modelling of sev-
eral modalities as well as several latent states. Indeed,
even if the Bayesian filtering version of Branching Time
Active Inference (BTAIBF) is fast, its modelling capacity

is limited to one observation and one hidden state. Conse-
quently, if one wanted to model n latent states S1

t , . . . , S
n
t ,

then those n latent states would have to be encoded into
one latent state X representing all possible configurations
of the n latent states S1

t , . . . , S
n
t . Unfortunately, the total

number of configurations is given by:

#X =
n∏

i=1

#Si
t ≥ 2n,

where #X is the number of possible values taken by X,
and similarly #Si

t is the number of possible values taken
by Si

t . The above inequality is obtained by realizing that
#Si

t ≥ 2, and is problematic in practice because #X
grows exponentially with the number of latent states n
being modelled. Also, note that in practice this exponen-
tial growth may be way worse than 2n. For example, if one
were to model the five modalities of the dSprites environ-
ment (c.f. Section 3.1), the total number of configurations
would be:

#Sy
t ×#Sx

t ×#Sscale
t ×#Sorientation

t ×#Sscale
t

= 33× 32× 3× 40× 6 = 760, 320≫ 25 = 32.

A similar exponential explosion also appears when trying
to model several modalities O1

t , . . . , O
m
t using a single one

Y , i.e.

#Y =

m∏
i=1

#Oi
t ≥ 2m,

where #Y is the number of possible values taken by Y ,
and similarly #Oi

t is the number of possible values taken
by Oi

t. Note, throughout this paper, we will use the term
states to refer to the latent states of the model at a specific

©2020 TO BE FILLED.

Multi-Modal and Multi-Factor BTAI.

time step, e.g., S1
t , . . . , S

n
t for time step t. Additionally,

we will use the terms state configurations or values to refer
to particular values taken by the latent variables.

Note, the description of the ensuing implementation
of planning under active inference is framed from a ma-
chine learning perspective; with a focus on computational
efficiency afforded by certain mean field approximations.
We therefore take care to compare the efficiency of the
new scheme with respect to benchmarks established by
previous formulations. However, the implications of this
scheme reach beyond machine learning and speak to the
kinds of factorizations that may be employed by the brain.
We will foreground these implementations in the discus-
sion; in terms of functional specialization and implications
for functional brain architectures.

The present paper finesses these exponential problems
by applying a judicious mean field approximation to fu-
ture states and observations. This allows the modelling
of several observations and latent states, while providing
an easy to use framework based on a high-level notation,
which allows the user to create models by simply declar-
ing the variables it contains, and the dependencies be-
tween those variables. Then, the framework performs the
inference process automatically. Appendix A shows an
example of how to implement a custom BTAI3MF agent
using our framework. In section 2, we describe the theory
underlying our approach. Importantly, BTAI3MF takes
advantage of the generative model structure to perform
inference efficiently using a mixture of belief propagation
(Yedidia, 2011; Friston et al., 2017; Kschischang et al.,
2001) and forward predictions as will be explained in Sec-
tion 2.3. The name BTAI3MF is an abbreviation for
BTAIMMMF that stands for: Multi-Modal and Multi-
Factor Branching Time Active Inference. Next, in Sec-
tion 2.4, we provide the definition of the expected free
energy in the context of our new approach, and in Section
2.5, we describe the planning algorithm used to expand
the generative model dynamically. Then, in Section 3,
we compare BTAI3MF to BTAIVMP and BTAIBF , and
demonstrate empirically that BTAI3MF outperformed
both BTAIVMP and BTAIBF on the dSprites environ-
ment, which requires the modelling of many latent states
and modalities. Finally, Section 4 concludes this paper by
summarizing our approach and results.

2. Theory of BTAI3MF

In this section, we introduce the mathematical foundation
of BTAI3MF . To simplify the graphical representation of
our generative model, we first introduce a notion of “tem-
poral slice”. Then, we build on this idea to describe the

generative model of BTAI3MF . Next, we explain how be-
lief updates are performed using a mixture of belief prop-
agation and forward predictions. Afterwards, we provide
the definition of the expected free energy for this new
generative model. Finally, we describe the planning algo-
rithm used to dynamically expand the generative model,
and the action selection process.

2.1 Temporal slice

A temporal slice TSJ = {O1
J , . . . , O

#O
J , S1

J , . . . , S
#S
J } is a

set of random variables indexed by a sequence of actions
J . Each random variable of the temporal slice represents
either an observation Oo

J or a latent state Ss
J . The index

of the temporal slice corresponds to the sequence of ac-
tions that lead to this temporal slice. By definition, if J is
an empty sequence, i.e., J = ∅, then TSJ is the temporal
slice of the present time step t, also denoted TSt. Within
a temporal slice TSJ , an observation Oo

J depends on a
number of latent states ρoJ ⊆ {Ss

J | s = 1, . . . ,#S}, such
that P (Oo

J |ρoJ) is a factor in the generative model. Given
an action a and a sequence of actions J , we let I = J ::a be
the sequence of actions obtained by appending the action
a at the end of the sequence of actions J . If I = J ::a, then
the temporal slice TSJ can be the parent of TSI . This
means that a latent state Ss

I in TSI can depend on the
latent states ρsI ⊆ {Ss

J | s = 1, . . . ,#S} in TSJ , such that
P (Ss

I |ρsI) is a factor in the generative model. The concept
of temporal slice is illustrated in Figure 1, and Figure 2
depicts a more compact representation of the content of
Figure 1.

In effect, the temporal slice formulation combines la-
tent states and their consequent observations into a single
random variable. Note that this implicitly treats observa-
tions as (latent) random variables. This is a key aspect of
active inference; in the sense that observable outcomes in
the future have not yet been observed and therefore be-
come random variables. This means that the free energy
functionals — used to quantify priors over policies — re-
quire an expectation over both (future) hidden states and
observations. This is why the requisite function is called
‘expected’ free energy.

2

Multi-Modal and Multi-Factor BTAI.

TSt

Ss
t

s = 1, . . . ,#S

Oo
t

o = 1, . . . ,#O

TSI

Ss
I

s = 1, . . . ,#S

Oo
I

o = 1, . . . ,#O

Figure 1: This figure illustrates two temporal slices TSt

and TSI , which are depicted by rectangles with thick
border. Within each temporal slice, plate notation is
used to generate #S latent states and #O observations.
The dashed lines that connect two random variables from
two different plates are new to this paper, and represent
an arbitrary connectivity between the two sets of ran-
dom variables generated by the plates. For example, the
dashed line from Ss

t to Oo
t , means that for each obser-

vation Oo
t , the parents of Oo

t denoted ρot is a subset of
{Ss

t | s = 1, . . . ,#S}, i.e., the generative model contains
the factor P (Oo

t |ρot) where ρot ⊆ {Ss
t | s = 1, . . . ,#S}.

TSt TSI

Figure 2: This figure illustrates the two temporal slices
TSt and TSI from Figure 1 in a more compact fash-
ion. Since Oo

t is an observed variable for all o ∈
{1, . . . ,#O}, the square representing TSt has a gray back-
ground. In contrast, the square representing TSI has a
white background because Oo

I is a latent variable for all
o ∈ {1, . . . ,#O}.

2.2 Generative model

In this section, we build upon the notion of temporal
slice to describe the full generative model. Intuitively,
the probability of the entire generative model is the prod-
uct of the probability of each temporal slice within the
model. This includes the current temporal slice TSt and
the future temporal slices TSI for all I ∈ I, where I is the
set of all multi-indices expanded during the tree search
(c.f., Section 2.5). Within each temporal slice, there are
#O observations and #S latent states. Each observa-
tion depends on a subset of the latent states. Moreover,
each latent state depends on a subset of the latent states

of the parent temporal slice. Note, the current temporal
slice TSt does not have any parents, therefore its latent
state does not depend on anything. In other words, the
model makes the Markov assumption, i.e., each state only
depends on the states at the previous time step. More
formally, the generative model is defined as:

P (Ot, St, OI, SI) = P (TSt)
∏
I∈I

P (TSI)

=

#O∏
o=1

P (Oo
t |ρot)

#S∏
s=1

P (Ss
t)︸ ︷︷ ︸

current temporal slice TSt∏
I∈I

[
#O∏
o=1

P (Oo
I |ρoI)

#S∏
s=1

P (Ss
I |ρsI)︸ ︷︷ ︸

future temporal slice TSI

]

where t is the current time step, ρxτ is the set of parents
of Xx

τ , Ot = {Oo
t | o = 1, . . . ,#O} is the set of all ob-

servations at time t, OI = {Oo
I | o = 1, . . . ,#O} is the

set of all future observations that would be observed after
performing the sequence of actions I, OI = ∪I∈IOI is the
set of all future observations contained in the temporal
slices expanded during the tree search (c.f., Section 2.5),
St = {Ss

t | s = 1, . . . ,#S} is the set of all latent states
at time t, SI = {Ss

I | s = 1, . . . ,#S} is the set of random
variables describing the future latent states after perform-
ing the sequence of actions I, SI = ∪I∈ISI is the set of
latent variables representing all future states contained in
the temporal slices expanded during the tree search (c.f.,
Section 2.5). Importantly, the above generative model has
to satisfy:

• ∀I ∈ I,∀o ∈ {1, . . . ,#O}, ρoI ⊆ SI ;

• ∀I::a ∈ I,∀s ∈ {1, . . . ,#S}, ρsI::a ⊆ SI , also, if I = ∅
then by definition SI =∆ St.

Additionally, we define the factors of the generative model
as:

P (Oo
t |ρot) = Cat(Ao), P (Ss

t) = Cat(Ds
t),

P (Oo
I |ρoI) = Cat(Ao), P (Ss

I |ρsI) = Cat(Bs
I),

where Ao is the tensor modelling the likelihood mapping
of the o-th observation, Ds

t is the vector modelling the
prior over the s-th latent state at time t (see below for
details), Bs is the tensor modelling the transition map-
ping of the s-th latent state under each possible action,
Bs

I is the tensor modelling the transition mapping of the
s-th latent state under the last action Ilast of the se-
quence I, i.e., Bs

I = Bs(• , . . . , • , Ilast). Also, note that
at the beginning of a trial, i.e., when t = 0, Ds

t is a
vector that encodes the modeller’s understanding of the

3

Multi-Modal and Multi-Factor BTAI.

task. Afterwards, when t > 0, Ds
t is a vector contain-

ing the parameters of the posterior over hidden states ac-
cording to the observations made and actions taken so
far, i.e., P (Ss

t) =∆ P (Ss
t |O0:t−1, A0:t−1) = Cat(Ds

t) for all
s ∈ {1, . . . ,#S}. Finally, Figure 3 illustrates the full gen-
erative model using the notion of temporal slices.

TSt

TS(1) TS(2)

TS(11) TS(12) TS(21) TS(22)

I =
{
(1), (2), (11), (12)

}

Figure 3: This figure illustrates the full generative model
of BTAI3MF . The temporal slices depited in light gray
correspond to temporal slices that have not yet been ex-
plored by the planning algorithm, c.f., Section 2.5. The
numbers between parentheses correspond to the sequence
of actions performed to reach the temporal slice.

2.3 Belief updates: the inference and prediction
(IP) algorithm

The IP algorithm is composed of two steps, i.e., the in-
ference step (or I-step) and the prediction step (or P-
step). The goal of the I-step is to compute the pos-
terior beliefs over all the latent variables at time t.
In other words, the goal of the I-step is to compute:
P (Ss

t |Ot), ∀s ∈ {1, . . . ,#S}. The P-step takes as in-
puts the posterior beliefs over all the latent variables
corresponding to the states of the system after perform-
ing a sequence of actions I, and an action a to be per-
formed next. The goal of the P-step is to compute the
posterior beliefs over all the latent variables correspond-
ing to the future states and observations after perform-
ing the sequence of actions I::a, where I::a is the se-
quence of actions obtained by adding the action a at the
end of the sequence of actions I. In other words, given
P (Ss

I |Ot), ∀s ∈ {1, . . . ,#S} and an action a, the goal of
the P-step is to compute: P (Ss

I::a|Ot),∀s ∈ {1, . . . ,#S}

and P (Oo
I::a|Ot), ∀o ∈ {1, . . . ,#O}. Note that by defini-

tion, we let P (Sm
I |Ot) =

∆ P (Sm
t |Ot) if I = ∅. To derive the

inference and prediction steps, the following sections make
use of the sum-rule, product-rule, and d-separation crite-
rion (c.f., Appendix C for details about those properties).
Intuitively, d-separation refers to the use of conditional in-
dependencies (inherent in the Markov blankets of any ran-
dom variable) to simplify the dependency structure and
requisite computations of conditional probabilities.

2.3.1 Inference step

As just stated, the goal of the I-step is to compute
P (Sm

t |Ot),∀m ∈ {1, . . . ,#S}. First, we re-write the pos-
terior computation to fit the kind of problem that belief
propagation — also known as the sum-product algorithm
— can solve:

P (Sm
t |Ot) ∝ P (Sm

t , Ot)

T∑
∼Sm

t

(Bayes theorem)

=
∑
∼Sm

t

P (St, Ot) (sum rule)

=
∑
∼Sm

t

#O∏
o=1

P (Oo
t |ρot)

#S∏
s=1

P (Ss
t)

(product rule & d-separation)

where St = {Ss
t | s = 1, . . . ,#S} is the set of all latent

states at time t, ∼Sm
t = St \ Sm

t is the set of all latent
states at time t except Sm

t , and the summation is over
all possible configurations of ∼Sm

t , i.e., we are marginal-
izing out all states, apart from one; thus P (St, Ot) has
#S+#O dimensions, while P (Sm

t , Ot) has 1+#O dimen-
sions. Since ρot ⊆ St, the expression inside the summation
is a function g(St) that factorizes as follows:

g(St) =

#O∏
o=1

P (Oo
t |ρot)

#S∏
s=1

P (Ss
t)

=∆
N∏
i=1

fi(Xi),

where Xi ⊆ St for all i ∈ {1, . . . ,#O +#S}, the number
of factors is N = #O +#S, and:

fi(Xi) =
∆

{
P (Oi

t|ρit) if i ∈ {1, . . . ,#O}
P (Si−#O

t) if i ∈ {#O + 1, . . . ,#N}
,

where #N = #O +#S. Note that, because Oo
t (denoted

Oi
t here) are known constants, we do not specify that g(St)

depends on Oo
t . To conclude, by substituting the defini-

tion of g(St) into the formula of the posterior P (Sm
t |Ot)

4

Multi-Modal and Multi-Factor BTAI.

presented above, we get:

P (Sm
t |Ot) ∝

∑
∼Sm

t

g(St),

which means that the posterior P (Sm
t |Ot) can be com-

puted by first marginalizing g(St) w.r.t. S
m
t , i.e.,

g(Sm
t) =

∑
∼Sm

t

g(St),

and then normalizing:

P (Sm
t |Ot) =

g(Sm
t)∑

Sm
t
g(Sm

t)
.

The marginalization of g(St) can be performed efficiently
using belief propagation (Kschischang et al., 2001), which
can be understood as a message passing algorithm on a
factor graph. The message from a node x to a factor f is
given by:

mx→f (x) =
∏

h∈n(x)\{f}

mh→x(x),

where n(x) are the neighbours of x in the factor graph.
Note, in a factor graph the neighbours of a random vari-
able are factors. Moreover, the message from a factor f
to a node x is given by:

mf→x(x) =
∑
Y

(
f(X)

∏
y∈Y

my→f (y)

)
,

where X = n(f) are the neighbours of f in the factor
graph, Y = X \ {x} are all the neighbours of f except x,
and the summation is over all possible configurations of
the variables in Y . Note, in a factor graph the neighbours
of a factor are random variables. Once all the messages
have been computed, the marginalization of g(St) w.r.t.
Sm
t is given by the product of all the incoming messages

of the node Sm
t , i.e.,

g(Sm
t) =

∏
f∈n(Sm

t)

mf→Sm
t
(Sm

t).

2.3.2 Prediction step

The P-step is analogous to the prediction step of Bayesian
filtering (Fox et al., 2003). Given P (Ss

I |Ot) for each
s ∈ {1, . . . ,#S} and an action a, the goal of the P-
step is to compute P (Ss

I::a|Ot) for each latent state s ∈
{1, . . . ,#S} and P (Oo

I::a|Ot) for each future observation

o ∈ {1, . . . ,#O}. For the sake of brevity, we let J =∆ I::a.
Let’s start with the computation of P (Ss

I::a|Ot):

P (Ss
I::a|Ot) =

∆ P (Ss
J |Ot)

=
M∑
ρsJ

P (Ss
J , ρ

s
J |Ot) (sum rule)

=
M∑
ρsJ

P (Ss
J |ρsJ , Ot)P (ρsJ |Ot) (product rule)

=

M∑
ρsJ

P (Ss
J |ρsJ)P (ρsJ |Ot) (d-separation)

≈
∑
ρsJ

P (Ss
J |ρsJ)

#ρsJ∏
i=1

P (ρsJ,i|Ot)

(mean-field approximation)

where #ρsJ is the number of parents of Ss
J , and ρsJ,i is

the i-th parent of Ss
J . Importantly, P (Ss

J |ρsJ) is known
from the definition of the generative model. Moreover,
since ρsJ,i ∈ SI , then P (ρsJ,i|Ot) = P (Sm

I |Ot) for some
m ∈ {1, . . . ,#S}. Thus, P (ρsJ,i|Ot) is given as input to
the P-step, i.e., P (ρsJ,i|Ot) is a known distribution. Simi-
larly, the computation of P (Oo

I::a|Ot) proceeds as follows:

P (Oo
I::a|Ot) =

∆ P (Oo
J |Ot)

=
M∑
ρoJ

P (Oo
J , ρ

o
J |Ot) (sum rule)

=
M∑
ρoJ

P (Oo
J |ρoJ , Ot)P (ρoJ |Ot) (product rule)

=

M∑
ρoJ

P (Oo
J |ρoJ)P (ρoJ |Ot) (d-separation)

≈
∑
ρoJ

P (Oo
J |ρoJ)

#ρoJ∏
i=1

P (ρoJ,i|Ot)

(mean-field approximation)

where #ρoJ is the number of parents of Oo
J , and ρoJ,i is

the i-th parent of Oo
J . Importantly, P (Oo

J |ρoJ) is known
from the definition of the generative model. Moreover,
since ρoJ,i ∈ SJ , then P (ρoJ,i|Ot) = P (Ss

J |Ot) for some
s ∈ {1, . . . ,#S}. Thus, P (ρoJ,i|Ot) has already been com-
puted during the first stage of the P-step and is a known
distribution, c.f., derivation of P (Ss

I::a|Ot) =
∆ P (Ss

J |Ot).

2.4 Expected Free Energy

In this section, we discuss the definition of the expected
free energy, which quantifies the cost of pursuing a par-

5

Multi-Modal and Multi-Factor BTAI.

ticular sequence of actions that underwrite planning, cf.
Section 2.5. The expected free energy (see below) is com-
posed of the risk and ambiguity terms. The risk terms
quantify how much the posterior beliefs over future obser-
vations (computed by the P-step) diverge from the prior
preferences of the agent. On the other hand, the ambigu-
ity terms correspond to the expected uncertainty of the
likelihood mapping, where the expectation is with respect
to the posterior beliefs over states computed by the P-
step.

First, we partition the set of observations OI = {Oo
I |

o = 1, . . . ,#O} into disjoint subsets XI
i , i.e., OI =

XI
1 ∪ . . . ∪ XI

N and XI
i ∩ XI

j = ∅ if i ̸= j. Then, we
define the prior preferences over the i-th subset of obser-
vations as: V (XI

i) = Cat(Ci). This formulation allows
us to define prior preferences over subsets of random vari-
ables, and will be useful in Section 3.1, where the agent
needs to possess preferences that depend upon both the
shape and (X,Y) position of the object. Finally, the ex-
pected free energy, which needs to be minimised, is given
by:

GI =∆
N∑
i=1

(
DKL[P (XI

i |Ot)||V (XI
i)]︸ ︷︷ ︸

risk of i-th set of observations

)
+

#O∑
o=1

(
EP (ρoI |Ot)[H[P (Oo

I |ρoI)]]︸ ︷︷ ︸
ambiguity of o-th observation

)
, (1)

where P (XI
i |Ot) and P (ρoI |Ot) are the posteriors over the

i-th subset of observations and the parent of Oo
I , respec-

tively, and P (Oo
I |ρoI) is known from the generative model.

Assuming a mean-field approximation, those posteriors
are given by:

P (ρoI |Ot) ≈
#ρoI∏
i=1

P (ρoI,i|Ot)

P (XI
i |Ot) ≈

x∏
Oo

I∈Xi

P (Oo
I |Ot)

where P (Oo
I |Ot) and P (ρoI,i|Ot) are the posteriors over

Oo
I and the i-th parent of Oo

I , respectively. Note, both
P (Oo

I |Ot) and P (ρoI,i|Ot) were computed during the P-
step. The definition of the expected free energy given
by (1) may not be very intuitive. Fortunatly, the special
case where each subset contains a single observation, i.e.,

XI
o = Oo

I , leads to the following equation:

GI =∆
#O∑
o=1

(
DKL[P (Oo

I |Ot)||V (Oo
I)]︸ ︷︷ ︸

risk of o-th observation

+

EP (ρoI |Ot)[H[P (Oo
I |ρoI)]]︸ ︷︷ ︸

ambiguity of o-th observation

)
,

which is the summation over all observations Oo
I of the ex-

pected free energy of Oo
I , i.e., the risk of Oo

I plus the ambi-
guity of Oo

I . Finally, our framework allows to specify prior
preferences over only a subset of variables in OI . For ex-
ample, if a task contains four variables, i.e., Ox

I , O
y
I , O

shape
I

and Oscale
I , but it only makes sense to have preferences

over three of them, i.e., Ox
I , O

y
I and Oshape

I , then the prior
preference over the fourth variable is set to the posterior
over this random variable, i.e., V (Oshape

I) =∆ P (Oshape
I |Ot).

In other words, not having prior preferences over a random
variable is viewed by our framework as liking whatever we
predict will happen. Effectively, this renders the risk term
associated with such variable equal to zero, i.e.,

DKL[P (Oshape
I |Ot)||V (Oshape

I)] =

DKL[P (Oshape
I |Ot)||P (Oshape

I |Ot))] = 0.

2.5 Planning: the MCTS algorithm

In this section, we describe the planning algorithm used
by BTAI3MF . At the beginning of a trial when t = 0, the
agent is provided with the initial observations O0. The I-
step is performed and returns the posterior over all latent
states, i.e., P (Ss

0|O0) for all s ∈ {1, . . . ,#S}, according
to the prior over the initial hidden states provided by the
modeller, i.e., P (Ss

0) for all s ∈ {1, . . . ,#S}, and the avail-
able observations O0.

Then, we use the UCT criterion to determine which
node in the tree should be expanded. Let the tree’s root
TSt be called the current node. If the current node has no
children, then it is selected for expansion. Alternatively,
the child with the highest UCT criterion becomes the new
current node and the process is iterated until we reach a
leaf node (i.e. a node from which no action has previously
been selected). The UCT criterion (Browne et al., 2012)
for the j-th child of the current node is given by:

UCTj = −Ḡj + Cexplore

√
lnn

nj
, (2)

where Ḡj is the average expected free energy calculated
with respected to the actions selected from the j-th child,
Cexplore is the exploration constant that modulates the

6

Multi-Modal and Multi-Factor BTAI.

amount of exploration at the tree level, n is the number
of times the current node has been visited, and nj is the
number of times the j-th child has been visited.

Let SI be the (leaf) node selected by the above selec-
tion procedure. We then expand all the children of SI ,
i.e., all the states of the form SI::a, where a ∈ {1, ...,#A}
is an arbitrary action, #A is the number of available ac-
tions, and I::a is the multi-index obtained by append-
ing the action a at the end of the sequence defined by I.
Next, we perform the P-step for each action a, and ob-
tain P (Ss

I::a|Ot) for each latent state s ∈ {1, . . . ,#S} and
P (Oo

I::a|Ot) for each future observation o ∈ {1, . . . ,#O}.
Then, we need to estimate the cost of (virtually) tak-

ing each possible action. The cost in active inference is the
expected free energy given by (1). Next, we assume that
the agent will always perform the action with the lowest
cost, and back-propagate the cost of the best (virtual) ac-
tion toward the root of the tree. Formally, we write the
update as follows:

∀K ∈ AI ∪ {I}, GK ← GK + min
a∈{1,...,#A}

GI::a, (3)

where I is the multi-index of the node that was selected for
(virtual) expansion, and AI is the set of all multi-indices
corresponding to ancestors of TSI . During the back prop-
agation, we also update the number of visits as follows:

∀K ∈ AI ∪ {I}, nK ← nK + 1. (4)

If we let Gaggr
K be the aggregated cost of an arbitrary node

SK obtained by applying Equation 3 after each expansion,
then we are now able to express ḠK formally as:

ḠK =
Gaggr

K

nK
.

The planning procedure described above ends when the
maximum number of planning iterations is reached.

2.6 Action selection

After performing planning, the agent needs to choose the
action to perform in the environment. As discussed in
Section 3.1 of (Browne et al., 2012), many possible mech-
anisms can be used to select the action to perform in the
environment. BTAI3MF performs the action correspond-
ing to the root child with the highest number of visits.
Formally, this is expressed as:

a∗ = argmax
a∈{1,...,#A}

n(a), (5)

where a∗ is the action performed in the environment, and
n(a) is the number of visits of the root child corresponding
to action a.

2.7 Closing the action-perception cycle

After performing an action a∗ in the environment, the
agent receives a new observation Ot+1, and needs to
use this observation to compute the posterior over the
latent states at time t + 1, i.e., P (Ss

t+1|Ot+1) for all
s ∈ {1, . . . ,#S}. This can be achieved by performing
the I-step, but requires the agent to have prior beliefs
over the latent states at time t + 1, i.e., P (Ss

t+1) for all
s ∈ {1, . . . ,#S}, in addition to the new observation Ot+1

obtained from the environment. In this paper, we define
those prior beliefs as:

P (Ss
t+1) = P (Ss

I |Ot), for all s ∈ {1, . . . ,#S},

where I = (a∗) is a sequence of actions containing the ac-
tion a∗ performed in the environment, P (Ss

I |Ot) is the pre-
dictive posterior computed by the P-step when assuming
that action a∗ is performed. In other words, the predic-
tive posterior P (Ss

I |Ot) computed by the P-step at time
t, is used as an empirical prior P (Ss

t+1) at time t + 1.
This empirical prior P (Ss

t+1) along with the new obser-
vation Ot+1 can then be used to compute the posterior
P (Ss

t+1|Ot+1) for all s ∈ {1, . . . ,#S}. This posterior will
be used to perform planning in the next action-perception
cycle. Appendix A provides an algorithm summarizing
our approach, c.f., Algorithm 1.

3. Results

In this section, we compare our new approach to BTAI
with variational message passing (BTAIVMP) and BTAI
with Bayesian filtering (BTAIBF). Section 3.1 presents
the simplified version of the dSprites environment on
which the agents are compared. Section 3.2 describes how
the task is modelled by the BTAIVMP agent and reports
its performance, finally, Sections 3.3 and 3.4 do the same
for the BTAIBF and BTAI3MF agents. For the reader in-
terested in implementing a custom BTAI3MF agent, Ap-
pendix A provides a tutorial of how to create such an agent
using our framework, and Appendix B desbribes a graph-
ical user interface (GUI) that can be used to inspect the
model. This GUI displays the structure of the generative
model and prior preferences, the posterior beliefs of each
latent variable, the messages sent throughout the factor
graph to perform inference, the information related to the
MCTS algorithm, and the expected free energy (EFE) of
each node in the future. It also shows how the EFE de-
composes into the risk and ambiguity terms.

7

Multi-Modal and Multi-Factor BTAI.

3.1 dSprites Environment

The dSprites environment (Fountas et al., 2020) is based
on the dSprites dataset (Matthey et al., 2017) initially de-
signed for analysing the latent representation learned by
variational auto-encoders (Doersch, 2016). The dSprites
dataset is composed of images of squares, ellipses and
hearts. Each image contains one shape (square, ellipse or
heart) with its own scale, orientation, and (X,Y) position.
In the dSprites environment, the agent is able to move
those shapes around by performing four actions (i.e., UP,
DOWN, LEFT, RIGHT). To make planning tractable, the
action selected by the agent is executed eight times in
the environment before the beginning of the next action-
perception cycle, i.e., the X or Y position is increased or
decreased by eight between time step t and t+1. The goal
of the agent is to move all squares towards the bottom-left
corner of the image and all ellipses and hearts towards the
bottom-right corner of the image, c.f. Figure 4.

Figure 4: This figure illustrates the dSprites environment,
in which the agent must move all squares towards the
bottom-left corner of the image and all ellipses and hearts
towards the bottom-right corner of the image. The red
arrows show the behaviour expected from the agent.

□ ♡

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Figure 5: This figure illustrates the observations made
by the agent when using a coarse-grained representation
with a granularity of eight on the input image. On the
left, one can see an image from the dSprites dataset and
a grid containing red squares of 8 × 8 pixels. Any posi-
tions in those 8×8 squares are indistinguishable from the
perspective of the agent. Also, the bottom most row is
an absorbing row used to specify the prior preferences of
the agent, i.e. the green square is the goal state and the
orange squares correspond to undesirable states. Finally,
the three tables on the right contain the indices observed
by the BTAIVMP and BTAIBF agents for each type of
shape at each possible position.

Since BTAI is a tabular model whose likelihood and
transition mappings are represented using matrices, the
agent does not directly take images as inputs. Instead,
the metadata of the dSprites dataset is used to specify
the state space. In particular, the agent observes the type
of shape (i.e., square, ellipse, or heart), the scale and ori-
entation of the shape, as well as a coarse-grained version of
the shape’s true position. Importantly, the original images
are composed of 32 possible values for both the X and Y
positions of the shapes. A coarse-grained representation
with a granularity of two means that the agent is only able
to perceive 16×16 images, and thus, the positions at coor-
dinate (0, 0), (0, 1), (1, 0) and (1, 1) are indistinguishable.
Figure 5 illustrates the coarse grained representation with
a granularity of eight and the corresponding indices ob-
served by the BTAIVMP and BTAIBF agents. Note that
this modification of the observation space can be seen as a
form of state aggregation (Ren and Krogh, 2002). Finally,
as shown in Figure 5, the prior preferences of the agent are
specified over an absorbing row below the dSprites image.
This absorbing row ensures that the agent selects the ac-
tion “down” when standing in the “appropriate corner”,
i.e., bottom-left corner for squares and bottom-right coner
for ellipses and hearts.

The evaluation of the agent’s performance is based on
the reward obtained by the agent. Briefly, the agent re-
ceives a reward of −1, if it never enters the absorbing row
or if it does so at the antipode of the appropriate corner.
As the agent enters the absorbing row closer and closer to
the appropriate corner, its reward increases until reaching

8

Multi-Modal and Multi-Factor BTAI.

a maximum of 1. The percentage of the task solved (i.e.,
the evaluation metric) is calculated as follows:

P (solved) =
total rewards + number of runs

2.0× number of runs
.

Intuitively, the numerator shifts the rewards so that they
are bounded between zero and two, and the denominator
renormalises the reward to give a score between zero and
one. A score of zero therefore corresponds to an agent al-
ways failing to enter the absorbing row or doing so at the
antipode of the appropriate corner. In contrast, a score of
one corresponds to an agent always entering the absorbing
row through the appropriate corner.

3.2 BTAIVMP modeling approach and results

In this section, we evaluate BTAIVMP (Champion et al.,
2022b,a) on the dSprites environment. As shown in Figure
5, BTAIVMP observes one index for each possible config-
uration of shape, and (X,Y) positions. Importantly, this
version of BTAI suffers from the exponential growth de-
scribed in the introduction, and thus does not model the
scale and orientation modalities. Also, to make the in-
ference and planning process tractable, the granularity of
the coarse-grained representation was set to four or eight.
Table 1 provides the value of each hyper-parameter used
by BTAIVMP in this section. Note, the hyper-parameter
values are the same for all BTAI models presented in this
paper. Only the number of action perception cycles, and
the number of planning iterations may vary from one ex-
periment to the next.

Briefly, the agent is able to solve 88.5% of the task
when using a granularity of eight, c.f. Table 2. To under-
stand why BTAIVMP was not able to solve the task with
100% accuracy, let us consider the example of an ellipse
at position (24, 31). With a granularity of eight, the agent
perceives that the ellipse is in the bottom-right corner of
the image, i.e., in the red square just above the goal state
in Figure 5. From the agent’s perspective, it is thus op-
timal to pick the action “down” to reach the goal state.
However, in reality, the agent will not receive the maxi-
mum reward because its true X position is 24 instead of
the optimal X position of 31.

Name Value

NB_SIMULATIONS 100

NB_ACTION_PERCEPTION_CYCLES 30

NB_PLANNING_STEPS 10, 25 or 50

EXPLORATION_CONSTANT 2.4

PRECISION_PRIOR_PREFERENCES 2

PRECISION_ACTION_SELECTION 100

EVALUATION_TYPE EFE

Table 1: The value of each hyper-parameter used by
BTAIVMP in this section. NB_SIMULATIONS is the num-
ber of simulations run during the experiment. NB_

ACTION_PERCEPTION_CYCLES is the maximum number of
actions executed in each simulation, after which the
simulation is terminated. NB_PLANNING_STEPS is the
number of planning iterations performed by the agent.
EXPLORATION_CONSTANT is the exploration constant of the
UCT criterion. PRECISION_PRIOR_PREFERENCES is the
precision of the prior preferences. PRECISION_ACTION_

SELECTION is the precision of the distribution used for
action selection. EVALUATION_TYPE is the type of cost
used to evaluate the node during the tree search. Those
hyper-parameters can be used to re-run the experiments
using the code of the following GitHub repository: https:
//github.com/ChampiB/Experiments_AI_TS.

Planning iterations P(solved) Time (sec)

10 0.813 0.859 ± 0.868

25 0.846 0.862 ± 0.958

50 0.885 1.286 ± 1.261

Table 2: The percentage of the dSprites environment
solved by the BTAIVMP agent when using a granular-
ity of eight, c.f. Figure 5. The last column reports the
average execution time required for one simulation and
the associated standard deviation.

As shown in Table 3, we can improve the agent’s per-
fomance, by using a granularity of four. This allows the
agent to differentiate between a larger number of (X,Y)
positions, i.e., it reduces the size of the red square in Fig-
ure 5. With this setting, the agent is able to solve 96.9%
of the task. However, when decreasing the granularity,
the number of states goes up, and so does the width and
height of the A and B matrices. As a result, more mem-
ory and computational time is required for the inference
and planning process. This highlights a trade-off between
the agent’s performance and the amount of memory and
time required. Indeed, a smaller granularity leads to bet-
ter performance, but requires more time and memory.

9

NB_SIMULATIONS
NB_ACTION_PERCEPTION_CYCLES
NB_PLANNING_STEPS
EXPLORATION_CONSTANT
PRECISION_PRIOR_PREFERENCES
PRECISION_ACTION_SELECTION
EVALUATION_TYPE
NB_SIMULATIONS
NB_ACTION_PERCEPTION_CYCLES
NB_ACTION_PERCEPTION_CYCLES
NB_PLANNING_STEPS
EXPLORATION_CONSTANT
PRECISION_PRIOR_PREFERENCES
PRECISION_ACTION_SELECTION
PRECISION_ACTION_SELECTION
EVALUATION_TYPE
https://github.com/ChampiB/Experiments_AI_TS
https://github.com/ChampiB/Experiments_AI_TS

Multi-Modal and Multi-Factor BTAI.

Planning iterations P(solved) Time (sec)

10 0.859 3.957 ± 4.027

25 0.933 3.711 ± 4.625

50 0.969 5.107 ± 5.337

Table 3: The percentage of the dSprites environment
solved by the BTAIVMP agent when using a granular-
ity of four. In this setting, there are 9 × 8 × 3 = 216
states. The last column reports the average execution
time required for one simulation and the associated stan-
dard deviation.

3.3 BTAIBF modeling approach and results

In this section, we evaluate BTAIBF (Champion et al.,
2021a) on the dSprites environment. The Bayesian fil-
tering version is similar to the variational message pass-
ing but uses belief propagation to furnish updates that
correspond to exact Bayesian inference. In the next re-
sults section, we look at the mean field version, in which
the same kind of belief propagation scheme is used but
under a mean field approximation that greatly simplifies
the computation of expected free energy and the requisite
tree searches over plausible policies. As shown in Figure
5, BTAIBF observes one index for each possible config-
uration of shape, and (X,Y) positions. Also, to make
the inference and planning process tractable, the granu-
larity of the coarse-grained representation was set to two,
four or eight. Table 4 provides the value of each hyper-
parameter used by BTAIBF in this section. Note, the
hyper-parameter values are the same for all BTAI models
presented in this paper. Only the number of action per-
ception cycles, and the number of planning iterations may
vary from one experiment to the next.

As shown in Table 5, the agent is able to solve: 86.1%
of the task when using a granularity of eight, 97.7% of
the task when using a granularity of four, and 98.6% of
the task when using a granularity of two. However, as the
performance improves from 86.1% to 98.6%, the compu-
tational time required to run each simulation skyrockets
from around 50 milliseconds to around 17.5 seconds. In
other words, a simulation with a granularity of two is 350
times slower than a simulation with a granularity of eight.

Name Value

NB_SIMULATIONS 100

NB_ACTION_PERCEPTION_CYCLES 20

NB_PLANNING_STEPS 50

EXPLORATION_CONSTANT 2.4

PRECISION_PRIOR_PREFERENCES 1

PRECISION_ACTION_SELECTION 100

EVALUATION_TYPE EFE

Table 4: The value of each hyper-parameter used by
BTAI3MF in this section. Please refer to Table 1 for
a detailed description of the hyper-parameters. Those
hyper-parameters can be used to re-run the experiments
using the code of the following GitHub repository: https:
//github.com/ChampiB/BTAI_3MF.

PI Granularity P(solved) Time (ms)

50 8 0.861 49.93 ± 36.4124

50 4 0.977 241.63 ± 118.379

50 2 0.986 17503.8 ± 12882.8

Table 5: The percentage of the dSprites environment
solved by the BTAIBF agent when using a granularity
of eight, four and two. Note, when a granularity of two is
used, there are 17×16×3 = 816 possible states. PI stands
for planning iterations. The last column reports the av-
erage execution time required for one simulation and the
associated standard deviation. Note, the change in time
granularity to milliseconds.

3.4 BTAI3MF modeling approach and results

In this section, we evaluate our new approach (BTAI3MF)
on the dSprites environment. The mean field approxima-
tion is similar to the Bayesian filtering scheme; however,
it is much more efficient (and expressive) because it, ef-
fectively, allows one to replace very high dimensional ten-
sors (encoding the dependencies of outcomes on multiple
latent states) with a set of matrices that consider each
latent state separately. In contrast to what is shown in
Figure 5, BTAI3MF does not observe one index for each
possible configuration of shape, and (X,Y) positions. In-
stead, BTAI3MF has five observed variables representing
the shape, the orientation, the scale, as well as the X and
Y position, respectively. Each of those observed variable
has its hidden state counterparts. Each observation de-
pends on its hidden state counterparts through an identity
matrix. This parametrisation is common in the literature
on active inference, see (Sajid et al., 2021) for an exam-
ple. The transition mappings of the hidden variables rep-

10

NB_SIMULATIONS
NB_ACTION_PERCEPTION_CYCLES
NB_PLANNING_STEPS
EXPLORATION_CONSTANT
PRECISION_PRIOR_PREFERENCES
PRECISION_ACTION_SELECTION
EVALUATION_TYPE
https://github.com/ChampiB/BTAI_3MF
https://github.com/ChampiB/BTAI_3MF

Multi-Modal and Multi-Factor BTAI.

resenting the shape, orientation, and scale, are defined as
an indentity matrix. This forwards the state value at time
t to the next time step t+1. For the hidden variables rep-
resenting the X and Y position of the shape, the transition
is set to reflect the dynamics of the dSprites environment
when the actions taken are repeated eight times, i.e., if
the action “DOWN” is selected, then the agent’s position
in Y will be decreased by eight before the start of the next
action-perception cycle (Fountas et al., 2020).

The hyper-parameters used in those simualtions are
presented in Table 6. Note, the hyper-parameter values
are the same for all BTAI models presented in this pa-
per. Only the number of action perception cycles, and
the number of planning iterations may vary from one ex-
periment to the next.

Table 7 shows the results obtained by BTAI3MF on
the dSprites environment when running 100 trials. Due
to the change in the format of representations, the agent
exhibits little increase in execution time as the granularity
decreases, however, in general, the capacity to solve the
task increases with this reduction in granularity. When a
granularity of one is used, the agent is able to solve the
task perfectly with 150 planning iterations.

Note, the agent using a granularity of 1 and 150 plan-
ning iterations is as fast as the agent using a granular-
ity of 1 and 50 planning iterations. This is because as
the number of planning iterations increases the agent re-
quires more computation time per action-perception cy-
cle, but as the agent performance increases on the task,
the agent reaches the goal state faster, and therefore re-
quires less action-perception cycles per simulation. To
conclude, the agent with 150 planning iterations requires
less action-perception cycles per simulation, but more
time per action-perception cycle than the agent with 50
planning iterations. The code relevant to this section
is available at the following URL: https://github.com/
ChampiB/BTAI_3MF.

Name Value

NB_SIMULATIONS 100

NB_ACTION_PERCEPTION_CYCLES 50

NB_PLANNING_STEPS 50/100/150

EXPLORATION_CONSTANT 2.4

PRECISION_PRIOR_PREFERENCES 1

EVALUATION_TYPE EFE

Table 6: The value of each hyper-parameter used by
BTAI3MF in this section. Please refer to Table 1 for
a detailed description of the hyper-parameters. Those
hyper-parameters can be used to re-run the experiments
using the code of the following GitHub repository: https:
//github.com/ChampiB/BTAI_3MF.

PI Granularity P(solved) Time (sec)

50 8 0.895 1.279 ± 12.8

50 4 0.977 1.279 ± 12.8

50 2 0.996 1.279 ± 12.8

50 1 0.72 2.559 ± 18.01

100 1 0.77 5.119 ± 25.209

150 1 1 2.559 ± 18.01

Table 7: This table presents the percentage of the dSprites
environment solved by the BTAI3MF agent when using a
granularity of eight, four, two and one. Note, when a
granularity of one is used, there are 33×32×3×40×6 =
760, 320 possible state configurations. PI stands for plan-
ning iterations. The last column reports the average exe-
cution time required of one simulation and the associated
standard deviation.

4. Conclusion

In this paper, we presented a new version of Branching
Time Active Inference that allows for modelling of sev-
eral observed and latent variables. Taken together, those
variables constitute a temporal slice. Within a slice, the
model is equipped with prior beliefs over the initial la-
tent variables, and each observation depends on a subset
of the latent variables through the likelihood mapping.
Additionally, the latent states evolve over time according
to the transition mapping that describes how each latent
variable at time t + 1 is generated from a subset of the
hidden states at time t and the action taken.

At the beginning of each trial, the agent makes an
observation for each observed variable, and computes the
posterior over the latent variables using belief propaga-
tion. Then, a Monte-Carlo tree search is performed to
explore the space of possible policies. During the tree

11

https://github.com/ChampiB/BTAI_3MF
https://github.com/ChampiB/BTAI_3MF
NB_SIMULATIONS
NB_ACTION_PERCEPTION_CYCLES
NB_PLANNING_STEPS
EXPLORATION_CONSTANT
PRECISION_PRIOR_PREFERENCES
EVALUATION_TYPE
https://github.com/ChampiB/BTAI_3MF
https://github.com/ChampiB/BTAI_3MF

Multi-Modal and Multi-Factor BTAI.

search, each planning iteration starts by selecting a node
to expand using the UCT criterion. Then, the children
of the selected node are expanded, i.e., one child per ac-
tion. Next, the posterior over the latent variables of the
expanded nodes is computed by performing forward pre-
dictions using the known transition mapping, and the pos-
terior beliefs over the latent states of the node selected
for expansion. Once the posterior is computed, the ex-
pected free energy can be computed and back-propagated
through the tree. The planning process stops after reach-
ing a maximum number of iterations.

In the results section, we compared our new approach,
called BTAI3MF , to two earlier versions of branching
time active inference, namedBTAIVMP (Champion et al.,
2022b,a) and BTAIBF (Champion et al., 2021a). Briefly,
at the current time step t: BTAIVMP performs varia-
tional message passing (VMP) with a variational distri-
bution composed of only one factor, BTAIBF performs
exact inference using Bayes theorem, and BTAI3MF im-
plements belief propagation to compute the marginal pos-
terior over each latent variable. For the hidden variables in
the future, BTAIVMP does the same mean-field approx-
imation as at time step t and performs VMP, BTAIBF

performs Bayesian prediction to compute the posterior
over the only latent variable being modelled, and likewise,
BTAI3MF performs prediction to compute the posterior
over all future latent variables.

Since, none of the aforementioned approaches are
equipped with deep neural networks, we compared them
on a version of the dSprites environment in which the
metadata of the dSprites dataset are used as inputs to
the model instead of the dSprites images. The best per-
formance obtained by BTAIVMP was to solve 96.9% of
the task in 5.1 seconds. Importantly, BTAIVMP was pre-
viously compared to active inference as implemented in
SPM both theoretically and experimentally (Champion
et al., 2022b,a). BTAIBF was able to solve 98.6% of the
task but at the cost of 17.5 seconds of computation. Note,
BTAIBF was using a granularity of two (i.e., 816 states)
while BTAIVMP was using a granularity of four (i.e., 216
states), which is why BTAIBF seems to be three times
slower than BTAIVMP . In reality, if BTAIBF had been
using a granularity of four, it would have been much faster
than BTAIVMP while maintaining a similar performance,
i.e., around 96.9% of the task solved. Finally, BTAI3MF

outperformed both of its predecessors by solving the task
completely (100%, granularity of 1) in only 2.559 seconds.
Importantly, BTAI3MF was able to model all the modal-
ities of the dSprites environment for a total of 760, 320
possible states.

In addition to the major boost in performance and
computational time, BTAI3MF provides an improved
modelling capacity. Indeed, the framework can now han-
dle the modelling of several observed and latent variables,
and takes advantage of the factorisation of the generative
model to perform inference efficiently. As described in
detail in Appendix A, we also provide a high level nota-
tion for the creation of BTAI3MF that aims to make our
approach as staightforward as possible to apply to new do-
mains. The high-level notational language allows the user
to create models by simply declaring the variables it con-
tains, and the dependencies among those variables. Then,
the framework performs the inference process automati-
cally. Moreover, driven by the need for interpretability,
we developed a graphical user interface to analyse the be-
haviour and reasoning of our agent, which is described in
Appendix B.

There are two major directions of future research that
may be explored to keep scaling up this framework. First,
BTAI3MF is not yet equipped with deep neural networks
(DNNs), and is therefore unable to handle certain types
of inputs, such as images. In addition to the integration
of DNNs into the framework, further research should be
performed in order to learn useful sequences of actions.
Typically, in the current version of BTAI3MF , we built in
the fact that each action should be repeated eight times
in a row. This inductive bias works well in the context
of the dSprites environment, but may be a limitation in
other contexts.

It is also worth reflecting on how the BTAI3MF model
sits with theories of brain function. In this respect, it is
interesting to consider neural correlates of the “standard”
approach that BTAI3MF is being placed in opposition to.
As previously discussed, this standard active inference ap-
proach could be considered as monolithically tabular; that
is, the key matrices, such as the likelihood mapping (the
A matrix) and the transition mapping (the B matrix),
grow in size exponentially with the number of states and
observations. This is simply due to a combinatorial ex-
plosion, e.g. the set of all combinations of states grows
intractably with the number of states.

How would the combinations of states in the mono-
lithic tabular approach be represented in the brain? The
obvious neural correlate would be conjunctive (binding)
neurons (O’Reilly and Rudy, 2001), which become active
when multiple feature values are present; for example, one
might have a neural unit for every X, Y combination in
the dSprites environment. If this is to be realised with
a fully localist code, i.e. one unit for every combination,
in the absence of any hierarchical structure, the required
number of conjunctive units would explode in the same

12

Multi-Modal and Multi-Factor BTAI.

way as the A and B matrices do. This is why some mod-
els have proposed a binding resource that supports dis-
tributed (rather than localist) representations (Bowman
and Wyble, 2007), which scale more tractably.

BTAI3MF avoids this combinatorial explosion by not
combining features, enabling them to be represented sepa-
rately. In a very basic sense, this separated representation
is consistent with the observation that the brain contains
distinct, physically separated, feature maps, e.g. Itti et al.
(1998). Thus, at least to some extent, different feature di-
mensions are processed separately in the brain, as they
are in BTAI3MF .

The time-slice idea in BTAI3MF assumes a kind of
discrete synchronising global clock. Thus, even though
features have been separated from one another and may
be considered to execute in different parts of the system,
they update in lock-step. That is, implicitly, time is a
binder, it determines which values of different feature di-
mensions/states are associated, e.g. an X-dimension value
is associated with a particular Y-dimension value because
they are so assigned in the same temporal slice. In this
sense, in BTAI3MF , time synchronisation resolves the
binding problem.

This aspect of BTAI3MF resonates with theories of
binding based upon oscillatory synchrony (Uhlhaas et al.,
2009). These theories suggest that different feature di-
mensions are bound by the corresponding neurons firing
in synchrony relative to an ongoing oscillation, with that
ongoing oscillation potentially playing the role of a global
clock. Such oscillatory synchrony can be seen as a way
to resolve the binding problem that does not require con-
junctive units.

Conjunction error experiments, e.g. Botella et al.
(2001), are also relevant here. In these experiments, par-
ticipants make errors in associating multiple feature di-
mensions, perceiving illusory percepts, e.g. if a red K is
presented before a blue A in a rapid serial visual presen-
tation stream, in some cases, a red A and a blue K is
perceived. These experiments firstly, re-emphasize that
different feature dimensions are processed separately, as
per BTAI3MF : if feature dimensions were not separated,
then conjunction errors could not happen. Additionally
though, these experiments suggest that there is not a “per-
fect” synchronising global clock, since if there were, there
would not be any conjunction errors even despite separa-
tion of feature dimensions. Generating such conjunction
error patterns is an interesting topic for future BTAI3MF

modelling work.

Acknowledgments

We would like to thank the reviewers for their valu-
able feedback, which greatly improved the quality of the
present paper.

References

J Botella, M Suero, and MI Barriopedro. A model of
the formation of illusory conjunctions in the time do-
main. Journal of experimental psychology. Human per-
ception and performance, 27(6):1452—1467, December
2001. ISSN 0096-1523. doi: 10.1037//0096-1523.27.6.
1452. URL https://doi.org/10.1037//0096-1523.

27.6.1452.

Matthew Botvinick and Marc Toussaint. Planning as in-
ference. Trends in Cognitive Sciences, 16(10):485 – 488,
2012. ISSN 1364-6613. doi: https://doi.org/10.1016/j.
tics.2012.08.006.

Howard Bowman and Brad Wyble. The simultaneous
type, serial token model of temporal attention and
working memory. Psychological review, 114(1):38, 2007.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas,
P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of monte carlo
tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 4(1):1–43, 2012.

Théophile Champion, Marek Grześ, and Howard Bow-
man. Branching Time Active Inference with Bayesian
Filtering, 2021a.

Théophile Champion, Marek Grześ, and Howard Bow-
man. Realizing Active Inference in Variational Message
Passing: The Outcome-Blind Certainty Seeker. Neu-
ral Computation, 33(10):2762–2826, 09 2021b. ISSN
0899-7667. doi: 10.1162/neco a 01422. URL https:

//doi.org/10.1162/neco_a_01422.

Théophile Champion, Howard Bowman, and Marek
Grześ. Branching time active inference: Empir-
ical study and complexity class analysis. Neu-
ral Networks, 2022a. ISSN 0893-6080. doi:
https://doi.org/10.1016/j.neunet.2022.05.010.
URL https://www.sciencedirect.com/science/

article/pii/S0893608022001824.

Théophile Champion, Lancelot Da Costa, Howard Bow-
man, and Marek Grześ. Branching time active
inference: The theory and its generality. Neu-
ral Networks, 151:295–316, 2022b. ISSN 0893-
6080. doi: https://doi.org/10.1016/j.neunet.2022.

13

https://doi.org/10.1037//0096-1523.27.6.1452
https://doi.org/10.1037//0096-1523.27.6.1452
https://doi.org/10.1162/neco_a_01422
https://doi.org/10.1162/neco_a_01422
https://www.sciencedirect.com/science/article/pii/S0893608022001824
https://www.sciencedirect.com/science/article/pii/S0893608022001824

Multi-Modal and Multi-Factor BTAI.

03.036. URL https://www.sciencedirect.com/

science/article/pii/S0893608022001149.

Lancelot Da Costa, Thomas Parr, Noor Sajid, Sebasti-
jan Veselic, Victorita Neacsu, and Karl Friston. Active
inference on discrete state-spaces: a synthesis, 2020.

Maell Cullen, Ben Davey, Karl J. Friston, and Ros-
alyn J. Moran. Active inference in openai gym: A
paradigm for computational investigations into psychi-
atric illness. Biological Psychiatry: Cognitive Neu-
roscience and Neuroimaging, 3(9):809 – 818, 2018.
ISSN 2451-9022. doi: https://doi.org/10.1016/j.bpsc.
2018.06.010. URL http://www.sciencedirect.com/

science/article/pii/S2451902218301617. Compu-
tational Methods and Modeling in Psychiatry.

Carl Doersch. Tutorial on variational autoencoders, 2016.

Thomas H. B. FitzGerald, Raymond J. Dolan, and Karl
Friston. Dopamine, reward learning, and active in-
ference. Frontiers in Computational Neuroscience, 9:
136, 2015. ISSN 1662-5188. doi: 10.3389/fncom.
2015.00136. URL https://www.frontiersin.org/

article/10.3389/fncom.2015.00136.

Zafeirios Fountas, Noor Sajid, Pedro A. M. Mediano, and
Karl Friston. Deep active inference agents using Monte-
Carlo methods, 2020.

V. Fox, J. Hightower, Lin Liao, D. Schulz, and G. Bor-
riello. Bayesian filtering for location estimation. IEEE
Pervasive Computing, 2(3):24–33, 2003. doi: 10.1109/
MPRV.2003.1228524.

Karl Friston, Thomas FitzGerald, Francesco Rigoli,
Philipp Schwartenbeck, John O Doherty, and Giovanni
Pezzulo. Active inference and learning. Neuroscience
& Biobehavioral Reviews, 68:862 – 879, 2016. ISSN
0149-7634. doi: https://doi.org/10.1016/j.neubiorev.
2016.06.022.

Karl J. Friston, Thomas Parr, and Bert de Vries. The
graphical brain: Belief propagation and active infer-
ence. Network Neuroscience, 1(4):381–414, 2017. doi:
10.1162/NETN\ a\ 00018. URL https://doi.org/

10.1162/NETN_a_00018.

L. Itti, C. Koch, and E. Niebur. A model of saliency-based
visual attention for rapid scene analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
20(11):1254–1259, 1998. doi: 10.1109/34.730558.

Laurent Itti and Pierre Baldi. Bayesian surprise attracts
human attention. Vision Research, 49(10):1295 – 1306,

2009. ISSN 0042-6989. doi: https://doi.org/10.1016/j.
visres.2008.09.007. URL http://www.sciencedirect.

com/science/article/pii/S0042698908004380. Vi-
sual Attention: Psychophysics, electrophysiology and
neuroimaging.

Frank R Kschischang, Brendan J Frey, and H-A Loeliger.
Factor graphs and the sum-product algorithm. IEEE
Transactions on information theory, 47(2):498–519,
2001.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexan-
der Lerchner. dsprites: Disentanglement testing sprites
dataset. https://github.com/deepmind/dsprites-
dataset/, 2017.

Beren Millidge. Combining active inference and hierarchi-
cal predictive coding: A tutorial introduction and case
study., 2019. URL https://doi.org/10.31234/osf.

io/kf6wc.

Randall C O’Reilly and Jerry W Rudy. Conjunctive rep-
resentations in learning and memory: principles of cor-
tical and hippocampal function. Psychological review,
108(2):311, 2001.

Corrado Pezzato, Carlos Hernandez, and Martijn Wisse.
Active inference and behavior trees for reactive action
planning and execution in robotics, 2020.

Zhiyuan Ren and B.H. Krogh. State aggregation in
Markov decision processes. In Proceedings of the 41st
IEEE Conference on Decision and Control, 2002., vol-
ume 4, pages 3819–3824 vol.4, 2002. doi: 10.1109/CDC.
2002.1184960.

Noor Sajid, Philip J. Ball, Thomas Parr, and Karl J.
Friston. Active Inference: Demystified and Compared.
Neural Computation, 33(3):674–712, 03 2021. ISSN
0899-7667. doi: 10.1162/neco a 01357. URL https:

//doi.org/10.1162/neco_a_01357.

Cansu Sancaktar, Marcel van Gerven, and Pablo Lanillos.
End-to-end pixel-based deep active inference for body
perception and action, 2020.

Philipp Schwartenbeck, Johannes Passecker, Tobias U
Hauser, Thomas H B FitzGerald, Martin Kronbichler,
and Karl Friston. Computational mechanisms of cu-
riosity and goal-directed exploration. bioRxiv, 2018.
doi: 10.1101/411272. URL https://www.biorxiv.

org/content/early/2018/09/07/411272.

Peter Uhlhaas, Gordon Pipa, Bruss Lima, Lucia Mel-
loni, Sergio Neuenschwander, Danko Nikolić, and Wolf

14

https://www.sciencedirect.com/science/article/pii/S0893608022001149
https://www.sciencedirect.com/science/article/pii/S0893608022001149
http://www.sciencedirect.com/science/article/pii/S2451902218301617
http://www.sciencedirect.com/science/article/pii/S2451902218301617
https://www.frontiersin.org/article/10.3389/fncom.2015.00136
https://www.frontiersin.org/article/10.3389/fncom.2015.00136
https://doi.org/10.1162/NETN_a_00018
https://doi.org/10.1162/NETN_a_00018
http://www.sciencedirect.com/science/article/pii/S0042698908004380
http://www.sciencedirect.com/science/article/pii/S0042698908004380
https://doi.org/10.31234/osf.io/kf6wc
https://doi.org/10.31234/osf.io/kf6wc
https://doi.org/10.1162/neco_a_01357
https://doi.org/10.1162/neco_a_01357
https://www.biorxiv.org/content/early/2018/09/07/411272
https://www.biorxiv.org/content/early/2018/09/07/411272

Multi-Modal and Multi-Factor BTAI.

Singer. Neural synchrony in cortical networks: history,
concept and current status. Frontiers in integrative neu-
roscience, 3:17, 2009.

John Winn and Christopher Bishop. Variational message
passing. Journal of Machine Learning Research, 6:661–
694, 2005.

Jonathan S. Yedidia. Message-passing algorithms for in-
ference and optimization. Journal of Statistical Physics,
145(4):860–890, Nov 2011. ISSN 1572-9613. doi:
10.1007/s10955-011-0384-7. URL https://doi.org/

10.1007/s10955-011-0384-7.

Ozan Çatal, Tim Verbelen, Johannes Nauta, Cedric De
Boom, and Bart Dhoedt. Learning perception and plan-
ning with deep active inference, 2020.

Appendix A: BTAI3MF algorithm

Algorithm 1: BTAI3MF : action-perception cycles (with relevant equations indicated in round brackets).

Input: env the environment,
O0 = {Oo

0 | o = 1, . . .#O} the initial observations,
A = {Ao | o = 1, . . .#O} the likelihood mapping of each observation,
B = {Bs | s = 1, . . . ,#S} the transition mapping for each hidden state,
C = {Ci | i = 1, . . . N} the prior preferences of each subset of observations,
D0 = {Ds

0 | s = 1, . . .#S} the prior over each initial state,
N the number of planning iterations,
M the number of action-perception cycles.

space
P (Ss

0|O0)← I-step(O0, A, D0) // I-step from Section 2.3.1

root← CreateTreeNode(
beliefs = P (Ss

0|O0), action = -1, cost = 0, visits = 1
) // Create the root node for the MCTS, where -1 is a dummy value

repeat M times
repeat N times

node← SelectNode(root) // Using (2) recursively

eNodes← ExpandChildren(node, B) // P-step from Section 2.3.2 for each action

Evaluate(eNodes, A, C) // Compute (1) for each expanded node

Backpropagate(eNodes) // Using (3) and (4)

end
a∗ ← SelectAction(root) // Using (5)
Ot+1 ← env.Execute(a∗)
child← root.children[a∗] // Get root child corresponding to a∗

P (Ss
t+1)← child.beliefs // Get the empirical prior P (Ss

t+1) = Cat(Ds
t+1)

P (Ss
t+1|Ot+1)← I-step(Ot+1, A, Dt+1) // I-step from Section 2.3.1

root← CreateTreeNode(
beliefs = P (Ss

t+1|Ot+1), action = a∗, cost = 0, visits = 1
) // Create the root node of the next action-perception cycle

end

15

https://doi.org/10.1007/s10955-011-0384-7
https://doi.org/10.1007/s10955-011-0384-7

