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A B S T R A C T

This paper presents a new hybrid learning and control method that can tune their parameters based on rein-
forcement learning. In the new proposed method, nonlinear controllers are considered multi-input multi-output
functions and then the functions are replaced with SNNs with reinforcement learning algorithms. Dopamine-
modulated spike-timing-dependent plasticity (STDP) is used for reinforcement learning and manipulating the
synaptic weights between the input and output of neuronal groups (for parameter adjustment). Details of the
method are presented and some case studies are done on nonlinear controllers such as Fractional Order PID
(FOPID) and Feedback Linearization. The structure and the dynamic equations for learning are presented,
and the proposed algorithm is tested on robots and results are compared with other works. Moreover, to
demonstrate the effectiveness of SNNFOPID, we conducted rigorous testing on a variety of systems including a
two-wheel mobile robot, a double inverted pendulum, and a four-link manipulator robot. The results revealed
impressively low errors of 0.01 m, 0.03 rad, and 0.03 rad for each system, respectively. The method is tested
on another controller named Feedback Linearization, which provides acceptable results. Results show that the
new method has better performance in terms of Integral Absolute Error (IAE) and is highly useful in hardware
implementation due to its low energy consumption, high speed, and accuracy. The duration necessary for
achieving full and stable proficiency in the control of various robotic systems using SNNFOPD, and SNNFL on
an Asus Core i5 system within Simulink’s Simscape environment is as follows:
– Two-link robot manipulator with SNNFOPID: 19.85656 hours
– Two-link robot manipulator with SNNFL: 0.45828 hours
– Double inverted pendulum with SNNFOPID: 3.455 hours
– Mobile robot with SNNFOPID: 3.71948 hours
– Four-link robot manipulator with SNNFOPID: 16.6789 hours.
This method can be generalized to other controllers and systems like robots.
1. Introduction

One of the challenges in traditional control systems is the lack of
compatibility with new AI-based methods like Spiking neural networks
(SNNs). They are energy-efficient processing systems that have appli-
cations in AI and reinforcement learning (Yamazaki, V., & D., 2022).
Here, we propose a method for approximating any function such as a
nonlinear controller algorithm through SNNs, and apply reinforcement
learning to obtain optimum parameters. The proposed method enables
us to integrate any traditional control system with reinforcement learn-
ing algorithms that are implemented in the SNNs context. It results in
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a hybrid learning-control algorithm like the critic–actor system which
is applicable in robotics.

In recent years, there has been a convergence between the fields of
neuroscience, engineering, and artificial intelligence, resulting in the
development of novel control methods. One such method is reinforce-
ment learning, a biologically inspired algorithm that is compatible with
complex real-world engineering systems (Azimirad & M., 2020). In con-
trast, traditional nonlinear control systems are effective in controlling
complex systems such as robots but cannot learn and update param-
eters. This paper presents a new algorithm for replacing nonlinear
controllers through SNNs with a reinforcement learning perspective.
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Fig. 1. FOPID controller converge.

It offers numerous engineering applications (e.g. control of nonlinear
robotic systems) and will assist in overcoming common challenges
(such as parameter adjustment and high energy consumption).

Finding optimal parameter values in designing a nonlinear con-
troller such as Fractional Order PID or feedback linearization is a
significant challenge. Although there are some methods for tuning
controllers such as the Ziegler–Nichols method, for nonlinear con-
trollers such as Fractional Order PID (FOPID), it is a more complex
subject. Valerio and J. Costa have presented a FOPID regulator based
on Ziegler–Nichols criteria (Cao & G., 2005), and more recently, Sha-
laby et al. propose a critic–actor optimization method for the FOPID
controller (Shalaby, B., & T., 2023). However, these methods are not
energy efficient and among the above works, none of them have utilized
reinforcement learning through spiking neural networks (SNNs) for
parameter approximation.

In Vinagre and I (2007), an automatic tuning method for FOPID
based on the relay test has been introduced. Optimization algorithms
such as genetic algorithm (Cao & G., 2005) and particle swarm opti-
mization (Cao & G., 2006) have also been proposed for tuning FOPID
controller parameters. In 2022, Lin Xu and colleagues utilized a combi-
nation of backstepping and FOPID techniques for tracing the trajectory
of a differential drive mobile robot. To enhance the FOPID parameter
values, they employed the beetle swarm optimization algorithm (Xu, D.,
S., & C., 2022). A FOPID fuzzy controller developed by Jiawen Zhang
was utilized to regulate a two-wheeled self-balancing robot (TWSBR)
system in an inclined environment (Zhang, Z., G., & D., 2021). A
strategy has been presented in this regard, which utilizes a modified
firefly algorithm (MFA) and particle swarm optimization to adjust
torque and effective speed for BLDC motors. This approach effectively
resolves the issue of uncertainty caused by load changes (Kommula &
K., 2022). Furthermore, M. Abed used the fruit fly swarm algorithm
to optimize the FOPID parameters of the nonlinear neural network for
controlling the mobile robot, which has effective results (Abed, A., &
k. A., 2022), but he did not study SNNs.

Some methods for parameter tuning in PID controllers have also uti-
lized supervised learning based on Artificial Neural Networks (ANNs).
For instance, in Lee and D.-W. (2021), a combination of two networks,
Long Short-Term Memory (LSTM) and an Artificial Neural Network,
was used to tune the PID parameters. Fuzzy FOPID controllers and PSO
algorithms have been combined to regulate the position of a pneumatic
cylinder in a nonlinear state (Muftah & M., 2022). In another work,
supervised learning based on ANN has been used for face recognition
and FOPID controller to regulate robot engine position (Hsu, C., C.,
F., & C., 2022). Webb et al. designed a three-in-one network using
the Izhikevich model and the Hodgkin–Huxley type, where the PID
parameters were set equal to the synaptic weights, but they only
studied supervised learning (Webb & S., 2011). However, none of these
2 
works has studied reinforcement learning in the SNNs platform for the
application of AI in the parameter tuning of nonlinear controllers like
FOPID and feedback linearization.

Mohit Mehindir et al. (2019), to facilitate accurate tracking, offered
a strategy of Simple Learning for the linearization of feedback in aerial
robots. It was based on the gradient descent method and the aim was to
obtain the rules for feedback controller gains and disturbance estimates
in the feedback control law (Mehndiratta, E., M., & E., 2019). But
his method was not energy efficient. In Hoang, J., and S. (2021), the
combined method of feedback linearization and sliding mode controller
was presented for controlling the vibration of an excavator based on a
dynamic model and did not study reinforcement learning. In 2020, Anx-
ing Liu et al. presented a smooth switching control method of feedback
linearization and the Port-Controlled Hamiltonian combination, which
was designed based on position error, to solve the conflict between
dynamic performance and the steady state of a robot system (L. & Yu,
2020). However, none of the previous works in this area studied SNNs
and reinforcement learning in the parameter adjustment of controllers.

The main contribution of this research is to present a new SNN-
based algorithm for hybrid learning and control of robots. The proposed
reinforcement learning system acts as a critic system and is used for
tuning the parameters of the nonlinear controllers (as actor systems).
The algorithm of the new proposed method has been introduced and
its integration with other traditional controllers is discussed. E.g., it
is integrated with the Fractional Order PID (FOPID) and feedback lin-
earization controllers. The application of the new algorithm in robotics
is studied and the results are compared with previous works. The new
method shows a better performance in comparison with them. Then it
is extended to optimize the parameters of the Feedback Linearization
method (as a basic nonlinear controller in robotics).

1.1. Reinforcement learning in robotics

Reinforcement learning is a type of machine learning that enables
robots to learn tasks through trial and error by receiving feedback in
the form of rewards or penalties based on their actions. This feedback
helps the robot to adjust its behavior and improve its performance
over time. Reinforcement learning can enable robots to learn tasks by
providing a framework for the robot to learn from its interactions with
the environment. The primary objective of reinforcement learning in
training a robot to acquire new skills is to enable it with three essential
capabilities:

1. Learning tasks that are beyond the physical capabilities of a
human teacher, such as lifting heavy weights. This allows the robot
to perform tasks that require superior strength or endurance.

2. Acquiring the ability to optimize goals, which is a complex prob-
lem lacking any known analytical formula or solution. Even a human
teacher may not possess knowledge of the optimal solution. By utilizing
a function, the robot can minimize errors and energy consumption, thus
achieving optimization.

3. Demonstrating adaptive learning in previously encountered tasks
that may have variations or unseen challenges. For instance, the robot
can learn to navigate smoothly along a curved path, even if it was
initially trained on a straight path. This adaptability enables the robot
to handle diverse scenarios effectively (Miljković, M., L., & B., 2013).
One specific example of reinforcement learning enabling robots to learn
tasks is in robotic manipulation. Robots can learn to grasp objects,
manipulate them, and perform complex tasks by using reinforcement
learning algorithms to optimize their actions based on feedback from
the environment (Kormushev, C., & C., 2013; Pane, N., & B., 2019;
Yamada, Englert, & J., 2021).

Another example is autonomous navigation, where robots can learn
to navigate through complex environments by using reinforcement
learning to learn optimal paths and avoid obstacles (Liu, D., C., S., &

D., 2020; Quan, Y., & Y., 2020).
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Fig. 2. The SNNFOPID Flowchart.
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Fig. 3. Peusecode of SNNFOPID.

Fig. 4. Schematic of n-degrees of freedom serial manipulator.
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Fig. 5. The structure of connecting SNN-based learning system for controlling an n-DOF robot manipulator with n FOPID controllers.
1.2. Reinforcement learning for collaborative tasks

Empirical control based on reinforcement learning for collaborative
tasks in the real world is already being used in various applications.
These include autonomous vehicles, robotics, and industrial automa-
tion, among others. Researchers and companies are actively working
on developing and implementing reinforcement learning algorithms for
collaborative tasks to improve efficiency and performance in real-world
settings. for instances: Uri Kartoun et al. introduce a new reinforce-
ment learning algorithm, CQ(𝜆), that facilitates collaborative learning
between a robot and a human. Based on the Q(𝜆) approach, the
algorithm leverages human intelligence and expertise to expedite the
learning process. It provides the robot with self-awareness, allowing
it to adaptively switch its collaboration level from autonomous to
semi-autonomous based on its learning performance. The approach
is demonstrated and evaluated using a fixed-arm robot for finding
the optimal shaking policy to empty the contents of a plastic bag,
showing faster convergence compared to traditional Q(𝜆) reinforcement
5 
learning (Kartoun, Stern, & Edan, 2010). Wenshuai Zhao et al. specifi-
cally analyzed how multi-agent reinforcement learning can bridge the
reality gap in distributed multi-robot systems with non-homogeneous
operations. In this work, the effect of sensing, calibration, and accuracy
mismatches in distributed reinforcement learning using proximal policy
optimization (PPO) is introduced and discusses how different types of
perturbances and the number of agents experiencing them affect collab-
orative learning efforts (Zhao & W., 2020). Ali Shafti et al. conducted a
real-world collaborative maze game with humans and robots, focusing
on implicit interaction. Using deep reinforcement learning, the robotic
agent achieved results in 30 min without pretraining. Then it is studied
how humans and robots colearned a policy for the game and found
that each participant’s agent represented their playing style (Shafti &
F., 2020).

The following sections detail the contents of this paper. In Section 2,
the applications of ANN and SNN are compared. Section 3 discusses
the structure of spiking neural networks while Section 4 highlights
the significance of FOPID. In Section 5, the SNNFOPID algorithm and
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Fig. 6. The stability of parameters of the SNNFOPID controller for 𝑙𝑖𝑛𝑘1.
Fig. 7. The stability of parameters of the SNNFOPID controller for 𝑙𝑖𝑛𝑘2.
the structure of SNNs are described. Moreover, it also delves into the
implementation of the SNNFOPID algorithm, dynamic equations of
(two links robot manipulator, double inverted pendulum, and mobile
robot), and simulation results. The application of reinforcement learn-
ing in Feedback Linearization (FL) is presented in Section 6. Lastly, the
significance and outcomes of this study are discussed.

2. SNNs or ANNs?

1. Computational Model:
ANNs: they are based on the concept of artificial neurons or per-

ceptrons that process inputs and produce outputs using weighted con-
nections and activation functions. They typically use continuous-valued
activations and operate in discrete time steps. SNNs: they are more
biologically inspired and model the behavior of real neurons in the
brain more closely. They use a spiking or event-based representation,
6 
where information is encoded in the timing of discrete spikes or action
potentials.

2. Information Representation:
ANNs: they represent information using continuous-valued activa-

tions, where the strength of the activation represents the importance or
relevance of a feature. SNNs: SNNs represent information using discrete
spikes or events. The timing of these spikes carries information, and the
frequency or pattern of spikes can encode different features.

3. Temporal Processing:
ANNs: ANNs typically do not explicitly model temporal dynamics,

as they operate in discrete time steps and process inputs independently
at each step.

SNNs: SNNs naturally capture temporal dynamics due to their event-
based representation. The timing of spikes allows for precise temporal
processing and synchronization of information.
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Fig. 8. (a) IAE value of link1 during changes kp1, (b) IAE value of link1 during changes ki1, (c) IAE value of link1 during changes kd1, (d) IAE value of link1 during changes
𝜆1, (e) IAE value of link1 during changes 𝜇1, (f) IAE value of link1 during changes 𝛼1.
Fig. 9. (a) IAE value of link2 during changes kp2, (b) IAE value of link2 during changes ki2, (c) IAE value of link2 during changes kd2, (d) IAE value of link2 during changes
𝜆2, (e) IAE value of link2 during changes 𝜇2, (f) IAE value of link2 during changes 𝛼2.
4. Energy Efficiency:
ANNs: ANNs are computationally intensive and often require high

power consumption due to continuous-valued operations and parallel
processing. SNNs: SNNs have the potential to be more energy-efficient
because they operate in an event-driven manner, where spikes are
only generated when necessary. This can reduce power consumption
in certain applications.

It is important to note that the choice between ANNs and SNNs
depends on the specific task and requirements. While ANNs have
been extensively used and studied, SNNs are gaining attention for
their potential in modeling spatiotemporal information processing and
7 
achieving energy-efficient computing. Here are some examples of tasks
where the temporal processing capabilities of Spiking Neural Networks
(SNNs) would be crucial:

1- Spike-based pattern recognition: SNNs can effectively process
temporal patterns and sequences, making them well-suited for tasks
such as speech recognition, gesture recognition, classification, and
event prediction (Jun Hu, K., T., L., & S., 2013; Kasabov, B., D., & W.,
2023).

2-Spike-based learning algorithms: SNNs can learn and adapt to
temporal patterns in data, enabling tasks such as online learning,
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Fig. 10. (a) Trajectory tracking, (b) Control outputs, (c) Position error of 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in the presence of no disturbance and noise for the SNNFOPID method.
Fig. 11. (a) Trajectory tracking, (b) Control outputs, (c) Position error of 𝑙𝑖𝑛𝑘1 and 𝑙𝑖𝑛𝑘2 in the presence of disturbance 0.5 ∗ 𝑠𝑖𝑛(25𝑡)𝑁𝑚 by the SNNFOPID method.
reinforcement learning, and unsupervised learning (Ning, D., X., T., &
T., 2023; Zhang & L., 2021).

3- Neuromorphic computing: SNNs are often used in neuromorphic
hardware for efficient and low-power implementation of cognitive tasks
that require real-time processing of spatiotemporal data (Liu, Y., & C.,
2020; Rathi, C., K., S., A., P., & R., 2023). Spiking neural networks can
be integrated with other sensor modalities and perception systems in
robots to enhance their autonomy in several ways:

(a) Multi-modal integration: Spiking neural networks can be used to
integrate information from different sensor modalities, such as vision,
touch, and sound, to provide a more comprehensive understanding of
the robot’s environment. This allows the robot to make more informed
decisions based on a combination of sensory inputs.
8 
(b) Sensor fusion: Spiking neural networks can be used to fuse infor-
mation from multiple sensors to improve the accuracy and reliability of
perception systems. For example, combining data from a camera and a
LIDAR sensor can provide a more detailed and robust representation of
the environment.

(c) Adaptive learning: Spiking neural networks can learn and adapt
to new sensory inputs, allowing robots to continuously improve their
perception capabilities over time. This adaptive learning process en-
ables robots to better navigate complex and dynamic environments.

(d) Hierarchical processing: Spiking neural networks can be struc-
tured hierarchically to mimic the organization of the human brain.
This allows robots to process sensory information at different levels
of abstraction, enabling them to perform complex tasks that require
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Fig. 12. (a) Trajectory tracking, (b) Control outputs, (c) Position error of 𝑙𝑖𝑛𝑘1 and 𝑙𝑖𝑛𝑘2 for different 𝑚𝑝 values according to the third case of Table 7 by the SNNFOPID method.
Fig. 13. (a) Trajectory tracking, (b) Control outputs, (c) Position error of 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in the presence of noise for SNNFOPID method.
a combination of low-level sensor data and high-level cognitive rea-
soning. Overall, integrating spiking neural networks with other sensor
modalities and perception systems can significantly enhance robot
autonomy by improving their ability to perceive and interact with their
environment more intelligently and adaptively.

3. SNNFOPID

Spiking neural networks, which are the third generation of artificial
neural networks, are inspired by biological neural networks in the brain
(Yan, Z., & W., 2021). They have high processing speed and temporal
dynamics that enable them to efficiently encode and process informa-
tion, mimicking the human brain’s functionality. This unique feature
allows the design of large-scale networks that set them apart from
previous neural network models (Izhikevich, 2003). The Izhikevich
model is used to simulate the spiking and bursting behavior of neurons.
It combines the biological plausibility of the Hodgkin–Huxley model
with the computational efficiency of the integrate-and-fire model. The
Izhikevich model is known for its higher complexity, processing speed,
9 
and computational power compared to other spiking neuron models.
The single-neuron differential equations of the Izhikevich model are
given as Eqs. (1)–(3):

𝑑𝑣
𝑑𝑡

= (0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼) (1)

𝑑𝑢
𝑑𝑡

= 𝑎(𝑏𝑣 − 𝑢) (2)

𝑖𝑓𝑣 >= 30𝑚𝑣(𝑀𝑖𝑙𝑙𝑖𝑣𝑜𝑙𝑡), 𝑇 ℎ𝑒𝑛

{

𝑣 ← 𝑐
𝑢 ← 𝑢 + 𝑑

(3)

In which and represent the membrane potential and membrane
recovery parameters, respectively. 𝑎, 𝑏 and are dimensionless param-
eters and are set according to physiological data (Lee, P., G., & K.,
2018). If the membrane potential is above 30, the motor neurons will
spike (Valerio & J., 2010).
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Fig. 14. Double inverted pendulum in SIMULINK.

3.1. FOPID structure

In Fractional Order PID (FOPID) controllers, the weighted sum of
three actions regarding, 𝐼 and elements are used to adjust the process
via input. FOPID is preferable to the classic PID (Pritesh Shah, 2016):

1. FOPID will perform better than PID on higher-order systems (Das,
S., & D., 2011; Shah & S., 2013).

2. FOPID provides better results on systems with long delays (Feliu-
Batlle, R.-P., & C.-G., 2009; Das, D., & G., 2015).

3. For controlling nonlinear systems, FOPID performs better than
PID (Das, S., & D., 2011).

4. A classical PID controller provides lower robust stability, whereas
a Fractional Order PID controller has more robustness and stabil-
ity (Mohammad Saleh Tavazoei, 2009; Petras, 2009).

The FOPID standard term is given by Eq. (4) (Xue & C., 2006):

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑆𝜆 +𝐾𝑑𝑆
𝜇 , (𝜆, 𝜇 >= 0) (4)

where C(s) is the transfer function, 𝐾𝑝 is the proportional constant gain,
𝐾𝑖 is the integration constant gain, 𝐾𝑑 is the derivative constant gain,
𝜆 is the order of integrator, and is the order of differentiator (Fig. 1).

Generally, the range of fractional order is considered to be between
(0,2). As it is shown in Fig. 1 (Hamamci, 2007):

∙ If 𝜆 = 1 and 𝜇 = 1, then it is classical PID controller.
∙ If 𝜆 = 0 and 𝜇 = 1, then it is classical PD controller.
∙ If 𝜆 = 1 and 𝜇 = 0, then it is classical PI controller.
∙ If 𝜆 = 0 and 𝜇 = 0, then it is classical P controller.

4. SNNs structure

Here, the SNNs are implemented through the Izhikevich model,
and we incorporated the dynamic equation of a single neuron. The
SNNs have two layers: the first layer is called the multi-input layer,
and the other one is called the multi-output layer. The multi-input
layer has neuronal groups to get data from the environment, and
the multi-output layer is in contact with the environment by sending
data to it. The key point is how they are connected. Each neuron in
the multi-input layer is connected to the other neurons in the other
layer. When the system starts to learn, the strength of connections
between these neurons, which are called synaptic weights, change.
The reinforcement learning mechanism of the networks is based on
the integration of the spike-timing-dependent plasticity (STDP), and
reward/punishment algorithm. Pure STDP is an unsupervised learning
mechanism that adjusts synaptic weights based on temporal correla-
tions between pre- and post-synaptic spike events (Hamamci, 2007).
10 
Here, reward/punishment-modulated STDP is used and the time-based
formula for the dopamine-modulated STDP is as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐼 = 𝑆
�̇� = 𝑐.𝑑
�̇� = − 𝑞

𝜏𝑐
+ 𝑆𝑇𝐷𝑃 (𝜏)𝛿(𝑡 − 𝑡𝑝𝑟𝑒∕𝑝𝑜𝑠𝑡)

�̇� = − 𝑑
𝜏𝑑

+𝐷𝐴

(5)

where 𝐼 is the current passing through each synapse, 𝑆 is the synaptic
weight, 𝜏 is the decay parameter of 𝑆𝑇𝐷𝑃 , 𝐶 is the eligibility trace, 𝑑
is the concentration of extracellular dopamine in the synaptic junction,
and 𝐷𝐴 is the release of dopamine in neural networks 𝛿(𝑡) is the
Dirac delta function that increases the variable 𝐶. Here we considered
𝑎 = 0.02, 𝑏 = 0.2, 𝑐 = −65, 𝑑 = 8 (Azimirad, M., S., V., & F., 2022;
Azimirad, S., & N., 2021). This process has three types of currents: (i)
Sensory (input) current: this current is given to a block of 50 input
neurons each time we have input data. It activates a series of input
neurons in the presence of the input data. (ii) Background current:
it is randomly given to all the motor (output) neurons. (iii) Babbling
current: it is given a block of 50 output neurons randomly each time
we have input data. It activates a series of output neurons when input
data are available.

The integration of these three currents guarantees proper learning.
If only 𝑆𝑇𝐷𝑃 is used and dopamine is not released every time the cor-
rect action is performed, unsupervised learning will occur. According
to some case studies, the speed of the learning process, when there is
no reward and punishment, is low. Therefore, to increase the speed
of the learning process, we decided to add reward and punishment,
in which the mechanism of releasing dopamine (𝐷𝐴) is added to the
STDP system. We considered 𝐷𝐴 = 1 (positive dopamine or reward) for
each correct action and 𝐷𝐴 = −1 (negative dopamine or punishment)
for each incorrect action. There are numerous methods for regulating
dopamine levels, however, the focus of this research is to explore the
biological function of spiking neural networks in order to achieve this
objective.

5. SNNFOPID flowchart

To optimize the FOPID parameters and produce the hybrid learning
control, SNNs are employed due to their impressive energy-saving
capabilities. The network comprises various neuron groups, and the
connections between these neurons exhibit variable synaptic strengths.
Moreover, there is a system of reward and punishment: correct actions
are rewarded, whereas incorrect actions are penalized, so altering
the synaptic weight. The structure of this flowchart is illustrated in
Fig. 2. As the network adapts and learns to achieve a minimal Integral
Absolute Error (IAE), the dopamine dose is balanced towards zero, with
both positive and negative feedback being equally considered.

Based on Figs. 2, 3, and 5:
1- A distinct Spiking Neural Network (SNN) is specifically crafted

for each robot link based on the number of degrees of freedom of the
robot. These networks consist of six types of input or sensor neurons
and one type of output or motor neuron.

2- The neuronal spiking behavior in these networks is governed
by Spike-Timing-Dependent Plasticity (STDP), also known as the local
synapse role. This principle is inspired by the biological concept that
input neurons consistently precede output neurons in firing patterns.

3- Each set of input and output neurons comprises 50 units, mirror-
ing the specialized functionality observed in the brain and mammalian
nervous systems(a set of neurons act for a special purpose). To optimize
controller parameters, 50 input neurons establish synaptic connections
with 50 output neurons, resulting in a total of 2500 synaptic weights.
The average of these synaptic weights directly influences the desired

controller parameter value.
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Fig. 15. (𝑎) 𝑘𝑝1, (𝑏) 𝑘𝑖1, (𝑐) 𝑘𝑑1, (𝑑) 𝜆1, (𝑒) 𝜇1, (𝑓 ) 𝛼1.
Fig. 16. (𝑎) 𝑘𝑝2, (𝑏) 𝑘𝑖2, (𝑐) 𝑘𝑑2, (𝑑) 𝜆2, (𝑒) 𝜇2, (𝑓 ) 𝛼2.
4- The network architecture is designed to introduce current ran-
domly to a specific group of neurons during each iteration. Conse-
quently, only the synaptic weights corresponding to that particular
group of parameters are modified at any given time. These adjusted
values are then used to determine the robot controller’s performance,
as indicated by the Integral of Absolute Error (IAE) value for the desired
joint in the Spiking Neural Network (Eq. (6)).

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟(𝐼𝐴𝐸) = ∫ ∣ 𝑒(𝑡) ∣ 𝑑𝑡 (6)

5- When synaptic weight changes are tailored to the desired pa-
rameter type to optimize evaluation criteria, such as Integral Absolute
11 
Error (IAE) focusing on a specific robot link for correct actions, posi-
tive dopamine is introduced into these synapses by the network. This
amount of dopamine accumulates with synaptic weights related to
the desired parameter, enhancing its value. Conversely, if altering
the synaptic weight of the desired parameter leads to increased IAE,
signaling an incorrect action, negative dopamine linked to the desired
parameter is released to decrease its value. (∣ 𝑒(𝑡) ∣ is the absolute
error). For each neuron, we consider 𝐼𝐴𝐸𝛼 𝐼𝐴𝐸𝜇 , 𝐼𝐴𝐸𝜆, 𝐼𝐴𝐸𝑝, 𝐼𝐴𝐸𝑖𝑎𝑛𝑑
𝐼𝐴𝐸𝑑 . The activity of each neuron was compared with its previous
activity.

6- The optimal synaptic weight values for 𝜇 and 𝜆 parameters
in each robot link controller, crucial for system stability as per
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Fig. 17. (𝑎) 𝑘𝑝3, (𝑏) 𝑘𝑖3, (𝑐) 𝑘𝑑3, (𝑑) 𝜆3, (𝑒) 𝜇3, (𝑓 ) 𝛼3.
Fig. 18. (a) IAE value of cart during changes kp1, (b) IAE value of cart during changes ki1, (c) IAE value of cart during changes kd1, (d) IAE value of cart during changes 𝜆1,
(e) IAE value of cart during changes 𝜇1, (f) IAE value of cart during changes 𝛼1.
Ref. Iakymchuk, R.-M., F.G.-M., B.-M., V., and V. (2015), Pritesh Shah
(2016), fall within the range of 0 to 2, with a recommended maximum
of Sm = 2.

7- While parameters like kp, ki, kd, and 𝛼 are not constrained
by specific value limits, ensuring all synaptic weights in the Spiking
Neural Networks (SNNs) reach a maximum value is essential for net-
work convergence and learning. To facilitate this process, an initial
arbitrary value Sm is assigned to these parameters, with the network
updating it to 𝑆𝑚𝑛𝑒𝑤 = 𝑆𝑚𝑜𝑙𝑑 + 5, if values exceed 0.8 ∗ 𝑆𝑚 during
learning. 8- The coefficient 𝛼 serves as a multiplier in the controller
of each robot link, strategically incorporated to expedite the network’s
convergence speed amidst the time-intensive reinforcement learning
process, proving effective in practice.

9- This iterative process persists until achieving the lowest possible
IAE values for each robot link, facilitating parameter convergence and
optimizing system performance. The pseudo-code presented in Fig. 3
12 
provides a comprehensive and clear representation of the functioning
of SNNFOPID. Fig. 4 shows the schematic of n-degrees of freedom serial
manipulator which is used to test the SNNFOPID method.

5.1. Application of the SNNFOPID algorithm in controlling n-degrees of
freedom robot

Suppose that there is an n-degrees of freedom (n-DOF) robot (Fig. 3).
To control it, the following algorithm is used for every joint:

𝑈𝑖 = 𝛼𝑖(𝑘𝑃 𝑖𝑒(𝑡) +𝐾𝐼𝑖𝐷
−𝜆𝑖𝑒(𝑡) +𝐾𝐷𝑖𝐷

𝜇
𝑖 𝑒(𝑡)) (7)

in which, 𝑈 is the control signal, 𝑒(𝑡) shows error, 𝛼 is the gain for
changing the speed of convergence, and 𝑖 = 1, 2, ..𝑛. For each joint, a
separate control system is considered and each control system will be
designed through a separate spiking neural network. Fig. 5 shows how
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Fig. 19. (a) IAE value of link1 during changes kp2, (b) IAE value of link1 during changes ki2, (c) IAE value of link1 during changes kd1, (d) IAE value of link1 during changes
𝜆2, (e) IAE value of link1 during changes 𝜇2, (f) IAE value of link1 during changes 𝛼2.
Fig. 20. (a) IAE value of link2 during changes kp3, (b) IAE value of link2 during changes ki3, (c) IAE value of link2 during changes kd3, (d) IAE value of link2 during changes
𝜆3, (e) IAE value of link2 during changes 𝜇3, (f) IAE value of link2 during changes 𝛼3.
the SNN-based learning mechanism connects with the FOPID controller
to control an n-DOF robotic system.

According to Fig. 5, in every iteration, the FOPID parameters are
generated and passed to the control system by the reinforcement learn-
ing system, and the IAE is returned to the SNNs. The current IAE value
is then compared to the previous one. If the amount of IAE decreases,
positive dopamine is released (𝐷𝐴 = +1), and if the IAE increases,
negative dopamine is injected into the activated synapse (𝐷𝐴 = −1).
This process continues until the IAE value of each joint reaches its
minimum value. To prove the proper performance of the new control
system, we tested it on a robot with two degrees of freedom. The full
dynamic model of a two-DOF robot is considered in the case study.
The nonlinear dynamic equations of the simulated two-DOF robot are
13 
Table 1
Dynamic parameters of the simulated robot.

Parameter 𝐿𝑖𝑛𝑘1 𝐿𝑖𝑛𝑘2
Mass (kg) 1 1
Length (m) 1 1
𝑔(m∕s2) 9.81 9.81
length from the joint to its center of gravity (m) 0.5 0.5
Lengthwise centroid inertia of link (kg m2) 0.2 0.2
Coefficient of viscous friction 0.1 0.1
Coefficient of dynamic friction 0.1 0.1

shown in the appendix (Lee & Lee, 2003). The values of the model
parameters are shown in Table 1.
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Fig. 21. (a) Trajectory tracking of cart, (b) Trajectory tracking of link1, (c) Trajectory tracking of link2, (d) Control output of cart (N), (e) Control output of link1, and link2
(N m), (f) Position error of cart, 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2.
Fig. 22. (a) Trajectory tracking of cart, (b) Trajectory tracking of link1, (c) Trajectory tracking of link2, (d) Control output of cart (N), (e) Control output of link1, and link2 (N
m), (f) Position error of cart, 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in the case of no disturbance.
To validate the results, the reference trajectories for joints are taken
into account the same as the ones in Iakymchuk et al. (2015). So for the
first joint, the reference trajectory is considered as Eq. (8), and for the
second joint the reference trajectory is given as Eq. (9) (Richa Sharma
& M., 2015):

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦1 = 0.96875 ∗ 𝑡2 − 0.234375 ∗ 𝑡3 (8)

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦2 = 1.1875 ∗ 𝑡2 − 0.21875 ∗ 𝑡3 (9)

in which, 𝑡 is the time of simulation (𝑡 = 0:4 s). The values of the
FOPID control parameters obtained from the SNNFOPID algorithm (for
the two-DOF robot) are given in Table 2.

In all cases, we have compared the results of the current work
with the results of implementing FOPID method (Das et al., 2011)
14 
under identical conditions. The standard deviations (SD) of the synaptic
weights for each class of 50 neurons are listed in Tables 3 and 4.

Tables 3 and 4 show that considering the average amount of synap-
tic weights as the weight of each class of neurons could be done with a
good approximation (because of the low Standard deviation according
to Richa Sharma and M. (2015)). Neurons perform a specific action
in groups, and to imitate this point of view, we assigned 50 neurons
to adjust each parameter, which shows the average synaptic weight
of each group of 50 neurons. The standard deviation provides a good
indication of how close the actions of each class of neurons are to each
other. According to the standard deviation values of each class, the
average weight of each of the 50 neurons is considered the value of
each control parameter. Figs. 6 and 7 show the value of the controller
parameters during the training process.
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Fig. 23. (a) Trajectory tracking of cart, (b) Trajectory tracking of link1, (c) Trajectory tracking of link2, (d) Control output of cart (N), (e) Control output of link1, and link2
(N m), (f) Position error of cart, 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in the presence of disturbance.
Fig. 24. (a) Trajectory tracking of cart, (b) Trajectory tracking of 𝐿𝑖𝑛𝑘1, (c) Trajectory tracking of 𝐿𝑖𝑛𝑘2, (d) Control output of cart (N), (e) Control output of 𝐿𝑖𝑛𝑘1, and 𝐿𝑖𝑛𝑘2
(N m), (f) Position error of cart, 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in the presence of noise.
Table 2
The final values of SNNFOPID obtained after learning for the two-DOF robot.
𝐾𝑝1 𝐾𝑖1 𝐾𝑑1 𝜇1 𝜆1 𝛼1 𝐾𝑝2 𝐾𝑖2 𝐾𝑑2 𝜇2 𝜆2 𝛼2
192.0686 1.7968 2.1729 0.4491 0.4644 26.4431 192.8363 1.4489 1.4206 0.1885 0.2958 26.1481
As shown in Figs. 6 and 7, the values of 𝑘𝑝1 and 𝑘𝑝2 after 30,000
iterations reached values close to 190 and became stable, and 𝛼1 and 𝛼2
reached constant values of 26 in 10,000 iterations and then remained in
this constant range. 𝑘𝑑1, 𝑘𝑑2, 𝑘𝑖1 and 𝑘𝑖2 fluctuated in the range of 1.7
to 2 after 3000 iterations. As expected, in the range below 2, 𝜇1, 𝜇2, 𝜆1
and 𝜆2 have reached constant values. When all the parameters become
15 
stable, the algorithm is stopped. The purpose of adding 𝛼𝑖 into the
control system is to reduce the number of iterations. This signifies the
network’s ability to learn and maintain stability over time. Figs. 8 and
9 show the minimization of IAE for links 1 and 2 during the changes
in parameters by the SNNFOPID algorithm in different iterations.
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Fig. 25. Two-wheeled mobile robot.
Fig. 26. (a) IAE value of left wheel during changes kp1, (b) IAE value of left wheel during changes ki1, (c) IAE value of left wheel during changes kd1, (d) IAE value of left
wheel during changes 𝜆1, (e) IAE value of left wheel during changes 𝜇1, (f) IAE value of left wheel during changes 𝛼1.
Table 3
Standard deviation (SD) of the synaptic weights of each class of FOPID Parameters for
𝑙𝑖𝑛𝑘1.
𝑆𝑇𝐷𝐾𝑝1 𝑆𝑇𝐷𝐾𝑖1 𝑆𝑇𝐷𝐾𝑑1 𝑆𝑇𝐷𝜇1 𝑆𝑇𝐷𝜆1 𝑆𝑇𝐷𝛼1

2.6565 0.1299 0.181 0.0789 0.0678 0.67

Table 4
Standard deviation (SD) of the synaptic weights of each class of FOPID Parameters for
𝑙𝑖𝑛𝑘2.
𝑆𝑇𝐷𝐾𝑝2 𝑆𝑇𝐷𝐾𝑖2 𝑆𝑇𝐷𝐾𝑑2 𝑆𝑇𝐷𝜇2 𝑆𝑇𝐷𝜆2 𝑆𝑇𝐷𝛼2

2.4937 0.1123 0.1081 0.06544 0.06957 0.7323

Based on the analysis of Figs. 8 and 9, it is evident that the IAE
value is influenced by changes in the control parameters during the
SNN learning process. As the learning process progresses, we observe a
significant reduction in the IAE value, approaching zero, indicating the
effective functioning of the dopamine system in guiding the network
16 
towards the desired target. The trajectory, control outputs, and posi-
tion error of variables 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 resulting from the SNNFOPID
operation without disturbance are shown in Fig. 10.

As shown in Fig. 10, when there is no disturbance and noise, the
position error values of 𝑙𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 were less than 0.007 𝑟𝑎𝑑 and
0.005 𝑟𝑎𝑑, respectively. The ranges of control outputs for 𝑙𝑖𝑛𝑘1 and
𝐿𝑖𝑛𝑘2 are (−20,45) 𝑁𝑚 and (−20,25) 𝑁𝑚, respectively.Given the de-
sired path assigned to each link of the robot, the robot is trained to track
this path accurately. Fig. 10 (c) illustrates the robot’s precise learning
along the desired paths. The position error for both robot links is less
than 0.007 radians. To study the performance of the new SNNFOPID
method, some simulation studies are done and the integral absolute
error of the robot links in the presence of friction is considered (Lee &
Lee, 2003). The new method’s performance has been investigated for
three different coefficients of viscous friction and results are compared
with Sharma FOPID methods in Table 5 (Richa Sharma & M., 2015).

According to Table 5, in the presence of friction for links 1 and 2,
the IAE value in the SNNFOPID method is lower than the IAE value in
the Sharma method (Richa Sharma & M., 2015), and results show that
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Fig. 27. (a) IAE value of right wheel during changes kp2, (b) IAE value of right wheel during changes ki2, (c) IAE value of right wheel during changes kd2, (d) IAE value of
right wheel during changes 𝜆2, (e) IAE right wheel during changes 𝜇2, (f) IAE value of right wheel during changes 𝛼2.
Table 5
IAE values of SNNFOPID for 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in three different functions of viscous friction (𝑣).
Parameter variation Sharma FOPID Petrovic, V., I., M., and S. (2016) SNNFOPID

𝐿𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2 𝐿𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2
case1 0.008775 0.01496 0.007665 0.004036
𝑣1 = 0.5 𝑆𝑔𝑛(�̇�1)
𝑣2 = 0.1
case2 0.008788 0.01418 0.007651 0.00406
𝑣1 = 0.1
𝑣2 = 0.5 𝑆𝑔𝑛(�̇�2)
case3 0.008775 0.01418 0.007631 0.004124
𝑣1 = 0.5 𝑆𝑔𝑛(�̇�1)
𝑣2 = 0.5 𝑆𝑔𝑛(�̇�2)
SNNFOPID acts better when there is viscous friction in joints of the
robot. To evaluate the performance of the new SNNFOPID controller, a
series of simulation studies are done in the presence of disturbance.
In the first case study, ten different values of the disturbance are
considered for the first link of the robot and there is no disturbance
on the second link of the robot. In the second case study, ten different
amounts of the maximum disturbance are considered for the second
link and the disturbance on the first link is zero. In the third series of
case studies, the performance of the system is studied in the presence
of disturbances for both links of the robot. In each one, ten different
values of sinusoidal disturbance are applied to the robot inputs, and
the IAE values for each case and the value of the sinusoidal disturbance
are presented for SNNFOPID and Sharma method (Richa Sharma & M.,
2015). Results are shown in Table 6.

According to Table 6, in all three cases, SNNFOPID performs better
when the disturbance is applied. As an example, the trajectory tracking,
control outputs, and position error of 𝑙𝑖𝑛𝑘1 and 𝑙𝑖𝑛𝑘2 resulting from the
SNNFOPID operation in the presence of disturbance (0.5 ∗ 𝑠𝑖𝑛(25𝑡)𝑁𝑚)
are shown in Fig. 11.

As shown in Fig. 9, in the presence of disturbance with a maximum
value of 0.5 Nm, the error value for each link of the robot is less than
0.009 𝑟𝑎𝑑 and the error for the first link is higher than the error for
the second link. In addition, all error values converge to zero after
about 3 s. In another case study, the carrying payload mass (𝑚𝑝) of the
robot is considered to have an altering value concerning time, and the
performances of SNNFOPID and Sharma FOPID (Petrovic et al., 2016)
are compared. Hence, 𝑚 is considered to have three different values,
𝑝

17 
according to Table 7, and for these three payload amounts, the IAE
values are obtained (Table 7).

Table 7 shows that in all three cases, SNNFOPID has a lower IAE
value for both robot links. Fig. 10 shows the results of the third case of
Table 7 in terms of the position error and control outputs.

As shown in Fig. 12, for an altering value of 𝑚𝑝, the amount of
error for each link of the robot is less than 0.009 𝑟𝑎𝑑 and the error
for the first link is higher than the error for the second link. Finally,
we studied the performance of the new method when random noise is
introduced into the system. In a series of case studies, the amount of
−0.01 ≤ 𝑡 ≤ 0.01 𝑟𝑎𝑑 is added to the output of the robot as noise, and
the IAE values for each case are obtained. In the first case study, the
noise is only applied to the output of the first link, in the second case
study, the noise is only applied to the output of the second link, and in
the third case study, the noise is applied to the outputs of both links.
The Integral Absolute Errors of 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 for these case studies
are presented in Table 8.

According to the results of adding noise to the system output in
Table 8, SNNFOPID in case 1 and case 3 has a lower IAE value for
both links and in Sharma method for case 2, the IAE value is lower
than the SNNFOPID method. For illustration, the trajectories, control
inputs, and position error of adding noise to both links are shown in
Fig. 13.

As shown in Fig. 11, in the presence of random noise −0.01 ≤
𝑡 ≤ 0.01 𝑟𝑎𝑑, the error value for each robot link is less than 0.03 𝑟𝑎𝑑.
Results in Figs. 12 and 13 show the robustness of the proposed system

in the presence of disturbance and noise.
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Table 6
IAE values of 𝐿𝑖𝑛𝑘1 𝑎𝑛𝑑 𝐿𝑖𝑛𝑘2 for SNNFOPID method in presence of disturbances.

Disturbances (𝑁𝑚) Sharma FOPID in Petrovic et al. (2016) SNN FOPID

𝐿𝑖𝑛𝑘1 𝐿𝑖𝑛𝑘2 𝐿𝑖𝑛𝑘1 𝐿𝑖𝑛𝑘2
𝐿𝑖𝑛𝑘1
0.1 sin(25t) 0.008784 0.01496 0.007631 0.004132
0.2 sin(25t) 0.008783 0.01496 0.007627 0.004153
0.3 sin(25t) 0.008783 0.01496 0.00724 0.004178
0.4 sin(25t) 0.008787 0.01496 0.007628 0.004172
0.5 sin(25t) 0.008797 0.01496 0.007636 0.004148
0.6 sin(25t) 0.008810 0.01496 0.007646 0.004125
0.7 sin(25t) 0.008825 0.01496 0.007658 0.0041
0.8 sin(25t) 0.008842 0.01496 0.007664 0.004098
0.9 sin(25t) 0.008860 0.01496 0.00767 0.004097
sin(25t) 0.008890 0.01496 0.007679 0.00409
𝐿𝑖𝑛𝑘2
0.1 sin(25t) 0.008791 0.01495 0.007629 0.00414
0.2 sin(25t) 0.008796 0.01494 0.007622 0.004177
0.3 sin(25t) 0.0088 0.01493 0.007627 0.004151
0.4 sin(25t) 0.008804 0.01492 0.007633 0.004134
0.5 sin(25t) 0.008808 0.01492 0.007633 0.004137
0.6 sin(25t) 0.008813 0.01491 0.007628 0.004164
0.7 sin(25t) 0.008817 0.01491 0.007626 0.004178
0.8 sin(25t) 0.008821 0.0149 0.007631 0.004164
0.9 sin(25t) 0.008826 0.0149 0.007639 0.004147
sin(25t) 0.008830 0.0149 0.007638 0.004159
Both Link
0.1 sin(25t) 0.008788 0.01496 0.007634 0.004124
0.2 sin(25t) 0.00879 0.01495 0.007635 0.004126
0.3 sin(25t) 0.008793 0.01494 0.007637 0.004137
0.4 sin(25t) 0.008797 0.01493 0.007636 0.00416
0.5 sin(25t) 0.008802 0.01492 0.007643 0.004155
0.6 sin(25t) 0.008809 0.01492 0.007654 0.004139
0.7 sin(25t) 0.008815 0.01491 0.007667 0.004117
0.8 sin(25t) 0.008823 0.01491 0.007681 0.004116
0.9 sin(25t) 0.008832 0.0149 0.007692 0.00412
sin(25t) 0.008843 0.0149 0.007701 0.004126

5.2. Application of SNNFOPID to control a double inverted pendulum

To provide additional evidence of the effectiveness of the SNN-
FOPID method, we have extended its application to a double inverted
pendulum, which incorporates an arm and a mobile platform. The
three-degree-of-freedom robot, as depicted in Fig. 14, has been meticu-
lously designed within the SIMSCAPE section of SIMULINK, MATLAB.

Table 9 presents the parameters of this robot:
Considering that this robot has three degrees of freedom, according

to the SNNFOPID method, we will have three SNN networks, that is,
three types of FOPID controllers. All steps of network learning are
similar to the two-link robot. Tables 10, 11, and 12 show the value
of controller parameters for each degree of freedom:

Figs. 15, 16, and 17 give the values of each parameter during the
learning process for the three degrees of freedom of the robot.

According to Figs. 15, 16, and 17, almost after 6000 iterations, the
parameters reach a stable range. Also, Figs. 18, 19, and 20 present
SNNFOPID performance during SNN learning to minimize IAE in all
three robot links, respectively.

In the case of the equilibrium state, the IAE value for the cart, link1,
and link2 of the double inverted pendulum is shown in Table 13.

Fig. 21 shows the path tracking, controller output, and position
error for the cart, links 1 and 2 of the robot for the equilibrium state,
respectively.

Based on the data presented in Fig. 21, it is evident that the output
values of the controllers and the error values for all three links are
exceptionally low. This implies that the energy required to maintain
the balance of this robot is significantly minimal.

We also conducted a professional evaluation of the performance
of controllers for the double-inverted pendulum when subjected to
variable inputs. The equations representing these inputs are as follows:
Reference trajectory of cart = 0.3 sin(t)
18 
Reference trajectory of 𝑙𝑖𝑛𝑘1 = 0.5 sin(t+ 𝜋/2)
Reference trajectory of 𝑙𝑖𝑛𝑘2 = sin(t)
In the case of no disturbance, the IAE value for the cart, 𝑙𝑖𝑛𝑘1, and
𝑙𝑖𝑛𝑘2 of the double inverted pendulum is shown in Table 14. Fig. 22
presents the Trajectory tracking, controller output, and position error
for the cart, links 1, and 2 of the robot in the presence of disturbance
in the system, respectively.

In the other cause, some disturbance has been applied to all the
joints of the robot: Disturbance = 0.5 sin(25t).

Table 15 gives us the value of IAE of the cart, and links of the robot
in the presence of disturbances in the robotic system.

In Fig. 23, the trajectory tracking, controller output, and position
error can be well displayed for the cart, links 1 and 2 of the double
inverted pendulum, respectively. In the last case, the amount of noise
−0.01 ≤ 𝑡 ≤ 0.01 𝑟𝑎𝑑 radians is given to the cart, and joints of the
double inverted pendulum. Table 16 shows the IAE value of each link.
Fig. 24 shows the trajectory tracking, controller output, and position
error for the cart, 𝐿𝑖𝑛𝑘1, and 𝐿𝑖𝑛𝑘2 of the double inverted pendulum in
he presence of noise, respectively.

According to Figs. 22, 23, 24, and 25, we reached acceptable results
or controlling the double inverted pendulum. which brings the error
alue to less than 0.03 radians.

.3. Application of SNNFOPID for two-wheeled mobile robot

The performance of the SNNFOPID has been evaluated in another
ase study involving a mobile robot, as discussed in the article authored
y Petrovich et al. in 2016 (Petrovic et al., 2016). Here, the FOPID
ontroller is employed to effectively control the 𝑥 and 𝑦 positions of the
obot. Fig. 25 displays a comprehensive view of the two-wheeled mo-
ile robot. The kinematic relationship is derived between the posture
ector p, expressed in the X-Y coordinate system, and the corresponding
elocity vector. velocities vector is derived as:
𝑉𝐿 = 𝑅𝜔𝐿 , 𝑉𝑅 = 𝑅𝜔𝑅 , �̇� = 𝑉 𝐶𝑂𝑆(𝜃) , �̇� = 𝑉 𝑠𝑖𝑛(𝜃) ,

�̇� = 𝜔 ,𝑤 =
𝑉𝐿 − 𝑉𝑅

𝐷
, �̇� =

⎡

⎢

⎢

⎢

⎣

𝐶𝑂𝑆( 12 𝜃) 𝐶𝑂𝑆( 12 𝜃)
𝑠𝑖𝑛( 12 𝜃) 𝑠𝑖𝑛( 12 𝜃)

1
𝐷

−1
𝐷

⎤

⎥

⎥

⎥

⎦

(10)

where 𝑉𝐿 is the linear speed of the left wheel, 𝑉𝑅 is the linear speed
of the right wheel, 𝛺 is the angular speed of the robot, R = 0.2 m
is the radius of the wheels, D = 0.1 m, the distance between the two
wheels, and 𝜃 is defined as the angle between the X-coordinate and the
heading direction. Figs. 26 and 27 demonstrate the minimization of the
IAE value in both wheels’ positions throughout the learning process.

Based on data from Figs. 26 and 27, it can be observed that the
value of IAE has reached its minimum value. Figs. 28 and 29 depict
the controller parameter values throughout the learning process.

The parameters achieve stability following during the final 100
iterations. Tables 17 and 18 show the value of controller parameters
for each degree of freedom:

The performance of the controllers has been assessed in three cases:
no disturbance, in presence of disturbance, and noise. The amount of
disturbance applied to both wheels of the robot is equal: 0.5 sin(25t),
and the range of applied −0.001 ≤ 𝑡 ≤ 0.001. Additionally, the IAE value
for each case is provided in Tables 19–21.

According to Figs. 30, 31, and 32, the controlled trajectory tracking
in the 𝑥 and 𝑦 directions with control inputs 𝑉𝑅 and 𝑉𝐿 shows that
position errors are less than 0.01 m.

5.4. Application of SNNFOPID for four-link manipulator

The SNNFOPID was tested on the four-link robotic manipulator, as
illustrated in Fig. 33.

The robot’s parameters are detailed in Table 22.:
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Table 7
Comparison of IAE for 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in different 𝑚𝑝 values.

Payload variation (Kg/s) Sharma FOPID (Richa Sharma & M., 2015) SNNFOPID

𝐿𝑖𝑛𝑘1 𝐿𝑖𝑛𝑘2 𝐿𝑖𝑛𝑘1 𝐿𝑖𝑛𝑘2
case 1 0.008793 0.01524 0.006472 0.003374
𝑚𝑝 = 0.125 t
case 2 0.009061 0.01482 0.006814 0.003466
𝑚𝑝 = −0.125 t+0.5
case 3 0.009278 0.01632 0.01025 0.005973

𝑚𝑝 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.5, 𝑡 ≤ 1.5
t-1, 1.5 ≤ 𝑡 ≤ 2.5
0.5t+0.125, 2.5 ≤ 𝑡 ≤ 3.5
2, 3.5 ≤ 𝑡 ≤ 4
Table 8
IAE values of 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in the presence of noise.
Added noise (rad) Sharma FOPID Richa Sharma and M. (2015) SNNFOPID

𝐿𝑖𝑛𝑘1 𝐿𝑖𝑛𝑘2 𝐿𝑖𝑛𝑘1 𝐿𝑖𝑛𝑘2
case 1 0.02139 0.01496 0.02182 0.01046
𝐿𝑖𝑛𝑘1
case 2 0.008787 0.02413 0.02413 0.04823
𝐿𝑖𝑛𝑘1
case 3 0.02139 0.02413 0.0221 0.02245
Both links
Table 9
The value of parameters of double inverted pendulum.

Parameter 𝐿𝑖𝑛𝑘1 𝐿𝑖𝑛𝑘2
Mass (kg) 0.5 1 1
𝑔(m∕s2) 9.81 9.81 9.81
length from the joint to its center of gravity (m) 0.3 0.5 0.5
Dimensions (m) [0.2 0.04 0.6] [0.5 0.15 0.05] [0.5 0.15 0.05]
Fig. 28. (𝑎) 𝑘𝑝1, (𝑏) 𝑘𝑖1, (𝑐) 𝑘𝑑1, (𝑑) 𝜆1, (𝑒) 𝜇1, (𝑓 ) 𝛼1.
19 
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Fig. 29. (𝑎) 𝑘𝑝2, (𝑏) 𝑘𝑖2, (𝑐) 𝑘𝑑2, (𝑑) 𝜆2, (𝑒) 𝜇2, (𝑓 ) 𝛼2.
Fig. 30. (a) Trajectory tracking of the left wheel, (b) Trajectory tracking of the right wheel, (c) Controlled speed of left (𝑉𝐿) and right (𝑉𝑅) wheels (m/s), (d) Position error of
left wheel, and right wheel (m), (e) Angular velocity of the mobile robot (rad/s), (f) 𝜃 (rad) is the angle between the X-coordinate and the heading direction in the case of no
disturbance.
Table 10
The final value of the control parameters obtained from the SNNFOPID algorithm for
the cart in the double inverted pendulum.
𝐾𝑝1 𝐾𝑖1 𝐾𝑑1 𝜇1 𝜆1 𝛼1
16.729 3.9569 3.2365 0.7936 0.8944 15.7529

Table 11
The final value of the control parameters obtained from the SNNFOPID algorithm for
link1 in the double inverted pendulum.
𝐾𝑝2 𝐾𝑖2 𝐾𝑑2 𝜇2 𝜆2 𝛼2
15.0279 3.8647 5.083 1.0229 0.3752 16.0066
20 
Table 12
The final value of the control parameters obtained from the SNNFOPID algorithm for
link2 in the double inverted pendulum.
𝐾𝑝3 𝐾𝑖3 𝐾𝑑3 𝜇3 𝜆3 𝛼3
14.6057 4.9359 3.2976 0.5223 0.4990 15.3729

Table 13
The final value of IAE obtained from the SNNFOPID algorithm for the
double inverted pendulum for the equilibrium state.
𝑐𝑎𝑟𝑡 𝑙𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2
2.347*10e−15 2.352*10e−15 −1.61*10e−14
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Fig. 31. (a) Trajectory tracking of the left wheel, (b) Trajectory tracking of the right wheel, (c) Controlled speed of left (𝑉𝐿) and right (𝑉𝑅) wheel (m/s), (d) Position error of
left wheel, and right wheel (m), (e) Angular velocity of the mobile robot (rad/s), (f) 𝜃 (rad) is the angle between the X-coordinate and the heading direction in the presence of
disturbance.
Fig. 32. (a) Trajectory tracking of the left wheel, (b) Trajectory tracking of the right wheel, (c) Controlled speed of left (𝑉𝐿) and right (𝑉𝑅) wheels (m/s), (d) Position error of
wheel of the left, and right wheel (m), (e) Angular velocity of the mobile robot (rad/s), (f) 𝜃 (rad) is the angle between the X-coordinate and the heading direction in the case
of the presence of noise.
Table 14
The final value of IAE obtained from the SNNFOPID algorithm for the
double inverted pendulum in the case of no disturbance.
𝑐𝑎𝑟𝑡 𝑙𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2
0.03382 0.05859 0.02793
21 
Table 15
The final value of IAE obtained from the SNNFOPID algorithm for the
double inverted pendulum in the presence of disturbance.
𝑐𝑎𝑟𝑡 𝑙𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2
0.03395 0.05842 0.02786
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Fig. 33. Four-link robotic manipulator in SIMULINK.
Table 16
The final value of IAE obtained from the SNNFOPID algorithm for the
double inverted pendulum in the presence of noise.
𝑐𝑎𝑟𝑡 𝑙𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2
0.04341 0.06032 0.03455

Table 17
The final value of the control parameters obtained from the SNNFOPID algorithm for
the left wheel of the mobile robot.
𝐾𝑝1 𝐾𝑖1 𝐾𝑑1 𝜇1 𝜆1 𝛼1
27.5958 1.7488 1.7133 0.2026 0.1775 21.7967

Table 18
The final value of the control parameters obtained from the SNNFOPID algorithm for
right wheel of the mobile robot.
𝐾𝑝2 𝐾𝑖2 𝐾𝑑2 𝜇2 𝜆2 𝛼2
28.7968 1.3235 1.3767 0.3459 0.3233 24.0087

Table 19
The final value of IAE obtained from the SNNFOPID
algorithm for the two-wheeled mobile robot in the
case of no disturbance.
𝐼𝐴𝐸𝑟𝑖𝑔ℎ𝑡 𝐼𝐴𝐸𝑟𝑖𝑔ℎ𝑡

0.009 0.008011

Table 20
The final value of IAE obtained from the SNNFOPID
algorithm for the two-wheeled mobile robot in the
presence of disturbance.
𝐼𝐴𝐸𝑙𝑒𝑓 𝑡 𝐼𝐴𝐸𝑟𝑖𝑔ℎ𝑡

0.00902 0.00798

Table 21
The final value of IAE obtained from the SNN-
FOPID algorithm for two-wheeled mobile robot in the
presence of noise.
𝐼𝐴𝐸𝑙𝑒𝑓 𝑡 𝐼𝐴𝐸𝑟𝑖𝑔ℎ𝑡

0.009209 0.008189

As previously discussed, dedicated SNNs are designed for each
degree of freedom to optimize the parameters of the corresponding
robot joint. This results in a total of four SNNs being utilized. Tables 23–
26 present the final control parameter values for each link of the robot,
22 
while Figs. 34–37 illustrate the parameter values of each controller
throughout the learning process.

To delve further into the stability of the control parameters, it is
essential to note that each parameter fluctuates within a restricted
range relative to its corresponding maximum synaptic weight (𝑆𝑚) and
eventually attains a state of relative stability. For a comprehensive
insight into this aspect, Tables 27–30 present the standard deviation
values of each parameter during the final 100 iterations of the learning
process.

Based on the data presented in the tables, it is evident that the
standard deviation of the parameter values in the final 100 iterations
is significantly low. This suggests that the parameter values have
converged to a stable level during these iterations, indicating that the
learning process has reached a halt.

Figs. 38 to 41 provide detailed insights into the Integral Abso-
lute Error (IAE) values of every link within the robot, showcasing
the impact of variations in each control parameter on the system’s
performance.

Based on these figs, it is evident that the learning process is effec-
tively targeted towards minimizing the IAE for each link.

For this robot, we conducted a thorough analysis of the SNNFOPID
performance across three scenarios: no disturbance, presence of distur-
bance, and noise. The input signals for each link, disturbance, and noise
are outlined below: 𝑖𝑛𝑝𝑢𝑡1 = 0.3 sin(t)

𝑖𝑛𝑝𝑢𝑡2 = 0.5 sin(t+𝜋/2)
𝑖𝑛𝑝𝑢𝑡3 = sin(t)
𝑖𝑛𝑝𝑢𝑡4 = 0.5 sin(t+𝜋∕3)
Disturbance = 0.5sin(25t) (N M/s)

−0.01 ≤ 𝑡 ≤ 0.01 𝑟𝑎𝑑
Tables 31–33 provide the IAE values, while Figs. 42, 43, and 44

show trajectory tracking, controller output, and position error under
different cases respectively: no disturbance, presence of disturbance,
and noise.

The data show in all scenarios IAE values remain below 0.07 and
the position error is less than 0.03 radian.

6. SNNFL

In this section, the method of hybrid learning control is generalized
to feedback linearization. It is a nonlinear controller (called computed
torque in robotics), and the control law is shown in Eq. (11):

𝑉 = �̈� + 𝛼 ∗ (𝐾𝑃 ∗ 𝑒(𝑡) +𝐾𝐷 ∗ �̇�(𝑡)), 𝜏 = 𝑀 ∗ 𝑉 + 𝐶(𝑞, �̇�) + 𝐺(𝑞) (11)

where, 𝑉 is the output of the linear controller, r̈ is the second derivative
of the input signal to the system, 𝐾𝑃 is the proportional constant gain,
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Table 22
The value of parameters of four-link robotic manipulator.

Parameter 𝐿𝑖𝑛𝑘1 𝐿𝑖𝑛𝑘2 𝐿𝑖𝑛𝑘3 𝐿𝑖𝑛𝑘4
Mass (kg) 2 0.8 0.6 0.5
𝑔(m∕s2) 9.81 9.81 9.81 9.81
length from the joint to its center of gravity (m) 0.5 0.5 0.5 0.5
Dimensions (m) [0.5 0.15 0.05] [0.5 0.15 0.05] [0.5 0.15 0.05] [0.5 0.15 0.05]
Fig. 34. (𝑎) 𝑘𝑝1, (𝑏) 𝑘𝑖1, (𝑐) 𝑘𝑑1, (𝑑) 𝜆1, (𝑒) 𝜇1, (𝑓 ) 𝛼1.
Fig. 35. (𝑎) 𝑘𝑝2, (𝑏) 𝑘𝑖2, (𝑐) 𝑘𝑑2, (𝑑) 𝜆2, (𝑒) 𝜇2, (𝑓 ) 𝛼2.
Table 23
The final value of the control parameters obtained from the SNNFOPID algorithm for
𝑙𝑖𝑛𝑘1 in the four-link robotic manipulator.
𝐾𝑝1 𝐾𝑖1 𝐾𝑑1 𝜇1 𝜆1 𝛼1
145.7512 1.56 1.1597 0.7791 0.5755 106.4618
23 
Table 24
The final value of the control parameters obtained from the SNNFOPID algorithm for
𝑙𝑖𝑛𝑘2 in the four-link robotic manipulator.
𝐾𝑝2 𝐾𝑖2 𝐾𝑑2 𝜇2 𝜆2 𝛼2
107.2657 2.8126 1.6731 0.8033 0.8123 97.8945
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Fig. 36. (𝑎) 𝑘𝑝3, (𝑏) 𝑘𝑖3, (𝑐) 𝑘𝑑3, (𝑑) 𝜆3, (𝑒) 𝜇3, (𝑓 ) 𝛼3.
Fig. 37. (𝑎) 𝑘𝑝4, (𝑏) 𝑘𝑖4, (𝑐) 𝑘𝑑4, (𝑑) 𝜆4, (𝑒) 𝜇4, (𝑓 ) 𝛼4.
Table 25
The final value of the control parameters obtained from the SNNFOPID algorithm for
𝑙𝑖𝑛𝑘3 in the four-link robotic manipulator.
𝐾𝑝3 𝐾𝑖3 𝐾𝑑3 𝜇3 𝜆3 𝛼3
98.3313 1.9365 2.41625 0.7103 0.4526 88.8666

Table 26
The final value of the control parameters obtained from the SNNFOPID algorithm for
𝑙𝑖𝑛𝑘4 in the four-link robotic manipulator.
𝐾𝑝4 𝐾𝑖4 𝐾𝑑4 𝜇4 𝜆4 𝛼4
98.1995 0.6726 0.5999 0.9056 0.3043 78.380
24 
Table 27
Standard deviation (SD) of the controller’s 𝐿𝑖𝑛𝑘1 control parameters during the final
100 iterations to demonstrate the stability of the parameters.
𝑆𝐷𝐾𝑝1 𝑆𝐷𝐾𝑖1 𝑆𝐷𝐾𝑑1 𝑆𝐷𝜇1 𝑆𝐷𝜆1 𝑆𝐷𝛼1

0.0625 0.0725 0.0019 0.0057 9.8564 10e−4 0.0103

Table 28
Standard deviation (SD) of the controller’s 𝐿𝑖𝑛𝑘2 control parameters during the final
100 iterations to demonstrate the stability of the parameters.
𝑆𝐷𝐾𝑝2 𝑆𝐷𝐾𝑖2 𝑆𝐷𝐾𝑑2 𝑆𝐷𝜇2 𝑆𝐷𝜆2 𝑆𝐷𝛼2

0.0669 0.0185 0.000047891 0.0104 0.00023222 0.0677
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Fig. 38. (a) IAE value of 𝑙𝑖𝑛𝑘1 during changes kp1, (b) IAE value of 𝑙𝑖𝑛𝑘1 during changes ki1, (c) IAE value of 𝑙𝑖𝑛𝑘1 during changes kd1, (d) IAE value of 𝑙𝑖𝑛𝑘1 during changes
𝜆1, (e) IAE value of 𝑙𝑖𝑛𝑘1 during changes 𝜇1, (f) IAE value of 𝑙𝑖𝑛𝑘1 during changes 𝛼1.
Fig. 39. (a) IAE value of 𝑙𝑖𝑛𝑘2 during changes kp2, (b) IAE value of 𝑙𝑖𝑛𝑘2 during changes ki2, (c) IAE value of 𝑙𝑖𝑛𝑘2 during changes kd2, (d) IAE value of 𝑙𝑖𝑛𝑘2 during changes
𝜆2, (e) IAE value of 𝑙𝑖𝑛𝑘2 during changes 𝜇2, (f) IAE value of 𝑙𝑖𝑛𝑘2 during changes 𝛼2.
Table 29
Standard deviation (SD) of the controller’s 𝐿𝑖𝑛𝑘3 control parameters during the final
100 iterations to demonstrate the stability of the parameters.
𝑆𝐷𝐾𝑝3 𝑆𝐷𝐾𝑖3 𝑆𝐷𝐾𝑑3 𝑆𝐷𝜇3 𝑆𝐷𝜆3 𝑆𝐷𝛼3

0.0011 0.0528 0.0258 0.0034 0.0018 0.0429
25 
Table 30
Standard deviation (SD) of the controller’s 𝐿𝑖𝑛𝑘4 control parameters during the final
100 iterations to demonstrate the stability of the parameters.
𝑆𝐷𝐾𝑝4 𝑆𝐷𝐾𝑖4 𝑆𝐷𝐾𝑑4 𝑆𝐷𝜇4 𝑆𝐷𝜆4 𝑆𝐷𝛼4

0.0337 0.0019 0.0000003533 0.00017 0.00064 0.009
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Fig. 40. (a) IAE value of 𝑙𝑖𝑛𝑘3 during changes kp3, (b) IAE value of 𝑙𝑖𝑛𝑘3 during changes ki3, (c) IAE value of 𝑙𝑖𝑛𝑘3 during changes kd3, (d) IAE value of 𝑙𝑖𝑛𝑘3 during changes
𝜆3, (e) IAE value of 𝑙𝑖𝑛𝑘3 during changes 𝜇3, (f) IAE value of 𝑙𝑖𝑛𝑘3 during changes 𝛼3.
Fig. 41. (a) IAE value of 𝑙𝑖𝑛𝑘4 during changes kp4, (b) IAE value of 𝑙𝑖𝑛𝑘4 during changes ki4, (c) IAE value of 𝑙𝑖𝑛𝑘4 during changes kd4, (d) IAE value of 𝑙𝑖𝑛𝑘4 during changes
𝜆4, (e) IAE value of 𝑙𝑖𝑛𝑘4 during changes 𝜇4, (f) IAE value of 𝑙𝑖𝑛𝑘4 during changes 𝛼4.
Table 31
The final value of IAE obtained from the SNNFOPID algorithm for the four-link robotic
manipulator in the case of no disturbance.
𝑙𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2 𝑙𝑖𝑛𝑘3 𝑙𝑖𝑛𝑘4
0.04987 0.03839 0.0229 0.007869
26 
Table 32
The final value of IAE obtained from the SNNFOPID algorithm for the four-link robotic
manipulator in the presence of disturbance.
𝑙𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2 𝑙𝑖𝑛𝑘3 𝑙𝑖𝑛𝑘4
0.0745 0.05925 0.03607 0.01578
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Fig. 42. (a) Trajectory tracking of 𝑙𝑖𝑛𝑘1, (b) Trajectory tracking of 𝑙𝑖𝑛𝑘2, (c) Trajectory tracking of 𝑙𝑖𝑛𝑘3, (d) Trajectory tracking of 𝑙𝑖𝑛𝑘3, (e) Control output of 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘3,
and 𝑙𝑖𝑛𝑘4 (N m), (f) Position error of 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘3, and 𝑙𝑖𝑛𝑘4 in the case of no disturbance.
Table 33
The final value of IAE obtained from the SNNFOPID algorithm for the four-link robotic
manipulator in the presence of noise.
𝑙𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2 𝑙𝑖𝑛𝑘3 𝑙𝑖𝑛𝑘4
0.05462 0.04597 0.03492 0.02492

𝐾𝐷 is the derivative constant gain, e(t) is the error, �̇�(𝑡), 𝜏 is the control
signal, 𝑀 is the inertia matrix.𝐶(𝑞, �̇�) represents the vector of Coriolis
and centrifugal forces, and 𝐺(𝑞) is a vector of gravity torques.

6.1. SNNFL structure

SNNs are used for simultaneous optimization of the parameters of
this controller (𝐾𝑃 , 𝐾𝐷, and 𝛼) when the controller is running on a
robot. 𝛼 is added to speed up the stability of the parameters multiplied
by 𝐾𝑃 and 𝐾𝐷. In the new SNN Feedback Linearization (SNNFL)
method, the sum of IAE1 and IAE2 is evaluated. If the changes in
synaptic weights are in the direction of reducing the sum of IAE1, and
IAE2, then the system will receive dopamine; otherwise, it will receive a
penalty. Fig. 45 shows the structure of Feedback Linearization, and how
it is related to SNNs. With a slight change in the dopamine conditions
compared to the SNNFOPID algorithm, for SNNFL we checked the
condition of the sum of both IAE1 and IAE2 so that if IAE1 + IAE2
reaches a lower value than the previous state, the reward will be
released and dopamine amount will be considered as +1 (𝐷𝐴 = +1),
otherwise the punishment will be released and amount of dopamine
will be considered as −1 (𝐷𝐴 = −1) for the active synapse. Injection
of Dopamine into neurons changes the synaptic weights and it has an
effect on the way of connecting input–output neurons. It results in
changing the parameters IAE1 + IAE2 and then they are checked again
compared to the previous state, and this process continues until IAE1
+ IAE2 reaches the minimum possible value .

6.2. Application of SNNFL on controlling a two-DOF robot

Here, in order to verify the performance of SNNFL, its application in
controlling a two-DOF robot is studied. Fig. 46 shows the value of the
feedback linearization controller parameters during the iteration. After
finishing the learning process, the feedback linearization controller
27 
Table 34
IAE values of 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in presence of disturbance (SNNFL method).

Disturbance (𝑆𝑖𝑛(𝑡)𝑁𝑚) IAE values

𝐿𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2
Disturbance on 𝐿𝑖𝑛𝑘1 0.01348 0.01826
Disturbance on 𝐿𝑖𝑛𝑘2 0.01546 0.02013
Disturbance on both Link 0.01198 0.01497

Table 35
IAE values of 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in the presence of random noise (SNNFL method).

Random noise (−0.01 ≤ noise ≤ 0.01 rad) IAE values

𝐿𝑖𝑛𝑘1 𝑙𝑖𝑛𝑘2
Random noise on 𝐿𝑖𝑛𝑘1 0.02266 0.01389
Random noise on 𝐿𝑖𝑛𝑘2 0.001148 0.02233
Random noise on both Link 0.02265 0.02233

parameters are obtained. In Fig. 47, IAE1 and IAE2 values are shown.
They gradually and quite regularly tend to the lowest possible.

As is seen in Fig. 46, the parameters reach their stable values
after about 1200 iterations. The final parameters of feedback lin-
earization 𝐾𝑃 , 𝐾𝐷, and 𝛼 obtained from the reinforcement learning
for controlling the two-DOF robot are 11.7336, 9.6222, and 8.5059,
respectively.

According to Fig. 46, 𝛼, 𝐾𝑃 , and 𝐾𝐷 parameters are stable after
1200 epochs, and after that, they fluctuate in a very limited range.
To Study the performance of the new controller in the presence of
disturbance and noise, two case studies were considered; 𝑆𝑖𝑛(𝑡) function
for disturbance and −0.01 ≤ 𝑛𝑜𝑖𝑠𝑒 ≤ 0.01 (𝑟𝑎𝑑) for random noise were
used. Figs. 48 and 49 show the results of considering disturbance and
random noise in position error and control output values, respectively.
The values of IAE1 and IAE2, in the presence of disturbance, are shown
in Table 34, and their value in the presence of random noise are shown
in Table 35.

The results in Fig. 49 show the range of the torque for 𝑙𝑖𝑛𝑘1 and
𝑙𝑖𝑛𝑘2 is (−10,40) 𝑁𝑚 and (−5,20) 𝑁𝑚, respectively and the error value
for both links is (−0.01,0.01) 𝑟𝑎𝑑 in presence of disturbance.

The results in Fig. 49 indicate that the torque range for 𝑙𝑖𝑛𝑘1 and
for 𝑙𝑖𝑛𝑘2 is (−10, 40) 𝑁𝑚 and (−5,20) 𝑁𝑚, respectively, and the error
value for both links is (−0.02,0.02) 𝑟𝑎𝑑 in presence of random noise.
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Fig. 43. (a) Trajectory tracking of 𝑙𝑖𝑛𝑘1, (b) Trajectory tracking of 𝑙𝑖𝑛𝑘2, (c) Trajectory tracking of 𝑙𝑖𝑛𝑘3, (d) Trajectory tracking of 𝑙𝑖𝑛𝑘3, (e) Control output of 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘3,
and 𝑙𝑖𝑛𝑘4 (N m), (f) Position error of 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘3, and 𝑙𝑖𝑛𝑘4 in the presence of disturbance.
Fig. 44. (a) Trajectory tracking of 𝑙𝑖𝑛𝑘1, (b) Trajectory tracking of 𝑙𝑖𝑛𝑘2, (c) Trajectory tracking of 𝑙𝑖𝑛𝑘3, (d) Trajectory tracking of 𝑙𝑖𝑛𝑘3, (e) Control output of 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘3,
and 𝑙𝑖𝑛𝑘4 (N m), (f) Position error of 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘1, 𝑙𝑖𝑛𝑘3, and 𝑙𝑖𝑛𝑘4 in the presence of noise.
Tables 34 and 35 show the value of IAE for the two-link robot is
less than 0.03 in any case of applying disturbance and random noise.

7. Convergence time of the robots

The SNNFOPID code execution time (on MATLAB software pack-
age) for each robot in each iteration and the total run time to reach
parameter convergence is shown in Table 36 for an Asus Core i5 system.

Although the complexity of SNNs is higher than the complexity
of ANNs, their computational costs in practice are lower because of
communication through spikes. Based on the information in Table 36, it
is evident that higher control parameter values and a greater number of
degrees of freedom take longer to converge and lead to a more complex
28 
system. However, if we utilize a more robust system to run the code in
MATLAB, we can achieve parameter convergence much faster.

8. Discussion

Parameter adjustment of controllers has been widespread in recent
years. In the new hybrid learning-control system, at first, a method
of adjusting any function through SNNs is presented and then, its
application in the parameter adjustment of two nonlinear controllers
(FOPID and feedback linearization) is studied. This method is men-
tioned as a critic–actor system, in which the reinforcement learning
in the SNNs context is the critic and the controller is the actor sys-
tem. These controllers are widely used due to their high efficiency in



V. Azimirad et al. Neural Networks 180 (2024) 106656 
Fig. 45. The structure of SNNFL.
Fig. 46. The stability of SNNFL controller parameters.
Fig. 47. (a) IAE value versus iterations for 𝐿𝑖𝑛𝑘1 (b) IAE value versus iterations for 𝐿𝑖𝑛𝑘2 in SNNFL method.
Table 36
Convergence time of control parameters for each robot during learning.

Robot Time for each iteration(s) Time for convergence(hours)

Two-link robot manipulator with SNNFOPID 1.91 19.85656
Two-link robot manipulator with SNNFL 0.48 0.45828
Double inverted pendulum with SNNFOPID 1.8768 3.455
Mobile robot with SNNFOPID 1.86 3.71948
Four-link robotic manipulator with SNNFOPID 2.95 16.6789
29 
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Fig. 48. (a) Trajectory tracking, (b) Control outputs, (c) Position error of 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in the presence of disturbance for SNNFL method.
Fig. 49. (a) Trajectory tracking, (b) Control outputs, (c) Position error of 𝐿𝑖𝑛𝑘1 and 𝐿𝑖𝑛𝑘2 in the presence of random noise in the third case of Table 35 for SNNFL method.
various engineering branches, especially in robotics. Some optimization
methods are used to adjust these parameters. SNNs have a bright future
due to their simplicity in structure, high energy efficiency, and high
processing speed. Reinforcement learning and the existence of the time
dimension are the strengths that have made these networks practical in
dynamic systems like robots. In addition, SNN-based hardware could
be used for its simplicity, high speed and accuracy, and energy sav-
ing. It also contributes significantly to building fast and energy-saving
hardware based on a combination of neural networks, especially RNN
and LSTM neural networks (which are dynamic and more complex
networks) with SNNs. Furthermore, this technique offers the advantage
of enabling continuous control of robots through the augmentation
of neuron count. Additionally, the combination of SNNFOPID and a
multi-agent system allows for the collaborative control of multiple
robots.

9. Conclusion

In this study, we presented a new algorithm for hybrid learning
control systems by reinforcement in a spiking neural network platform
based on the Izhkevich model of a single neuron. For this purpose,
the controller was assumed to be a nonlinear function and then its
parameters were adjusted by the new proposed reinforcement learn-
ing algorithm which is more energy efficient. The methodology was
presented and to prove the applicability of the new method, it was
30 
implemented to two nonlinear control methods named FOPID and
feedback linearization. Results showed that the algorithm can be im-
plemented on any nonlinear controller because we use the function
of the controller and convert it into a function in the SNN context.
Some case studies were designed, and the performance of the pro-
posed algorithm was validated and compared with another similar
FOPID method. The results showed that SNNFOPID performs better
against disturbances, friction, and robot payload changes. We showed
final position error values of link1 and Link2 were less than 0.007
rad and 0.005 rad respectively. The only disadvantage of SNNFOPID
compared with Richa Sharma and M. (2015) is the wider range of
control torque applied to the robot links. Our study involved examining
the performance of the SNN FOPID in controlling the double inverted
pendulum. The results showed an impressive error position of less than
0.03 rad in four cases. We conducted a test on SNN FOPID using a
4-degree-of-freedom manipulator, and the error in each joint of the
robot was less than 0.03 rad. We also demonstrated the remarkable
efficiency and performance of SNNFOPID in controlling the velocities
and positions of the mobile robot, resulting in an error of fewer than
0.01 m. Additionally, we used the algorithm to optimize the parameters
of the feedback linearization controller, and the results showed that the
error value was close to 0.02 rad when applying noise and disturbance.
In the future, we plan to extend our work to more complex controllers
and apply it to robotic systems using SNN hardware.
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Fig. 50. Mathematical model of a two-link planar rigid robotic manipulator with payload.
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Appendix A

The dynamic model of a two-link manipulator is as follows (Fig. 50):

𝜏 = 𝑀(𝑞) + 𝐶(𝑞, �̇�) + 𝐺(𝑞) + 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(�̇�) (12)

𝜏 =
[

𝜏1
𝜏2

]

=
[

𝑀11 𝑀12
𝑀21 𝑀22

]

+
[

−𝑐�̇�2 −𝑐�̇�1 − 𝑐�̇�2
−𝑐�̇�1 0

]

+
[

𝑉1�̇�1
]

+
[

𝑑1𝑠𝑔𝑛(�̇�1)
]

+
[

𝐺1
]

(13)

𝑉2�̇�2 𝑑2𝑠𝑔𝑛(�̇�2) 𝐺2
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𝑀(𝑞) =
[

𝑀11 𝑀12
𝑀21 𝑀22

]

(14)

𝑀11 = 𝐼1 + 𝐼2 + 𝑚1𝐿
2
𝐶1 +𝑀2(𝐿12𝐿2

𝐶1 + 2𝐿1𝐿𝐶2𝐶𝑂𝑆(𝜃2))

+ 𝑚𝑝(𝐿2
1 + 𝐿2

2 + 2𝐿1𝐿2𝐶𝑂𝑆(𝜃2)) (15)

𝑀12 = 𝐼2 + 𝑚2(𝐿2
𝐶2 + 𝐿1𝐿𝐶2𝐶𝑂𝑆(𝜃2)) + 𝑚𝑝(𝐿2

2 + 𝐿1𝐿2𝐶𝑂𝑆(𝜃2)) (16)

𝑀12 = 𝑀21 (17)

𝑀22 = 𝐼2 + 𝑚2𝐿
2
𝐶2 + 𝑚𝑝𝐿

2
2 (18)

𝐶(𝑞, �̇�) =
[

−𝑐�̇�2 −𝑐�̇�1 − 𝑐�̇�2
−𝑐�̇�1 0

]

(19)

𝑐 = 𝑚2𝐿1𝐿𝐶2𝑆𝑖𝑛(𝜃2) (20)

𝐺(𝑞) =

[

𝐺1

𝐺2

]

=

[

(𝑚1 + 𝑚2)𝐿𝐶1𝑔𝐶𝑂𝑆𝜃1 + 𝑚2𝑔(𝐿𝐶2𝐶𝑂𝑆(𝜃1 + 𝜃2) + 𝐿1𝐶𝑂𝑆(𝜃1))
𝑚2𝐿𝑐2𝑔𝐶𝑂𝑆(𝜃1 + 𝜃2)

]

(21)

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐹𝑣 + 𝐹𝐷 (22)

𝐹𝑣 =
[

𝑉1�̇�1
𝑉2�̇�2

]

&𝐹𝐷 =
[

𝑑1𝑠𝑔𝑛(�̇�1)
𝑑2𝑠𝑔𝑛(�̇�2)

]

(23)

𝑞(𝑞) =
[

𝜃1
𝜃2

]

(24)

𝐿1, and 𝐿2 are the length of the 𝐿𝑖𝑛𝑘1, and 𝐿𝑖𝑛𝑘2; 𝐿𝑐1, and 𝐿𝑐2
indicate the distance from joint to center of gravity 𝐿𝑖𝑛𝑘1, and 𝐿𝑖𝑛𝑘2;
𝑚1, and 𝑚2 present mass of 𝐿𝑖𝑛𝑘1, and 𝐿𝑖𝑛𝑘2; 𝑣1, and 𝑣2 are viscous
coefficient friction.𝑑1, and 𝑑2 express dynamics coefficient friction of
𝐿𝑖𝑛𝑘 , and 𝐿𝑖𝑛𝑘 ; 𝜃 , and 𝜃 are the position of 𝐿𝑖𝑛𝑘 , and 𝐿𝑖𝑛𝑘 ; 𝜏 ,
1 2 1 2 1 2 1
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and 𝜏2 are the torques given by the control system to joints 1 and 2,
espectively. 𝑚𝑝 is the mass of payload, and value is 0.5 kg (see Fig. 50).
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