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Abstract: Pulmonary arterial hypertension (PAH) is a progressive disorder caused by the narrowing
of small blood vessels in the lungs, which, in the absence of therapies, leads to right heart failure and
premature death. No cure for this devastating disorder is known. Current management therapies
aim to improve symptoms, and hence, there is a need to identify novel therapeutic interventions. The
major objectives of this review are to critically evaluate current treatment strategies and highlight the
challenges and prospects of established drugs and natural products for the resolution of PAH.

Keywords: pulmonary arterial hypertension; repurposing drugs; natural products; synthetic compounds

1. Introduction

A serious medical condition known as pulmonary arterial hypertension (PAH) is
characterized by a steady increase in pulmonary vascular resistance and a progressive
deterioration of the small pulmonary arteries that may eventually lead to death. A mean
pulmonary arterial pressure of at least 25 mmHg at rest or greater than 30 mmHg during
exercise and/or a pulmonary vascular resistance of at least 3 Wood units is defined as
PAH [1,2]. The incidence of PAH is approximately 1% in the general population, but it
can reach up to 10% in those over 65 [3]. The three major medications used to treat PAH
are endothelin receptor inhibitors, prostacyclin analogs, and phosphodiesterase-5 (PDE5).
These medications’ primary aim is to change the proportion of pulmonary circulation
vasodilation to constriction. Furthermore, their ability to enhance clinical outcomes is
limited, and severe adverse effects can be caused [4].

The process of finding novel medications and obtaining approval for sale typically
takes several phases throughout conventional pharmaceutical discovery and development.
Hence, developing novel approaches to shorten the drug discovery process is essential.
The process of discovering a new drug is known to take ten or even fifteen years of study
and significant financial resources [5]. Because of these limitations, “drug repurposing”
has emerged as a substitute strategy for finding de novo drug molecules to accelerate the
drug development process. This involves looking for new agents for medications that are
currently licensed [6].

This study provides an overview of the current medications used in the treatment of
PAH and highlights the prospects and challenges of FDA-approved natural and synthetic
drugs that may have potential therapeutic benefits for PAH.

2. Current Medications in PAH and Their Limitations

There are currently three main targets for PAH drugs: the endothelin, prostacyclin,
and nitric oxide/cGMP pathways (Figure 1). However, the existing drugs associated with
these pathways are unable to provide a radical improvement for the treatment of PAH and
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instead resolve the symptomatic problems associated with PAH. Additionally, quality of
life can be negatively impacted by the severe side effects of these medications [7].
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Figure 1. Current medications used in the treatment of PAH. These medications aim to target the
endothelin receptor, prostacyclin, and nitric oxide/cGMP-mediated pathways. Blunt red arrows (⊥)
indicate inhibition, while sharp green arrows (→) indicate stimulation.

2.1. Endothelin Receptor Blockers (ERBs)

Vascular endothelial cells mainly lead to the production and secretion of endothelium
(ET-1) in the vessels, which causes a vasoconstrictive effect on pulmonary artery smooth
muscle cells. In addition to its vasoconstrictive effect, ET-1 increases smooth muscle
cell proliferation. Therefore, ET-1, with antihypertensive potential, constitutes a new
therapeutic strategy for the treatment of PAH [8].

2.1.1. Bosentan

Bosentan (Figure 2) is an endothelin receptor antagonist used in the treatment of PAH.
Bosentan is a specific and competitive antagonist for both type A and type B endothelin-1
receptors [9,10].The oral administration of bosentan (Tracleer® Actelion Pharmaceuticals,
Titusville, NJ, USA) was approved by the FDA in 2001 for the treatment of PAH [11].
Placebo-controlled clinical trials investigating pulmonary hypertension have shown that
orally administered bosentan improves exercise ability and improves clinical findings in
patients with WHO functional class III or IV symptoms, including limitations of physical
activity and heart failure at rest [12–14].
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Birth defects can potentially be caused by bosentan. It also causes hepatotoxic side
effects, including abnormal liver function and a high rise in hepatic amino transaminase
levels. As a result, bosentan is subject to risk evaluation and mitigation strategies (REMSs)
in the US [15].

2.1.2. Ambrisentan

Ambrisentan (Figure 3) is a highly selective and potent endothelin-A receptor an-
tagonist, unlike bosentan, which is a competitive antagonist of both type A and type B
endothelin-1 (ET-1) receptors [16,17]. Ambrisentan (Letaris®, Gilead Inc., Foster City, CA,
USA) was approved by the FDA in 2007 for the indication of PAH [11,18]. Treatment with
ambrisentan was associated with a significant improvement in exercise capacity and a
significant delay in the progression to clinical worsening in randomized, placebo-controlled
clinical trials [16,17,19].
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Figure 3. The molecular structure of ambrisentan.

Ambrisentan is covered by the REMS program in women of childbearing age because
it has been identified as having the potential to cause serious birth defects [20].

2.2. Phosphodiesterase-5 (PDE5) Inhibitors

The pathogenesis of PAH is characterized by endothelial cell dysfunction. One of the
causes of endothelial dysfunction is based on a decreased level of vasodilators, such as
prostacyclin and nitric oxide. Phosphodiesterase type 5 (PDE-5) plays a role in the process
of inactivating cyclic guanosine monophosphate, the second messenger of the nitric oxide
pathway. The level of PDE-5 increases with PAH progression. Thus, PDE-5 inhibitors have
introduced a therapeutic approach in the treatment of PAH by increasing the levels of
vasodilators, such as nitric oxide [21].

2.2.1. Sildenafil

Sildenafil (Figure 4) is an oral and intravenous selective phosphodiesterase type 5
(PDE5) inhibitor. The selective PDE5 inhibitor promotes the level of cGMP, which, in turn,
induces nitric oxide-mediated vasodilation [22]. In patients with idiopathic PAH or PAH
with congenital systemic–pulmonary shunts, sildenafil has been shown in clinical trials to
improve exercise capacity. Sildenafil (Revatio®, Pfizer Inc., New York, NY) was approved
by the FDA in 2005 for the treatment of PAH [11,23].

There have been reports that the combination of sildenafil with other drugs, such as
nitrates, or the use of sildenafil over a specific dose may cause a sudden and dramatic
reduction in systolic blood pressure levels. There have also been studies associating non-
arteritic anterior ischaemic optic neuropathy with sildenafil use [24,25].
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2.2.2. Tadalafil

Tadalafil (Adcirca®, Eli Lilly Nederland B.V., BJ Utrecht, Netherlands) (Figure 5) is an
oral selective phosphodiesterase type 5 (PDE5) inhibitor that was approved by the FDA in
2009 for PAH treatment. Patients treated with tadalafil showed improved exercise capacity
and reduced clinical worsening compared with a placebo in clinical trials of PAH [11,26,27].
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Tadalafil treatment may cause side effects such as headache, flushing, nasopharyngitis
(including stuffy or runny nose and blocked sinuses), nausea, dyspepsia, stomach pain,
myalgia, back pain, and pain in the extremities. Patients who have had an acute myocardial
infarction within the last 3 months or who have severe hypotension should not be treated
with tadalafil. In addition, like sildenafil, tadalafil has been associated with non-arteritic
anterior ischaemic optic neuropathy (NAION) and is contraindicated in patients with
NAION-related visual loss [28].

2.3. Prostacyclin Analogs

The level of prostacyclin produced in vascular endothelial cells is decreased in PAH
patients. Prostacyclin also has a potent vasodilatory effect and reduces platelet aggregation,
inflammation, and vascular smooth muscle proliferation. Therefore, prostacyclin analogs
that increase prostacyclin synthesis are one of the important strategies used in the treatment
of PAH [29].

2.3.1. Epoprostenol

Epoprostenol (Figure 6) is the pharmaceutical form of a natural prostaglandin, prosta-
cyclin. Epoprostenol is a vasodilator and inhibits platelet aggregation. It is used for
the long-term management of PAH. Clinical data have shown that epoprostenol can im-
prove PAH symptoms, including the limitation of physical activity and heart failure at
rest. A significant increase in long-term survival in PAH patients has been reported with
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epoprostenol [30]. Epoprostenol (Flolan®, GlaxoSmithKline, Philadelphia, PA, US) was
approved by the FDA in 1995 [11].
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Figure 6. The molecular structure of epoprostenol.

Epoprostenol treatment is associated with common side effects. These include diarrhea,
headache, flushing, jaw pain, nausea, vomiting, leg and foot pain [31]. Epoprostenol may
also cause a rash, impotence, and decreased appetite. Epoprostenol is available for use by
intravenous infusion. The use of intravenous infusion and its short half-life causes side
effects such as infection, that is, local infection of the central venous line, bacteremia, and
sepsis. Its administration by an intravenous route and its effects are non-specific, resulting
in peripheral vasodilation. This situation is directly related to systemic hypotension and
coronary steal adverse effects. In addition, the use of intravenous administration in chronic
disease has an impact on the quality of life of patients with PAH [32].

2.3.2. Iloprost

Iloprost (Figure 7) is an inhaled prostaglandin used in the treatment of PAH. Iloprost
is thought to act in a similar way to epoprostenol. Clinical studies have shown that the use
of iloprost significantly improves acute hemodynamic response, cardiac output, pulmonary
artery blood pressure, and arterial oxygen saturation in PAH patients compared to the
baseline [33,34]. Iloprost (Ventavis®, Actelion Pharmaceuticals, Titusville, NJ, USA) was
approved by the FDA in 2002 [11].
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The most commonly reported adverse effects associated with iloprost treatment are
syncope, increased cough, flushing, jaw pain, headache, dizziness, influenza-like syndrome,
peripheral edema, hypotension, nausea, and diarrhea [35].

2.4. Prostacyclin IP Receptor Agonists
Selexipag

Selexipag (Figure 8) is an oral selective prostacyclin receptor agonist for the treatment
of PAH. A Phase II trial demonstrated a reduction in pulmonary vascular resistance in PAH
patients after 17 weeks of treatment. Selexipag was shown to improve disease progression
and reduce the need for hospitalization in a Phase III study. Selexipag was approved by the
FDA in 2015 [36,37].
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Consistent with other prostanoid medications, selexipag produces predictable (Table 1),
dose-dependent side effects such as headache, flushing, nausea, vomiting, and muscu-
loskeletal discomfort [36].

Table 1. Summary of the current medications used in PAH together with their mode of action and
side effects.

Name of the Drug Mode of Action Side Effect References

Bosentan Endothelin receptor blockers Birth defects, abnormal liver function, and
increasing effects of hepatic amino transaminase [15]

Ambrisentan Endothelin receptor blockers Birth defects [20]

Sildenafil PDE5 inhibitors Reduction in systolic blood pressure and ischemic
optic neuropathy [17,24]

Tadalafil PDE5 inhibitors Headache, flushing, nasopharyngitis, and
NAION-related visual loss [28]

Epoprostenol Prostacyclin analogs
Diarrhea, headache, flushing jaw pain, vomiting, leg

and foot pain, decreasing appetite, and coronary
steal side effects

[32]

Iloprost Prostacyclin analogs
Cough, flushing, jaw pain, headache, dizziness,

influenza-like syndrome, peripheral edema,
hypotension, nausea, and diarrhea

[35]

Selexipag Prostacyclin IP receptor agonists Headache, flushing, nausea, vomiting, and
musculoskeletal discomfort [36]
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3. The Importance of Repurposing Drugs in PAH

The exploration of new indications for old drugs through drug repurposing results
in a reduction in the time-dependent high costs and future potential risks of compounds
compared to traditional drug discovery initiatives. The drug repurposing strategy signifi-
cantly reduces failure rates (45%) in drug development associated with safety or toxicity
issues. This strategy also leads to a reduction in the average drug development time of up
to 5–7 years. In addition, drug repurposing has the potential to make drugs with a known
safety profile directly available to new patient populations [38]. Therefore, repurposing
“old” medications is becoming an attractive approach to finding new therapies [7]. This
study examined FDA-approved repurposed drugs, including natural, semisynthetic, and
synthetic compounds with therapeutic potential for PAH.

4. Natural or Natural-Derived Drugs in PAH Treatment

Currently used drugs for the treatment of PAH remain inadequate for radical im-
provement. In recent years, products of natural origin have shown promising therapeutic
potential in the treatment of cardiovascular diseases and have led researchers to investigate
these natural sources in the treatment of PAH [39].

4.1. Capsaicin

The natural compound, capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) (Figure 9),
derived from the fruit of the capsicum plant, has an alkaloid structure [40]. Christian
Friedrich Bucholz isolated it in its impure state for the first time. John Clough Thresh
obtained it in crystalline form in 1876, and E. K. Nelson clarified its structure in 1919 [41].
Capsaicin binds to the vanilloid receptor subtype 1 ion channel receptor in tissue, which
causes a burning sensation. In November 2009, the FDA approved capsaicin (Qutenza®,
Averitas Pharma, Morristown, NJ, USA) for the treatment of post-therapeutic neuralgia
together with neuropathic pain [42].
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Treatment with capsaicin was found to reduce the values of right ventricular systolic
pressure and the rate of right ventricular/left ventricle plus septum, right ventricular/body
weight, and lung weight/body weight in rats with monocrotaline-induced PAH, thereby
alleviating PAH-related symptoms. Furthermore, capsaicin treatment downregulated the
p38 (p-p38) MAPK pathway, resulting in alleviated inflammation in PAH [43].
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4.1.1. Colchicine

Colchicum autumnale is the first source of the naturally occurring alkaloid colchicine [44].
Colchicine (Figure 10) was approved by the FDA in 2009 for the prevention of gouty arthritis
as well as the treatment of acute gout and familial Mediterranean fever [45].

BioChem 2024, 4, FOR PEER REVIEW 9 

 

 

 

Figure 10. The molecular structure of colchicine. 

Right ventricular-specific microtubule derangement, caused by monocrotaline-in-
duced PAH, is characterized by a decrease in junctophilin-2 and t-tubule disarray. Colchi-
cine has been proven to enhance junctophilin-2 expression, reduce microtubule density, 
and improve t-tubule architecture and right ventricular function. It was demonstrated that 
adverse pulmonary vascular remodeling in monocrotaline-induced PAH is also reduced 
by colchicine [46]. In MCT-induced PAH, colchicine or the combined therapy of colchi-
cine–nicorandil led to a decrease in the protein expressions of markers of right ventricle 
damage and an increase in biomarkers for the preservation of right ventricular function 
[47]. 

4.1.2. Paclitaxel 
Paclitaxel (Figure 11), also referred to as taxol, is one of the most popular medicinal 

drug molecules used for cancer treatment. Paclitaxel was first obtained from the bark of 
Taxus brevifolia (Pacific yew tree) in 1963 [48].Through phase I, II, and III clinical trials con-
ducted between 1977 and 1992, it was established that taxol significantly reduced the risk 
of a varied range of cancer types. FDA authorized taxol in 1992 for the management of 
advanced ovarian cancer. Taxol was also approved to treat metastatic cancer in 1994 [49]. 

Figure 10. The molecular structure of colchicine.

Right ventricular-specific microtubule derangement, caused by monocrotaline-induced
PAH, is characterized by a decrease in junctophilin-2 and t-tubule disarray. Colchicine
has been proven to enhance junctophilin-2 expression, reduce microtubule density, and
improve t-tubule architecture and right ventricular function. It was demonstrated that
adverse pulmonary vascular remodeling in monocrotaline-induced PAH is also reduced by
colchicine [46]. In MCT-induced PAH, colchicine or the combined therapy of colchicine–
nicorandil led to a decrease in the protein expressions of markers of right ventricle damage
and an increase in biomarkers for the preservation of right ventricular function [47].

4.1.2. Paclitaxel

Paclitaxel (Figure 11), also referred to as taxol, is one of the most popular medicinal
drug molecules used for cancer treatment. Paclitaxel was first obtained from the bark
of Taxus brevifolia (Pacific yew tree) in 1963 [48].Through phase I, II, and III clinical trials
conducted between 1977 and 1992, it was established that taxol significantly reduced the
risk of a varied range of cancer types. FDA authorized taxol in 1992 for the management of
advanced ovarian cancer. Taxol was also approved to treat metastatic cancer in 1994 [49].

The activation of autophagy has been implicated in the pathogenesis of PAH. Au-
tophagy is directly associated with forkhead box protein O1 (FoxO1). In MCT-PAH animals,
autophagy was activated, and FoxO1 expression increased. Paclitaxel treatment has been
proven to reduce FoxO1 phosphorylation, suppress autophagy, and also to reduce elevated
right ventricular systolic pressure, right ventricular hypertrophy index, and the percentage
of medial wall thickness in MCT-induced PAH rats. In conclusion, paclitaxel inhibits pul-
monary vascular remodeling through FoxO1-mediated autophagy suppression. These data
suggest that paclitaxel may be a novel therapeutic agent for the prevention and treatment
of PAH [50].



BioChem 2024, 4 244

BioChem 2024, 4, FOR PEER REVIEW 10 

 

 

 

Figure 11. The molecular structure of paclitaxel. 

The activation of autophagy has been implicated in the pathogenesis of PAH. Au-
tophagy is directly associated with forkhead box protein O1 (FoxO1). In MCT-PAH ani-
mals, autophagy was activated, and FoxO1 expression increased. Paclitaxel treatment has 
been proven to reduce FoxO1 phosphorylation, suppress autophagy, and also to reduce 
elevated right ventricular systolic pressure, right ventricular hypertrophy index, and the 
percentage of medial wall thickness in MCT-induced PAH rats. In conclusion, paclitaxel 
inhibits pulmonary vascular remodeling through FoxO1-mediated autophagy suppres-
sion. These data suggest that paclitaxel may be a novel therapeutic agent for the preven-
tion and treatment of PAH [50]. 

4.1.3. Rapamycin 
Triene macrolide rapamycin (Figure 12) is derived from several actinomycetes, such 

as Actinoplanes sp., Streptomyces hygroscopicus, and Streptomyces iranensis. Studies have 
shown that it has the potency to prevent kidney transplant rejection as an independent 
remedy or in combination with cyclosporine, giving rise to its therapeutic relevance. In 
1999, the FDA approved it as an oral immunosuppressant for organ transplantation [51]. 

 

Figure 12. The molecular structure of rapamycin. 

Figure 11. The molecular structure of paclitaxel.

4.1.3. Rapamycin

Triene macrolide rapamycin (Figure 12) is derived from several actinomycetes, such as
Actinoplanes sp., Streptomyces hygroscopicus, and Streptomyces iranensis. Studies have shown
that it has the potency to prevent kidney transplant rejection as an independent remedy or
in combination with cyclosporine, giving rise to its therapeutic relevance. In 1999, the FDA
approved it as an oral immunosuppressant for organ transplantation [51].

BioChem 2024, 4, FOR PEER REVIEW 10 

 

 

 

Figure 11. The molecular structure of paclitaxel. 

The activation of autophagy has been implicated in the pathogenesis of PAH. Au-
tophagy is directly associated with forkhead box protein O1 (FoxO1). In MCT-PAH ani-
mals, autophagy was activated, and FoxO1 expression increased. Paclitaxel treatment has 
been proven to reduce FoxO1 phosphorylation, suppress autophagy, and also to reduce 
elevated right ventricular systolic pressure, right ventricular hypertrophy index, and the 
percentage of medial wall thickness in MCT-induced PAH rats. In conclusion, paclitaxel 
inhibits pulmonary vascular remodeling through FoxO1-mediated autophagy suppres-
sion. These data suggest that paclitaxel may be a novel therapeutic agent for the preven-
tion and treatment of PAH [50]. 

4.1.3. Rapamycin 
Triene macrolide rapamycin (Figure 12) is derived from several actinomycetes, such 

as Actinoplanes sp., Streptomyces hygroscopicus, and Streptomyces iranensis. Studies have 
shown that it has the potency to prevent kidney transplant rejection as an independent 
remedy or in combination with cyclosporine, giving rise to its therapeutic relevance. In 
1999, the FDA approved it as an oral immunosuppressant for organ transplantation [51]. 

 

Figure 12. The molecular structure of rapamycin. 
Figure 12. The molecular structure of rapamycin.

Rapamycin, in both free and nanoparticle forms, has been shown to cure PAH devel-
opment, PAH-induced pulmonary arteriole thickness, and ventricular remodeling via its
efficacy on the mTOR pathway [52].

4.1.4. Tacrolimus

A macrolide immunosuppressant called tacrolimus, which is a calcineurin inhibitor,
was isolated in Streptomyces tsukubaensis. Tacrolimus was approved by the FDA in 1993
for use in liver and kidney transplants after it was proven to be an effective first-line
immunosuppressive agent [51].

Tacrolimus increases the production of the inhibitor of the differentiation-1 (id-1) gene
by blocking calcineurin and sequestering FK-binding protein 12, which, in turn, stimulates
SMAD1/5 and MAPK signaling and further promotes BMPRII-mediated signaling [7]. A
randomized placebo-controlled trial (Phase IIb) revealed that tacrolimus improved 6 min
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walking distances (Table 2), serological and echocardiographic markers, and peripheral
blood mononuclear cells, with reduced BMPR2 expression associated with PAH [53].

Table 2. The summary of the natural drugs that can be repurposed in PAH together with their mode
of action and developmental stages.

Name of the Drug Mode of Action
Developmental Stage (e.g.,
Animal Models, Clinical

Trials, etc.)
References

Capsaicin Inhibition of p38 (p-p38)
MAPK pathway

Monocrotaline-induced
PAH in rats [43]

Colchicine Improvement of
junctophilin-2 expression

Monocrotaline-induced
PAH in rats [46]

Paclitaxel Reduction in FoxO1
phosphorylation

Monocrotaline-induced
PAH in rats [50]

Rapamycin Inhibitory effects on
mTOR pathway

Monocrotaline-induced
PAH in rats [52]

Tacrolimus Reduction in BMPR2
expression Phase IIb trial [53]

5. Synthetic Drugs in PAH Treatment

In addition to natural sources, research on the use of synthetic drugs in the treatment
of PAH is ongoing. Anakinra and etanercept are among these synthetic drugs [11].

5.1. Anakinra

Anakinra (Figure 13) is an IL-1 receptor antagonist (IL-1Ra) and causes a reduction
in inflammation by blocking the activity of the receptors for both IL-1a and IL-1b [54].
Anakinra was approved by the FDA for rheumatoid arthritis treatments in 2001 [55].
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Figure 13. The molecular structure of anakinra.

A Phase IB/II pilot study evidenced that anakinra provides achievable and safe
treatment for PAH patients with right ventricular failure through the blocking of IL-1 [56].

5.2. Etanercept

Etanercept (Figure 14) is a competitive inhibitor of TNF-α, a pro-inflammatory cy-
tokine that plays a major role in psoriasis and psoriatic arthritis. The first FDA-approved
medication for psoriatic arthritis was etanercept. Etanercept is also indicated for the treat-
ment of adolescent polyarticular-course rheumatoid arthritis and rheumatoid arthritis [57].
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Etanercept has been shown to prevent and reverse MCT-induced PAH by reducing
inflammation through its TNF-a antagonist effect [59].

5.3. Rosiglitazone

Rosiglitazone (Figure 15) is a thiazolidinedione glucose-lowering agent that regulates
glucose control by improving hepatic and peripheral insulin sensitivity and may also
contribute to the preservation of pancreatic β-cell function [60]. The FDA approved rosigli-
tazone in May 1999 for use either alone or with metformin or sulphonylurea, along with diet
and exercise, to improve glycaemic control in patients with type 2 diabetes mellitus [61].
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Figure 15. Molecular structure of rosiglitazone.

Rosiglitazone has been proven to regulate the expression of the key molecular markers
lactate dehydrogenase and alkaline phosphatase in human PAH-affected endothelial cells
and PASMC, which is implicated in the progression of PAH. Rosiglitazone has also been
evidenced to cause dose-dependent inhibition in the proliferation of PASMCs [62]. Thus,
rosiglitazone may have the potential to be evaluated as a drug to be repurposed in PAH
treatment. However, the FDA placed restrictions on the use of rosiglitazone in September
2010. Even if the limitations were lifted once more in November 2013, as the FDA Drug
Safety Communication that was released states, “some scientific uncertainty about the car-
diovascular safety of rosiglitazone medicines still remains” [63]. Therefore, when assessing
rosiglitazone as a repurposing medication, potential cardiovascular side effects need to
be considered.

5.4. Ranolazine

The FDA approved ranolazine (Figure 16) as a medication in 2006 for the treatment of
chronic angina pectoris in patients who do not respond adequately to other anti-anginal
agents, including amlodipine, β-adrenoceptor antagonists, or nitrates. It acts through
a variety of pharmacological processes, one of which is probably the decreased oxygen
consumption caused by the suppression of the late inward sodium current [64].
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Figure 16. Molecular structure of ranolazine.

MCT-induced PAH rats treated with ranolazine showed improved plasma brain
natriuretic peptide (BNP) levels, RV hypertrophy, and RV pressure, as well as reduced
intracellular calcium overload. In addition, ranolazine reduced doxorubicin-induced
cardiotoxicity in animal models by scavenging oxidative stress [65].

5.5. Anastrozole

The aromatase inhibitor anastrozozole (Figure 17) was approved by the FDA and
several countries for the first-line treatment of postmenopausal women with early-stage,
hormone-receptor-positive breast cancer. Additionally, it was authorized in the EU and
other countries for use in the adjuvant treatment of breast cancer in women who had
already completed two-to-three years of adjuvant tamoxifen treatment [66].
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It has been demonstrated in animal models that inhibiting the conversion of andro-
gens to estrogen using an aromatase inhibitor suppresses PAH. As a result, research on
treatments is usually focused on eliminating the effects of estrogen. In a randomized
controlled trial, the use of anastrozole, a breast cancer aromatase inhibitor that prevents
androgens from being converted to estrogen, was assessed in 18 patients with PAH. The
results showed decreased levels of circulating estrogen and a substantial increase in 6MWD
of +26 m compared to −12 m in controls [67].

5.6. Sorafenib

The FDA approved sorafenib (Figure 18) for the treatment of individuals with in-
curable hepatocellular carcinoma and advanced renal cell carcinoma. Additionally, the
EMEA approved its use for the treatment of patients with advanced renal cell carcinoma
and hepatocellular carcinoma who do not respond adequately to prior interferon-a or
interleukin-2-based therapy or who are considered inappropriate for this type of ther-
apy [68].

In rat models, sorafenib has demonstrated beneficial effects in PAH, such as de-
creased RV hypertrophy and PA and RV pressures. A small human trial comprising nine
patients—seven with severe refractory PAH and two with pulmonary veno-occlusive dis-
ease (PVOD)—showed that sorafenib medication improved mPAP in six patients and the
WHO Functional Class in eight patients [67].
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6. Challenges of Repurposing Drugs in PAH

Drug repurposing has become more popular recently, but there are fewer applications
than expected due to several implementation-related issues. Prospective start-ups have
an uphill battle in providing relevant data to regulatory authorities as there are no set
regulations for the repurposing of drug candidates. Furthermore, using a repurposed drug
for a new disorder also raises patent issues. Finding cost-effective and profitable areas to
explore is important for pharmaceutical companies. However, there is no guarantee that
the repurposing of a drug for a rare or under-utilized condition will result in a significant
financial return. It may, therefore, be more practical for the industry to focus on a more
specific and proven scientific target [5].

PAH is a relatively rare disease. There are many approved therapies for its treatment,
even if they cannot provide radical improvement. Thus, repurposing drugs for PAH poses
significant challenges. As mentioned above, pharmaceutical companies tend to invest in
more common diseases rather than rare ones, and this perception of “market saturation”,
can make it difficult to advance a promising therapy into later stages of clinical development
for PAH [11].

7. Conclusions

The recent discovery of innovative drugs that, more specifically, target the pathophysi-
ological processes involved in PAH has become important in identifying novel treatment
strategies for PAH. Although PAH symptomatic drugs have long provided patients with
tolerable symptom relief, higher mortality rates continue to pose a major treatment obstacle.
Current treatments induce a global financial burden, and the long-term survival rate of
patients with current medications is still below average. In addition, current therapies are
associated with severe side effects that affect PAH patients’ quality of life. Therefore, the
next generation of PAH therapies is needed to improve long-term survival and eliminate
the side effects of current therapies.

Taking a drug from discovery to use in clinical practice is a long and challenging
process. As mentioned earlier, repurposing drugs possesses advantages over de novo
drug development as they require fewer safety data and basic science studies. In addition,
initiatives to repurpose drugs can allow them to be used in the clinic without the need to
obtain FDA approval, saving even more time and costs.

This review highlights five natural or natural-derived agents and two synthetic agents
that are FDA-approved for their potential use in PAH. These agents have shown preliminary
evidence of efficacy in the treatment of PAH. However, further formulation, toxicological,
and clinical studies will be required to demonstrate their superior efficacy in comparison
with current PAH treatments.
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