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Abstract 

Agricultural policy is shifting in England to a model based on public money for public goods. Chapter 2 

assesses the broader socio-economic effects at the territorial level of farms adopting ecological 

approaches to farming. These ecological approaches are growing in popularity and include low-input, 

organic, regenerative, conservation and agroecological farming. This chapter explores their potential 

growth over the next decade in two heterogeneous regions of South East England, namely North Kent 

and the High Weald. Q-methodology and Delphi Exercise are two stakeholder based approaches used 

to investigate the perspectives of different groups of farming related stakeholders. Results emphasise 

that there will need to be an increase in the skill level of the farm workforce in order to facilitate 

changes in farm practices. Therefore, policy may want to address the provision of education and 

experience as well as sourcing migrant labour depending on the farming context. 

Chapter 3 estimates Total Factor Productivity (TFP) in a Cobb-Douglas production function framework. 

The estimation strategy applies generalised method of moments accounting for the use of chemical 

inputs which is absent in previous GMM estimations of TFP in the literature. Data is used from the 

Farm Accountancy Data Network for cereal crop farms from 2004-2018. As agricultural policy in the 

United Kingdom is heading towards the Environmental Land Management Scheme, some farmers 

might be encouraged to farm with a lower chemical intensity thereby making estimations adjusting for 

this variable more important within production function estimations.  

Chapter 4 examines the farmer's return to education differentiating between organic and 

conventional farming. By using the 1972 Raising of the School Leaving Age as a quasi-experiment with 

a Regression Discontinuity Design, we identify a causal relationship for the farmer's return to 

education on farm economic performance. Using data from a sample of English farms between 2011 

and 2018 from the Farm Business Survey, we show: (i) a positive return to education on farm 

performance (ii) a higher education return in organic farming in comparison with conventional 

farming.  
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Chapter 1 – Introduction 

Background 

Policy has shifted from boosting food output post Second World War when the general population 

faced rationing, through to the general population being well fed and an oversupply of food, a time of 

‘butter mountains’ and ‘lakes of milk and wine’ in the 1970s. Now policy is moving away from 

subsidising food production and instead shifting towards promoting public goods (PG) and 

environmental services (ES) such as soil quality, water quality and wildlife biodiversity (European 

Commission, 2020). Through incentives from the policymaker, and/or of their own volition, farmers 

may seek to provide PG and ES whilst maintaining some level of food production. In doing so, they may 

adopt certain ecological practices, e.g. direct or minimum tillage, integrated pest management, setting 

aside wildflower and buffer strips, rotation between a larger set of crop varieties and integrating crops 

and livestock. These practices may in themselves provide PG and ES, but may also reduce the input 

intensity of chemical (and polluting) inputs. The replacement for the European Union’s (EU) Common 

Agricultural Policy (CAP) in the United Kingdom (UK), the Environmental Land Management Schemes 

(ELMS) (DEFRA, 2023), aims to withdraw the Basic Payment Scheme (BPS) and replace it with subsidies 

promoting ecological practices to replace agrochemical inputs (Barnes et al., 2022). As the BPS is being 

withdrawn so farmers will need to either provide PG and ES in order to receive payment, cut costs, 

increase sales of food or else go out of business. 

When designing ELMS the government would have considered its 25 Year Environment Plan. 5 of the 

10 goals introduced in this plan, namely air quality, water quality, waste, biodiversity and carbon are 

directly impacted on by farming practices of which the use of chemicals are included (Helm, 2022). In 

shaping the three tiers of schemes which make up ELMS, government may be promoting the type of 

farming where chemical input use is being limited. 

Adjusting farming practices and reducing chemical input use in order to pursue environmental goals 

will influence the farm’s demand for labour. Increasing farm labour is itself a policy goal (Dries et al., 
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(2012) and Garrone et al., (2019a)) whereby more farm jobs and a higher income would help create 

thriving rural communities with more demand for local goods and services and the wider non-farm 

economy (Rizov et al., 2018). As a farm’s demand for labour increases, new jobs are created, and farms 

aim to employ more labourers. The issue for farms is to then find the workers willing to supply their 

labour and fill these farming job positions. Labour supply may also be an issue in the adoption of 

ecological farming practices.  

Ecological practices are understood here broadly as low-input practices and/or practices that are 

environmentally friendly, and therefore comprises not only existing farming approaches (e.g., organic 

farming, agroecological farming) but other approaches not yet labelled as well. When considering 

ecological approaches to agriculture, the literature most often refers to organic and conventional 

farming approaches. Indeed, chapter 4 of this thesis further adds to this comparison between organic 

and conventional farming. The reason for this is that there are data more readily available, and this in 

itself is as a result of a clearer definition for organic farming than the broad meaning that can be 

associated with either ecological agriculture or low-input farming.  

The organic agriculture literature finds that organic farms tend to require more farm labour to 

substitute for reduced chemical use (Offermann and Nieburg (2000); Morison et al., (2005); Green and 

Maynard (2006); Moakes et al., (2015)). Therefore, as farms reduce their chemical input intensities, 

then difficulty in recruiting the necessary numbers of farm workers and hours to be worked may be a 

barrier to adopting these practices. These practices may in particular require skilled labour for which 

recruitment may be of greater difficulty. The farmer may need to increase wages to attract this skilled 

labour, which if successful may further support rural communities with additional income.  

Gaps in this literature include exploring a heterogenous effect on labour, if there are differences in 

skilled or non-skilled labour as well as gender differences or differences in full-time and part-time 

employment. 
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The main objective of this thesis is to explore how outputs and inputs, in particular labour, change in 

response to a change of farming practices towards a reduction in chemical input use. Labour is 

explored in greater detail through investigating the impact of additional education. This additional 

education leads to an increase in skill level of the farming workforce and their impact on farm 

productivity is studied including a comparison between organic farms and all farms in the sample. This 

comparison is made to explore if there are greater benefits to education in a farming approach which 

uses fewer chemical inputs in comparison with a more conventional farming type.  

Theoretical Foundations for Technology Adoption in Agriculture 

A number of different factors contribute to the adoption of technology in agriculture. New 

technologies may include precision agricultural technologies (Barnes et al., 2019) and conservation 

tillage (Brown et al., 2020). Barnes et al., (2019) find that the main barrier to adopting new 

technologies is the high cost of entry – this would especially be the case for precision technologies 

where the necessary machinery would be very expensive. Given the large expense, larger farms will 

find It easier to invest in these new technologies. Another aspect in adopting these precision 

technologies is that the farmer will require more knowledge in order to adjust to using a different 

machine in the first place, but also in response to the heterogeneity of the farming landscape. Brown 

et al., (2020) agree that the size of the farm allows the farm to benefit from economies of scale and 

thus benefit from labour saving technologies, the incentive to save on labour cost is increased when 

output prices become lower.  

Continuing from Barnes et al., (2019), a couple papers emphasise the importance that education has 

in the adoption of new technology. Huffman (2001) find that more education results in an increase in 

farmers’ information acquisition and technology adoption. The definition for education that Huffman 

uses is one of producing general intellectual achievement which comprises abilities and knowledge 

and is created through increased schooling, better quality schooling, innate ability and the learning 

environment. Chavas and Nauges (2020) study the role of uncertainty, learning and information 
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transmission on technology adoption and they find that farmers who are stronger at obtaining and 

processing information are usually early adopters of a technological innovation, whilst those who are 

weaker tend to be late adopters. This suggests that receiving more education may result in an earlier 

adoption of a new farming technology. 

Thesis Outline 

Chapter 2 studies interactions between outputs and inputs, rural communities as well as considering 

the different points of view of farmer and policymaker. This chapter uses stakeholder-based 

approaches to imagine future scenarios of ecological agriculture adoption. The approaches are namely 

Delphi exercises and Q-methodology. Here, stakeholders explain how they perceive people and other 

productive assets being employed and remunerated following 10 years of farms adopting ecological 

approaches to agriculture. The stakeholders are the economic agents closest to innovations and 

changes in the field. They are experiencing the changes as they happen and are naturally looking 

forward to how these changes may impact upon the future of farming. A mixture of qualitative and 

semi-quantitative methods are used here to explore stakeholder perceptions. These methods allow us 

to explore stakeholder opinions whilst the factor analysis component of Q-methodology introduces 

some rigour. ELMS is demonstrated to be a considerable uncertainty for farmers and their future 

planning. 

Chapter 3 estimates Total Factor Productivity (TFP) in a Cobb-Douglas production function framework. 

The Cobb-Douglas production framework is chosen due to being relatively easier to estimate than CES 

or translog functions where these alternate functions may generate multiple spurious solutions 

(Biagini et al., 2023)1. In addition, Ackerberg et al., (2023) demonstrate that TFP estimates are not 

improved significantly through the choice of alternative functional form. Within the chapter there is a 

discussion of what approach may be best suited to estimating TFP in agricultural settings. The 

approaches considered include Stochastic Frontier Analysis (SFA), Data Envelopment Analysis (DEA), 

 
1 For a further discussion on the choice of functional form see (Biagini et al., 2023). 
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Control Function (CF) methods and Generalised Method of Moments (GMM) (Biagini et al., 2023). 

GMM is the chosen method as it is found to control for endogeneity more effectively than SFA and 

DEA approaches (Mary (2013); Khafagy and Vigani (2022)) and in contrast to CF methods it  avoids the 

risk of evaluation errors in case of choosing the incorrect instrumental variables (Biagini et al., 2023). 

The contribution of this paper to the literature is that it accounts for the use of chemical inputs which 

is absent in previous GMM estimations of TFP in the literature. Data is used from the Farm Accountancy 

Data Network (FADN) for cereal crop farms from 2004-2018. Including chemical inputs in the 

specification makes little difference to labour and capital productivity, but it has a large effect in 

reducing the coefficient on land productivity. Other papers use materials as another variable in the 

estimation, but given the policy environmental policy context, chemical inputs may also be worth 

considering. 

Chapter 4 considers the heterogenous returns to education for organic and conventional farming. The 

chapter addresses the shortfall of a lack of studies on the returns to education in agriculture and in 

particular in the context of organic farming. The comparison between organic farming and 

conventional farming is an attempt to study if farmers benefit more from additional education as they 

reduce their use of chemical inputs or not. This chapter exploits the 1972 Raising of the School Leaving 

Age (ROSLA) in a regression discontinuity design (RDD) setting. ROSLA was a policy enacted in 1972 

where pupils had to stay in school till they were the age of 16, whereas before then students could 

leave school after turning 15. When estimating the relationship between output and education there 

is often a problem of endogeneity. Given that education comprises both number of years of schooling 

and innate ability (Huffman, 2001), an example of the possible endogeneity here is that students with 

more innate ability may choose to stay in school for longer and, in addition, students who have more 

innate ability may perform better managing a farm and produce more farm output. RDD exploits a 

natural experiment whereby a treatment and a control group are created where the participants are 

separated into these two groups by those who had to stay in school for longer (the treated group) than 

those who could leave school earlier (the control group). The RDD is estimated in two stages. First, it 
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estimates the number of years of schooling depending on the birth year of the farmer which aims to 

confirm that those in the treated group did indeed receive more education. Second, an RDD 

estimation for farm output uses Two Stage Least Squares with the dummy variable for those required 

to stay in school for longer or not used as an instrument for the number of years of schooling. This 

approach is applied to estimate returns to agriculture across all farms in the sample as well as the 

organic farms. The RDD model is extended through using a Correlated Random Effect model and in 

estimating the organic farming a heterogeneous local average treatment effect (HLATE) approach is 

used. A limitation with this analysis is the plausibility that an additional year of schooling from 1973 

onwards resulted in a meaningful increase in farm output 40 years later. It may be possible that 

receiving this additional education at this point might result in a greater appreciation for additional 

education and training opportunities which may lead to this treated group following a different 

learning trajectory over time compared with the control group. 

Lastly chapter 5 concludes the thesis. 
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Chapter 2: Stakeholder insights from two case studies in England on the regional socio-economic 

effects of ecological agriculture 

 

Abstract 

This chapter assesses the broader socio-economic effects at the territorial level of farms adopting 

ecological approaches to farming. These ecological approaches are growing in popularity and include 

low-input, organic, regenerative, conservation and agroecological farming. This chapter explores their 

potential growth over the next decade in two heterogeneous regions of South East England, namely 

North Kent and the High Weald. Q-methodology is an explorative, semi-quantitative approach that 

investigates the perspectives of different groups of stakeholders. In this study it was used to capture 

the perspectives of local stakeholders in two steps. First, stakeholders have in mind an ‘adoption 

scenario’ – what they consider would be the adoption rate and pattern of lower chemical input 

practices on farms. Second, what would be the socio-economic effects of their ‘adoption scenario’. A 

concurrent Delphi Exercise using the same 10-year frame, adoption scenario and involving additional 

stakeholders is used to supplement the interpretation given from the Q-studies. Results emphasise 

that there will need to be an increase in the skill level of the farm workforce in order to facilitate 

changes in farm practices. Therefore, policy may want to address the provision of education and 

experience as well as sourcing migrant labour depending on the farming context. 

2.1 Introduction 

There is a need to assess the broader socio-economic effects at the territorial level of farms adopting 

ecological approaches to farming. It is difficult to separate out different socio-economic effects at the 

territorial level into individual pieces of research due to multiple interrelating effects and this is 

especially so when discussing ecological approaches to farming. The environmental impacts as well as 

the social and economic consequences of an increase in ecological farming at a regional scale are still 

unclear. One reason for this is the lack of assessment at a regional scale, due to the complexity of 
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methods and substantial amount of data needed (Graymore et al., 2008). This chapter contributes to 

shedding light on this issue, with an approach based on stakeholders’ perceptions.  

Ecological practices are understood here broadly as low-input practices and/or practices that are 

environmentally friendly, and therefore comprises not only existing farming approaches (e.g., organic 

farming, agroecological farming) but other approaches not yet labelled as well.  

Q-methodology (henceforth Q) is an explorative, qualitative approach that allow experts who are 

closer to innovations on the ground to explain how they perceive the industry changing in light of 

further attention regarding ecological approaches to farming. Using Q as a research method allows the 

researcher to investigate similar or diverging subjective perspectives held by groups of people on a 

specific topic (see Stephenson (1935); Stephenson (1953); McKeown and Thomas (2013)). This method 

is increasingly recognized in social sciences and has been applied to elicit views on a variety of topics. 

Examples of using Q in the literature include Cuppen et al., (2010) where the authors apply Q to 

identify stakeholder perspectives on energy production from biomass in the Netherlands. Zepharovich 

et al., (2020) make use of Q to investigate the perceptions of stakeholders (large-scale producers, 

small-scale farmers, indigenous peoples, governmental actors, civil society) on deforestation in the 

province of Salta (north-west Argentina). Mahlalela et al., (2022) use Q to identify and analyse 

perspectives held by different stakeholders on wetland ecosystem services in Hawane Dam and Nature 

Reserve (in Eswatini, South Africa), to guide policymakers (i.e., conservation management initiatives). 

Vecchio et al., (2022) apply Q to understand agricultural entrepreneurs’ perspectives in Italy on 

precision farming and to analyse the role and importance of precision farming tools for the sector. 

Alexander et al., (2018) employ it to explore 35 rice farmers’ viewpoints on their production goals and 

potential to adopt technologies to improve productivity in Southern Lao PDR. Also, with this method, 

Iofrida et al., (2018) explore, in the Calabrian region, the perceptions of various actors, including local 

and supply chain stakeholders to identify room for innovation towards sustainability. Lehrer and 
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Sneegas (2018) explore stakeholders’ views about pesticide use and associated risks for on-farm 

workers in Washington State’s tree fruit industry. 

As an explorative exercise, the approach frames the research in a 10 year forward perspective and 

explores how stakeholders believe farms in a given Case Study Area (CSA) will adopt ecological farming 

approaches. The timeframe of 10 years was chosen in part to recognise that adoption of new 

technologies and changes on farms can take some time. Farming policies in the UK are undertaking a 

generational change which may require a few years for policy to settle and farmers to adapt. In 

addition, 10 years from the study coincides with the Sustainable Development Goals target of 2030. 

Some stakeholders even felt that 10 years was not long enough a timeframe, whilst others thought it 

too far in advance leaving 10 years as a balancing point in the middle. The two CSAs were chosen to 

reflect heterogeneity in UK farming landscapes and to capture a wide range of farm types given the 

available resources.  

Within this 10-year horizon, stakeholders are encouraged to explore two fundamental questions that 

outline: 1) would a low or high percentage of farms in the area adopt ecological practices? And 2) 

would the pattern of adoption of ecological farming form a cluster or be randomly spread across the 

territory. Given these adoption scenarios, we use Q and Delphi to investigate their socio-economic 

effects. 

The chapter presented here is structured as follows. First, the two CSAs used in the Q and Delphi are 

described with an explanation regarding their economic and geographical contexts. Second, the 

methodology describing the application of the Delphi and the Q are presented. Third, there is a 

discussion of the results from each CSA and for each methodology. Finally, this chapter concludes. 

2.2 Methodology 

This section proceeds by first presenting brief descriptions of the CSAs involved in the Q and the Delphi 

Exercise. Second, it outlines the Delphi Exercise. Third, it explains Q. Fourth, it discusses how the 
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statements were selected. Fifth, it describes the participants. Sixth, an explanation is given of how the 

analysis was carried out.  

2.2.1 Case study area descriptions – High Weald and North Kent 

The CSAs of the High Weald and North Kent were chosen to reflect heterogeneity in English regions 

where each CSA is unique, varying in climatic conditions, land cover, relief and topography (flat or 

mountainous etc.), and population. These differences in the farming landscape inevitably result, firstly, 

in variations in the prevalence of different farm types existing in the CSAs (whether that be cereal crop, 

livestock, horticulture etc.) and, secondly, to the ecological farming approaches that best suit these 

different farms. Given the variety and breadth of farming types that the CSAs incorporate, they are an 

interesting focus for stakeholders to discuss the future of the effects of ecological approaches to 

agriculture because they may have implications for impacts in other UK regions. However, given that 

these CSAs are unique, a limitation must be placed on the lessons that can be learnt and applied to 

other UK regions. 

Both CSAs are located in South East England – one of the most populous region in the UK, and within 

commuting distance of London, with approximately 9.4m inhabitants, 13.9% of the UK total, and 

relatively densely populated at 492 inhabitants/km² against a UK average of 279 inhabitants/km² (ONS, 

2024). Figure 1 is a map showing the location of the CSAs in South East England2. 

The CSA of North Kent is an area of diverse agricultural systems, with a mix of arable, livestock and 

horticulture farms comprising three National Character Areas (NCAs) (Natural England, 2024). The 

North Kent Plains, one of the NCAs, contain fertile loam soils, thus, is characterised by arable, 

 
2 © Natural England copyright. Contains Ordnance Survey data © Crown copyright and database right 2023. 

Data for the High Weald was accessed from: https://www.data.gov.uk/dataset/8e3ae3b9-a827-47f1-b025-

f08527a4e84e/areas-of-outstanding-natural-beauty-england and for North Kent from 

https://www.data.gov.uk/dataset/21104eeb-4a53-4e41-8ada-d2d442e416e0/national-character-

areas-england. 

https://www.data.gov.uk/dataset/8e3ae3b9-a827-47f1-b025-f08527a4e84e/areas-of-outstanding-natural-beauty-england
https://www.data.gov.uk/dataset/8e3ae3b9-a827-47f1-b025-f08527a4e84e/areas-of-outstanding-natural-beauty-england
https://www.data.gov.uk/dataset/21104eeb-4a53-4e41-8ada-d2d442e416e0/national-character-areas-england
https://www.data.gov.uk/dataset/21104eeb-4a53-4e41-8ada-d2d442e416e0/national-character-areas-england
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traditional orchards, and soft fruits and vegetables. Grazing marsh is typical in the Great Thames 

Estuary (another NCA) and mixed farming is widespread on the North Downs (the final NCA). 

In contrast, the High Weald CSA largely comprises pastoral agriculture with areas of horticulture on 

higher ground, while the low lying, flat areas towards the east contain concentrations of arable 

farmland. This landscape was granted Area of Outstanding National Beauty status in 1983, recognising 

the unique High Weald landscape of a mosaic of small farms, the highest concentration of woodland 

in England (26%) and ridge-top villages. 

Figure 1: Location of the two English CSAs 

 

Farms are on average larger in the North Kent study area, 99.4 hectares (ha), in comparison with 52.6 

ha in the High Weald (DEFRA, 2024)3 and the total farmed area is larger in North Kent (148,637 ha 

against 97,609 ha in the High Weald). This is not surprising bearing in mind that a large proportion of 

farms in the High Weald tend towards the smaller end of the national farm size scale i.e. less than 20ha 

in size (49.9% less than 20 ha versus 43.5% in North Kent and nationally 40.9%) while there are a 

significant number of farms in North Kent larger than 100 ha (25.7% versus 13.6% in the High Weald 

 
3 Land area are authors’ own calculations using geographical data broken down by NCA from the June 2021 
census. 
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and 23.6% nationally). Compared to the High Weald, North Kent has a far larger proportion of cereal4 

farms (23% against 7.2%), but a much lower importance of grazing livestock (32.6% against 46.1%).  

2.2.2 Delphi Method 

The Delphi method attempts, first, to collect the views and opinions of a number of informed people 

and, second, to harmonise these views across a panel of experts (Börjeson et al., 2006). Gallego and 

Bueno (2014) define Delphi as a type of questionnaire, which, through feedback, organises and shares 

opinions. According to the authors there are four main characteristics of Delphi. First, it is anonymous 

(each stakeholder does not know the response of another). Second, it iterates through rounds of 

sharing opinion and feedback. Third, controlled feedback is given (responses are summarised by 

researchers and presented again to the stakeholders). Fourth, a group response is produced 

statistically.  

Delphi was implemented in the two UK case study regions and the interview questions can be found 

in the Appendix to this chapter. The questionnaire was constructed in combination with project 

partners involved in the Horizon 2020 LIFT project and the full results are presented in  Bailey et al., 

(2021). Approximately 10 stakeholders were involved in each region in the Delphi analysis. 10 

stakeholders were approached in order to gather a wide range of information, but as the questionnaire 

is detailed and administered over three rounds, a relatively small sample size was chosen given the 

available resources. The objective was to have a balanced representation by years of experience and 

occupation – advisory system officers, researchers, land agents, farmers, civil servants, non-

government organisation representatives – therefore an aim of covering 2 stakeholders from each 

occupation. Also found in the Appendix to this chapter is the Delphi Information sheet for participants 

in North Kent.  

 
4 Farm types are classified using standard output, percentages are authors’ own calculations. 
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As a first step we provided a representative model of a typical ecological farm in each of the case study 

regions and asked the stakeholders to describe the changes in the farming practices they foresee in 

comparison to a typical conventional farm in their area. A scenario of a hypothetical pattern of 

adoption (including high, low, clustered, random pattern) has been suggested to the respondents and 

they had to choose the pattern they expected to be the most probable for their region. Second, the 

participants were asked about their opinion on what might happen in factor markets, especially 

considering whether there would be any second-round effects on the labour market. Third, we 

summarised these opinions and presented them again to the stakeholders, asking them if there were 

any revisions to be made. Finally, we looked for signs of convergence and consensus. 

 

Figure 2: Summary of Delphi process 
 

Round 1: 

• Interview stakeholders round 1 questions 

• Anonymise and synthesise results from round 1 in form of 
qualitative summary and statistical indicators 

Round 2: 

• Present results from round 1 to stakeholders 

• Interview stakeholders round 2 questions 

• Anonymise and synthesise results from round 2 as done 
above 

Round 3: 

• Present anonymised results from round 2 to participants 

• Interview round 2 questions again 

• Aggregate responses into consensus from round 3 and 
analyse 

Round 0: 

• Send participants an information sheet presenting average 
statistics comparing ecological and conventional farm 
characteristics in the area 

• Stakeholder panel finalised 



14 
 

After this first step, three rounds of Delphi were implemented. In the first round, participants were 

asked to characterise ecological approaches to agriculture as they may develop in a 10-year timeframe 

in their region; the second round enquired about the socioeconomic effects of these ecological 

approaches and the third round repeated the questions of round 2 presenting a summary of round 2 

to participants.  

2.2.3 Q Study Design 

Q attempts to measure attitudes (Cross, 2005) and human subjectivity (Kampen and Tamás, 2014). An 

advantage of Q is that it is designed to manage a small sample size (Giannoulis et al., 2010). Giannoulis 

et al., (2010) used Q on a sample of 23 journalists from 9 different newspapers to study beliefs on 

environmental issues. Another study uses a sample of 61 Mexican American women to sort 36 images 

of children into weight categories to investigate perceptions of childhood obesity (Bayles, 2010). In 

another study on the perceptions of rurality, the sample size was of 10 people (Duenckmann, 2010). 

Another example from a brief examination of the Q literature is of a paper with sample size of 75 

engaged in a stakeholder dialogue (Cuppen et al., 2010). The authors use this dialogue in order to gain 

the perspectives of the stakeholders on energy from biomass and Q is used as a method to select 

stakeholders for these dialogues. Both Cuppen et al., (2010) and Bayles (2010) use a mix of different 

stakeholders, including farmers, academics and local councillors, in their use of Q. Additional 

publications, Grimsrud et al., (2020) and Zepharovich et al., (2020) respectively use 15 participants to 

sort 46 statements and 25 participants for 36 statements. A statistically robust analysis in Q requires 

at least 1 participant for every 3 statements (Webler et al., 2009). 

In this chapter, Q was used to gather the attitudes of stakeholders on the adoption and socio-economic 

effects of ecological farming approaches. This methodology attempts to rank-order statements along 

a continuum, for example, from ‘agree’ to ‘disagree’ (Cross, 2005). The statements are sorted into what 

may resemble a normal distribution, the shape depicted in Figure 3 with each square being one 

statement, where the tails are the extreme statements that sit closest to agreement with the 
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stakeholder or disagreement on the other tail. The distribution forms ‘a model of subjective 

preference’ (Cross, 2005, p. 209). For the topic area being studied, the data from the Q-sort is what 

the stakeholders make of a ranking of items, or statements, that are presented in front of them. Q 

typically uses cut up pieces of paper or cards with statements on them for participants to sort. The 

following section describes how the statements were selected. An information sheet for the High 

Weald case study area, as presented to study participants is included in the appendix for this chapter. 

Figure 3: Distribution grid for Q-sorts 

         

         

         

         

         

         

-4 -3 -2 -1 0 1 2 3 4 

 Most unlikely    Most Likely  

 

The sample of items that make up the ‘Q-set’ usually comprises of 10 to 100 items and this ‘set’ and 

‘sampling’ need to take place to create this ‘Q-set’ (Cross, 2005). We adapt this ordering of statements: 

from ‘fully agree’ to ‘fully disagree’, instead becomes from ‘most likely’ to ‘least likely’. A grid, Figure 

3, is used as a visual aid to help stakeholders sort these statements along a Likert scale where -4 is 

‘least likely’ and +4 is ‘most likely’. This rank-order is in anticipation of how the adoption scenario 

embedded among the statements would relate with socio-economic effects 10 years in the future. 

2.2.4 Selection of statements in the Q set 

This Q-study aimed to study a wide range of topics starting with five broad categories as described in 

Bailey et al., (2021).  These categories were identified by researchers to firstly understand the future 

of pattern and rate of adoption of ecological farming approaches and as a result of the prevailing 
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pattern and rate of adoption, their socio-economic effects. The five categories that were chosen: 

adoption pattern and rate, ecosystem services, nature of farm labour, labour market and the wider 

rural economy. Including ecosystem services allows participants to identify how ecological and 

conventional farming approaches may have different impacts, framing the concourse relative to these 

different approaches. Statements fitting into adoption pattern and rate allow participants to quantify 

how these aspects may further impact socio-economic effects. The nature of farm labour helps to 

outline how attractive the farming industry is for employees. Statements in this category cover peak 

work (need for seasonal and possibly migrant labour), a varied job may be more interesting than one 

which is repetitive and a more physical, whereas a manual job may be less attractive and at a territorial 

level this may have a different impact from farm level. The focus of this chapter on socio-economic 

effects thereby focuses on labour and the wider rural economy. 

Figure 4: Summary of Q method design 

Q-set: 

• Discussion and iteration between researchers to restrict 
the concourse into the final set of statements 

• Pilot sorts  
 

Q-sorts: 

• 14 participants in the High Weald and 21 in North Kent 
sorted the statements using htmlq software 

• After the sort, questions were asked to understand why 
the sort was as it was 

Factor analysis and interpretation: 

• Centroid factor analysis of the Q sorts using PQ method 
software 

• Factor loadings of individual Q-sorts to the factors 

• Interpretation of the patterns 

Concourse: 

• Five broad categories identified by researchers  

• Questions relating to these categories were put to 
stakeholders in LIFT stakeholder workshops resulting in 60 
statements 
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From these five broad categories, approximately 60 statements were chosen stemming from 6 

stakeholder workshops organised in the LIFT project and involving 23 stakeholders (Bailey et al., 2021), 

and supplemented with statements derived from media sources that include farming radio and online 

news media. The statements were chosen through a process of iteration between LIFT researchers. 

The final Q-set of statements can be found in the results section of this chapter. In the end, 26 

statements were selected: 3 statements to set out the adoption pattern and rate, 4 statements to 

capture effects on ecosystem services, 3 for nature of farm labour, 8 for labour market and 8 for the 

wider rural economy. There is no particular reason for this weighting other than the chosen statements 

were thought capable to capture the largest number of viewpoints, and the focus of the study is on 

socio-economic effects. Several pilot sorts were conducted with other researchers and a couple 

farmers to evaluate the statements in terms of understanding and balance. Using the Likert scale on 

the grid for the Q-set, as shown in Figure 3, participants were asked to fit each of their 26 statements 

into each of the 26 grid spaces from what they thought was ‘least likely’ and ’most likely’. Each 

individual Q-sort of the Q-set is unique to each participant.  

2.2.5 Participants in the Delphi Studies and Q  

The minimum number of participants in Q suggested through the literature was at least 9 participants 

(Webler et al., 2009) and we aimed to recruit around 20 participants for each CSA. These participants 

are also intended to have knowledge of farming practices and technologies across the CSA, but we 

expanded the sample to also include farmers given that they often do cooperate with others in the 

CSA and know the local landscape and climate. A total of 35 participants from the 2 different CSAs took 

part in this Q with 14 in the High Weald and 21 in North Kent. A variety of methods were used to collect 

Q-sorts from stakeholders that included face-to-face meetings, meetings through online video 

teleconferencing software, phone calls, Q-study sent over email, from May 2020 to June 2021. The 
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consistent feature across all these meetings was the use of the htmlq software to facilitate the sorts5. 

The time period coincided with Covid and hence initially there were face-to-face meetings, but 

following lockdown the interviews were moved online. 

Table 1: Participant information (number of participants) in the Q and Delphi exercises 

 Q Delphi Exercise 

 
High Weald North Kent Total High Weald North Kent Total 

Gender       

Male 11 16 27 6 10 16 

Female 3 5 8 4  4 

Area of work 
experience 

      

Researcher  1 1  2 2 

Civil servant 1 1 2 1 1 2 

Extension officer 1 1 2 4 4 8 

Farmer  4 12 16    

Land agent 2 1 3 2 1 3 

NGO representative 6 4 10 3 2 5 

Other  1 1    

Work experience        

< 5 years 3  3 1  1 

5-10 years 1 5 6 2  2 

10-20 years 4 2 6 1 2 3 

> 20 years 6 14 20 6 8 14 

Total 14 21 35 10 10 20 

 

During the Q-sorts, participants were asked their thoughts on why they sorted Q statements in the 

way that they did. This facilitated easier interpretation, greater depth to the interpretation and a more 

cohesive stakeholder perspective to emerge. Table 1 presents information on the Delphi exercise and 

Q participants. It can be noted that there are a lot more farmers in the North Kent sample giving them 

 
5 htmlq software: https://github.com/shawnbanasick/easy-htmlq is now a legacy system and has been replaced 
by EQ Web sort: https://github.com/shawnbanasick/eq-web-sort. Here is a link to the study: 
https://unikentlift.netlify.app  

https://github.com/shawnbanasick/easy-htmlq
https://github.com/shawnbanasick/eq-web-sort
https://unikentlift.netlify.app/


19 
 

a stronger voice in North Kent and this may be a limitation of the study. However, as a group the 

farmers do not seem to load onto a given factor suggesting some variance in perceptions between 

farmers. 

2.2.6 Q Data analysis 

This section describes the process for analysing data across the CSAs so that the resulting factors would 

be as comparable and consistent as possible.  

To analyse the data, the PQMethod6 program by Schmolck (2024) was used. Centroid factor analyses 

(centroid factor analysis being a type of factor analysis offered by the PQMethod program) were 

carried out rather than principal component analysis (PCA) due to the explorative nature of the study 

(Barry and Proops, 1999). Although PCA would give the ‘best’, single, mathematical solution, this is 

argued to not be the desired choice in Q given the desire to further explore the data and identify more 

related factors to discuss (Watts and Stenner, 2012). 

A Varimax rotation was applied to the unrotated factors following papers in the literature (Grimsrud 

et al., (2020) and Zepharovich et al., (2020)). After selecting the Varimax option in PQMethod, we need 

criteria with which to choose how many factors we should rotate. Although using principle component 

analysis, Grimsrud et al., (2020) explain their decision in choosing three factors (using 15 participants) 

with a cut-off point aiding their decision. As a rough guide, Watts and Stenner (2012) suggest starting 

with 1 factor for every 6 participants which matches with Grimsrud et al., (2020). Our aim is to find an 

appropriate number of factors to maximise the number of Q-sorts that load significantly onto them 

and explain a significant amount of study variance (Watts and Stenner, 2012) – this might be as much 

art as it is science. The advised decision, and statistical, criteria for choosing a factor is that at least 2 

Q-sorts load onto each factor and each factor should have an eigenvalue of at least 1. The final set of 

statements can be referred to in the results section for this chapter. 

 
6 The software can be found here: http://schmolck.org/qmethod/ 
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2.3 Results 

The below section interprets factors identified through the Q-analysis as described above. Each factor 

begins with a set structure to support the decision rule as identified above and how significant this 

factor is in terms of explained variance. In each factor, the number of Q-sorts – the rank-order 

combination of an individual participant – is given which load significantly onto an identified factor. 

The significantly loading Q-sorts will tend to correlate with each other to give numbers that indicate 

how likely they believe these statements to be 10 years in the future relative to each other. For the 

participants with significant loadings, an interpretation starts to form of the viewpoint or factor based 

on the Q-items in the Q-set and how they correlate with each other. To supplement this correlation, 

the thoughts of participants of these significantly loading Q-sorts strengthen the interpretation.  The 

Delphi Exercise is also used to supplement the interpretations of these factors. Once these 

interpretations have been discussed – a summary heading is offered by the researcher of this 

viewpoint. In the following interpretations for each factor, the figures between brackets, e.g. (2/+3), 

correspond to (Statement number/degrees of agreement), and the matching statement number can 

be seen in the set of statements presented later in this section e.g. Table 2.  

2.3.1 Delphi Exercise 

Concerning the development of farming practices, respondents tended towards the proliferation of 

ecological farming but in parallel with the continuous existence of conventional agriculture. 

Concerning skills, Delphi participants argued that modern farmers are highly skilled, but to be able to 

adopt more environmentally friendly practices they may need to further develop their skill sets. Three 

main points were emphasised for skill demand.  

First, ecological agriculture might result in integrating multiple farming systems onto a single farm: 

crops, livestock, orchards, forestry. These farms would be more complex operations requiring a variety 

of skills and knowledge. The larger set of skills would require a versatile farmer with a wide range of 
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skills or workers covering the necessary range, which might result in more hired labour, particularly on 

larger farms.  

Second, in order to provide more public goods and ecosystem services, farmers have to adopt different 

practices: intercropping, cover and catch cropping, holistic planned grazing, Integrated pest 

management, Integrated weed management. These practices require an increased understanding of 

biology, ecosystems and natural processes. Observation skills, and not so much the traditional 

repetitive manual work, would be necessary for recognising issues e.g. pest species from beneficial 

species. However, some stakeholders argued that the new requirements can be handled through 

contracting an adviser on bigger farming operations.  

Third, adoption of more ecological farming practices requires knowledge of its possible impacts on 

soil, water, air, and skills to market the positive effects to the buyers of farm produce. Knowledge will 

be necessary to use the public incentives and comply with regulations with respect to public good and 

ecosystem service provision, and how environment management can be integrated with the farming 

operation. Stakeholders argued that farmers have to learn on the job, be proactive and stay informed 

regarding developments in the industry and should actively communicate with other farmers. 

Results from Delphi in the case study regions under analysis here have indicated consensus that 

farmers would need new skills to operate a farm adopting ecological farming techniques. However, 

similar to the views covered in the literature review above, some stakeholders, although a minority, 

suggested that new technologies, irrespective to whether they are related to ecological farming or not, 

e.g. precision farming, robots, AI, may limit the requirements to skills and decision making by farmers. 

Overall, the results from Delphi suggest that we may expect a need for more skills in order to 

successfully adopt ecological approaches to farming. However, caution is necessary since consensus 

has not been reached in Delphi. And, in any case, the main gap in the literature, and in our Delphi 

exercise, remains whether the skill sets necessary for ecological farming differ from those needed for 

more conventional agriculture and what would be the effect on the return to such skills.  
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2.3.2 Q study - High Weald 

Factor 1 – Skilled ecological movement 

Factor 1 is defined by 7 significantly loading Q-sorts, explaining 28% of the variance in the study and 

has an eigenvalue of 6.58. Table 2 presents the results for the Q in the High Weald where the Q sort 

values indicate how strong the stakeholders with the significant factor loadings agree (or disagree if 

negative and high) with that statement as part of the factor (Zepharovich et al., 2020). Meanwhile, the 

z-score indicates the distance the statement is relative to the middle of the sorting distribution. 

Starting with the pattern of adoption stakeholders identify that at least 10% of farms in the study area 

will be using ecological farming approaches (2/+3)7 - indeed this proportion may already be the case - 

this rate will be somewhere between 10% and 50%, possibly not yet at 50% in 10 years’ time (1/+1), 

that is of farms being regenerative. In addition, these farms employing ecological approaches are likely 

to form in clusters (3/+2) as farmers cooperate more with neighbouring farmers (14/+3). Stakeholders 

suggest local cooperation should take place for biodiversity reasons such as wildlife corridors. This 

increase in ecological practice participation and local cooperation is predicted to result in improved 

soil quality (6/-3) and as a further result, increased water quality (5/+2) as soils hold water like a sponge 

rather than letting water runoff into nearby water bodies with the soil nutrients. In addition, the 

number and size of hedgerows will increase (7/-3) where stakeholders point out they may be a source 

of nutrients for grazing livestock and provide a windbreak as well as homes for birds and other wildlife. 

An important statement in this factor (more important than in factor 2) is that farmers will need to 

increase their level of skills (12/+4) – more knowledge is required and following Brexit, where the CAP 

was seen to be prescriptive among farmers, this ‘freedom’ may enable farmers to rediscover 

knowledge on when to make interventions on farm, but in line with environmental objectives. Another 

statement with a strong opinion was that ecological farming approaches will be more than just a 

limited social movement (16/-4): there is already support in newspapers on ecological farming 

 
7 The numbers in the brackets correspond as follows: (Statement number/degrees of agreement) 
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practices, more farmers will adopt ecological practices, and more consumers will buy their food locally 

(15/-2). In addition, study participants foresee that rural areas will become more attractive to residents  

Table 2: High Weald Q Results 

No. Statement Factor 1 Factor 2   
Q Z Q Z 

1 50% of farms will adopt ecological farming practices. 1 0.83 2 1.03 

2 10% of farms in the case study area will adopt 
ecological farming practices. 

3 1.35 -2 -0.81 

3 Ecological farms will form clusters of closely 
connected farms within the case study area. 

2 1.02 1 0.85 

4 There will be little change in the landscape 
appearance of rural areas. 

-1 -0.4 -1 -0.51 

5 Water quality will improve. 2 1.04 3 1.58 

6 Little change will happen to soil quality. -3 -1.69 -4 -2.32 

7 There will be no change in the number and/or size of 
hedgerows. 

-3 -1.65 -3 -0.92 

8 Employment opportunities in farming will increase. 0 0.01 1 0.47 

9 The need for labour work of an individual farmer will 
be spread throughout the year. 

0 0.11 0 -0.06 

10 The farmer’s daily routine will become more varied. 1 0.82 0 -0.31 

11 The wider rural economy will be more resilient. 1 0.37 2 0.91 

12 Farmers will need to increase their level of skills. 4 1.97 2 0.99 

13 The nature of work on farms will be more physically 
demanding. 

-1 -0.8 0 0.33 

14 Farmers will cooperate more with neighbouring 
farmers and farms close to them. 

3 1.2 3 1.48 

15 Consumers will not buy a lot more of their food 
locally. 

-2 -0.85 -2 -0.82 

16 Ecological farming will be a limited social movement 
and will not provide substantial ecosystem services. 

-4 -1.75 -3 -1.21 

17 There will be tight certification to define farms as 
ecological. 

0 -0.17 1 0.43 

18 As a proportion of household income, income from 
farming will decrease. 

2 0.86 -1 -0.68 

19 More livestock farmers will use mob/strip grazing. 1 0.82 4 2.08 

20 Mob/strip grazing will decrease the requirement for 
labour. 

0 -0.19 0 -0.46 

21 Rural areas will become no more attractive for 
residents and users. 

-2 -1.06 1 0.46 

22 There will be more need of seasonal labour. 0 0.24 0 -0.31 

23 The use of family labour will decrease. -2 -0.94 -1 -0.48 

24 There will be more need of migrant labour. -1 -0.36 -1 -0.71 

25 There will be no change in trade of locally sourced 
inputs. 

-1 -0.61 -2 -0.86 

26 There will be more demand for female labour for 
manual operations. 

0 -0.2 0 -0.13 
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and users (21/-2), although this may be a subjective viewpoint and different to those coming from 

urban environments.  

Factor 2 – Transformative mob grazing 

Factor 2 is defined by 6 significantly loading Q-sorts, explaining 27% of the variance in the study and 

has an eigenvalue of 1.05. The scenario in this perspective is one where stakeholders view 50% of 

farms using ecological approaches as being more likely (1/+2) than a 10% adoption rate (2/-2), but also 

that farms using ecological approaches will form in clusters (3/+1), just at a lesser extent. The High 

Weald has a lot of lifestyle and hobby farmers as it is close to London and as an AONB these farmers 

are more likely to farm with an environmental objective in mind. Meanwhile, clusters are more likely 

as farmers share their experiences and future agricultural subsidies encourage cooperation among 

neighbours (14/+3) for wildlife corridors and increasing biodiversity. As a result of this adoption, the 

environmental effects are similar to factor 1 where soil (6/-4) and water quality will improve (5/+3) as 

well as the number and size of hedgerows (7/-3) (also receiving financial incentives). In this factor, mob 

grazing stands out where participants think that this will increase (19/+4) in the future as they see the 

practice being a better way of managing livestock and grazing: it reduces the amount of inputs that 

farmers need (fertiliser on the grass and medicines in animals) while increasing the livestock density 

the grassland is able to support. The stakeholders believe this practice of mob grazing will deliver 

improvements in the ecological side of the farm – soil and water quality are examples of perceived 

improvements and various organisations, including the High Weald AONB team, promote its use. The 

use of this practice is associated with an increase in skill level (12/+2) where farmers need to: more 

closely observe their animals; understand the biology in their soils; manage grasslands; and manage 

the nature around them. Farmers’ labour is also perceived that it would change. Livestock are kept in 

barns for a shorter amount of time, therefore less time would be needed to clear it out and to feed 

the livestock in barns throughout the year as well as given a lower requirement for medicines, less 

time needed to treat animals on farms. Saving time in these ways may enable farmers to spend more 
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time observing their livestock and manage their local environment. However, farmers would need to 

move livestock more often, though this may be possible through automation through using moving 

electric fences. These changes, including observing livestock more, enables the farmer to take better 

care of the livestock, but also to spend time diversifying into other enterprises and this may lead to an 

increase in employment opportunities (8/+1) in this scenario and factor. 

2.3.3 Q study - North Kent 

Factor 1 – High and clustered adoption needs skilled land managers 

Factor 1 is defined by 8 significantly loading Q-sorts, explaining 23% of the variance in the study and 

has an eigenvalue of 5.98.   
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Table 3 presents the z-scores and Q sort values for the North Kent sample. This factor presents the case 

where the likeliest adoption rate is where 50% of farms in the CSA adopt ecological farming practices 

(1/+3) and their adoption pattern is likelier to be clustered than spread (3/+3). Participants argued a 

50% adoption rate is likelier as subsidies might become necessary for the farm business to survive and 

under a change in policy, subsidies are restricted to be paid when farms provide public goods through 

adopting ecological practices. These practices may need to include no till farming and environmental 

land management. Clusters are already taking shape in the CSA where farms share best practice. 

Another participant refers to the Lawton review: ‘Making space for nature’ (Lawton et al., 2010) – an 

independent review studying England’s wildlife sites and their capability of responding and adapting 

to climate change and other demands on the land. The review emphasises how small, isolated pockets 

will not be sufficient for nature conservation to succeed – bigger landscape scale clusters of farms are 

necessary, and this is supported through a change in government policy which is currently being 

finalised (at the time when the Q was taken, there were still plans and a lot more uncertainty as to the 

policy taking shape). 
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Table 3: North Kent Q results 

No. Statement Factor 1 Factor 2 Factor 3   
Q Z Q Z Q Z 

1 50% of farms will adopt ecological farming 
practices. 

3 1.26 -2 -1.04 2 1.06 

2 10% of farms in the case study area will adopt 
ecological farming practices. 

0 0.36 3 1.58 1 0.59 

3 Ecological farms will form clusters of closely 
connected farms within the case study area. 

3 1.37 1 0.28 1 0.52 

4 There will be little change in the landscape 
appearance of rural areas. 

-3 -1.43 -3 -1.49 6 0.42 

5 Water quality will improve. 1 0.72 3 1.42 2 0.78 

6 Little change will happen to soil quality. -2 -1.31 -3 -1.39 -1 -0.53 

7 There will be no change in the number and/or size 
of hedgerows. 

-4 -1.56 0 0.11 -3 -1.72 

8 Employment opportunities in farming will 
increase. 

1 0.68 -1 -0.49 -2 -0.89 

9 The need for labour work of an individual farmer 
will be spread throughout the year. 

2 1.01 -2 -0.69 -2 -1.17 

10 The farmer’s daily routine will become more 
varied. 

2 1.25 2 0.62 0 -0.17 

11 The wider rural economy will be more resilient. 2 1.01 0 -0.12 1 0.72 

12 Farmers will need to increase their level of skills. 4 1.74 2 1.23 3 1.20 

13 The nature of work on farms will be more 
physically demanding. 

-1 -0.59 -4 -1.65 -1 -0.81 

14 Farmers will cooperate more with neighbouring 
farmers and farms close to them. 

1 0.84 1 0.37 3 1.69 

15 Consumers will not buy a lot more of their food 
locally. 

-2 -1.08 1 0.29 -2 -1.26 

16 Ecological farming will be a limited social 
movement and will not provide substantial 
ecosystem services. 

-3 -1.39 0 -0.20 -3 -1.31 

17 There will be tight certification to define farms as 
ecological. 

0 -0.33 4 2.39 2 0.84 

18 As a proportion of household income, income 
from farming will decrease. 

0 -0.22 2 1.37 0 0.41 

19 More livestock farmers will use mob/strip grazing. 1 0.88 -1 -0.47 1 0.49 

20 Mob/strip grazing will decrease the requirement 
for labour. 

-1 -0.41 0 -0.38 -1 0.46 

21 Rural areas will become no more attractive for 
residents and users. 

-2 -1.13 -1 -0.49 0 0.11 

22 There will be more need of seasonal labour. 0 0.11 0 -0.11 0 -0.42 

23 The use of family labour will decrease. -1 -0.51 0 -0.06 0 0.47 

24 There will be more need of migrant labour. 0 -0.41 -1 -0.54 4 1.75 

25 There will be no change in trade of locally sourced 
inputs. 

-1 -0.77 1 0.24 -4 -1.79 

26 There will be more demand for female labour for 
manual operations. 

0 -0.09 -2 -1.01 -1 -0.52 
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In this likelier scenario of high adoption and clusters of farms with ecological approaches, stakeholders 

envision there to be significant change in the landscape appearance (4/-3) as farmers would be 

encouraged to use cover crops, mixed rotations and companion cropping (less mono-cropping). 

Another example, an increase in the size and number of hedgerows (7/-4) is expected as upcoming 

grant schemes starting in the next 10 years’ will further encourage their expansion, but a participant 

in another defining sort in this factor argues that hedges will not necessarily be planted, and the focus 

would rather be on planting woodland on infertile soils. Overall, stakeholders believe this appearance 

will be more attractive to residents and users (21/-2). Expanding from this perspective is that ecological 

farming approaches will become a pervasive social movement (16/-3) where the wider rural economy 

will be more resilient (11/+2) with consumers buying more of their food locally (15/-2) and farmers 

will cooperate more with each other (14/+1).  

In order to facilitate this adoption, this stakeholder perspective highlights that farmers will need to 

increase their level of skills (12/+4): diversified cropping, use of artificial intelligence will increase, 

knowledge of biodiversity, managing recruitments. A farmer already using ecological approaches adds 

that they need to glean more knowledge and take more time over management decisions to make the 

system work. The diverse cropping and practices on farms with ecological approaches should lead to 

a farmer’s daily routine becoming more varied (10/+2) and labour work to be more spread across the 

year (9/+2).  

Factor 2 – Low percentage certified ecological  

Factor 2 is defined by 4 significantly loading Q-sorts, explaining 11% of the variance in the study and 

has an eigenvalue of 1.71. In this perspective, stakeholders anticipate a lower adoption rate of 

ecological farming approaches, 10% being likely (2/+3) while 50% is unlikely (1/-2). This is where these 

farms are certified as ecological (17/+4), where they use a complete suite of ecological practices rather 

than adopting a few. Given this low adoption, stakeholders think soil (6/-3) and water quality will 

improve (5/+3) – probably as farms become more ecological, just not certifiably so. Participants 



29 
 

consider that the Department for Environment, Food and Rural Affairs (DEFRA) will want to make sure 

that their grants are justifiable, and consumers are more interested in knowing about the provenance 

of their food. However, stakeholders believe consumers will continue to use supermarkets for their 

convenience (15/+1) and purchase low-cost relative to more expensive locally priced foods. With a low 

adoption of ecological practices, a withdrawal of BPS subsidies, and consumers not increasingly buying 

local, stakeholders predict income from farming will decrease as a proportion of household income 

(18/+2).  

On farm labour, farm work in its nature is perceived to become less physically demanding (13/-4), the 

ecological practices will not make farm work more physically demanding and associated technologies 

may even further reduce the physical strain. The statement on women and physical labour received 

strong disagreement (26/-2) in this factor – participants highlight that what matters is the right person 

in terms of their skills and competencies for the job and that female labour should not be treated any 

differently from male labour on farms.   

Factor 3 – Skilled migrant labour demanded  

Factor 3 is defined by 5 significantly loading Q-sorts, explaining 13% of the variance in the study and 

has an eigenvalue of 1.99. As with factor 1, factor 3 presents a perspective where 50% of farms adopt 

ecological practices (2/+1) and these farms using ecological approaches are more likely to form into 

clusters (3/+1). Reflecting these clusters, farmers will cooperate more with one another (14/+3), but 

here is a stronger emphasis on the form of that cooperation – an increase in trade of locally sourced 

inputs (25/-4). This perspective explains that farms with ecological approaches will still need more 

migrant labour (24/+4) as the local population are perceived as unlikely to have the skills and 

willingness to fill the gap for seasonal labour. In North Kent, although there may be a high proportion 

of farms with ecological approaches, there will still be intensive cropping of soft fruits (e.g. 

strawberries and raspberries) and top fruit orchards, and therefore a need for seasonal migrant labour. 

Although in their explanations, participants highlighted that migrant labour is needed where seasonal 
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labour is needed – the statement discussing seasonal labour features neutrally in this factor suggesting 

that the need for migrant labour may be more on a permanent basis in order to fill a shortfall in skill 

level (22/0). Indeed, skills have a higher significance (12/+3) and as put by the participant before, it 

may be the skills that migrant labour brings, that farmers using ecological approaches are most 

interested in utilising on farm. 

2.4 Discussion and Conclusions 

Q has allowed for the study of complex qualitative questions in a structured manner in order to 

forecast the socio-economic effects of adopting ecological practices after 10 years. In an ideal setting, 

the Delphi should have been organised in advance of the Q from where statements could be created 

to manage the entire discourse, but due to time management concerns, the studies were run 

concurrently. The results should still be valid as each study is alone sufficient, however, a stronger set 

of statements could have been designed through the structured approach of the Delphi exercises 

instead of more informal stakeholder workshops and discussions between researchers. 

The complexity of adopting ecological approaches in both these English CSAs was reflected in the Q 

and their resulting diverse socio-economic effects. Q asked participants to sort a list of statements that 

outline the pattern and rate of adoption as well as possible socio-economic effects of this adoption 

scenario. The understanding of ecological approaches for the case study areas were similar and 

seemed to form an English understanding of the term where ideas seemed to coalesce around 

regenerative farming and conservation agricultural practices e.g. minimising soil disturbance, 

integrating livestock and crop farming. As participants sort these statements, they may explain to the 

interviewer the reasons behind their individual Q-sort which provides added material from which the 

subsequent factors can form a stronger interpretation.  

Depending on local conditions, geography, farm type and being located in an AONB, ecological 

practices vary in each CSA. This leads to a variation in the pattern and rate of adoption of these 

practices in 10 years’ time. Depending on this adoption, effects differ to be stronger in areas with 
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higher and more clustered adoption. Meanwhile more spread and lower adoption often leads to little 

or no change, but skill level is something that, even given a small increase in ecological approaches, is 

expected to change. This finding suggests that UK and EU policy to encourage collaboration between 

farmers is well placed. 

Four key results are taken from the Q. 

First, skill level was a significant aspect in many of the factors in the Q. Following an expected change 

in government policies, in order to receive government subsidies farmers will need to make 

environmental interventions rather than rely on area payments as these are being phased out. The 

Delphi Exercise supports this increased need in skill level and study participants added that they expect 

an increase in quality of life to go with an increase in the diversity of farming enterprises, the interest 

generated from this, the knowledge of natural processes and biology required, engagement with 

nature and new machinery that is coming into the industry. Strongly related to this need for skills is a 

predicted increase in the number of advisers and civil servants to deal with more complicated farms 

and incentives as well as monitoring of ecological effects on farm.  

Second, especially where farms are clustered together, Q highlights that they may support a stronger 

social movement, more consumers buying local food, and may increase collaboration between 

farmers. Supply chains are expected to become shorter as farmers sell more directly to the consumer 

and there are fewer intermediaries upstream of the farming sector. As farmers collaborate more with 

each other on environmental objectives, trading inputs and sharing best practice, farmer relationships 

should improve in rural communities. 

Third, Q highlights that ecological practices will not mean the end of machinery and a lot more labour 

– often machinery will be useful in weeding and reducing physical labour as technology has 

significantly improved and skills are improving too in order to use these technologies. The Delphi 

exercise adds that contracting, machinery purchasers, and machinery traders and dealers could 

increase, decrease or not change – the anticipated effects are mixed. But stakeholders conclude that 
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a greater specialisation in machinery will occur leading to changes in farm management as well as the 

suppliers of this machinery. 

Fourth, Q highlights that where there is high adoption of ecological approaches, rural areas are 

expected to become more attractive as landscapes will have a much greater variety of crops instead of 

large fields of monocrops. This variety of crops may include agroforestry as well as intercropping. In 

addition, Delphi exercise respondents argued that although rural populations might be little affected 

from ecological farming, larger rural populations seeking a more attractive rural environment might 

contribute to higher local consumer demand. 

A limitation in this study is that the questions and statements proposed to stakeholders did not 

sufficiently cover the development of private markets for carbon, nutrients and biodiversity through 

Biodiversity Net Gain.  

Interesting policy recommendations come out from the need for more skills repeated in both English 

CSAs. Policymakers need to ensure there is a suitable provision of education and skill development for 

farmers to learn new skills relating to farming using ecological approaches. Some of the skill gap could 

also be filled through sourcing farm skilled migrant labour. In addition, given the introduction of the 

Sustainable Farming Incentive and the withdrawal of the Basic Payment Scheme, stakeholders 

anticipate a higher uptake of ecological practices. Stakeholders perceive that, in order to survive, many 

farms may need to adopt these practices which are predicted to make significant improvements in soil 

and water quality as well as biodiversity as a result. However, these farms still need to remain 

profitable, and in more fertile ground in North Kent farms may become more intensive. 
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Appendix 

Delphi Exercise Interview Questionnaire 

Delphi Round 1 Questions 

1) What farm practices would an ecological farm use as opposed to a conventional farm? Would 

this type of farm be large or small compared to an average conventional farm in the area? 

Why? Please explain.  

 

Please rank (on a scale from 1 being least important to 12 most important) the below farming 
practices into what is most important to defining an ecological farm 

Practice % Top Rank Average rating 

Low tillage use   

Integrated Pest Management   

Integrated Weed Management   

Machine weeding   

Manual weeding   

Precision technologies   

Use of organic manure or compost   

Number of crops   

Extensive use of cover crops   

Strip grazing   

Integration of crop and livestock at farm level   

Alternative remedies for livestock disease 
management 

  

 

2) Statement Rating 

On a scale of 1-9 where 1 is significantly smaller, 5 is no change and 9 is significantly 
larger please indicate the size comparison of an ecological farm with a conventional farm. 

 

 

3) Is it possible to use natural processes to replace the use of chemical inputs on the farms in the 

area? If yes, what natural processes? If not, why?  

4) If more farms became ecological in the way set out in the farm representative model, would 

more farms across the study area become mixed or would they remain specialised in livestock 

or crop production? What proportion of the region’s farms would become mixed livestock with 

crop production farms?  

5) On the farms in the study area, is it realistic or not to have a system that integrates livestock, 

cover and catch crops, and direct drill practices? Please explain.  

6) In the study area, is it realistic or not to only have farming systems that integrate crops and 

livestock?  

7) Would there be a large need for machinery on an ecological farm in your area?  

8) Would the type of practices implemented in ecological farms require the use of more or less 

labour, in terms of people and number of hours worked? Why? 
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Delphi Rounds 2 & 3 Questions 

Section 1 - Pattern of adoption  

Please fill out the %s in the below table with explanations for questions 1 and 2 of this section. 

 Round 2 Round 3 

 Clustered – C Random Pattern - R Clustered – C Random Pattern - R 
Low Adoption Rate (L - 10%) L-C: % L-R: % L-C: % L-R: % 
High Adoption Rate (H - 50%) H-C: % H-R: %  H-C: % H-R: % 

 

1) If farms were to adopt this ecological farming system in your case study area, would these 

farms be clustered together or spread across the territory?  Please explain. 

2) Would adoption of this regional ecological farming system be closer to a low (of around 10%) 

or a high proportion (around 50%) of the region’s farms? Please explain. 

Section 2 - On-farm employment effects across the study area 

Questions 4-11 provide qualitative information supporting the Likert scale below in question 3. 

3) What would be the impact on the 
following? 

Large decrease Little change Large increase 

1 2 3 4 5 6 7 8 9 

a) Total farm employment across the area ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 
b) Need for migrant labour ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 
c) Wage level ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 
d) Gender balance of farm heads ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 
e) Flexibility of working hours ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 
f) Skill level of farmers ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 
g) Quality of life of farmers ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 

 

4) What would the impact be on total farm employment across the area?  Please explain. 

5) Would there be differences in the nature of this employment, i.e. would there be more or 

fewer jobs that are full-time or part-time, would more or fewer farmers become self-employed 

or hired on the farm or in other areas of the value chain?  Please explain. 

6) Would farmers in an ecological farming system be able to work hours that are more or less 

flexible? Why? 

7) Would the quality of life change for farmers within ecological farms? Positively or negatively, 

how might it change?  

8) Would there be an increase, decrease or no change to the need for skills in the labour force? 

Please explain. 

9) Would there need to be more, less or no change to migrant labour? Please explain. 

10) Would there be more farm heads who are female, or more farm heads who are male? Please 

explain. 
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11) What would the effect on farm wages in the area be? Please explain. 

Section 3 - Employment effects on industries supporting farming 

12) Would the advisory service need to increase in personnel, decrease or no change? 

13) What additional skills of farm advisors would be required by ecological farming? 

14) What would be additional skills of civil service required by ecological farming? 

15) Which actors in the food chain – up and downstream of agriculture - need to change their 

skills? Please explain. 

 

16) Rank (on a scale from 1 being least change and 8 the biggest change) the following actors 
in the food chain into where the biggest change in skills and knowledge for engagement 
with ecological farming would need to be 

Actor Rank 

Farmers  

Input suppliers  

Extension agents  

Civil service  

Consumers  

Retailers  

Food and drink manufacturers  

Wholesalers  

 

 

Section 4 - Supply chain effects 

17) How would this impact on trade in inputs between farms, e.g. manure, seeds, hay?  

 

18) Considering the list of below inputs, please rank (on a scale from 1 being having least 
change to 7 having most change) which input will have the biggest change in trade levels 
between farms? 

Input Rank 

Animal manure  

Compost  

Seeds and plantlets  

Bulk feed and coarse fodder  

Concentrated feed  

Shared labour  

Shared machinery or equipment  

 

19) What would the effect be on contract farming?  

20) How would this impact the purchase of tractors and other machinery?  

21) How would this change the number of traders and dealers of machinery who operate in the 

region?  

22) Would this modify supply chains?  
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Section 5 - Effects on rural communities 

23) Would there be a change in the size of the rural population and thereby a change in demand 

for rural services? Please explain what may happen.  

24) How would this affect the rental/purchase price of homes in rural areas?  

25) How might relationships between farmers change? 

 

Delphi Information Sheet for North Kent 

The objective of these interviews is to seek consensus between the members of an expert panel, 

specific for the North Kent case study area, on the socio-economic effects of a change in the territorial 

landscape. This change is a result of a certain level and pattern of adoption of ecological farming 10 

years from now and in comparison, with the current situation of farming in the area. The survey 

information contributes to a research project LIFT (‘Low-Input Farming and Territories’), funded by the 

European Commission in the frame of its programme Horizon 2020. The research project is carried out 

by 17 teams. 

In this study, you will be asked individually of your opinion on: a/ characteristics of an ecological and a 

conventional farm, typical for the area; b/ how you will forecast these farms appearing in your area in 

terms of proportion of all farms and what will be their pattern of adoption – clustered or randomly 

distributed in the territory; c/ the socio-economic effects of this adoption level and pattern. Think 

about the area as a whole, not just a single farm. It is important to keep in mind throughout the 

interviews that it is the effects you think will happen in 10 years. 

To give some context surrounding the characteristics of ecological and conventional farms, please see 

Table 1 below. The numbers in this table correspond to the North Kent case study area and are based 

on data – from the LIFT farm survey. Please continue to refer back to this table throughout the rounds 

of the interview and keep in mind that all questions are specific to effects in the whole territory of your 

area.  
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Table 4. Comparing a possible ecological farm with a typical conventional farm (data extracted from the LIFT 
farm survey in UK - North Kent case study area) 

Ecological practices A Conventional Farm An Ecological Farm 

 Farm size (UAA1 in ha) 306 472.4 

Farm size (LSU) 6.5 81.6 

Value of farm machinery (£) 414,545 357,000 

Stocking density (LSU/ha) 0.25 0.17 

Crop-livestock integration (% farms) 13.3 32 

Inorganic pesticide use (£/ha) 247.6 155.6 

Inorganic fertiliser use (£/ha) 147.1 98.5 

Organic animal manure or compost (% UAA) 21.2 13.6 

Green manure (% arable UAA) 26.9 19.5 

Conservation or zero tillage (% arable UAA) 55.7 51.6 

Crop diversity (Number of different crops) 5 5.8 

Semi-natural habitats (% UAA) 6.67 7.2 

Average hours of labour used (per farm, per week) 105.8 119.5 

Physical nature of work (Likert2) 3.28 3.17 

Mental workload of farm work (Likert2) 3.71 3.35 

Intensity of seasonal peaks (Likert2) 3.07 3.09 

Notes: 1UAA is utilised agricultural area, LSU is Livestock Units 
2Likert scale follows the LIFT large-scale farmer survey questionnaire in D2.2 (Tzouramani, et al., 2019) and is from 1 to 

5 with 1 being large decrease, 3 no change and 5 a large increase 

 

Each time following a round of questions, the researchers will summarise and anonymise the 

responses and will present an anonymised summary again to you to see your opinion on the summary, 

thus, to see whether the opinions of individual members of the panel will still diverge or converge 

towards consensus.  

This process will take 3 rounds with each individual panel participant and each round is quick to 

complete. Round 3 asks the same questions as round 2, but after having received an anonymised 

summary of responses, you have another opportunity to consider the question.  

Please note the information you supply is entirely confidential, your identity remains anonymous, and 

the data obtained will be analysed scientifically.  

The name of the researcher who will participate in your interview is Stuart Henderson and his e-mail 

address is sh902@kent.ac.uk.  
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Q Information Sheet 

This is an exercise which looks at your opinions of what is more likely or less likely to happen in 10 

years’ time over the High Weald if ecological farming is more widely adopted. The principles for 

regenerative agriculture may help in defining how ecological farms are different from conventional 

farms – not necessarily organic, but reduced chemical use and attention given to improving the soil 

(e.g. minimum or no tillage practices, cover cropping, holistic planned grazing). 

In 10 years’ time, ecological farming may have been adopted by more farmers and this adoption could 

be either dispersed or clustered across the High Weald study area. This interview seeks your opinion 

on what the effects might be of this particular change to farming in the following areas: i) the provision 

of ecosystem services; ii) working conditions of farmers and hired farm workers; iii) rural labour 

market; iv) ecological farming if treated as a social movement. As a basic background, a typical 

ecological farm for the area, in comparison with a typical conventional farm, is outlined in Table 5, 

below. Have this table in front of you when you will give your opinion on what would happen if 

ecological farming were more widely adopted in comparison to the current situation. 

Table 5. Comparing a possible ecological farm with a typical conventional farm (data extracted from the LIFT farm survey in 
UK – High Weald case study area) 

Ecological practices A Conventional Farm An Ecological Farm 

 Farm size (UAA1 in ha) 117.2 160.9 

Farm size (LSU) 50.4 116.5 

Value of farm machinery (£) 225,625 148,045 

Stocking density (LSU/ha) 0.67 0.85 

Crop-livestock integration (% farms) 0.3 0.13 

Number grazing days in the same field 74.2 65 

Inorganic pesticide use (£/ha) 78.3 7.3 

Inorganic fertiliser use (£/ha) 108.5 18.4 

Organic animal manure or compost (% UAA) 17.7 19.2 

Green manure (% arable UAA) 0 2 

Conservation or zero tillage (% arable UAA) 33.3 24.5 

Crop diversity (Number of different crops) 4.7 6.7 

Semi-natural habitats (% UAA) 2.5 5.4 

Average hours of labour used (per farm, per week) 114.5 65.4 

Physical nature of work (Likert2) 3.11 3.67 

Mental workload of farm work (Likert2) 3.44 3.73 

Intensity of seasonal peaks (Likert2) 2.78 3.27 

Notes: 1UAA is utilised agricultural area, LSU is Livestock Units 
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2Likert scale follows the LIFT large-scale farmer survey questionnaire in D2.2 (Tzouramani, et al., 2019) and is from 1 to 

5 with 1 being large decrease, 3 no change and 5 a large increase 

 

Ecological farms in table 1 were categorised as such if they receive agri-environmental payments 

and/or are organic, otherwise farms were categorised as conventional. This approach is problematic 

as for example it might be more worthwhile for larger farms to apply for the payments and/or they 

have more field corners that comply with payment requirements – this is possibly why ecological farms 

in the sample are of average larger. We are working on a better approach, but thought the above data 

give a useful context for different practices and differences – in any case, the use of chemicals is on 

average lower on ecological farms in the sample which fits with our hypothesis. 

In this exercise, you are presented with 26 statements. First, sort each statement into one of three 

piles: likely to happen, unlikely to happen and neutral or unsure. Then, please order these statements 

along a continuum from most likely to least likely to happen in 10 years’ time compared to the farming 

of today.  

Statements are to fit all of the grid boxes as seen below in Figure 5. It is not possible to sort two 

statements into the same box, but multiple statements can go into each column. Think of this exercise 

as a game in which you try to place all the statements in a way that best represents your opinions. 

Once you have placed a statement in the grid you are still able to move it if you reconsider it in 

comparison with another statement. You can move up until the time you placed all statements in the 

grid boxes, and you are happy with your choice.  

As you sort through the statements, the researcher accompanying you online may ask questions for 

your reasoning why this statement was placed where it was. This is to further study your opinion on 

the matter involved.  
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Figure 5: Q ranking grid 

         

         

         

         

         

         

-4 -3 -2 -1 0 1 2 3 4 

 Most unlikely    Most Likely  

Note that background information regarding age and gender does not need to be completed.  

At the end of the online study, please select ‘Submit data’, this will fail, but you will have 3 more options 

at the end, please ‘Print data’ and print to pdf (if this is not possible a photo or scan could be taken of 

the results, either of a printed paper or on-screen results). Please then send this pdf document (or 

scan or photo) to me. 

The survey information contributes to a research project LIFT (‘Low-Input Farming and Territories’), 

funded by the European Commission in the frame of its programme Horizon 2020. The research project 

is carried out by 17 teams. 

Please note the information you supply is entirely confidential, your identity remains anonymous, and 

the data obtained will be analysed scientifically. 

The name of the researcher who will participate in your interview is Stuart Henderson and his e-mail 

address is sh902@kent.ac.uk.  
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Chapter 3: Estimating Total Factor Productivity with Chemical Inputs 

 

Abstract 

This chapter estimates Total Factor Productivity (TFP) in a Cobb-Douglas production function 

framework. The estimation strategy applies Generalised Method of Moments (GMM) accounting for 

the use of chemical inputs which is absent in previous GMM estimations of TFP in the literature. Data 

is used from the Farm Accountancy Data Network (FADN) for cereal crop farms from 2004-2018. 

Including chemical inputs in the specification makes little difference to the coefficient on labour 

productivity, but it has a large effect in reducing the coefficient on land productivity. As agricultural 

policy in the United Kingdom (UK) is heading towards Environmental Land Management Scheme 

(ELMS), some farmers might be encouraged to farm with a lower chemical intensity thereby making 

estimations adjusting for this variable more important within production function estimations. Future 

estimations should include chemical inputs as a factor of production as it reduces the bias on the 

coefficients on the other input elasticities and itself is a useful indicator of the return to additional use 

of chemical inputs on farm production. 

 

3.1 Introduction 

Following Brexit, agricultural policy in the United Kingdom (UK) is undertaking dramatic changes. In 

England, the European Union’s (EU) Common Agricultural Policy (CAP) is being partly replaced with 

Environmental Land Management Schemes (ELMS) (DEFRA, 2023). From 2021 to 2027 Direct Payments 

are being phased out in England: the Basic Payment Scheme (BPS) will end at the end of 2023 and will 

be replaced with delinked payments from 2024 to 2027. In the meantime, farmers are being 

encouraged to take up payments through ELMs to replace their loss in BPS. ELMS would be used as a 

tool for government to encourage farmers to adjust their farming practices in order to reach the 
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government’s aims outlined in its 25 Year Environment Plan. Reducing the use of chemicals within 

farming practices directly impact the aims of air quality, water quality, waste, biodiversity and carbon 

(Helm, 2022). 

Studies assessing the impact of chemicals on farm productivity have existed for many years (Headley  

(1968); Lichtenberg and Zilberman (1986); Chambers and Lichtenberg (1994)). In an early study 

Headley (1968) estimates pesticides separately from the other inputs in the production function 

highlighting that as well as fertiliser, pesticides is a highly productive input in its own right. The 

literature developed to study pesticide use as a means of damage control (Lichtenberg and Zilberman, 

1986) i.e. pesticides are used to minimise losses to output rather than increase output as fertiliser 

does. An attempt was made in the literature to reconcile econometric results, which had suggested 

that farms should use more pesticides, with the available entomological knowledge (Lichtenberg and 

Zilberman, 1986). Indeed, estimates for the productivity of pesticides are shown to have been 

overestimated (Lichtenberg and Zilberman (1986); Chambers and Lichtenberg (1994)). 

The literature studying the relationship between reducing the use of inputs harmful to environmental 

performance and its effect on farm production has since grown and this is studied in a literature review 

in the following section. A number of different approaches are used to estimate farm productivity that 

include Stochastic Frontier Analysis (SFA), Data Envelopment Analysis (DEA), Control Function (CF) 

methods and Generalised Method of Moments (GMM) (Biagini et al., 2023). This chapter seeks to 

estimate a production function, considering the possible endogeneity issues faced by other estimation 

methods in the literature and includes the impact of chemical inputs on Total Factor Productivity (TFP) 

estimations. 

The next section presents a review of the relevant literature. The following section 3 describes the 

model, variables and data used in the estimations. Section 4 presents the results and section 5 

concludes the chapter. 
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3.2 Literature Review 

Since the paper by Chambers and Lichtenberg (1994) the literature has developed in its study of 

agriculture’s impact on the environment. Examples include attempts to construct an indicator, or index, 

to represent environmental goods, Sustainable Intensification (SI) or eco-efficiency as a ratio indicator 

or within frontier-based models (Lauwers, 2009). Lauwers (2009) identifies two branches of the eco-

efficiency frontier-based models - two different types of models for integrated ecological-economic 

analysis within a production context. The first branch of models are environmentally adjusted 

production efficiency models, and this includes parametric models such as Stochastic Frontier Analysis 

(SFA) as well as non-parametric models including Data Envelopment Analysis (DEA). The second branch 

are frontier eco-efficiency models. Lauwers suggests a way to combine both branches of models is 

through the materials balance principle and thereby add a third branch to the literature. In this context, 

the materials balance principle is where all materials that enter the economic system will finally end 

up in the environment with some recycling along the way. For example, in pig production, piglets and 

feed go into the system and out comes meat, manure and other byproducts.  

Applying a DEA approach, Gadanakis et al., (2015) evaluate the SI of General Cropping Farms in the 

East Anglian River Basin Catchment using Farm Business Survey data. Their aim is to outline a policy-

making tool to assess SI at a farm level. The concept of SI at farm level is that while the farm minimises 

its generation of environmental pressures it simultaneously increases agricultural output per unit of 

input (Firbank et al., 2013). An aggregated index of Eco-Efficiency, a composite indicator also known 

as the Economic-Ecological Efficiency, is a ratio of an output (measured through the value of products) 

over the inputs the farm uses. The inputs are considered as a proxy for the environmental pressures 

generated by the farm and the indicator measures how efficiently resources are used to produce 

output. Linear programming techniques were used to assign weights. If the Eco-Efficiency Index goes 

down in value, then this means there is an increase in environmental impact while the output value is 

decreased or is maintained and the reverse in the case of improvement. Gadanakis, et al., (2015) 



44 
 

continues with an estimation of an Eco-Efficiency frontier using DEA. The frontier is intended to 

characterise a trade-off between economic and ecological performance. 

Omer et al., (2007) combines a biodiversity index with Farm Business Survey (FBS) data economic 

variables into a SFA framework. Over an 11-year period it derives a hypothesis about the interaction 

between biodiversity and optimal crop output in the longer run and in the transitional path towards a 

steady-state equilibrium. The authors find that there is a positive relationship between biodiversity 

conservation and an increase in crop output. 

Areal, et al., (2012) and Areal, et al., (2018) also apply a SFA, instead using a Bayesian procedure. The 

former paper studies technical efficiency using a multi-output technology in the framework of an 

output distance function where there are the traditional market outputs as well as an output for the 

provision of PG and ES, or environmental goods (EG) as used by Areal. Using FBS data, the authors use 

a proxy indicator for EG where EG = (permanent grassland + rough grassland)/total agricultural area. 

Areal, et al., (2012) turn their distance function into a translog functional form that then allows them 

to use a Bayesian Markov Chain Monte Carlo (MCMC) to estimate the technical efficiency of the farms. 

They compare two models, one which includes EG and one which does not, where they find that 

efficiency measures are biased when not using EG as an output. Therefore, policymakers should rather 

consider a model using EG otherwise, they may support farms that would not boost a provision of EG 

despite this being a key policy aim in the UK and the EU. In contrast, Areal, et al., (2018) incorporate a 

novel SI composite indication with the Bayesian MCMC to analyse farm efficiency.  

Another application of SFA is in a recent paper measuring the ‘ecologisation’ of farms and its impact 

on total factor productivity (TFP) (Baráth and Fertő, 2023). These authors combine a composite 

indicator for how ecological a farm is and a dose-response function with a random-parameter 

stochastic production frontier model (Baráth and Fertő, 2023). They find that as a farm becomes more 

ecological it reduces farm TFP. 
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Another approach to study TFP in agriculture is the CF method. This method has become standard 

practice in applied economics production estimations (Olley and Pakes (1996); Levinsohn and Petrin 

(2003); Ackerberg et al., (2023)). Most of the papers using this approach in an agricultural context 

apply the method to studying the impact of a change in CAP on TFP (Rizov et al., (2013); Kazukauskas 

et al., (2010); Kazukauskas et al., (2014). A notable exception is a Japanese application where 

differences between farms as well as product differentiation are studied with respect to TFP (Akune 

and Hosoe, 2021). The benefit of the CF method is that it adjusts for the simultaneity and selection 

biases that are usually found when estimating TFP and this is in direct contrast to the SFA (Kazukauskas 

et al., 2010).  

Elsewhere in the literature exploring the link between chemical input use and the production 

technology is through contrasting conventional and organic farming (Latruffe and Nauges, (2014); 

Kumbhakar et al., (2009); Zhengfei et al., (2005); Gardebroek et al., (2010)). Latruffe and Nauges, 

(2014) and Kumbhakar et al., (2009) both compare the technical efficiency of organic and conventional 

farming. Meanwhile, Zhengfei et al., (2005) and Gardebroek et al., (2010) consider the production 

technologies based on damage abatement and risk adjusted production functions instead. 

A final method considered in this chapter to estimate a farm’s production function is through GMM 

(Mary (2013); Garrone et al., (2019b); Khafagy and Vigani (2022); Biagini et al., (2023)). Mary (2013) 

argues that GMM has advantages over the previously mentioned frontier-based models. Random 

shocks such as weather conditions affecting yields may strongly impact the production process of crop 

farms, the farmer may react in a way known to them but not typically known to the econometrician 

(Petrick and Kloss, 2018). Indeed, the DEA will not allow the econometrician to observe the effect, but 

this can be accounted for in GMM (Mary, 2013). In addition, Mary argues that whereas the SFA may 

struggle with simultaneity or endogeneity in the independent variables due to a correlation between 

inputs and productivity shocks, GMM can account for these problems. Khafagy and Vigani (2022) add 
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to this critique of the SFA and DEA frontier approaches by arguing that they do not account for regional 

heterogeneity. 

As argued by Biagini et al., (2023), the CF approach is not used in this chapter due to avoiding the risk 

of evaluation errors which may be present if the incorrect free and state variables or the wrong set of 

Instrumental Variables were selected. In order to correct for simultaneity in the first-differenced 

equations that may be a problem with SFA and DEA approaches, this chapter utilises the GMM 

approach whereby GMM estimators use lagged instruments and eliminates firm specific effects 

through taking first-differences (Blundell and Bond, 2000). 

3.3 Estimation Strategy and Data 

The following section first describes the data sample and explores some trends of the time period of 

the data. Second, it explains the methodology for estimating the production function technological 

parameters and third, this explain describes the procedure for estimating farm TFP. 

3.3.1 Sample description and trends in the data 

This chapter uses Farm Accountancy Data Network (FADN) panel data  of UK cereal farms over 15 years 

of data from 2004 to 2018. The farms in the sample are only crop producing farms so as to limit the 

differences in farming practices that would be present in different farming systems (Areal et al., 2018).  

The variables as shown in Table 6 taking monetary values, in £GBP, e.g. fuel expenditure have been 

adjusted by being deflated using the corresponding adjustment coefficient for each variable taken from 

the Eurostat Price indices. The adjustment coefficients reflect how prices for these respective variables 

have changed over time relative to 2015 as the base year. Values are deflated by dividing the value for 

each farm by the adjustment coefficient for that year. Only crop farms have been selected from the 

FADN UK dataset and only farms that have been surveyed for at least 4 years have been kept within 

the sample. Not including farms that are in the dataset for only 1, 2 or 3 years is so that in case these 

farms observe a random, exceptional event, their data will not lead to a measurement error in the 
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dataset that could be controlled through the panel features of the data. Further outliers were removed 

following Mary (2013) and described as follows. All observations, where there is an observation of 0 

output, or the log difference in the capital stock variable and/or the output variable between two 

consecutive years exceeds three in absolute value have been dropped. This leaves an unbalanced panel 

of 1,168 farms and a total of 8,053 observations across all these farms.  

Table 6: Description of the variables 

Variable Description 

Output (𝑌𝑖𝑡) Total output (£)  

Productivity 
shock (𝑍𝑖𝑡) 

The residual, TFP (Calculated as part of the chapter) 

Land (𝑁𝑖𝑡) Total utilised agricultural area (UAA) in hectares 

Labour (𝐿𝑖𝑡) Total labour hours per farm 

Capital (𝐾𝑖𝑡) Total closing value (£) for machinery and 
equipment.  
 

Fertiliser 
(𝐹𝐸𝑅𝑇𝑖𝑡) 

Total fertiliser expenditure (£) 

Crop protection 
(𝐶𝑃𝑖𝑡) 

Total crop protection expenditure (£) 

 

Table 7 presents the descriptive statistics for the crop farms in the FADN data sample for the years at 

the beginning and end of the panel. Over time both output and most inputs have on average increased. 

Labour in the number of hours worked has decreased on average and land and fertiliser has barely 

changed overall.  

Table 7: Descriptive statistics comparing the farm sample in 2004 with 2018 

 
2004 2018  

Mean Std. dev. Obs. Mean Std. dev. Obs. 

Output (£) 12.06 0.89 505 12.47 0.92 635 

Total Labour (hours) 8.42 0.79 505 8.35 0.93 635 

Capital (£) 11.58 1.11 504 11.81 1.30 630 

Land (ha) 5.11 0.79 505 5.18 0.76 635 

Fertiliser (£) 10.08 0.90 501 10.15 0.97 631 

Crop Protection (£) 9.52 1.15 498 10.02 1.10 620 

Note: All variables are in logarithms. 
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Figure 6 and Figure 7 show the trends in the variables used in the production function over the time 

period. These trends are included here to explore any underlining trends and changes in the partial 

productivity of different factors of production. Note that these show the average values for every year 

after having been deflated by the relevant price indices. As labour has fallen between 2004 and 2018 

and output has increased it is unsurprising that labour productivity is shown to increase over time. 

Whereas capital has increased close to in line with output and thereby showing little improvement in 

partial productivity. 

Figure 6: Panel a – Average Farm Labour Productivity and Panel b – Average Farm Capital Productivity 
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Figure 7: Panel a – Average Farm Output per ha and Panel B: Average Chemical Input expenditure per ha 

 

Figure 7 considers output per hectare (ha) as well as the chemical inputs, fertiliser and crop protection 

expenditure per ha. Shown in panel A, over time output has been increasing relative to land. 

Comparing 2004 and 2018 would make it appear that fertiliser expenditure has changed little over this 

time period, however if starting in 2008, after the financial crisis, then an increasing trend can be 

observed. Meanwhile there has consistently been an increasing trend in crop protection expenditure 

per ha from 2004 to 2018. This indicates that chemical input expenditure has been increasing in 

intensity relative to land, but perhaps in line with food production. 

3.3.2 Econometric specification – Production Function Estimation 

The production function models a continuous relationship between output and inputs (Petrick and 

Kloss, 2018). Estimating the production function has often encountered difficulties in terms of 

endogeneity where they do not account for managerial skill in decision making (Petrick and Kloss, 

2018) or that there may be a random event that the farmer reacts to with their use of inputs but this 

is not observed by the econometrician (Latruffe et al., 2017); (Mary, 2013). 
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A sample of data contains different random variables, and the data are assumed to be the sample 

equivalent for the population of UK cereal farms. An example of a moment condition is the expected 

value of the random variable, 𝑥, is equal to the mean, 𝜇, in the population and its sample equivalent, 

𝜇̂, is a parameter we may wish to estimate. When the number of parameters equal the number of 

equations to be satisfied, this is method of moments, but in GMM there are more moment conditions 

than parameters. Therefore, exact solutions cannot be found without a particular value of the 

parameter. Therefore, GMM attempts to construct cost functions where each function minimises the 

absolute deviation in the parameter values within the moment conditions (the moment conditions are 

a system of equations where there is one equation per instrument (Mary, 2013)). 

In the context of a dynamic panel data model with a lagged dependent variable and lagged 

independent variables (Arellano and Bond, 1991); (Blundell and Bond, 1998), the GMM application 

allows for estimation where there are more instruments than there are regressors. An issue with 

“Difference and system GMM estimators… can generate moment conditions prolifically, with the 

instrument count quadratic in the time dimension of the panel T” (Roodman, 2009, p. 98). 

Below a Cobb-Douglas production function is considered based on Mary (2013) which in turn is 

based on Blundell and Blond (2000): 

𝑌𝑖𝑡 = 𝑍𝑖𝑡𝐿𝑖𝑡
𝛽𝐿

𝐾𝑖𝑡
𝛽𝐾

𝑁𝑖𝑡
𝛽𝑁

 , 𝑖 = 1, … , 𝑁; 𝑡 = 1, … , 𝑇, 

where each variable is indexed by individual farm, i, and time, t, table 1 describes each of the 

variables. The model makes the assumption that serially correlated shocks allow for a dynamic 

representation of the production function (Mary, 2013). Taking logarithms, we obtain: 

𝑦𝑖𝑡 = 𝛽𝐿𝑙𝑖𝑡 + 𝛽𝐾𝑘𝑖𝑡 + 𝛽𝑛𝑛𝑖𝑡 + 𝑢𝑖𝑡 , 

( 1 ) 
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where 𝑦𝑖𝑡 = ln (𝑌𝑖𝑡), 𝑙𝑖𝑡 = ln (𝐿𝑖𝑡), 𝑘𝑖𝑡 = ln(𝐾𝑖𝑡), 𝑛𝑖𝑡 = ln(𝑁𝑖𝑡), 𝑢𝑖𝑡 = ln (𝑍𝑖𝑡). This model is adapted 

to include a combined measure of fertiliser expenditure (𝐹𝐸𝑅𝑇𝑖𝑡) and crop protection (𝐶𝑃𝑖𝑡) costs, 

where 𝐶𝐻𝐸𝑀𝑖𝑡 = 𝐹𝐸𝑅𝑇𝑖𝑡 + 𝐶𝑃𝑖𝑡 and thereby we obtain: 

𝑦𝑖𝑡 = 𝛽𝐿𝑙𝑖𝑡 + 𝛽𝐾𝑘𝑖𝑡 + 𝛽𝑛𝑛𝑖𝑡 + 𝛽𝑐ℎ𝑒𝑚𝑐ℎ𝑒𝑚𝑖𝑡 + 𝑢𝑖𝑡 , 

( 2 ) 

As discussed earlier in the introduction, pesticides are better thought as minimising damage to crop 

output, whereas fertiliser increases crop growth. An alternative estimation disaggregating these inputs 

is also used and the results are shown in the appendix. The objective here is to model the overall 

contribution of chemical inputs within the production function. Following on from Mary (2013) and 

introducing a productivity shock: 

𝑢𝑖𝑡 = 𝐺𝑡 + 𝜂𝑖 + 𝑣𝑖𝑡 + 𝑚𝑖𝑡 , 

𝑣𝑖𝑡 = 𝜌𝑣𝑖,𝑡−1 + 𝜖𝑖𝑡 

( 3 ) 

Here 𝐺𝑡 is a common effect to all farms, the farm specific and time invariant effect is 𝜂𝑖, 𝑣𝑖𝑡 is an AR(1) 

idiosyncratic shock with 𝜌 being the coefficient from the shock from the previous period to the current 

period,  𝑚𝑖𝑡 are measurement errors which are uncorrelated with the rest of the equation. Estimating 

the parameters of the production function and including the chemical inputs gives us the following 

dynamic representation: 

𝑦𝑖𝑡 = 𝛽𝐿𝑙𝑖𝑡 − 𝛽𝐿𝜌𝑙(𝑖,𝑡−1) + 𝛽𝐾𝑘𝑖𝑡 − 𝛽𝐾𝜌𝑘(𝑖,𝑡−1) + 𝛽𝑁𝑛𝑖𝑡 − 𝛽𝑁𝜌𝑛(𝑖,𝑡−1) + 𝛽𝐶𝐻𝐸𝑀𝑐ℎ𝑒𝑚𝑖𝑡

− 𝛽𝐶𝐻𝐸𝑀𝜌𝑐ℎ𝑒𝑚(𝑖,𝑡−1) + 𝜌𝑦𝑖,𝑡−1 + 𝐺𝑡 − 𝜌𝐺𝑡−1 + (1 − 𝜌)𝜂𝑖 + 𝜖𝑖𝑡 + 𝑚𝑖𝑡 − 𝜌𝑚𝑖,𝑡−1 

( 4 ) 
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3.3.3 Econometric Specification - Total Factor Productivity Estimation 

Using the estimation from Equation (4) TFP at the farm level is estimated as the Solow residual. In 

following this literature (Olley and Pakes, 1996); (Rizov et al., 2013); (Mary, 2013), but including the 

parameter for the chemical inputs we obtain: 

𝑇𝐹𝑃𝑖,𝑡 = exp (𝑦𝑖𝑡 − 𝛽𝐿̂𝑙𝑖𝑡 − 𝛽𝐾̂𝑘𝑖𝑡 − 𝛽𝑁̂𝑛𝑖𝑡 − 𝛽̂𝐶𝐻𝐸𝑀𝑐ℎ𝑒𝑚𝑖𝑡) 

( 5 ) 

The parameters for these estimates are obtained through the minimum distance estimator following 

(Mary, 2013) and (Biagini et al., 2023). 

 

3.4 Estimation Results 

This results section discusses the estimations for the above equations first for the production function 

and second TFP. Estimations are carried out in Stata – details and code provided in the appendix to 

this chapter. 

3.4.1 Production Function Estimation 

The production function estimates proceed in two stages. The first stage jointly controls for the pre-

determined variables (𝑘𝑖𝑡 , fixed capital, in (Olley and Pakes, 1996)) and the error term (Petrick and 

Kloss, 2018). Table 8 and Table 9 Tables 3 and 4 present these first stage results.  

The results in Table 8 attempt to replicate Mary (2013) by using similar variables in a similar model 

specification except using data that is more recent and with cereal farms from a UK sample rather than 

from France.  Biagini et al., (2023) is another recent application of the approach used by Mary (2013).    

Overall, the results below offer similar coefficients to those in Mary, except the standard errors are 

lower and thereby the results contain more statistical significance. Although the coefficient on the 

capital variable is much smaller in the UK results. Another difference compared to Mary (2013) is that 
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the lagged independent variables in the specification are mostly significant. Mary used the SYS-GMM 

𝑡 − 3 results in his subsequent analysis and the same is done here in this chapter. The interpretation 

from the first stage results for each variable in time 𝑡 are the instantaneous effect of the variable on 

output now. The coefficient from 𝑡 − 1 is the impact from that time period to output in 𝑡. Bearing this 

in mind, 𝑡 − 1 results tend to be positive and significant suggesting an overuse of the input in the past. 

The lag on the dependent variable is however positive and significant which is what could be expected 

as a higher income last year should lead to more this year through being able to purchase more inputs 

for example. 

Table 9 includes a similar set of variables and specification except that it also contains the 

contemporaneous and lagged chemical input combination of both fertilisers and crop protection costs. 

Including this variable in the specification slightly improves the estimates on labour, capital and land 

as well as being significant and positive itself. Indeed, the land variable approaches a coefficient closer 

to those reported in Mary(2013); (Petrick and Kloss, 2018) and (Biagini et al., 2023).  This suggests that 

although GMM controls for endogeneity, there might still be some errors in terms of omitted variable 

bias for the production function coefficients in the estimation. 

Table 12 and Table 13 in the appendix present the results from a different application of the SYS-GMM 

procedure. Whereas the above results used a Stata command to collapse the number of instruments 

and so address the problem of too many instruments (Roodman, 2009). Hence instrument numbers 

are reported in all the sets of results and it can be seen that they are much lower in the results in Table 

8 and Table 9. Another improvement in the results in Table 8 and Table 9 is that they do not assume 

any of the variables to be strictly exogenous from the dependent variable. Instead, it assumes that the 

lagged dependent variable is endogenous and the other variables to at least be weakly exogenous 

whereas the other set of results only takes the dependent variable to be endogenous and assumes the 

others to be exogenous. A shortfall in the estimation results of Table 8 and Table 9 is that the Hansen 
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test is strongly rejected and thereby suggesting an endogeneity issue in these results. Although the 

alternative results are presented as the Hansen test is not rejected here. 

As described in the estimation strategy, pesticides are used by the farmer to protect output whereas 

fertiliser is used to increase. Therefore, Table 14 shows production function estimates for the two 

inputs estimated separately from each other. Here it can be seen that omitting fertiliser is the cause  

for the upward bias on the coefficient estimate on land and the coefficient on pesticides are 

insignificant. As the disaggregated result is similar to the combined result and the focus of this paper 

is on overall chemical impact, the focus of the discussion remains on this combined chemical result. 

An estimation was also attempted using materials instead of chemical inputs to follow the estimations 

done in (Petrick and Kloss, 2018) and (Biagini et al., 2023) where they incorporate materials instead of 

the chemical input. Materials here comprise total annual specific costs (FADN SE281) and total annual 

farming overheads (FADN SE336) which respectively relate to production specific costs and capital 

costs (Biagini et al., 2023). As shown elsewhere in the literature, materials have a large production 

function elasticity, and the elasticity of labour and capital are much lower in these other estimations. 

The materials results are presented in Table 15. The land coefficient is similar to estimations using 

chemical inputs as another variable. 
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Table 8: Production Function Estimates without Chemical Input variable 

 One-step Two-step 

 (1) (2) (3) (4) 

𝑦𝑡 SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

𝑙𝑡 0.156*** 
(0.037) 

0.144*** 
(0.028) 

0.166*** 
(0.036) 

0.130*** 
(0.029) 

𝑙𝑡−1 -0.034 
(0.024) 

-0.072** 
(0.032) 

-0.047* 
(0.025) 

-0.110*** 
(0.034) 

𝑘𝑡 0.084*** 
(0.022) 

0.060*** 
(0.018) 

0.112*** 
(0.021) 

0.072*** 
(0.018) 

𝑘𝑡−1 -0.044*** 
(0.016) 

-0.059*** 
(0.018) 

-0.040** 
(0.016) 

-0.063*** 
(0.018) 

𝑛𝑡 0.839*** 
(0.089) 

0.733*** 
(0.085) 

0.739*** 
(0.078) 

0.591*** 
(-0.075) 

𝑛𝑡−1 -0.045 
(0.045) 

-0.177** 
(0.079) 

-0.081* 
(0.048) 

-0.299*** 
(0.082) 

𝑦𝑡−1 0.227*** 
(0.041) 

0.526*** 
(0.118) 

0.268*** 
(0.041) 

0.713*** 
(0.118) 

m1  
(P-value) 

-13.55 
(0.000) 

-5.91 
(0.000) 

-13.52 
(0.000) 

-6.76 
(0.000) 

m2  
(P-value) 

0.86 
(0.392) 

1.67 
(0.094) 

1.39 
(0.165) 

2.28 
(0.022) 

Sargan, p-value (d.f.) 0.829 (16) 0.158 (15) 0.829 (16) 0.566 (15) 

Hansen, p-value (d.f.) 0.000 (16) 0.002 (15) 0.000 (16) 0.002 (15) 

Instruments in the 
first-differenced 

equations 

Lagged levels t-2 Lagged levels t-3 Lagged levels t-2 Lagged levels t-3 

Instruments in the 
levels equations 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Number of 
instruments 

37 36 37 36 

Number of 
observations 

8,176 8,176 8,176 8,176 

Notes: Parentheses contain asymptotic standard errors. Standard errors have had the Windmeijer correction 
applied in all the GMM estimations. All models include year dummies.  
***significant at 1%, **significant at 5%, *significant at 10%. 
The Arellano-Bond tests for serial correlation for first-order and second-order serial correlation, respectively m1 
and m2, are reported, asymptotically N(0, 1). 
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Table 9: Production Function Estimates with Chemical Input variable 

 One-step Two-step 

 (1) (2) (3) (4) 

𝑦𝑡 SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

𝑙𝑡 0.140*** 
(0.033) 

0.147*** 
(0.032) 

0.147*** 
(0.033) 

0.138*** 
(0.034) 

𝑙𝑡−1 -0.027 
(0.024) 

-0.032 
(0.027) 

-0.048* 
(0.026) 

-0.070** 
(0.036) 

𝑘𝑡 0.086*** 
(0.019) 

0.075*** 
(0.019) 

0.103*** 
(0.020) 

0.085*** 
(-0.030) 

𝑘𝑡−1 -0.030* 
(0.015) 

-0.037** 
(0.016) 

-0.021 
(0.015) 

-0.030* 
(0.016) 

𝑛𝑡 0.471*** 
(0.157) 

0.488*** 
(0.132) 

0.385*** 
(0.135) 

0.292** 
(-0.212) 

𝑛𝑡−1 -0.037 
(0.037) 

-0.131* 
(0.070) 

-0.075 
(0.054) 

-0.212*** 
(0.76) 

𝑐ℎ𝑒𝑚𝑡 0.369** 
(0.147) 

0.303*** 
(0.107) 

0.385*** 
(0.136) 

0.402*** 
(0.015) 

𝑐ℎ𝑒𝑚𝑡−1 
 

-0.064* 
(0.034) 

0.028 
(0.028) 

-0.059* 
(0.036) 

0.015 
(0.110) 

𝑦𝑡−1 0.204*** 
(0.038) 

0.273** 
(0.120) 

0.237*** 
(0.037) 

0.387** 
(0.178) 

m1  
(P-value) 

-14.06 
(0.000) 

-4.49 
(0.000) 

-13.79 
(0.000) 

-3.48 
(0.000) 

m2  
(P-value) 

0.24 
(0.807) 

0.21 
(0.835) 

0.52 
(0.601) 

0.45 
(0.653) 

Sargan, p-value (d.f) 0.797 (28) 0.566 (26) 0.797 (28) 0.566 (26) 

Hansen, p-value 0.000 (28) 0.000 (26) 0.000 (28) 0.000 (26) 

Instruments in the 
first-differenced 

equations 

Lagged levels t-2 Lagged levels t-3 Lagged levels t-2 Lagged levels t-3 

Instruments in the 
levels equations 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Number of 
instruments 

51 49 51 49 

Number of 
observations 

8,053 8,053 8,053 8,053 

Notes: Parentheses contain asymptotic standard errors. Standard errors have had the Windmeijer correction 
applied in all the GMM estimations. All models include year dummies.  
***significant at 1%, **significant at 5%, *significant at 10%. 
The Arellano-Bond tests for serial correlation for first-order and second-order serial correlation, respectively m1 
and m2, are reported, asymptotically N(0, 1). 
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Table 10 presents a comparison to estimating the technological parameters and production elasticities 

both of one-step and two-step GMM as well as the model specification that does and does not include 

chemicals. All the elasticities are positive (in line with expectations) and significant suggesting that 

chemical inputs should be included in a production function estimation using GMM as it gives 

important information to the model. In addition, including chemicals in the estimation seems to 

improve the results whereby land is overestimated. This might be expected given that chemical inputs 

include fertiliser which would increase the quality of the land. The labour and capital coefficients are 

smaller, but closer to those reported by (Mary, 2013) than for (Biagini et al., 2023). The results in the 

table suggest that an increase in chemical inputs result in the biggest increase in output by 0.35% with 

an increase in chemical expenditure by 1%.  

Also presented in the appendix, Table 16, are the technological parameters with materials instead of 

chemical input estimated. The results are not very dissimilar from those in Table 10 except that the 

materials coefficient is quite large, much more so than in (Biagini et al., 2023). In addition, the labour 

and capital coefficients are quite small.  

Table 10: Technological parameters 

 Not including Chemicals Including Chemicals 

 One-step Two-step One-step Two-step 

𝛽𝑙 0.150*** 
(0.0256) 

0.143*** 
(0.0254) 

0.146*** 
(0.0294) 

0.145*** 
(0.0309) 

𝛽𝑘 0.0722*** 
(0.0160) 

0.0750*** 
(0.0151) 

0.0795*** 
(0.0175) 

0.0815*** 
(0.0172) 

𝛽𝑛 0.583*** 
(0.0479) 

0.520*** 
(0.0441) 

0.436*** 
(0.0975) 

0.344*** 
(0.0925) 

𝛽𝑐ℎ𝑒𝑚   0.291*** 
(0.100) 

0.350*** 
(0.0985) 

CRS 0.000 0.000 0.427 0.186 
Note: All estimates use systems GMM with the estimations using instruments dated t-3 lagged levels and on. P-
values are reported for the Wald test for CRS which tests the null hypothesis that there are constant returns to 
scale. 
***significant at 1%, **significant at 5%, *significant at 10%. 

 

Another statistic included in the results in Table 10 is the Wald test for Constant Returns to Scale (CRS). 

For the model specification which does not include chemicals, CRS are rejected, but they are not 
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rejected for the model which includes chemicals. The benefit of using SYS-GMM in estimating the 

production function is that there is no imposed assumption made on the functional form (Biagini et 

al., 2023). Therefore CRS = 1 is not imposed on the model. Therefore, if the true econometric model is 

closer to the estimation using the chemical inputs, then perhaps the Cobb Douglas assumes that CRS 

= 1 does not hold and other functional forms should also be tested, although as discussed earlier, the 

difference in changing functional form may not be significant. 

3.4.2 Total Factor Productivity Estimation 

Table 11: TFP Estimates of specifications with and without chemical input 

 Without Chemicals With Chemicals 

Year Mean St. dev. % Change Mean St. dev. % Change 

2004 1.085 (0.006)  1.051 (0.005)  

2005 1.091 (0.006) 0.488 1.055 (0.005) 0.351 

2006 1.090 (0.006) -0.037 1.055 (0.005) 0.037 

2007 1.082 (0.005) -0.755 1.051 (0.004) -0.420 

2008 1.069 (0.004) -1.257 1.043 (0.003) -0.769 

2009 1.072 (0.005) 0.319 1.043 (0.004) 0.073 

2010 1.073 (0.005) 0.067 1.045 (0.003) 0.120 

2011 1.067 (0.004) -0.544 1.041 (0.003) -0.341 

2012 1.066 (0.004) -0.069 1.040 (0.003) -0.102 

2013 1.063 (0.004) -0.304 1.038 (0.003) -0.223 

2014 1.072 (0.005) 0.892 1.043 (0.003) 0.545 

2015 1.080 (0.005) 0.705 1.048 (0.004) 0.459 

2016 1.080 (0.005) -0.015 1.048 (0.004) -0.031 

2017 1.073 (0.005) -0.604 1.044 (0.004) -0.356 

2018 1.073 (0.005) 0.027 1.045 (0.004) 0.059 
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Figure 8: Average TFP 

 

Table 11 and Figure 8 present the average results of the TFP estimation of equation 5 per year of the 

sample. The mean TFP is slightly smaller than reported in (Biagini et al., 2023) but these differences 

may be due to differences in the implementation of the GMM as well as their incorporation of 

materials in the estimation. Table 11 also presents the percentage changes year by year in TFP. Figure 

8 clearly shows that the TFP with chemicals follows the same pattern as the TFP without the difference 

is that the TFP is higher without the chemical input as this would be contained within the residual. The 

trends in these TFPs follow a similar pattern as well to the results in the UK sample for (Biagini et al., 

2023) where TFP is lower over time, but this change in TFP has been relatively flat.  

3.5 Conclusions 

This is to the author’s knowledge the first estimation of a systems GMM for a Cobb-Douglas production 

function using chemical inputs as a factor of production. In addition to the estimation of elasticities of 

output with respect to these factors of production, TFP is also estimated.  
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Systems GMM is used in order to combat possible issues relating to endogeneity if the production 

function were to be estimated through another method, for example OLS, within estimators and even 

frontier approaches such as DEA and SFA.   

A limitation in the estimations is that the Hansen test fails to reject the null hypothesis suggesting a 

model misspecification.  

The results in Table 9 suggest that an increase in chemical inputs result in the biggest increase in output 

by 0.35% with an increase in chemical expenditure by 1%. This might support an argument behind 

there being some farms which are more intensive and may benefit from the returns to higher chemical 

input use and other farms which are more extensive and thereby maximise benefits to the 

environment. 
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Appendix 

Additional Results 

Table 12: Production function estimates without chemical input variable – alternative estimation 

 One-step Two-step 

 (1) (2) (3) (4) 

𝑦𝑡 SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

𝑙𝑡 0.274* 
(0.142) 

0.419** 
(0.171) 

0.320** 
(0.131) 

0.372** 
(0.156) 

𝑙𝑡−1 0.0757 
(0.137) 

0.103 
(0.168) 

4.59e-05 
(0.138) 

0.0299 
(0.154) 

𝑘𝑡 0.301*** 
(0.0871) 

0.316*** 
(0.115) 

0.227*** 
(0.0863) 

0.270*** 
(0.104) 

𝑘𝑡−1 0.159* 
(0.0850) 

0.0935 
(0.113) 

0.106 
(0.0695) 

0.117 
(0.0919) 

𝑛𝑡 0.623** 
(0.267) 

0.439 
(0.321) 

0.657** 
(0.276) 

0.412 
(0.327) 

𝑛𝑡−1 -0.400 
(0.290) 

-0.430 
(0.345) 

-0.384 
(0.302) 

-0.275 
(0.353) 

𝑦𝑡−1 0.118* 
(0.0658) 

0.133 
(0.159) 

0.188*** 
(0.0631) 

0.128 
(0.169) 

m1  
(P-value) 

-5.39  
(0.000) 

-2.38 
(0.017) 

-6.79 
(0.000) 

-2.50 
(0.012) 

m2  
(P-value) 

-1.29  
(0.196) 

-0.36 
(0.717) 

-0.26 
(0.795) 

-0.44 
(0.661) 

Sargan, p-value (d.f.) 1.000 (97) 1.000 (83) 1.000 (97) 1.000 (83) 

Hansen, p-value (d.f.) 0.334 (97) 0.558 (83) 0.334 (97) 0.558 (83) 

Instruments in the 
first-differenced 

equations 

Lagged levels t-2 Lagged levels t-3 Lagged levels t-2 Lagged levels t-3 

Instruments in the 
levels equations 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Number of 
instruments 

118 104 118 104 

Number of 
observations 

8,219 8,219 8,219 8,219 

Notes: Parentheses contain asymptotic standard errors. Standard errors have had the Windmeijer correction 
applied in all the GMM estimations. All models include year dummies.  
***significant at 1%, **significant at 5%, *significant at 10%. 
The Arellano-Bond tests for serial correlation for first-order and second-order serial correlation, respectively m1 
and m2, are reported, asymptotically N(0, 1). 
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Table 13: Production function estimates without chemical input variable – alternative estimation 

 One-step Two-step 

 (1) (2) (3) (4) 

𝑦𝑡 SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

𝑙𝑡 0.274* 
(0.141) 

0.453** 
(0.184) 

0.309*** 
(0.115) 

0.426*** 
(0.162) 

𝑙𝑡−1 0.140 
(0.129) 

0.239 
(0.159) 

0.0371 
(0.115) 

0.116 
(0.143) 

𝑘𝑡 0.299*** 
(0.0848) 

0.279** 
(0.122) 

0.267*** 
(0.0836) 

0.272*** 
(0.100) 

𝑘𝑡−1 0.107 
(0.0796) 

0.0667 
(0.118) 

0.0727 
(0.0671) 

0.0770 
(0.0886) 

𝑛𝑡 0.463* 
(0.264) 

0.250 
(0.312) 

0.481* 
(0.277) 

0.239 
(0.316) 

𝑛𝑡−1 -0.307 
(0.282) 

-0.333 
(0.338) 

-0.376 
(0.298) 

-0.212 
(0.353) 

𝑐ℎ𝑒𝑚𝑡 0.255*** 
(0.0909) 

0.195* 
(0.102) 

0.278*** 
(0.0726) 

0.216** 
(0.0859) 

𝑐ℎ𝑒𝑚𝑡−1 
 

-0.102 
(0.0755) 

-0.0116 
(0.0873) 

-0.123* 
(0.0639) 

-0.0540 
(0.0826) 

𝑦𝑡−1 0.0796 
(0.0771) 

-0.0467 
(0.198) 

0.155** 
(0.0674) 

-0.0163 
(0.211) 

m1  
(P-value) 

-4.60 
(0.000) 

-1.39 
(0.165) 

-5.94 
(0.000) 

-1.60 
(0.110) 

m2  
(P-value) 

-1.06 
(0.288) 

-1.03 
(0.302) 

-0.20 
(0.842) 

-0.86 
(0.391) 

Sargan, p-value (d.f.) 1.000 (95) 1.000 (81) 1.000 (95) 1.000 (81) 

Hansen, p-value (d.f.) 0.637 (95) 0.655 (81) 0.637 (95) 0.655 (81) 

Instruments in the 
first-differenced 

equations 

Lagged levels t-2 Lagged levels t-3 Lagged levels t-2 Lagged levels t-3 

Instruments in the 
levels equations 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Number of 
instruments 

118 104 118 104 

Number of 
observations 

8,096 8,096 8,096 8,096 

Notes: Parentheses contain asymptotic standard errors. Standard errors have had the Windmeijer correction 
applied in all the GMM estimations. All models include year dummies.  
***significant at 1%, **significant at 5%, *significant at 10%. 
The Arellano-Bond tests for serial correlation for first-order and second-order serial correlation, respectively m1 
and m2, are reported, asymptotically N(0, 1). 
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Table 14: Production Function Estimates with Chemicals Separated 

 One-step Two-step 

 (1) (2) (3) (4) 

𝑦𝑡 SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

SYS-GMM 
𝑡 − 2 

SYS-GMM 
𝑡 − 3 

𝑙𝑡 0.131*** 
(0.0338) 

0.126*** 
(0.0343) 

0.155*** 
(0.0332) 

0.142*** 
(0.0363) 

𝑙𝑡−1 -0.0318 
(0.024) 

-0.0394 
(0.0287) 

-0.0483* 
(0.0259) 

-0.0650* 
(0.0349) 

𝑘𝑡 0.0879*** 
(0.0202) 

0.0843*** 
(0.0221) 

0.109*** 
(0.0214) 

0.0950*** 
(0.0216) 

𝑘𝑡−1 -0.0336** 
(0.0158) 

-0.0354** 
(0.0162) 

-0.0289* 
(0.0168) 

-0.0372** 
(0.0174) 

𝑛𝑡 0.508*** 
(0.123) 

0.487*** 
(0.128) 

0.405*** 
(0.14) 

0.411** 
(0.164) 

𝑛𝑡−1 -0.00821 
(0.0495) 

-0.0183 
(0.0881) 

-0.0499 
(0.0526) 

-0.0788 
(0.096) 

ln_fert_adj 0.232*** 
(0.0822) 

0.281*** 
(0.0838) 

0.184** 
(0.0811) 

0.207** 
(0.0892) 

L.ln_fert_adj -0.0331* 
(0.0194) 

0.0257 
(0.108) 

-0.0376** 
(0.0179) 

0.00116 
(0.0991) 

ln_CP_adj 0.123 
(0.0905) 

0.104 
(0.0868) 

0.173 
(0.165) 

0.155 
(0.194) 

L.ln_CP_adj -0.0151 
(0.026) 

-0.106 
(0.0781) 

-0.0127 
(0.0335) 

-0.0782 
(0.0968) 

𝑦𝑡−1 0.187*** 
(0.04) 

0.254** 
(0.122) 

0.231*** 
(0.0422) 

0.348** 
(0.155) 

m1  
(P-value) 

-14.03  
(0.000) 

-3.64 
(0.000) 

-12.09 
(0.000) 

-3.83 
(0.000) 

m2  
(P-value) 

0.68  
(0.496) 

0.28 
(0.782) 

1.05 
(0.295) 

0.76 
(0.449) 

Sargan, p-value (d.f.) 0.985 (40) 0.964 (37) 0.985 (40) 0.964 (37) 

Hansen, p-value (d.f.) 0.006 (40) 0.782 (37) 0.006 (40) 0.006 (37) 

Instruments in the 
first-differenced 

equations 

Lagged levels t-2 Lagged levels t-3 Lagged levels t-2 Lagged levels t-3 

Instruments in the 
levels equations 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Number of 
instruments 

65 62 65 62 

Number of 
observations 

7,917 7,917 7,917 7,917 

Notes: Parentheses contain asymptotic standard errors. Standard errors have had the Windmeijer correction 
applied in all the GMM estimations. All models include year dummies.  
***significant at 1%, **significant at 5%, *significant at 10%. 
The Arellano-Bond tests for serial correlation for first-order and second-order serial correlation, respectively m1 
and m2, are reported, asymptotically N(0, 1). 
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Table 15: Production Function Estimates with Materials 

 One-step Two-step 

 (1) (2) (3) (4) 

𝑦𝑡 
SYS-GMM 

𝑡 − 2 
SYS-GMM 

𝑡 − 3 
SYS-GMM 

𝑡 − 2 
SYS-GMM 

𝑡 − 3 

𝑙𝑡 
0.0803*** 
(0.0279) 

0.0779*** 
(0.0255) 

0.0841*** 
(0.0272) 

0.0811*** 
(0.0248) 

𝑙𝑡−1 
-0.0348* 
(0.0198) 

-0.0433* 
(0.0261) 

-0.0436** 
(0.0202) 

-0.0651** 
(0.0261) 

𝑘𝑡 
0.0638*** 
(0.0176) 

0.0527*** 
(0.0169) 

0.0860*** 
(0.0173) 

0.0665*** 
(0.0176) 

𝑘𝑡−1 
-0.0351** 
(0.0140) 

-0.0383** 
(0.0154) 

-0.0301** 
(0.0140) 

-0.0419*** 
(0.0148) 

𝑛𝑡 
0.466*** 
(0.0780) 

0.433*** 
(0.0754) 

0.369*** 
(0.0621) 

0.354*** 
(0.0583) 

𝑛𝑡−1 
0.00125 
(0.0390) 

-0.0258 
(0.0580) 

-0.0286 
(0.0408) 

-0.0896 
(0.0616) 

𝑚𝑡 
0.552*** 
(0.0461) 

0.566*** 
(0.0495) 

0.569*** 
(0.0409) 

0.524*** 
(0.0534) 

𝑚𝑡−1 
 

-0.0528 
(0.0324) 

-0.0914 
(0.0966) 

-0.0512 
(0.0318) 

-0.190** 
(0.0968) 

𝑦𝑡−1 
0.149*** 
(0.0326) 

0.260 
(0.169) 

0.186*** 
(0.0318) 

0.462*** 
(0.169) 

m1 
(P-value) 

-15.71 
(0.000) 

-3.64 
(0.000) 

-15.41 
(0.000) 

-4.48 
(0.000) 

m2 
(P-value) 

0.03 
(0.980) 

0.48 
(0.631) 

0.52 
(0.603) 

1.31 
(0.189) 

Sargan, p-value (d.f) 0.939 (17) 0.800 (16) 0.939 (17) 0.800 (16) 

Hansen, p-value 0.009 (17) 0.009 (16) 0.009 (33.85) 0.009 (16) 

Instruments in the first-
differenced equations 

Lagged levels t-2 Lagged levels t-3 Lagged levels t-2 Lagged levels t-3 

Instruments in the 
levels equations 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Lagged first 
differences 

Number of instruments 40 39 40 39 

Number of observations 1,168 1,168 1,168 1,168 

Notes: Parentheses contain asymptotic standard errors. Standard errors have had the Windmeijer correction 
applied in all the GMM estimations. All models include year dummies. 
***significant at 1%, **significant at 5%, *significant at 10%. 
The Arellano-Bond tests for serial correlation for first-order and second-order serial correlation, respectively m1 
and m2, are reported, asymptotically N(0, 1). 
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Table 16: Technology parameter estimates with materials 

 One-step Two-step 

 t-2 t-3 t-2 t-3 

𝛽𝑙 
0.0928*** 
(0.0260) 

0.0910*** 
(0.0235) 

0.103*** 
(0.0254) 

0.0988*** 
(0.0215) 

𝛽𝑘 
0.0699*** 
(0.0160) 

0.0529*** 
(0.0159) 

0.0866*** 
(0.0160) 

0.0642*** 
(0.0151) 

𝛽𝑛 
0.403*** 
(0.0638) 

0.359*** 
(0.0546) 

0.358*** 
(0.0539) 

0.313*** 
(0.0442) 

𝛽𝑚 
0.534*** 
(0.0350) 

0.544*** 
(0.0315) 

0.527*** 
(0.0330) 

0.496*** 
(0.0273) 

CRS 0.0591 0.3308 0.1285 0.5381 

Note: All estimates use systems GMM with the estimations using instruments dated t-3 lagged levels and on. 
P-values are reported for the Wald test for CRS which tests the null hypothesis that there are constant 
returns to scale. 
***significant at 1%, **significant at 5%, *significant at 10%. 
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Chapter 3 Code 

*Estimations made in Stata/MP 18.0 

 

*Data in panel structure 

xtset id_new year 

 

*Production function estimates without chemical input variable 

*One-step No Chem t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(2 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) 

iv(i.year,equation(level)) r h(1)   

*One-step No Chem t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(3 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) 

iv(i.year,equation(level)) r h(1)   

*Two-step No Chem t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(2 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) 

iv(i.year,equation(level)) r h(1)   two 

*Two-step No Chem t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(3 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) 

iv(i.year,equation(level)) r h(1)   two 

 

***************************************************************************** 
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*Introducing Chem Inputs 

*One-step Chem t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_chem_inputs l.ln_chem_inputs l.ln_y i.year, gmm(ln_y ln_chem_inputs, lag(2 .) 

collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) 

*One-step Chem t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_chem_inputs l.ln_chem_inputs l.ln_y i.year, gmm(ln_y ln_chem_inputs, lag(3 .) 

collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) 

*Two-step Chem t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_chem_inputs l.ln_chem_inputs l.ln_y i.year, gmm(ln_y ln_chem_inputs, lag(2 .) 

collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) two 

*Two-step Chem t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_chem_inputs l.ln_chem_inputs l.ln_y i.year, gmm(ln_y ln_chem_inputs, lag(3 .) 

collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) two 

 

****************************************************************************** 

*Appendix Estimates 

****************************************************************************** 

*One-step No Chem t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K_current l.ln_K_current ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(2 .)) iv(i.year,equation(level)) r h(1) 

*One-step No Chem t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K_current l.ln_K_current ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(3 .)) iv(i.year,equation(level)) r h(1)   
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*Two-step No Chem t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K_current l.ln_K_current ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(2 .)) iv(i.year,equation(level)) r h(1) two 

*Two-step No Chem t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K_current l.ln_K_current ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(3 .)) iv(i.year,equation(level)) r h(1) two 

 

***************************************************************************** 

*Introducing Chem Inputs 

*One-step Chem t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K_current l.ln_K_current ln_land l.ln_land ln_chem_inputs l.ln_chem_inputs l.ln_y i.year, gmm(ln_y, lag(2 .)) 

iv(i.year,equation(level)) r h(1) 

*One-step Chem t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K_current l.ln_K_current ln_land l.ln_land ln_chem_inputs l.ln_chem_inputs l.ln_y i.year, gmm(ln_y, lag(3 .)) 

iv(i.year,equation(level)) r h(1) 

*Two-step Chem t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K_current l.ln_K_current ln_land l.ln_land ln_chem_inputs l.ln_chem_inputs l.ln_y i.year, gmm(ln_y, lag(2 .)) 

iv(i.year,equation(level)) r h(1) two 

*Two-step Chem t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K_current l.ln_K_current ln_land l.ln_land ln_chem_inputs l.ln_chem_inputs l.ln_y i.year, gmm(ln_y, lag(3 .)) 

iv(i.year,equation(level)) r h(1) two 

****************************************************************************** 

*Introducing Split Chem Inputs 
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*One-step Split Chem t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_fert_adj l.ln_fert_adj ln_CP_adj l.ln_CP_adj l.ln_y i.year, gmm(ln_y ln_fert_adj 

ln_CP_adj, lag(2 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_fert_adj l.ln_fert_adj ln_CP_adj l.ln_CP_adj l.ln_y i.year, gmm(ln_y ln_fert_adj 

ln_CP_adj, lag(3 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_fert_adj l.ln_fert_adj ln_CP_adj l.ln_CP_adj l.ln_y i.year, gmm(ln_y ln_fert_adj 

ln_CP_adj, lag(2 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) two 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_fert_adj l.ln_fert_adj ln_CP_adj l.ln_CP_adj l.ln_y i.year, gmm(ln_y ln_fert_adj 

ln_CP_adj, lag(3 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) two 

****************************************************************************** 

*Estimations with Materials 

*One-step Mat t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_mat l.ln_mat l.ln_y i.year, gmm(ln_y, lag(2 .) collapse) gmm(ln_K ln_total_L ln_land 

ln_mat, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) 

*One-step Mat t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_mat l.ln_mat l.ln_y i.year, gmm(ln_y, lag(3 .) collapse) gmm(ln_K ln_total_L ln_land 

ln_mat, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) 

*Two-step Mat t-2 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_mat l.ln_mat l.ln_y i.year, gmm(ln_y, lag(2 .) collapse) gmm(ln_K ln_total_L ln_land 

ln_mat, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) two 

*Two-step Mat t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_mat l.ln_mat l.ln_y i.year, gmm(ln_y, lag(3 .) collapse) gmm(ln_K ln_total_L ln_land 

ln_mat, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) two 
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****************************************************************************** 

*Recovering Technological Parameters 

****************************************************************************** 

**Re-estimating production function estimates - No chems 

*One-step t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(3 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) 

iv(i.year,equation(level)) r h(1)   

**Two-step t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land l.ln_y i.year, gmm(ln_y, lag(3 .) collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) 

iv(i.year,equation(level)) r h(1)   two 

 

*Constructing the Technological Parameters - below is shown without chems 

*Minimum distance  

matrix B = e(b)' 

matrix F = e(V) 

matlist B[1. .7,1] 

matlist F[1. .7,1. .7] 

matrix B1 = B[1. .7,1] 

matrix F1 = F[1. .7,1. .7] 

matrix H =(I(1),0,0,0\-_b[l.ln_y],0,0,0\0,I(1),0,0\0,-_b[l.ln_y],0,0\0,0,I(1),0\0,0,-_b[l.ln_y],0\0,0,0,I(1)) 
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matrix H1 = H' 

matrix list H 

matrix list H1 

matrix list F1 

matrix list B1 

matrix delta = invsym(H1*invsym(F1)*H)*(H1*invsym(F1)*B1) 

matrix delta = delta' 

matrix H2= invsym(H1*invsym(F1)*H) 

ereturn  post delta H2 

ereturn display 

**** test CRS****** 

testnl (_b[c1]+_b[c2]+_b[c3]=1) 

 

*6. Implied shock 

gen z0_no_chem=(ln_y-_b[c1]*ln_total_L-_b[c2]*ln_K-_b[c3]*ln_land) 

gen z_no_chem=exp(z0/total_y_adj100_coef) 

sort year 

by year: sum z_no_chem 

 

*** calculus productivity olley and pakes 1996 - Table 9 TFP Estimates without chems 
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sort year 

by year: egen sum=total(SE131) 

xtset id_new year 

gen share2=SE131/sum 

gen z_no_chem_def=z*share2 

sort year 

by year: egen sectTFP1_no_chem=total(z_no_chem_def) 

by year: su sectTFP1 

 

****************************************************************************** 

est clear 

drop z0 z sum share2 zdef sectTFP1 

 

*Data in panel structure 

xtset id_new year 

 

**Re-estimating production function estimates - Chems 

*One-step t-3 

xi: xtabond2 ln_y ln_total_L  l.ln_total_L ln_K l.ln_K ln_land l.ln_land ln_chem_inputs l.ln_chem_inputs l.ln_y i.year, gmm(ln_y ln_chem_inputs, lag(3 .) 

collapse) gmm(ln_K ln_total_L ln_land, lag(1 2) collapse) iv(i.year,equation(level)) r h(1) two 
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*Matrix code adapted to include chem inputs 

*Minimum distance  

matrix B = e(b)' 

matrix F = e(V) 

matlist B[1. .9,1] 

matlist F[1. .9,1. .9] 

matrix B1 = B[1. .9,1] 

matrix F1 = F[1. .9,1. .9] 

matrix H =(I(1),0,0,0,0\-_b[l.ln_y],0,0,0,0\0,I(1),0,0,0\0,-_b[l.ln_y],0,0,0\0,0,I(1),0,0\0,0,-_b[l.ln_y],0,0\0,0,0,I(1),0\0,0,0,-_b[l.ln_y],0\0,0,0,0,I(1)) 

matrix H1 = H' 

matrix delta = invsym(H1*invsym(F1)*H)*(H1*invsym(F1)*B1) 

 

matrix list B 

 

matrix delta = delta' 

matrix H2= invsym(H1*invsym(F1)*H) 

 

ereturn  post delta H2 

ereturn display 
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**** test CRS****** 

testnl (_b[c1]+_b[c2]+_b[c3]+_b[c4]=1) 

 

*Implied shock for chems 

gen z0_chem=(ln_y-_b[c1]*ln_total_L-_b[c2]*ln_K-_b[c3]*ln_land-_b[c4]*ln_chem_inputs) 

gen z_chem=exp(z0_chem/total_y_adj100_coef) 

sort year 

by year: sum z_chem 

 

*** calculus productivity olley and pakes 1996 - Table 9 TFP estimates with chems 

sort year 

by year: egen sum=total(SE131) 

xtset id_new year 

gen share2=SE131/sum 

gen z_chem_def=z_chem_*share2 

sort year 

by year: egen sectTFP1=total(z_chem_def) 

by year: su sectTFP1  
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Chapter 4: Does organic farming lead to higher returns to education? 

Using the raising of the school leaving age as a quasi-experiment 

Abstract 

This chapter examines the farmer's return to education differentiating between organic and 

conventional farming. By using the 1972 Raising of the School Leaving Age as a quasi-experiment with 

a Regression Discontinuity Design, we identify a causal relationship for the farmer's return to 

education on farm economic performance. Using data from a sample of English farms between 2011 

and 2018 from the Farm Business Survey, we show: (i) a positive return to education on farm 

performance (ii) a higher education return in organic farming in comparison with conventional 

farming. 

4.1 Introduction 

The adoption of new techniques or production technologies and their effective employment requires 

human capital – skills and knowledge in the selection of the most appropriate technologies, in the 

adaptation, interpretation and implementation of the technologies into the wider systems of 

production in a given context and ultimately to employ these skills for economic gain. Education, 

training and experience enhance our skills, ability, knowledge and human capital. We expect that the 

complexity of farm systems, relying, as they do, on unreliable nature, which produce a wide range of 

outputs and operate in environments that are difficult to monitor in real time, would require broad 

skill sets. Human capital theory in the context of production efficiency has been a longstanding 

proposition suggesting that education could foster farmers' ability to understand and interpret market 

information, enabling them to respond more effectively to economic imbalances (Schultz, 1975). 

Specifically, education may enhance the decision-making process in farm resource allocation and 

contribute to the development of farmers' production skills (Welch, 1970). Moreover, a large body of 

literature emphasises that education positively influences the adoption of promising new technologies 
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(Feder et al., 1985); (Lin, 1991), adopting new farm inputs, having a preference for risky production 

technologies and displaying better management skills (Asadullah and Rahman, 2009).  

The objective of this paper is to analyse returns to education in agriculture In England. More precisely, 

we compare returns to education between conventional farming and organic farming from the 1972 

Raising of the School Leaving Age (ROSLA). We suppose that education is not only required for the 

adoption of these techniques, but also for their adaptation to specific agro-ecosystems, to specific soil 

types and climatic conditions. 

Little research has been carried out on the returns from a higher educated workforce in organic 

farming, a type of farming approach that reduces the farms requirement for chemical fertilisers and 

pesticides. Research so far has mainly focused on differences in the quantity of labour in organic and 

conventional farming. Analyses in these studies tried to reveal the effects on productivity and output 

risk as the organic and conventional farms reduce their use of chemical inputs. In particular, these 

studies consider crop protection chemicals and consequent changes in labour demand and capital, e.g. 

whether organic farming, or using fewer chemical inputs, requires more labour (e.g. Gardebroek et al., 

(2010); Kumbhakar et al., (2009); Zhengfei et al., (2005)). However, not only the quantity of labour 

demand in different farming techniques is important, but also the requirements toward the quality of 

labour.  

Previous literature considering the impact of education on the determinants of agricultural 

productivity presents mixed findings. First, macroeconomic level studies predominantly indicated a 

significant and positive effect of education on the agricultural productivity of states (Nguyen, 1979). 

However, contrasting results have emerged from more recent investigations, where studies highlight 

non-significant (Vollrath, 2007) or even negative effects of education on agricultural productivity 

(Craig et al., 1997). An exception is Reimers and Klasen (2013). Second and in contrast, microeconomic 

studies consistently emphasize a positive role for education (Phillips, 1994), revealing a disparity in 

the conclusions drawn at different analytical scales. This divergence in findings emphasises the 
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complexity of the relationship between education and agricultural productivity, warranting a nuanced 

examination that considers contextual factors and methodological approaches. 

Thus, our work's contribution to the literature is twofold. First, to the best of our knowledge, this is 

the first work which exploits a quasi-experiment to identify a causal return to education in agriculture. 

Second, our empirical strategy allows us to identify heterogeneous returns to education between 

conventional farming and organic farming.  

Our identification strategy relies on a Regression Discontinuity Design (RDD) methodology to exploit, 

as a quasi-experiment, the ROSLA which occurred in England and Wales in 1972. The quasi-experiment 

is undertaken in two stages using 8 years of Farm Business Survey data to estimate the returns to 

education. The first stage estimates the number of years of schooling depending on the birth year of 

the farmer. In the second stage, RDD estimates farm output using Two Stage Least Squares where a 

dummy variable for being born before or after 1957 is used as an instrument for years of schooling. 

The model is extended through using a Correlated Random Effect model and in estimating the 

difference between conventional and organics farms a heterogeneous local average treatment effect 

(HLATE) approach is used. 

The results show first that the ROSLA resulted in an average increase in education by 0.40 years for 

our sample of farmers. Second, that with an additional year of education there is a higher increase for 

farmers on organic farms by an average of 5.5% to total output compared with a 1.3% increase for 

conventional farmers. These results hold when expanding the model to use covariates and in 

robustness checks. 

The paper is structured as follows. A literature review presents evidence in the literature documenting 

the link between farming by reducing, particularly chemical, farm inputs and returns to education. The 

following section explains the data and methodology used in this chapter. Next is a presentation of 

the results and finally this chapter concludes. 
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4.2 Literature Review  

4.2.1 Education, skills and environmental farm practices 

One of the problems of the empirical analysis of the effects of techniques that lead toward farming for 

food production as well as considering the environment on returns to education is that it is a very 

broad concept, incorporating a mix of more traditional and more recent environmentally friendly farm 

practices. Also, internationally, there is not a common definition or a standard certification process as, 

for example, the one that is in place for organic products and, as a consequence, there is a lack of 

relevant statistical information. As a result, the bulk of studies on ecological farming include mainly 

broad discourse and do not attempt more rigorous quantitative analyses. 

Therefore, it is not surprising that there is little previous research to inform the analysis in the present 

paper. Mills (2012) looked at the social benefits of agri-environmental schemes (AESs) beyond the 

targeted environmental gains. The data for the analysis was collected through 360 interviews with 

environment schemes agreement holders out of which 288 were telephone interviews and the 

remaining face-to-face. The study compared the effect on workload and development of human capital 

by two AESs implemented in England, the Entry Level Stewardship Scheme and Higher-Level 

Stewardship Scheme, the latter being a more challenging one. Human capital here including education. 

The results indicated that the participation in AESs contributed to developing human capital, i.e., 

increasing farmers’ skills to farm more sustainably. There is some possible reverse causality here in 

that farmers who have more ‘ecocentric attitudes’ and farm organically tend to have more educational 

qualifications (Kings and Ilbery, 2010) – they are therefore more likely to participate in AESs and 

especially higher tier AESs.  

Marinoudi et al., (2019) employing a framework of skill biased technological change investigated the 

effect of automation and robots on skill sets in agriculture. They emphasise that more training and 

education are required in to increase the cognitive capabilities and meet the requirements for human-

skill. Marinoudi et al., (2019) underline three major changes: first, whilst in the past labour was 
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basically focused on completing manual tasks, labour and technology were assumed to be perfect 

substitutes since technology for cognitive tasks was not considered. Currently, most of the jobs are 

complex since modern work processes require a set of various inputs of different aptitudes and skills, 

and each one of these labour inputs play an essential and non-replaceable role. Second, concerning 

automation in agriculture, there is a complementarity between labour and machines, e.g., a human 

operator is required to offset the shortcomings of the robot’s intelligence to cope with unpredictable 

events. Third, on the other hand, modern technology can have the opposite effect, i.e., it often reduces 

the requirements for human skills, e.g., the implementation of autosteering and navigation-aiding 

systems for agricultural machinery. Overall, the authors argue that new technologies may lead to 

polarisation of skill requirements and thus wages. When the automation level increases there are 

increased requirements in terms of skills and education from the workers who complement the 

introduction of new technologies, and on the other hand, there is still a demand for low-skilled labour 

for the execution of the residual activities in routine tasks. This narrows down the demand for and use 

of middle-skilled labour. 

Concerning organic farming, Navarrete et al., (2015) looked at organic horticulture farms divided into 

four categories: specialised and small; specialised and large; diversified and small; diversified and large. 

The authors found that diversified farms required more labour per hectare as well as more knowledge 

and skills as this method is generally more complex due to different crop requirements, crop 

diversification and plot agronomical constraints that are associated with organic farms. 

However, not all the studies supported that different/higher skilled participating farmers were 

required in AES or organic farming. For example, often farmers participate in AES schemes because of 

a combination of business interest to capture the attractive agri-environmental payments and because 

the schemes required very small adaptations of existing farming practices or no change at all (Harrison 

et al., (1998); Wilson and Hart (2001); Schmitzberger et al., (2005); Lobley et al., (2013)). Burton et al., 

(2008) argue that skills were necessary at the stage of setting the AES, e.g. to decide which land to 
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allocate for AES or how to maximise subsidies. However, after that initial stage, in the implementation 

process there were not any particular skill requirements since farmers simply had to follow the 

prescribed practices of a particular scheme, and this often constrains the development of farmers’ 

abilities to develop and implement innovative ideas in conservation agriculture. 

Based on the review above, it appears that the effect of adopting environmental farming practices on 

returns to education is to a great extent an empirical issue since these practices may require additional 

education and skills or may only involve strict compliance with AES prescriptions. 

4.2.2 ROSLA in England 

The Education Act 1944 raised the school leaving age from 14 to 15 in 1947 and stated that the school 

leaving age should further rise to 16 when it would next be possible (West, 2022).  Legislation for the 

next ROSLA was implemented on 1 September 1972. Therefore, the first cohort of students affected 

by the reform were those who turned 15 years old in the 1972/1973 academic year (Wallace, 2009) 

and were therefore born in 1957/1958. Prior to the Education Act 1944, unlike in other countries 

where students can leave school once they reach the compulsory age on their birthday, in England and 

Wales those born between 1st September and the 31st January needed to remain in school until the 

following Easter (Garrouste and Godard, 2016). Those born between 1st February and 31st August could 

leave in the summer (usually May or June) of the year they become 16 years old, in effect meaning 

that those with birthdays in July and August could leave school when they are 15 years old. The aim of 

the 1944 education reform was to increase equality of opportunity, remove the advantage given to 

privileged classes, and instead promote meritocracy (Halsey et al., 1980)8.   

Since this second ROSLA, implemented in 1972, there have been two further increases in the age young 

people are obliged to participate in education or training until - referred to as raising the participation 

 
8 Halsey et al., (1980) provides an overview studying the effects of post-war school and ‘welfare state’ reforms 
up to the national 1972 Oxford Mobility Study, particularly that of the Education Act of 1944, on educational 
inequalities. 
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age (RPA). The first RPA made participation compulsory up to the age of 17 in 2013 and the second 

raised the age to 18 in 2015 in order to ‘upskill’ Britain’s workforce and better compete with 

comparable countries (Simmons, 2008). 

Following the oil crisis in 1973 each cohort of students leaving school in the years of 1974-1976 began 

looking for jobs in a recession with increasingly worse job prospects (Garrouste and Godard, 2016). In 

the same timeframe the proportion of 16 year olds remaining in education barely increased in the 

1970s; the proportion being just above 40% and only starting to increase from 1980 (Micklewright et 

al., 1989). This therefore suggests that students in England and Wales leave at the earliest legal 

opportunity and irrespective of worsening employment opportunities. This argument is supported by 

Garrouste and Godard (2016) in that they argue that the 1973 oil crisis was unexpected and students 

who were about to leave school did not anticipate the impact it may have on them finding a job. 

4.2.3 Examples of the use of changes in the compulsory school leaving age in the literature 

A number of different papers in the literature exploit changes in the compulsory school leaving age to 

identify causality between education generated through the reform and an outcome variable 

(Avendano et al., 2020). One example includes examining the effects of increasing compulsory school 

leaving ages on income earnings in Canada where different provinces enacted increased leaving ages 

in different years (Oreopoulos, 2006a). Another example investigates the income and employment 

effects of the ROSLA in Greece (Psacharopoulos, 1978) where the cohort prior to the reform had 6 

years in school and the following cohort 9 years – this is in contrast to separating the ROSLA over a 

number of years like in Britain. A couple of papers investigate the economic effects of the 1947 ROSLA 

in Britain (O’Keefe (1975); Oreopoulos (2006b)). Oreopoulos (2006b) uses a regression discontinuity 

design to estimate returns to education, finding that the benefits from the additional schooling are 

economically significant. 

More papers have explored the effects of the 1972 ROSLA in England and Wales using regression 

discontinuity design. A couple of examples explore the effects of the reform on health (Jürges, Kruk 
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and Reinhold (2013); Avendano, de Coulon and Nafilyan (2020)). Jürges, Kruk and Reinhold (2013) find 

a strong correlation but not necessarily a causal effect (due to lacking statistical significance) suggesting 

an improvement in overall health from an increase in education. Avendano, de Coulon and Nafilyan 

(2020) find that the ROSLA did not improve mental health. Using the 1972 ROSLA, Bruscha and Dickson 

(2012) find an increase in the returns to education over 40 years after the reform. Powdthavee (2021) 

estimate attitudes and behaviours towards climate change using the change of the law and finding a 

willingness to change attitudes but little change to behaviour. To the author’s knowledge this is the 

first paper to explore the returns to education in agriculture of the 1972 ROSLA in England and Wales 

and more specifically the differentiated effects on organic and conventional farms. 

4.3 Data and Methods 

4.3.1 Sample description and data sources 

The data used here have been collected through the annual DEFRA FBS for the years 2011-2019 in an 

unbalanced panel containing 3,835 farms (Duchy College, 2022). FBS provides data on crop, livestock 

and land use on farms as well as the financial data of the farm businesses (Areal et al., 2018). Data for 

all farm types were used with controls adjusted for farm type introduced in some model specifications.  

Table 17 presents descriptive statistics of the organic farms within the FBS dataset and compares them 

to all the farms (thereby including organic farms) within the sample. Organic farmers seem to have 

higher output and gross margin per hectare as well as using more labour and capital but farming fewer 

hectares (ha). In terms of farmer differences, organic farmers seem to be slightly younger with more 

time spent in education. The age profile of the farmers in the sample are shown in Figure 9 with little 

differences in what are normal distributions of the age data. These differences in descriptive statistics 

between the two farm samples however are not statistically significant. 
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Table 17: Descriptive statistics comparing organic farms with the entire sample of farms 

 
Organic farms All farms  

Mean Std. dev. Obs. Mean Std. dev. Obs. 

𝑂𝑢𝑡𝑝𝑢𝑡 12.22 1.10 3,372 12.10 1.07 21,369 

𝐺𝑟𝑜𝑠𝑠 𝑚𝑎𝑟𝑔𝑖𝑛 11.24 1.29 3,285 11.15 1.31 20,767 

𝑇𝐹𝑃 2.25 0.10 3,365 2.24 0.09 21,102 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑝𝑒𝑟 ℎ𝑎 9.60 2.57 3,372 8.04 1.82 21,197 

𝐺𝑟𝑜𝑠𝑠 𝑚𝑎𝑟𝑔𝑖𝑛 𝑝𝑒𝑟 ℎ𝑎 8.58 2.66 3,285 6.99 1.99 20,597 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 11.46 1.16 3,366 11.37 1.18 21,277 

𝐿𝑎𝑏𝑜𝑢𝑟 8.57 0.84 3,373 8.44 0.87 21,373 

𝐿𝑎𝑛𝑑 (𝑈𝐴𝐴) 2.67 2.33 3,373 4.15 1.73 21,201 

𝐹𝑎𝑟𝑚𝑒𝑟 𝑎𝑔𝑒 56.54 10.52 3,373 57.35 10.98 21,373 

𝐹𝑎𝑟𝑚𝑒𝑟 𝑔𝑒𝑛𝑑𝑒𝑟 1.06 0.23 3,373 1.04 0.20 21,373 

𝐹𝑎𝑟𝑚𝑒𝑟 𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 10.95 3.26 3,349 10.33 3.26 21,143 

Note: Apart from age, gender and years of education for the farmer, all variables are in logarithms. 

 

Figure 9: Age distribution of farmers in the samples of organic farms and all farms 

 

4.3.2 Empirical Strategy 

Our estimation strategy relies on using the 1972 ROSLA in England and Wales. We adopt a RDD 

approach, as is usual in the case of exploiting reforms on school leaving age. In this case, the 
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discontinuity is created by the raising the minimum legal age for cohorts born after a specific threshold 

date 𝑐 (i.e. 1957, for our study).  

Similarly to Oreopoulos (2006b), we estimate a first stage, that involves linking the implementation of 

the reform to the number of years of schooling, by introducing a polynomial approximation of the 

running variable: 

ln(𝑆𝑖) = 𝛼0 + 𝛼1𝐷𝑖 + 𝑓(𝑏𝑖 − 𝑐) + 𝜖𝑖 

( 6 ) 

where for farmer 𝑖, 𝑆𝑖 is the number of years of education 𝐷𝑖 represents a dummy variable which takes 

the value 1 for individuals born after the threshold date 𝑐, the cutoff point i.e. 1957 in our study, and 

zero for those born before; 𝑓(. ) is a polynomial function of the farmer's birthdate; 𝑏𝑖 is the birth year 

for farmer 𝑖  and 𝜖𝑖 a disturbance term. Therefore, the group treated with the additional year of 

education are taken as those born after the 1957 cutoff point, 𝑐, and the control group are those born 

before this cutoff point. The polynomial function allows for different approximations of the polynomial 

fit regarding the population conditional expectation functions for the treated and control groups. For 

instance, a first order polynomial fit would be a linear approximation of 𝑏𝑖 − 𝑐, second order becomes 

(𝑏𝑖 − 𝑐)2, and a third order polynomial fit is (𝑏𝑖 − 𝑐)3 and so on. Adjusting this polynomial will adjust 

the ‘line of best fit’ between the number of years of schooling and when the farmer was born. 

Farmer 𝑖's return to education is then estimated by Two-Stage Least Squares on the following equation: 

𝑙𝑛(𝑌𝑖𝑡) = 𝛽0 + 𝛽1𝑆𝑖 + 𝑓(𝑏𝑖 − 𝑐) + 𝛽𝑘𝑋𝑘,𝑖𝑡 + 𝜂𝑖𝑡 

( 7 ) 

where for farmer 𝑖 in year 𝑡; ln (𝑌𝑖𝑡) represents the logarithm on a farm economic outcome 

(respectively total output, gross margin, total factor productivity, total output per hectare, and gross 

margin per hectare); 𝑆𝑖 is farmer's years of education (instrumented by 𝐷𝑖) and 𝜂𝑖𝑡 the error term. The 

instrument here is the dummy variable of having received additional education as part of the treated 
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group (or not in the case of the control group) with respect to the ROSLA and this instrument replaces 

the number of years of education for each farmer controlling for endogeneity related to receiving extra 

education. The vector 𝑋𝑘 of 𝑘 control variables is composed by input variables traditionally included 

in a farm production function (logarithms of capital, labour and utilized agricultural area)9, farmer's 

gender, farm specialisation and altitude dummies. Farm 𝑖's total productivity is estimated from a Cobb-

Douglas function with capital, labour and land as inputs. Formally, we measure the returns to 

education for those farmers who were to study for an extra year resulting from the reform (namely 

the "compliers"). 

In order to exploit the panel dimension of our sample, we extend our model to estimate a Correlated 

Random Effect model (Becker et al., 2013). Thus, we add the average of the covariates over the time 

periods, included as 𝑋𝑘,𝑖𝑡, in equation 7 in order to capture the farm specific effect on economic 

performance (Mundlak (1978); Chamberlain (1978)).  

All our specifications are estimated parametrically, which leads to the estimation of a flexible high 

order polynomial to predict the relationship between farm's economic performance and birthdate. 

Although this approach uses the whole sample, we restrict our sample to the farmers born between 

1949 and 1967. This choice of sample restriction is based on minimizing the mean squared error of 

Equation (7), inspired by the bandwidth selection in non-parametric RDD studies (Imbens and 

Kalyanaraman, 2012).  

Moreover, we adopt a HLATE approach proposed by Becker et al., (2013) to estimate specific farmer's 

education return for organic farming similarly to Gagliardi and Percoco (2017) where the dimension of 

the heterogeneity is not continuous.  This approach assumes that the choice between conventional 

and organic farming was not affected directly by the ROSLA, which seems reasonable in our 

application10. 

 
9 Input variables are not included when the farm outcome is total factor productivity. 
10 A test of this assumption is described in the results section. 



86 
 

4.4 Results 

In this section, we present the results of our estimations. Firstly, we outline the effect of the reform on 

the average number of years of education for farmers, derived from the estimation of our first-stage 

regression. We also assess how the reform has influenced the educational attainment level (by 

degree). Secondly, we detail our main results. Finally, we provide additional results to evaluate the 

robustness of our analysis. The results in a tabular form are presented for each estimation in the 

appendix to this chapter. Also shown in the appendix is the Stata code used to estimate the results for 

this chapter. 

4.4.1 Did SLA reform impact the schooling of farmers? 

The validity of our natural experiment relies on the fact that the School Leaving Age reform indeed 

exogenously influenced farmers' education decisions. Graphically depicted in Figure 10 is a clear 

discontinuity in the number of years of education between farmers unaffected by the reform (born 

before 1957) and those born after, and consequently, affected by the reform. In regressing the number 

of years of education over the period from 1947 to 1967 there is a significant and positive relationship 

between farmer’s year of education and farmer’s birthdate. However, there is a slightly negative and 

nonsignificant relationship for both periods from 1947 to 1957 and 1957 to 1967. While the data points 

appear to be negatively correlated over time, this is not significant within each subperiod, but the 

discontinuity demonstrates an increase in education over the entire period of data available. 
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Figure 10: Discontinuity in years of education from ROSLA 

 

The average effect of the reform on the number of years of education is illustrated in Figure 11. In 

Figure 11, we present the estimation results of equation (1), introducing respectively 1st, 2nd, or 3rd 

order polynomials for the running variable. The vertical bars correspond to 95% confidence intervals. 

Our results reveal that the average effect of the reform, around the discontinuity, ranges from 0.41 to 

0.36 depending on the polynomial order's choice. In other words, the reform has, on average, 

increased education by 0.40 years for our sample of farmers. Also shown in Figure 11 is that there is 

little difference in the choice of order of polynomial. Regarding organic farming, we observe a positive 

and significant effect on all three economic performance variables. 
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Figure 11: Effect of ROSLA on number of years of education 

 

Figure 12 documents the average effect of the reform on education level, by diploma. In this case, we 

observe a significant decrease for lower education levels (schooling, GCSE, and others) and an increase 

for higher education levels (A-level or equivalent, degree, and Postgraduate). The effect on education 

levels such as postgraduate is more surprising, considering that the reform was expected to primarily 

impact individuals leaving the education system early. Our interpretation is that concurrently with the 

School Leaving Age reform, access to university was facilitated during the same period (e.g., creation 

of regional universities). 
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Figure 12: Impact of ROSLA on farmers’ education level 

 

4.4.2 Main Results 

After analysing the impact of the reform on the number of years of education for farmers, we will now 

explore the returns of an additional year of education on the economic performance of their farms. 

The economic performance of farms is measured as total output, gross margin, and total factor 

productivity (Figure 13). TFP here is estimated simply as a residual from the production function 

variables of labour, capital and labour rather than following the same procedure as in chapter 3. 

Additionally, we have examined the effect on total output per hectare and gross margin per hectare 

(Figure 15). Finally, control variables have been incorporated into our estimations (see Figure 14 and 

Figure 16). 
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Figure 13: Average farmer’s education returns on farm performance (RDD estimates) 

 

Figure 13 summarises the average return to education on farm economic performance for all farms in 

our sample, and for the subsample of organic farms. We observe a positive and significant effect of 

education on the logs of total output and TFP for all farm sample, while the effect on log of gross 

margin is not significant. As education includes the quantity of schooling received (Huffman, 2001), 

and more education may result in the earlier adoption of newer technologies so additional economic 

return should be earned by those with the additional education as found in these results. 

For the sample of all farms, we identify that an increase of one year of education, on average, enhances 

total output by 1.3% (1.4% for TFP). This return is slightly lower than what we find in the 

microeconomic literature (Phillips, 1994); (Singh and Santiago, 1997), suggesting that the relationship 

between education and agricultural performance is generally overestimated. On the other hand, 

studies in other sectors examining the effect of entrepreneurs' education on productivity show higher 

returns, around 5% (Queiró, 2022). These results hold when we add individual covariates, farm 
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specialisation and altitude (Figure 14). Moreover, the estimated return to education estimated on all 

sample farmers seems to be lower than estimated on UK workers, around 7% (Devereux and Fan, 

2011). 

Figure 14: Average farmer’s education returns on farm performance with covariates (RDD estimates) 

 

Nevertheless, we observe that the returns to education are higher for farms that have adopted organic 

agriculture. Indeed, the return to an additional year of education is 5.5% on total output (respectively 

5.3% and 6% on gross margin and TFP). The difference between the two samples is statistically 

significant (z-test with a p-value less than 1%). Taylor and Yunez-Naude (2000) show that returns to 

education for Mexican farmers is higher in crop production than other activities (after controlling for 

selection in activity choice). Our results reveal a similar pattern regarding returns to better ecological 

practices. 
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Figure 15: Average farmer’s education returns on farm performance per ha (RDD estimates) 

 

These results are confirmed when we observe a higher return to education on total output and gross 

margin per hectare for organic farming operations. For total output, the average return is 1.2%, 

whereas the estimated return for organic farming operations is 4.7%. Overall, gross margin per hectare 

is not significantly influenced by education, while the return is consistently close to 5% for organic 

farms exclusively. 
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Figure 16: Average farmer’s education returns on farm performance per ha with covariates (RDD estimates) 

 

4.4.3 Robustness checks 

This section is dedicated to assessing the robustness of our main results. First, we assess whether our 

results hold when we use different specifications (log-log rather than log-linear) or use a different 

bandwidth. Second, we show if the reform of school leaving age have influenced the farmer's choice 

to adopt organic farming, and farm input choices (similar to an exclusion restriction checks). 

Figure 17 depicts the result by estimating a log-log relationship between farm economic performance 

and farmer's year of education, which reinforce our main results. We observe a similar pattern as 

depicted in Figure 13, i.e., a return to education of around 1.5% for the entire sample concerning total 

output (1.6% for TFP; not significant for gross margin). We also observe a significantly better return for 

farmers who have adopted organic farming (5.7% for both total output and gross margin, and 8% for 

TFP, respectively). 
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Figure 17: Average farmer’s education returns on farm performance in log-log (RDD estimates) 
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Figure 18: Average farmer’s education returns on farm performance per ha in log-log (RDD estimates) 

 

Then, we estimate equation (7) again, but this time by using a smaller cohort bandwidth (1949-1965) 

to test the sensitivity of our results to this choice. This latter bandwidth was chosen by using a local 

randomization based regression proposed by (Cattaneo et al., 2015) as a robustness check11. 

 
11 To do so, we use farmer's gender, farmer has a spouse, farm specialization and farm altitude as covariates to 
compute local randomisation. 
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Figure 19: Average farmer’s education returns with smaller bandwidth (1949-1965) 

 

Our main results generally hold, although the precision of our estimations is affected by a reduction in 

the size of our sample. The return to education remains higher for farmers who have adopted organic 

farming (4.87% for organic farming compared to 1.26% for the all sample on total output). 
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Figure 20: Continuity assumption between ROSLA and farmers’ propensity to adopt organic farming 

 

In order to test the continuity assumption between the school leaving age reform and the farmer's 

propensity to adopt organic farming, we estimate a reduced form model linking directly the eligibility 

dummy 𝐷 and the adoption of organic farming 𝑇 (Figure 20). Since we observe a positive direct effect 

of the reform on organic farming, the latter is non-significant, which confirms the validity of our 

approach to identify heterogeneous returns to education along this dimension (Becker et al., 2013). 

4.5 Conclusion 

To the best of our knowledge, this is the first work which exploits a quasi-experiment to identify a 

causal return to education in agriculture. Second and more specifically, this chapter explores the 

heterogeneous effects on organic and conventional farming which are shown in the literature to 

require different levels of labour as well as education. The quasi-experiment exploited the 1972 ROSLA 

in England and Wales whereby the students turning 15 years old in the 1972/1973 academic year, 

therefore born in 1957/1958, had an extra year of compulsory schooling from the cohort in the 
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previous academic year. At the time, only about 40% of students continued studying after it was no 

longer required to stay in school so there was an associated increase in school buildings and teaching 

staff.  

Farm Business Survey data taken from the years 2011 to 2019 was used in a regression discontinuity 

design methodology in two stages to estimate the returns to education. The first stage estimates the 

number of years of schooling depending on the birth year of the farm year whereby there is a clear 

discontinuity for those born after the ROSLA in 1972 as we would expect. Then, the second stage of 

the RDD estimates farm output using Two Stage Least Squares where the number of years of schooling 

is instrumented by their year of birth being before or after 1957. The model is extended through using 

a Correlated Random Effect model. In order to assess the specific farmer's education return for organic 

farming a HLATE approach is employed.  

In the first stage estimation we find an average increase in education by 0.40 years for our sample of 

farmers. In the second stage, for the sample with all farms an increase of one year of education is 

estimated to result on average, in an increase in total output by 1.3% (1.4% for TFP). Organic farming 

on the other hand has a much higher increase in returns: an additional year of education increases 

total output by 5.5% (respectively 5.3% and 6% for gross margin and TFP). These results hold when 

expanding the model to use covariates and in robustness checks. 

An important limitation in this chapter is that the ROSLA in 1972 was over 40 years ago and therefore 

how plausible is it that an impact on this policy was so significant as to both be economically and 

statistically significant. It is possible that an extra year of education resulted in a greater desire for 

students to partake in further education, for example postgraduate education or even just taking up 

more training opportunities than those who did not need to stay in school until they were 16. In 

addition, at the same time there was a reform in the type of schools available for students and a move 

away from private/grammar schools towards more comprehensive schooling. This would open 

opportunities for more students and possibly help them engage more with schools and receive a 
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better-quality education. This makes it challenging to distinguish between this quality improvement 

and an increase in quantity of education. 

It is important to first note that an additional year of education results, on average in an increase in 

total output and productivity for both conventional and organic farms. This suggests that production 

could be made more efficient through greater learning and farmers should be encouraged to 

undertake additional and relevant courses and training to increase their productivity on farms. The 

greater complexity and requirement to use fewer chemical inputs on organic farms also shows that 

the farmers who would gain most from additional education opportunities are organic farmers. 

Indeed, farmers with more education are also more likely to farm organically and with the environment 

in mind. 
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Appendix 

Chapter 4 Results Tables 

Table 18: Average farmer’s education returns on farm performance (RDD estimates) 

 

LATE_ALL_out
put  

LATE_org_out
put 

LATE_ALL_ 
margin  

LATE_org_ 
margin  

LATE_ALL_
TFP 

LATE_org_
TFP 

farmer_ed_bis  0.013** 0.047** 0.003 0.047** 0.014** 0.069* 

 (0.01) (0.02) (0.01) (0.02) (0.01) (0.04) 

log_K 0.359*** 0.381*** 0.453*** 0.426***   

 (0.01) (0.03) (0.01) (0.04)   

log_L  0.664*** 0.546*** 0.758*** 0.612***   

 (0.03) (0.09) (0.04) (0.10)   

log_UAA 0.052*** 0.118*** -0.030*** 0.017   

 (0.01) (0.03) (0.01) (0.03)   

forcing_cohort 0.002 0.012** -0.003* -0.004 -0.000 0.016* 

 (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) 

sq_forcing_cohort 0.001*** 0.001 0.001* -0.000 0.000 0.002 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

m__farmer_ed_ 
bis 

0.077 -0.109 0.055 0.215 -0.036 -0.110*** 

 (0.09) (0.12) (0.12) (0.14) (0.04) (0.04) 

m__log_K  -0.536*** -0.106 -0.524** 1.262   

 (0.17) (1.48) (0.24) (1.74)   

m__log_L -4.170 -1.175 -6.741 -2.363   

 (3.37) (2.11) (4.70) (2.49)   

m__log_UAA -0.080*** -0.197 -0.004 -0.489**   

 (0.01) (0.18) (0.02) (0.21)   

m__forcing_ 
cohort 

-0.125* -0.027 0.040 0.263 0.016 -0.036 

 (0.06) (0.15) (0.09) (0.18) (0.05) (0.15) 

m__sq_forcing_ 
cohort 

-0.063** -0.051 -0.227*** -0.169 0.003 -0.014 

 (0.03) (0.10) (0.04) (0.12) (0.02) (0.04) 

_cons 34.988 23.722 62.375 -19.017 2.470 5.305* 

 (35.78) (18.74) (50.00) (22.08) (5.33) (2.87) 

r2_a 0.719 0.303 0.627 0.263 -0.213 -5.73 

N    9274 1667 9045 1636 9274 1667 
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Table 19:  Average farmer’s education returns on farm performance per ha (RDD estimates) 

 

LATE_ALL_output_ 
ha             

LATE_org_output_ 
ha 

LATE_ALL_margin_ 
ha 

LATE_org_margin_ 
ha 

farmer_ed_bis 0.013** 0.047** 0.003 0.047** 

 (0.01) (0.02) (0.01) (0.02) 

log_K 0.359*** 0.381*** 0.453*** 0.426*** 

 (0.01) (0.03) (0.01) (0.04) 

log_L 0.664*** 0.546*** 0.758*** 0.612*** 

 (0.03) (0.09) (0.04) (0.10) 

log_UAA -0.948*** -0.882*** -1.030*** -0.983*** 

 (0.01) (0.03) (0.01) (0.03) 

forcing_cohort 0.002 0.012** -0.003* -0.004 

 (0.00) (0.01) (0.00) (0.01) 

sq_forcing_cohort 0.001*** 0.001 0.001* -0.000 

 (0.00) (0.00) (0.00) (0.00) 

m__farmer_ed_bis 0.076 -0.024 0.055 0.215 

 (0.09) (0.12) (0.12) (0.14) 

m__log_K -0.061 0.472 -0.524** 1.262 

 (0.17) (1.48) (0.24) (1.74) 

m__log_L -5.656* -0.667 -6.741 -2.363 

 (3.36) (2.12) (4.70) (2.49) 

m__log_UAA -0.083*** -0.227 -0.004 -0.489** 

 (0.01) (0.18) (0.02) (0.21) 

m__forcing_cohort 0.016 0.116 0.040 0.263 

 (0.06) (0.15) (0.09) (0.18) 

m__sq_forcing_cohort -0.166*** -0.064 -0.227*** -0.169 

 (0.03) (0.10) (0.04) (0.12) 

_cons 45.390 2.948 62.375 -19.017 

 (35.77) (18.76) (50.00) (22.08) 

r2_a 0.909 0.878 0.852 0.845 

N 9274 1667 9045 1636 
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Table 20: Average farmer’s education returns on farm performance with covariates (RDD estimates) 

 

LATE_ALL_o
utput_COV                 

LATE_org_o
utput_COV 

LATE_ALL_m
argin_COV  

LATE_org_m
argin_COV   

LATE_ALL_T
FP_COV 

LATE_org_T
FP_COV 

farmer_ed_bis 0.017*** 0.055*** 0.008 0.053** 0.015** 0.060** 

 (0.01) (0.02) (0.01) (0.02) (0.01) (0.03) 

log_K 0.279*** 0.380*** 0.363*** 0.443***   

 (0.01) (0.05) (0.01) (0.05)   

log_L 0.592*** 0.456*** 0.620*** 0.443***   

 (0.02) (0.10) (0.03) (0.11)   

log_UAA 0.136*** 0.139*** 0.114*** 0.076**   

 (0.02) (0.03) (0.02) (0.04)   

forcing_cohort 0.003* 0.018** -0.004* 0.004 0.002 0.018* 

 (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) 

sq_forcing_cohort 0.000** 0.002 0.000 -0.000 0.000** 0.002 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

m__farmer_ed_bis -0.003 0.036 -0.027 0.282 -0.038 -0.130*** 

 (0.09) (0.33) (0.13) (0.36) (0.04) (0.04) 

m__log_K -0.577*** -2.012 -0.479** -0.056   

 (0.18) (3.61) (0.24) (3.97)   

m__log_L -3.605 3.860 -7.151* 0.927   

 (3.15) (9.46) (4.20) (10.41)   

m__log_UAA -0.148*** -0.182 -0.135*** -0.494**   

 (0.02) (0.20) (0.03) (0.23)   

m__forcing_cohort -0.156** 0.046 0.016 0.286 0.008 -0.118 

 (0.06) (0.28) (0.09) (0.31) (0.05) (0.14) 

m__sq_forcing_ 
cohort 

-0.041 0.059 -0.203*** -0.092 0.005 -0.019 

 (0.03) (0.22) (0.04) (0.24) (0.02) (0.04) 

m__farmer_gender 10.818* -7.867 8.285 -4.588 3.245  

 (5.86) (17.11) (7.84) (18.78) (3.38)  

farmer_gender -0.150*** -0.160 -0.162*** -0.242 -0.148*** -0.259 

 (0.05) (0.15) (0.05) (0.16) (0.05) (0.17) 

1.altitude 0.000 0.000 0.000 0.000 0.000 0.000 

 (.) (.) (.) (.) (.) (.) 

2.altitude -0.014 0.172 -0.133*** 0.089 -0.024 0.195 

 (0.02) (0.11) (0.03) (0.12) (0.02) (0.12) 

3.altitude -0.234*** -0.184 -0.376*** -0.217 -0.245*** -0.138 

 (0.08) (0.32) (0.11) (0.35) (0.08) (0.35) 

4.altitude 0.293 1.163 0.099 1.273 0.234 1.382 

 (0.20) (1.18) (0.25) (1.26) (0.19) (1.36) 

11.ePub_farm_type 0.000 0.000 0.000 0.000 0.000 0.000 

 (.) (.) (.) (.) (.) (.) 

12.ePub_farm_type 0.030 0.230* 0.146*** 0.349** 0.051** 0.240* 

 (0.03) (0.13) (0.03) (0.15) (0.02) (0.14) 

21.ePub_farm_type 0.128*** 0.422** 0.148*** 0.511** 0.149*** 0.352** 

 (0.04) (0.18) (0.06) (0.20) (0.04) (0.18) 

22.ePub_farm_type -0.383*** 0.032 -0.478*** -0.048 0.175*** 0.558** 

 (0.04) (0.20) (0.05) (0.21) (0.04) (0.25) 

31.ePub_farm_type 0.287*** 0.568** 0.284*** 0.690*** 0.099*** 0.250 
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 (0.04) (0.24) (0.05) (0.26) (0.03) (0.24) 

32.ePub_farm_type 0.639*** 1.140*** 0.534*** 1.067*** 0.130*** 0.494** 

 (0.04) (0.23) (0.05) (0.25) (0.04) (0.23) 

33.ePub_farm_type -0.189*** 0.183 -0.305*** 0.189 0.117*** 0.475** 

 (0.03) (0.20) (0.04) (0.21) (0.03) (0.23) 

131.ePub_farm_type -0.396*** -0.701*** -0.477*** -0.996*** -0.059 -0.678* 

 (0.08) (0.23) (0.10) (0.25) (0.08) (0.35) 

132.ePub_farm_type 0.085 0.091 0.437*** 0.482** 0.005 -0.419*** 

 (0.06) (0.21) (0.08) (0.23) (0.03) (0.16) 

133.ePub_farm_type 0.266*** 0.389 0.707*** 0.911*** 0.071 -0.316 

 (0.07) (0.30) (0.10) (0.33) (0.05) (0.26) 

134.ePub_farm_type -0.356*** 0.276 -0.170*** 0.481 0.000 0.358 

 (0.05) (0.31) (0.06) (0.34) (0.04) (0.27) 

231.ePub_farm_type -0.393*** 0.209 -0.465*** 0.344 0.240*** 0.830*** 

 (0.05) (0.25) (0.08) (0.28) (0.06) (0.31) 

232.ePub_farm_type -0.528*** -0.101 -0.857*** -0.409 0.251*** 0.671** 

 (0.06) (0.25) (0.09) (0.27) (0.06) (0.30) 

233.ePub_farm_type -0.419*** 0.237 -0.657*** 0.188 0.282*** 0.931** 

 (0.07) (0.30) (0.09) (0.32) (0.07) (0.37) 

_cons 29.436 -10.589 67.721 -37.322 2.636 5.406** 

 (33.48) (69.43) (44.60) (76.42) (5.29) (2.45) 

r2_a 0.754 0.172 0.703 0.232 -0.196 -3.765 

N 9274 1667 9045 1636 9274 1667 
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Table 21: Average farmer’s education returns on farm performance per ha with covariates (RDD estimates) 

 

LATE_ALL_output_ 
ha_COV   

LATE_org_output_ 
ha_COV   

LATE_ALL_margin_ 
ha_COV   

LATE_org_margin_ 
ha_COV 

farmer_ed_bis 0.017*** 0.055*** 0.008 0.053** 

 (0.01) (0.02) (0.01) (0.02) 

log_K 0.279*** 0.380*** 0.363*** 0.443*** 

 (0.01) (0.05) (0.01) (0.05) 

log_L 0.592*** 0.456*** 0.620*** 0.443*** 

 (0.02) (0.10) (0.03) (0.11) 

log_UAA -0.864*** 0.862*** 0.886*** -0.924*** 

 (0.02) (0.03) (0.02) (0.04) 

forcing_cohort 0.003* 0.018** -0.004* 0.004 

 (0.00) (0.01) (0.00) (0.01) 

sq_forcing_cohort 0.000** 0.002 0.000 -0.000 

 (0.00) (0.00) (0.00) (0.00) 

m__farmer_ed_bis -0.007 0.025 -0.027 0.282 

 (0.09) (0.33) (0.13) (0.36) 

m_log_K -0.109 -0.409 -0.479** -0.056 

 (0.18) (3.61) (0.24) (3.97) 

m_log_L -5.098 1.453 -7.151* 0.927 

 (3.15) (9.47) (4.20) (10.41) 

m_log_UAA -0.151*** -0.229 -0.135*** -0.494** 

 (0.02) (0.20) (0.03) (0.23) 

m_forcing_cohort -0.016 0.117 0.016 0.286 

 (0.06) (0.28) (0.09) (0.31) 

m__sq_forcing_cohort -0.144*** -0.014 -0.203*** -0.092 

 (0.03) (0.22) (0.04) (0.24) 

m__farmer_gender 11.302* -2.443 8.285 -4.588 

 (5.86) (17.11) (7.84) (18.78) 

farmer_gender -0.150*** -0.160 -0.162*** -0.242 

 (0.05) (0.15) (0.05) (0.16) 

1.altitude 0.000 0.000 0.000 0.000 

 (.) (.) (.) (.) 

2.altitude -0.014 0.172 -0.133*** 0.089 

 (0.02) (0.11) (0.03) (0.12) 

3.altitude -0.234*** -0.186 -0.376*** -0.217 

 (0.08) (0.32) (0.11) (0.35) 

4.altitude 0.293 1.164 0.099 1.273 

 (0.20) (1.18) (0.25) (1.26) 

11.ePub_farm_type 0 0 0 0 

 (.) (.) (.) (.) 

12.ePub_farm_type 0.030 0.229* 0.146*** 0.349** 

 (0.03) (0.13) (0.03) (0.15) 

21.ePub_farm_type  0.128*** 0.421** 0.148*** 0.511** 

 (0.04) (0.18) (0.06) (0.20) 

22.ePub_farm_type -0.383*** 0.032 -0.478*** -0.048 

 (0.04) (0.20) (0.05) (0.21) 

31.ePub_farm_type 0.287*** 0.567** 0.284*** 0.690*** 

 (0.04) (0.24) (0.05) (0.26) 
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32.ePub_farm_type 0.639*** 1.139*** 0.534*** 1.067*** 

 (0.04) (0.23) (0.05) (0.25) 

33.ePub_farm_type -0.189*** 0.183 -0.305*** 0.189 

 (0.03) (0.20) (0.04) (0.21) 

131.ePub_farm_type -0.396*** -0.702*** -0.477*** -0.996*** 

 (0.08) (0.23) (0.10) (0.25) 

132.ePub_farm_type 0.085 0.089 0.437*** 0.482** 

 (0.06) (0.21) (0.08) (0.23) 

133.ePub_farm_type 0.266*** 0.389 0.707*** 0.911*** 

 (0.07) (0.30) (0.10) (0.33) 

134.ePub_farm_type -0.356*** 0.275 -0.170*** 0.481 

 (0.05) (0.31) (0.06) (0.34) 

231.ePub_farm_type -0.393*** 0.209 -0.465*** 0.344 

 (0.05) (0.25) (0.08) (0.28) 

232.ePub_farm_type -0.528*** -0.101 -0.857*** -0.409 

 (0.06) (0.25) (0.09) (0.27) 

233.ePub_farm_type -0.419*** 0.238 -0.657*** 0.188 

 (0.07) (0.30) (0.09) (0.32) 

_cons 39.922 -10.291 67.721 -37.322 

 (33.48) (69.45) (44.60) (76.42) 

r2_a 0.920 0.855 0.883 0.838 

N 9274 1667 9045 1636 
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Table 22: Average farmer’s education returns on farm performance in log-log (RDD estimates) 

 

LATE_ALL_o
utput_ 
log_log  

LATE_org_o
utput_ 
log_log  

LATE_ALL_
margin_ 
log_log 

LATE_org_
margin_ 
log_log 

LATE_ALL
_TFP_ 
log_log  

LATE_org
_TFP_ 
log_log 

log_farmer_yr
_educ 

1.764** 6.913** 0.396 6.898** 2.005** 10.193* 

 (0.85) (2.81) (1.21) (3.12) (0.96) (5.47) 

log_K 0.357*** 0.379*** 0.453*** 0.423***   

 (0.01) (0.03) (0.01) (0.04)   

log_L 0.665*** 0.541*** 0.758*** 0.606***   

 (0.03) (0.09) (0.04) (0.11)   

log_UAA 0.053*** 0.120*** -0.030*** 0.022   

 (0.01) (0.03) (0.01) (0.03)   

forcing_cohor
t 

0.002 0.012** -0.003* -0.004 -0.000 0.017* 

 (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) 

sq_forcing_co
hort 

0.001** 0.001 0.001 -0.001 0.000 0.002 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

m__log_K -0.472*** -0.385 -0.478** -0.206 -0.059 0.119 

 (0.16) (0.82) (0.22) (0.96) (0.15) (1.16) 

m_log_L -6.317*** -12.571 -8.298** -14.270 0.841 -9.582 

 (2.32) (11.81) (3.23) (13.87) (2.13) (16.81) 

m_log_UAA -0.083*** -0.272*** -0.006 -0.155** -0.003 -0.155* 

 (0.01) (0.06) (0.02) (0.08) (0.01) (0.08) 

m_forcing_co
hort 

-0.165*** -0.137 0.011 0.217 0.031 0.016 

 (0.05) (0.24) (0.06) (0.27) (0.04) (0.34) 

m__sq_forcin
g_cohort 

-0.075*** -0.048 -0.235*** -0.026 -0.004 -0.052 

 (0.03) (0.13) (0.04) (0.16) (0.02) (0.19) 

_cons 58.781*** 97.461 81.133*** 107.588 -11.551 54.621 

 (18.98) (93.94) (26.34) (109.94) (17.58) (133.16) 

r2_a 0.718 0.259 0.627 0.229 -0.224 -6.395 

N 9274 1667 9045 1636 9274 1667 
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Table 23: Average farmer’s education returns on farm performance per ha in log-log (RDD estimates) 

 

LATE_ALL_ 
output_ha_log_log      

LATE_org_ 
output_ha_log_log 

LATE_ALL 
_margin_ha_log_log 

LATE_org 
_margin_ha_log_log 

log_farmer_yr_educ 1.764** 6.912** 0.396 6.898** 

 (0.85) (2.81) (1.21) (3.12) 

log_K 0.357*** 0.379*** 0.453*** 0.423*** 

 (0.01) (0.03) (0.01) (0.04) 

log_L 0.665*** 0.541*** 0.758*** 0.606*** 

 (0.03) (0.09) (0.04) (0.11) 

log_UAA -0.947*** -0.880*** -1.030*** -0.978*** 

 (0.01) (0.03) (0.01) (0.03) 

forcing_cohort 0.002 0.012** -0.003* -0.004 

 (0.00) (0.01) (0.00) (0.01) 

sq_forcing_cohort 0.001** 0.001 0.001 -0.001 

 (0.00) (0.00) (0.00) (0.00) 

m__log_K 0.003 0.091 -0.478** -0.206 

 (0.16) (0.82) (0.22) (0.96) 

m_log_L -7.791*** -14.064 -8.298** -14.270 

 (2.32) (11.81) (3.23) (13.87) 

m_log_UAA -0.086*** -0.275*** -0.00 -0.155** 

 (0.01) (0.06) (0.02) (0.08) 

m_forcing_cohort -0.023 0.005 0.011 0.217 

 (0.05) (0.24) (0.06) (0.27) 

m__sq 
_forcing_cohort 

-0.178*** -0.152 -0.235*** -0.026 

 (0.03) (0.13) (0.04) (0.16) 

_cons 69.050*** 107.863 81.133*** 107.588 

 (18.98) (93.93) (26.34) (109.94) 

r2_a 0.909 0.871 0.853 0.838 

N 9274 1667 9045 1636 

 

 

Table 24: Average farmer’s education returns with smaller bandwidth (1949-1965) 

 

LATE_A
LL_out
put_ba
nd 

LATE_o
rg_out
put_ba
nd 

LATE_A
LL_out
put_ha
_band 

LATE_o
rg_out
put_ha
_band 

LATE_A
LL_mar
gin_ba
nd 

LATE_o
rg_mar
gin_ba
nd 

LATE_A
LL_mar
gin_ha
_band 

LATE_o
rg_mar
gin_ha
_band 

LATE_A
LL_TFP
_band 

LATE_o
rg_TFP
_band 

farmer
_ed_bis 

0.013*
* 

0.049*
* 

0.013*
* 

0.049*
* 

0.006 
0.049*

* 
0.006 

0.049*
* 

0.018*
* 

0.084 

 (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.05) 

log_K 
0.370*

** 
0.394*

** 
0.370*

** 
0.394*

** 
0.474*

** 
0.427*

** 
0.474*

** 
0.427*

** 
  

 (0.01) (0.04) (0.01) (0.04) (0.02) (0.04) (0.02) (0.04)   

log_L 
0.653*

** 
0.527*

** 
0.653*

** 
0.527*

** 
0.727*

** 
0.597*

** 
0.727*

** 
0.587*

** 
  

 (0.03) (0.11) (0.03) (0.11) (0.05) (0.12) (0.05) (0.12)   



108 
 

log_UA
A 

0.048*
** 

0.104*
** 

-
0.952*

** 

-
0.896*

** 

-
0.037*

** 
0.010 

-
1.037*

** 

-
0.990*

** 

  

 (0.01) (0.03) (0.01) (0.03) (0.01) (0.03) (0.01) (0.03)   

forcing
_ 
cohort 

0.002 0.013* 0.002 0.013* -0.002 -0.003 -0.002 -0.003 0.001 0.024 

 (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.02) 

sq_forc
ing_co
hort 

0.001*
* 

0.001 
0.001*

* 
0.001 0.000 -0.001 0.000 -0.001 -0.000 -0.000 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

m_log_
K 

-
0.460*

** 
-0.420 0.015 0.055 -0.437* -0.372 -0.437* -0.372 -0.048 0.148 

 (0.17) (0.85) (0.17) (0.85) (0.24) (1.00) (0.24) (1.00) (0.16) (1.38) 

m_log_
L 

-
6.611*

** 
-11.265 

-
8.089*

** 
-12.753 

-
9.288*

** 
-12.443 

-
9.288*

** 
-12.443 0.828 -8.674 

 (2.46) (12.21) (2.46) (12.21) (3.42) (14.37) (3.42) (14.37) (2.39) (19.88) 

m_log_
UAA 

-
0.079*

** 

-
0.252*

** 

-
0.082*

** 

-
0.256*

** 
-0.001 -0.141* -0.001 -0.141* -0.003 -0.171 

 (0.01) (0.07) (0.01) (0.07) (0.02) (0.08) (0.02) (0.08) (0.01) (0.11) 

m_forci
ng_coh
ort 

-
0.163*

** 
-0.138 -0.021 0.005 0.027 0.158 0.027 0.158 0.035 0.011 

 (0.05) (0.24) (0.05) (0.24) (0.07) (0.29) (0.07) (0.29) (0.05) (0.40) 

m__sq
_forcin
g_coho
rt 

-
0.076*

** 
-0.041 

-
0.179*

** 
-0.145 

-
0.240*

** 
-0.058 

-
0,240*

** 
-0.058 -0.003 -0.040 

 (0.03) (0.14) (0.03) (0.14) (0.04) (0.16) (0.04) (0.16) (0.03) (0.22) 

_cons 
64.252

*** 
98.849 

74.547
*** 

109.21
9 

89.600
*** 

107.11
7 

89.600
*** 

107.11
7 

-8.490 63.113 

 
(19.84) (97.64) (19.84) (97.62) (27.59) 

(114.74
) 

(27.59) 
(114.74

) 
(19.32) 

(158.46
) 

r2_a 0.718 0.251 0.907 0.868 0.626 0.208 0.850 0.832 -0.366 -8.755 

N 8487 1544 8487 1544 8272 1514 8272 1514 8487 1544 
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Chapter 4 Code 

***** Results 

*** Did SLA reform impact the schooling of farmers? 

**** Plot discontinuity on Farmer's education - Figure 6 

rdplot log_farmer_yr_educ birthdate if birthdate>=1949 & birthdate<=1967, c(1957) p(1) 

 

*** Effect of ROSLA on number of years of education - Figure 7 

generate  forcing_cohort=1957-birthdate 

generate  sq_forcing_cohort=forcing_cohort*forcing_cohort  

generate cb_forcing_cohort=forcing_cohort*forcing_cohort*forcing_cohort 

 

reg farmer_yr_educ dummy__after_reform forcing_cohort sq_forcing_cohort cb_forcing_cohort if birthdate>=1949 & birthdate<=1967 & diff==0 

estimates store p3 

reg farmer_yr_educ dummy__after_reform forcing_cohort i.altitude  if birthdate>=1949 & birthdate<=1967 & diff==0  

estimates store p2 

reg farmer_yr_educ dummy__after_reform forcing_cohort  if birthdate>=1949 & birthdate<=1967 & diff==0 

estimates store p1 
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coefplot (p3, label("3rd term polynomial")) (p2, label("2nd term polynomial")) (p1, label("1st term polynomial")), vertical keep(dummy__after_reform) 

yline(0) ytitle(SLA reform impact on farmer's year of education) legend(pos(6) row(1)) addplot(scatter @b @at, ms(i) mlabel(@b) mlabpos(2) 

mlabcolor(black)) 

 

*** Impact of ROSLA on farmers' education level - Figure 8 

estimates clear 

logit missing_farm_educ dummy__after_reform forcing_cohort    if birthdate>=1950 & birthdate<=1965 & diff==0 

estimates store code0 

logit farm_educ_code_1 dummy__after_reform forcing_cohort    if birthdate>=1949 & birthdate<=1967 & diff==0 

estimates store code1 

logit farm_educ_code_2 dummy__after_reform forcing_cohort  if birthdate>=1949 & birthdate<=1967 & diff==0 

estimates store code2 

logit farm_educ_code_3 dummy__after_reform forcing_cohort  if birthdate>=1949 & birthdate<=1967 & diff==0 

estimates store code3 

logit farm_educ_code_4 dummy__after_reform forcing_cohort  if birthdate>=1949 & birthdate<=1967 & diff==0 

estimates store code4 

logit farm_educ_code_5 dummy__after_reform forcing_cohort  if birthdate>=1949 & birthdate<=1967 & diff==0 

estimates store code5 

logit farm_educ_code_6 dummy__after_reform forcing_cohort  if birthdate>=1949 & birthdate<=1967 & diff==0 

estimates store code6 

logit farm_educ_code_9 dummy__after_reform forcing_cohort  if birthdate>=1949 & birthdate<=1967 & diff==0 
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estimates store code9 

 

coefplot *, format(%9.3g) vertical keep(dummy__after_reform) yline(0) addplot(scatter @b @at,  ms(i) mlabel(@b) mlabpos(2) mlabcolor(black)) 

 

****Main Results 

*** Average farmer's education returns on farm performance (total and per ha) (RDD estimates) - Figure 9 and Figure 11 

estimates clear 

drop m__* d__* 

by year, sort: center farmer_ed_bis  log_K log_L log_UAA  forcing_cohort sq_forcing_cohort if birthdate>=1949 & birthdate<=1967 & diff==0, prefix(d__) 

mean(m__) 

*Log of total output (all farms) 

ivreg2 log_output (farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 , 

estimates store LATE_ALL_output 

ivreg2 log_output_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 , 

estimates store LATE_ALL_output_ha 

*Log of margin (all farms) 

ivreg2 log_gross_margin ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 , 

estimates store LATE_ALL_margin 
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ivreg2 log_gross_margin_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967  , 

estimates store LATE_ALL_margin_ha 

drop m__* d__* 

by year, sort: center farmer_ed_bis  forcing_cohort sq_forcing_cohort if birthdate>=1949 & birthdate<=1967 & diff==0, prefix(d__) mean(m__) 

*Log of TFP (all farms) 

ivreg2 log_TFP_6_12 ( farmer_ed_bis=dummy__after_reform) forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & birthdate<=1967, 

estimates store LATE_ALL_TFP 

drop m__* d__* 

by year, sort: center farmer_ed_bis  log_K log_L log_UAA  forcing_cohort sq_forcing_cohort if birthdate>=1949 & birthdate<=1967 & diff==0 & 

dummy_organic_fully==1, prefix(d__) mean(m__) 

*Log of total output (organic farms) 

ivreg2 log_output ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_output 

ivreg2 log_output_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_output_ha 

*Log of margin (organic farms) 

ivreg2 log_gross_margin ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_margin 
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ivreg2 log_gross_margin_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_margin_ha 

drop m__* d__* 

by year, sort: center farmer_ed_bis  forcing_cohort sq_forcing_cohort if birthdate>=1949 & birthdate<=1967 & diff==0 & dummy_organic_fully==1, 

prefix(d__) mean(m__) 

*Log of TFP (organic farms) 

ivreg2 log_TFP_6_12 ( farmer_ed_bis=dummy__after_reform) forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & birthdate<=1967 & 

dummy_organic_fully==1 , 

estimates store LATE_org_TFP 

 

estout LATE_ALL_output LATE_org_output LATE_ALL_margin LATE_org_margin LATE_ALL_TFP LATE_org_TFP, style(tab) cells(b(star fmt(3)) se(par fmt(2))) 

stats(r2_a N, fmt(%9.3f %9.0g)) starlevels(* 0.10 ** 0.05 *** 0.01) replace 

coefplot LATE_ALL_output LATE_org_output LATE_ALL_margin LATE_org_margin LATE_ALL_TFP LATE_org_TFP , format(%9.3g) vertical keep(farmer_ed_bis) 

yline(0) addplot(scatter @b @at, ms(i) mlabel(@b) mlabpos(2) mlabcolor(black)) 

estout LATE_ALL_output_ha LATE_org_output_ha LATE_ALL_margin_ha LATE_org_margin_ha, style(tab) cells(b(star fmt(3)) se(par fmt(2))) stats(r2_a N, 

fmt(%9.3f %9.0g)) starlevels(* 0.10 ** 0.05 *** 0.01) replace 

coefplot LATE_ALL_output_ha LATE_org_output_ha LATE_ALL_margin_ha LATE_org_margin_ha , format(%9.3g) vertical keep(farmer_ed_bis) yline(0) 

addplot(scatter @b @at, ms(i) mlabel(@b) mlabpos(2) mlabcolor(black))  

 

***** Adding covariates such as gender dummy farm type altitude spouse 

**Figure 10 and Figure 12 - Average farmer's education on farm performance including covariates in the model specification 
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**All  

drop m__* d__* 

by year, sort: center farmer_ed_bis  log_K log_L log_UAA  forcing_cohort sq_forcing_cohort farmer_gender if birthdate>=1949 & birthdate<=1967 & diff==0, 

prefix(d__) mean(m__) 

*Log of total output (all farms) 

ivreg2 log_output ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__*  farmer_gender i.altitude 

i.ePub_farm_type if birthdate>=1949 & birthdate<=1967 , 

estimates store LATE_ALL_output_COV 

ivreg2 log_output_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* farmer_gender i.altitude 

i.ePub_farm_type if birthdate>=1949 & birthdate<=1967 , 

estimates store LATE_ALL_output_ha_COV 

ivreg2 log_gross_margin ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* farmer_gender i.altitude 

i.ePub_farm_type if birthdate>=1949 & birthdate<=1967  , 

estimates store LATE_ALL_margin_COV 

ivreg2 log_gross_margin_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* farmer_gender 

i.altitude i.ePub_farm_type if birthdate>=1949 & birthdate<=1967  , 

estimates store LATE_ALL_margin_ha_COV 

drop m__* d__* 

by year, sort: center farmer_ed_bis  forcing_cohort sq_forcing_cohort if birthdate>=1949 & birthdate<=1967 & diff==0, prefix(d__) mean(m__) 

ivreg2 log_TFP_6_12 ( farmer_ed_bis=dummy__after_reform) forcing_cohort sq_forcing_cohort  m__* farmer_gender i.altitude i.ePub_farm_type if 

birthdate>=1949 & birthdate<=1967, 

estimates store LATE_ALL_TFP_COV 
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*** organic 

drop m__* d__* 

by year, sort: center farmer_ed_bis  log_K log_L log_UAA  forcing_cohort sq_forcing_cohort  farmer_gender if birthdate>=1949 & birthdate<=1967 & diff==0 

& dummy_organic_fully==1, prefix(d__) mean(m__) 

ivreg2 log_output ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort farmer_gender i.altitude 

i.ePub_farm_type  m__* if birthdate>=1949 & birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_output_COV 

ivreg2 log_output_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort farmer_gender i.altitude 

i.ePub_farm_type m__* if birthdate>=1949 & birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_output_ha_COV 

ivreg2 log_gross_margin ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort farmer_gender i.altitude 

i.ePub_farm_type m__* if birthdate>=1949 & birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_margin_COV 

ivreg2 log_gross_margin_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort farmer_gender i.altitude 

i.ePub_farm_type  m__* if birthdate>=1949 & birthdate<=1967 & dummy_organic_fully==1 , 

 

estimates store LATE_org_margin_ha_COV 

drop m__* d__* 

by year, sort: center farmer_ed_bis  forcing_cohort sq_forcing_cohort farmer_gender if birthdate>=1949 & birthdate<=1967 & diff==0 & 

dummy_organic_fully==1, prefix(d__) mean(m__) 

 

****Figure 10 - Log of TFP (org farms) 
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ivreg2 log_TFP_6_12 ( farmer_ed_bis=dummy__after_reform) forcing_cohort sq_forcing_cohort  m__* farmer_gender i.altitude i.ePub_farm_type if 

birthdate>=1949 & birthdate<=1967 & dummy_organic_fully==1, 

estimates store LATE_org_TFP_COV 

drop m__* d__* 

 

estout LATE_ALL_output_COV LATE_org_output_COV LATE_ALL_margin_COV LATE_org_margin_COV LATE_ALL_TFP_COV LATE_org_TFP_COV, style(tex) 

cells(b(star fmt(3)) se(par fmt(2))) stats(r2_a N, fmt(%9.3f %9.0g))  replace  

coefplot LATE_ALL_output_COV LATE_org_output_COV LATE_ALL_margin_COV LATE_org_margin_COV LATE_ALL_TFP_COV LATE_org_TFP_COV , 

format(%9.3g) vertical keep(farmer_ed_bis) yline(0) addplot(scatter @b @at, ms(i) mlabel(@b) mlabpos(2) mlabcolor(black))  

coefplot LATE_ALL_output_ha_COV LATE_org_output_ha_COV LATE_ALL_margin_ha_COV LATE_org_margin_ha_COV  , format(%9.3g) vertical 

keep(farmer_ed_bis) yline(0) addplot(scatter @b @at, ms(i) mlabel(@b) mlabpos(2) mlabcolor(black))  

 

 

****Robustness checks 

*Figure 13 and Figure 14 - log-log estimates 

*Log-Log of total output (all farms) 

ivreg2 log_output ( log_farmer_yr_educ =dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 , 

estimates store LATE_ALL_output_log_log 

ivreg2 log_output_ha ( log_farmer_yr_educ =dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 , 

estimates store LATE_ALL_output_ha_log_log 



117 
 

*Log-Log of margin (all farms) 

ivreg2 log_gross_margin ( log_farmer_yr_educ=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 , 

estimates store LATE_ALL_margin_log_log 

ivreg2 log_gross_margin_ha ( log_farmer_yr_educ=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 

& birthdate<=1967  , 

estimates store LATE_ALL_margin_ha_log_log 

*Log-Log of TFP (all farms) 

ivreg2 log_TFP_6_12 ( log_farmer_yr_educ=dummy__after_reform) forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & birthdate<=1967, 

estimates store LATE_ALL_TFP_log_log 

*Log-Log of total output (organic farms) 

ivreg2 log_output ( log_farmer_yr_educ=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_output_log_log 

ivreg2 log_output_ha ( log_farmer_yr_educ=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_output_ha_log_log 

 

*Log-Log of margin (organic farms) 

ivreg2 log_gross_margin ( log_farmer_yr_educ=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_margin_log_log 
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ivreg2 log_gross_margin_ha ( log_farmer_yr_educ=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 

& birthdate<=1967 & dummy_organic_fully==1 , 

estimates store LATE_org_margin_ha_log_log 

 

*Log-Log of TFP (organic farms) 

ivreg2 log_TFP_6_12 ( log_farmer_yr_educ=dummy__after_reform) forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & birthdate<=1967 & 

dummy_organic_fully==1 , 

estimates store LATE_org_TFP_log_log 

estout LATE_ALL_output_log_log LATE_org_output_log_log LATE_ALL_margin_log_log LATE_org_margin_log_log LATE_ALL_TFP_log_log 

LATE_org_TFP_log_log, style(tab) cells(b(star fmt(3)) se(par fmt(2))) stats(r2_a N, fmt(%9.3f %9.0g)) starlevels(* 0.10 ** 0.05 *** 0.01) replace 

estout LATE_ALL_output_ha_log_log LATE_org_output_ha_log_log LATE_ALL_margin_ha_log_log LATE_org_margin_ha_log_log, style(tab) cells(b(star 

fmt(3)) se(par fmt(2))) stats(r2_a N, fmt(%9.3f %9.0g)) starlevels(* 0.10 ** 0.05 *** 0.01) replace 

 

coefplot LATE_ALL_output_ha_log_log LATE_org_output_ha_log_log LATE_ALL_margin_ha_log_log LATE_org_margin_ha_log_log , format(%9.3g) vertical 

keep(farmer_ed_bis) yline(0) addplot(scatter @b @at, ms(i) mlabel(@b) mlabpos(2) mlabcolor(black)) 

 

*** Smaller bandwidth - Figure 15 

estimates clear 

*Log of total output (all farms) 

ivreg2 log_output (farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1965 , 

estimates store LATE_ALL_output_band 
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ivreg2 log_output_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1965 , 

estimates store LATE_ALL_output_ha_band 

*Log of margin (all farms) 

ivreg2 log_gross_margin ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1965 , 

estimates store LATE_ALL_margin_band 

ivreg2 log_gross_margin_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1965  , 

estimates store LATE_ALL_margin_ha_band 

*Log of TFP (all farms) 

ivreg2 log_TFP_6_12 ( farmer_ed_bis=dummy__after_reform) forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & birthdate<=1965, 

estimates store LATE_ALL_TFP_band 

*Log of total output (organic farms) 

ivreg2 log_output ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1965 & dummy_organic_fully==1 , 

estimates store LATE_org_output_band 

ivreg2 log_output_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1965 & dummy_organic_fully==1 , 

estimates store LATE_org_output_ha_band 

*Log of margin (organic farms) 
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ivreg2 log_gross_margin ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1965 & dummy_organic_fully==1 , 

estimates store LATE_org_margin_band 

ivreg2 log_gross_margin_ha ( farmer_ed_bis=dummy__after_reform) log_K log_L log_UAA forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & 

birthdate<=1965 & dummy_organic_fully==1 , 

estimates store LATE_org_margin_ha_band 

*Log of TFP (organic farms) 

ivreg2 log_TFP_6_12 ( farmer_ed_bis=dummy__after_reform) forcing_cohort sq_forcing_cohort  m__* if birthdate>=1949 & birthdate<=1965 & 

dummy_organic_fully==1 , 

estimates store LATE_org_TFP_band 

 

coefplot LATE_ALL_output_band LATE_org_output_band LATE_ALL_output_ha_band LATE_org_output_ha_band LATE_ALL_margin_band 

LATE_org_margin_band LATE_ALL_margin_ha_band LATE_org_margin_ha_band LATE_ALL_TFP_band LATE_org_TFP_band, format(%9.3g) vertical 

keep(farmer_ed_bis) yline(0) addplot(scatter @b @at, ms(i) mlabel(@b) mlabpos(2) mlabcolor(black)) 

 

***Figure 16 - Continuity Assumption 

estimates clear 

reg dummy_organic_fully dummy__after_reform forcing_cohort sq_forcing_cohort   if  birthdate>=1949 & birthdate<=1967 , robust 

estimates store continuity_org1 

reg dummy_organic_fully dummy__after_reform forcing_cohort sq_forcing_cohort i.altitude   if  birthdate>=1949 & birthdate<=1967, robust 

estimates store continuity_org2 

reg dummy_organic_fully dummy__after_reform  forcing_cohort sq_forcing_cohort i.ePub_farm_type if  birthdate>=1949 & birthdate<=1967, robust 
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estimates store continuity_org3 

reg dummy_organic_fully dummy__after_reform forcing_cohort sq_forcing_cohort i.altitude  i.ePub_farm_type if  birthdate>=1949 & birthdate<=1967, 

robust 

estimates store continuity_org 

 

estout continuity_org1 continuity_org2 continuity_org3 continuity_org, style(tex) cells(b(star fmt(3)) se(par fmt(2))) stats(r2_a N, fmt(%9.3f %9.0g))  replace  

coefplot *, vertical keep(dummy__after_reform) yline(0) addplot(scatter @b @at, ms(i) mlabel(@b) mlabpos(2) mlabcolor(black)) 
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Chapter 5 – Conclusion 

Background and Research Objectives 

The main objective of this thesis was to explore how outputs and inputs, in particular labour, change 

in response to a change of farming practices towards a reduction in chemical input use. Chapter 2 

investigated using stakeholder perceptions what are the possible socioeconomic effects of certain 

scenarios of adopting ecological approaches to farming. Chapter 3 considered how production 

function and TFP estimates would change considering the inclusion of chemical inputs and thereby 

exploring the relationship between factors of production where chemical inputs are one of them. 

Chapter 4 then explored what are the returns to education from organic and conventional farming. 

Main findings 

Chapter 2 considered as a whole the socioeconomic effects of farms adopting ecological approaches 

to farming. Ecological approaches to farming here include organic and low-input approaches to 

agriculture as a couple examples. This chapter used stakeholder-based approaches to imagine future 

scenarios of ecological agriculture adoption. These approaches are both Delphi exercises and Q-

methodology.  

Chapter 3 estimated Total Factor Productivity using a systems-GMM approach of a Cobb-Douglas 

production function. This chapter included the use of chemical inputs which is absent in previous GMM 

estimations of TFP in the literature. Data was used from the Farm Accountancy Data Network for cereal 

crop farms from 2004-2018. Including chemical inputs in the specification makes little difference to 

labour productivity, but it has a large effect in reducing the coefficient on land productivity. It also has 

a significant effect on increasing output when it is increased and therefore this may encourage farms 

to specialise in those that farm more intensively to support food production and others that may farm 

more for environmental goals. 
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Chapter 4 considered the heterogenous returns to education for organic and conventional farming. 

The chapter addressed the shortfall of a lack of studies on the returns to education in agriculture and 

in particular in the context of organic farming. This chapter exploited the 1972 Raising of the School 

Leaving Age (ROSLA) in a regression discontinuity design (RDD) setting in two stages. First, it estimated 

the number of years of schooling depending on the birth year of the farmer. Second, an RDD 

estimation for farm output using Two Stage Least Squares was applied to estimate returns to 

agriculture across all farms in the sample as well as the organic farms. The RDD model was extended 

through using a Correlated Random Effect model and in estimating the organic farming a 

heterogeneous local average treatment effect (HLATE) approach is used. 

It is important to first note that an additional year of education results, on average in an increase in 

total output and productivity for both conventional and organic farms. This suggests that production 

could be made more efficient through greater learning and farmers should be encouraged to 

undertake additional and relevant courses and training to increase their productivity on farms. The 

greater complexity and requirement to use fewer chemical inputs on organic farms also shows that 

the farmers who would gain most from additional education opportunities are organic farmers. 

Indeed, farmers with more education are also more likely to farm organically and with the environment 

in mind. 

Further research could extend the analysis on using ecological agriculture or even farming through 

using a lower intensity of chemical inputs, especially fertilisers and crop protection chemicals. Principal 

Component Analysis could construct an index of farm intensity to compare the returns of education 

on different levels of farm chemical input intensity and exploiting the above 1972 ROSLA. In addition, 

a quantile regression could attempt to explore if higher levels of education would increase output 

inequalities further. Another potential further extension is to use a more precise estimation method 

for output e.g. estimating technical and allocative efficiency. A limitation to the study in this chapter 

would explore the returns to training for which we do not have the data.  
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