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Abstract. The classical Ising chain is a paradigm for the non-existence of
phase transitions in one-dimensional systems and was solved by Ernst Ising 100
years ago. More recently, a decorated two-leg Ising ladder has received interest
due to its curious thermodynamics that resemble a phase transition; a sharp
peak in the specific heat at low, but finite temperature. We use this model to
reveal a bifurcation in the correlation lengths due to a crossing of the sub-leading
eigenvalues of the transfer matrix, which results in two distinct length scales
necessary to describe the decay of correlations. We discuss this phenomenon in
the context of the geometric frustration in the model. We also provide additional
results to aid in the understanding of the curious thermodynamics of the model
through a study of the magnetic susceptibilities.

Keywords: Ising model, phase transitions, frustrated magnetism,
statistical mechanics, correlations, low-dimensional systems

*Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

© 2024 The Author(s). Published on behalf of SISSA Medialab srl by IOP Publishing Ltd

https://orcid.org/0009-0000-7737-5837
https://orcid.org/0000-0002-1156-5408
https://orcid.org/0000-0001-9995-4944
mailto:jbc32@kent.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/ad784f&domain=pdf&date_stamp=2024-9-27
https://stacks.iop.org/JSTAT/2024/093214
https://doi.org/10.1088/1742-5468/ad784f
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Bifurcation in correlation length of the Ising model on a ‘Toblerone’ lattice

J.S
tat.

M
ech.(2024)

093214
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Outline of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

2. Control of the peak in the specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1. Peak position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.2. Peak width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3. Zero-field susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4. Transfer matrix: symmetries and level crossings . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1. Crossing of the sub-leading eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5. Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1. The prefactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2. The correlation length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Appendix A. Transfer matrices: eigenvalues, symmetries, and spin
matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.1. Solution of the model by transfer matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.2. Symmetries of the transfer matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.3. Spin matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Appendix B. Effect of including coupling between the top spins . . . . . . . . . . 22

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1. Introduction

The physics of low-dimensional systems have been a constant curiosity and a vibrant
area of research [1–3]. This low dimensionality often permits an exact solution of these
models, allowing for the probing of complex critical phenomena. Perhaps the most
ubiquitous and paradigmatic example of this type is the one-dimensional (1D) Ising
model, named after Ernst Ising, who first solved the model 100 years ago [4]. This
model describes a chain of classical spins si =±1 interacting with their neighbours,
with some energy scale J. Ising’s solution of this model demonstrated that there was
no phase transition at finite temperature, although his prediction that the absence of
criticality would persist in higher dimensions would be disproved [5, 6].

Physically, the lack of a phase transition in one dimension (we henceforth refer only
to finite temperature transitions) can be understood by considering the energy cost,

https://doi.org/10.1088/1742-5468/ad784f 2

https://doi.org/10.1088/1742-5468/ad784f


Bifurcation in correlation length of the Ising model on a ‘Toblerone’ lattice

J.S
tat.

M
ech.(2024)

093214
or entropy gain, for the creation of domain walls. Domain walls in a 1D system are
point-like, and have a finite energy proportional to the energy scale set by the spin–
spin interaction J. This energy is independent of the size of the domain. However,
this is in contrast to the entropy associated with these domain walls. The number of
possible locations at which domain walls can be placed is proportional to the system size,
which, in the thermodynamic limit, clearly dominates the free energy. These domains
can become arbitrarily large, hence preventing the formation of long-range order in
1D systems. The 1D Ising model is exactly solved by the transfer matrix method (see
textbooks on statistical mechanics [7]). By noting that the transfer matrix is positive-
definite (its elements are Boltzmann weights), the lack of criticality can be understood
mathematically thanks to the theorem of Perron and Frobenius for matrices [8]. This
theorem ensures that the largest eigenvalue, which controls the thermodynamics, strictly
has an algebraic multiplicity of one. Level crossings of the largest eigenvalue are thus
prohibited, and so the thermodynamics are smooth functions of temperature.

There are a few 1D models that do exhibit true thermodynamic phase transitions
at finite temperature (see those detailed in [9]); however, these models have transfer
matrices that do not belong to the class that Perron–Frobenius applies to; usually
involving long-range interactions or forbidden energy states. Thus, through Perron–
Frobenius, we have a strict ‘no-go’ theorem for the existence of phase transitions in 1D
models that have positive-definite transfer matrices of finite size. Yet recent studies,
conducted on a variety of 1D spin models, have uncovered near-singular behaviour in
the free energy [10–19]. This behaviour is not limited to spin models, and can also
be observed in coupled spin-electron models [20], 1D q-state Potts models [21], and
spin-pseudospin models [22]. This manifests as thermodynamics reminiscent of a phase
transition at finite temperature; a remarkably sharp peak in the specific heat capacity,
resembling a divergence as observed in cases of higher dimensionality. One specific model
is a decorated two-leg Ising ladder with triangular rungs [23–27], with the Hamiltonian

H=−
∑
i

[JLeg (s1,is1,i+1+ s2,is2,i+1)+ JRungs1,is2,i+ J∆ (s1,i+ s2,i)st,i] , (1)

whose spins are classical (sα,i =±1), and their positions and interactions are sketched
in figure 1. This Hamiltonian corresponds to the Ising model on the ‘Toblerone’ lattice,
so-called for its resemblance to the famous Swiss chocolate. H is invariant under the
transformations JLeg →−JLeg, and J∆ →−J∆. Interestingly, if JRung < 0 (antiferromag-
netic) the spins of each ith triangle become frustrated. This occurs whenever s1,i,s2,i,st,i
cannot uniquely minimise the energy of their interactions J∆,JRung.

Geometrical frustration—the paradigmatic example of which is an equilateral tri-
angle of antiferromagnetic interacting Ising spins—is considered pivotal in understand-
ing how a narrow peak can arise in the specific heat of a 1D Ising model, such as H
in equation (1) [23]. In general, it is well known that frustration results in manifolds of
highly degenerate energy states, which, in a ‘perfectly’ frustrated system, would be the
ground state. However, in the model in equation (1), this manifold occurs in the low-
energy states, not the ground state. In a lattice of interconnected triangular units, the
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Figure 1. Sketch of the two-leg Ising ladder with triangular rungs (or Toblerone
lattice), whose Hamiltonian is defined in equation (1). Spins on the legs are labelled
s1 and s2 (red and blue dots, respectively), while st denotes the top spins (green
dots).

degree of degeneracy scales extensively, and the entropy associated with it can become
macroscopic in the thermodynamic limit [28].

This general connection between frustration and narrow peaks in the specific heat
(often referred to as ‘pseudo-transitions’) was first explored in [20], and then further
generalised by a conjecture in [29]. According to this work, one must consider the ground
state entropy as a function of some model parameter—in the case of the model defined
in equation (1), this parameter is x= J∆/|JRung|. For x > 1 (considered in this paper),
we have an ordered ground state with zero-temperature entropy S =0 per unit cell.
However, for x < 1, the ground state would be frustrated, and have a zero-temperature
entropy of S = ln(2) per unit cell. In the proximity of this boundary, the manifold of
frustrated states can be accessed at low, but finite, temperature. The conjecture in [29]
states that this can give rise to a sharp peak in the specific heat, depending on the
details of this zero-temperature transition. These further conditions are indeed satisfied
by the model in equation (1), as evidenced by the peak shown in figure 2.

In [23], Yin discussed the curious thermodynamics of the model in equation (1).
It was shown that the correlation function (here denoted Γ1,2) between the rung spins
s1,s2 of the same triangle exhibits a change of sign at a temperature that coincides
with the temperature of the peak in the specific heat (from now on we label such
temperature as Tc). At low temperature, the correlation function is positive, Γ1,2 > 0,
yet upon increasing the temperature, the spins along the legs of the ladder become
uncorrelated (Γ1,2 = 0), at exactly Tc. The correlation function changes sign upon further
increasing the temperature, and now assumes negative values, Γ1,2 < 0. This corresponds
to changing from parallel to anti-parallel the orientation of the rung spins s1,i,s2,i. The
link between the change of sign of the short-range correlation functions and frustration
was discussed in [30]. The temperature at which the correlation function changes sign
defines a ‘frustration temperature’, which provides an immediate link to the work of
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Figure 2. Plot of the specific heat and entropy for the model. The height of the
peak in specific heat extends beyond the top margin, but remains of finite height
and width. In this plot, JLeg = 2, JRung =−1, J∆ = 1.2.

[23]. Indeed, this sheds light on the rise of the peak in the specific heat, signalling the
larger entropy of the anti-parallel, frustrated, configurations. Put simply, there are many
more configurations with s1,i =−s2,i than there are with s1,i = s2,i, and this is because
JRung < 0 competes with J∆, frustrating their interaction with st,i.

This idea was elucidated upon further by Hutak et al by means of a renormalisation
group (RG) analysis [27]. By tracing out the top spins (st,i), the legs s1,i and s2,i of
the ladder interact via a temperature-dependent effective interaction, J⊥(T ), which is
defined as

J⊥ (T ) = JRung +
T

2
lncosh

2J∆
T

, (2)

and is found to change sign at the same Tc estimated by Yin in [23]. This change of
sign conveys an effective decoupling between the legs 1 and 2 of the ladder (J⊥ = 0),
whereupon above Tc, the legs re-couple with an antiferromagnetic interaction (J⊥ < 0).
The effect of the spins st,i can be seen to be analogous to a variable JRung in a standard
two-leg Ising ladder. These RG results corroborate the analysis by Yin based on the
correlation functions.

Ultimately, these behaviours observed in the thermodynamics signal a crossover
from a non-degenerate ground state to a manifold of frustrated states, which, in the case
of the model in equation (1), can become remarkably narrow [23]. These analyses provide
useful insights into the curious thermodynamics, yet there remain some questions that
we aim to address.

(1) Are the location and the width of the peak in specific heat independent?

(2) What response, if any, is seen in the zero-field susceptibility for this model?

(3) Can the relevant symmetries of the model provide deeper insights about the model?

(4) What is the full picture of the correlations in the model?
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1.1. Outline of the paper

We address each of these questions in the following sections of the present work, which
is organised as follows. We first discuss the characteristics of the peak in the specific
heat, namely the location and the width, in section 2. In this section we will show that
the location and the width of the peak are controlled by independent parameters. Then,
section 3 studies the magnetic susceptibility, in zero field, for the model, and discusses
the behaviour in relation to the Curie–Weiss law. We will use these susceptibilities to
describe the underlying mechanisms of the crossover phenomena. Section 4 will study the
eigenvalues of the transfer matrix more closely, considering the behaviour of the whole
eigenvalue spectrum. We find that there is a crossing of the sub-leading eigenvalues,
and we discuss the consequences of such, and show how this crossing is related to
the symmetries of the model. The consequences are seen immediately in section 5,
where the correlations are studied. This section presents a remarkable phenomenon,
in which we find a bifurcation in the correlation lengths, in part, as the result of a
crossing of eigenvalues of the transfer matrix. This bifurcation is discussed in the context
of the frustration of the spins st,i, and we show that this bifurcation persists even
under the inclusion of an interaction between the spins st,i. Including this additional
interaction aids in probing the link between the thermodynamics and the correlation
length bifurcation.

2. Control of the peak in the specific heat

In order to study the specific heat, it is necessary to first obtain the free energy. This can
be obtained by the transfer matrix method [7], through which we obtain the free energy
F/N =−T lnλ1, (λ1 is the dominant eigenvalue). The transfer matrix and additional
details can be found in appendix A.1. From the free energy, we can compute the entropy
by s=−∂f /∂T , and then the specific heat from c= T∂s/∂T .

The ability to control the characteristic features of the peak is pivotal in assessing
the physical foundations of the model. We parametrise the peak in the specific heat by
the temperature at which the peak is centred (Tc) and by the width of the peak (∆T ).
(While this manuscript was in preparation, Yin addressed the width of the peak [23].
The result we present is in good agreement with that found by Yin). A most relevant
point is to establish whether there are sets of parameters from equation (1) that control
Tc and ∆T independently, since the narrow width of the peak could otherwise be related
to the temperature where the peak occurs.

2.1. Peak position

The position of the peak has been well documented in the current literature [23, 27]. In
[23], the position of the peak is obtained as the temperature at which a so-called ‘frus-
tration function’ I− is zero (the exact form of I− is given in appendix A.1). In a similar
fashion, [27] obtains the same position of the peak by considering the temperature at
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Figure 3. Control over the location (panel (a)) and the width (panel (b)) of the
peak in the specific heat through different parameters. (The height of the sharp
peaks extends past the top of the plot.) Panel (a): the peak location is controlled
by changing J∆, and keeping JRung =−1. Panel (b): the peak width is parametric
in JLeg, while JRung =−1,J∆ = 1.2 are fixed, yielding Tc ≈ 0.577 (vertical dashed
line, also in the inset). We note that for JLeg = 1 in (b), the peak is much broader,
and no longer centred at Tc.

which the effective coupling J⊥(T ), as given in equation (2), is zero. We reproduce the
result, which is

Tc ≈
2

ln2
(|J∆|+ JRung) , (3)

which gives Tc as dependent only on the parameters J∆,JRung and independent of JLeg.
To illustrate this result, the specific heat is plotted for various values of |J∆|+ JRung in
figure 3(a). For the three values of |J∆|= 1.1,1.2,1.3 used in figure 3(a), the correspond-
ing calculated values of Tc ≈ 0.2885,0.5771, and 0.8656 are found. Each of these peaks
has a width much narrower than the corresponding peak position (∆T ≪ Tc). We thus
clearly see that by tuning J∆,JRung, we are able to arbitrarily place the peak. What has
been less well documented, however, is the width of this peak. It is necessary to discern
the parameters that control the width of this peak, as mentioned previously.

2.2. Peak width

The peak width can be studied by expanding the specific heat around Tc. The dominant
contribution to the specific heat, in the vicinity of Tc, is given conveniently in [27] in
terms of the renormalised interaction J⊥(T ). This dominant contribution is

C ∼ const.
cosh(J⊥/T )cosh(2JLeg/T )(

1+ sinh2 (J⊥/T )cosh
2 (2JLeg/T )

)3/2 , (4)
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where the constant is related to ∂J⊥(T )/∂T . By then considering the behaviour near
Tc, this expression can be expanded as

C ∼ 1[
1+ (T −Tc)

2 /η
]3/2 , (5)

where η = [2Tc cosh(2JLeg/Tc)/ ln(2)]
2. We consider the point at which the specific heat

reaches half its maximum value, the full width at half maximum. We write this point
as

C

Cmax
=

1

2
=

1

(1+A)3/2
, (6)

where A= (∆T 2/2) η−1. We find that A= 22/3− 1 from equation (6), and by equating
(∆T 2/2) η−1 = 22/3− 1 we can obtain an expression for the width, which is

∆T = α∆T
Tc

ln2
e−2JLeg/Tc, (7)

where α∆T = 4
√
2(22/3− 1), and we make use of eJLeg/Tc ≫ e−JLeg/Tc. For a fixed value of

Tc, the width ∆T decreases exponentially with increasing JLeg. This is illustrated in
figure 3(b) for three values of JLeg, and a constant Tc ≈ 0.577.

Thus, the location and width of the peak can be controlled by independent paramet-
ers of the model, i.e. Tc is governed solely by J∆ and JRung while ∆T by JLeg for a fixed
value of Tc. It is relevant to ask whether ∆T can become zero, as this would correspond
to a phase transition. However, equation (7) is zero only when Tc = 0, corresponding to
the phase transition at zero temperature in the 1D Ising model. Whilst this peak, and
hence the crossover, can become remarkably narrow at finite temperature (∆T ≪ Tc),
it is of strictly finite height and width.

For completeness, we include the case JLeg = 1 in figure 3(b), where the width of the
peak is now of the order ∆T =O(|J∆|+ JRung). The peak location now deviates from
the calculated Tc, and is much broader. We will return to this broadening of the peak
in section 5.

3. Zero-field susceptibility

This section considers the zero-field magnetic susceptibility of the model defined in
equation (1). We will study four key susceptibilities, and discuss the relation to the
crossover phenomena in the model. These are a uniform field to each spin, χUniform;
next, we apply a field uniformly to only the spins on the legs, which we refer to as the
‘ferromagnetic’ susceptibility, χFM; then applying the field in opposite directions to the
spins on the two legs of the ladder, the ‘antiferromagnetic’ susceptibility, χAFM; and
finally a field applied to only the top spins, χTop.

https://doi.org/10.1088/1742-5468/ad784f 8
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Figure 4. Plot of the susceptibilities χ as a function of temperature. For these plots,
we have used the parameters JLeg = 2,JRung =−1,J∆ = 1.2. The dashed line shows
exp(4JLeg/T )/T as guide for the low-T behaviour. The susceptibilities of largest
magnitude provide insights about the spin configurations at a given temperature.
For T < Tc, we see that the ferromagnetic susceptibilities dominate, whilst for T >
Tc, the antiferromagnetic susceptibility dominates. The inset shows a zoomed view
around Tc.

To study these four cases, we include the corresponding field term in the Hamiltonian
for the model, equation (1), which gives

χUniform → HB =−B
∑
i

(s1,i+ s2,i+ st,i) ,

χAFM → HB =−B
∑
i

(s1,i− s2,i) ,

χFM → HB =−B
∑
i

(s1,i+ s2,i) ,

χTop → HB =−B
∑
i

st,i

. (8)

After making the necessary modifications, the transfer matrix can no longer be block
diagonalised as the symmetry under a total spin-flip is no longer present. As such,
we make use of a centred finite difference method in order to compute the zero-field
susceptibilities numerically.

The four susceptibilities are plotted in figure 4 on a log10 scale, with the inset show-
ing a zoomed view around Tc. Two distinct behaviours of the susceptibilities can be
observed in figure 4; for T < Tc, χUniform,χFM,χTop all become exponentially large. This
exponential behaviour is shown by the dashed line in figure 4, which corresponds to
exp(4 JLeg/T )/T , which is an estimate of two ferromagnetic Ising chains. For refer-
ence, the standard Ising chain has a low temperature susceptibility that behaves as
χ ∼ exp(2J/T )/T . The magnitudes of these susceptibilities for T < Tc indicate that a
parallel configuration of spins is preferred; we observe χAFM becoming exponentially
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Table 1. Tabulated results for the mean-field analysis of the inverse susceptibilities
in equation (9).

Susceptibility n θCW

χUniform 1 2JLeg +JRung
χFM 2/3 2JLeg +JRung −J∆
χAFM 2/3 2JLeg −JRung +2J∆
χTop 1/3 2JLeg +JRung − 2J2

∆

small below Tc, which indicates that anti-parallel alignments are suppressed. However,
this changes for T > Tc, where we observe that χAFM is now the dominant susceptibility,
which conveys a preference for configurations with s1,i =−s2,i.

Together, these susceptibilities corroborate our understanding of the crossover mech-
anism. At low temperature, T < Tc, each triangular unit has its spins aligned parallel.
This is at the expense of satisfying JRung; however, this is energetically favourable owing
to |J∆|> |JRung|. Upon increasing the temperature, this preference towards parallel
alignments becomes suppressed, instead yielding to anti-parallel alignments. The effect
of this is that the orientation of st,i is no longer parallel to both s1,i,s2,i; it has become
frustrated, resulting in an entropy of ln2 per triangle, which gives rise to the peak in
the specific heat.

We also perform a mean field analysis in order to make a comparison between the
Curie–Weiss law and our numerical results. Self-consistent equations for the on-site
magnetisations are formed for the four cases given in equation (8), which are then
solved to obtain expressions for the magnetic susceptibility, assuming a linear response
to the field. Generally, the inverse susceptibility behaves linearly at high temperatures,
and this region can be well approximated by the equation

χCW ∼ n
1

T − θCW
, (9)

where θCW is the Curie–Weiss temperature, and n is a normalisation constant. For each
of the cases in equation (8), values of θCW and n obtained from the mean field analysis
are tabulated in table 1. We see good agreement between the results in table 1 and the
numerical results in figure 5 at high temperature.

4. Transfer matrix: symmetries and level crossings

Let us now consider the full structure of the transfer matrix in detail. As discussed, the
thermodynamics depend only on the largest eigenvalue of the transfer matrix λ1 in the
thermodynamic limit. The correlations, however, depend on the sub-leading eigenvalues,
and so it is prudent to study the entire eigen-spectrum more closely. For the model in
equation (1), the transfer matrix has dimensions of 8× 8 (three Ising spins per unit cell),
and its symmetries permit block diagonalisation, which allows analytical expressions for
the eigenvalues to be obtained [23, 31]. We find that four of the eigenvalues are exactly
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Figure 5. Plot of the inverse susceptibilities 1/χ as a function of temperature. For
these plots, we have used the parameters JLeg = 2,JRung =−1,J∆ = 1.2. Each solid
line (1/χ) has a corresponding dashed line that shows the Curie–Weiss result for
high temperature, with which we see good agreement. The specifics of the mean
field analysis are discussed in the main text.

zero, directly relating to tracing out the spins st,i, and hence obtaining a 4× 4 matrix.
The non-zero eigenvalues of the transfer matrix (λi) are given in appendix A.1, along
with further details related to the rest of this section.

The Perron–Frobenius theorem ensures that λ1 never crosses any λi>1, thus leading
to thermodynamic functions continuous in temperature, i.e. a ‘no-go’ for thermodynamic
phase transitions [8]. In the rest of this section, we will discuss the importance of the
sub-leading eigenvalues, specifically λ2,λ3, to the physics of the model. We find that
the symmetries of the transfer matrix permit these eigenvalues to cross as a function
of temperature. For clarity, our convention assigns labels to the λi based upon the
low temperature magnitudes (see appendix A.1; for example, λ2 > λ3 at temperatures
below the crossing point, but λ2 < λ3 at temperatures above it). This crossing, shown
in figure 6, has profound consequences for the correlations, which are discussed in the
following section.

4.1. Crossing of the sub-leading eigenvalues

The symmetries of the transfer matrix permit a block diagonal form to be obtained,
which was noted in [23], although the nature of these symmetries has not been fully
explored. As such, we study these symmetries more closely, and demonstrate how they
relate to the crossing of λ2 and λ3.

The first symmetry is the ‘spin-flip’ symmetry; the transfer matrix is invariant under
the transformation |+++⟩ → |−−−⟩, with the spin entries corresponding to the vector
of spin variables |s1,s2,st⟩, which is not a quantum mechanical ket. The corresponding

operator, P̂1, is anti-diagonal, and has eigenvalues ±1, each with multiplicity four. The
matrix for this operator and more comprehensive details can be found in appendix A.2.
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Figure 6. The behaviour of the four non-zero, sub-leading eigenvalues, λ2,3,4,
divided by λ1. The vertical line is a guide for the eyes to highlight the temper-
ature where λ2,λ3 cross. The parameters used are JLeg = 1,JRung =−1,J∆ = 1.2.

We can see the eigenvalues clearly by considering the action of this operator on linear
combinations of basis states, namely

+1 : P̂1 (|+++⟩+ |−−−⟩) = |+++⟩+ |−−−⟩,
−1 : P̂1 (|+++⟩− |−−−⟩) =−(|+++⟩− |−−−⟩) .

(10)

This operator is indeed a symmetry of the transfer matrix, as can be shown by the
commutator [P̂1,T] = 0. This has the consequence that a simultaneous diagonalisation
could be performed with some unitary matrix U. We note that such a matrix would
bring the transfer matrix to a block diagonal form, with a two-block structure (each
of dimension 4× 4). These blocks correspond to the ± parity sectors of the operator

P̂1. This symmetry alone does not shed much light on the crossing of the sub-leading
eigenvalues, as λ2,λ3 are located in the same block (corresponding to P̂1 =−1). To
permit the crossing of λ2,λ3, they must be located in separate blocks, motivating the
introduction of a second symmetry.

The second symmetry corresponds to the exchange of the legs of the ladder. The
corresponding operator, P̂2, acts trivially on states with s1,i = s2,i, otherwise exchanging

the legs, for example P̂2|+−−⟩= |−+−⟩. This operator, like P̂1, has eigenvalues of ±1;
however, the multiplicities are now six for the eigenvalue +1, and two for the eigenvalue
−1. Again, we can see these eigenvalues through the action of P̂2 on linear combinations
of basis states

+1 : P̂2 (|+−+⟩+ |−+−⟩+ |+−−⟩+ |−++⟩)
= |−++⟩+ |+−−⟩+ |−+−⟩+ |+−+⟩,

−1 : P̂2 (|+−+⟩− |−+−⟩+ |+−−⟩− |−++⟩)
=−(|+−+⟩− |−+−⟩+ |+−−⟩− |−++⟩) .

(11)
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We can also find that [P̂2,T] = 0, confirming that the transfer matrix is symmetric under
the exchange of the legs.

It is important to see that [P̂1, P̂2] = 0, meaning we are able to diagonalise P̂1, P̂2,T
simultaneously with a single unitary matrix U, which can be constructed by the shared
eigenstates of the three matrices. The exact form of the matrix U can be found in
appendix A.2, along with the result of the product U−1 T U , which is again a block
diagonal matrix. Note that the unitary matrix used here differs from the one in [23]. We
find that our matrix provides clearer insights for the study of the sub-leading eigenvalue
crossing. Indeed, the structure of these blocks is much more informative. Four blocks are
now present; two 3× 3 blocks, and two 1× 1 blocks. These arise from the 4× 4 blocks due
to P̂1 being split by the second symmetry P̂2. This structure makes it straightforward
to obtain the eigenvalues, and reveals that the eigenvalues λ2,λ3 are now located in
separate blocks: (P̂1, P̂2) = (−1,+1), and (P̂1, P̂2) = (−1,−1), respectively.

These eigenvalues cross as a function of temperature, and so we can consider the
temperature at which this crossing occurs. By equating the analytical expressions of
the eigenvalues, we obtain a transcendental equation that provides the condition for the
crossing of λ2,λ3 (see appendix A.1). This expression is

e2JRung/Tc

2

(
e2J∆/Tc + e−2J∆/Tc

)
= 1, (12)

where Tc denotes the crossing temperature. Then, under the approximation e2J∆/Tc ≫
e−2J∆/Tc, which is satisfied for |J∆| ≫ Tc, we are able to obtain

Tc ≈
2

ln2
(|J∆|+ JRung) , (13)

which is the same as obtained in [23, 27]. The importance of the behaviour of the sub-
leading eigenvalues for locating Tc has also been discussed in [32, 33] in the context of
different models.

We can probe this coincidence of temperature by considering the standard two-
leg ladder (without the decorating spins st) [31, 34]. Comparing the operators to those
relevant for the conventional two-leg ladder, we find the same symmetries commute with
the transfer matrix. After performing block diagonalisation for the two-leg ladder, we
obtain two 1× 1 blocks and a single 2× 2 block, which correspond to the combinations
of eigenvalues of P̂1, P̂2. We again find that the eigenvalues λ2,λ3 are located in separate
blocks. These eigenvalues are

λ2 = 2 eJRung/T sinh
2JLeg
T

, (14a)

λ3 = 2 e−JRung/T sinh
2JLeg
T

, (14b)

which become degenerate if JRung is taken to be zero (i.e. the case of two decoupled
chains). This is then immediately relevant for the crossing of λ2,λ3 for the Ising model
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on the Toblerone lattice. It was shown by Hutak et al in [27] that the spins st can gener-
ate an effective, temperature-dependent interaction between the legs. This interaction,
J⊥(T ), goes to zero at the same temperature at which we find the eigenvalues crossing,
effectively decoupling the legs. Thus, we find a parallel between the eigenvalues of the
standard two-leg ladder and the eigenvalues of the Toblerone model in equation (1).
The effect of st,i is an effective decoupling of the legs, which allows the eigenvalues
λ2,λ3 to cross as a function of temperature. The importance of this crossing becomes
apparent when studying the correlations, which are known to depend on the sub-leading
eigenvalues of the transfer matrix.

5. Correlations

We now look at the spin–spin correlation functions for the model, which allows a physical
understanding of the model through the detailed site-by-site information. In sections 1
and 3 of this work, the rapid change in the entropy, and hence the peak in the specific
heat, originates from the spins st,i becoming frustrated, yielding an entropy of s= ln2
per unit cell. Despite this, the work in [23, 27] did not consider the correlations between
these spins, providing immediate motivation to study the correlations more closely.
Motivation also arises from the crossing of the sub-leading eigenvalues presented in the
previous section. The correlation functions are known to depend on the second largest
eigenvalue, and so we study the effect that this crossing has.

To begin, the correlation between two spins is defined as

Γ(R) = ⟨s0sR⟩− ⟨s0⟩⟨sR⟩, (15)

where ⟨. . .⟩ denotes a thermal average, and R is the separation between the spins s0,sR.
For the consideration of 1D models, ⟨s0⟩⟨sR⟩= 0, owing to the lack of spontaneous mag-
netisation. We extend the definition in equation (15), writing the spin–spin correlation
function as

Γα,β (R) =
∑
i>1

(
λi

λ1

)R

⟨u1|Sα|ui⟩⟨ui|Sβ|u1⟩=
∑
i>1

e−R/ξiC
(i)
α,β, (16)

where the largest ξi is the correlation length, as this term describes the slowest decay of

correlations. We will examine this in more detail in section 5.2. The terms C
(i)
α,β are the

prefactors corresponding to the product of matrix elements, and feature the eigenvectors
|ui⟩ of the transfer matrix. Additional subscripts, α,β, are introduced to distinguish
between the three sites in the unit cell; α,β = 1,2, t, which correspond to the two legs
of the ladder and the ‘top’ spins, respectively. The R-dependence of equation (16) is
wholly contained in the exponential term, and the site information is contained in the
prefactor term. The matrices Sα,β (shown in appendix A.3) are diagonal, and can be
deduced from the basis states of the transfer matrix. We now consider each of the terms
in equation (16) in turn.
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Figure 7. Plots of prefactors with JLeg = 2,JRung =−1,J∆ = 1.2. We include an

additional curve (dashed light blue) to show the behaviour of Γα,β(0) =
∑

i C
(i)
α,β in

each plot. The inset shows the behaviour in the region around Tc, as calculated
from equation (13). Note the near-zero magnitude of the i =2 (shown in red) term
in (c), (d) around Tc/JLeg ≈ 0.2885. Note that in (d), we only show the i = 2,3
terms. However, as indicated by the curve for Γt,t(0), there are other prefactors
that contribute for R=0.

5.1. The prefactors

The prefactors C
(i)
α,β take values in the range C

(i)
α,β ∈ [−1,1], and are independent of R.

These prefactors convey the relative alignment of the spins sα and sβ; Cα,β > 0 corres-
ponds to a parallel alignment, and Cα,β < 0 corresponds to anti-parallel alignments. We

will focus on C
(2)
α,β,C

(3)
α,β in this section (λ2,λ3 > λ4, and hence make the only significant

contributions to the correlations for R ̸=0).
There are four unique combinations of α,β, where the rest of the combinations are

equivalent by symmetry; these are

α= 1, β = 1, α= 1, β = 2, α= 1, β = t, α= t, β = t. (17)

Within the combinations in equation (17), we define two sets of prefactors. The first
set relates to spins on the legs, s1,s2, and the other set involves at least one spin on
the ‘top’ (t). The behaviour of these prefactors is shown in figure 7, and shows the
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Figure 8. Plot of the correlation function between spins st,0,st,R, for small values of
R. We have used JLeg = 2,JRung =−1,J∆ = 1.2. We can see that the non-monotonic
behaviour, seen in the corresponding prefactor, persists for R< 10.

distinction between these two sets. The prefactors in figures 7(a) and (b), those relating
to spins on the legs, behave in a distinct way to those in figures 7(c) and (d), relating
to at least one spin on the top. The primary difference is that in figures 7(c) and (d)
we see the i =3 prefactor is exactly zero, due to the matrix element ⟨u1|St|u3⟩. We can
also observe the behaviour discussed by Yin in figure 7(b), where Γ1,2 changes sign [23].

We see non-monotonic behaviour for the prefactors C1,t,Ct,t in figures 7(c) and (d),
and it is interesting to enquire if this will persist for non-zero R. This corresponds to
the top spins becoming weakly coupled to each other, and the spins on the legs, in the
vicinity of Tc, yet re-coupling upon increasing temperature. Clearly, e−R/ξ will dominate
for large values of R; however, we ask if there are some values of R for which the non-
monotonic behaviour will persist. We find that for small values of R, we can indeed

observe that Γtop(R) displays the non-monotonic behaviour of the prefactor C
(2)
1,t . This

is illustrated in figure 8 for R= 1,2,5,10. For R< 10, the non-monotonic behaviour
survives, but is dominated by the exponential term for R⩾ 10. This conveys that there
is some short-range correlation between these top spins.

We will now consider the consequence of C
(3)
α,t = 0, which can be related to the sym-

metries discussed in section 4. The relevant eigenvector for this prefactor corresponds
to the eigenvalue λ3, which was separated in the P̂1, P̂2 =−1,−1 block. Thus, the eigen-
vector must be anti-symmetric with respect to both P̂1 and P̂2, which causes the pre-

factor to be zero. The consequences of C
(3)
α,t = 0 can be seen when we take this prefactor

in combination with the crossing of the eigenvalues λ2,λ3 in section 4, and study the
correlation length.
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Figure 9. Plot showing the separation of the correlation lengths as a function of
temperature. Here, we have used JLeg = 1,JRung =−1,J∆ = 1.2. We see that at Tc ≈
0.577, there is a ‘cusp’ in the correlation length. This cusp signals the separation of
the correlation lengths along the legs, ξ−1

Legs, and along the top, ξ−1
Top. This directly

corresponds to the crossing of λ2,λ3.

5.2. The correlation length

For ease of discussion, we restate the definition of the correlation function given in
equation (16)

Γα,β (R) =
∑
i>1

e−R/ξi C
(i)
α,β, (18)

where the correlation length is then

ξ−1 = lim
R→∞

− 1

R
ln

[∑
i>1

(
λi

λ1

)R

C
(i)
α,β

]
. (19)

In the limit R→∞, only the second largest eigenvalue is responsible for the correlation
length. However, we see that there is a crossing of λ2,λ3 in this model. Below the
crossing temperature Tc, λ2 describes the decay of correlations, whilst above Tc, λ3

makes the significant contribution; the correlation length exhibits a discontinuity where
these eigenvalues cross. This would be the whole story if not for the prefactors. We must

take into account C
(3)
α,t = 0. The effect of this prefactor is that there is no contribution

to the correlation function, and hence the correlation lengths, from the i =3 term for
these top spins. These correlations are always described by λ2. This is not the case for
the prefactors relating to the legs of the ladder, where the corresponding prefactors are
non-zero. The correlations on the legs must then be described by λ3 above Tc, whilst
the correlations on the top are always described by λ2. We have a bifurcation of the
correlation length at Tc; the relevant length scales for the legs and the top are distinct.
Two regions naturally arise either side of this bifurcation. In figure 9, we clearly see the
separation of the correlation lengths, and the formation of the two regions.
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The correlation length between the top spins is shorter than the correlation length

between the spins on the legs. This shorter length scale can be related to the frustration
experienced by st,i as was detailed in the preceding sections. A shorter correlation length
means that the ‘order’ between the spins decays more rapidly, which is in agreement with
these spins being frustrated. Indeed, by making this connection, we can start to probe
the link between the crossing of λ2,λ3 and the crossover seen in the thermodynamics.

To understand this link, we consider the inclusion of an interaction between the
spins st,i. Including such an interaction means that the top spins are no longer free to
become frustrated; they instead act collectively due their mutual interaction. Recalling
the mechanism for the crossover in the thermodynamics, we would now expect a reduc-
tion in the entropy released by these spins, and hence broadening the crossover. We
define JTop as the interaction between st,i and st,i+1; details of this can be found in
appendix B. Provided that JTop < JLeg, the transfer matrix can still be block diagonal-
ised in the same structure as discussed previously (section 4 and appendix A.1), and also
when this interaction JTop is included. Indeed, the two symmetries persist even when
we include JTop. These symmetries mean that the criteria for the bifurcation in the
correlation lengths are still met (the second and third largest eigenvalues can cross, and
the corresponding prefactor can be exactly zero). However, as we see in figure B2(a) of
appendix B, the specific heat is broadened considerably by increasing JTop; the crossover
is no longer ‘ultra-narrow’. The bifurcation in the correlation lengths persists, and also
becomes broader. We can understand that the shorter correlation length on the legs of
the ladder, as JTop is increased, causes a ‘slower’ gain of entropy, and thus a broader
peak in the specific heat.

The correlation length is a physically measurable quantity through the appropriate
scattering experiments, which means that this bifurcation can be measured. This does
presuppose that a suitable candidate material exists, the discussion of which is outside
the scope of the present work.

6. Conclusions

In this work, we have investigated the Ising model on a Toblerone lattice (a decorated
two-leg ladder, see equation (1) and figure 1) which has been previously shown to
have a narrow peak in the specific heat reminiscent of a phase transition in higher
dimensional models. Through a careful study of magnetic susceptibilities, symmetries
and eigenvalues of the transfer matrix, and correlation functions and lengths, we have
elucidated the physical mechanisms driving this narrow peak.

In essence, the peak results from frustration in the model [23]. The ground state is
unique—the two bottom legs have an effective ferromagnetic interaction between them
due to interaction through the top spin. This dominates over the direct antiferromag-
netic interaction between the two bottom legs, JRung. However, there is then a manifold
of degenerate states at low energy. The physical picture is that when the temperat-
ure is sufficient to excite these states, the top spins become frustrated, and entropy
is released, which leads to the peak in the specific heat. This effective interaction was
explicitly studied in [27], where the top spin in each unit cell is integrated out, thus gen-
erating an effective interaction between the bottom two spins, J⊥(T ). This interaction
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changes sign at Tc from ferromagnetic, in the low-temperature phase, to antiferromag-
netic, in the high-temperature phase. When J⊥(T ) is antiferromagnetic, the states have
an extra degeneracy from the top spin—the degenerate manifold referred to above. As
the top spins are not directly connected to each other, they release an entropy of ln2 per
unit cell. The rate of this entropy released is governed by how collectively the bottom
legs act—a large correlation length at Tc leads to a narrow peak. Our results for the
susceptibilities and correlation lengths back up this physical picture, and they assess
subtleties that play an important role beyond its basic arguments.

In the low-temperature phase, the ferromagnetic susceptibility dominates, as in an
unfrustrated Ising model. In addition, the short distance correlation between the bottom
legs is ferromagnetic, and at long distances the system is described by a single correlation
length, as is the usual situation for one-dimensional classical models.

In contrast, in the high-temperature phase we see a (sharp) crossover to a phase
when the antiferromagnetic susceptibility dominates, and the short distance correlation
between the bottom legs is now also antiferromagnetic. More interestingly, we see a
bifurcation in the correlation length at Tc—in the high temperature phase the correlation
length of the top spins is distinct and shorter than the correlation length of the legs.
This shorter length scale for the top spins is an indicator of the frustration—although
the spins have correlations through the base, they act more independently than those
in the base.

Mathematically, this bifurcation in the correlation length is due to the crossing of
the second and third eigenvalues of the transfer matrix, along with the fact that the
prefactor for certain correlations is zero for λ3, and the top spins. These both stem from
certain symmetries of the model, discussed in detail in section 4. Interestingly, the direct
coupling between the top spins does not break this symmetry and the bifurcation occurs
all the way up to the isotropic case (JTop = JLeg). The bifurcation, however, becomes
weaker (although still distinct, the two correlation lengths become closer together) along
with the thermodynamic crossover becoming broader as this top coupling is increased.
With this, one can ask about the link between the two features. We have provided an
analysis of this link in appendix B, where we see that the bifurcation can persist when
the thermodynamics are less sharp. It is clear that these two features arise from the same
physics of frustration in the model, which is well understood. The exact mathematical
link, however, remains an open question.

This physical picture elucidates the details of the curious thermodynamics that were
observed in the model of equation (1). Our work provides a more complete understand-
ing of the mechanisms that can give rise to the narrow peak in the specific heat, espe-
cially through our results from the susceptibilities, the symmetries, and the correlation
lengths.
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Appendix A. Transfer matrices: eigenvalues, symmetries, and spin matrices

A.1. Solution of the model by transfer matrices

The transfer matrix for the model defined in equation (1) is

s1,s2,st +,+,+ +,+,− +,−,+ +,−,− −,+,+ −,+,− −,−,+ −,−,−

T=

+,+,+

+,+,−

+,−,+

+,−,−

−,+,+

−,+,−

−,−,+

−,−,−



x2 y z2 x2 y z z z z x−2 y x−2 y z2

x2 y x2 y z−2 z−1 z−1 z−1 z−1 x−2 y z−2 x−2 y

z z−1 x2 y−1 x2 y−1 x−2 y−1 x−2 y−1 z−1 z

z z−1 x2 y−1 x2 y−1 x−2 y−1 x−2 y−1 z−1 z

z z−1 x−2 y−1 x−2 y−1 x2 y−1 x2 y−1 z−1 z

z z−1 x−2 y−1 x−2 y−1 x2 y−1 x2 y−1 z−1 z

x−2 y x−2 y z−2 z−1 z−1 z−1 z−1 x2 y z−2 x2 y

x−2 y z2 x−2 y z z z z x2 y x2 y z2


, (A.1)

where x= exp(JLeg/T ),y = exp(JRung/T ),z = exp(J∆/T ). This matrix is as given by
Yin [23]. The basis for the transfer matrix is the spin states for s1,i,s2,i,st,i, and the
neighbouring unit cell s1,i+1,s2,i+1,st,i+1. These are given above the rows and columns
of the matrix, respectively, where the spin states of sα,i = 1 are denoted by +, and
sα,i =−1 are denoted by −. The non-zero eigenvalues of the transfer matrix are

λ1 = I+

[
cosh

2JLeg
T

+

√
I2−
I2+

sinh2
2JLeg
T

+1

]
(A.2)

λ2 = 4 eJRung/T sinh
2JLeg
T

cosh
2J∆
T

, (A.3)

λ3 = 4 e−JRung/T sinh
2JLeg
T

, (A.4)

λ4 = I+

[
cosh

2JLeg
T

−

√
I2−
I2+

sinh2
2JLeg
T

+1

]
, (A.5)

with I± = 2eJRung/T cosh 2J∆
T ± 2e−JRung/T . These coincide with the so-called ‘frustration

functions’, Υ± in [23].
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A.2. Symmetries of the transfer matrix

There are two symmetries of the transfer matrix in equation (A.1) that we focus on

here. The spin-flip, P̂1, and the leg-exchange, P̂2, symmetries are given by the following
operators:

P̂1 =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


, P̂2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (A.6)

As discussed in the main text, these symmetries commute with both the transfer
matrix and with each other, allowing a simultaneous diagonalisation with a single unit-
ary matrix U. We construct this matrix from the eigenstates (and linear combinations)

of the symmetry operators P̂1, P̂2. This matrix is

U =



1√
2

0 0 0 0 0 0 1√
2

0 1√
2

0 0 0 0 1√
2

0

0 0 1
2

1
2

1
2

1
2 0 0

0 0 1
2 −1

2
1
2 −1

2 0 0

0 0 1
2 −1

2 −1
2

1
2 0 0

0 0 1
2

1
2 −1

2 −1
2 0 0

0 1√
2

0 0 0 0 − 1√
2

0
1√
2

0 0 0 0 0 0 − 1√
2


. (A.7)

By then taking the product UT T U , a block diagonal transfer matrix is obtained

UT T U =


A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4

 , (A.8)

where the blocks Ai correspond to the eigenvalues of P̂i, and are defined as follows:

P1 =+1,P2 =+1 : A1 =

 x2 y z2+ y z2

x2 x2 y+ y
x2 2

√
2 z

x2 y+ y
x2

x2 y
z2 + y

x2 z2
2
√
2

z

2
√
2 z 2

√
2

z
2 x2

y + 2
x2 y

 , (A.9)

P1 =+1,P2 =−1 : A2 = 0, (A.10)
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P1 =−1,P2 =−1 : A3 =

2 x2

y
− 2

x2 y
, (A.11)

P1 =−1,P2 =+1 : A4 =

 0 0 0

0 x2 y
z2 − y

x2 z2 x2 y− y
x2

0 x2 y− y
x2 x2 y z2− y z2

x2

 . (A.12)

The eigenvalues λ1,λ4, equations (A.2) and (A.5) can be found from the block A1, λ2,
equation (A.3), from block A4, and λ3, equation (A.4) from block A3.

A.3. Spin matrices

Computing the correlation functions for the model requires use of the appropriate diag-
onal matrices, Sα,β. The elements of Sα,β can be deduced from the basis of the transfer
matrix, shown in equation (A.1). For the three spins in each unit cell, the diagonals of
the corresponding matrices are

S1 =
[
1 1 1 1 −1 −1 −1 −1

]
, (A.13)

S2 =
[
1 1 −1 −1 1 1 −1 −1

]
, (A.14)

St =
[
1 −1 1 −1 1 −1 1 −1

]
. (A.15)

Appendix B. Effect of including coupling between the top spins

It is instructive to consider the effect of including an interaction between the spins
st,i,st,i+1. We include the additional term in the Hamiltonian

Htop =−JTop
∑
i

st,ist,i+1, (B.1)

where JTop mediates the interaction between the spins st,i and st,i+1. The case of JTop =
JLeg corresponds to the three-leg ladder with boundary conditions across the rungs;
therefore, we focus on JTop < JLeg [31]. We sketch this in figure B1.

The unitary matrix U is found to also block diagonalise the transfer matrix cor-
responding to the inclusion of the top coupling. The resulting block diagonal matrix
has the same structure as in the absence of the additional interaction, but the blocks
themselves are distinct. We no longer find four eigenvalues are zero, which relates to
the inability to trace out the top spins when we include the additional interaction.

By considering the nature of the crossover described in the main text, the rapid
increase in entropy on account of the top spins becoming frustrated, we can question
if the inclusion of JTop will have any effect on the thermodynamics. Indeed, we see
that this coupling results in these spins being less ‘free’ to become frustrated. This
behaviour is reflected in figure B2(a), where increasing values of JTop can be seen to
broaden the behaviour of the specific heat; the crossover is no longer ‘ultra-narrow’.
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Figure B1. Sketch of the Toblerone lattice with the inclusion of coupling between
st,i through JTop, as in equation (B.1). The rest of the lattice remains unchanged
from figure 1 and equation (1).

Figure B2. Plots of the specific heat (panel (a)), and inverse correlation lengths
(panel (b)) for JTop/JLeg = 0 , 0.3 , 0.5 , 1. Panel (a): The peak in the specific
heat broadening. We use JLeg = 1.5,JRung =−1,J∆ = 1.2 for this plot. For the case
of JTop = 0, the peak in the specific heat extends past the top of the plot, but
remains of finite height. Panel (b): The solid lines indicate the correlation length
on the legs, and the dashed lines correspond to the top spins. The inset of panel
(b) shows the inverse correlation length on the legs as a function of JTop/JLeg at
an arbitrarily chosen fixed temperature of T =1.75. This temperature is shown by
the thin vertical line.

Indeed, this broadening of the peak also corresponds to a broadening of the bifurcation
in the correlation lengths, as shown in figure B2(b).

The bifurcation persists for −|J∆+ JRung|< JTop < JLeg, but occurs at higher tem-
peratures with increasing JTop. This is shown in figure B2(b). We observe that increasing
JTop results in the inverse correlation length decreasing between the top spins (shown
in the dashed lines). This corresponds to an increase in the correlation length between
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the top spins; thus, the interaction is acting to reduce the frustration of these spins.
Consider now the behaviour of the correlation length on the legs. We observe non-
monotonic behaviour as a function of JTop. This can be seen in the inset of figure B2(b),
where we plot ξ−1

Legs as a function of JTop/JLeg for an fixed temperature above the bifurc-
ation point. We see that the inverse correlation length exhibits a ‘kink’ for some value
of JTop. This kink provides the value of JTop/JLeg at which the correlation length will
undergo a bifurcation at a given temperature. The initial decrease, with increasing JTop,
in correlation length on the legs is interpreted as the frustration being ‘shared’ to the
legs as the top spins are less easily frustrated. This frustration is reduced for further
increasing JTop, leading to the increase in correlation length on the legs.
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