
Aish, Robert, Fisher, Al, Orchard, Dominic A. and Torry, Jay (2024) Programming
Languages for the Future of Design Computation. In: Onward! '24: Proceedings
of the 2024 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. . Association for Computing
Machinery ISBN 979-8-4007-1215-9.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/107186/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3689492.3689812

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/107186/
https://doi.org/10.1145/3689492.3689812
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Programming Languages for the Future of Design
Computation

Robert Aish
University College London

United Kingdom

Al Fisher
Buro Happold

United Kingdom

Dominic Orchard
University of Kent and University of Cambridge

United Kingdom

Jay Torry
University of Cambridge

United Kingdom

Abstract
Design Computation is the use of programming in the design
of physical systems such as buildings and infrastructure. This
involves embedding both general-purpose textual languages
and domain-specific visual languages within geometry mod-
elling and engineering applications used in the construction
industry. A unique form of entry-level end-user program-
ming has emerged in Design Computation; however, there
are significant usability and representational issues. General-
purpose languages present barriers to adoption, while visual
languages lower these barriers but do not scale to complex
design problems in architecture and engineering.

In this essay, we explore how recent advances in program-
ming language research can be harnessed in future Design
Computation languages to address these pedagogic, represen-
tational and scaling issues so as to improve human-readable
program structure and semantics and to facilitate machine-
readable program verification. This essay addresses the ques-
tion: ‘How can innovation in programming languages sup-
port innovation in architecture and engineering?’

Keywords: Design Computation, Programming Languages,
Visual Languages, End-User Programming, Cognitive Di-
mensions, Usability, Collaborative Coding, Type Systems,
Units of Measure, Collection Types, Program Verification.

ACM Reference Format:
Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry. 2024. Pro-
gramming Languages for the Future of Design Computation. In Pro-
ceedings of the 2024 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! ’24), October 23–25, 2024, Pasadena, CA, USA. ACM, New
York, NY, USA, 25 pages. https://doi.org/10.1145/3689492.3689812

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1215-9/24/10
https://doi.org/10.1145/3689492.3689812

1 Introduction
Design Computation (DC) combines advanced numerical
simulation and interactive geometric modelling to help ar-
chitects and engineers imagine and realise the form and
performance of buildings.1

An example of Design Computation in action is the dome
of the Louvre Abu Dhabi museum (Figure 1) [32]. The size,
complexity and digital fabrication of this project could only
be achieved through highly computational and automated
methodologies which were required to facilitate both the
design and engineering processes and to generate the de-
sign communication output including drawings and Building
Information Models (BIMs) [15].

Broadly, DC embeds programming within the architecture,
engineering and construction (AEC) industry. However, a
distinction can be made between Design Computation and
conventional AEC modelling techniques that create static
geometric models. Static models represent the outcome of
particular design decisions, but not the underlying design
logic and temporal decision sequence. In contrast, DC di-
rectly represents the design rationale as a program whose
execution creates not just a single output (or BIM model)
but encourages the exploration of numerous design options.
This enables more efficient and performative buildings to be
designed beyond the reach of conventional manual, labour-
intensive design modelling.

DC can also drive solution space generation and optimisa-
tion [3], digital fabrication, off-site construction and robotic
assembly [23]. Yet DC is more than a productivity tool: It
changes the way designers think, echoing Perlis on the con-
structive influence of programming languages:

“A programming language that doesn’t change
the way you think is not worth learning”
—Alan Perlis, Epigrams in Programming [58].

The users of DC, termed computational designers, are a new
hybrid of highly-skilled professional architects or engineers
who are also end-user programmers, i.e., who write software
not as the primary goal of their job but to support its main
1It could be argued that Design Computation combines the three types of
programming suggested by the authors of the Poplog language: numbery,
bumpy and thinky [66].

https://orcid.org/0000-0002-7058-7842
https://doi.org/10.1145/3689492.3689812
https://doi.org/10.1145/3689492.3689812

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

Figure 1. Louvre Abu Dhabi: The 180m diameter intricately latticed roof is designed to balance performance across aesthetic,
lighting, environmental, structural, museography and construction requirements. Mediating the local microclimate in the
spaces below, through 1.8 percent “rain of light” transmission, the roof is composed of 7,850 individually sized stars supported
on a steel space-frame constructing of 10,000 optimised elements [32, 65].

objectives of designing the built environment [39, 50].2 These
users are expected to be immediately productive whilst still
learning to program. This contrast, between their domain
expertise and their lack of formal training in programming,
suggests the need for research into programming languages,
tools, and systems to support the field.

Originally, DC used conventional languages, such as C++,
as standalone applications to generate inputs files or invoke
the APIs of BIM and CAD applications. For example, a C++
implementation of first principle analytical and numerical
modelling techniques was used to compute the geometrical
configuration of the British Museum Great Court roof [72].

However, the high-level skills required by these languages
impeded the mainstream adoption of this approach in DC.
Visual Data-Flow Programming (VDFP) removed this bar to
DC [7] and is now universally adopted by architectural prac-
titioners and university schools of architecture. Specialised
DC languages typically provide a hybrid programming sys-
tem combining visual and textual programming languages:
For example, Dynamo (visual) with DesignScript (textual) [6];
and Grasshopper (visual) with C# (textual) [68].
Although DC is used in the design of some of the most

carefully articulated, precision-engineered and prestigious
architecture, VDFP does not encourage equivalent rigour
in software design: (1) It does not employ any static check-
ing; (2) it facilitates a culture of “copy-and-paste” program-
ming; (3) it has usability issues [2] and (4) it interacts poorly
with modern software engineering methods. The widespread
adoption of VDFP presents a challenge to both researchers
and construction industry managers. It is so ingrained in
architectural practice that it is unlikely to be displaced; how-
ever, as we shall argue, visual programming can play an
important role as part of a wider language system.
2We could also use the terminology ‘vernacular software developers’ [64].

The DC user community may be of particular interest to
the programming language research community: It combines
various different ways of thinking as potential candidates for
programming, including constructs and types of reasoning
which may be difficult to represent with existing program-
ming languages. All these challenges combine to create inter-
esting opportunities for programming language innovation.
Thus, in this essay, we seek to reach across from Design
Computation to the Programming Languages community.
We offer an insight into this interesting computational do-
main, outline its development methodologies and concerns,
highlight some challenges faced, and propose avenues for
how ideas from the PL literature could be leveraged to ad-
vance the start-of-the-art in programming for DC.

The ideas presented here are the result of an ongoing col-
laboration between members of the Design Computation
community and the Programming Language research com-
munity. The essay is in three parts.

This first part provides background and context: Section 2
considers the wider organisational and social aspects of pro-
gramming for DC before Section 3 walks the reader through
a case study of a particular example (the computation gen-
eration a faceted panel) which gives a taste of visual DC
programming. Section 4 sets the scene for computation as a
critical aspect of architectural and engineering innovation.

The second part provides our vision of a way forward for
DC. Section 5 describes our proposal of a programming sys-
tem comprising a progression of languages to aid the learning
of DC programmers. Section 6 focuses on how ideas from
PL could be leveraged to better capture domain aspects in
the proposed language system. Section 7 returns to the case
study of Section 3, imagining how our ideas may be embod-
ied. Section 8 considers how we might be able to transition
the existing state-of-the-art towards our new vision.

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

The third part reflects and discusses. Section 9 presents
key usability issues in the deployment of DC languages. Sec-
tion 10 reflects on the way computation has changed archi-
tectural and design thinking. Section 11 then concludes.

2 Context: Organisational and Social
Aspects of Design Computation

Design Computation is characterised by three overlapping
and complementary dimensions: (1) An educational progres-
sion from entry-level to proficient programmer; (2) a design
progression from initial sketch to the complete definition of
a building to be constructed; (3) a hierarchy of social struc-
tures from individual, to team, to organisation. These three
dimensions help us understand how existing DC languages
are used and how programming language research might
help to address many of the current challenges, suggesting
ways to improve future DC languages.

IndividualDevelopment. For the individual, Design Com-
putation programming is often exploratory and used as part
of a corresponding exploratory design process. This involves
quickly creating a number of minimum geometric sketch
models with which to visualise and evaluate alternative de-
sign options: an example of computation supporting a cre-
ative and subjective way of thinking.

Individual DC programmers typically start by using domain-
specific visual programming languages. There are two prin-
cipal reasons for this choice. Firstly, languages of this type
are built into many of the geometric modelling applications
in use within the construction industry. Secondly, visual lan-
guages appear to lower the barrier to entry-level program-
ming with the additional potential to directly and intuitively
represent high-level descriptions of design and fabrication
processes and workflows.
However, these visual programming languages (VPLs)

only provide access to a subset of programming concepts and
thus do not scale to more complex programming tasks. In
addition, numerous usability challenges have been reported
with large scale visual programs. Thus, there is an important
potential role for future Design Computation languages to
help users progress beyond existing limitations and become
proficient in more powerful general-purpose languages.

Team Development. As the AEC design and engineer-
ing process progresses, there is a gradual change in em-
phasis from individual to collaborative working and from
exploratory to more rigorous design with computation sup-
porting a more analytical and objective way of thinking.

At this collaborative team level, Design Computation lan-
guages play a key role as the common platform giving access
to a number of critical evaluation and simulation application
plugins, for example for structural analysis, energy perfor-
mance, and environmental impact. The role of the end-user

Figure 2. Excerpt from Buro Happold’s Computational Com-
petency framework illustrating the progressive levels of ca-
pability, engagement and participation required in design
computation for scalable and sustainable adoption.

programs is to represent buildings in terms of different an-
alytical models for these processes. The DC program effec-
tively captures the decision logic for a project and in many
ways becomes the design and engineering IP.

Organisational Development and Beyond. At an or-
ganisational level, a key aspect of the overall computational
strategy involves collecting the project-specific programs
from different design teams within the organisation. These
can then refactored into more general, interoperable and
reusable components which can be subsequently deployed
across the organisation.
This co-creation and re-use of Design Computation pro-

grams is a logical extension of the intensive collaboration al-
ready found within AEC organisations. These organisations
are characterised by large, distributed and diverse teams,
ranging across a wide range of expert skills and thus embrac-
ing a wide range of computational proficiencies (Figure 2).

Design Computation programs encode critical design think-
ing; therefore, these programs, and the languages in which
they are written, have an important explanatory role to fulfill
(particularly where engineering experience/responsibility
and computational skills are not sufficiently aligned). This
explanatory role can be extended to public engagement, rais-
ing awareness about alternative design options, different
performance trade-offs and consequential impact.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

Figure 3. Example output rendering of a faceted façade [23].

More generally, at a policy level, construction represents a
substantial proportion of global GDP (on average, ∼12% of
GDP across most of the world’s economies; 2005 data [11]).

When combining emissions from the construction indus-
try with operational emissions: Buildings represent around
37% of total global operational energy and process-related
CO2 emissions as of 2022 [70]. Whilst Integrated Assessment
Models can estimate and predict the environmental effects
of construction; improving the environmental performance
of construction only occurs ‘project by project’, and there-
fore ‘program by program’, alongside broader sector and
policy changes. Improved languages could make it easier to
develop DC programs, arguably making it easier to develop
more performative buildings with reduced environmental
impact. There may be additional global challenges: How to
support the developing world’s justified aspiration for better
infrastructure while addressing the wider environmental and
climate impact of construction.

3 Case Study: Design Computation in
Practice Today

To contextualise development practice in Design Computa-
tion, we illustrate the use of the Dynamo visual programming
language [10] within Design Computation3 for a real-world
façade engineering project (Figure 3 [23]) with its minimal
re-interpretation as a Dynamo program in Figure 5.
In this example in Figure 4, the polygon provides a light-

weight geometric placeholder for the façade panel. The intent
of this example visual program is to create the solid geome-
try for the physical façade panel. The defining dimensions
for the material form are: (a) an inset from the edge of the
polygon, then (b) an offset orthogonal to the plane of the
polygon and finally (c) a defined thickness to create the geo-
metric solid to represent the façade panel (Figure 4). The
façade might be visualised as a collection of polygons, but
polygons are abstract geometry with zero thickness. To phys-
ically construct the façade, such abstract geometry has to be
materialised into a physically constructable form.
3Visual languages used in Design Computation are predominantly based
on data-flow programming, à la Kahn [36], visualised as a DAG, rather than
a visual UI for imperative programming, for example, as in Scratch [41].

There are many ways an experienced architect/engineer/
programmer might approach this problem. To illustrate the
programming method and usability issues, the programming
and geometric operations used in this example have been
deliberately limited to those which an entry-level end user
would have had access to in a typical visual programming
application. In reality the frame supporting the panel would
also be modelled, but this is not considered for simplicity.

The visual program (Figure 5) comprises four input nodes
and five process and output nodes. The user did not have to
learn complex syntax; the program was composed using sim-
ple drag-and-drop interactions. The input point data is elided
as it is externally defined and imported into the program.

Visual programming applications are based on the idea of
data flow and are designed with liveness in mind [67]. Any
change to the program data or logic automatically triggers
recompilation and re-execution. Thus the user can change
the value of the inputs with sliders and these changes are
propagated through the program and the geometric output
is updated. Alternatively, the user can change the nodes or
change the connections between the nodes. With end-user
programming the distinction between using and program-
ming is blurred and becomes a single exploratory process. A
typical user reaction is: “This is easy. I can create with this.”
Visual programming is attractive to users from a design

and engineering background who are already familiar with
other forms of visual expression and communication. It has
enabled a form of programming to be learnt by entry-level
programmers where regular text-based programming might
have been a substantial barrier to learning to program.

It can be observed from this example that visual programs
do not require the nodes to be given unique names. This is
not required because in a visual data flow language connec-
tions between variables are implemented as arcs between
nodes, rather than the referencing of named variables (as
in textual languages). This may initially simplify the tasks
of the entry-level programmer. However, this allows visual
programs to be constructed with multiple unnamed nodes of
the same type (such as the Number Sliders in Figure 5) and
consequently with no clear semantics.

façade panel

thickness

Figure 4. Inset, Offset and Thickness dimensions used in the
example façade panel visual program

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Figure 5. A typical Visual Program, with nodes representing inputs, processing operations and outputs. Notice that there is no
obligation to name specific nodes: The user has not bothered to record which specific dimensions each slider controls.

Figure 6. Here the single input value (a polygon) [in Figure 5] has been changed into a collection (of polygons, which is
propagated to all dependent nodes, which now become collections).

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

Figure 7. Selecting a member of a 2D collection with visual programming requires multiple nodes. (in this case a single edge
of one of the façade panels, highlighted in yellow).

Having proved the design method works with a single
polygon (Figure 5), the programmer may now continue to
explore how this method might be applied to the complete
façade, here represented by a collection of polygons (of which
only two are shown) (Figure 6).
Notice that the nodes in the visual languages are over-

loaded for collections, thus a change in the dimensionality of
an input (from a single polygon to a collection) is propagated
through the visual program, with the result that the output
of each of the different nodes becomes a collection.

As the name suggests, Visual Data Flow languages encour-
age a very data centric way of programming. In this case,
the output nodes in Figure 6 are: a collection of perimeter
curves, a separate collection of offset surfaces, and another
collection of ‘thickened’ solids.

In this example, the two-dimensional collection of perime-
ter curves is implemented as a ‘list of lists’. Consequently, to
re-assemble the parts of a specific façade panel, the user must
use numeric indices to index into the separate collections.
If the user is restricted to only using the nodes provided

by the programming environment then some operations,
such as the selection from a multi-dimensional collection,
often requires quite complex visual programming involving
multiple nodes (Figure 7). We can observe that while the
geometric result may resemble a collection of façade panels,
the way the information is structured, labelled and accessed
(as homogeneous collections, as lists of lists) is not how the
user might want to think about the façade panel.

Ideally, the façade panel should be defined as a user-defined
schema or class which could directly represent a domain
specific chunk of information, structured as a semantically
indexed heterogeneous collection of different types of named
subparts and properties (such as perimeterCurve, offsetSur-
face and Solid). Although this is approach is possible, it is
difficult for the entry-level programmer to discover: they are
left using a large number of simple operations (nodes) and
effectively unable to express the underlying logical structure.

The reaction of the users is likely to change from:
This is easy. I can create with this.

to:
This is getting awkward, even with just a small model.
Multiple nodes are needed for what should be simple tasks.
This seems unlikely to scale to really complex projects.

We can imagine the user asking: "So, what to do?"

3.1 Limitations of Visual Programming
This example can help us understand some of the factors
which limit visual programming.

Many visual programming systems implement the ideas
suggested by Myers [49] for simplifying programming lan-
guages to make initial learning easier. Two aspects of this
simplification are: To minimise the need for control struc-
tures; and to avoid requiring nodes (i.e. variables) to be iden-
tifiable (or named). However, Burnett et al. [16] and other
researchers have noted that, generally, visual programming
systems do not scale to more complex programming tasks.

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Figure 8. A complex visual program from Al-Jokhadar [8, p.766], composed in the Grasshopper visual language [68]. This
program is a direct analogue of the organisation of the repeated nested spatial and construction components of a high-rise
building. The green and yellow boxes are added to the original illustration to aid explanation. To reflect the organisation of the
building, a defining sub-graph (outlined in green) is copied four times with an additional variant to form the intermediate
sub-graph (outlined in yellow) which, in turn, is copied fourteen times, giving seventy copies of the original (green) sub-graph.
While the idea of a visual program as an analogue of the hierarchical structure is appropriate, achieving this via copy-and-paste
of the original sub-graph (rather than via some form of modularisation) is problematic from a software engineering perspective.

Having learnt visual programming, but as yet no other lan-
guages, many users have few options but to persist with
visual languages making even more complex programs as
exemplified in Figure 8.
The visual language has given the user the freedom to

distribute the information in the program between multi-
ple copies of a single subgraph and the unique connections
between those copies. We can imagine the dilemma facing
the user who subsequently wants to change the original
subgraph and apply this change across the whole program:
Either change the subgraph and recopy it seventy times
(which may destroy the unique connections); or repetitively
edit each of the seventy copies. Perhaps we are at the limits
of such language freedoms if they allow the end-user progam-
mer to adopt an unsustainable form of programming.

We are reminded of George Orwell’s rather uncomfortable
criticism that “the slovenliness of our language makes it
easier for us to have foolish thoughts” [57].
Figure 8 does not illustrate a performance issue. On the

contrary, most visual languages are more than capable of
computing and displaying thousands of nodes and arcs. Rather,
the type of visual program shown above represents a usabil-
ity issue. It illustrates the influence of visual languages on the
computational behaviour of entry-level programmers [35].
In the extreme case reported by Lim [40], increasing the

complexity of a visual program can continue until the point is

reached where it becomes so complex that the user no longer
understands their own program (and is afraid to change it for
fear of breaking the program and being unable to recover).
The example in Figure 8, and the reports by Burnett and Lim,
should make us pause for thought about the usability limits
of visual programming when the normal, as intended, use of
a language becomes self-inhibiting.

The users’ behaviour in continuing to add to the visual pro-
gram (even though these additions are of diminishing value)
may be explained in terms of computational behaviour [35].
From this perspective, the relatively low incremental cost of
such additions can be compared to the comparatively higher
cost and uncertainty of learning a more capable textual lan-
guage. Additionally, every increase in size and complexity
of the visual program raises the cost of conversion. This is
compounded by non-standard functionality and terminology
in many visual languages [4] further inhibiting this change.

While visual programming may lower the entry barrier to
programming, when it is combined with the copy-and-paste
method it becomes incredibly easy for the user to create a
visual program on a scale where it is practically impossible
to perform many of the expected programming tasks such as
comprehension, editing, and re-use. In lowering the barrier
to adoption, visual languages raise the barrier to migration.

In summary: ‘The path of least resistance is a dead-end’ [1].
So, what to do?

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

Figure 9. A building is a single coordinated collection of physical components. However, to facilitate its design and engineering
it is conceptualised as a number of discrete analytical models, each under the responsibility of different engineering disciplines.
Therefore to create a unified and overall performative building requires considerable inter-disciplinary collaboration and
negotiation. There are occasions when this collaboration is focused on a specific object which plays a pivotal role in the overall
building system. An example (highlighted in red above) is a façade wall panel. This is a single physical entity which must
respond to a number of different performative criteria and thus may have a number of different disciple-specific representations.
The challenge discussed here is how to represent this type of multi-functional, multi-performative component in future Design
Computation languages (and in doing so, to support this type of cross-disciplinary collaboration). The wall example will be
featured in subsequent sections as this theme is further developed.

4 Programming support for Building
Systems Integration

A motivation for this language research comes from observ-
ing specific changes in the objectives of the construction
organisations (to build more performative buildings) and the
response within design and engineering teams (to innovate
by creating new forms of Building Systems Integration) [62].
Building Systems Integration requires that a building is

conceptualised and explicitly represented as a single inte-
grated system and in a way which dissolves the boundaries
between the previously separate engineering disciplines. In
reality, a building is a single collection of physical compo-
nents, however it is conceptualised as a collection of separate
engineering subsystems (structure, external envelope, en-
ergy, lighting, circulation, egress, fire protection, etc.). This
is shown diagrammatically in Figure 9 and illustrated in Fig-
ure 1. Each subsystem can be formally described by different
analytical models, used with corresponding analysis and
simulation applications and plug-ins (Figure 10). However,
these separate computer applications and plugins effectively
reinforce this conventional ‘siloed’ way of thinking.
In fact many individual physical components within the

building, such as a simple wall (Figure 11) are characterised
by a number of physical properties and, therefore, play a

number of different roles in the overall performance of the
building. This performance is the responsibility of different
design and engineering disciplines. Thus, architectural de-
sign and building engineering already uses computation and
requires a high level of cross-disciplinary collaboration. The
question is: ‘How can innovation in programming languages
support new ways of thinking and collaboration required
for innovation in Building Systems Integration?’

Each engineering subsystem is a complex network of com-
ponents, therefore Building Systems Integration requires
these networks to be unified to represent the complex phys-
ical connections and the performance inter-dependencies
between the different subsystems. The challenge for the lan-
guage designers is to create language features which can
represent and manage these complex systems of connections
while reducing the complexity of the task facing the end-user
programmer.

Both programming and design are social activities. What
is interesting is that at a collaborative team level, the process
of Building Systems Integration is effectively a form of con-
structive negotiation between different engineering special-
ists where each is attempting to maximise their contribution
to overall performance of the building without constraining
the ability of their colleagues to do likewise.

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Figure 10. No single software or application can be used
to create and analyse the many different analytical models
needed for multidisciplinary Design Computation. Here are
just 45 of the wide variety of design, analysis and simula-
tion software used in practice illustrating the complexity
of data interoperability and design collaboration [13]. The
individual nodes in the diagram represent specific engineer-
ing, design and construction discipline software, including
domain specific schemas and semantics.

To not constrain might include not prematurely defining
dimensions or performance measures with unnecessary pre-
cision if there is no objective reason and certainty, partic-
ularly if this might limit the agency of other engineering
specialisms. It is only through careful team negotiation that
overall precision of the design can be increased and uncer-
tainty reduced to the point where a single unified, resolved
and precise description emerges of what will be constructed
and how it will perform.4

4It is interesting to note the influence of game design on architectural design
and engineering. While there is a continuing trend towards the ‘gamifi-
cation’ of design, there are fundamental differences between game design
and architectural design in the intent, process, and outcome. Both game
design and DC use computational geometry, programming, and simulation.
However, in DC the computational model and image are not the result;
rather, they are used to test the design virtually prior to its construction. It
is the constructed physical building which is the result. Consider that a real
building will have to obey the laws of physics (whether or not anticipated);
therefore, there should be a high level of fidelity between the response of
a virtual building used at the design stage and the equivalent response of
the physical building after construction. However, a virtual building used
in game design only needs to emulate those laws of physics which are
required to ‘suspend disbelief ’. Perhaps even this distinction is being blurred
by ‘design for co-living’ in a combined physical and virtual space?

load bearing

sound
attenuation

thermal
transmissivity

Figure 11. A selection of the many different physical prop-
erties of such a fundamental component as a wall and the
different role this single physical object plays in a building.
Criteria can extend further to light transitivity, porosity for
ventilation or quantity of embodied carbon etc. (equally to
qualitative and subjective properties such as aesthetics).

Therefore, Design Computation is effectively the integra-
tion of two complementary processes: progressive formalisa-
tion, in which the structure and semantics of the program is
progressively resolved; and Building Systems Integration, in
which the design and engineering of the proposed building
is progressively resolved. This suggests that future Design
Computation languages should support semantic precision,
the modelling of complex connectivity between components
and the explicit representation of uncertainty.

5 Proposal: A Progressive Language System
In Section 3, we concluded that visual programming does not
scale to the complexity of even moderate design challenges;
and in Section 4, we concluded that building systems integra-
tion is further increasing the complexity of these challenges.
Therefore, we might reiterate: "What to do?"

Existing DC languages present a number of unresolved
educational, usability, and representational issues. Visual
languages are easily learnt, but do not scale to complex pro-
gramming tasks, while existing high-level languages are
challenging to learn for entry-level programmers and may
not easily facilitate domain-specific thinking.
To address these concerns, we propose a comprehensive

programming system based on clear language design princi-
ples [12] derived from established programming language
features, tools, and methods.

The system comprises four related languages:
1. Initial
2. Transitional
3. General-purpose (i.e., industry standard)
4. Extension

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

This system of languages is intended to support the dimen-
sions of Design Computation described in Section 2: First,
the educational progression for entry-level users; second, the
design progression from exploration to a precise engineer-
ing model and construction data; and third, the collaborative
progression from individuals, to teams, to organisations (by
encouraging co-creation, encapsulation, reuse, and explana-
tion). These three dimensions are embodied and supported
in our proposed system by a methodology of progressive for-
malisation. In this method, the entry-level programmer grad-
ually learns the advantages of adding structure and human-
readable semantics to their program and in so doing become
a more proficient programmer.
This approach is similar, in principle, to the Hedy pro-

gramming system—an educational tool which gradually in-
creases the syntactic complexity and expressiveness of a
Python-based language [31]. However, our proposal is tai-
lored specifically to the requirements of Design Computation
and incorporates both visual and text-based paradigms. The
remainder of this section expands on the Initial, Transitional,
and General-purpose languages; whilst Extension languages
are explored in Section 6. We propose various approaches
and implementations throughout.

5.1 Initial language
Typically, the Initial language should lower the barrier for
the entry-level user to learn programming. Based on the ex-
ample in Section 3, and its wider critique of visual program-
ming, the raison d’etre of a visual language is its usability.
Existing visual programming builds on the conventions of
dataflow-based diagramming [36], which is recognised as
being inherently useful and intuitive as a high-level process
description [21].
It is important to note that the nodes (or process boxes)

in such high-level diagrams are usually clearly labelled and
the overall complexity of the diagram is limited to the num-
ber of nodes whose names can be read when drawn on a
single whiteboard/A4 sheet/laptop computer screen. These
legibility limits apply equally to visual programming.

When these limits are reached (and when the user wants
to progress to more complex programming challenges) then
it is important that the visual program can gracefully hand
over to other more scalable languages. In short, an Initial
visual program should lower the barrier to adoption and also
lower the barrier to migration.
This suggests that visual languages could benefit from

being re-conceptualised and re-theorised.

5.1.1 Tenets. Based on these critiques, we propose a num-
ber of tenets for the design of visual programming languages
which should be included in the agenda for future Design
Computation:

• Careful agreement is required on what should be the key
programming concepts to be included in an Initial pro-
gramming language and whether these are suitable to be
presented in a visual form;

• Warning the user when the visual program is approaching
the limits of legibility;

• Avoiding any non-standard functionality or terminology
in the visual language, which will not be available in the
Transitional or General-purpose languages;

• Providing easily transformable code and appropriate con-
version tools;

• Ensuring that during the migration from visual to text-
based languages nothing is required to be unlearnt.

5.1.2 Reflection. There is perhaps a philosophical divide
between the designers of the existing visual languages used
in Design Computation and the approach proposed here.
Existing visual languages are a distinct form of program-

ming which (in Design Computation) has evolved separately
from the development of regular text-based languages.5
The entry-level programmer may not be aware (nor con-

cerned) that some of these visual languages may be limited
and non-standard and this might subsequently raise the bar-
rier to migration. The immediate focus for the entry-level
user is that the language lowers the barrier to adoption. If
more advanced functionality is required, then perhaps these
concerns are dismissed by the entry-level user imagining
that a suitable plugin can be easily downloaded into the
visual programming environment.

An alternative and more open approach is proposed here
which suggests that visual languages have an important
role not just in lowering the initial barrier to programming,
but also lowering the barrier for timely migrations to other
programming paradigms. This divide could be viewed as a
specific form of a more general distinction: Between those
for whom the advantage of technology is as an entry point
to understanding the underlying principles; and those who
consider technology to be an advantage if it can be effectively
used without requiring any deeper understanding.

5Visual programming systems are predominantly based on DAGs (directed
acyclic graphs). These evolved as a generalisation of the CSG trees (con-
structive solid geometry trees) and ‘feature’ trees which are still used in
many solid modelling and mechanical engineering design applications.

In this directed-rooted tree formalism, the leaf nodes are treated as
the inputs (typically geometric primitives), the fork nodes are geometric
modelling operations and the root node is the output.

Trees are (1) a formalism which is easily understood by the intended user
audience and (2) optimised for partial updates: when a node is changed only
the dependent nodes need to be re-evaluated. The directed-rooted tree re-
stricts the output of a node to be the input to only one dependent node. This
restriction is relaxed with more general DAGs used in Visual Programming,
increasing expressiveness, but potentially creating unintended downstream
comprehension problems (as Figure 8 illustrates).

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

5.2 Transitional language
The objective of the Transitional language is to provide a
continuous path for the individual end-user programmer
from entry-level visual programming to proficient program-
mingwith general-purpose languages–achieved by gradually
introducing standard and scalable functionality.
The features and programming tools of Transitional lan-

guages are intended to nudge (subtlety encourage a change
in behaviour) the entry-level programmer by altering the
attractiveness and the cost of an early move from visual
to text based programming. In this context, the design of
the Transitional program could be considered as a form of
‘choice architecture’.

The features we propose for a future Transitional lan-
guage are developed from ideas originally explored as part
of the DesignScript language for Design Computation [6].
DesignScript implemented the following progressions:

• from a visual data-flow notation,
• to a text-based data-flow notation,
• to a text-based imperative notation.

The user is supported in this progression via a Node-to-Code
conversion tool, which for the entry-level user’s original
visual program automatically generates a program in the
standard textual notation without requiring the user to first
master this notation (Figure 12).

DesignScript (as a prototype Transitional language) antic-
ipated this progression by implementing the visual language
as a graphical wrapper around the text-based Data-Flow no-
tation. This ensures that there is a direct correspondence
between each visual node and the equivalent text-based state-
ment. The aim of the transitional language is to provide a
simple text-based notation which can be directly understood
by the entry-level user. For this reason some more com-
plex conceptual and syntactical programming challenges are
initially deferred. The pedagogic advantage is that the entry-
level programmer can begin to understand the programming
notation by observing the correspondence between the vi-
sual and text based code of the transitional languages.

The Transitional language therefore encompasses thewhole
range of proto-programming and programming paradigms,
from ‘feature’ trees, to more general Visual Programming
DAGs, to imperative code: and supports the transition of the
user’s code between these forms.6

6It is interesting to note that the Blueprints visual language [59] does not
have a transitional language. The nodes in Blueprints are predefined C++
class. A user can assemble a subgraph of Blueprint nodes which can be
composed into a new C++ class. However, in the DC community, C++ is
considered as a professional level language. Therefore Blueprints may inad-
vertently divide the users into entry-level programmers (using the VPL with
existing or composed nodes/C++ classes) and professional programmers
(who can operate within the nodes or classes). By comparison the intention
with the Transitional language is to dissolve the boundaries between users
with different computational competencies so that a continuous educational
trajectory can be created.

Figure 12. An example of a Transitional language (Design-
Script) in use. Here the same logic (to create a 2x2 array
of points) is shown in the Visual Data-Flow notation (top),
in the text-based Data Flow notation (middle) and in the
Text-based Imperative notation (bottom). Note that all nodes
and statements in the data flow languages (both visual and
text-based) are overloaded for collections (e.g., being lifted
pointwise). However, this is not supported in the regular im-
perative notation used in industry standard General-purpose
languages and thus requires code expansion (see, e.g., [6]).
We return to a deeper discussion of this in Section 9.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

5.2.1 Progressive Formalisation. This is a process in
which the programmer adds user-defined semantics (name
and type) and structure to a program, thereby enhancing
both its human and machine readability.

Timing is important. Typically formalisation starts when
program has become sufficiently capable and can demon-
strate its potential value, but before it has become too large
and complex that formalisation is difficult to apply.
In terms of cognitive dimensions research [14], the user

should not be forced to make a premature commitment to the
early formalisation of an unproven exploratory program, but
should also avoid viscosity if formalisation is delayed and an
exploratory program is allowed to become over complex.

Our case study (Section 3) illustrated the functionality of
existing visual languages for Design Computation, which
allowed unnamed (or generically named) variables, while
the only collection mechanisms provided are for numerically
indexed homogeneous collections (such as lists of lists). Fig-
ure 13 illustrates how progressive formalisation would be
implemented in a future Transitional language. Here, the
user is encouraged to start by giving each variable a mean-
ingful name and type. The variables can then be gathered
into a defined schema and used to generate a new class defi-
nition. The use of clone detection [60], recognising repeated
patterns, and accompanying transformations will then be
critical in weaning users off the copy-and-paste technique.

5.2.2 Hybrid Programming. The Transitional language
plays a pivotal role in the educational journey of the end-user
programmer. Starting with a conventional visual program,
the Transitional language allows the user to progress to a
form of hybrid visual-textual programming. This combines
the advantages of succinctness of text-based coding (within
different text nodes) with the advantages of high-level visual
diagramming (between nodes). (Figure 14). The user may
progress to combine the different text nodes into a single
node and leave the Transitional programming phase with a
conventional program source file.

Hybrid programming combines both text based program-
ming conventions within code block nodes and visual pro-
gramming conventions between nodes. This introduces some
interesting language design challenges, particularly as there
is an overall objective that all aspects of the transitional
language should be transformable into regular industry stan-
dard formal languages. One aspect is that visual code block
nodes should become code blocks in the formal language.

The current Visual languages allow connections between
unnamed or differently named variables in different code
block nodes, while text-based languages use named refer-
ences to define such dependencies and also define scoping
rules for variables and code blocks. To anticipate the transi-
tion to the formal language, the visual language’s conven-
tions might need to be modified so that these two conven-
tions are aligned. This would require (a) that arcs can only

represent connections between the same named variables
in different code block nodes and (b) that the scoping rules
in the visual language have to follow those found in formal
languages.
Again, this raises the question: Should visual languages

develop entirely separate usability features (limiting the tran-
sition to text-based languages); or follow the conventions of
established text-based languages (and support transition)?

5.2.3 Tenets. We propose the following tenets for Transi-
tional programming languages which should be included in
the agenda for future Design Computation:
• By default, the Transitional Language should use the no-
tation of Industry Standard Formal languages.

• Where non-standard notation is introduced in the Tran-
sitional language, this should be transformable into the
notation of Industry Standard Formal languages.

• Appropriate programming tools should assist the user
in all progressions between the different notations (from
Visual Data Flow to Text based Data Flow to Text Based
Imperative notation) so that these can be achieved without
the user first having to learn the new notation and so that
the user can understand the new notation by comparing
the corresponding statement in the different notations.

5.3 General-Purpose Languages
It is intended that the Initial and Transitional languages will
help the entry-level programmer to understand the impera-
tive, object-oriented, and functional programming paradigms
offered by General-Purpose Languages (GPLs) such as C# or
Python. However, these languages may not offer the kind of
domain-specific features required in Design Computation.
In a given domain, the success of a GPL is usually dependent
on well-developed libraries which, in this context, are pro-
vided by the DC programming environments. A Transitional
language could perhaps be viewed as a subset, or an easily
translated ‘sibling language’, of a General-purpose language
(in the fashion of gradual languages like Racket [24, 69]).

In the following sections, we propose language extensions
to enable domain-specific features —based on the specific
requirements of Design Computation— whilst also retaining
the substantial power and flexibility of GPLs.

6 Proposal: Language Extensions for DC
The fourth part of our proposed system extends the general-
purpose approach with domain-specific constructs. We argue
that more precise representations of both design objects and
processes can be enabled by drawing on facets of Program-
ming Languages research with a particular focus on types.
One of the most significant interactions between Design

Computation and PL research is in the development of type
systems. It is recognised that object-oriented languages are
a generalisation of what was originally a highly domain-
specific concept based on the classification, properties and

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Face

double

double

double

double

Figure 13. In the progressive formalisation methodology, the user is encouraged to start by first gathering the unstructured
inputs as a schema (middle panel), from which a distinctive new class can be defined (right panel). Here each input has been
given a meaningful name and type.

Figure 14. Example hybrid visual and text-based programming from [6]. The visual layout is the high-level process diagram
of the MIPS microprocessor pipeline. The code within each node emulates the function of the different regions of the MIPS
hardware.

behaviour of physical systems, for example the Simula lan-
guage. We share the sentiment expressed by the authors of
Simula, Kristen Nygaard and Ole-Johan Dahl: that languages
“should be problem-oriented and not computer-oriented" [52].

In Design Computation, a type system is much more than
a language feature: It is both an ontological representation of
what exists and an exploration, or validation, of what might
exist: how it might be made and assembled; how it might
perform and be used; how it might be repaired and recycled;
and, crucially, how it might be disassembled.

So for DC, the critical question is: How can the life-cycle
of a physical object, whether a product or a building, be rep-
resented by a type system as a direct computational analog of
existing real worlds (and our conceptualisation of future real
worlds)? This extends beyond the tangible objects, such as
walls and floors, to the intangible spaces which they enclose.

These requirements match recent advances in program-
ming language research, where a rich vein of work focuses
on increasing the expressive power of types to reason about
programs in more detail [25, 54, 61].

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

6.1 Semantic Meaning: Dimensions, Units, Quantity
Previously standard engineering calculation sheets through
their tabulated design and units-of-measure annotation helped
the user to enforce units-of-measure consistency; but this
form of consistency checking has largely been lost with the
switch to engineering analysis applications and end-user
programming (particularly using conventional languages
that do not provide sufficient domain information).

Most programming languages provide only a limited set of
numeric types (e.g., integers, floating point) to represent com-
pletely different physical quantities (e.g., length, force, angle).
This lack of dimensional information can lead to undetected
numerical errors arising from inconsistent dimensions or
units of measurement.7
For decades, it has been recognised that dimension and

unit information can be seen as an extension of standard
type systems [37, 38]. Units-of-measurement typing (for ex-
ample as developed by Kennedy) instead embeds the rules of
dimensional analysis into the programming language. Typi-
cally, this would be based on the SI units [51]. Going further,
variables could be qualified by a hierarchy of attributes: di-
mension (e.g., length), units of measure (e.g., metre), and
kind-of-quantity (e.g., thickness) [20]. These attributes can
then be enforced automatically by the compiler, some at-
tributes can be inferred from use, and conversions can be
automatically derived.
The SI system consists of 7 base measures and 23 princi-

ple derived measures. A derived units-of-measure type is
defined by an expression using base unit types or previously
defined derived unit types. We envisage a units-of-measure
definition statement which allows derived units-of-measure
types to be defined for specific application domains. For ex-
ample, the U-value, or thermal transmissivity of a building
material (Figures 11 and 15) could be defined as a derived
unit-of-measure:𝑊 /(𝑚2 · 𝐾).

Units-of-measure types may also use refinement types to
constrain the range in which a value lies [71], e.g., a number
representing angles may be typed as ranging between −2𝜋
and 2𝜋 . A refinement type system enforces that this invariant
holds throughout program execution.

One of the key tests for the compatibility of different units
of measure is whether variables can be added or subtracted.
For example, consider the dimension variables defined in
Figure 4. These are Inset, Offset and Thickness. These are
all of the same dimension length, but one is a specific kind-
of-quantity thickness. Also, the Inset and Offset dimensions

7There are many historical engineering failures associated with units-of-
measure error. One notable example is the Vasa [48] (a seventeenth century
Swedish warship which capsized on its maiden voyage). Archaeological
analysis found two types of rulers within the hull, one based on the Am-
sterdam foot using twelve inches and the other based on the Stockholm
foot using eleven inches. Measurements from the hull suggested that the
two sides of the ship had been built by different teams of shipwrights, one
Swedish and one Dutch, using these different units of measure.

are defined in orthogonal directions. While the addition of
variables of different unit-of-measure type might raise an
error, we can envisage a hierarchy of warnings to alert the
programmer when variables with the same type, but with
different attributes, are added (or subtracted).

Addition and subtraction also apply to integers. Therefore,
there is the potential to extend some of the units-of-measure
concepts particularly when integers are used as cardinals.
If a collection has a specified type, then the count of that
collection is a cardinal of that type. Consider a class hierar-
chy (from general to specific) and collections of these differ-
ent types. Appending two collections of different sub-types
might result in a collection of the common super type. There-
fore adding the counts of collections of different sub-types
would result in a cardinal of that super type.

Subtraction is slightly more complex: The result (the dif-
ference) will be the same type as the minuend, and the sub-
trahend should be of the same type as the minuend or more
general. We can envisage units-of-measure consistency be-
ing applied in these cases.
In program development, it is often necessary to distin-

guish between the units for variable used within the program
(for calculation) and the units used in the user interface (to
communicate with the users). For example, angular measure-
ments might be calculated internally in radian but displayed
in degrees. How these display units are labeled and under-
stood by the user should be considered as an integral part
units consistency. This becomes quite interesting in end-user
programming when the user is the programmer.
Implementing units-of-measure types at the language

level provides important advantages for Design Computation
by improving the human-readable program semantics while
a fully units-consistent program (being machine-readable)
can be verified as free from any dimensional errors [38, 56].
It is anticipated that some aspects of the units-of-measure
types can be retrofitted to industry standard languages, for
example using C# attributes, discussed further in Section 8.

6.2 Variability: Tolerance and Uncertainty
Materials, manufacturing, assembly and even measurement
itself are characterised by variability, conventionally ex-
pressed as tolerances. Yet existing digital modelling tools
typically only support nominal absolute sizes, with toler-
ances only specified as annotations. This severely limits the
designer’s ability to reason about the critical role of toler-
ances. Whilst the calculation of numerically precise values
is a key aspect of Design Computation, there are occasions
when precision might be confused with certainty.

This is particularly relevant at the specification or initial
design stages of architectural design, when the performance
of the building, or its precise dimensions, have yet to be
confirmed. At these stages, it is more useful to define a per-
formance spacewhose dimensions are bounded by acceptable
ranges of the defining performance measures (Figure 15).

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

load bearing
range

sound
attenuation
range

thermal
transmissivity
range

Figure 15. The hypothetical wall from Figure 11. At the
specification stage, a performance space can be defined by
the acceptable range of the defining performance measures.

In many types of engineering, including buildings, ‘com-
pensators’ (e.g., seals, bolt slots or glazing spiders) may be
designed to pre-empt variability during construction assem-
bly. In this application domain, a tolerance (of a material or
manufacturing process) is the expected limit of acceptable
unintended deviation from a nominal or theoretical dimen-
sion, while an allowance (of a compensator) is a planned
deviation from the nominal or theoretical dimension.
One way to represent uncertainty within computation

is via interval arithmetic [46], where numerical values are
replaced by a pair of values (of the same type) giving a lower
and upper bound. Interval computing can be considered
as the numeric counterpart to fuzzy logic. We can imag-
ine a generic type defining a general form of intervals over
any base type, i.e., Interval<T> = (T, T). Operations are then
overloaded according to the standard operations of inter-
val arithmetic. However, in the context of DC, we typically
wish to work with an idealized measurement for a design
within which the actualization (i.e, after manufacture) will
be known to vary based on manufacturing tolerances.

We therefore propose that a type-level notion of variability
is much more useful as the static property can represent
the additional domain semantics of the measurements. A
tolerance, giving a ‘plus-minus’ value by which a value can
vary, e.g., 𝑥 ±𝑦 corresponds to the a value 𝑣 in range 𝑥 −𝑦 ≤
𝑣 ≤ 𝑥 + 𝑦 and could then be captured via a type constructor
Tolerance<Y> wrapping a floating-point value but where Y is
a type-level floating point number classifying the variability.
Direct limits, giving distinct lower- and upper-bounds, could
be provided by further constructor Bounds<X,Y>.

More fine-grained approaches to representing variability,
as codified in the language of Geometrical Product Speci-
fication [47] could also be codified at the type level. These
numeric properties, akin to refinements codified in the types,

can be enforced by the type system, e.g., comparing inter-
faces of compensators and the tolerance they accommodate
versus the variance of components connected to them. Auto-
mated theorem provers can then be leveraged by the type-
system to discharged complex constraints (see, e.g., quanti-
tative program reasoning at the type-level [55]).
Currently, a numeric variable can only be defined with a

less precise type and an over-precise value. Combining units
of measurement and intervals radically improves program
semantics allowing the direct expression of the specificity of
the variable’s type and the option to explicitly recognise its
uncertain value.

6.3 Connected Collections
It is recognised that buildings are composed of complexly
connected collections of physical components and enclose
equally complexly connected collections of spaces [19].While
these collections are often hierarchical and can be defined
‘top-down’, the important queries which allow the user to
reason about these relationships need to operate ‘bottom-up’.

In standard object-oriented practices, one object can point
to another via a field/property denoting some relationship.
However, this relationship is not invertible; i.e., knowing
which objects ‘point back’ to an object requires manual ac-
counting.
Many proprietary applications (for structural analysis,

energy simulation, digital fabrication, etc.) implement equiv-
alent functionality but often in a proprietary and opaque
way. Therefore the end-user programmers may be aware
that this functionality exists, but it is not available for more
general application and reuse within their programs.
Instead, adding Connected Collections to the language

will ensure that inverse mapping from the constituents back
to the collection is automatically maintained. This allows
designers to directly and conveniently build and query many
different types of connectivity such as: complex assemblies
and engineering systems, circulation and egress routes, ma-
terial libraries, simulation results and performance data [5].

Indeed, integrating connected collections with tolerances
and dimensional typing will enable diverse but semantically
connected analytical models using graph theoretic opera-
tions and mereological and topological concepts such as
part-whole relations and vague boundaries.
The motivation for the Connected Collection language

feature comes from both theoretical and practical sources.
Marr and Daloze [42] discuss the relative advantages of

providing a few versatile collection types compared to a wide
range of specialised collection types. In this context, it is in-
teresting to note that Grasshopper (one of the most widely
used VPLs in Design Computation) provides only a single
collection type: a ‘data tree’ (as a list of lists). This effectively
imposes a new task on the entry-level programmer: to refac-
tor all potential uses of collections into this single collection

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

vehicles pedestrians

overlap

cars only taxi parking walking only

Figure 16. The use of a semilattice to represent two dis-
tinctive functions of a city and their overlap (redrawn from
Figure 4 of ‘The City is Not a Tree’ by Alexander [9]).

type—a form of ‘enforced’ versatility. The mechanics of us-
ing data trees is explained in the tutorial by Rutten [63], but
the justification (either pedagogic or performance) for data
trees seems quite elusive. Our current proposal for a new
connected collection type is intended to be a constructive
response to these limitations.

The emphasis on tree collections in Design Computation
is additionally surprising since the limitations of trees as
representations in architecture was already recognised by
Christopher Alexander in his 1965 seminal essay: ‘A City
is Not a Tree’ [9]. From a substantive perspective, Alexan-
der observed that the contemporary approaches to urban
planning often resulted in new towns being divided into
separate unconnected districts (a tree structure) while tra-
ditional cities were more complex and often included over-
laps or connections between different districts and functions.
Alexander used the semilattice to illustrate the concept of the
‘connected’ city (Figure 16). In so doing, he used an abstract
concept in a highly domain specific way and with a particu-
lar normative interpretation (concerning the human-centric
design of the urban environment). The more valuable, and
general, point is that this abstraction combines a ‘top-down’
decomposition (of the city into sub-districts or sub-functions)
with a representation of the overlap or intersections between
the different parts of this decomposition.
In retrospect, neither trees nor semi-lattices may be suit-

able representations (of cities, buildings, systems, etc.). How-
ever, the graphic theoretic concepts which Alexander intro-
duced are highly relevant for Design Computation.8 Thus,
one motivation for our proposed Connected Collections is
as a more general response to Alexander’s original ideas.

8Alexander also proposed the idea of ‘Design Patterns’ for architecture.
While the general idea of Design Patterns is interesting, the specific archi-
tectural patterns Alexander proposed were considered within architecture
to be too normative and prescriptive and this undermined the acceptance
of the general idea with architecture. However, his ideas (now detached
from the normative architectural examples) were valued and subsequently
adopted within software engineering. This represents another interesting
interchange between architectural design concepts and computation.

Shell

Faces

Vertices

Edges

F1 F2

F1

E1

F2

E3 E4

E5
E2

V1

V2

V4

V3

E1 E2 E3 E5E4

V1 V2 V4V3

Figure 17. An interesting example of a connected collection
is provided by the shell-face-edge-vertex topology (from the
faceted Façade model in Figure 3).

The Digital Fabrication of the faceted façade example (Fig-
ures 3 to 7) illustrates a simple complexly connected collec-
tion where a conventional tree data structure would be an
insufficient representation. At one level, this type of façade
can be defined as a hierarchical system of Topological collec-
tions where a Shell contains Faces (representing glass panels)
which contains Edges (representing linear frame members)
which contains Vertices (representing connectors). Except
this is not a conventional tree structure because Faces are
connected by sharing common Edges which in turn are con-
nected by sharing common Vertices (Figure 17).
A Connected Collection would facilitate interesting and

valuable queries on the façade. The critical query may not
be face.Edge, but rather edge.Faces.
Similarly, a building can be idealised as a hierarchical

system consisting of an overall Body (representing the com-
plete building), with Cells (representing rooms) and Faces
(representing the construction panels, such walls, floors and
roofs). Except this is not a conventional tree structure be-
cause rooms (Cells) are connected by sharing common walls
(Faces) (see Figure 18). This representation of the complexly
connected spaces within a building is an example of non-
manifold topology and is the basis for many different an-
alytical models, including those used for thermal, energy,
circulation and egress of occupants [5].

In this context, the critical query may not be cell.Faces, but
rather face.Cells. All Faces expect F6 are part of a single Cell
and therefore represent external walls, with energy loses or
gains to the external environment (depending on the wall ori-
entation). Face F6 is however part of two Cells and therefore
represents an internal wall with a possible energy exchange
between adjacent rooms at different temperatures [5].

Connected Collections can represent a range of inclusion
and connection concepts (from general to domain specific):
(1) very general inclusion relationships where members may
be part of multiple intersecting sets; (2) network relation-
ships between the members; (3) more specific network re-
lationships which define a (potentially closed) containment
boundary (as in the spatial building model, Figure 18); and
(4) where containment boundaries may, in turn, define other

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Body

Cells

Faces F1

C1

F2 F3 F5F4 F6

C2

F7 F8 F10F9 F11

F1

F4

F6

F2

F3

F5

F7

F8

F9

F10

F11

C1 C2

Figure 18. Another example of a connected collection is
provided by an idealised spatial model of a simple building
using non-manifold topology. Here the adjacent Cells (rep-
resenting rooms) are enclosed by Faces (representing walls
and floors). All but one of the Faces represent external con-
struction. However, the two rooms are connected by sharing
a common Face (representing an internal wall panel) (F6), as
described in Figures 11 and 15 and referenced in Figure 9.

more general inclusion relationships (for other sets whose
members are so contained). In addition, the same member
may be referenced by different collections, but these refer-
ences may imply completely different domain semantics.
Connected Collections are a recurring theme in Design

Computation. Previously, each application implemented their
own bespoke, hard-coded version which maintained the ad-
ditional references from the members back to the different
parent collections. While end-users could harness these ap-
plications and write custom DC programs using the related
APIs; the end-user programmer could not construct new,
independent, connected collections.

The proposal is that Connected Collections become a stan-
dard feature of DC languages, directly accessible by the end-
user programmer, potentially re-using and extending con-
ventional collection syntax (with the management of the
additional references masked from the programmer and im-
plemented within the language system).
Connected collections allow the user to reference multi-

functional components as common members of different
engineering subsystems. However, this raises interesting
language design issues around the most suitable way to
represent such multi-functionalism: as multiple inheritance;
as multiple interfaces; or as a lightweight composition using
the aspect-oriented programming paradigm (which is the
approach adopted in Design Computation practice [13, 22]).
A prototype of Connected Collections has recently been

completed and tested with the examples used in this paper,
including figure 17) . [18]

6.4 Tenets
As with the other languages in our system, we outline a few
core tenets for the Extension language:

• Leverage existing type checking support and syntax;
• Use type inference, but allow compilers to insert inferred
types into the code automatically to aid documentation
and user understanding;

• Introduce new syntax sparingly (only when required to
express new functionality which cannot be emulated by
the use of established functionality and familiar syntax);

• Enable user-defined extension of domain concepts to suit
the project or engineering sub-discipline;

• Ensure backwards compatibility with other language lay-
ers in the system;

• Allow progressive formalisation, in the style of optional
typing, such that type information can be gradually added;

• Leverage gradual typing to enable complex static types to
initially be treated dynamically [17].

From an end-user perspective: The functionality of the inter-
val computing feature naturally extends to complex engineer-
ing tolerancing [33]; and the functionality of the connected
collections feature naturally extends to the geometry and
topology of solid modeling [5].
However, there is necessarily a clear boundary between

such specialist applications and the functionality of the lan-
guage itself. As such, the extension language should provide
common language features which can reduce the complexity
of developing specialist applications and plugins (and to pro-
vide end-user programmers with a standard way to integrate
these plugins).

Finally, it is envisaged that a proficient programmer could
directly use the Extension language features with a general-
purpose language and independent of the Initial and Transi-
tional languages.

7 Case Study (continued): Using the
Extension Language Features

This section resumes the case study of the Façade Panel
starting from Figure 13, which illustrated the features of a
programming language where every type of the numeric
variables was defined as double. This can be contrasted with
Figure 19 where the program semantics has been signifi-
cantly improved by defining the different linear dimension
inputs with precise units-of-measure or tolerance types.

Figure 20 shows how the class definition can be expanded
to include additional methods which capture the geometric
process defined in the original visual program (Figures 5
and 6). The more richly described FacadePanel class in the
Extension language can then be instantiated as a component
in the Initial/Transitional setting (Figure 21).
This methodology has emerged from our experience in

practice and applies at both a team and an individual level.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

\\\Face

Length

Tolerance<Length>

Tolerance<Length>

Length

Figure 19. Using the features of the language extension, the program semantics can be significantly improved by defining the
different dimensional inputs with precise units of measure or tolerance types. It is envisaged that the Visual language UI will
support custom ‘widgets’ providing simple and intuitive access to these options. The user can understand the notation by
comparing the visual program with the generated text-based Class definition.

1 class FacadePanel {

2 public readonly Volume PanelVolume; // properties defined as unit of measure type

3 public readonly Tolerance <Length > SealWidth;// as a tolerance type

4 public readonly Face ContextFaces; // as a connected collection type

5
6 public static ByOffsetAndInset (Face Base , Length Offset , Length Thickness ,

7 Tolerance <Length > Frame , Tolerance <Length > Inset) {

8 // application of standard geometric modelling , from the original visual program

9 insetCurve = Curve.Offset(Base , (Inset.Nominal + EdgeWidth.Nominal);

10 insetSurface = Surface.ByPatch(insetCurve);

11 CentreSurface = Surface.Offset(insetSurface , Offset);

12 Panel = Surface.Thicken(CentreSurface , Thickness);

13
14 // Extension features: Units of Measure , Tolerance Typing and Connected Collections

15 Length ^3 PanelVolume = CentreSurface.Area*Thickness // inferred Units of Measure Type

16 Tolerance <Length ,0.05> SealWidth = Inset - EdgeTolerance; // Units of Measure combined with tolerances

17 ConnectedCollection <Faces > ContextFaces = Face.AdjacentFaces; // Connected Collection: find the Faces

18 } // (connected by common Edges)

19 }

Figure 20. The FacadePanel class can be expanded to include additional methods which capture the geometric process defined
in the original visual program (Figures 5 and 6). line 16: Calculates a new value from an Area and a Length therefore the
units-of-measure system has inferred the resulting variable is of type Volume. line 17: Computes a new interval value via
arithmetic expressions over interval terms, with resulting type Tolerance<Length,0.05>. line 18: The façade system is constructed
out of a connected collection of Shell-Faces-Edges-Vertices in which constituents at one level are connected to constituent at
the next lower level. Having built such a connected collection, the user can make useful queries (for free).

At an individual level, we should encourage the entry-
level programmers to harness progressive more powerful
computational constructs.

At a team level, we can mirror the classical Design Process
by encouraging the gradual transition from an exploratory
unconstrained and implicit sketching/programming to the
use of more precise and sharable representations: Effectively

applying established design principles to the way the end
user software itself is written.

The motivation for our proposed Design Computation lan-
guage system comes from our experience that it is difficult to
apply this preferred methodology in a coherent and elegant
way with existing languages and tools. With the proposed

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Process (instance of the class) OutputInputs

LengthTolerance

sealTolerance

Figure 21. The new Façade Panel class can be instantiated, replacing the process in the original visual program (Figures 5 and
6). Because the inputs are a collection, the result (examplePanels) is also a collection. However, the user can index into this
collection and access constituent properties using the standard ‘dot’ notation. Queries from the connected collection such as
the edgeOfInterest are highlighted in red.

system, progressive formalisation starts with the Initial vi-
sual language and with unstructured data and informal use
of language, geometry primitives and process.

This progression continues via the Transitional language,
where human-readable semantics, such as type and structure
is added to create a conventional data schema and an object-
oriented class definition.

Progressing to the General-purpose language and then Ex-
tension language features, the program can be enhancedwith
more precise dimensional typing, tolerance typing (which
explicitly recognizes imprecise and uncertain values) and
the use of connected collections to more precisely represent
connectivity relationships.
Adding the additional type information enables the pro-

gram to become machine readable, allowing verification
through inference. This results in semantically precise, domain-
specific classes.

The overall process is cyclic, with the possibility that other
entry-level users can deploy these new classes as nodes in
their visual programming.

8 Paths Forward From the State-Of-The-Art
The proposed workflow outlined in Sections 6-7 assumes
an object-oriented approach to the implementation of the
General-Purpose and Extension languages.
An advanced type system is implemented by class defi-

nitions representing physical dimensions (augmented with
additional information such as type-level floating-points to
capture tolerance). We consider here existing work which
could serve as a transitional path from the current state-
of-the-art to our proposed workflow; which, in turn, may
increase the adoption potential of the overall progressive
formalisation strategy.

8.1 Domain-Specific Descriptions via C# Attributes
One project (which has sought to implement some of the
concepts discussed in the preceding sections) is the Buildings
and Habitats object Model (BHoM) [13], an open collabora-
tive project that aims to create an inclusive computational
framework for coauthoring Design Computation workflows.
Specifically, and in direct response to the range of user

requirements and skills highlighted in Figure 2, the BHoM
is designed to be compatible with both visual flow-based
programming (e.g. Grasshopper, Dynamo, Excel) and text-
based programming (e.g., conventional C#).

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

Implemented as a hybrid model for code architecture, it
is designed to integrate well in the workflow of any pro-
fessional in the AEC industry, regardless of their level of
computational proficiency.
The underlying framework is implemented in C#, but in-

cludes various constraints and conventions to achieve equiv-
alence between the visual nodes and the corresponding text-
based functions and objects when the code is reflected in
visual programming interfaces, as per DesignScript and the
proposed Transitional languages discussed in Section 5.

Particular emphasis has therefore been placed on defining
clear object schemas; named, labelled and decorated with
semantic contextual information to enable chunking of the
community’s collective engineering knowledge as reusable
modular design representations.
The necessity for this schema-led approach can be seen

in our case study (Section 3) where manipulation of unstruc-
tured, unlabelled data quickly becomes intractable.
As a concrete example of enriching C# classes with addi-

tional semantics, primitive Properties of type double can be
additionally defined as a type of Quantity through assign-
ment of custom Attributes [27]. This value now has addi-
tional meaning which can be used to enhance interpretability
for the end-user, exposed both in the programming IDE and
the Visual Programming Environment.
For example, a Circle class may have property Radius of

type double. This can be assigned attribute Length [26] imple-
menting the abstract base attribute QuantityAttribute [27]:

1 [Length]

2 [Description("Distance from the Centre to any

point on Circle.")]

3 public virtual double Radius { get; set; } =

0.5;

Figure 22 shows this rendered in the Visual Programming
Environment.

8.2 Other Approaches
There are various other ways that domain-specific concepts
might be ‘retrofitted’ to existing languages.

The Python Pint library uses * operators to assign units of
measure to variables, e.g. radius = 0.5 * ureg.metre, yielding
a new variable of type Quantity which encapsulates both
value and unit information [29]. Through the development
of a bespoke Design Computation library, one might imag-
ine something similar being applied to a combination of
domain-specific concepts, e.g. radius = 0.5 * lib.dreg.length

(unit=lib.ureg.metre). Since many programming languages
use libraries, this type of approach could be fairly language-
agnostic; however, the potential impact on runtime perfor-
mance and behaviour could be significant and backwards
compatibility with existing projects and workflows may not
be realistic.

As a less disruptive option: The CamFort project uses struc-
tured comments to verify units of measure in Fortran-based
computational science models [53]. In principle, concepts
such as dimensions, tolerance or connected components
could be implemented in a similar way (e.g. !=dimension(
length)::radius). While this might provide a high level of
cross-language support and backwards compatibility; com-
ments are generally not subject to syntax checking by com-
pilers or interpreters, and they may be overlooked as the
main body of code is developed. It is noted that, unlike com-
ments, Python ‘docstrings’ become a special attribute of the
module, function, class, or method within which they are
written [28] (and can therefore be accessed and processed in
different ways).
Finally, it may be possible to utilise general-purpose lan-

guages with existing support for certain constraints. For
example, the F# language [45] allows units of measure to
be specified alongside variable types, e.g. let radius:double

<m> = 0.5. Units are checked at compile time and discarded
at runtime, meaning no impact on runtime performance is
expected [45]. However, in order to incorporate tolerances,
connected collections or other domain-specific concepts;
some kind of language extension or retrofitting is still likely
to be required. This approach could also be highly disruptive
if another general-purpose language, such as C#, is already
preferred (although it is noted that F# and C# benefit from
the interoperability of the Common Language Runtime [44]).
Ultimately, it is the user-programmer requirements and

experience that should determine the type of approach.

Figure 22. Example of enriched type semantics reflected to
the end-user in the visual programming interface, in this
case Grasshopper (integrated within Rhinoceros 3D mod-
elling software). The code example given above, of the Circle
Radius being defined as a Length type, is shown.

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

1. Limited display…

2. ..as a window into a
more extensive graph

3. Multiple
levels deep,
including extensive
libraries

Figure 23. Composed of multiple visual representations
from Cook [19]. The lower panel is a visualisation of a class
hierarchy, from which the user may select different classes.
The example class library here is part of Industry Foundation
Classes [19, 34]. The middle panel illustrates a typically ex-
tensive visual data flow program (usually with an execution
flow from left to right). The top panel illustrates a limited
view into the program. This simplified diagram could be ex-
tended in practice to comprise multiple sub-views and levels.

9 User Experience: options and trade-offs
The current discussion is largely focused on the design of our
proposed languages. However, users experience program-
ming languages as part of a wider system which includes
their programs, IDE, libraries and the classes they create.9

One of the main purposes of the complete system (of the
language, program, library, display, as illustrated in Figure 23)
is to allow the user to build a mental map of the program.
This map necessarily has to extend to include those parts of
the program and libraries which are not currently displayed.
A mental map may have multiple points of interest, at differ-
ent levels of depth and with different extents. Mental maps
of programs may be useful in optioneering: Imagining a coor-
dinated set of potential changes in multiple locations within
the program structure and evaluating the necessary imple-
mentation strategies and consequences (prior to selecting
and applying the most advantageous option).
Whether the user is aware or not, the use of the com-

plete system (language, program, library, display) involves
multiple trade-offs. These are summarised in Figure 24.

9There are a number of characteristics of libraries which may influence
this user experience: (1) the depth of the inheritance hierarchy, (2) whether
the inheritance hierarchy is a user-oriented classification or designed for
execution efficiency, (3) the size of the semantic chunks of the instantiatable
classes and (4) the compositional freedoms supported.

Understandably, a class library used for standardisation (such as the IFC)
may require a deep, fine-grained classification to represent the generality
of what exists. A different library structure may be more suited to represent
what is imagined: what has yet to exist. For example, the BHoM library, offers
less complex semantic chunks but substantially enhanced compositional
freedoms allowing a lightweight, more expressive, approach better suited
to exploratory design and programming.

visual or text based language/program

succinct or expanded notation

shallow + wide or narrow + deep program structure

extent or legibility of the displayed program

lay explanation or professional navigation purpose

Figure 24. Complex trade-offs in the choice of language,
program structure and display.

The example of hybrid visual-textual programming in
Figure 14 provides an interesting illustration of the trade-off
between extent and legibility. Thus, for a given display size
and resolution, it may not be possible for the whole program
structure to be displayed and for the text to be legible. In the
case of Figure 14, the layout of the visual program is a direct
analog of a physical system (the MIPS processor), but this
example also illustrates the more general point about the
programmer’s choice between width and depth. For example,
an initial choice (wide and shallow) may have to be revised
as the program becomes more complex.

Of course, many of the view-extent versus legibility trade-
offs (and related navigational issues) can be addressed by
established UI and windowing techniques. Themore relevant
question is: how can the design of the language present the
user with a range of programming usability options (depth
vs. extent vs. succinctness vs. legibility) and what choices
and trade-offs does the user make.

Succinctness (Space-efficiency). The transitional lan-
guage proposed as part of the system of languages for Design
Computation provides three levels of succinctness (or space-
efficiency) (illustrated in Figure 12) as follows:

• visual data flow: with nodes overloaded for collections
• an intermediate notation: a succinct text-based nota-
tion where each program statement corresponds to
a node in the visual program (therefore a data flow
language with statements overloaded for collections);

• an expanded imperative text notation, indistinguish-
able from a formal text-based language, with explicit
flow control statements.

With the method of progressive formalisation, each in-
crease in the level of expanded notation may suit users
with increasing level of computational competencies (see
Figure 2). Therefore, a completely fluid system of languages
would defer the choice of succinctness to the users. Such
fluidity suggests that each of these programming notations
should ideally be fully convertible to the other forms.
However, the succinctness of the intermediate notation

in the transitional language has its limitations. In fact, the
typography of the expanded language notation (with {} or
indentation for nested code blocks) may be more easily un-
derstood than the (more succinct) intermediate notation.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

In addition, a conditional statement embedded within an
iterative construct (in the expanded notation) cannot be rep-
resented in the intermediate notation. Therefore, there may
be limits as to how a programwritten in the expanded formal
language notation can be transformed back into a succinct in-
termediate notation (and hence back into a visual language).
Why is this reversibility important? We envisage that

future programming languages should support lay explain-
ability as the complement of progressive formalisation. This
is where a complex program can be visually summarised so
that it can be understood by senior decision makers and lay
participants with limited computational experience.

There is a long tradition of visual diagramming and flow-
charting which can be harnessed here. Indeed, anticipating
that the complete program is explainable in this way might
become a key objective in program design. For example, the
layout of the hybrid visual-textual programming example
(Figure 14) has been designed so that nodes are gathered into
clearly labelled groups (and these groups can be used as the
basis for a simplified visual presentation). Other automated
graph node clustering methods may also be applicable. So,
while the direct reversibility of an expanded notation back
into a more succinct notation may be not be feasible; the
idea of being able to create a simplified presentation of a
complex program is very relevant.
Crucially, the summary visual presentation used to ex-

plain the completed program to the lay participants may
differ substantially from the visual exploratory program used
at the start of the progressive formalisation process. The
transformation between visual and text-based notations and
the trade-offs (such as depth vs. extent vs. succinctness vs.
legibility) are not fixed but may be continuously varying
depending on the direction and purpose of the communica-
tion and the audience being addressed. The discussion here
reminds us that usability is a key issue in language design,
particularly for end-user programming.

10 Wider Context
Maver suggested that the role of computing is to ‘amplify
the intellect’ [43]: To offer cognitive advantages through the
provision of (computable) abstractions with which to think
more precisely and to apply those thoughts more widely and
more consistently.10 Abstractions are a key aspect of design
and of computation and therefore of Design Computation.
Abstractions transform context-specific ideas into robust suc-
cinct generalisations. The ideas may be easy to understand
in their original context but otherwise may be difficult to
apply more generally. Abstractions may initially be more dif-
ficult to understand (a cognitive load) but subsequently may

10Bronowski had observed that mechanical tools had amplified physical
abilities, instruments had amplified the senses, media had amplified commu-
nication. Maver extended Bronowski’s observations, adding that ‘computing
has the potential to amplify the intellect’.

be more broadly applied and give more consistent results
(providing important cognitive advantages).

In the context of Architecture and Engineering, designing
can be thought of as an abstraction of making, programming
as an abstraction of designing, and language design as an
abstraction of programming, with each level of abstraction
amplifying the preceding cognitive advantage.
Historically, a craft process combines the exploration of

ideas and the physical realisation of those ideas into a single
process. When craftsmanship reached the limits of complex-
ity and effort, designing emerged as a distinct activity, using
conventional media such as drawings and physical models.
Designing offered a number of (cognitive) advantages. A
drawing, as a simplified, light-weight representation of the
salient features of the intended artefact allowed the artefact
to be reasoned about without the time and cost of making
the physical objects. For example, the Vasa [48] was built
just at the point of transition between making and designing,
when some ship builders were still directly building without
drawings and others had switched to drawings.
In our own time, designing (with drawings, and other

physical media) in turn reached the limits of complexity
and effort. Computing has now replaced drawing as the
principal medium of architectural expression, providing a
new computable abstraction with cognitive advantages and
further possibilities. Again, it might be interesting to identify
a specific building which was being designed at this moment
of transition. One such building is theWaterloo International
Railway Station [2, 30]. The original design was conceived as
a parametric design, with an underlying design rule which
was intended to be executed with a series of different driver
dimensions to create the resulting design model.

What is interesting is that the design architects were start-
ing to think computationally before there were suitable ap-
plications and languages available. So this design logic could
not be externalised as a program and executed. Instead, the
architects were forced to manually interpret the result of
this (internal) design logic as a series of static drawings.
Subsequently, one of the first Design Computation ap-

plications became available and we were able to help the
architects to recover the underlying design rule and guide
them as they used these design rules to explore numerous
options that would have been prohibitively exhausting to
draw with conventional computer graphics editors.
Now more recently, Design Computation using existing

visual and text-based languages has arguably reached the
limits of complexity and effort. In our experience, architec-
tural ideas (and the related engineering and environmental
analysis) have now reached a level of complexity where
it is difficult for these to be expressed with the currently
available programming language and without consuming
valuable cognitive resources of the end-user programmers.

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

We argue that much of this cognitive effort currently being
consumed by the use of existing languages could be substan-
tially reduced if there was a suitably well-crafted language
which directly supported the key design and engineering
abstractions. The cognitive resources saved could then be re-
deployed to help address the more complex design problems
which are currently challenging to solve.

Essentially, we are anticipating a future moment of transi-
tion when new Design Computation languages will provide
further cognitive advantages enabling further design and en-
gineering possibilities. However, we cannot assume that new
abstractions can be added to a programming language and
that a perfectly rational programmer will use these features
exactly as the language designer intended.

As we have observed, programming is a highly individual
activity and computational behaviour (including program-
ming) often involves single programmers making subjective
trade-offs between short and long term costs and benefits,
between continuing to use existing language features and the
risks and potential rewards of exploring new features. The
cognitive advantages of computing extends beyond the indi-
vidual programmer to team collaboration and potentially to a
wider public engagement. We are looking beyond the imme-
diate advantages to the programmer which such a language
might provide, so that the program logic, hence the design
decisions, hence the consequential impact of the resulting
building is explainable to wider stakeholders.

Future Design Computation is likely to be a conversation
between human reasoning and machine intelligence, with
each posing problems and explaining methods and solutions
to the other. But what language will this conversation use?
One which should naturally and precisely express domain-
specific semantics, including units of measurement, uncer-
tainty and tolerances, and physical and systems connectivity.

11 Conclusions
As we have discussed, a future language for end-user pro-
gramming in Design Computation might usefully support:

• A continuous educational trajectory from simple visual
programming to industry standard formal program-
ming, by which an entry-level programmer can gain
proficiency and confidence;

• a process of progressive formalisation, in which the
user’s program can express human-readable domain
semantics and structure, and supportmachine-readable
verification;

• additional domain-specific functionality for units-of-
measure, uncertainty, and connected collections;

• structuring the resulting program so that it is explain-
able to decision makers and lay participants.

While themotivation for these language featureswas initially
a response to the particular needs of the Design Computation
user community, many of these features, and indeed the

underlying motivation, are quite universal. Therefore, it is
hoped that the implementation of these features, initially in
a domain-specific language, will lead to their wider adoption
in general-purpose languages.
Design Computation combines two subjects with com-

pletely different evolutionary timelines–Computing is mea-
sured in decades, architecture in millennia. However, both
are focused on the expression of underlying concepts, and
both stand to benefit from the expressive powers of the other.
In this essay, we have explored programming methods and
constructs that may be of significant benefit to architecture;
but concepts in architecture may provide equally significant
opportunities for programming language research and de-
velopment. By focusing on this ‘common ground’, we hope
that new forms of expression may be introduced to benefit
programmers, researchers and architects alike.

Inherent in Design Computation is a further opportunity:
Design combines the creative exploration of new architec-
tural forms with an objective response to project-specific
requirements and conformance to precise norms and statu-
tory regulations. In the same way that a building has to unify
these separate concerns, there may be an equivalent oppor-
tunity to unify exploratory and defensive programming in
Design Computation.
Lastly, we may want to consider the wider impact of De-

sign Computation languages. Recalling a presentation at
SPLASH 2016, when Andrew Black quoted James Noble:
“Software is the most important infrastructure for... basically
everything... Software is totally dependent on programming
languages... (therefore) programming languages are the most
important infrastructure for writing software... and thus for
anything and everything!”

Howmight we reply?We see Design Computation as the tan-
gible connection between the computational infrastructure
of programming languages and the physical infrastructure
of the built environment.
Importantly, Design Computation directly amplifies and

propagates the ideas of programming language research
through the thousands of more precise DC programs written,
the hundreds of thousands of more efficient buildings con-
structed and the well-being and fulfillment of the millions
of people who use those buildings.

Acknowledgments. We thank the anonymous reviewers
for insightful comments and suggestions. We also thank
Andy King and Chris Leung for many fruitful conversations
which fed into the ideas of this position paper and Amer
Al-Jokhadar for permission to use the image in Figure 8.
Part of this work was supported by the UKRI Centre for
Doctoral Training in the Application of Artificial Intelligence
to the study of Environmental Risks (reference EP/S022961/1).
Orchard received support through Schmidt Sciences, LLC
and acknowledges the support of the Institute of Computing
for Climate Science at the University of Cambridge.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Robert Aish, Al Fisher, Dominic Orchard, and Jay Torry

References
[1] [n. d.]. Personal communication with Chris Leung.
[2] Robert Aish. 1992. Computer-aided design software to augment the

creation of form. In Computers in Architecture: Tools for Design. Long-
man, 97–104.

[3] Robert Aish, Al Fisher, Sam Joyce, and Andrew Marsh. 2012. Progress
towards multi-criteria design optimisation using DesignScript with
SMART form, robot structural analysis and Ecotect building perfor-
mance analysis. In Proceedings of ACADIA. 47–56. https://doi.org/10
.52842/conf.acadia.2012.047

[4] Robert Aish and Sean Hanna. 2017. Comparative evaluation of para-
metric design systems for teaching design computation. Design Studies
52 (2017), 144–172. https://doi.org/10.1016/j.destud.2017.05.002

[5] Robert Aish, Wassim Jabi, Simon Lannon, Nicholas Mario Wardhana,
and Aikaterini Chatzivasileiadi. 2018. Topologic: Tools to explore
architectural topology. In AAG 2018. 316–341.

[6] Robert Aish and Emmanuel Mendoza. 2016. DesignScript: a domain
specific language for architectural computing. In Proceedings of the
International Workshop on Domain-Specific Modeling, DSM@SPLASH
2016, Amsterdam, Netherlands, October 30, 2016. ACM New York, NY,
USA, 15–21. https://doi.org/10.1145/3023147.3023150

[7] Robert Aish and Robert Woodbury. 2005. Multi-level interaction
in parametric design. In International symposium on smart graphics.
Springer, 151–162. https://doi.org/10.1007/11536482_13

[8] Amer Al-Jokhadar. 2018. Towards a socio-spatial parametric grammar
for sustainable tall residential buildings in hot-arid regions learning
from the vernacular model of the Middle East and North Africa. Ph. D.
Dissertation. Cardiff University. https://orca.cardiff.ac.uk/id/eprint/
111874/

[9] Christopher Alexander. 1967. A City is Not a Tree. Ekistics 23, 139
(1967), 344–348.

[10] Autodesk. [n. d.]. Learn - Dynamo BIM. https://dynamobim.org/
Accessed 25th April 2024.

[11] The World Bank. 2013. Measuring the Real Size of the World Economy.
Technical Report. The World Bank.

[12] Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and Antonio
Piccinno. 2019. End-user development, end-user programming and
end-user software engineering: A systematic mapping study. Journal
of Systems and Software 149 (March 2019), 101–137. https://doi.org/
10.1016/j.jss.2018.11.041

[13] BHoM. 2018. The Buildings and Habitats object Model. https://bhom
.xyz. Accessed 24th April 2024.

[14] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda,
M. S. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe,
A. Wong, and R. M. Young. 2001. Cognitive Dimensions of No-
tations: Design Tools for Cognitive Technology. In Cognitive Tech-
nology: Instruments of Mind. Springer, Berlin, Heidelberg, 325–341.
https://doi.org/10.1007/3-540-44617-6_31

[15] André Borrmann, Markus König, Christian Koch, and Jakob Beetz.
2018. Building Information Modeling: Why? what? how?. In Building
Information Modeling: Technology Foundations and Industry Practice.
Springer, 1–24. https://doi.org/10.1007/978-3-319-92862-3_1

[16] I. Burnett, M.J. Baker, C. Bohus, P. Carlson, S. Yang, and P. Van Zee.
1995. Scaling up visual programming languages. Computer 28, 3
(March 1995), 45–54. https://doi.org/10.1109/2.366157

[17] Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and
Jeremy G Siek. 2019. Gradual typing: a new perspective. Proceed-
ings of the ACM on Programming Languages 3, POPL (2019), 1–32.
https://doi.org/10.1145/3290329

[18] Alexis Cheron. 2024. Connected Collections: Implementing an Auto-
matically Populated Reverse Map of Related Objects. MSc Dissertation
(unpublished). University of Kent.

[19] Alastair Cook. 2024. Industry Data Model Change, Industry Founda-
tion Classes. Presentation. https://doi.org/10.5281/zenodo.12682064

[20] René Dybkaer. 2010. ISO terminological analysis of the VIM3 concepts
‘quantity’ and ‘kind-of-quantity’. Metrologia 47, 3 (2010), 127. https:
//doi.org/10.1088/0026-1394/47/3/003

[21] Jonathan Edwards, Stephen Kell, Tomas Petricek, and Luke Church.
2019. Evaluating programming systems design. In PPIG 2019, 28-
30 Aug 2019 (unpublished). Newcastle upon Tyne, United Kingdom.
https://kar.kent.ac.uk/id/eprint/79905

[22] Diellza Elshani, Alessio Lombardi, Al Fisher, Steffen Staab, Daniel
Hernández, and Thomas Wortmann. 2022. Knowledge Graphs for
Multidisciplinary Co-Design: Introducing RDF to BHoM. In LDAC@
ESWC. 32–42.

[23] Gustav Fagerstrom, Erik Verboon, and Robert Aish. 2014. Topo-façade:
Envelope design and fabrication planning using topological mesh
representations. In Fabricate 2014: Negotiating Design and Making.

[24] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Kr-
ishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt.
2015. The racket manifesto. In 1st Summit on Advances in Program-
ming Languages (SNAPL 2015). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.SNAPL.2015.113

[25] Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie
Weirich. 2016. Language based verification tools for functional pro-
grams (dagstuhl seminar 16131). Dagstuhl Reports 6 (2016). Issue 3.
https://doi.org/10.4230/DagRep.6.3.59

[26] BHoM (GitHub). [n. d.]. LengthAttribute.cs. https://github.com/BHo
M/BHoM/blob/main/Quantities_oM/Attributes/Length.cs. Accessed
25th April 2024.

[27] BHoM (GitHub). [n. d.]. QuantityAttribute.cs. Available at https:
//github.com/BHoM/BHoM/blob/main/Quantities_oM/Attributes/A
bstract/QuantityAttribute.cs. Accessed 25th April 2024.

[28] David Goodger and Guido van Rossum. [n. d.]. PEP 257 – Docstring
Conventions. https://peps.python.org/pep-0257/ Accessed 25th April
2024.

[29] Hernan Grecco and Pint Developers. [n. d.]. Pint: makes units easy -
pint documentation. https://pint.readthedocs.io/en/stable/ Accessed
25th April 2024.

[30] Grimshaw. [n. d.]. International Terminal Waterloo. https://grimsh
aw.global/projects/rail-and-mass-transit/international-terminal-
waterloo/ Accessed 18th July 2024.

[31] Felienne Hermans. 2020. Hedy: a gradual language for programming
education. In Proceedings of the 2020 ACM Conference on International
Computing Education Research. 259–270. https://doi.org/10.1145/3372
782.3406262

[32] Frédéric Imbert, Kathryn Stutts Frost, Al Fisher, AndrewWitt, Vincent
Tourre, and Benjamin Koren. 2013. Concurrent geometric, structural
and environmental design: Louvre Abu Dhabi. In Advances in archi-
tectural geometry 2012. Springer, 77–90. https://doi.org/10.1007/978-
3-7091-1251-9_6

[33] ISO. 2020. ISO 23952:2020 Automation systems and integration — Qual-
ity information framework (QIF) — An integrated model for manufac-
turing quality information. https://www.iso.org/standard/77461.html

[34] ISO. 2024. ISO 16739-1:2024 Industry Foundation Classes (IFC) for data
sharing in the construction and facility management industries—Part
1: Data schema. https://www.iso.org/standard/84123.html

[35] Christian Johansen, Tore Pedersen, and Audun Jøsang. 2016. Reflections
on behavioural computer science. Technical Report. University of Oslo.
https://www.duo.uio.no/handle/10852/57451

[36] Gilles Kahn and David Macqueen. 1976. Coroutines and Networks of
Parallel Processes. Research Report. https://inria.hal.science/inria-
00306565

[37] Andrew Kennedy. 1994. Dimension types. In Programming Languages
and Systems — ESOP '94, Donald Sannella (Ed.). Springer, Berlin, Hei-
delberg, 348–362. https://doi.org/10.1007/3-540-57880-3_23

[38] Andrew Kennedy. 2010. Types for Units-of-Measure: Theory and
Practice. In Central European Functional Programming School: Third

https://doi.org/10.52842/conf.acadia.2012.047
https://doi.org/10.52842/conf.acadia.2012.047
https://doi.org/10.1016/j.destud.2017.05.002
https://doi.org/10.1145/3023147.3023150
https://doi.org/10.1007/11536482_13
https://orca.cardiff.ac.uk/id/eprint/111874/
https://orca.cardiff.ac.uk/id/eprint/111874/
https://dynamobim.org/
https://doi.org/10.1016/j.jss.2018.11.041
https://doi.org/10.1016/j.jss.2018.11.041
https://bhom.xyz
https://bhom.xyz
https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1007/978-3-319-92862-3_1
https://doi.org/10.1109/2.366157
https://doi.org/10.1145/3290329
https://doi.org/10.5281/zenodo.12682064
https://doi.org/10.1088/0026-1394/47/3/003
https://doi.org/10.1088/0026-1394/47/3/003
https://kar.kent.ac.uk/id/eprint/79905
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.4230/DagRep.6.3.59
https://github.com/BHoM/BHoM/blob/main/Quantities_oM/Attributes/Length.cs
https://github.com/BHoM/BHoM/blob/main/Quantities_oM/Attributes/Length.cs
https://github.com/BHoM/BHoM/blob/main/Quantities_oM/Attributes/Abstract/QuantityAttribute.cs
https://github.com/BHoM/BHoM/blob/main/Quantities_oM/Attributes/Abstract/QuantityAttribute.cs
https://github.com/BHoM/BHoM/blob/main/Quantities_oM/Attributes/Abstract/QuantityAttribute.cs
https://peps.python.org/pep-0257/
https://pint.readthedocs.io/en/stable/
https://grimshaw.global/projects/rail-and-mass-transit/international-terminal-waterloo/
https://grimshaw.global/projects/rail-and-mass-transit/international-terminal-waterloo/
https://grimshaw.global/projects/rail-and-mass-transit/international-terminal-waterloo/
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1007/978-3-7091-1251-9_6
https://doi.org/10.1007/978-3-7091-1251-9_6
https://www.iso.org/standard/77461.html
https://www.iso.org/standard/84123.html
https://www.duo.uio.no/handle/10852/57451
https://inria.hal.science/inria-00306565
https://inria.hal.science/inria-00306565
https://doi.org/10.1007/3-540-57880-3_23

Programming Languages for the Future of Design Computation Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Summer School, CEFP 2009, Budapest, Hungary, May 21-23, 2009 and
Komárno, Slovakia, May 25-30, 2009, Revised Selected Lectures, Zoltán
Horváth, Rinus Plasmeijer, and Viktória Zsók (Eds.). Springer, Berlin,
Heidelberg, 268–305. https://doi.org/10.1007/978-3-642-17685-2_8

[39] Amy J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Mar-
garet Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry
Lieberman, Brad Myers, et al. 2011. The state of the art in end-user
software engineering. ACM Computing Surveys (CSUR) 43, 3 (2011),
1–44. https://doi.org/10.1145/1922649.1922658

[40] Jason Lim. 2016. YOUR: Robot programming tools for architectural
education. Ph. D. Dissertation. ETH Zürich. https://doi.org/10.3929/et
hz-a-010748012

[41] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. 2010. The scratch programming language and
environment. ACM Transactions on Computing Education (TOCE) 10, 4
(2010), 1–15. https://doi.org/10.1145/1868358.1868363

[42] Stefan Marr and Benoit Daloze. 2018. Few versatile vs. many special-
ized collections: how to design a collection library for exploratory
programming?. In Conference Companion of the 2nd International Con-
ference on Art, Science, and Engineering of Programming, Nice, France,
April 09-12, 2018, Stefan Marr and Jennifer B. Sartor (Eds.). ACM, 135–
143. https://doi.org/10.1145/3191697.3214334

[43] T.W.Maver. 1984. What is eCAADe? The Third European Conference on
CAD in the Education of Architecture [eCAADe Conference Proceedings]
Helsinki, Finland (Sept. 1984). https://doi.org/10.52842/conf.ecaade.1
984.x.d0s

[44] Microsoft. 2023. Common Language Runtime (CLR) overview. https:
//learn.microsoft.com/en-us/dotnet/standard/clr Accessed 25th April
2024.

[45] Microsoft. 2023. Units ofMeasure - F#. https://learn.microsoft.com/en-
us/dotnet/fsharp/language-reference/units-of-measure Accessed
25th April 2024.

[46] Ramon E Moore. 1979. Methods and applications of interval analysis.
Society for Industrial and Applied Mathematics.

[47] Giovanni Moroni, Stefano Petro, and Wilma Polini. 2017. Geometrical
product specification and verification in additive manufacturing. CIRP
Annals 66, 1 (2017), 157–160. https://doi.org/10.1016/j.cirp.2017.04.043

[48] Lisa Mullins and Rhitu Chatterjee. 2013. New Clues Emerge in
Centuries-Old Swedish Shipwreck. The World (2013). https:
//theworld.org/stories/2013/08/15/new-clues-emerge-centuries-old-
swedish-shipwreck/ Accessed 18th July 2024.

[49] Brad A. Myers. 2002. Making Programming Easier by Making it More
Natural. Presentation at first EUD-Net workshop in Pisa, Italy (2002).
Slides available at: http://hiis.isti.cnr.it/projects/EUD-NET/pisa.htm.

[50] Brad A Myers, Amy J Ko, and Margaret M Burnett. 2006. Invited re-
search overview: end-user programming. In CHI’06 extended abstracts
on Human factors in computing systems. ACM New York, NY, USA,
75–80. https://doi.org/10.1145/1125451.1125472

[51] David B Newell and Eite Tiesinga. 2019. The international system of
units (SI): 2019 edition. Technical Report NIST SP 330-2019. National
Institute of Standards and Technology, Gaithersburg, MD. https:
//doi.org/10.6028/NIST.SP.330-2019

[52] Kristen Nygaard and Ole-Johan Dahl. 1978. The development of the
SIMULA languages. In History of Programming Languages. ACM, 439–
480. https://doi.org/10.1145/800025.1198392

[53] University of Cambridge and University of Kent. [n. d.]. CamFort:
Automated evolution and verification of computational science models.
https://camfort.github.io/ Accessed 25th April 2024.

[54] Dominic Orchard. 2011. The four Rs of programming language de-
sign. In Proceedings of the 10th SIGPLAN symposium on New ideas, new
paradigms, and reflections on programming and software. ACM, Port-
land Oregon USA, 157–162. https://doi.org/10.1145/2089131.2089138

[55] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019.
Quantitative program reasoning with graded modal types. Proceedings

of the ACM on Programming Languages 3, ICFP (2019), 1–30. https:
//doi.org/10.1145/3341714

[56] Dominic Orchard, Andrew Rice, and Oleg Oshmyan. 2015. Evolving
Fortran typeswith inferred units-of-measure. Journal of Computational
Science 9 (2015), 156–162. https://doi.org/10.1016/j.jocs.2015.04.018

[57] George Orwell. 2021. Politics and the English language and other essays.
epubli.

[58] Alan J Perlis. 1982. Special feature: Epigrams on programming. ACM
Sigplan Notices 17, 9 (1982), 7–13. https://doi.org/10.1145/947955.108
3808

[59] Satheesh Pv. 2021. Introduction to Blueprints. In Beginning Unreal
Engine 4 Blueprints Visual Scripting: Using C++: From Beginner to Pro,
Satheesh Pv (Ed.). Apress, Berkeley, CA, 21–31. https://doi.org/10.1
007/978-1-4842-6396-9_2

[60] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software
clone detection: A systematic review. Information and Software Tech-
nology 55, 7 (2013), 1165–1199. https://doi.org/10.1016/j.infsof.2013.
01.008

[61] John C Reynolds. 2000. Themeaning of types from intrinsic to extrinsic
semantics. BRICS Report Series 7, 32 (2000). https://doi.org/10.7146/br
ics.v7i32.20167

[62] Richard David Rush et al. 1986. The building systems integration hand-
book. Wiley.

[63] David Rutten. 2013. Grasshopper Masterclass With David Rutten.
Video Series. https://vimeopro.com/rhino/grasshopper-masterclass-
with-david-rutten

[64] Mary Shaw. 2022. Myths and mythconceptions: What does it mean
to be a programming language, anyhow? Proceedings of the ACM on
Programming Languages 4, HOPL (2022), 1–44. https://doi.org/10.114
5/3480947

[65] Chris Shrubshall and Al Fisher. 2011. The Practical Application of
Structural Optimisation in the Design of the Louvre Abu Dhabi. In
35th Annual Symposium of IABSE/52nd Annual Symposium of IASS/6th
International Conference on Space Structures, London, United Kingdom,
September 2011.

[66] Aaron Sloman. 2011. TEACH PRIMER – AN OVERVIEW OF POP-11
(Fourth Edition 2011 - For Poplog V15.6.4 30 Oct 2011). University of
Birmingham. https://www.cs.bham.ac.uk/research/projects/poplog/p
rimer.pdf

[67] Steven L. Tanimoto. 2013. A perspective on the evolution of live
programming. In 2013 1st International Workshop on Live Programming
(LIVE). 31–34. https://doi.org/10.1109/LIVE.2013.6617346

[68] Arturo Tedeschi. 2010. Parametric architecture with Grasshopper :
primer. Le Penseur. https://cir.nii.ac.jp/crid/1130000796360313216

[69] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. 2011. Languages as libraries. In Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation. 132–141. https://doi.org/10.1145/1993498.
1993514

[70] United Nations Environment Programme. 2022. 2022 Global Status
Report for Buildings and Construction: Towards a Zero-emission, Efficient
and Resilient Buildings and Construction Sector. Technical Report.
https://www.unep.org/resources/publication/2022-global-status-
report-buildings-and-construction

[71] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract
Refinement Types. In Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013 (Lecture Notes in
Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner
(Eds.). 209–228. https://doi.org/10.1007/978-3-642-37036-6_13

[72] Christopher JK Williams. 2001. The analytic and numerical defini-
tion of the geometry of the British Museum Great Court Roof. In
Mathematics & design 2001. Deakin University, 434–440. https:
//researchportal.bath.ac.uk/en/publications/the-analytic-and-
numerical-definition-of-the-geometry-of-the-brit

https://doi.org/10.1007/978-3-642-17685-2_8
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.3929/ethz-a-010748012
https://doi.org/10.3929/ethz-a-010748012
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/3191697.3214334
https://doi.org/10.52842/conf.ecaade.1984.x.d0s
https://doi.org/10.52842/conf.ecaade.1984.x.d0s
https://learn.microsoft.com/en-us/dotnet/standard/clr
https://learn.microsoft.com/en-us/dotnet/standard/clr
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/units-of-measure
https://doi.org/10.1016/j.cirp.2017.04.043
https://theworld.org/stories/2013/08/15/new-clues-emerge-centuries-old-swedish-shipwreck/
https://theworld.org/stories/2013/08/15/new-clues-emerge-centuries-old-swedish-shipwreck/
https://theworld.org/stories/2013/08/15/new-clues-emerge-centuries-old-swedish-shipwreck/
http://hiis.isti.cnr.it/projects/EUD-NET/pisa.htm
https://doi.org/10.1145/1125451.1125472
https://doi.org/10.6028/NIST.SP.330-2019
https://doi.org/10.6028/NIST.SP.330-2019
https://doi.org/10.1145/800025.1198392
https://camfort.github.io/
https://doi.org/10.1145/2089131.2089138
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1016/j.jocs.2015.04.018
https://doi.org/10.1145/947955.1083808
https://doi.org/10.1145/947955.1083808
https://doi.org/10.1007/978-1-4842-6396-9_2
https://doi.org/10.1007/978-1-4842-6396-9_2
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.7146/brics.v7i32.20167
https://doi.org/10.7146/brics.v7i32.20167
https://vimeopro.com/rhino/grasshopper-masterclass-with-david-rutten
https://vimeopro.com/rhino/grasshopper-masterclass-with-david-rutten
https://doi.org/10.1145/3480947
https://doi.org/10.1145/3480947
https://www.cs.bham.ac.uk/research/projects/poplog/primer.pdf
https://www.cs.bham.ac.uk/research/projects/poplog/primer.pdf
https://doi.org/10.1109/LIVE.2013.6617346
https://cir.nii.ac.jp/crid/1130000796360313216
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1993498.1993514
https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction
https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction
https://doi.org/10.1007/978-3-642-37036-6_13
https://researchportal.bath.ac.uk/en/publications/the-analytic-and-numerical-definition-of-the-geometry-of-the-brit
https://researchportal.bath.ac.uk/en/publications/the-analytic-and-numerical-definition-of-the-geometry-of-the-brit
https://researchportal.bath.ac.uk/en/publications/the-analytic-and-numerical-definition-of-the-geometry-of-the-brit

