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Abstract: Background/Objectives: For genomic selection to enhance the efficiency of broiler pro-
duction, finding SNPs and candidate genes that define the manifestation of main selected traits is
essential. We conducted a genome-wide association study (GWAS) for growth and meat productivity
traits of roosters from a chicken F2 resource population (n = 152). Methods: The population was
obtained by crossing two breeds with contrasting phenotypes for performance indicators, i.e., Russian
White (slow-growing) and Cornish White (fast-growing). The birds were genotyped using the Illu-
mina Chicken 60K SNP iSelect BeadChip. After LD filtering of the data, 54,188 SNPs were employed
for the GWAS analysis that allowed us to reveal significant specific associations for phenotypic traits
of interest and economic importance. Results: At the threshold value of p < 9.2 × 10−7, 83 SNPs
associated with body weight at the age of 28, 42, and 63 days were identified, as well as 171 SNPs
associated with meat qualities (average daily gain, slaughter yield, and dressed carcass weight and
its components). Moreover, 34 SNPs were associated with a group of three or more traits, including
15 SNPs significant for a group of growth traits and 5 SNPs for a group of meat productivity indicators.
Relevant to these detected SNPs, nine prioritized candidate genes associated with the studied traits
were revealed, including WNT2, DEPTOR, PPA2, UNC80, DDX51, PAPPA, SSC4D, PTPRU, and TLK2.
Conclusions: The found SNPs and candidate genes can serve as genetic markers for growth and
meat performance characteristics in chicken breeding in order to achieve genetic improvement in
broiler production.

Keywords: chicken; GWAS; SNPs; candidate genes; growth; body weight; meat performance

1. Introduction

Over recent decades, there has been a trend towards an increase in the production
and consumption of poultry meat relative to other meat products, with health, low fat,
high protein, and a high concentration of polyunsaturated fatty acids typically cited [1,2].
Growth and production traits are hugely important to the poultry industry, with meat
quality depending on a number of genetically determined factors [3–5]. Commercial cross-
bred broiler chickens are earlier in maturing and are characterized by a higher percentage
of breast muscle compared to purebred chickens, especially local breeds [6–8]. At the
same time, the meat of broilers and meat-type breeds may contain a greater amount of
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subcutaneous and abdominal fat compared to meat obtained from slow-growing breed
chickens [9,10]. In order to maximize the potential of poultry breeding, a deeper under-
standing of the genetic factors that control growth and meat quality [11–13], and how
they interact with environmental conditions involving rearing, keeping [14,15], and feed-
ing [16,17] is essential. In other words, research progress on individual traits influencing
environmental factors and the genetic mechanisms that govern them is of great value to
the poultry industry and its worldwide consumers [18,19]. For commercial production of
chicken meat [20], highly productive broiler crosses that are characterized by a high growth
rate and good meat qualities are usually used [21,22]. As a result of extensive functional
genomic research, birds of this type are now distinguished by effective feed conversion
and high slaughter yield (SY) of both the carcass and its individual components, including
breast weight (BrW) [23–25]. Directed selection for body weight (BW) contributed to an
increase in the efficiency of meat production [26] by reducing the time it takes to grow
birds while increasing the marketable weight and meat yield, including pectoral muscle
weight [23,27].

A number of studies have demonstrated high heritability of growth traits in early-age
broiler chickens [28–30]. Phenotypic selection for these traits can contribute to significant
progress in broiler breeding and the creation of highly productive commercial crosses.
A correlation between BW and carcass characteristics has been shown in commercial
broiler lines [31]. Along with traditional selection methods, studies aimed at finding and
identifying genetic markers associated with growth and other performance indicators in
chickens are in demand [32,33]. Research in this area is crucial for understanding the
genetic basis of growth traits in broiler chickens toward the subsequent implementation of
effective breeding programs aimed at increasing genetic potential of commercial poultry.
To date, significant progress has been made in the genetic study of indicators characterizing
the growth rate, meat qualities, and other phenotypic traits of chickens [34–36].

With the development of high-density single nucleotide polymorphism (SNP) arrays,
genome-wide association studies (GWAS) have been instrumental in identifying hitherto
undiscovered genetic associations of SNPs with phenotypic traits in livestock [37–39].
This approach was broadly applied to seeking associations (especially with BW and BrW)
and, thereafter, identifying related candidate genes [40–42]. In our earlier study [43], we
analyzed potential genes and selective signatures in grandparent lines undergoing strong
selection pressure for broiler productivity.

The purpose of this study was to extend this prior work to focus on the search for,
and identification of, SNPs associated with growth and meat productivity parameters in
chickens, such as BW, average daily BW gain (ADBWG), SY, dressed carcass weight (DCW),
and weight of its components, including BrW and weights of thighs (TW), drumsticks
(DW), and wings (WW). Of special interest was the search for significant SNPs and prime
candidate genes common to several traits taken into account. In accordance with this
goal, the GWAS analysis for growth parameters and meat qualities in roosters of a chicken
F2 resource population was carried out based on genome-wide genotyping data. The F2
resource population was obtained by interbreeding the meat-type Cornish White (CW)
breed characterized by fast growth [44] and the egg-layer Russian White (RW) breed of
slow growth [45,46].

2. Materials and Methods
2.1. Birds Involved in the Experiment

Chickens of the original breeds were hatched from eggs obtained from Genofond
LLC (All-Russian Poultry Research and Technological Institute, Sergiev Posad, Russia) and
the Russian Research Institute of Farm Animal Genetics and Breeding (Pushkin, Russia),
raised at the L. K. Ernst Federal Research Centre for Animal Husbandry (LKEFRCAH), and
sampled for DNA. The F2 chickens of the resource population were produced and reared
at the LKEFRCAH.
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To obtain the F2 resource population, two breeds with contrasting growth rates and
meat qualities were used: RW, of slow growth [47–49], and CW, of fast growth [43,44,50]. At
the first stage, based on the data of genome-wide genotyping (to exclude close relationships),
two families (F0_1 and F0_2) were formed from individuals of the original parental breeds,
each of which contained one RW rooster and five CW females. Through interbreed crosses,
F1 hybrids (n = 36) were produced from each family and chosen for further research. These
interbred F1 hybrids were used to obtain F2 individuals. For this purpose, nine families,
F1_1 to F1_9, were established, each of which included one F1 male and three F1 females
that were not close relatives. The resultant F2 offspring (n = 152, males of groups F2_1 to
F2_9) were utilized as a model resource population for further molecular genetic studies to
search for SNPs associated with growth and meat productivity indicators of chickens.

F2 chickens were raised in brooders up to 3 weeks of age with a gradual temperature
decrease from 34 ◦C (in the first hours post hatch) to 23 ◦C and then transferred to floor
maintenance. Keeping the birds according to their age implied permanent access to com-
plete commercial compound feed and fresh water, good supply ventilation (ensuring the
absence of dampness, drafts, and gas pollution), and normal lighting [51,52].

2.2. Phenotypic Characteristics

F2 males of the resource population were phenotyped for the following growth and
meat productivity parameters (in g): BW at the age of 14 (BW14), 28 (BW28), 42 (BW42), and
63 (BW63) days, ADBWG, SY, DCW, BrW, TW, DW, and WW. ADBWG was calculated for
the growing period from 1 to 63 days. At the age of 63 days, the birds were experimentally
slaughtered to evaluate the weight parameters of the carcass and its components using a
laboratory scale. The carcass was cut into parts for further determining DCW, BrW, TW,
DW, and WW. When measuring such traits as TW, DW, and WW, the mean value of these
indicators established for each of the two thighs, drumsticks, or wings was calculated.

2.3. Sampling and DNA Extraction

Feather pulp was used to extract DNA. DNA isolation was executed using the DNA Ex-
tran kit for DNA isolation from animal tissues (Syntol, Moscow, Russia). The concentration
of DNA solutions was determined using a Qubit 3.0 Fluorimeter (Thermo Fisher Scientific,
Wilmington, DE, USA). The OD260/280 ratio was measured using the NanoDrop-2000
device (Thermo Fisher Scientific) to verify the isolated DNA’s purity.

2.4. SNP Genotyping and Quality Control

Whole-genome genotyping of chickens was performed using the Illumina Chicken 60K
SNP iSelect BeadChip (Illumina, San Diego, CA, USA) containing 60 thousand SNPs. Qual-
ity control and filtering of genotyping data for each sample and each SNP were performed
in the R-4.0 software environment [53] using the PLINK 1.9 software package [54,55], ap-
plying the following filters in the program: --mind 0.10, --geno 0.10, --maf 0.01, --hwe 1e-6.
After pruning, 54,188 SNPs were retained for further analysis.

2.5. Principal Component Analysis

Principal component analysis (PCA; [56]) was performed and visualized in the R
package ggplot2 [57,58]. Data files were prepared in the R-4.0 software environment [59].

2.6. GWAS Analysis

To identify SNP associations with growth and meat productivity indicators in the
F2 resource population chickens, the respective regression analysis in PLINK 1.9 was
used. Significance of the SNP effects and the identification of significant regions in the
chicken genome were assessed using the Bonferroni null hypothesis test at a threshold of
p < 9.2 × 10−7. The data were visualized in the qqman package (version 0.1.9) [60] using
the R-4.0 programming language [61].
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Search for candidate genes localized in the region of the identified SNPs (includ-
ing 0.2-Mb flanks on both sides) was performed according to the chicken (Gallus gallus;
GGA) reference genome assembly GRCg6a [62] and using the Genome Data Viewer in the
NCBI chicken databases [63]. The web-based Ensembl Genes release 106 database and
Ensembl BioMart data mining tool [64] were utilized to get detailed information for SNPs
located within or near the candidate genes identified. To perform functional annotation
and gene ontology (GO) term enrichment analysis for prime candidate genes, the Ensembl
BioMart data mining tool and Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID Knowledgebase; version DAVID 2021 (December 2021), v2023q4, updated
quarterly) [65,66] were exploited.

3. Results
3.1. Population Stratification

PCA showed the distribution of the studied F2 resource population into several
clusters. The first component (PC1) accounted for 16.57% of the genetic variability, the
second component (PC3) for 7.84%, and the third component (PC3) for 6.20%. In the
PC1–PC2 projection, the population under study was differentiated into five groups: the
first group included F2_7, F2_9, F2_8, and F2_4 progenies, the second group F2_5, the third
group F2_3, the fourth group F2_1, and the fifth group F2_2. In the PC1–PC3 projection,
three groups were distinguished: the first group consisted of F2_3, F2_2, and F2_1 progenies,
the second group of F2_7, F2_8, and F2_9 progenies, and the third group was evenly spaced
from the previous two and included F2_5. This information is visually presented in Figure 1.

Given the observed population stratification, i.e., its revealed structure, we performed
the GWAS using the first three PCs as covariates.
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Figure 1. Principal component analysis for the chicken F2 resource population: (A) in the plane of
the first (PC1; X-axis) and second (PC2; Y-axis) components; and (B) in the plane of the first (PC1;
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(PC3; Y-axis) components; (D); in a 3D chart with three components (PC1–PC2–PC3). Individuals
from different groups are indicated by different colors.

3.2. GWAS Results

Table 1 summarizes the data on the studied growth and meat productivity indices in
F2 males of the resource population. In particular, descriptive statistics are presented that
characterize the distribution of values established for the measured characteristics. Herein,
the coefficient of variation of the values of the studied traits varied from 5.8 to 26.1%.

Table 1. Descriptive statistics 1 for growth and meat performance indicators (in g) in F2 roosters of
the resource population.

Trait Mean SD Min–Max CV, %

BW at 14-day age, g 215.7 45.7 92.8–396.1 21.2
BW at 28-day age, g 611.6 111.7 341.6–902.4 18.3
BW at 42-day age, g 1132.9 207.4 644.2–1690.1 18.3
BW at 63-day age, g 1829.1 377.9 963.9–2747.7 20.7
Average daily BW gain, g 28.7 6.1 14.6–43.0 21.4
Slaughter weight, % 71.1 4.1 55.4–80.1 5.8
Dressed carcass weight, g 1346.4 309.1 665.3–2032.1 23.0
Breast weight, g 385.3 100.5 144.8–632.6 26.1
Thigh weight, g 104.1 25.8 49.4–163.2 24.8
Drumstick weight, g 88.6 18.3 42.7–133.3 20.6
Wing weight, g 77.8 15.8 33.4–119.1 20.3

1 BW, body weight; SD, standard deviation; min, minimum; max, maximum; CV, coefficient of variation.

The obtained phenotypic data for growth and meat productivity in F2 males of the
resource population were used for the GWAS. The GWAS results are presented in Figure 2.
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Figure 2. Manhattan plots for the studied growth and meat productivity parameters in the chicken
F2 resource population: (A) body weight (BW) at 14 days of age, (B) BW at 28 days of age, (C) BW at
42 days of age, (D) BW at 63 days of age, (E) average daily BW gain, (F) carcass weight, (G) breast
weight, (H) thigh weight, and (I) drumstick weight. Manhattan plots show the distribution of single
nucleotide mutations in chicken chromosomes to the significance level (−log10 (p)) according to
the expected probability value of p < 1.05 × 10−6 (blue line) and p < 1.05 × 10−10 (red line) for the
studied traits. Dots are color-coded only to visualize chromosome segregation.

The conducted analysis revealed 83 SNPs associated with the BW of chickens in the
studied population at the age of 28, 42, and 63 days and 171 SNPs associated with the
meat productivity parameters at the threshold level of the established significance value
p < 9.2 × 10−7 (Supplementary Table S1). These SNPs were observed on 27 chromosomes.
Herein, the maximum number of identified SNPs was localized on chromosomes GGA1,
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GGA2, and GGA13 (18, 37, and 15 SNPs, respectively), while the minimum SNP number
(1–2 SNPs) on GGA8, GGA14, GGA15, GGA17, GGA19–GGA23, GGA25, and GGA27. On
GGA16, no significant SNPs were found for any of the examined parameters. Data on the
number of identified significant SNPs and their distribution on chromosomes, taking into
account each specifically growth and meat productivity indicator studied in the chicken F2
resource population, are presented in Table 2.

Table 2. Distribution of significant SNPs (p < 9.2 × 10−7) across chromosomes there were associated
with body weight (BW) and meat productivity in the chicken F2 resource population.

Trait No. of SNPs Chromosomes

BW at 14-day age - -
BW at 28-day age 2 2, 6
BW at 42-day age 34 1, 2, 6–8, 11, 13–14, 21, 23, 28
BW at 63-day age 69 1–5, 7, 8, 10, 11, 13–15, 17, 21, 23, 27, 28
Average daily BW gain 148 1–15, 17, 18, 20–28
Slaughter weight - -
Dressed carcass weight 30 1–9, 13, 15, 17–19, 23, 24, 27
Breast weight 16 1-4, 7-9, 15, 18, 19, 23, 27
Thigh weight 1 10
Drumstick weight 21 1–2, 4–5, 7, 9, 13, 15, 17–19, 23, 26
Wing weight - -

The GWAS for BW parameters in F2 males of the studied population returned the
result of 2, 34, and 69 SNPs associated with this trait at the age of 28, 42, and 63 days,
respectively. The maximum number of SNPs was established on GGA1 and GGA2 (11 and
20, respectively), and the minimum (1 SNP) on GGA6, GGA8, GGA14, GGA15, GGA17,
GGA21, GGA23, and GGA27. Analysis for ADBWG in the period from 1 to 63 days of age
revealed 148 significant SNPs associated with this parameter. Similar to the GWAS results
for the BW trait, the maximum number of these SNPs was detected on GGA1 and GGA2
(15 and 33 SNPs, respectively).

The number of significant SNPs associated with the examined weight parameters of
the carcass and its components varied from 16 to 30, with the exception of TW for which
only one SNP was determined on GGA10. The maximum number of SNPs localized in the
specific chromosomes was found for the following traits: DCW on GGA13 (5 SNPs); BrW
on GGA4, GGA7, GGA9, and GGA27 (2 SNPs); and DW on GGA7 (5 SNPs). The minimum
SNP number (1–2 SNPs) was identified for the following traits: DCW on GGA2, GGA3,
GGA6, GGA8, GGA15, GGA17–GGA19, GGA23, and GGA27; BrW on GGA1, GGA2,
GGA3, GGA8, GGA15, GGA18, GGA19, and GGA23; and DW on GGA1, GGA2, GGA13,
GGA15, GGA18, GGA19, GGA23, and GGA26. For the two studied parameters—SY and
WW—no significant SNPs were observed at the established significance threshold.

Comparative analysis of the defined genomic associations with growth and meat
productivity indicators in F2 roosters of the resource population demonstrated the presence
of SNPs common to the group of traits assessed in this investigation (Table 2). In particular,
22 SNPs associated with any three traits were identified. Herein, we found 15 common
SNPs significantly associated with growth indicators (BW42, BW63, and ADBWG) and five
SNPs associated with meat qualities (DCW, BrW, and TW). The number of SNPs common
to four, five, and six traits was five, three, and four SNPs, respectively. These SNPs were
significantly associated with a group of traits including both growth indicators and meat
productivity. For one of the traits studied in this study, TW, no SNPs were found in common
with the other traits studied. For one of the traits investigated in this study, i.e., TW, no
SNPs were detected in common with the other traits studied.

3.3. Candidate Genes

SNPs established jointly for a group of studied traits (3–6 traits) were used to annotate
prime candidate genes associated with growth and meat productivity in broiler chickens.
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Structural annotation in the area of identified SNPs (i.e., SNP position ± 0.2 Mb) resulted in
239 genes described in the NCBI databases. These candidate genes are listed in Supplemen-
tary Table S1, with their locations indicated in the flanking regions relative to the respective
SNPs or at exact SNP position. Supplementary Table S2 also shows that most genes over-
lapping the SNP positions contained polymorphic variants of these SNPs in introns, plus
one gene with a synonymous (exonic) variant and one gene with a 5′ UTR variant. Herein,
there were the following nine prioritized candidate genes (PCGs) localized at the positions
of the SNPs identified for three and more traits: WNT2 (Wnt family member 2), DEPTOR
(DEP domain containing MTOR-interacting protein), PPA2 (inorganic pyrophosphatase
2), UNC80 (unc-80 homolog, NALCN activator), DDX51 (DEAD-box helicase 51), PAPPA
(pappalysin 1), SSC4D (scavenger receptor cysteine rich family member with 4 domains),
PTPRU (protein tyrosine phosphatase, receptor type U), and TLK2 (tousled-like kinase 2).
These PCGs are located on the following nine chromosomes: GGA1, GGA2, GGA4, GGA7,
GGA15, GGA17, GGA19, GGA23, and GGA27. Candidate genes, including PCGs, and
significant SNPs (p < 9.2 × 10−7) associated with growth and meat productivity indicators
in F2 roosters of the resource population are shown in Table 3.

Table 3. SNPs and prime candidate genes (p < 9.2 × 10−7) associated with growth and meat
productivity in the chicken F2 resource population.

GGA 1 SNP Position, bp Traits 2 Genes

1 Gga_rs14800862 24,842,665 DCW, BrW, DW CTTNBP2, CFTR, ASZ1, WNT2, ST7, CAPZA2

1 Gga_rs14902811 152,430,990 BW42, BW63, ADBWG -

1 Gga_rs14902833 152,488,231 BW42, BW63, ADBWG SLC2A13

1 GGaluGA050529 152,453,938 BW42, BW63, ADBWG SLC2A13

1 GGaluGA034658 102,412,092 BW42, BW63, ADBWG -

2 Gga_rs14160005 31,441,781 BW42, BW63, ADBWG,
DCW, BrW, DW

IGF2BP3, TRA2A, CCDC126, FAM221A, STK31, NPY,
PALS2, DFNA5

2 Gga_rs14248546 125,490,179 BW42, BW63, ADBWG TRIQK

2 Gga_rs15168561 136,710,388 BW28, BW42, BW63,
ADBWG ENPP2, TAF2, DSCC1, DEPTOR, COL14A1

2 Gga_rs16088599 103,517,528 BW42, BW63, ADBWG OSBPL1A, IMPACT, ZNF521

3 Gga_rs14356736 48,921,434 BW63, ADBWG, DCW, BrW PLEKHG1, MTHFD1L, AKAP12, ZBTB2, RMND1,
ARMT1, CCDC170, ESR1

4 Gga_rs13516467 38,746,248 BW63, ADBWG, DCW, BrW,
DW NPNT, GSTCD, INTS12, ARHGEF38, PPA2, TET2

4 GGaluGA246480 12,518,793 DCW, BrW, DW SLC16A2, RLIM, NEXMIF, gga-mir-1573, ABCB7,
UPRT, ZDHHC15

7 Gga_rs13737657 14,269,161 BW42, BW63, ADBWG,
DCW, BrW, DW U4, PDE1A, PPP1R1C, ITPRID2, NEUROD1, ITGA4

7 Gga_rs14622272 28,057,143 BW42, BW63, ADBWG KALRN, ACADL, UMPS, ITGB5, HEG1, MYL1,
ZNF148, SNX4, OSBPL11, LMLN, DTX3L

7 Gga_rs14622611 28,327,789 BW42, BW63, ADBWG

MYL1, OSBPL11, LMLN, DTX3L, PARP9, LANCL1,
FAIM, CEP70, ESYT3, CFAP221, SCTR, TMEM37,
DBI, C7H2ORF76, STEAP3, CPS1, C1QL2, MARCO,
EN1

7 Gga_rs15848860 14,393,379 BW42, BW63, ADBWG,
DCW, BrW, DW U4, PDE1A, PPP1R1C, ITPRID2, NEUROD1, ITGA4
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Table 3. Cont.

GGA 1 SNP Position, bp Traits 2 Genes

7 GGaluGA308586 2,639,082 BW42, BW63, ADBWG,
DCW, DW

CNTNAP5, MAP2, MRAS, gga-mir-3530, TMEM177,
PTPN4, EPB41L5, RALB, INHBB, GLI2, UNC80,
TFCP2L1, CLASP1, NIFK, TSN, IQCB1, EAF2,
SLC15A2, HSPBAP1, SLC49A4, SEMA5B, PDIA5,
SEC22A, ADCY6, KANSL1L, HACD2, MYLK,
CCDC14, KALRN, ACADL, UMPS, ITGB5, HEG1,
MYL1, ZNF148, SNX4, OSBPL11, LMLN, DTX3L,
PARP9, LANCL1, FAIM, CEP70, ESYT3, CFAP221,
SCTR, TMEM37, DBI, C7H2ORF76

8 Gga_rs16640785 22,847,287 BW63, ADBWG, DCW, BrW TRABD2B, SLC5A9, SPATA6, gga-mir-1809

8 GGaluGA330152 22,760,396 BW42, BW63, ADBWG TRABD2B

9 Gga_rs15947559 11,450,206 DCW, BrW, DW PLOD2

13 Gga_rs15677377 8,879,549 BW63, ADBWG, DCW, DW TTC1, ADRA1B, IL12B, FBXO38, HTR4, gga-mir-458a,
SLC26A2

13 Gga_rs15679261 8,271,910 BW42, BW63, ADBWG GABRB2, ATP10B

13 Gga_rs15680269 7,909,523 BW42, BW63, ADBWG -

13 GGaluGA093626 9,139,110 BW63, ADBWG, DCW
gga-mir-458a, HTR4, SLC26A2, CSNK1A1,
gga-mir-145, gga-mir-143, IL17B, PCYOX1L, GRPEL2,
AFAP1L1, ABLIM3

14 Gga_rs15003767 2,062,529 BW42, BW63, ADBWG FAM20C, FOXL3

15 GGaluGA109523 8,381,798 BW63, ADBWG, DCW, BrW,
DW

DGCR2, VPS29L, VPREB3, CHCHD10, MMP11,
SMARCB1, DERL3, SLC2A11, SLC2A11L1, MIF,
DDX51, GSTT1, DDTL, CABIN1, TBX6, CRKL

17 Gga_rs14102454 3,408,140 BW63, ADBWG, DCW, DW PAPPA, ASTN2

18 Gga_rs16347495 9,967,210 DCW, BrW, DW

TIMP2, USP36, CYTH1, PGS1, SOCS3, AFMID, TK1,
SYNGR2, TMC6, ARL16, HGS, MRPL12, GCGR,
MCRIP1, PPP1R27, P4HB, ARHGDIA, ALYREF, NPB,
PCYT2, SIRT7, MAFG, PYCR1, NME1, SPAG9,
PITPNM3, FBXO39, TEKT1, SMTNL2

19 GGaluGA126188 4,370,123 DCW, BrW, DW

CUX1, PRKRIP1, ORAI3, ALKBH4, LRWD1, RASA4B,
UPK3B, DTX2, SSC4D, YWHAG, HSPB1, SRRM3,
MDH2, TMEM120A, POR, TAF15, MMP28, RASL10B,
AP2B1

21 Gga_rs15182225 2,760,476 BW42, BW63, ADBWG TNFRSF18, gga-mir-429, gga-mir-200a, gga-mir-200b,
gga-mir-6680, C1orf159

23 GGaluGA188509 2,994,311 BW42, BW63, ADBWG,
DCW, BrW, DW

EPB41, TMEM200B, SRSF4, MECR, PTPRU,
gga-mir-1724, PTPRU

27 Gga_rs13620324 4,812,782 BW63, ADBWG, BrW CRHR1, ITGB3, METTL2B, TLK2, MRC2, TANC2

28 Gga_rs14306444 1,714,462 BW42, BW63, ADBWG

ZBTB7A, PIAS4, EEF2, gga-mir-1434, NMRK2,
ATCAY, NRTN, DUS3L, LARP6L, RFX2, ACSBG2,
MLLT1, ACER1, ANP32B, ZNF414, MYO1F,
ADAMTS10, gga-mir-6615, ZAP70

28 Gga_rs14306581 1,592,968 BW42, BW63, ADBWG

NCLN, CELF5, HSD11B1L, MICOS13, gga-mir-1774,
FSD1, YJU2, gga-mir-6593, ZBTB7A, PIAS4, EEF2,
gga-mir-1434, NMRK2, ATCAY, NRTN, DUS3L,
LARP6L, RFX2, ACSBG2, MLLT1

1 GGA, Gallus gallus chromosomes. 2 Traits: BW42, body weight (BW) at 42 days; BW63, BW at 63 days; ADBWG,
average daily body weight gain; DCW, dressed carcass weight; BrW, breast weight; DW, drumstick weight.
Prioritized candidate genes localized at the positions of SNPs identified for three and more traits are highlighted
in bold.
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Based on the GO term enrichment assessment, the annotated genes were grouped
into six functional clusters. However, three clusters had Enrichment Scores below one, so
we considered them insignificant. The other three clusters (with Enrichment Scores > 1.2)
included genes associated with peptidyl-serine phosphorylation, kinase, and lipoprotein.
The list of annotated genes and their functions are presented in Supplementary Table S2.

4. Discussion

Identification and mapping of genes determining the manifestation of economically
important traits in poultry is one of the key tasks of genomic selection aimed at increasing
the efficiency of poultry production [67–69]. The GWAS approach manifested in this study
is pivotal in elucidating the genetic mechanisms determining BW and muscle production
traits in chickens [70], thereby having the potential to increase the efficiency of poultry
production [71–75]. Here, the resource population was obtained by interbreeding two
breeds with contrasting productivity indicators, i.e., RW (slow-growing) and CW (fast-
growing). Although these traits, to a certain extent, depend on the nature of the feed given
to the animals as well as their housing conditions, they are also genetically determined by
multiple QTLs [76]. We identified significant SNPs (p < 9.2 × 10−7) associated with growth
and meat performance in F2 roosters of the resource population. In particular, BW28, BW42,
and BW63 (2, 34, and 69 SNPs, respectively); ADBWG (148 SNPs); DCW (30 SNPs); BrW
(16 SNPs); and DW (21 SNPs) were implicated, with the greatest number of identified SNPs
localized on the largest two chromosomes (GGA1 and GGA2).

For practical use in genomic selection, it is essential to identify SNPs and prime candi-
date genes associated with a small number of selected traits [77–79]. Here, we identified
such SNPs significant for specific growth and meat productivity indicators. In particular,
associations with 15 SNPs characterizing growth (BW42, BW63, and ADBWG) were iden-
tified, alongside five SNPs for meat performance traits (DCW, BrW, and TW). Moreover,
14 SNPs were identified associated with traits characterizing both growth indicators and
meat productivity.

Regarding the positions of the identified SNPs and likely causative alleles for three or
more traits, nine PCGs were located, including WNT2, DEPTOR, PPA2, UNC80, DDX51,
PAPPA, SSC4D, PTPRU, and TLK2. As shown in other investigations, of these nine, four
(UNC80, TLK2, PTPRU, and DDX51) were associated with growth indicators in farm ani-
mals, including poultry. Three of these genes (TLK2, PTPRU, and DDX51) were associated
with BW and BrW in chickens. These results tally with Zhang et al.’s [80], who explored
growth indicators in Jinghai Yellow chickens at the age of 2, 4, 6, 8, 12, 14, and 16 weeks
based on genomic data using the same Illumina Chicken 60K SNP array. In accordance with
their GWAS analysis, a significant association of the PTPRU gene (p < 1.80 × 10−6) with
BW of chickens at the age of 12 weeks was established. Walugembe et al. [81] investigated
the growth indicators of chickens infected with lentogenic Newcastle disease virus. An
association of the DDX51 gene with the BW of chickens before infection was revealed. Kang
et al. [82] established an association of the TLK2 gene with BrW in broiler chickens at the
age of 126 days. A number of other studies have shown associations of the TLK2 gene with
BW in cattle [83] and that of the UNC80 gene with BW in sheep at the age of 180 days [84].

The effects of the genes PPA2, SSC4D, and PAPPA on the growth rates and meat
productivity established in F2 roosters of the resource population in this study has also
confirmed other studies. In particular, it was shown that there was an influence of the
PPA2 gene on feed consumption in quails [85] and pigs [86,87], that of the SSC4D gene on
the hip height in cattle at the age of 18 and 24 months [88], and that of the PAPPA gene
on the body length and depth in pigs [89]. Feed consumption and body measurements
are associated with the growth rates in several animals, including poultry, as the feed
consumption indicator affects the growth, while linear body measurements correlate with
BW and body size.

Along with feed consumption and linear measurements, BW and meat qualities of
animals, including poultry [90–92], are also associated with the fatty acid metabolism index



Genes 2024, 15, 1246 13 of 18

that determines the fat content in the carcass as well as the taste of the meat [93–95]. A
number of studies have demonstrated a relationship between the PTPRU gene and the
abdominal fat weight in broilers [96], the content of flavor-presenting aldehydes related to
the meat taste in chickens [97], and intramuscular fatty acid composition in pigs [98].

The growth and development of animals, including poultry, can be affected, to a certain
extent, by immunity that governs resistance to infectious diseases, as well as adaptation
to environmental conditions [37,71,81,99]. Of the prime candidate genes identified in the
present study, some other investigations have shown a connection between the PPA2 gene
and the ability of sheep to adapt to high-altitude conditions [100] and a relationship of the
WNT2 and TLK2 genes with resistance to infectious diseases in cattle [101] and chickens [81].

Thus, the available findings from other studies are largely concordant with the data we
obtained on the direct effects of the genes UNC80, TLK2, PTPRU, and DDX51 on the growth
and meat productivity in chickens. For other PCGs identified in our work, a number of
observations have also shown their connection with selected traits in other farm animals,
including poultry. We also analyzed all genes overlapping significant SNP regions revealed
in the GWAS for functional enrichment (Supplementary Table S2), based on the idea that
genes interacting within similar biological networks may collaboratively influence the
growth/meat performance phenotype [102]. GO analysis illustrated that prime candi-
dates were enriched in relation to peptidyl−serine phosphorylation, kinase activity, and
membrane lipoprotein component that have broad biological/metabolic roles [64–66]. Fur-
ther research using GWAS and whole-genome sequencing approaches [102] is required to
confirm the association of these PCGs with the growth and meat performance in chickens.

5. Conclusions

In this work, we performed a GWAS for parameters related to growth and meat
productivity in F2 roosters of the resource population using the Illumina Chicken 60K SNP
iSelect BeadChip. SNPs, and the respective prime candidate genes, showing significant
association with BW at the age of 28, 42, and 63 days, and meat qualities of the studied birds
at the age of 63 days were identified using the characterized genetic variants. The maximum
number of identified SNPs was observed on GGA1, GGA2, and GGA13 (15–37 SNPs), while
their minimum number was revealed on chromosomes GGA8, GGA14, GGA15, GGA17,
GGA19–GGA23, GGA25, and GGA27 (1–2 SNPs). Herein, 34 SNPs were found that were
common to three or more traits examined in this work. Nine PCGs that have biological
functions potentially relevant for growth and meat performance were identified at these
SNP positions: WNT2, DEPTOR, PPA2, UNC80, DDX51, PAPPA, SSC4D, PTPRU, and TLK2.
These data are of great importance for understanding the genetic basis for the formation
and manifestation of growth and meat qualities in chickens. The identified SNPs and PCGs
warrant further investigation and can be used as genetic markers in breeding programs
aimed at increasing growth rates and improving meat performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15101246/s1, Table S1: List of SNPs associated with growth
and meat productivity indicators in F2 roosters of the resource population; Table S2: Gene ontol-
ogy (GO) term enrichment analysis at the positions of the determined SNPs in F2 roosters of the
resource population.
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