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Abstract
We consider discrete dynamical systems obtained as deformations of mutations
in cluster algebras associated with finite-dimensional simple Lie algebras. The
original (undeformed) dynamical systems provide the simplest examples of
Zamolodchikov periodicity: they are affine birational maps for which every
orbit is periodic with the same period. Following on from preliminary work
by one of us with Kouloukas, here we present integrable maps obtained from
deformations of cluster mutations related to the simple root systems A3, C2,
B3 and D4. We further show how new cluster algebras arise, by considering
Laurentification, that is, a lifting to a higher-dimensional map expressed in a set
of new variables (tau functions), for which the dynamics exhibits the Laurent
property. For the integrable map obtained by deformation of type A3, which
already appeared in our previous work, we show that there is a commuting map
of Quispel–Roberts–Thompson (QRT) type which is built from a composition
of mutations and a permutation applied to the same cluster algebra of rank 6,
with an additional 2 frozen variables. Furthermore, both the deformed A3 map
and the QRT map correspond to translation by a generator in the Mordell-Weil
group of a rational elliptic surface of rank two, and the underlying cluster
algebra comes from a quiver that is mutation equivalent to the q-Painlevé III
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quiver found by Okubo. The deformed integrable maps of types C2, B3 and D4

are also related to elliptic surfaces. From a dynamical systems viewpoint, the
message of the paper is that special families of birational maps with completely
periodic dynamics under iteration admit natural deformations that are aperiodic
yet completely integrable.

Keywords: integrable map, cluster algebra, Laurent phenomenon,
Zamolodchikov periodicity

1. Introduction

The recurrence relation of second order given by

xn+2xn = xn+1 + 1 (1.1)

is commonly referred to by the name Lyness [26], after the British schoolteacher who observed
that any pair of initial values x1,x2 produces the cycle of values

x1,x2,
x2 + 1
x1

,
x1 + x2 + 1

x1x2
,
x1 + 1
x2

,

repeating with period 5. The Lyness five-cycle has many avatars, including the associahedron
K4 [8] and Abel’s pentagon identity [29], while it also arises as one of the frieze patterns found
by Coxeter [2], who revealed a much earlier connection with the results of Gauss on the pen-
tagramma mirificum (see [3] for an interesting but somewhat idiosyncratic historical account
of the latter). More recently, (1.1) was found by Zamolodchikov in the context of integrable
quantum field theory, as one among many functional relations (Y-systems) that were observed
to display periodic behavior; and a general axiomatic framework for describing such relations
soon appeared in the shape of coefficient mutations in Fomin and Zelevinsky’s theory of cluster
algebras [6, 7]. Due to its relevance to Yangians, quantum affine algebras and solvable lattice
models, the theory of Y-systems and other associated relations (T-systems and Q-systems) has
now been extended considerably, and cluster algebras and other techniques have been applied
extensively to resolve Zamolodchikov’s periodicity conjecture for Y-systems [22, 23].

The starting point of the recent work [20] was the observation that (1.1) admits a 2-
parameter deformation,

xn+2xn = axn+1 + b, (1.2)

with parameters a,b, which is also often referred to as the Lyness map [36]. This deformed
map no longer has periodic orbits, except when the parameters are constrained to the case
b= a2 (which gives (1.1) when a= 1). Also, while (1.1) corresponds to a mutation in a cluster
algebra, and the five-cycle corresponds to a sequence of seeds (in the cluster algebra of finite
type A2, to be precise), the deformedmap does not have this property. However, (1.2) preserves
the same log-canonical symplectic structure

ω =
dx1 ∧ dx2
x1x2
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as (1.1), and has a rational first integral for any a,b, so it is an integrable map in the Liouville
sense [1, 27, 39]. Moreover, the general Lyness map admits a lift from the plane to seven-
dimensional affine space, defined by the transformation

xn =
τnτn+5

τn+2τn+3
, (1.3)

where the tau function τ n satisfies the bilinear recurrence

τn+7τn = aτn+6τn+1 + bτn+4τn+3, (1.4)

and (as pointed out in [10]) this particular Somos-7 relation is generated by mutations in a
cluster algebra of rank 7, with the parameters a,b regarded as frozen variables.

In [20], we derived the most general deformation of a cluster mutation that preserves the
same symplectic (or more generally, presymplectic) structure, and showed how other Liouville
integrable maps arise as deformations of cluster maps that exhibit Zamolodchikov periodicity.
In particular, in addition to (1.2), which is the deformation of the type A2 cluster map, we
found integrable maps from deformations of types A3 and A4. The purpose of this article is
twofold: firstly, we aim to get a better understanding of the deformed A3 map, together with
another commuting map of the kind considered by Quispel, Roberts and Thompson (QRT)
[34]; and secondly, we begin to investigate the result of applying an analogous deformation
process to cluster algebras associated with other Dynkin types (including examples of the non-
simply laced case). We are conducting a separate, parallel, investigation that is concerned with
analyzing the deformations of higher rank cluster algebras of type A [12].

1.1. Zamolodchikov periodicity and cluster mutations

Some of the simplest examples of cluster algebras are provided by starting from the Cartan
matrix C of a finite-dimensional Lie algebra and then constructing an associated companion
matrix B, called the exchange matrix, which is skew-symmetrizable (i.e. there is a diagonal
integer matrix D such that BD is skew-symmetric). The exchange matrix B is the raw combin-
atorial data that is needed to define a cluster algebra.

Although the general definition of a cluster algebra is rather intricate, and appears somewhat
complicated at first sight, one of the original motivations behind this definition was the remark-
able phenomenon called Zamolodchikov periodicity. It was observed by Zamolodchikov in
[40] that for a certain family of integrable quantum field theories, namely deformations of
conformal field theories associated with simple Lie algebras, the thermodynamic Bethe ansatz
allowed the form factors of correlation functions to be determined from systems of differ-
ence equations called Y-systems, and the solutions of these equations were conjectured to
be periodic with the period being the same for any initial data (namely the Coxeter number
plus 2).

A general cluster algebra involves two sets of variables: cluster variables, and coefficients.
The generators of the algebra (given by clusters) are defined recursively by a process called
mutation, which modifies the cluster variables and the coefficients at each step. The muta-
tion formula for coefficients is modeled on Y-systems, while cluster mutation corresponds to
so-called T-systems (see [23] for full details). One of Fomin and Zelevinsky’s first important
results was to classify cluster algebras of finite type: they showed that cluster algebras with
finitely many cluster variables correspond precisely to B matrices whose Cartan companions
C define Lie algebras of finite type [7]. So this part of the theory of cluster algebras mirrors

3
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Dynkin’s classification, and eventually this led to a method to prove Zamolodchikov’s period-
icity conjectures for Y-systems, and various generalizations thereof.

Below we will just be concerned with exchange relations for cluster variables without
coefficients (coefficient-free cluster algebras). However, even without coefficients, T-systems
provide another avatar of Zamolodchikov periodicity: sequences of mutations in coefficient-
free cluster algebras associated with Dynkin diagrams of finite type produce periodic maps.
To set the scene, a coefficient-free cluster algebraA(x,B) of rank4 N is constructed by starting
from a seed (x,B), which consists of an initial cluster x, that is an N-tuple x= (x1, . . . ,xN), and
an exchange matrix B= (bij) ∈MatN(Z), which is required to be skew-symmetrizable. Then
the mutation µk in the direction k produces the new seed (x ′,B ′) = µk(x,B), where B ′ = (b ′

ij)
is obtained via matrix mutation, as specified by

b ′
ij =

{
−bij if i = k or j = k,

bij+ sgn(bik) [bikbkj]+ otherwise,
(1.5)

and the new cluster x ′ = (x ′j ) is defined by cluster mutation, that is

x ′j =

{
x−1
k

(∏N
i=1 x

[bki]+
i +

∏N
i=1 x

[−bki]+
i

)
for j = k

xj for j 6= k.
(1.6)

(In the above, [r]+ =max(r,0) for r ∈ R.) The cluster algebra A(x,B) is the subalgebra of
Q(x) generated by the union of all cluster variables obtained from arbitrary sequences of muta-
tions applied to the initial seed. The cluster variables satisfy the Laurent property: they belong
to Z[x±1

1 , . . . ,x±1
N ], the ring of Laurent polynomials in the variables from the initial cluster x.

T-systems are functional relations between variables that can be constructed from compos-
itions of cluster mutations, as in (1.6). For Y-systems, one requires the more general setup of
cluster algebras with coefficients [6], requiring the introduction of another N-tuple of coef-
ficient variables y= (y1, . . . ,yN), which are subject to their own set of rules for coefficient
mutation. However, our starting point in what followswill be periodic relations between cluster
variables xj (essentially, T-systems rather than Y-systems), so we will omit any further discus-
sion of coefficient mutation. Nevertheless, when we construct deformations we will be led to
consider exchange relations between cluster variables involving additional frozen variables,
which provide a natural way to treat coefficients appearing in these relations that are con-
stant (they do not mutate). For further background material, the reader is referred to [20] and
references.

1.2. Outline of the paper

In the next section we briefly review the construction of the integrable deformation of the A3

map from [20], which reduces to a Liouville integrable map in the plane, depending on two
arbitrary parameters, that preserves a pencil of biquadratic curves. As such, there is an associ-
ated QRT map associated with the same invariant pencil, and these two birational maps in the
plane commute with one another. We proceed to show that the two maps admit a simultaneous
Laurentification, in the sense defined in [14], meaning that they each admit a lift to maps with

4 The reader unfamiliar with the terminology of cluster algebras should be advised that the word rank here refers to
the number of cluster variables in each seed; in the finite type case, this happens to coincide with the rank of the root
system of the associated Dynkin diagram.
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the Laurent property, acting on the same six-dimensional space of tau functions. Moreover,
the tau functions correspond to cluster variables in a skew-symmetric cluster algebra of rank
6, extended by an additional 2 frozen variables (associated with the two arbitrary parameters).
The lift is such that each of the maps is obtained by composing a suitable sequence of cluster
mutations with a permutation. The fact that the two maps commute means that the tau func-
tions take values on the lattice Z2, and we are able to obtain an explicit formula for the degrees
of all tau functions on the lattice, as Laurent polynomials in six initial data.

Section 3 concerns the construction of an integrable deformation of the C2 cluster map,
which is given by a one-parameter family of symplectic maps in the plane, and we show that
this lifts to a cluster algebra of rank 5 extended by a single frozen variable. Sections 4 and 5
are concerned with integrable deformations of the periodic cluster maps of types B3 and D4,
respectively. The situation is more complicated for these latter two examples, as we find that in
each case the periodic map admits more than one inequivalent deformation that is integrable.
Nevertheless, we are able to find tau functions for each of the different deformations in these
cases as well.

Overall, the message of the paper is the observation that (in all examples studied so far)
the simplest cluster algebras of all, namely the finite type cluster algebras, hide within them
cluster algebras that are much larger (in the sense that they are both higher rank, and infinite),
whose more intricate structure is revealed via deformation. From the point of view of discrete
dynamical systems, the message is that there are special families of birational maps with com-
pletely periodic dynamics under iteration, which admit natural deformations that are aperiodic
yet completely integrable.

2. Integrable deformation of the A3 cluster map

The Cartan matrix for the A3 root system is

C=

 2 −1 0
−1 2 −1
0 −1 2

 ,
which is the companion of the skew-symmetric exchange matrix

B=

 0 1 0
−1 0 1
0 −1 0

 . (2.1)

We begin with a seed (x,B) and consider sequences of mutations in the associated cluster
algebra.

2.1. Periodic map from the A3 cluster algebra

Starting from the exchangematrix (2.1), we consider the following sequence of threemutations
acting on an initial cluster x= (x1,x2,x3):

µ1 : (x1,x2,x3) 7→ (x ′1,x2,x3) , x ′1x1 = x2 + 1,
µ2 : (x ′1,x2,x3) 7→ (x ′1,x

′
2,x3) , x ′2x2 = x ′1x3 + 1,

µ3 : (x ′1,x
′
2,x3) 7→ (x ′1,x

′
2,x

′
3) , x ′3x3 = x ′2 + 1.

(2.2)

5
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At each step, a prime is affixed only to the cluster variable that is mutated. The matrix (2.1) is
cluster mutation-periodic with respect to this sequence of mutations, in the sense that

µ3µ2µ1 (B) = B,

and the corresponding cluster map φ given by the composition

(x1,x2,x3)
µ17−→ (x ′1,x2,x3)

µ27−→ (x ′1,x
′
2,x3)

µ37−→ (x ′1,x
′
2,x

′
3)

is periodic with period 6= 4+ 2 (two more than the Coxeter number of A3):

φ = µ3µ2µ1, φ6 (x) = x.

In order to interpret the abovemapφ and its deformations in terms of Liouville integrability,
we need to reduce it to a symplectic map in 2D. To begin with, we note that, by theorem 1.3 in
[20], the log-canonical presymplectic 2-form ω associated with the matrix (2.1) is preserved
by the action of φ, that is

ω =
1
x1x2

dx1 ∧ dx2 +
1
x2x3

dx2 ∧ dx3, φ∗ (ω) = ω. (2.3)

The matrix B has rank two, with the nullspace kerB spanned by (1,0,1)T, and imB=
(kerB)⊥ =< v1,v2 >, spanned by the vectors

v1 = (0,1,0)T , v2 = (−1,0,1)T .

Then the monomial quantities

u1 = xv1 = x2, u2 = xv2 =
x3
x1

(2.4)

provide (local) coordinates for the leaves of the null foliation for ω, transverse to the flow of
the null vector field x1∂x1 + x3∂x3 , and, from computing φ∗(u1) and φ∗(u2), we find that the
rational map

π : C3 → C2

x= (x1,x2,x3) 7→ u= (u1,u2)
(2.5)

intertwines φ with the birational symplectic map φ̂ given by

φ̂ : C2 → C2

u= (u1,u2) 7→
(
u1u2+u2+1

u1
, u2+1
u1u2

)
,

(2.6)

that is

φ̂ ·π = π ·φ, φ̂∗ (ω̂) = ω̂,

where π∗(ω̂) = ω is the pullback of the symplectic form

ω̂ =
1

u1u2
du1 ∧ du2 (2.7)

under π.

6
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It is clear that the reduced map φ̂ in (2.6) must also be periodic, because it arises from the
pullback of φ on the monomials (2.4), but in fact, its period is 3 (half that of φ): φ̂3(u) = u.
Thus any symmetric function averaged over the period of an orbit is an invariant (first integral)
for the map φ̂. In particular, the functions

K1 =
3∏

j=1

(φ̂∗)
j−1

(u1) = 2+
3∑

j=1

(φ̂∗)
j−1

(u1) , K2 =
3∑

j=1

(φ̂∗)
j−1

(u2)

provide two independent invariants. Both of the latter are Laurent polynomials in u1,u2, with
the first being given by

K1 = u1 + u2 +
u2
u1

+
2
u1

+
1
u2

+
1

u1u2
+ 2

=m1 +m2 +m3 + 2m4 +m5 +m6 + const,
(2.8)

where we have labeled the non-constant Laurent monomials appearing above by

m1 = u1, m2 = u2, m3 =
u2
u1
, m4 =

1
u1
, m5 =

1
u2
, m6 =

1
u1u2

.

An integrable deformation of the map φ̂ can be obtained by introducing parameters into the
mutations µ1,µ2,µ3 and finding conditions on the parameters such that an analogue of one of
these invariants survives under the deformation.

2.2. Deformed A3 map

In the A3 case, the particular deformed mutations previously considered in [20] are of the same
form as (2.2), but with constant parameters aj,bj (j = 1,2,3) introduced into the exchange
relations as follows:

µ1 : x ′1x1 = a1x2 + b1,
µ2 : x ′2x2 = a2x ′1x3 + b2,
µ3 : x ′3x3 = a3x ′2 + b3.

(2.9)

The deformedmutations above, which we denote by the same symbols µj as in the undeformed
case, destroy the Laurent property: they do not generate Laurent polynomials in x1,x2,x3 and
the parameters aj,bj. Nevertheless, as shown in [20], the map φ = µ3µ2µ1 formed from the
composition of the exchange relations (2.9) still preserves the same presymplectic form, that is
φ∗(ω) = ω with ω as in (2.3). Moreover, the reduction to the leaves of the null foliation defined
by ω produces a birational map in 2D, which can be written in terms of the same coordinates
u1,u2 as in (2.4).

Before considering the deformed 2D map, there is a further simplification to be made, by
considering the freedom to rescale the cluster variables, so that xj → λjxj, x ′j → λjx ′j with arbit-
rary λj 6= 0 for j = 1,2,3. Exploiting this freedom means that, given generic non-zero para-
meters aj,bj in (2.9), we can always make a choice of coordinates so that 3 of the 6 parameters
in the deformed map φ can be removed. Following [20], we scale the parameters in (2.9) so
that

b2 → c, a2 → d, b3 → e, a1,b1,a3 → 1.

7
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With this choice of scale for the parameters of the deformation, we can reduce the composition
φ = µ3µ2µ1 to a 2D map on the leaves of the null foliation for ω, given by

φ̂ : C2 → C2

u= (u1,u2) 7→
(
du1u2+du2+c

u1
, du2+cu1u2

+ e−c
u2(u1+1)

)
.

(2.10)

According to theorem 1.3 in [20], the above map preserves the same rational symplectic form
on C2 as before, that is φ̂∗(ω̂) = ω̂, with

ω̂ = dlogu1 ∧ dlogu2. (2.11)

For the deformed map to be integrable in the Liouville sense, we require that at least one
of the invariants K1,K2 identified for the periodic map must survive the deformation. Thus we
begin by considering a deformed version of K1, given by taking arbitrary linear combinations
of the Laurent monomials mj appearing in (2.8), so that

K1 = κ1m1 +κ2m2 +κ3m3 +κ4m4 +κ5m5 +κ6m6 + const, (2.12)

where κj are coefficients. Without loss of generality, we can fix the leading coefficient κ1 = 1.
Then a direct calculation shows that this rational function is invariant if and only if the follow-
ing conditions hold:

c= e, κ2 = κ3 = κ5 = dκ1, κ4 =
(
c+ d2

)
κ1, κ6 = cdκ1.

If we impose these conditions, then the reduced map becomes

φ̂ :

(
u1
u2

)
7→
(

u−1
1 (c+ d(u1 + 1)u2)
(u1u2)

−1
(c+ du2)

)
, (2.13)

and by fixing κ1 = 1 and adding the constant c+ 1 to the given linear combination of mj, we
find that φ̂∗(K1) = K1, with the invariant K1 taking the factorized form

K1 =
(u1 + du2 + c)((u1 + 1)u2 + d)

u1u2
. (2.14)

The conclusion of this calculation with the rational function K1 is stated in theorem 2.1
in [20]: when a1 = a3 = b1 = 1 and b2 = b3 = c, a2 = d (for arbitrary c,d) the deformed A3

map (2.9) reduces to the map (2.13) in the plane, which is integrable in the Liouville sense.

2.3. Compatible QRT map

The family of level sets of the invariant K1, given by fixing the value K1 = κ, defines a pencil
of biquadratic curves, of which a generic member has genus 1, that is

(u1 + du2 + c)((u1 + 1)u2 + d) = κu1u2. (2.15)

Each curve in such a pencil admits the pair of involutions

ιh : (u1,u2) 7→
(
u†1,u2

)
, ιv : (u1,u2) 7→

(
u1,u

†
2

)
, (2.16)

8
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referred to as the horizontal switch and the vertical switch [4], defined by mapping each point
on the curve to the other intersection point with a horizontal/vertical line, respectively. Using
the Vieta formula for the product of the roots of a quadratic, it is clear that each of these
involutions is a birational map, and is given by a formula that is independent of the parameter
value κ. Then their composition

ψ̂ = ιv · ιh

can be written as

ψ̂ : C2 → C2

u= (u1,u2) 7→ (ū1, ū2) =
(

(du2+c)(u2+d)
u1u2

, ū1+c
u2(ū1+1)

)
.

(2.17)

By construction, the map (2.17) preserves the same first integral (2.14) as (2.13) does (so
ψ̂∗(K1) = K1), as well as leaving the same symplectic form (2.11) invariant (so ψ̂∗(ω̂) = ω̂).
Hence ψ̂ is a Liouville integrable map in the plane. From standard arguments about QRTmaps
(see e.g. [4]), we can infer a lot more: on each generic fiber of the pencil, either of the twomaps
ψ̂ and φ̂ acts as an automorphism without fixed points, and since a generic fiber has genus 1,
this implies that both maps must act as translation by a point in the abelian group law of the
corresponding elliptic curve; hence it follows that the two maps commute, that is

ψ̂ · φ̂= φ̂ · ψ̂, (2.18)

a fact which is readily verified by direct calculation. An interesting question is whether this
commutativity is trivial, as would be the case if the two maps were both iterated powers of the
same (possibly simpler) birational map. Neither map can be a power of the other, because ψ̂
becomes an involution (period 2) when c= d= 1, while in that case φ̂ is the reduction of the
A3 cluster map, hence has period 3. However, we will see below that in fact the maps ψ̂ and
φ̂ are independent of one another, in the sense that (for generic values of the parameters c,d)
the Mordell-Weil group of the corresponding elliptic surface has rank 2, and they correspond
to independent translations in this group.

2.4. Laurentification and cluster structure of commuting maps

To make contact with the notation used in [20], and to avoid excessive use of indices, we will
use (y,w) to denote the coordinates of u ∈ C2, so that

u= (u1,u2) = (y,w) .

It will further be convenient to adopt the convention that iterates of φ̂ are denoted by a lower
index n, so that the coordinates along an orbit are labeled thus:

φ̂n (u) = (yn,wn) .

One of the main results on the deformed A3 map in our previous work was that it admits
Laurentification, in the sense that we can lift φ̂ to a map in 6 dimensions that has the Laurent
property, related via the monomial map

π̃ : yn =
τn−1τn+2

τnτn+1
, wn =

σn+1τn
σnτn+1

, (2.19)

9
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Figure 1. The initial quiver Q̃ associated with the extended exchange matrix (2.22).

where π̃ : C6 → C2, and the sequence of tau functions σn, τn satisfy the pair of bilinear
equations

σn+2 τn−1 = dσn+1τn+ cσnτn+1,
τn+3σn = τn+1σn+2 + dτn+2σn+1.

(2.20)

(Note that the index on τ n has been shifted compared with [20].)
A set of initial data for (2.20) is provided by a set of six tau functions, namely

x† = (τ−1, τ0, τ1, τ2,σ0,σ1) = (x̃j)1⩽ j⩽6 .

It is possible to prove directly that under iteration, the bilinear system (2.20) generates Laurent
polynomials in these initial data, belonging to the ring Z[c,d, τ±1

−1 , τ
±1
0 , τ±1

1 , τ±1
2 ]. However,

this is more easily seen as a consequence of the fact that each of the bilinear equations cor-
respond to mutations in a cluster algebra, whose coefficient-free part is given by an exchange
matrix B† obtained by pulling back the symplectic form (2.11) by π̃, as in (2.19), to find

ω̃ = π̃∗ (ω̂) =
∑
i<j

b̃ij
dx̃i ∧ dx̃j
x̃ix̃j

, (2.21)

where all the indices above run from 1 to 6. The matrix B† = (b̃ij)1⩽i,j⩽6 is skew-symmetric,
and is the 6× 6 square submatrix appearing at the top of the extended 8× 6 exchange matrix
B̃ given by

B̃=



0 1 −1 0 −1 1
−1 0 2 −1 1 −1
1 −2 0 1 1 −1
0 1 −1 0 −1 1
1 −1 −1 1 0 0
−1 1 1 −1 0 0
1 0 0 −1 1 −1
−1 −1 1 1 0 0


. (2.22)

The quiver Q̃ associated with B̃= (b̃ij) is shown in figure 1: the convention is that |bij| is the
number of arrows between node i and node j, with the sign fixed according to whether |bij|
arrows run i→ j or vice versa.

Remark 2.1. Note that the subquiver of Q̃ in figure 1 containing the 6 unfrozen nodes is muta-
tion equivalent to the quiver that was shown by Okubo to produce the q-Painlevé III equation
via an appropriate sequence of coefficient mutations (cf. figure 21 in [32]).

10
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To specify the cluster algebra that contains the appropriate sequence of tau functions, we
proceed to extend the initial data, in order to get an extended cluster

x̃= (τ−1, τ0, τ1, τ2,σ0,σ1,c,d) = (x̃j)1⩽ j⩽8 ,

which includes the coefficients c= x̃7 and d= x̃8 as additional frozen variables (which are not
allowed to be mutated). Then we see that the pair of successive mutations

µ̃1 : x̃ ′1x̃1 = x̃8x̃2x̃6 + x̃7x̃3x̃5,
µ̃5 : x̃ ′5x̃5 = x̃8x̃4x̃6 + x̃ ′1x̃3

(2.23)

together correspond to iterations of (2.20), provided that these two mutations are composed
with the inverse of the cyclic permutation ρ= (123456) (which only acts on the non-frozen
variables). More precisely, we have

µ̃5µ̃1
(
B̃
)
= ρ

(
B̃
)
, π̃ · φ̃= φ̂ · π̃, (2.24)

where the lifted map φ̃ acts as the shift n→ n+ 1 on the tau functions, that is, it acts as

φ̃= ρ−1µ̃5µ̃1 : (τn−1, τn, τn+1, τn+2,σn,σn+1,c,d) 7→ (τn, τn+1, τn+2, τn+3,σn+1,σn+2,c,d)
(2.25)

for all n, but leaves B̃ invariant, since φ̃(B̃) = ρ−1µ̃5µ̃1(B̃) = B̃ from (2.24).
As described above, the map φ̂ is the reduction to the plane of the integrable deformation

of the A3 cluster map. The preceding observations about the map φ̃ in (2.25), which is the
Laurentification of φ̂, were summarized in theorem 2.3 in [20]. To go beyond the latter, we now
explain how the same ideas can be extended to the QRTmap (2.17) that commutes with (2.13).
To do this, it will initially be convenient to abuse notation by adding an index m to the pair of
coordinates (y,w), and write the sequence of points on an orbit as

ψ̂m (u) = (ym,wm) .

To avoid creating any confusion, we henceforth take the convention that the lettersm,n are used
exclusively to label iterates of ψ̂, φ̂, respectively. Then a lift of ψ̂ to a map in 6 dimensions is
defined by

π̄ : ym =
ηmχm
ξmθm

, wm =
ξm+1θm
ξmθm+1

, (2.26)

where the tau functions ηm,χm, ξm,θm satisfy the bilinear system

ηm+1χm = dξm+1θm+ cξmθm+1,
χm+1 ηm = ξm+1θm+ dξmθm+1,
ξm+2 θm = cξm+1θm+1 +χm+1ηm+1,
θm+2 ξm = ξm+1θm+1 +χm+1ηm+1.

(2.27)

The above bilinear system for the QRT map has the Laurent property, as summarized in the
following result, which is a direct analogue of theorem 2.3 in [20].

Theorem 2.2. The tau function sequences (ηm), (χm), (ξm), (θm) for the integrable map (2.17)
consist of elements of the ring of Laurent polynomials with positive coefficients, lying in
Z>0[c,d,χ

±1
0 ,θ±1

0 , ξ±1
0 ,η±1

0 ,θ±1
1 , ξ±1

1 ], being generated by the action of a permutation com-
posed with a sequence of mutations in the cluster algebra defined by the quiver in figure 1.

11
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Proof. Setting m= 0 in (2.26), the pullback of the symplectic form (2.11) is

ω̃ = π̃∗
(
dlog

(
η0χ0

ξ0θ0

)
∧ dlog

(
ξ1θ0
ξ0θ1

))
=

∑
1⩽i<j⩽6

b̃ij
dx̃i ∧ dx̃j
x̃ix̃j

,

which coincides precisely with (2.21), for the same 6× 6 skew-symmetric submatrix B† =
(b̃ij), if we identify the unfrozen variables as

x† = (χ0,θ0, ξ0,η0,θ1, ξ1) = (x̃j)1⩽ j⩽6 .

Extending this to the full matrix B̃, as in (2.22), with the same frozen variables as before,
namely c= x̃7 and d= x̃8, we see that repeatedly applying the sequence of four successive
mutations

µ̃1 : x̃ ′1x̃1 = x̃8x̃2x̃6 + x̃7x̃3x̃5,
µ̃4 : x̃ ′4x̃4 = x̃2x̃6 + x̃8x̃3x̃5,
µ̃2 : x̃ ′2x̃2 = x̃7x̃5x̃6 + x̃ ′1x̃

′
4,

µ̃3 : x̃ ′3x̃3 = x̃5x̃6 + x̃ ′1x̃
′
4

(2.28)

is equivalent to iterating the bilinear system (2.27), provided that these four mutations are
composed with the inverse of the cyclic permutation ρ̄= (14)(2536) (which only affects the
non-frozen variables). To be precise we have

µ̃3µ̃2µ̃4µ̃1
(
B̃
)
= ρ̄

(
B̃
)
, π̄ · ψ̃ = ψ̂ · π̄, (2.29)

where the lifted map ψ̃ acts as the shift m→ m+ 1 on the tau functions, that is, it acts as

ψ̃ = ρ̄−1µ̃3µ̃2µ̃4µ̃1 : (χm,θm, ξm,ηm,θm+1, ξm+1,c,d)

7→ (χm+1,θm+1, ξm+1,ηm+1,θm+2, ξm+2,c,d) (2.30)

for all m, but leaves B̃ invariant, since ψ̃(B̃) = ρ̄−1µ̃3µ̃2µ̃4µ̃1(B̃) = B̃ from (2.29). The fact
that the sequences of tau functions generated by (2.27) consist of Laurent polynomials in the
initial cluster variables, with integer coefficients, is just the Laurent phenomenon for the cluster
algebra [6], while the coefficients being in Z>0 is a consequence of the positivity conjecture,
proved for skew-symmetric exchange matrices in [25].

2.5. Somos relations for tau functions

A sequence (xn) generated by a quadratic recurrence relation of the form

xn+kxn =
⌊k/2⌋∑
j=1

αj xn+jxn+k−j (2.31)

is known as a Somos-k sequence. There are particular cases of Somos-type recurrences that
fit into the framework of cluster algebras, namely those that have a sum of two monomials on
the right-hand side of (2.31)5. One such case is that of Somos-5 sequences, which satisfy a

5 Somos recurrences with three monomials on the right can be constructed in the more general framework of LP
algebras [24].

12
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bilinear relation given in the form

xn+5xn = α̃xn+4xn+1 + β̃ xn+3xn+2.

It turns out that the Somos-5 recurrence can be reduced to a certain QRT map, equivalent to
the recurrence

un+1unun−1 = α̃un+ β̃, (2.32)

where un is given by a certain ratio composed of tau functions τ n (see [15], for instance). We
refer to the above iteration as the Somos-5 QRT map.

The Laurentification of the map (2.13) in the plane produces two sequences of tau functions
σn, τn. The form of the substitution for yn in (2.19) is the same as was used for Somos-5 in [15],
which suggests a connection with Somos sequences. It turns out that, along each orbit of the
cluster map φ̃, the tau functions σn and τ n both satisfy the same Somos-5 relation.

Theorem 2.3. Along each orbit of the cluster map φ̃, given by iteration of the bilinear sys-
tem (2.20), the sequence of tau functions (τn) satisfies the Somos-5 relation

τn+5τn = α̃ τn+4τn+1 + β̃ τn+3τn+2, (2.33)

with constant coefficients given by

α̃= d2 − c β̃ = cK1 +(c+ 1)
(
d2 − c

)
,

where K1 is the corresponding value of the first integral for the map (2.13), obtained from the
initial tau functions by setting

u1 =
τ−1τ2
τ0τ1

, u2 =
σ1τ0
σ0τ1

, (2.34)

in the formula (2.14). Similarly, on each orbit of φ̃, the sequence of tau functions (σn) satisfies
the Somos-5 relation (2.33) with the same coefficients α̃, β̃.

Proof. As a recursion relation, the first component of the map φ̂ given by (2.13) is
equivalent to

yn+1 =
c+ d(yn+ 1)wn

yn
,

while the first component of the inverse map φ̂−1 gives

yn−1 =
cd+ cwn+ dyn

wnyn
.

Then a direct calculation shows that

yn+1ynyn−1 =
(
d2 − c

)
yn+ cK1 +(c+ 1)

(
d2 − c

)
,

where K1 is the first integral for the map φ̂ with u1 = yn, u2 = wn. Note that as K1 is invariant
under φ̂, from (2.24) we have φ̃∗(π̃∗(K1)) = π̃∗(φ̂∗(K1)) = π̃∗(K1), so K1 pulls back to a first
integral for the cluster map φ̃, obtained by making the substitutions (2.34) in (2.14). Thus we
have shown that un = yn satisfies the Somos-5 QRT map, in the form of the recurrence (2.32)

13
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with the required values of the coefficients α̃, β̃, and this implies immediately that τ n is a
solution of the Somos-5 relation (2.33), by substituting for yn as in (2.19). Now from the other
sequence of tau functions (σn) we can define the ratio

y∗n :=
σn−1σn+2

σnσn+1
=
ynwn+1

wn−1
,

where the final expression on the right-hand side above is obtained from (2.19). Using

wn+1 =
c+ dwn
wnyn

, wn−1 =
yn

d+wn

from the second components of φ̂ and φ̂−1, we can rewrite y∗n in terms of yn,wn alone, and
then calculate analogous expressions for y∗n+1 and y

∗
n−1. Hence we find that un = y∗n is another

solution of the Somos-5 QRT map (2.32), with the same coefficients α̃, β̃, and as a direct
consequence the sequence (σn) also satisfies (2.33).

Both the preceding observation and its proof were based on recognizing the specific ratio of
tau functions τ n for yn appearing in (2.19). However, a more systematic approach to deriving
and proving Somos-type relations, which does not require any a priori information, is to regard
them as linear relations between degree 2 products of tau functions. We will illustrate this
approach by considering the tau functions χm,θm, ξm,ηm generated by iterating the bilinear
system (2.27).

Let us suppose that the sequence (ξm) generated by iteration of (2.27) satisfies a Somos-k
recurrence relation for some k. The simplest non-trivial case to try is k= 4. In that case, we
write down two adjacent iterations of a Somos-4 recurrence for ξm, in the form

ξm+4ξm = αξm+3ξm+1 +β ξ2m+2,
ξm+5ξm+1 = αξm+4ξm+2 +β ξ2m+3.

(2.35)

A direct way to check whether such a relation is valid is to write down one more iteration of the
recurrence, and verify that a corresponding 3× 3 determinant vanishes; and this method can
be extended to check a Somos-k relation of arbitrary order k (cf. the proof of theorem 3.4 in
the next section). In any case, the equations (2.35) provide a linear system for the coefficients
α,β, with solution(

α
β

)
=

(
ξm+3ξm+1 ξ2m+2
ξm+4ξm+2 ξ2m+3

)−1(
ξm+4ξm
ξm+5ξm+1

)
,

so the Somos-4 relation is valid if and only if the components of the above vector are constant
(that is, independent of the indexm). In the particular case at hand, we have initial data given by
the cluster x† = (χ0,θ0, ξ0,η0,θ1, ξ1), and to determine all the terms appearing in (2.35) with
m= 0 we need to perform 4 iterations of the bilinear system (2.27). Then from solving the pair
of linear equations for the coefficients, we find that α= (c− 1)2d, which only depends on the
parameters c,d, so is clearly constant, while β = β(c,d,x†) is a rather complicated rational
function (in fact, a Laurent polynomial) of c,d and the initial data x†. Nevertheless, under the
action of the cluster map ψ̃ it can be verified directly that ψ̃∗(β) = β, so that this coefficient
is constant along each orbit. This then suggests that β can be rewritten as a polynomial func-
tion of c,d and K1, the first integral for the map (2.17), which indeed turns out to be the case.
We can apply exactly the same method to seek Somos-type relations for the other tau func-
tions χm,θm,ηm, and find that they all satisfy the same Somos-4 recurrence. The final result is
summarized as follows.

14
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Theorem 2.4. Along each orbit of the cluster map ψ̃, given by iteration of the bilinear sys-
tem (2.27), the sequence of tau functions (ξn) satisfies the Somos-4 relation

ξm+4ξm = αξm+3ξm+1 +β ξ2m+2, (2.36)

with constant coefficients given by

α= (c− 1)2 d, β = cK2
1 +(c+ 1)d2K1 + d4 +(c− 1)2 d2,

where K1 is the corresponding value of the first integral (2.14) for (2.17), obtained in terms of
the initial tau functions by pulling it back via the map π̄, for u1 = y0, u2 = w0 given by (2.26)
with m= 0. Similarly, on each orbit of ψ̃, the sequences (χm),(θm),(ηm) all satisfy the Somos-4
relation (2.36) with the same coefficients α,β.

2.6. Tau functions on the Z2 lattice

The preceding results show that the action of the commuting integrable birational maps (2.17)
and (2.13) in the plane lifts to a pair of commuting cluster maps ψ̃ and φ̃, which act on seeds
in the same cluster algebra of rank 6 (with 2 additional frozen variables). Thus far we have
used the two letters m,n to index iterations of the two different maps and/or their lifts, so now
it makes sense to combine them into a pair (m,n) ∈ Z2, and write

ψ̂mφ̂n (u) = (ym,n,wm,n) , (m,n) ∈ Z2,

as well as introducing a tau function Tm,n on the Z2 lattice, such that

ym,n =
Tm,n−1Tm,n+2

Tm,nTm,n+1
, wm,n =

Tm+1,n+1Tm,n
Tm+1,nTm,n+1

. (2.37)

Then the initial seed in the associated cluster algebra is (x̃, B̃), with the extended exchange
matrix B̃ as in (2.22), and the initial cluster being specified by

x̃= (x̃j)1⩽ j⩽8 = (T0,−1,T0,0,T0,1,T0,2,T1,0,T1,1,c,d) . (2.38)

Under the combined actions of the cluster maps ψ̃ and φ̃, which are equivalent to iterating
the bilinear equations given by the systems (2.27) and (2.20), respectively, a generic set of
initial values results in a complete set of tau functions defined at each point in the lattice,
that is (Tm,n)(m,n)∈Z2 . More precisely, due to the Laurent phenomenon, if each of the initial
Ti,j appearing in (2.38) is non-zero, then all other Tm,n are obtained by evaluating suitable
Laurent polynomials at these initial values. In fact, these functions on the lattice are completely
characterized as the solution of a system of four bilinear lattice equations.

Theorem 2.5. The tau functions on Z2, associated via (2.37) with combined iteration of
the commuting integrable maps (2.17) and (2.13), satisfy the following system of bilinear
equations:

Tm+1,n+2Tm,n−1 = dTm+1,n+1Tm,n+ cTm+1,nTm,n+1,
Tm,n+2Tm+1,n−1 = dTm,n+1Tm+1,n+Tm+1,n+1Tm,n,
Tm+2,n+1Tm,n = cTm+1,n+1Tm+1,n+Tm+1,n+2Tm+1,n−1,
Tm+2,nTm,n+1 = Tm+1,n+1Tm+1,n+Tm+1,n+2Tm+1,n−1.

(2.39)

Conversely, any solution of this system of bilinear lattice equations produces a simultaneous
solution (ym,n,wm,n) of the pair of iterated maps (2.17) and (2.13).
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Proof. Essentially this is just a matter of rewriting the results of theorem 2.2 with appropriate
indices in Z2, and similarly for the preceding statements about the bilinear system for the tau
functions of the map (2.13), and checking that they are compatible. First of all, for the tau
functions of the QRT map (2.17), we can identify the non-frozen part of any cluster via

(Tm,n−1,Tm,n,Tm,n+1,Tm,n+2,Tm+1,n,Tm+1,n+1)≡ (χm,θm, ξm,ηm,θm+1, ξm+1) ,

where the equivalence means that, going from left to right, we simply suppress the dependence
on the second index n. The action of a single iteration of the map ψ̃ on any such cluster,
corresponding to the shift m→ m+ 1, is obtained by solving each of the four equations (2.39)
in turn, to obtain the transformation

ψ̃ : (Tm,n−1,Tm,n,Tm,n+1,Tm,n+2,Tm+1,n,Tm+1,n+1)

7→ (Tm+1,n−1,Tm+1,n,Tm+1,n+1,Tm+1,n+2,Tm+2,n,Tm+2,n+1) ,

which is equivalent to one iteration of the four bilinear equations (2.27), or to the composition
of the four successive cluster mutations (2.28) together with a permutation. Similarly, for the
tau functions of the map (2.13), we can write the ‘forgetful’ equivalence

(Tm,n−1,Tm,n,Tm,n+1,Tm,n+2,Tm+1,n,Tm+1,n+1)≡ (τn−1, τn, τn+1, τn+2,σn,σn+1) ,

where the dependence on the first index m is suppressed upon moving from left to right. Then
an iteration of the map φ̃ acting on such a cluster corresponds to the shift n→ n+ 1, which is
achieved by solving the first equation in (2.39) to find Tm+1,n+2, then using the second equation
in the shifted form

Tm,n+3Tm+1,n = dTm,n+2Tm+1,n+1 +Tm+1,n+2Tm,n+1

to find Tm,n+3, so that overall one has

φ̃ : (Tm,n−1,Tm,n,Tm,n+1,Tm,n+2,Tm+1,n,Tm+1,n+1)

7→ (Tm,n,Tm,n+1,Tm,n+2,Tm,n+3,Tm+1,n+1,Tm+1,n+2) ,

and clearly this is equivalent to performing one iteration of the pair of bilinear equations (2.20),
or to the composition of the two cluster mutations (2.23) together with a permuta-
tion. The converse statement follows immediately, because whenever the double sequence
(ym,n,wm,n)(m,n)∈Z2 is specified in terms of a solution of the system (2.39) by the for-

mulae (2.37), the bilinear equations imply that ψ̂
(
(ym,n,wm,n)

)
= (ym+1,n,wm+1,n) and

φ̂
(
(ym,n,wm,n)

)
= (ym,n+1,wm,n+1) hold for all m,n.

Remark 2.6. By theorems 2.3 and 2.4, whenever Tm,n is a solution of the bilinear lattice sys-
tem (2.39), it also satisfies a Somos-5 relation in n, and a Somos-4 relation in m. Moreover,
the coefficients of both of these Somos relations are constant (that is, independent of both m
and n).
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2.7. Tropical dynamics and degree growth

Following [9], it is constructive to consider the structure of the Laurent polynomials in a cluster
algebra in terms of the so-called d-vectors, which permit the degree growth of the cluster
variables to be determined from the tropical analogues of the exchange relations. In this case,
we can write each cluster of tau functions related by iteration of the lattice system (2.39) as

x̃m,n := (Tm,n−1,Tm,n,Tm,n+1,Tm,n+2,Tm+1,n,Tm+1,n+1) = (x̃j (m,n))1⩽ j⩽6 , (2.40)

where, in terms of the initial cluster x̃ given by (2.38), the Laurent property means that we may
write

x̃j (m,n) =
Nj (m,n; x̃)

x̃dj(m,n)
, j = 1, . . . ,6, (2.41)

with the numerators Nj(m,n; x̃) ∈ Z[x̃] being polynomials in the variables of the initial cluster
x̃ which are not divisible by any of x̃1, . . . , x̃6, and the denominators being monomials whose
exponents are encoded in the integer d-vectors dj(m,n) ∈ Z6. Then it is convenient to combine
the six d-vectors in each cluster into a 6× 6 matrix Dm,n, that is

Dm,n := (d1 (m,n) d2 (m,n) d3 (m,n) d4 (m,n) d5 (m,n) d6 (m,n)) . (2.42)

While the degrees of the denominators grow, so that for large enough m,n all the d-vectors
belong to Z6

>0, the initial conditions require that

Nj (0,0; x̃) = 1 for j = 1, . . . ,6

and

D0,0 =−I,

where I denotes the 6× 6 identity matrix. Due to homogeneity of the cluster variables (equi-
valently, the fact that the tau functions satisfy bilinear equations, so they all have the same
weight), the d-vectors encode everything about the degrees of the Laurent polynomials:
indeed, homogeneity requires that the total degree of each numerator (regarding c,d as fixed
constants) is

degx̃ (Nj (m,n; x̃)) = eTdj (m,n)+ 1, e= (1,1,1,1,1,1)T ,

that is, one more than the total degree of the monomial denominators.
Using standard arguments from [9], it can be shown that under the action of clustermutation,

the components of the d-vectors satisfy the (max,+) tropical version of the exchange relations.
To be precise, the action of the cluster map φ̃= ρ−1µ̃5µ̃1 on an initial cluster of d-vectors (a
tropical seed) takes the form

φ̃ : (d1,d2,d3,d4,d5,d6) 7→
(
d2,d3,d4,d

′
5,d6,d

′
1

)
,

which is composed of the combination of the (max,+) analogues of the mutations µ̃1, µ̃5,
namely

µ̃1 : d ′
1 +d1 =max(d2 +d6,d3 +d5) ,

µ̃5 : d ′
5 +d5 =max

(
d4 +d6,d

′
1 +d3

)
,

(2.43)
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followed by the inverse of the cyclic permutation ρ= (123456). (Note that the terms corres-
ponding to the frozen variables x̃7, x̃8 are absent from (2.43), since the components of the d-
vectors only measure degrees of the non-frozen variables appearing in the monomial denomin-
ators of cluster variables.) The action of φ̃ on a tropical seed corresponds to the shift n→ n+ 1
which transforms (2.42) to a new matrix Dm,n+1. Similarly, the shift m→ m+ 1 which trans-
forms (2.42) to a new d-vector matrix Dm+1,n, is achieved via the action of ψ̃ = ρ̄−1µ̃3µ̃2µ̃4µ̃1

on a tropical seed, taking the form

ψ̃ : (d1,d2,d3,d4,d5,d6) 7→
(
d ′
4,d5,d6,d

′
1,d

′
3,d

′
2

)
,

which is the composition of the (max,+) versions of four mutations, given by

µ̃1 : d ′
1 +d1 =max(d2 +d6,d3 +d5) ,

µ̃4 : d ′
4 +d4 =max(d2 +d6,d3 +d5) ,

µ̃2 : d ′
2 +d2 =max

(
d5 +d6,d

′
1 +d ′

4

)
,

µ̃3 : d ′
3 +d3 =max

(
d5 +d6,d

′
1 +d ′

4

)
,

(2.44)

followed by the inverse of the cyclic permutation ρ̄= (14)(2536). (Note that, due to the
absence of frozen variables, in (2.44) the right-hand sides of µ̃1 and µ̃4 are identical, and the
same is true for µ̃2 and µ̃3.)

It was noted in the last subsection that we can determine all the seeds obtained via iteration
of φ̃ and ψ̃ from a single cluster variable indexed by (m,n) ∈ Z2, that is

Tm,n =
N(m,n; x̃)

x̃d(m,n)
,

where we identify N2(m,n; x̃) = N(m,n; x̃) and d2(m,n) = d(m,n) for all m,n. This simplifies
the analysis of the tropical dynamics considerably, as we see from (2.40) that the d-vector
matrix of any cluster is specified by the single Z2-indexed d-vector d(m,n), according to

Dm,n = (d(m,n− 1) d(m,n) d(m,n+ 1) d(m,n+ 2) d(m+ 1,n) d(m+ 1,n+ 1)) .

Then, by theorem 2.5, it follows that all the components of d(m,n), and hence all components
of the d-vector matrix, satisfy the same (max,+) difference equations on the lattice, which
immediately leads to the following result.

Proposition 2.7. The matrix of d-vectors satisfies the tropical analogue of the system (2.39),
that is

Dm+1,n+2 +Dm,n−1=max(Dm+1,n+1 +Dm,n,Dm+1,n+Dm,n+1) ,
Dm,n+2 +Dm+1,n−1=max(Dm,n+1 +Dm+1,n,Dm+1,n+1 +Dm,n) ,
Dm+2,n+1 +Dm,n=max(Dm+1,n+1 +Dm+1,n,Dm+1,n+2 +Dm+1,n−1) ,
Dm+2,n+Dm,n+1=max(Dm+1,n+1 +Dm+1,n,Dm+1,n+2 +Dm+1,n−1) .

(2.45)

Manipulation of the above tropical equations reveals that in both the m and n directions,
the d-vectors of the lattice system satisfy linear difference equations, which allow the degree
growth to be calculated exactly. A key step in deriving the linear relations satisfied by the
d-vectors is the consideration of the tropical analogues of the symplectic coordinates (y,w),
which are defined by the (max,+) versions of the formulae (2.37), namely
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Ym,n= d(m,n− 1)−d(m,n)−d(m,n+ 1)+ d(m,n+ 2) ,
Wm,n= d(m+ 1,n+ 1)−d(m+ 1,n)−d(m,n+ 1)+ d(m,n) .

(2.46)

Each component of the pair of vectors (Ym,n,Wm,n) satisfies the same set of coupled difference
equations corresponding to iterations of the shiftsm→ m+ 1 and n→ n+ 1, and the dynamics
of these two tropical maps turns out to be completely periodic in both lattice directions, with
periods that are inherited from the original undeformed dynamical systems (with c= d= 1).

Lemma 2.8. Each component of the vectors (2.46) satisfies the tropical analogue of the
map (2.13), namely

φ̂trop : (Ym,n,Wm,n) 7→ (Ym,n+1,Wm,n+1) , (2.47)

where

Ym,n+1 +Ym,n =
[
Wm,n+ [Ym,n]+

]
+
, Wm,n+1 +Wm,n = [Wm,n]+ −Ym,n,

as well as the tropical analogue of (2.17), given by

ψ̂trop : (Ym,n,Wm,n) 7→ (|Wm,n| − Ym,n,−Wm,n) . (2.48)

For arbitrary initial data (Y0,0,W0,0) = (Y,W) ∈ R2, the orbit of φ̂trop is periodic with period
3, and the orbit of ψ̂trop is periodic with period 2.

Proof. The calculation of the components of the maps φ̂trop and ψ̂trop is achieved directly by
taking the appropriate combinations of d-vectors as in (2.46), and transforming them under
the actions of φ̃= ρ−1µ̃5µ̃1 and ψ̃ = ρ̄−1µ̃3µ̃2µ̃4µ̃1, respectively, according to the formulae
in (2.43) and (2.44). (As in the definition of matrix mutation (1.5), in order to write the trop-
ical maps concisely we have found it convenient to use the notation [r]+ =max(r,0) for real
numbers r.) Proving that any real orbit of the map (2.47) has period 3 can be checked directly
via a tedious case-by-case analysis, by considering the action on pairs of values (Y,W) ∈ R2

lying in different sectors of the plane; we leave the details as an exercise for the reader. It can
also be proved by adapting known results about dynamics on tropical elliptic curves [30]. For
the map (2.48) the analysis is more straightforward: the second component gives the relation

(S + 1)Wm,n =Wm+1,n+Wm,n = 0,

where S denotes the shift operator corresponding to m→ m+ 1, and hence

Wm,n = (−1)m W0,n

for all m,n, which oscillates with period 2 in m. Together with the first component of (2.48)
this also implies that

Ym+1,n+Ym,n = |Wm,n|= |W0,n| =⇒
(
S2 − 1

)
Ym,n = (S − 1) |W0,n|= 0,

so Ym+2,n = Ym,n as required.

Remark 2.9. The preceding lemma is actually much stronger than what is needed to calculate
the exact growth of the d-vectors appearing in the matrices (2.42) that are generated by tropical
mutations applied to the specific initial seedD0,0 =−I, which is all that is required to calculate
the degree growth of clusters generated by the lattice system (2.39). Indeed, all we really
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require is that a particular set of initial conditions for the maps φ̂trop and ψ̂trop should have
periodic orbits of length 3 and 2, respectively. The exact periodicity of these particular orbits
follows directly from the known Zamolodchikov periods of the original undeformedmaps with
c= d= 1, since these specific initial conditions correspond precisely to the d-vectors obtained
from seeds of the A3 cluster algebra, as generated by the cluster mutations (2.2).

We can now determine a system of linear difference equations satisfied by the d-vectors.

Lemma 2.10. Let S, T denote the shift operators corresponding to m→ m+ 1 and n→ n+ 1,
respectively. Then any solution of the tropical lattice system (2.45) satisfies a linear ordinary
difference equation of order 4 in the m direction, namely(

S4 − 2S3 + 2S − 1
)
Dm,n = 0 (2.49)

and a linear ordinary difference equation of order 6 in the n direction, that is(
T 6 −T 5 −T 4 + T 2 + T − 1

)
Dm,n = 0, (2.50)

together with the mixed linear relations

(S − 1)
(
T 3 − 1

)
Dm,n = 0,

(
S2 − 1

)
(T − 1) Dm,n = 0. (2.51)

Proof. We begin by noting that, from the definitions (2.46), each component ofYm,n andWm,n

can be rewritten in the form

Ym,n =
(
T 3 −T 2 −T + 1

)
dm,n−1, Wm,n = (S − 1)(T − 1) dm,n,

respectively, where the scalar dm,n represents any component of a d-vector. The ordinary dif-
ference equation of order 6 in the n direction follows immediately from the period 3 behavior
of the map φ̂trop noted above, as we have

0=
(
T 3 − 1

)
Ym,n =

(
T 3 − 1

)(
T 3 −T 2 −T + 1

)
dm,n−1,

and since this holds for each element of Dm,n, this produces the relation (2.50). Similarly,
considering shifts in m, from the proof of the previous lemma we have

(S + 1)Wm,n = 0 =⇒
(
S2 − 1

)
(T − 1) dm,n = 0,

which immediately yields the second mixed relation in (2.51). On the other hand, the first
linear relation in (2.51) is a direct consequence of the lattice system for Dm,n: it follows by
subtracting the second equation in (2.45) from the first, since the right-hand sides of these two
equations are identical. The most involved part of the proof is to derive the ordinary difference
equation of order 4 in the m direction. To show this, we introduce the 4th order difference
operator that appears, which is

L := (S − 1)3 (S + 1) = S4 − 2S3 + 2S − 1.

Now for convenience we revert to using the previous notation from (2.42) for the first four
components in a cluster of d-vectors, writing d(m,n− 1),d(m,n),d(m,n+ 1),d(m,n+ 2) as
d1,d2,d3,d4, and note that, in this notation, the first relation in (2.51) is equivalent to

(S − 1) (d4 −d1) = 0 =⇒ L (d4 −d1) = 0,
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while the right-hand sides of the third and fourth equations in (2.45) are the same, so that
subtracting them implies the relation(

S2 − 1
)
(d3 −d2) = 0 =⇒ L (d3 −d2) = 0,

and the definition of Ym,n in (2.46) and the two-periodicity in m, as in lemma 2.8, yields the
relation (

S2 − 1
)
(d4 −d3 −d2 +d1) = 0 =⇒ L (d4 −d3 −d2 +d1) = 0.

Hence we see that three independent linear combinations of the quantities d1,d2,d3,d4 are
annihilated by the operator L, so it suffices to obtain one more independent combination lying
in the kernel. If we add the third and fourth equations in (2.45), and subtract twice the first
entry in the max from both sides, followed by using Ym+2,n = Ym,n once again, then we find

(S − 1)2 (d2 +d3) = 2 [Ym+1,n]+ =⇒ L (d2 +d3) = 0,

which is the desired fourth linearly independent relation. Hence each component of the quad-
ruple d1,d2,d3,d4 lies in the kernel of L, and the required result (2.49) follows.

These linear relations mean that it is a fairly straightforward matter to obtain the explicit
solution for the double sequence of d-vector matrices Dm,n subject to specifying the initial
cluster of d-vectors via D0,0 =−I.

Theorem 2.11. The matrix of d-vectors for the tau function solutions of the system of bilinear
lattice equations (2.39), generated by the initial cluster of d-vectors

D0,0 = (d(0,−1) d(0,0) d(0,1) d(0,2) d(1,0) d(1,1)) =−I,

is given by the exact formula

Dm,n=
(
m2

4 + n2

12

)
eeT+ m

2

(
êeT− eêT

)
+ n

6

(
efT− feT

)
+E− (−1)m

24 (e− 2ê)
(
eT− 2êT

)
− (−1)n

8 ggT+
(
F+(−1)mG

)
e
2πin/3+

(
F∗ +(−1)mG∗) e2πin/3

(2.52)

for (m,n) ∈ Z2, where star denotes the complex conjugate, and

E=− 1
36


14 11 2 −13 2 −7
11 14 11 2 5 2
2 11 14 11 2 5

−13 2 11 14 −7 2
2 5 2 −7 14 11
−7 2 5 2 11 14

 , F=− 1
18

hh†, G=−1
6
kk†,

with the constant vectors

eT = (1,1,1,1,1,1) , êT = (0,0,0,0,1,1) , fT = (0,1,2,3,1,2) , gT = (1,−1,1,−1,−1,1),

hT =
(
1,e−

2πi/3,e
2πi/3,1,e−

2πi/3,e
2πi/3

)
, kT =

(
1,e−

2πi/3,e
2πi/3,1,e

2πi/3,e−
πi/3

)
(and the dagger means Hermitian conjugate).
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Proof. This is mostly a straightforward exercise in solving linear difference equations with
matrix coefficients. The action of the maps φ̃ and ψ̃ on an initial cluster of d-vectors given by
the matrix D0,0 =−I can be used to produce a complete set of matrices on a six-point stencil
on Z2, namely D0,−1,D0,0,D0,1,D0,2,D1,0,D1,1. Fixing the values of Dm,n on these 6 points
completely specifies an initial value problem for (2.45), the matrix version of the tropical
lattice equations. The linear ordinary difference equation (2.50) has the characteristic roots

1,1,1,−1,e
2πi/3,e

−2πi/3, so in order to find the explicit formula for Dm,n, we can begin by
writing down a general solution of this linear equation in the form

Dm,n = A0 n
2 +B0 n+C0 +D0 (−1)n+E0 e

2πin/3+E∗
0 e

−2πin/3, (2.53)

where a priori the coefficient matrices A0,B0, etc are all functions of m. Then, upon applying
the first mixed relation in (2.51) to the above formula, we find

(S − 1)
(
A0 (6n+ 9)+ 3B0 − 2D0 (−1)n

)
= 0

for all n, which implies that the coefficients A0,B0 and D0 are all constants (independent of
m). Similarly, applying the second mixed relation in (2.51) to the general formula (2.53) for
Dm,n then implies that(

S2 − 1
)
E0 = 0=

(
S2 − 1

)
E∗
0 ,

so these last two coefficients must both be period 2 functions of m, and we may write

E0 = F+(−1)mG

for some constant matrices F, G, and E∗
0 is given by the same formula with F, G replaced by

their complex conjugates (since the d-vectors are all real). This only leaves the m-dependence
of the coefficient C0 undetermined, but then the pure linear relation in m, namely (2.49),
requires that all the coefficients in (2.53) must lie in the kernel of the operatorL, so in particular
LC0 = 0, hence C0 must have the general form

C0 = C1m
2 +C2m+C3 +C4 (−1)m .

It remains to generate a sufficient number of matrices Dm,n (for small m,n) via the sys-
tem (2.45), in order to fix the exact values of the constant coefficients A0,B0,C1,C2,C3,C4,D0,
as well as F,G and their complex conjugates, which reduces the problem to solving systems
of linear equations with computer algebra.

Remark 2.12. The fact that the coefficients of the quadratic terms m2 and n2 are non-zero,
with nomn terms in the formula (2.52), can be used to show that the maps ψ̂ and φ̂ correspond
to independent translations along each fiber of the pencil of curves (2.15). This means that the
Mordell-Weil group of the associated rational elliptic surface has minimal rank 2 (for generic
parameters c,d). More detailed arguments that show why the rank should be exactly 2 are
relegated to the first appendix.

3. Integrable deformation of the C2 cluster map

In this section, we consider deformations of the periodic cluster map constructed from the
cluster algebra of type C2.
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3.1. Deformed C2 map

The Cartan matrix for the C2 root system is

C=

(
2 −1
−2 2

)
,

and this is the companion to the exchange matrix B= (bij) given by

B=

(
0 1
−2 0

)
, (3.1)

which is obtained from C by removing the diagonal terms and adjusting the signs of the
off-diagonal terms appropriately (with the requirement that if bij 6= 0, then bji should have
the opposite sign). The latter matrix is skew-symmetrizable, since for D= diag(1,2) we
have that

Ω= BD= (ωij)

is the skew-symmetric matrix

Ω=

(
0 2
−2 0

)
. (3.2)

(Note that, up to switching x1 ↔ x2, this example is equivalent to the case of B2, which has the
transpose of the Cartan matrix for C2. )

Starting from an initial cluster x= (x1,x2), we consider a pair of deformed mutations, of
the form

µ1 : (x1,x2) 7→ (x ′1,x2) , x ′1x1 = a1x22 + b1,
µ2 : (x ′1,x2) 7→ (x ′1,x

′
2) , x ′2x2 = a2x ′1 + b2.

(3.3)

One can confirm that, after applying the corresponding pair of matrix mutations, namely µ1

followed by µ2, according to the rule (1.5), the exchange matrix (3.1) is mutation periodic
under this composition of mutations, that is to say

µ2µ1 (B) = B.

So, similarly to the situation for the skew form (2.3) constructed from the exchange matrix of
type A3, by a minor variation on theorem 1.3 in [20], adjusting the presymplectic structure to
the skew-symmetrizable setting (see [21], for instance), the map φ= µ2µ1 composed from the
pair of deformed cluster mutations (3.3) preserves the log-canonical two-form

ω =
∑
i<j

ωijdlogxi ∧ dlogxj =
2
x1x2

dx1 ∧ dx2. (3.4)

The latter is the skew form built from the coefficients of the matrix Ω in (3.2), obtained from
skew-symmetrization of (3.1). In other words, φ∗(ω) = ω, and since the two-form (3.4) is
non-degenerate in this case, the deformed C2 cluster map φ is symplectic, for arbitrary values
of the parameters ai,bi. However, note that when these parameters take generic values, the
composition of transformations in (3.3) is not a cluster map, because it does not generate
Laurent polynomials in x1,x2.
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The original undeformed mutations obtained from the exchange matrix (3.1), which gener-
ate the cluster algebra of type C2, are recovered by setting all the parameters ai,bi in (3.3) to 1.
Since the Coxeter number of C2 is 4, Zamolodchikov periodicity implies that the undeformed
cluster map φ = µ2µ1 has period 3= 1

2 (4+ 2), so that

φ = µ2µ1 (with a1 = b1 = a2 = b2 = 1) =⇒ φ3 (x) = x.

Therefore, due to the periodicity, for any function f : C2 → C, the associated symmetric func-
tion given by the product over an orbit, that is

Kf (x) =
2∏

j=0

(φ∗)
j
( f)(x) =

2∏
j=0

f
(
(φ∗)

j
(x)
)
,

is invariant under the cluster map φ. Here we consider

K=
2∏

j=0

(φ∗)
j
(x2) = x2 +

2
x2

+
x1
x2

+
x2
x1

+
1
x1x2

. (3.5)

Before proceeding further with the general deformed case, for arbitrary non-zero paramet-
ers ai,bi, we can apply rescaling xi → λixi to each cluster variable, with a suitable choice of
parameters (λ1,λ2) ∈ (C∗)2, in order to arrange it so that a1 = 1= a2, which simplifies the
calculations. With the remaining parameters b1,b2 fixed, the iteration of the deformed map φ
is given by a system of recurrences

x1,n+1x1,n= x22,n+ b1,
x2,n+1x2,n= x1,n+1 + b2.

(3.6)

An invariant function for this deformed map can be constructed by the same procedure as was
used in [20], and described for type A3 above, whereby we modify each Laurent monomial
in (3.5) by inserting arbitrary coefficients κi in front of each monomial, similarly to (2.12), so
that (after fixing the leading coefficient to be 1) we have

K̃= x2 +
κ1
x2

+
κ2x1
x2

+
κ3x2
x1

+
κ4
x1x2

. (3.7)

Next, we proceed to impose the condition of invariance on this Laurent polynomial, that is
φ∗(K̃) = K̃, which puts constraints on the coefficients κi and bi. This gives rise to a necessary
and sufficient condition for the deformed map (3.6) to be Liouville integrable, leading to the
following result.

Theorem 3.1. The necessary and sufficient condition for a rational function of the form (3.7)
to be a first integral for the map defined by (3.6) is that

b1 = b2 = β, (3.8)

in which case K̃ is given by

K̃= x2 +
1+β

x2
+
x1
x2

+
x2
x1

+
β

x1x2
. (3.9)
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Hence the deformed symplectic map φ given by

φ : C2 → C2

x= (x1,x2) 7→ x ′ = (x ′1,x
′
2) =

(
(x2)

2+β
x1

,
x ′1+β
x2

)
.

(3.10)

is Liouville integrable whenever the condition (3.8) holds.

Proof. The proof follows from an explicit calculation, which is best achieved using a computer
algebra package such as MAPLE: assuming that a first integral of the form (3.7) exists, the
equation φ∗(K̃) = K̃ can be rewritten as an identity between two polynomials in x1,x2, and
then comparing coefficients at each degree yields a set of linear equations in the coefficients
κi; this linear system has a solution if and only if (3.8) holds.

Remark 3.2. The level sets of the first integral (3.9) are biquadratic curves, hence we can con-
struct a QRT map given by the composition of two involutions, of the same form as in (2.16).
However, comparison with the formula (3.10) shows that in this case, on the biquadratic
pencil

x1 (x2)
2
+(1+β)x1 +(x1)

2
+(x2)

2
+β = κ̃x1x2

corresponding to the level sets K̃= κ̃, the transformation µ1 is the horizontal switch, and µ2

is the vertical switch (see [4]), hence the map φ= µ2 ·µ1 coincides with the QRT map.

We have seen that, when the parameters satisfy the constraints (3.8), the symplectic map
given by (3.6) is Liouville integrable. However, as already mentioned above, the general
deformed cluster map φ is not itself a cluster map, and this continues to be true for the con-
strained version (3.10), since for β 6= 1 the sequence of pairs of coordinates φ̃n(x) generated
by the latter map do not belong to the ring of Laurent polynomials in x1,x2. In an attempt to
resolve this issue, we must go a step further, and try to apply Laurentification, analogously to
what was carried out in [20] for deformed maps of type A in low dimension (and described
for deformed A3 in the previous section).

3.2. Laurentification of deformed type C2 map

As we saw for the case of the deformed A3 map in the previous section, the word
Laurentification refers to a transformation that lifts a given birational map to a map acting
on a new set of coordinates in higher dimensions, where the lifted map possesses the Laurent
property. Several methods have been used to achieve Laurentification, such as the recursive
factorization approach taken in [14] (see also [37, 38] for some related results and observa-
tions). Here we consider another method, introduced in [18], which involves the singularity
pattern of the iterates of the deformed map φ. Instead of performing a general analysis of
singularities, we apply an empirical version of p-adic analysis, which is done by inspecting
the prime factorization of the terms given by the iteration. To see the procedure, we consider
the rational orbit of the map (3.10) obtained by setting the value of the initial cluster to be
(x1,x2) = (x1,0,x2,0) = (1,1), with parameters b1 = 2= b2, and find the prime factorizations
of the numerators and denominators of successive terms, as in the table below:

n 1 2 3 4 5 6 7 8

x1,n 3 32 19
52

569
112

172·107
32·232

139·3299
8112

457737691
80892

3·457·81689827
72·230392

x2,n 5 11
5

3·23
5·11

5·811
3·11·23

11·8089
3·23·811

3·7·23·23039
811·8089

13·173·811·3793
7·23039·8089

53·41·39461·8089
7·13·173·23039·3793
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We can see that for each of the primes p= 5,11,23,811,8089 (for instance), the p-adic
norms of x1,n and x2,n exhibit the patterns

|x1,n|p : 1, 1, p2, 1, 1
|x2,n|p : p−1, p, p, p−1 1.

(3.11)

Furthermore, other primes, such as p= 19,569,107,139,3299, appear successively as factors
in the numerator of x1,n, but not in x2,n. This suggests that there should be the following sin-
gularity patterns:

Pattern 1: . . . ,(R,0) ,(R,∞) ,
(
∞2,∞

)
,(R,0) , . . .

Pattern 2: . . . ,(0,R) , . . . ,

where R denotes a regular (non-zero) finite value. Then we introduce two tau-functions τ n,
σn, associated with pattern 1 and pattern 2, respectively, in order to arrange it so that, for
isolated values of n, at n= np say, we have τnp ≡ 0(mod p) for the first set of primes, and σnp ≡
0(mod p) for the second set. Then, to recover the two different singularity patterns, we define
a monomial rational map π : C5 → C2, which is specified by the following transformation of
dependent variables:

π : x1,n =
σn
τ 2n+1

, x2,n =
τnτn+3

τn+1τn+2
. (3.12)

When the two expressions (3.12) are substituted directly into the components (3.6) of φ, with
the parameters constrained so that b1 = β = b2, one obtains the system of recurrence relations

σnσn+1 = βτ 2n+1τ
2
n+2 + τ 2n τ

2
n+3,

τnτn+4 = βτ 2n+2 +σn+1.
(3.13)

If we iterate the latter pair of equations with initial values (σ0, τ0, τ1, τ2, τ3) = (1,1,1,1,1) and
β= 2, then we obtain a pair of integer sequences, with the first few terms presented in the
following table:

n 0 1 2 3 4 5 6 7

σn 3 9 19 569 30923 458561 457737691 111996752817
τn+4 5 11 69 811 8089 161273 8530457 202237625

Observe that the primes appearing separately as isolated factors in each of these integer
sequences are the same ones that were identified as factors of the numerators and denominators
in the previous table.

The system of recurrence relations (3.13) can be interpreted as iteration of a birational map
ψ : C5 → C5 which is intertwined with φ via π, that is

ψ : (σ0, τ0, τ1, τ2, τ3) 7→ (σ1, τ1, τ2, τ3, τ4) , φ ·π = π ·ψ.

Then we would like to identify the initial data for the map ψ as an initial cluster in a seed for
a cluster algebra of rank 5, so that x̃= (x̃1, x̃2, x̃3, x̃4, x̃5) = (σ0, τ0, τ1, τ2, τ3). To verify that the
Laurent property holds when the deformed map φ is lifted to the map ψ on the space of tau
functions, we need to find a cluster algebra structure defined by an initial seed (x̃, B̃), for a
suitable exchange matrix B̃ ∈Mat5(Z). We will then proceed to show that this extends to a
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seed (x̂, B̂), where the initial cluster x̂= (x̃,β) includes the parameter β as a frozen variable,
and B̂ is an extended 6× 5 exchange matrix (with an additional row to incorporate the frozen
variable).

To start with, we calculate the pullback of the symplectic form (3.4) by the rational map π,
to obtain the presymplectic form

ω̃ = π∗ω =
∑
i<j

ω̃ij
dx̃i ∧ dx̃j
x̃ix̃j

,

which gives rise to a new skew-symmetric matrix,

Ω̃ = (ω̃ij) =


0 −2 2 2 −2
2 0 −4 0 0
−2 4 0 −4 4
−2 0 4 0 0
2 0 −4 0 0

 . (3.14)

Similar to the matrix in (3.2), the Ω̃ can be expressed as a product Ω̃ = B̃D̃ of skew-
symmetrizable matrix B̃ and diagonal matrix D̃. By post-multiplying by the diagonal matrix
D̃−1 = diag(1,1/2,1/2,1/2,1/2), this gives the 5× 5 exchange matrix

B̃= Ω̃D̃−1 =
(
B̃ij
)
=


0 −1 1 1 −1
2 0 −2 0 0
−2 2 0 −2 2
−2 0 2 0 0
2 0 −2 0 0

 . (3.15)

Now observe that if we apply the composition of mutations µ̃2µ̃1 defined by the latter
exchange matrix, applying the mutation µ̃1 associated with index 1, followed by the muta-
tion µ̃2 associated with index 2, then the initial cluster x̃= (σ0, τ0, τ1, τ2, τ3) gets transformed
to µ̃2µ̃1(x̃) = (x̃ ′1, x̃

′
2, x̃3, x̃4, x̃5) = (σ1, τ4, τ1, τ2, τ3), where the new cluster variables σ1, τ4 are

obtained from a single iteration of each of the recurrences in (3.13), setting n= 0 and β= 1
therein. To generate the general sequence of mutations for tau functions that corresponds
to (3.13) with arbitrary β, it is necessary to extend the initial cluster to x̂= (x̃,β) by inserting
the frozen variable β, and then a further calculation shows that we can define the extended
exchange matrix

B̂=


0 −1 1 1 −1
2 0 −2 0 0
−2 2 0 −2 2
−2 0 2 0 0
2 0 −2 0 0
−1 0 0 0 1

 , (3.16)

which is obtained by inserting an extra row at the bottom of (3.15). The form of the recur-
rence system (3.13) also requires that we permute the cluster variables after applying the two
mutations µ̃1 and µ̃2.

Theorem 3.3. Let ρ be the permutation (2345). Then ψ = ρ−1µ̃2µ̃1 is a cluster map
that fixes the extended exchange matrix B̂. Iteration of ψ generates two sequences of
tau functions (σn), (τn) satisfying the system (3.13). The tau functions are elements of
Z>0[β,σ

±1
0 , τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 ].
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Proof. Consider the cluster algebra with initial cluster x̂= (σ0, τ0, τ1, τ2, τ3,β) and extended
exchange matrix B̂. One can see that, by applying cluster mutation to (σ0, τ0, τ1, τ2, τ3,β) =
(x̃1, x̃2, x̃3, x̃4, x̃5, x̃6) in direction 1, mutation µ̃1 gives the exchange relation

σ1σ0 = βτ 21 τ
2
2 + τ 20 τ

2
3 ,

producing the new cluster µ̃1(x̂) = (σ1, τ0, τ1, τ2, τ3,β) and the mutated exchange matrix B̂1 =
µ̃1(B̂) given by

B̂1 =


0 1 −1 −1 1
−2 0 0 2 0
2 0 0 −2 0
2 −2 2 0 −2
−2 0 0 2 0
1 −1 0 0 0

 .

Following this up with a mutation in direction 2, applying µ̃2 gives the new cluster variable τ 4
defined by the following relation:

τ4τ0 = βτ 22 +σ1.

The new cluster is then µ̃2µ̃1(x̂) = (σ1, τ4, τ1, τ2, τ3,β). Therefore applying the composition of
mutations µ̃2 and µ̃1 generates this pair of exchange relations, which corresponds to a single
iteration of the map ψ, but requires an additional cyclic permutation of the middle 4 variables
to obtain ψ(x̂) = (σ1, τ1, τ2, τ3, τ4,β). Furthermore, we see that the combination of two matrix
mutations is equivalent to a permutation of order 4 acting on the corresponding 4 non-frozen
labels, namely ρ= (2345), i.e.

µ̃2µ̃1

(
B̂
)
= P1B̂P2 = ρ

(
B̂
)

where P1 and P2 are the row and column permutation matrices

P1 =


1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 , P2 =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

 . (3.17)

Thus we have shown that the extended exchange matrix B̂ given by (3.16) is cluster mutation
periodic in the generalized sense defined in [29], so that ψ(B̂) = B̂, where the cluster map
ψ = ρ−1µ̃2µ̃1 generates two sequences of tau functions satisfying the coupled system (3.13).
Hence, by the Laurent phenomenon in the cluster algebra, it follows that iteration of the
map ψ on the space of tau functions produces Laurent polynomials that are elements of
Z>0[β,σ

±1
0 , τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 ] (where each monomial that appears has a positive integer

coefficient, due to positivity [13, 25]).
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3.3. Connection with Somos-5 and a special Somos-7 recurrence

Analogously to the observationmade for the case of A3 in the previous section, we note that the
formula for x2,n in (3.12) corresponds to the substitution used for Somos-5 in [15]. This allows
us to establish a connection between the system (3.13) and a suitable Somos-5 recurrence
relation.

Theorem 3.4. The sequence of tau functions (τn) generated by iteration of (3.13) satisfies a
Somos-5 relation with coefficients that are constant along each orbit, given by

τnτn+5 = ζ τn+1τn+4 + θ τn+2τn+3 (3.18)

where the coefficients are

ζ = 1−β, θ = βK̃, (3.19)

with K̃ being the value of the first integral (3.9). Hence un = x2,n satisfies the Somos-5 QRT
map (2.32) with coefficients α̃= ζ, β̃ = θ as in (3.19) along any orbit of the deformed C2

map (3.10).

Proof. The first three iterations of the Somos-5 sequence can be represented in matrix
form as τ0τ5 τ1τ4 τ2τ3

τ1τ6 τ2τ5 τ3τ4
τ2τ7 τ3τ6 τ4τ5


︸ ︷︷ ︸

M

 1
−ζ
−θ

= 0. (3.20)

As the vector v= (1,−η,−θ)T is non-zero, det(M) = 0 is a necessary condition for the tau
functions τ n obtained from (3.13) to satisfy (3.18). With the help of MAPLE software, we can
easily confirm that the relation holds. The coefficients ζ and θ can be found by computing the
kernel ofM, which turns out to be independent under shifting the indices of each tau function
(n→ n+ 1): to be precise, ζ = 1−β is just a constant (independent of tau functions), while

θ =
β
((
βτ 21 +σ0

)
τ 22 + τ 20 τ

2
3

)(
τ 21 +σ0

)
σ0τ0τ1τ2τ3

,

but this is just β times the first integral (3.9) lifted to the space of tau functions. Hence the
vector v is constant along each orbit, and remains in the kernel of the matrix M when the
replacement τn → τn+1 is made for each tau function appearing therein.

We have seen that, subject to the condition b1 = β = b2, the variable un = x2,n satisfying
one half of the system (3.6), also satisfies the Somos-5 QRT map (2.32) with appropriate
coefficients α̃, β̃. This suggests that each invariant curve for the deformed map φ̃, given by a
level set of (3.9), is birationally equivalent to a corresponding elliptic curve associated with a
level set of the Somos-5 QRT map. According to [19], each such curve is also isomorphic to
a curve that corresponds to a level set of the Lyness map

wn+1wn−1 = ζ̃wn+ θ̃ (3.21)
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(for suitable ζ̃ and θ̃), which is the integrable deformation of the periodic map of type A2.
Applying the results from [19], it can be shown that the iterates x2,n of the deformed C2 map
φ̃ are also associated with the Lyness map, via the transformation

wn = x2,n+
θ

ζ
=

1
ζ

τn−1τn+4

τn+1τn+2
.

The above substitution is consistent with the fact that τ n satisfies the bilinear recurrence

τn+7τn = ζ̃τn+6τn+1 + θ̃τn+3τn+4. (3.22)

which a special type of Somos-7 recurrence, namely the same as (1.3) associated with the
Lyness map (1.2). This is another type of Somos sequence generated by a sequence of muta-
tions in a cluster algebra of rank 7 (for further detail see [10, 11]). The same Somos-7 relation
will also be seen to appear in the next section.

Remark 3.5. Another way to see that the existence of the special Somos-7 relation (3.22)
follows from theorem 3.4, is to apply a result from [15] (see also [33]), which says that every
Somos-5 sequence also satisfies a Somos-k relation of odd order, for each odd integer k⩾ 7: so
every Somos-5 is also a Somos-7. The converse is not quite true, however: every Somos-7 does
satisfy a relation of Somos-5 type, but generically it has one coefficient that is periodic with
period 3, rather than having two constant coefficients ζ,θ as in (3.18). This result is proved in
appendix B, along with a number of results about the Somos-7 recurrence (3.22) that have not
been collected elsewhere.

3.4. Tropicalization and degree growth for deformed C2 map

Given an initial cluster x̂= (σ0, τ0, τ1, τ2, τ3,β) for the deformed C2 cluster map, as in the-
orem 3.3, we can associate a tropical cluster of d-vectors in Z5, encapsulated in the matrix

(d0 e0 e1 e2 e3) =−I, (3.23)

where I denotes the 5× 5 identity matrix. The Laurent property implies that the sequences of
tau functions σn, τn generated by the system (3.13) take the form

σn =
N(1)
n (x̂)

x̂dn
, τn =

N(2)
n (x̂)
x̂en

,

with the numerators N(1)
n ,N(2)

n being polynomials in Z[x̂] that are not divisible by any of the
initial cluster variables, while the basic results on d-vectors in [9] imply that the sequences
dn,en appearing as exponents in the denominators satisfy the (max,+) version of this system,
given by

dn+1 +dn = 2max(en+2 + en+1,en+3 + en) ,

en+4 + en =max(2en+2,dn+1) .
(3.24)

(Note that, as for the tropical version of deformed A3 in the previous section, we do not count
degrees with respect to frozen variables, so there are no terms corresponding to the parameter
β in the system.)
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We now consider the tropical analogue of the map π defined in (3.12), which leads us to
introduce the quantities

X1,n = dn− 2en+1, X2,n = en+3 − en+2 − en+1 + en (3.25)

The dynamics of these combinations of the d-vectors holds the key to their degree growth.

Lemma 3.6. Whenever dn,en satisfy the system (3.24), each component of the quantities (3.25)
is a solution of the tropical (or ultradiscrete) QRT map φtrop defined by

X1,n+1 +X1,n= 2 [X2,n]+ ,

X2,n+1 +X2,n= [X1,n+1]+ .
(3.26)

Given arbitrary initial data
(
X1,0,X2,0

)
∈ R2, the orbit of the latter map is periodic with

period 3.

Proof. The map φtrop presented in (3.26) is the (max,+) analogue of the QRT map (3.10),
which follows immediately from the system (3.24) by rearranging and rewriting it in terms of
the components of the quantities defined in (3.25). The fact that every orbit is period 3 can be
checked by a direct case-by-case analysis for initial data in different sectors of the plane. It can
also be deduced from Nobe’s general results on periods of ultradiscrete QRT maps [30].

Remark 3.7. For the main case of interest, the initial tropical cluster in (3.23) produces the
pair of vectors of initial values

X1,0 = (−1,0,2,0,0)T , X2,0 = (0,−1,1,1,−1)T

for (3.26), and this initial pair produces the subsequent pairs of terms

X1,1 = (1,0,0,2,0)T , X2,1 = (1,1,−1,1,1)T and X1,2 = (1,2,0,0,2)T ,

X2,2 = (0,1,1,−1,1)T

under iteration, with the iterates repeating thereafter. The components of these vectors are all
built from two particular orbits of the scalar map (3.26), namely

(−1,0)→ (1,1)→ (1,0) , (0,−1)→ (0,1)→ (2,1) , (3.27)

which correspond precisely to the sequence of pairs of d-vectors arising from the
Zamolodchikov periodicity of the orbit of the original undeformed C2 map, defined by (3.3)
with all parameters ai,bi set to 1. Indeed, these two orbits can be read off from the denomin-
ators in the corresponding sequence of C2 cluster variables, viz.

(x1,x2)−→
(
x22 + 1
x1

,
x22 + x1 + 1

x1x2

)
−→

(
x22 +(x1 + 1)2

x1x22
,
x1 + 1
x2

)
.

For finite type cluster algebras, it is known that there is a direct correspondence between cluster
variables and a specific subset of the roots in the associated root system, whereby the coeffi-
cients of linear combinations of simple roots determine the d-vectors (see e.g. theorem 4.10 in
[5]). In this case, the pairs of d-vectors corresponding to the exponents of x1,x2 in the monomi-
als above are given by the sequence of 2× 2 matrices(

−1 0
0 −1

)
−→

(
1 1
0 1

)
−→

(
1 0
2 1

)
,
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whose first and second rows, respectively, yield the two orbits (3.27) above, while the columns
correspond to the sequence of pairs of roots (−α1,−α2)→ (α1,α1 +α2)→ (α1 + 2α2,α2)
in the C2 root system. To determine the degree growth of the tau functions generated by (3.13),
we only need to make use of the fact that these particular sequences have period 3, rather than
the more general result of lemma 3.6.

Theorem 3.8. All sequences of d-vectors dn,en that are solutions of the (max,+) system (3.24)
lie in the kernel of the 6th order linear difference operator

L̂=
(
T 3 − 1

)(
T 2 − 1

)
(T − 1) .

Hence the particular d-vectors corresponding to the sequences of tau functions σn, τn produced
by (3.13) give the leading order degree growth

dn =
n2

6
(1,1,1,1,1)T+O(n) , en =

n2

12
(1,1,1,1,1)T+O(n) . (3.28)

Proof. The second relation in (3.25) can be written as (T 2 − 1)(T − 1)en = X2,n, and then by
lemma 3.6 we have

L̂en =
(
T 3 − 1

)(
T 2 − 1

)
(T − 1) en =

(
T 3 − 1

)
X2,n = 0,

which shows that en is annihilated by the linear operator L̂ (which is the same operator that
appeared in (2.50) in the deformed A3 case). Then the first relation in (3.25) implies that

L̂dn = L̂ (Y1,n− en+1) =
(
T 2 − 1

)
(T − 1)(Y1,n+3 −Y1,n)−L̂en+1 = 0,

as required, where we used the fact that Y1,n has period 3, from the same lemma. Now for the
particular tropical seed (3.23), which corresponds to the d-vectors of the initial set of tau func-
tions in (3.13), we can use (max,+) relations (3.24) to calculate more terms in the sequence of
d-vectors. We can also use the corresponding 3-periodic sequence of solutions of the tropical
QRT map, as presented in remark 3.7, to generate additional terms of the sequence (en) from
the formula

en+3 = en+2 + en+1 − en+X2,n,

which produces

e4 = (1,1,0,0,0)T , e5 = (1,2,1,0,0)T ,

so that ej, 0⩽ j⩽ 5 provide enough initial values to generate the 6 vector constants that specify
the explicit solution of the linear difference equation L̂en = 0 in terms of its characteristic
roots. In fact, for this choice of initial values it is straightforward to show by induction that the
components of en take the form

en = (ẽn,en+3,en+2,en+1,en) ,

so these vectors are completely specified by the following two scalar recurrence sequences:

(ẽn) : 0,0,0,0,1,1,2,3,4,5,7,8,10,12,14,16,19,21, . . . ;
(en) : 0,0,0,−1,0,0,0,1,2,2,4,5,6,8,10,11,14,16, . . . .
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The sequences ẽn,en determine, respectively, the exponents of σ0, and the exponents of the
other τ j for j = 0,1,2,3, that appear in the denominators of τ n. We omit the full details of the
explicit formula for the sequence of vectors en, and merely note that we can determine the
leading order behavior en = an2(1+ o(n)) by calculating the constant vector(

T 3 − 1
)(

T 2 − 1
)
en = 12a= (1,1,1,1,1)T ,

which fixes the value of a. Similarly, a simple inductive argument can be used to show that dn
has components of the form

dn =
(
d̃n,dn+3,dn+2,dn+1,dn

)
,

specified by the scalars d̃n,dn. The latter two scalar sequences determine, respectively, the
exponents of σ0, and the exponents of the other τ j for j = 0,1,2,3, that appear in the denom-
inators of σn; their initial terms are as follows:(

d̃n
)
: −1,1,1,1,3,5,5,9,11,13,17,21,23,29,33,37,43,49, . . . ;

(dn) : 0,0,0,0,0,2,2,4,6,8,10,14,16,20,24,28,32,38, . . . .

We omit the complete details of the explicit formula for dn, but rather make use of the first
relation in (3.25) once again, to see that the leading order behavior of the sequence is found
from

dn = 2en+1 +X1,n = 2an2 (1+ o(n)) ,

with the same constant vector a, since X1,n has period 3. Together, this yields the required
expression for the leading order quadratic growth of dn,en as in (3.28), with anO(n) correction
in each case.

4. Integrable deformations of the B3 cluster map

In this section, we consider the deformation of a 3D periodic cluster map which arises from
mutations in the cluster algebra of type B3. The original cluster map in three dimensions has
period 4= 1

2 (6+ 2), which is 1
2 × (Coxeter number+ 2), and as before our aim is to con-

struct parameter-families of deformations of this map that result in aperiodic dynamics that is
Liouville integrable. However, in contrast to all the examples previously considered here and
in [20], for the B3 case we find that there is more than one distinct family of deformations that
is integrable (in fact, precisely two distinct 1-parameter families, up to equivalence via scaling
transformations).

4.1. Deformed map B3

For the B3 root system, the Cartan matrix is

C=

 2 −2 0
−1 2 −1
0 −1 2

 ,
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which is the companion of the skew-symmetrizable exchange matrix

B=

 0 2 0
−1 0 1
0 −1 0

 ,
Skew-symmetrizability of B is seen from the fact that Ω= BD= (ωij) is skew-symmetric,
where D= diag(2,1,1) and

Ω=

 0 2 0
−2 0 1
0 −1 0

 .
We now consider the sequence of deformed mutations

µ1 : (x1,x2,x3) 7→ (x ′1,x2,x3) , x ′1x1 = b1 + a1x2,
µ2 : (x ′1,x2,x3) 7→ (x ′1,x

′
2,x3) , x ′2x2 = b2 + a2 (x ′1)

2 x3,
µ3 : (x ′1,x

′
2,x3) 7→ (x ′1,x

′
2,x

′
3) , x ′3x3 = b3 + a3x ′2,

(4.1)

where aj,bj are arbitrary parameters. With a generic choice of these parameters, the Laurent
property no longer holds for thesemutations, so themapφ= µ3µ2µ1 does not have the Laurent
property; moreover, it is no longer completely periodic with period 4. However, similarly to the
C2 case, by a minor variation on theorem 1.3 in [20], generalizing it to the skew-symmetrizable
case, it is not hard to see that the deformed map φ given by the composition of transform-
ations (4.1) preserves the same presymplectic form ω =

∑
i<jωijdlogxi ∧ dlogxj as in the

undeformed case.
Before considering the deformed case (4.1) further, there are two ways to simplify the cal-

culations. Firstly, assuming the case of generic parameter values aibi 6= 0 for all i, we apply
the scaling action of the three-dimensional algebraic torus (C∗)3, given by xi → λi xi, λi 6= 0,
and use this to remove three parameters, so that we may set

ai → 1, i = 1,2,3,

without loss of generality, but keep bi arbitrary for i = 1,2,3. Having simplified the space of
parameters, the map φ is equivalent to the iteration of the system of recurrences

x1,n+1x1,n= x2,n+ b1,
x2,n+1x2,n= x21,n+1x3,n+ b2,
x3,n+1x3,n= x2,n+1 + b3.

(4.2)

Secondly, because we are in an odd-dimensional situation where necessarily det(Ω) = 0 and
ω is degenerate, we can use

kerΩ=< (1,0,2)T >, imΩ= (kerΩ)⊥ =< (0,1,0)T ,(−2,0,1)T >

to generate the one-parameter scaling group (x1,x2,x3)→ (λx1,x2,λ2x3), λ ∈ C∗ (obtained
from the null vector field x1∂x1 + 2x3∂x3 by exponentiation), and the projection π : C3 → C2

onto its monomial invariants,

π : y1 = x2, y2 =
x3
x21
.
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On the (y1,y2)-plane, φ induces the reduced map φ̂, such that π ·φ = φ̂ ·π, where

φ̂ :

(
y1
y2

)
7→

 y−1
1

(
(y1 + b1)

2 y2 + b2
)

y−1
1

(
1+ b3y1+b2

y2(y1+b1)2

)  . (4.3)

The reduced map is symplectic, that is to say φ̂∗(ω̂) = ω̂, where the non-degenerate two-form
preserved by φ̂ is

ω̂ = dlogy1 ∧ dlogy2, π∗ω̂ = ω. (4.4)

In the original case where all parameters are 1, the reduced map (4.3) with b1 = b2 = b3 = 1
has period 4, because x2,n+4 = x2,n and x3,n+4/x21,n+4 = x3,n/x21,n for all n. In that case we can

construct two functionally independent first integrals in the plane, K(i),K(ii) say. Here we will
just focus on one of these, namely

K(i):=
∑3

i=0 (φ̂
∗)
i
(y1)

= y1y2 + y1 + 3y2 + 3 y2y1 +
y2
y21
+ 5

y1
+ 1

y2
+ 2

y21
+ 2

y1y2
+ 1

y21y2
,

(4.5)

which satisfies φ̂∗(K(i)) = K(i) when b1 = b2 = b3 = 1.
Next, we modify K(i) by inserting constant coefficients in front of each of the Laurent

monomials in y1,y2 that appear, fixing the coefficient of the first term to be 1 without loss of
generality, to obtain

K̂= y1y2 + c1y1 + c2y2 + c3
y2
y1

+ c4
y2
y21

+
c5
y1

+
c6
y2

+
c7
y21

+
c8
y1y2

+
c9
y21y2

. (4.6)

If we assume that these modified first integrals are preserved by the deformed map φ̂ given
by (4.3), then this puts a finite number of constraints on the coefficients ci and the parameters
bi, which leads to finding necessary and sufficient conditions for the deformed symplectic map
to be Liouville integrable. Thus we obtain the following result.

Theorem 4.1. For the deformed symplectic map (4.3) to admit a first integral of the form (4.6),
it is necessary and sufficient that the parameters bi should satisfy either

b1 = b2, b3 = 1, (4.7)

or

b2 = b3 = b21. (4.8)

If we fix b1 = β, then in the case that the constraint (4.7) holds, the first integral takes the form

K̂1 = y1y2 + y1 +(2β+ 1)y2 +β (β+ 2)
y2
y1

+β2 y2
y21

+
3β+ 2
y1

+
1
y2

+
2β
y21

+
2
y1y2

+
1
y21y2

,

(4.9)
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while in the case that (4.8) holds, the first integral is

K̂2 = y1y2 + y1 +(2β+ 1)y2 +β (β+ 2)
y2
y1

+β2 y2
y21

+
2β2 + 2β+ 1

y1
+

1
y2

+
2β2

y21

+
β2 + 1
y1y2

+
β2

y21y2
. (4.10)

Hence the map φ̂ given by (4.3) is Liouville integrable whenever either condition (4.7) or (4.8)
holds.

Thus we arrive at two 1-parameter families of integrable maps of the plane associated with
the deformation of the B3 cluster map, namely

φ̂1 :

(
y1
y2

)
7→

 y−1
1

(
(y1 +β)

2 y2 +β
)

y−1
1

(
1+ 1

y2(y1+β)

)  , (4.11)

which has the first integral K̂1 given by (4.9), and

φ̂2 :

(
y1
y2

)
7→

 y−1
1

(
(y1 +β)

2 y2 +β2
)

y−1
1

(
1+ β2(y1+1)

y2(y1+β)2

)  , (4.12)

with the first integral K̂2, as in (4.10). So each map has an invariant pencil of genus 1 curves
of degree 5 and bidegree (3, 2); that is too high for a QRT map, where the bidegree is (2, 2)
[4]. Clearly the maps coincide for β= 1 when the map is completely periodic with period 4
(corresponding to a pencil of elliptic curves with 4-torsion). However, it seems that the maps
cannot be birationally conjugate to one another for other values of β; one way to see this is to
look at the j-invariants of the curves in each pencil, which are rational functions of β and the
value of the invariant K̂j = κ (for j = 1,2, respectively): the factorizations of the two differ-
ent j-invariants have polynomial factors in their denominators that appear with quite different
degrees, and this could be used to show that there is no automorphism of C(β,κ) which trans-
forms one elliptic fibration into the other; or perhaps there is a geometrical way to see this
more easily. It is possible to see that the two maps cannot be conjugate to one another more
directly, by considering the fixed points: for generic β, in the affine plane C2 the map (4.11)
has three fixed points outside the line y1 = 0 where it is singular, whereas the map (4.12) only
has one fixed point outside this line.

4.2. The deformed map φ̂1 for B3

Let us consider the deformed map (4.11), which can be rewritten as the pair of recurrence
relations

y1,n+1y1,n= (y1,n+β)
2 y2,n+β,

y2,n+1y2,ny1,n (y1,n+β)= (y1,n+β)y2,n+ 1.
(4.13)

Following the same process as in the previous section, we study the singularity structures of
the deformed map (4.11) by observing the p-adic properties of iterates defined over Q. Then
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we find that there are two singularity patterns for y1,n and y2,n, namely

Pattern 1 : (y1,n,y2,n) = . . . ,
(
R,∞1

)
,
(
∞1,R

)
,
(
∞1,01

)
,
(
R,02

)
,
(
R,∞2

)
, . . .

Pattern 2 : (y1,n,y2,n) = . . . ,(0,R) , . . . .
(4.14)

This indicates that the y1,n and y2,n can be written in terms of tau functions τ n and ηn as

y1,n =
ηn

τn+2τn+3
, y2,n = ρn

τ 2n+1τn+2

τ 2n τn+4
, (4.15)

where the quantity ρn is an additional prefactor. However, substituting these expressions dir-
ectly into (4.13) gives rise to relations between tau functions that are not in the form of cluster
exchange relations. So in addition to p-adic analysis, we proceed to consider the singularity
patterns more closely via explicit analysis with the introduction of a small quantity ϵ.

A discrete dynamical system defined by a birational map can have two types of singularities:
the points in phase space at which the map is undefined, and the points where the Jacobian of
the map vanishes. From (4.11), one can see that the deformed map φ̂1 possesses a singularity
at y1 =−β. Performing singularity analysis by setting y1,n =−β+ ϵ, we find the confined
singularity pattern(

−β
C

)
→
(
−1
∞1

)
→
(
∞1

−1

)
→
(
∞1

01

)
→
(
−1
02

)
→
(
−β
∞2

)
→
(

C ′

−1/β

)
, (4.16)

where C,C ′ are regular values, and when ϵ→ 0 the subsequent terms are not indeterminate
(they are generic, regular values). By comparing (4.16) with (4.14), it is clear that (4.16) cor-
responds to Pattern 1, but withmore detail revealed. The detailed form of the singularity pattern
suggests another way to relate y1,n to the tau function τ n, after shifting by the parameter β,
expressing it as

y1,n =−β+ϑn
τn+5τn
τn+3τn+2

, (4.17)

where ϑn is another prefactor. Defining a new variable wn = y1 +β leads to a system of three
recurrence relations, expressed in terms of wn,y1,n and y2,n. Furthermore, subtracting the first
relation in (4.13) from wn times the second and removing a common factor of y1,n results in
simplifying the recurrence for y2,n, yielding the three equations

wn= y1,n+β,
y1,n+1y1,n= w2

ny2,n+β,
y2,n+1y2,nw2

n= y1,n+1 + 1.
(4.18)

The way that the tau function τ n appears in (4.17) suggests that there is a close connection
between the iteration of wn in (4.18) and the Lyness map.

Theorem 4.2. Under the iteration of (4.18), the quantity wn satisfies the Lyness recurrence

wn+1wn−1 = α̃wn+ β̃, (4.19)

where the coefficients along each orbit of the map φ̂1 are α̃= 1−β and β̃ = βK̂1 + 2β2 +
β+ 1.
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Proof. By following the same approach as used in the proof of theorem 3.4, after setting the
prefactor ϑn → 1 in (4.17), one can show that τ n satisfies a special Somos-7 relation of the
same form as (3.22), namely

τn+7τn = α̃τn+6τn+1 + β̃τn+3τn+4. (4.20)

where α̃= 1−β, and the coefficient β̃ is given as above in terms of β and the conserved
quantity K̂1. Then from (4.17) and the first relation in (4.18), it is clear that wn is given in
terms of the tau function τ n by

wn =
τn+5τn
τn+3τn+2

, (4.21)

and from this it is an immediate consequence that wn satisfies the Lyness recurrence (4.19)
with these coefficients, which are constant along each orbit.

As noted in the introduction, the special Somos-7 recurrence (4.20) corresponds to a cluster
algebra of rank 7, where (τn) is a sequence of cluster variables and the coefficients α̃, β̃ are
regarded as frozen variables; and in that setting, the associated exchange matrix has rank 2
(for further details, see [11]). In the discussion of the deformed C2 map, we already noted that
there is a close connection between this special Somos-7 relation and Somos-5. This leads to
a related result for the map defined by (4.13).

Theorem 4.3. Under iteration of (4.13), the quantity vn = y1,n+ 1 satisfies the Somos-5 QRT
map, in the form

vn+1vnvn−1 = α̂vn+ β̂ (4.22)

where the coefficients along each orbit of the map φ̂1 are given by α̂= K̃1 +β+ 3 and β̂ =
(β− 1)α̂.

Proof. This result, including the above formulae for the coefficients α̂, β̂, is a consequence
of theorem 1 in [19], which states that each invariant curve of the Lyness map is birationally
equivalent to an invariant curve corresponding to the Somos-5 QRT map, and hence there is
a direct correspondence between the orbits of the two maps, whenever the parameters of the
maps related to each other in a specific way. See also proposition B.2 in the second appendix
below.

Recall from the discussion around theorem 3.4 that a substitution of the form

vn =
τ̂n+4τ̂n+1

τ̂n+3τ̂n+2
(4.23)

relates (4.22) directly to the Somos-5 recurrence, that is

τ̂n+5τ̂n = α̂τ̂n+1τ̂n+4 + β̂τ̂n+2τ̂n+3. (4.24)

Now the substitution (4.23) and the definition of the quantity vn implies that

y1,n =−1+
τ̂n+4τ̂n+1

τ̂n+3τ̂n+2
,

but in general this is not compatible with the substitution (4.21) that relates wn to a solution
of (4.20), in the sense that the tau functions τ n and τ̂n need not be the same, but instead they
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are related by a gauge factor that depends on n. Rather, the most general way to relate vn to τ n
is to write

vn = y1,n+ 1= ξn
τn+4τn+1

τn+3τn+2
, (4.25)

with another prefactor ξn that depends on n. It will turn out that, with an appropriate choice of
gauge, this quantity is periodic with period 3. (See theorem 4.4 below, and appendix B.)

Observe that, with the extra variable v added to y1,y2 and w, the map defined by (4.13) is
equivalent to iteration of a system of four equations, namely

wn= y1,n+β,
y1,n+1y1,n= w2

ny2,n+β,
vn= y1,n+ 1,

y2,n+1y2,nw2
n= vn+1,

(4.26)

and upon substituting for y1,y2 from (4.15), for w from (4.17), and for v from (4.25) the most
general set of relations between the tau functions is found to be the following:

ϑn τn+5τn = β τn+3τn+2 + ηn,

ηn+1ηn = ρn (ϑn)
2
τ 2n+5τ

2
n+1 +β τn+4τ

2
n+3τn+2,

ξnτn+4τn+1 = τn+3τn+2 + ηn,

ρn+1ρn (ϑn)
2
= ξn+1.

(4.27)

Theorem 4.4. There is a choice of gauge which fixes ϑn → 1 in the system (4.27), and implies
that ξn+3 = ξn and ρn+6 = ρn for all n, with

5∏
i=0

ρi =
3∏

j=1

ξj = K̂1 +β+ 3. (4.28)

In that case, the system corresponds to a lift of the deformed B3 map φ̂1 to a birational map
on an extended space of tau functions, that is

Φ : (τ0, τ1, τ2, τ3, τ4,η0,ρ0,β) 7→ (τ1, τ2, τ3, τ4, τ5,η1,ρ1,β) , (4.29)

where the sequences (τn), (ηn) possess the Laurent property, but the periodic coefficients ρn
do not.

Proof. By definition, in the context of the tau function formulae (4.15), a gauge transforma-
tion is any transformation of the tau functions which leaves the variables y1,n,y2,n invariant. If
we make the replacement τn → gn τn, where the dependence of gn on n is arbitrary, then clearly
replacing ηn → gn+2gn+3 ηn leaves y1,n the same, while replacing ρn → g2ngn+4g

−2
n+1g

−1
n+2 ρn

leaves y2,n unchanged. Now in (4.17), regardless of what non-zero prefactor ϑn appears to
begin with, we can always make the replacement ϑn → gn+2gn+3g−1

n g−1
n+5ϑn = 1; to be pre-

cise, this is achieved by specifying any solution of a linear difference equation of order 5 for
loggn. With that choice of gauge, the variable wn is given in terms of τ n by (4.21), and the
sequence (τn) satisfies the special Somos-7 recurrence (4.20), as in the proof of theorem 4.2.
However, as already mentioned above, in general the prefactor ξn appearing in (4.25) can-
not be simultaneously fixed to be 1 (rather, fixing ξn → 1, so that τ n satisfies the Somos-5
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relation (4.24), is a different gauge choice). Thus, in the ‘Somos-7 gauge’, where θn = 1, the
system of recurrences (4.27) becomes

τn+5τn= β τn+3τn+2 + ηn,
ηn+1ηn= ρn τ

2
n+5τ

2
n+1 +β τn+4τ

2
n+3τn+2,

ξn+1 τn+5τn+2= τn+4τn+3 + ηn+1,
ρn+1ρn= ξn+1

(4.30)

(having shifted n→ n+ 1 in the third relation). In the above, an extended ‘cluster’ of initial
data, including the fixed parameter (‘frozen variable’) β, is given by (τ0, τ1, τ2, τ3, τ4,η0,ρ0,β),
and via (4.15) this fixes initial data y0 = (y1,0,y2,0) for the map φ̂1. Now iterating each of the
equations (4.30) one by one, in order, starting from n= 0, produces in turn τ5,η1, ξ1,ρ1, giving
the image of the lifted map Φ as in (4.29). Notice that the intermediate step of finding ξ1 can
be skipped: for each n, by combining the last two relations, we have

ρn+1ρn =
τn+4τn+3 + ηn+1

τn+5τn+2
.

Hence the first two relations in (4.30) appear like a pair of cluster exchange relations, with one
of them having a coefficient ρn that is non-autonomous (dependent on n). Upon iteration of the
map Φ, we obtain the three sequences (τn), (ηn), (ρn), which together specify the orbit yn =
φ̂n1(y0), as well as the sequence (ξn) of intermediate values, which appear in the formula (4.25)
for the quantities vn. Now consider the ring of Laurent polynomials

R= Z
[
β,τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 , τ±1

4 ,η±1
0 ,ρ±1

0

]
.

Direct calculation of three steps of Φ shows by inspection that ξ1, ξ2 ∈R, and

ξ3 =
τ3τ2 + η0
τ4τ1

= ξ0 ∈R,

hence the sequence (ξn) has period 3, or in other words (T 3 − 1)ξn = 0 (where T denotes the
shift operator that sends n→ n+ 1). Then, upon taking logarithms on both sides of the fourth
relation in (4.30), we have

(T + 1) logρn = logξn+1 =⇒
(
T 3 − 1

)
(T + 1) logρn = 0

=⇒
(
T 6 − 1

)
logρn =

(
T 3 − 1

)(
T 3 + 1

)
logρn = 0,

hence the sequence (ρn) has period 6, as required. However, while ρ0,ρ1,ρ5 ∈R, we find that
ρ2,ρ3,ρ4 6∈ R: the latter three terms have non-monomial factors appearing in their denomin-
ators, so they cannot be cluster variables. A direct calculation shows that the product of three
adjacent ξn is

ξ1ξ2ξ3 = K̂1 +β+ 3 ∈R,

where here K̂1 is used to denote the value of the invariant along an orbit of the lifted map Φ,
considered as a function of τ0, τ1, τ2, τ3, τ4,η0,ρ0,β; hence K̂1 ∈R, and using the fourth rela-
tion in (4.30) once more, we see that the latter product is equal to ρ0ρ1ρ2ρ3ρ4ρ5, so (4.28)
holds, as required. Next, we claim that τn,ηn ∈R. To see this, we just need to show that
τn ∈R for all n, since if this holds then the first relation in (4.30) implies immediately that
ηn = τn+5τn−β τn+3τn+2 ∈R. So we consider the aforementioned fact that, due to the gauge
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choice, τ n satisfies the special Somos-7 recurrence (4.20), which has coefficients α̃, β̃, and
there is an associated Lyness invariant quantity (see [19], for instance), which we denote by K̃.
Then, by a minor modification of theorem 3.7 in [16] and its proof, it follows that the Somos-7
recurrence has the strong Laurent property, in the sense that τn ∈ R̃ for all n⩾ 0, where

R̃= Z
[
α̃, β̃, K̃, τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 , τ4, τ5, τ6

]
.

(For further details, see theorem B.5 in the second appendix below.) By inspection of the first
two iterates of Φ, we can verify directly that τ5, τ6 ∈R, while from theorem 4.2 we have α̃=
1−β, β̃ = βK̂1 + 2β2 +β+ 1 and a short explicit calculation with computer algebra shows
that K̃= K̂1 + 2β+ 2. Since, as already noted, K̂1 ∈R on an orbit ofΦ, it follows that α̃, β̃, K̃ ∈
R, hence R̃ is a subring ofR. Thus we see that τn ∈R for n⩾ 0, and an analogous argument
extends this to n< 0 and completes the proof of the theorem.

Remark 4.5. The first two relations in (4.30) resemble exchange relations in a cluster algebra,
but the third and fourth relations (which define ρn) do not. Thus, the sequence of tau functions
cannot be produced by cluster exchange relations with frozen variables alone. Nevertheless,
this can be considered an ‘almost Laurentification’ of the deformed map: the tau functions τ n
and ηn are Laurent polynomials, while the periodic quantities ρn only contain a finite number
of non-monomial factors in their denominators, so this is an example of the extended Laurent
property [28], where only a finite extension of the ring R is required. The coefficients ρn are
reminiscent of y-variables in a cluster algebra with coefficients, which can be used to generate
non-autonomous difference equations, including those of discrete Painlevé type [17, 32]. We
have attempted to construct the relations (4.30) from a suitable Y-system, by pulling back the
two-form (4.4) to derive an associated exchange matrix (cf. the formulae (4.42)–(4.44) for the
case of the map φ̂2 below), but as yet we have not succeeded in doing this in a consistent way.

4.3. Deformed map φ̂2 for B3

The action of the deformed map φ̂2 given by (4.12) is equivalent to iteration of the coupled
pair of recurrences

y1,n+1y1,n= w2
ny2,n+β2,

y2,n+1y2,ny1,nw2
n= w2

ny2,n+β2 (y1,n+ 1) ,
(4.31)

where for convenience we made use of the same variable wn = y1,n+β as in the previous
discussion of themap φ̂1. Subtracting the first relation from the second gives rise to a simplified
relation for y2,n+1, and thus iterates of the map are generated by the system of four relations

wn= y1,n+β,
y1,n+1y1,n= w2

ny2,n+β2,
vn+1= y1,n+1 +β2,

y2,n+1y2,nw2
n= vn+1,

(4.32)

where, in contrast to (4.26), there is a different definition for the quantity vn = y1,n+β2. By
looking into the prime factorization of some orbits of (4.32) defined over Q, we observe the
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following confined singularity patterns:

Pattern 1 : (y1,n,y2,n,wn) = . . . ,(R,0,R) ,(R,∞,R) ,(∞,R,∞) ,(∞,0,∞) ,(R,0,R) , . . .

Pattern 2 : (y1,n,y2,n,wn) = . . . ,(R,R,0) ,
(
R,∞2,0

)
, . . .

Pattern 3 : (y1,n,y2,n,wn) = . . . ,(0,R,R) , . . . .
(4.33)

(The corresponding patterns for vn have been omitted.) We introduce tau functions τn,σn and
ηn which correspond to Patterns 1,2 and 3, respectively, such that y1,n, y2,n and wn = y1,n+β
can be written as

y1,n =
ηn

τn+2τn+1
, y2,n =

τn+4τn+1τn
σ2
nτn+3

, wn =
σn+1σn
τn+2τn+1

, (4.34)

and then the fourth equation in (4.32) immediately implies that

vn = y1,n+β2 =
τn+4τn−1

τn+2τn+1
. (4.35)

Upon inspecting the structure of a particular singularity further by approaching it in the
limit of a small parameter ϵ→ 0, one can see that the singularities of y1,n and y2,n in Pattern 1
correspond to the sequence(

C

− β2(C+1)
C2+2βC+β2

)
→
(
−β2

01

)
→
(
−1
∞1

)
→
(
∞1

−1

)
→
(
∞1

01

)
→
(
−1
01

)
→
(
−β2

C ′

)
(4.36)

with C,C ′ being regular values, which propagates from the point (C,− β2(C+1)
C2+2βC+β2 ) where

the Jacobian of the deformed map φ̂2 is zero. Noting that the value y1 =−1 appears in the
singularity pattern, we can consider another variable un = y1,n+ 1, and find that

un = y1,n+ 1= ξn
τn+3τn
τn+2τn+1

, (4.37)

where the prefactor ξn cannot be removed without a change of gauge, which would modify
the form of some of the expressions in (4.35). (As explained in appendix B, the quantity ξn is
periodic with period 3.)

Notice that the ratios of tau functions in (4.35) and (4.37) are identical to the substitutions
associated with the Lyness map and Somos-5 QRT map, respectively. This suggests that the
quantities vn = y1,n+β2 and un = y1,n+ 1 should provide solutions of these maps under iter-
ation, as described by the following statement.

Theorem 4.6. The quantities vn generated under iteration of the system of recurrences (4.32)
satisfy the Lyness map which is equivalent to the recurrence

vn+1vn−1 = γvn+ δ, (4.38)

where the coefficients along each orbit of the φ̂2 are specified by γ = 1−β2 and δ = β2K̂2 +
2β(β3 + 1), and the associated sequence of tau functions (τn) related via (4.35) satisfies the
Somos-7 recurrence

τn+7τn = γ τn+6τn+1 + δ τn+4τn+3. (4.39)
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The corresponding iterates of un = y1,n+ 1 satisfy the Somos-5 QRT map which is given by
the recurrence

un+1unun−1 = γ̂un+ δ̂, (4.40)

where γ̂ = K̂2 + 2β+ 2 and δ̂ = (β2 − 1)γ̂.

Proof. This follows from analogous arguments to those used in proving theorems 4.2 and 4.3.
For a more detailed explanation of the connection between the Lyness map (4.38) and the
Somos-5 QRT map (4.40), see proposition B.2 in the second appendix below.

The tau function expressions (4.34) and (4.35) can be substituted directly into (4.32), giving
rise to the system of equations

σn+1σn = βτn+2τn+1 + ηn,

ηn+1ηn = τn+4τnσ
2
n+1 +β2τn+3τ

2
n+2τn+1,

τn+5τn = β2τn+3τn+2 + ηn+1.

(4.41)

Since the three recurrences above are all of the right form for an exchange relation, it appears
likely that their iteration can be described by a sequence of cluster mutations in an appropriate
cluster algebra. To verify this is the case, we set the initial cluster to be

x̃= (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7) = (η0,σ0, τ0, τ1, τ2, τ3, τ4) ,

and then determine a new exchange matrix via the pullback of the symplectic form (4.4) by the
rational map π̃ : C7 → C2 defined by the equations for (y1,0,y2,0) ∈ C2 given by setting n= 0
in (4.34). As a result, one finds a presymplectic form on the space of tau functions, written in
terms of the cluster variables x̃j for 1⩽ j⩽ 7 as

ω̃ = π̃∗ω =
∑
ij

Ω̃ijdlog x̃i ∧ dlog x̃j,

where the 7× 7 matrix Ω̃ is given by

Ω̃ =



0 −2 1 1 0 −1 1
2 0 0 −2 −2 0 0
−1 0 0 1 1 0 0
−1 2 −1 0 1 1 −1
0 2 −1 −1 0 1 −1
1 0 0 −1 −1 0 0
−1 0 0 1 1 0 0


. (4.42)

Given the skew-symmetric matrix Ω as above, a skew-symmetrizable exchange matrix B̃
such that B̃D̃= Ω̃ can be determined by post-multiplying with the diagonal matrix D̃−1 =
diag(1,1/2,1,1,1,1,1), to obtain

B̃= Ω̃D̃−1 =
(
B̃ij
)
=



0 −1 1 1 0 −1 1
2 0 0 −2 −2 0 0
−1 0 0 1 1 0 0
−1 1 −1 0 1 1 −1
0 1 −1 −1 0 1 −1
1 0 0 −1 −1 0 0
−1 0 0 1 1 0 0


. (4.43)
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Thematrix B̃ above generates a coefficient-free cluster algebra, but both the parameterβ and
its square appear in front of some of the terms in (4.41). To incorporate this into the exchange
relations, we extend the initial cluster by adding the frozen variable x̃8 = β and adjoining an
extra row with entries (0,1,0,0,0,0,−2) to the exchange matrix B̃. Then we can obtain the
following statement, which constitutes the Laurentification of the deformed B3 map φ̂2.

Theorem 4.7. Let (x̂, B̂) be given as an initial seed which is composed of the extended initial
cluster

x̂= (x̃j)1⩽ j⩽8 = (η0,σ0, τ0, τ1, τ2, τ3, τ4,β)

together with the associated extended exchange matrix

B̂=



0 −1 1 1 0 −1 1
2 0 0 −2 −2 0 0
−1 0 0 1 1 0 0
−1 1 −1 0 1 1 −1
0 1 −1 −1 0 1 −1
1 0 0 −1 −1 0 0
−1 0 0 1 1 0 0
0 1 0 0 0 0 −2


, (4.44)

and consider the permutation ρ= (34567). Then the iteration of the cluster map ψ =
ρ−1µ̃3µ̃1µ̃2 is equivalent to the system of recurrences (4.41), and for all n ∈ Z the tau functions
ηn,σn, τn are elements of the Laurent polynomial ring Z[β,η±1

0 ,σ±1
0 , τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 , τ±1

4 ],
with positive integer coefficients.

Proof. Let us consider the seed (x̂ ′, B̂ ′) = µ̃3µ̃1µ̃2(x̂, B̂) = that arises from applying the
sequence of mutations µ̃3µ̃1µ̃2 to the given initial seed, where (as usual) we use µ̃j to denote
mutations in the cluster algebra associated with Laurentification of the deformed map. The
new cluster is x̂ ′ = (x̃ ′1, x̃

′
2, x̃

′
3, x̃4, x̃5, x̃6, x̃7, x̃8), where the new cluster variables (with primes)

are obtained from the exchange relations

x̃ ′2x̃2 = x̃8x̃4x̃5 + x̃1,

x̃ ′1x̃1 = (x̃8)
2 x̃4 (x̃5)

2 x̃6 +(x̃2
′)
2
x̃3x̃7,

x̃ ′3x̃3 = (x̃8)
2 x̃5x̃6 + x̃1

′,

(4.45)

while the mutated exchange matrix B̂ ′ = µ̃3µ̃1µ̃2(B̂) is given by

0 −1 1 1 1 0 −1
2 0 0 0 −2 −2 0
−1 0 0 0 1 1 0
−1 0 0 0 1 1 0
−1 1 −1 −1 0 1 1
0 1 −1 −1 −1 0 1
1 0 0 0 −1 −1 0
0 1 −2 0 0 0 0


. (4.46)

For the new cluster variables, if we identify x̃1 ′ = η1, x̃2 ′ = σ1, x̃3 ′ = τ5 and replace all vari-
ables x̃i for 4⩽ i⩽ 8with the corresponding tau functions and frozen variable from the original
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cluster x̂, then we find that the exchange relations (4.45) are equivalent to the recurrence for-
mulae (4.41) for n= 0. As for the exchange matrix B̂ ′, we can rewrite it in the following way:

µ̃3µ̃1µ̃2

(
B̂
)
= P1B̂P2 = ρ

(
B̂
)
.

In the above, the action of the permutation ρ= (34567) is equivalent to applying the row and
column permutation matrices

P1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


, P2 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0


. (4.47)

Hence we see that the cluster map defined by ψ = ρ−1µ̃3µ̃1µ̃2 satisfies ψ(B̂) = B̂, and its
action on any cluster is equivalent to the shift n→ n+ 1 on the indices of the tau functions.
Since they are cluster variables, these tau functions exhibit the Laurent property. Moreover,
the cluster variables are Laurent polynomials with positive integer coefficients, due to the
positivity property [13, 25].

4.4. Tropicalization and degree growth for deformed B3 cluster map

We have seen that deformation of the periodic dynamics in type B3 yields two integrable sym-
plectic maps, but only the second map φ̂2 given by (4.31) has been shown to correspond to
mutations in a cluster algebra, as in theorem 4.7. By the Laurent property, we can write the
tau functions generated by the system (4.41) in the form

ηn =
N(1)
n (x̂)

x̂dn
, σn =

N(2)
n (x̂)
x̂en

, τn =
N(3)
n (x̂)

x̂fn
,

and find that the corresponding d-vectors dn,en, fn ∈ Z7 satisfy the (max,+) tropical relations

en+1 + en =max(fn+2 + fn+1,dn) ,

dn+1 +dn =max(fn+4 + fn+ 2en+1, fn+3 + 2fn+2 + fn+1) ,

fn+5 + fn =max(fn+3 + fn+2,dn+1) ,

(4.48)

where, as usual, the tropical relations do not contain analogues of coefficient terms associated
with the parameter β, since the denominators of the tau functions only depend on the non-
frozen variables η0,σ0, τ0, τ1, τ2, τ3, τ4 in the initial cluster x̂.

To determine the growth of the d-vectors in this case, we introduce the tropical analogues
of the substitutions (4.34) and (4.35), namely

Y1,n = dn− fn+2 − fn+1, Y2,n = fn+4 − fn+3 + fn+1 + fn− 2en,
Wn = en+1 + en− fn+2 − fn+1, Vn = fn+4 − fn+2 − fn+1 + fn−1,

(4.49)

which turn out to produce periodic quantities under iteration. These substitutions allow us to
derive the tropical version of the system (4.32) for the map φ̂2.
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Lemma 4.8. The combinations of d-vectors defined by (4.49) satisfy the tropical analogue of
the deformed B3 map φ̂2, given by the following system of four equations:

Wn= [Y1,n]+ ,

Y1,n+1 +Y1,n= [2Wn+Y2,n]+ ,

Vn+1= [Y1,n+1]+ ,

Y2,n+1 +Y2,n+ 2Wn= Vn+1.

(4.50)

Given arbitrary initial values (Y1,0,Y2,0) ∈ R2, every component of this system is periodic with
period 4.

Proof. The (max,+) equations relating Y1,n,Y2,n,Wn and Vn follow directly from the substi-
tutions (4.49) and the tropical analogues of the exchange relations that produce (4.48). Observe
that, from the point of view of the dynamics of the main variablesY1,n,Y2,n, the third equation
in (4.50) is redundant, since from the first equation it is clear that

Vn =Wn (4.51)

for all n, so we could omit the third equation and replace the fourth one by

Y2,n+1 +Y2,n+ 2Wn =Wn+1.

For the vector system (4.50), a set of initial data consists of a pair of vectors Y1,0,Y2,0, but
we can view each component as a piecewise linear map φ̂2,trop : R2 → R2, and check directly
that any pair arbitrary initial values (Y1,0,Y2,0) ∈ R2 produces a sequence of points in the plane
that repeats with period 4; or in other words, (φ̂2,trop)

4 = id. This can be verified by case-by-
case analysis, which we leave to the reader.

We now show howwe can use Somos sequences to simplify the calculation of degree growth
for tau functions, by using a tropical analogue of theorem 4.6.

Lemma 4.9. The d-vectors fn ∈ Z7 that specify the denominators of tau functions τ n generated
by the system (4.48) satisfy the tropical Somos-7 relation

fn+7 + fn =max(fn+6 + fn+1,c+ fn+4 + fn+3) , (4.52)

and the corresponding quantity Vn defined in (4.49) satisfies the ultradiscrete Lyness map

Vn+1 +Vn−1 =max(Vn,c) , (4.53)

where c is the constant vector

c= (2,2,1,1,1,1,1)T .

Proof. Upon substituting the expression τn = N(3)
n (x̂)/x̂fn into the Somos-7 recurrence (4.39)

and comparing denominators on each side, we see that the first term on the right has denom-
inator x̂fn+6+fn+1 , since the coefficient γ in front of this term is a constant that is independent
of cluster variables; but the coefficient δ appearing in front of the second term is linear in the
first integral K̂2, as given in (4.10), and pulling this back to a function of the tau functions
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via the map π̃ : C7 → C2 defined by the substitutions for y1,0,y2,0 in (4.34) gives a Laurent
polynomial that takes the form

π̃∗ (δ) =
P(x̂)

η20σ
2
0τ0τ1τ2τ3τ4

,

for a certain polynomial P, which means that the denominator of the second term on the right-
hand side is x̂c+fn+4+fn+3 , with the given constant vector c. Hence fn satisfies the given (max,+)
version of Somos-7, and it follows immediately that Vn is a solution of the corresponding
analogue of the Lyness map (4.38), which is the relation (4.53) with the same constant c.

The seed x̂= (η0,σ0, τ0, τ1, τ2, τ3, τ4,β) gives the initial cluster of d-vectors specified by the
matrix

(d0 e0 f0 f1 f2 f3 f4 ) =−I, (4.54)

where I here denotes the 7× 7 identity matrix. This provides the initial data

Y1,0 = (−1,0,0,1,1,0,0)T , Y2,0 = (0,2,−1,−1,0,1,−1)T

for the vector form of the map φ̂2,trop, as in (4.50), and gives

V0 =W0 = [Y1,0]+ = (0,0,0,1,1,0,0)T .

As for the other root systems considered previously, the precise form of these vectors, and the
fact that they produce an orbit with period 4, is related to the Zamolodchikov periodicity of the
original B3 cluster map, given by (4.2) with b1 = b2 = b3 = 1. After applying a single iteration
of the map φ̂2,trop to these initial vectors, we find

Y1,1 = [Y1,1]+ = V1 =W1 = (1,2,0,0,1,1,0)T , Y2,1 = (1,0,1,−1,−1,0,1)T .

Note that, since the sequences Y1,n and Y2,n both have period 4, it follows that the associated
sequence of quantities Vn = [Y1,n]+ does as well, and this is the same asWn, as already noted
in (4.51). By making further iterations of φ̂2,trop, we record that the next two values of the
vector Vn are

V2 = (2,2,1,0,0,1,1)T , V3 = (1,0,1,1,0,0,1)T ,

with all subsequent terms determined from Vn+4 = Vn.
Another way to see the periodicity of the quantities Vn is by noting that (4.53), or rather its

scalar version

Vn+1 +Vn−1 =max(Vn,c) , (4.55)

is just one particular example of the family of ultradiscrete QRT maps considered by Nobe. In
the specific case of interest here, the first two components of the vectors V0 and V1, and the
first two components of the vector c, correspond to two different period 4 orbits of the scalar
relation (4.55) with parameter value c= 2, namely

(0,1)→ (1,2)→ (2,1)→ (1,0) and (0,2)→ (2,2)→ (2,0)→ (0,0) , (4.56)
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respectively, while the other five components of these vectors correspond to the same period
4 orbit of (4.55) with parameter value c= 1, that is

(0,0)→ (0,1)→ (1,1)→ (1,0) . (4.57)

However, note that, from the result of theorem 4 in [30], choosing different initial data and/or
different values of c in (4.55) can produce orbits with a different (arbitrarily large) period.

Theorem 4.10. The d-vectors dn,en, fn satisfying the (max,+) system (4.48) all lie in the ker-
nel of the linear difference operator

L̃=
(
T 2 + 1

)(
T 2 − 1

)2 (T 3 − 1
)
.

For the tau functions ηn,σn, τn generated by (4.41), the leading order degree growth of their
denominators is given by

dn = 2an2 +O(n) , en = an2 +O(n) , fn = an2 +O(n) ,

with a=
1
24

(2,2,1,1,1,1,1)T .

Proof. By definition, we have

Vn =
(
T 5 −T 3 −T 2 + 1

)
fn−1,

but since the sequence Vn has period 4, this gives(
T 4 − 1

)
Vn+1 =

(
T 4 − 1

)(
T 2 − 1

)(
T 3 − 1

)
fn = L̃ fn = 0.

Then, given that fn lies in the kernel of L̃, from the first formula in (4.49) we find

L̃dn = L̃ (fn+2 + fn+1 +Y1,n) = L̃ fn+2 + L̃ fn+1 +
(
T 2 − 1

)(
T 3 − 1

)
(Y1,n+4 −Y1,n) = 0,

where we used the fact that Y1,n has period 4. Similarly, the second formula in (4.49) and the
fact that Y2,n has period 4 gives

L̃en =
1
2
L̃ (fn+4 − fn+3 + fn+1 + fn−Y2,n) = 0.

Thus the first part of the statement is proved.
For the second part of the statement, note that the value of V0 calculated above requires

that

f−1 = (0,0,0,0,0,0,1)T ,

and we can use the relation

fn+4 = Vn+ fn+2 + fn+1 − fn−1,

together with the four-periodicity of Vn, to extend the initial values given in (4.54) and thereby
produce (fj)−1⩽ j⩽7, providing the required number of terms to completely solve the initial
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value problem for the linear difference equation L̃ fn = 0. In passing, we note that this sequence
of d-vectors has the particular form

fn =
(
f(1)n , f(2)n , f(3)n+4, f

(3)
n+3, f

(3)
n+2, f

(3)
n+1, f

(3)
n

)
,

given in terms of the three scalar sequences(
f(1)n

)
: 0,0,0,0,0,0,1,2,2,3,5,6,7,9,11,13,15,17,20,23,25,28,32, . . . ,(

f(2)n

)
: 0,0,0,0,0,0,2,2,2,4,6,6,8,10,12,14,16,18,22,24,26,30,34, . . . ,(

f(3)n

)
: 1,0,0,0,0,−1,0,0,0,0,1,1,2,2,3,4,5,5,7,8,9,10,12, . . . ,

which determine the degrees of η0, σ0 and τ j for 0⩽ j⩽ 4, respectively, that appear in the
denominator of the tau functions τ n. For the leading order quadratic growth of fn we find

fn ∼ an2 where (T + 1)
(
T 4 − 1

)(
T 3 − 1

)
fn = 48a= (4,4,2,2,2,2,2)T ,

with the value of the constant a being determined above from the initial values f−1, . . . , f7.
Then from the first two formulae in (4.49), together with the four-periodicity of Y1,n and Y2,n,
we have

dn ∼ fn+2 + fn+1 ∼ 2fn ∼ 2an2, en ∼
1
2
(fn+4 − fn+3 + fn+1 + fn)∼ fn ∼ an2,

with the same constant a. This completely fixes the quadratic leading order behavior of the
d-vectors, and in each case the correction term is O(n).

Remark 4.11. Although they do not appear to be generated by simple cluster mutations, the
Laurent polynomials τn,ηn produced by iteration of (4.29), associated with the other deformed
B3 map φ̂1, are also connected to a Somos-7 recurrence, namely (4.20), so it should be possible
to calculate their degrees by adapting the preceding arguments suitably.

5. Integrable deformations of the D4 cluster map

In this section, we consider the deformation of a cluster map in 4D, which is composed of
mutations in the cluster algebra of type D4. Wewill show that there are two essentially different
choices of the deformation parameters that yield a discrete integrable system, each of which
lifts to a cluster map in higher dimensions via Laurentification.

5.1. Deformed D4 cluster map

The Cartan matrix for the D4 root system is
2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

 . (5.1)
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The corresponding exchange matrix is

B=


0 −1 0 0
1 0 −1 −1
0 1 0 0
0 1 0 0

 . (5.2)

The deformed mutations with parameters aj,bj for 1⩽ j⩽ 4 take the form

µ1 : (x1,x2,x3,x4) 7→ (x ′1,x2,x3,x4) , x1x ′1 = b1 + a1x2
µ2 : (x ′1,x2,x3,x4) 7→ (x ′1,x

′
2,x3,x4) , x2x ′2 = b2 + a2x3x4x ′1

µ3 : (x ′1,x
′
2,x3,x4) 7→ (x ′1,x

′
2,x

′
3,x4) , x3x ′3 = b3 + a3x ′2

µ4 : (x ′1,x
′
2,x

′
3,x4) 7→ (x ′1,x

′
2,x

′
3,x

′
4) , x4x ′4 = b4 + a4x ′2.

(5.3)

The deformed map φ = µ4µ3µ2µ1 reduces to the original cluster map when we fix the para-
meters ai = 1= bi for all i. The Coxeter number for D4 is 6, and the periodicity for the cluster
map is period 4= 1

2 (6+ 2), i.e.

φ · (x,B) = (φ(x) ,B) (with aj = 1= bj) =⇒ φ4 (x) = x. (5.4)

As usual, we can reduce the number of parameters in the problem by rescaling each of the
cluster variables independently, xi → λixi, and choose the scalings so that the parameters aj
are removed and the sequence of deformed mutations can be rewritten as

x1,n+1x1,n= x2,n+ b1,
x2,n+1x2,n= x3,nx4,nx1,n+1 + b2,
x3,n+1x3,n= x2,n+1 + b3,
x4,n+1x4,n= x2,n+1 + b4.

(5.5)

Since the exchange matrix is skew-symmetric, by the result of theorem 1.3 in [20] the
deformed map preserves the presymplectic form ω given by

ω =
1
x1x2

dx1 ∧ dx2 +
1
x2x3

dx2 ∧ dx3 +
1
x2x4

dx2 ∧ dx4. (5.6)

Now since B is degenerate and of rank 2, one can reduce the birational map φ from 4D to a
2-dimensional symplectic map. The null space and image of B are given by

ker(B) =< (1,0,0,1)T ,(1,0,1,0)>, im (B) =< (0,1,0,0)T ,(−1,0,1,1)T > . (5.7)

Hence the null distribution of the presymplectic form ω is spanned by the two commuting
vector fields v1 = x1∂x1 + x4∂x4 and v2 = x1∂x1 + x3∂x3 . The space of leaves of the null foliation
has local coordinates

y1 = x2, y2 =
x3x4
x1

. (5.8)

Then the rational map defined by

π : C4 → C2

x= (x1,x2,x3,x4) 7→ y= (y1,y2)
(5.9)
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reduces the cluster map φ to the 2D symplectic map

φ̂ : C2 → C2

y= (y1,y2) 7→
(
(b1 + y1)y2 + b2

y1
,
(b4 + y2)y1 + b1y2 + b2)((b3 + y2)y1 + b1y2 + b2)

y2y21(b1 + y1)

)
,

(5.10)

which is intertwined with φ via π, so that

φ̂ ·π = π ·φ, φ̂∗ (ω̂) = ω̂,

where π∗(ω̂) = ω is the pullback of the symplectic form

ω̂ =
1
y1y2

dy1 ∧ dy2 (5.11)

under π. When all of the parameters bi = 1, the reduced map φ̂ has period 4, and one of the
first integrals associated with this map takes the form

K=
3∑

i=0

(φ̂∗)
i
(y1) =

(1+ y1)
3
+
(
2+ 5y1 + y31

)
y2 +(1+ y1)

2 y22
y21y2

. (5.12)

By applying the same procedure as in the previous examples, we suppose that there is an
analogous first integral that is compatible with the deformed map (5.10), taking the form

K̃= y1 +α1y2 +
α2y1
y2

+
α3y2
y1

+
α4

y2
+
α5

y1
+
α6y2
y21

+
α7

y2y1
+
α8

y21
+

α9

y2y21
(5.13)

where αj are undetermined parameters. Then imposing the requirement that K̃ should be pre-
served, so that φ̂∗(K̃) = K̃, constrains these parameters and leads us to find necessary and
sufficient conditions for the map φ̂ to be integrable, as follows.

Theorem 5.1. For the deformed symplectic map φ̂ to admit the first integral (5.13), it is neces-
sary and sufficient for the parameters bi to satisfy one of the following sets of conditions:

(1) b2 = b4 = b1b3; (5.14a)

(2) b1 = b2 = b3b4; (5.14b)

(3) b2 = b3 = b1b4. (5.14c)

Hence in each of these cases, the deformed map φ̂ given by (5.10) is Liouville integrable,
preserving the function

K̃= y1 + y2 +
y1
y2

+
(b1 + 1)y2

y1
+
b3 + b4 + 1

y2
+
b1 + b2 + b3 + b4 + 1

y1
+
b1y2
y21

+
b3b4 + b3 + b4

y1y2
+

2b2
y21

+
b3b4
y21y2

(5.15)

Remark 5.2. Observe that the form of the original deformed mutations (5.5) remains invariant
under switching x3 ↔ x4, b3 ↔ b4, and similarly for the form of the reduced map φ̂ in (5.10)
and the first integral (5.15) when these last two parameters are switched. Hence cases (1) and
(3) are equivalent to one another, and (1) and (2) are really the only two distinct cases to
consider in theorem 5.1.
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For the two essentially distinct cases of the reduced map obtained by deformation of the
D4 cluster map, as identified in the preceding theorem, we have two 2-parameter families of
integrable maps given by φ̂1, φ̂2 respectively, where

φ̂1 :

(
y1
y2

)
7→
(
(b1 + y1)y2 + b1b3

y1
,

[(b1 + y1)y2 + b1b3 (y1 + 1)] · [y2 + b3]
y21y2

)
(5.16)

φ̂2 :

(
y1
y2

)
7→
(
(b3b4 + y1)y2 + b3b4

y1
,

[(b4 + y2)y1 + b3b4 (y2 + 1)] · [(b3 + y2)y1 + b3b4 (y2 + 1)]
b4y21y2 (b3b4 + y1)

)
(5.17)

where the coefficients in each map are fixed in cases (1) and (2), respectively. The correspond-
ing invariant functions K̃1, K̃2 are given by

K̃1 = y1 + y2 +
y1
y2

+
(b1 + 1)y2

y1
+
b3 + b1b3 + 1

y2
+
b1 + 2b1b3 + b3 + 1

y1
+
b1y2
y21

+
b3 (b1b3 + b1 + 1)

y1y2
+

2b1b3
y21

+
b1b23
y21y2

, (5.18)

K̃2 = y1 + y2 +
y1
y2

+
(b3b4 + 1)y2

y1
+
b3 + b4 + 1

y2
+

2b3b4 + b3 + b4 + 1
y1

+
b3b4y2
y21

+
b3b4 + b3 + b4

y1y2
+

2b3b4
y21

+
b3b4
y21y2

, (5.19)

which are the particular relevant cases of the function (5.15). The level sets of each of the latter
functions gives a pencil of plane curves, of which the generic member has genus 1 and hence
corresponds to an elliptic curve. It turns out that the two functions above become equivalent to
one another when b3 = 1, upon identifying the remaining parameters b1 and b4 in each case,
although the associated maps φ̂1, φ̂2 remain distinct from one another.

Remark 5.3. Since both sets of curves corresponding to K̃1 and K̃2 have bidegree (3,2), they
do not correspond to QRTmaps, which come from curves of bidegree (2,2) (that is, biquadratic
curves).

5.2. The deformed map φ̂1 for D4

The iteration of the deformed map φ̂1 can be written as the following system of recurrence
relations:

y1,n+1y1,n= (b1 + y1,n)y2,n+ b1b3
y2,n+1y2,ny21,n= ((b1 + y1,n)y2,n+ b1b3 (y1,n+ 1))(y2,n+ b3) .

(5.20)

Applying the p-adic method as used in previous cases, we choose some rational values for the
parameters and initial conditions, and observe the orbit of the map φ̂1 as a sequence in Q2.
Then we find three different singularity patterns, given by

Pattern 1 : (y1,n,y2,n) = . . . ,
(
R,01

)
,
(
R,∞1

)
,
(
∞1,∞1

)
,
(
∞1,R

)
,
(
R,01

)
,(R,R) . . .

Pattern 2 : (y1,n,y2,n) = . . . ,
(
01,R

)
, . . .

Pattern 3 : (y1,n,y2,n) = . . . ,
(
R,01

)
,
(
R,∞1

)
. . . .

(5.21)
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By associating a tau function with each pattern, so that τn,rn,σn correspond to patterns 1,2,3
respectively, we are led to the change of variables

y1,n =
rn

τn−1τn
, y2,n =

σn+1τn−2τn+2

σnτnτn+1
. (5.22)

If we directly substitute these variables into the recurrences (5.21), thenwe obtain the relations

rn+1rn =
(b1τn−1τn+ rn)σn+1τn−2τn+2 + b1b3τn−1τ

2
n τn+1σn

σn

σn+2τn+3 =

[b1b3σnτnτn+1 + b1σn+1τn−2τn+2]
· [(b1τn−1τn+ rn)σn+1τn−2τn+2 + b1b3σnτnτn+1 (τn−1τn+ rn)]

b1r2nτn−2σn
.

(5.23)

To simplify the above relations and decouple them in such a way that they represent
exchange relations, it is helpful to observe the full singularity pattern in 4D, which emerges
from applying the sequence of deformed mutations (5.5) subject to the conditions b2 = b4 =
β = b1b3. Using the p-adic method in this case suggests making a transformation on the level
of the x-variables, defined by

x1,n = ρn
σn
τn−1

x2,n =
rn

τn−1τn
x3,n = ρn

σn+1

τn
, x4,n =

τn−2τn+2

τn−1τn+1
, (5.24)

where the extra prefactor ρn corresponds to an additional singularity pattern, appearing only
on this level. By a short calculation, one can confirm that these new formulae are consistent
with the expression for y2,n previously given in (5.22), since we have

y2,n =
x3,nx4,n
x1,n

=
σn+1τn−1

σnτn
· τn−2τn+2

τn−1τn+1
=
σn+1τn−2τn+2

σnτnτn+1
,

as required. Thus, with the parameters constrained as in (5.14a), the iteration of the deformed
map (5.5) is equivalent to a system of four relations, namely

ρn+1ρnσn+1σn = b1τn−1τn+ rn,

rn+1rn = ρn+1ρnσ
2
n+1τn+2τn−2 + b1b3τn+1τ

2
n τn−1,

ρn+1ρnσn+2σn+1 = b3τn+1τn+ rn+1,

τn+3τn−2 = b1b3τnτn+1 + rn+1.

(5.25)

By incorporating the above relations into (5.23), and eliminating ρn, we are able to decouple
them into a total of three recurrences, which all take the form of exchange relations, given by

σn+2rn = b3σnτnτn+1 +σn+1τn−2τn+2

rn+1σn = σn+1τn+2τn−2 + b1σn+2τnτn−1

τn+3τn−2 = b1b3τnτn+1 + rn+1.

(5.26)

Next, in order to confirm that this gives a cluster map defined on a suitable space of tau func-
tions, we need to build an appropriate exchange matrix which produces (5.26) via a sequence
of mutations. Firstly, let us combine the initial tau functions into a cluster in a seed for a
coefficient-free cluster algebra, by setting

(x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8) = (σ0,σ1,r0, τ−2, τ−1, τ0, τ1, τ2) ,
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Figure 2. Extended quiver associated with the deformed D4 cluster map ψ1.

and let π̃1 : C8 → C2 be the rational map defined by (5.22). Then, upon taking the pullback of
the symplectic form (5.11) by π̃1, we find

ω̃ = π̃∗
1 (ω̂) =

∑
1⩽i<j⩽8

b̃(1)
ij dlog x̃i ∧ dlog x̃j (5.27)

where the coefficients are combined into the matrix B̃(1) = (b̃(1)ij ) given by

B̃(1) =



0 0 −1 0 1 1 0 0
0 0 1 0 −1 −1 0 0
1 −1 0 −1 0 1 1 −1
0 0 1 0 −1 −1 0 0
−1 1 0 1 0 −1 −1 1
−1 1 −1 1 1 0 −1 1
0 0 −1 0 1 1 0 0
0 0 1 0 −1 −1 0 0


. (5.28)

We proceed to add two extra rows, associated with the frozen variables b1 and b3, to the
bottom of the exchange matrix (5.28), which will result in the construction of the extended
exchangematrix B̂(1) shown in (5.29) below. Figure 2 depicts the quiver associatedwith the full
matrix B̂(1).

Theorem 5.4. Given the extended initial cluster

x̂= (x̃j)1⩽ j⩽10 = (σ0,σ1,r0, τ−2, τ−1, τ0, τ1, τ2,b1,b3) ,

and the permutation ρ1 = (123)(45678), the iteration of the cluster map ψ1 = ρ−1
1 µ̃4µ̃1µ̃3

defined by the extended exchange matrix B̂(1) in (5.29) with square submatrix (5.28)
is equivalent to the system of recurrences (5.26), which generates elements of
Z>0[b1,b3,σ

±1
0 ,σ±1

1 ,r±1
0 , τ±1

−2 , τ
±1
−1 , τ

±1
0 , τ±1

1 , τ±1
2 ]
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Proof. Let us consider the initial seed (x̂, B̂(1)) containing the extended initial cluster x̂ as
above, with the corresponding extended exchange matrix given by

B̂(1) =



0 0 −1 0 1 1 0 0
0 0 1 0 −1 −1 0 0
1 −1 0 −1 0 1 1 −1
0 0 1 0 −1 −1 0 0
−1 1 0 1 0 −1 −1 1
−1 1 −1 1 1 0 −1 1
0 0 −1 0 1 1 0 0
0 0 1 0 −1 −1 0 0
−1 0 0 0 0 0 0 1
0 1 −1 0 0 0 0 1


. (5.29)

Applying clustermutation µ̃3 at node 3, followed by µ̃1 and µ̃4, will give the exchange relations

x̃ ′3x̃3 = x̃10x̃1x̃6x̃7 + x̃2x̃4x̃8,

x̃ ′1x̃1 = x̃2x̃4x̃8 + x̃9x̃3
′x̃5x̃6,

x̃ ′4x̃4 = x̃9x̃10x̃6x̃7 + x̃1
′,

(5.30)

which have the same form as the expressions in (5.26). Under this sequence of mutations, the
extended exchange matrix B̂(1) satisfies the relation

µ4µ1µ3

(
B̃(1)

)
= ρ1

(
B̃(1)

)
= P1B̃

(1)P2

where the action of the permutation ρ1 = (123)(45678) on the rows/columns is represented
by the matrices

P1 =



0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


, P2 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0


.

(5.31)

It follows that B̂(1) is preserved by the action of the associated cluster map, that is ψ1(B̂(1)) =
B̂(1), where ψ1 = ρ−1

1 µ4µ1µ3, and the combination of the inverse permutation with the
exchange relations in (5.30) precisely corresponds to the shift of index n→ n+ 1 acting on the
tau functions in each cluster, reproducing the iteration of the system (5.26). Hence this cluster
map is a Laurentification of the deformed D4 map φ̂1, generating Laurent polynomials in the
initial cluster variables, and positivity for skew-symmetric cluster algebras [25] implies that
their coefficients are positive integers.

Remark 5.5. The subquiver in figure 2 consisting of the 8 unfrozen nodes is mutation equival-
ent to another particular quiver presented by Okubo, which enables a q-Painlevé VI equation
to be constructed from an appropriate combination of coefficient mutations [32].
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5.3. The deformed map φ̂2 for D4

Let us now consider iteration of the map φ̂2 given by (5.17), which can be written as the
recurrence

y1,n+1y1,n= (b3b4 + y1,n)y2,n+ b3b4
y2,n+1y2,ny

2
1,nb4 (b3b4 + y1,n)=((b4 + y2,n)y1,n+ b3b4 (y2,n+ 1))((b3 + y2,n)y1,n+ b3b4 (y2,n+ 1)).

(5.32)

Repeating the same procedure as in the previous sections, we find three singularity patterns
which arise from orbits of (5.32), namely

Pattern 1 : (y1,n,y2,n) = . . . ,
(
R,∞1

)
,
(
∞1,∞1

)
,
(
∞1,R

)
,
(
R,01

)
,
(
R,∞1

)
,(R,R) . . .

Pattern 2 : (y1,n,y2,n) = . . . ,
(
01,R

)
, . . .

Pattern 3 : (y1,n,y2,n) = . . . ,
(
R,01

)
, . . . .

(5.33)

By relating the singularities appearing in each pattern with new variables, we define the fol-
lowing variable transformation, in an attempt to Laurentify the deformed map φ̂2:

y1,n =
η̂n

τ̂n−1τ̂n
, y2,n =

ρnτ̂n−2

τ̂n+1τ̂nτ̂n−3
. (5.34)

By substituting these expressions into (5.32), we find a rather complicated system of equations:
in particular, the resulting expression for the product ρn+1ρn cannot be considered as an
exchange relation, as it is not immediately given as a binomial expression in the other vari-
ables. To resolve this problem, we look at the singularity patterns in the original 4D deformed
map (5.5) with b1 = b2 = b3b4, and introduce variable transformations corresponding to these.
This suggests that the xi should be expressed as

x1,n =
τ̂n+1τ̂n−3

τ̂nτ̂n−2
, x2,n =

η̂n
τ̂nτ̂n−1

, x3,n =
r̂nξn
τ̂n

, x4,n =
σ̂n
τ̂nξn

where ξn satisfies ξnξn+1 =
σ̂n
r̂n
. By directly substituting these variables into (5.5), we find a

system of equations written as follows:

τ̂n+2τ̂n−3 = b3b4τ̂nτ̂n−1 + η̂n,

η̂n+1η̂n = r̂nσ̂nτ̂n−2τ̂n+2 + b3b4τ̂n+1τ̂
2
n τ̂n−1,

r̂n+1σ̂n = b3τ̂nτ̂n+1 + η̂n+1,

σ̂n+1r̂n = b4τ̂nτ̂n+1 + η̂n+1.

(5.35)

Also, by observing the singularity pattern for y1,n explicitly from (5.32), one can see that y1,n
should satisfy the relation

w1,n := y1,n+ b3b4 =
τ̂n+2τ̂n−3

τ̂nτ̂n−1
, (5.36)

which is in agreement with what is found by combining (5.34) with the first recurrence
in (5.35). Furthermore, by setting ρn = r̂nσ̂n, the relation for ρn+1ρn obtained from (5.32) fol-
lows by taking the product of the last two expressions in (5.35).
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Figure 3. Extended quiver associated with the deformed D4 cluster map ψ2.

Using the above, we can consider (y1,0,y2,0) = (y1,y2) and define a rational map π̃2 : C8 →
C2 by

π̃2 : y1 =
η̂0

τ̂−1τ̂0
, y2 =

σ̂0r̂0τ̂−2

τ̂1τ̂0τ̂−3
.

The exchange matrix describing the cluster dynamics (5.35) is found by pulling back the sym-
plectic form ω̂, as in (5.11), via the rational map π̃2, to obtain the presymplectic form

ω̃ = π̃∗
2 (ω̂) =

∑
i<j

b̃(2)
ij

x̃ix̃j
dx̃i ∧ dx̃j.

Now if we choose to order the coordinates and identify themwith variables in a coefficient-free
cluster algebra as

(x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8) = (τ̂−3, r̂0, η̂0, σ̂0, τ̂−1, τ̂0, τ̂1, τ̂−2) ,

then we see that the map π̃2 is equivalent to π̃1 defined by (5.22) in case (1) above, so that

y1 =
x̃3
x̃5x̃6

, y2 =
x̃2x̃4x̃8
x̃1x̃6x̃7

and the exchange matrix with entries b̃(2)ij is identical to the one obtained previously, that is

B̃(2) = B̃(1) (5.37)

as in (5.28).
To obtain an extended version of B̃(2) that includes b3,b4 as frozen variables and repro-

duces (5.35) from a suitable sequence of mutations, we need to construct two extra rows as
in (5.38) below. The result of this is represented by the quiver in figure 3, with two frozen
nodes.
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Theorem 5.6. Given the extended initial cluster

x̂= (x̃j)1⩽ j⩽10 = (τ̂−3, r̂0, η̂0, σ̂0, τ̂−1, τ̂0, τ̂1, τ̂−2,b3,b4) ,

and the permutation ρ2 = (24)(18567), the iteration of the cluster map ψ2 = ρ−1
2 µ̃2µ̃4µ̃3µ̃1

defined by the extended exchange matrix B̂(2) in (5.38) with square submatrix (5.28)
is equivalent to the system of recurrences (5.35), which generates elements of
Z>0[b3,b4, r̂

±1
0 , η̂±1

0 , σ̂±1
0 , τ̂±1

−3 , τ̂
±1
−2 , τ̂

±1
−1 , τ̂

±1
0 , τ̂±1

1 ].

Proof. From (5.37) we note that the coefficient-free cluster algebra is identical to that specified
by the same 8× 8 exchange matrix as was found in case (1) previously, but we need to extend
it in such a way that, once b3 and b4 are included as frozen variables, it is compatible with the
four relations in (5.35) (whereas in case (1) there were only three relations). In this way, we
construct a 10× 8 extended exchange matrix B̂(2) from B̃(2) = B̃(1), given by

B̂(2) =



0 0 −1 0 1 1 0 0
0 0 1 0 −1 −1 0 0
1 −1 0 −1 0 1 1 −1
0 0 1 0 −1 −1 0 0
−1 1 0 1 0 −1 −1 1
−1 1 −1 1 1 0 −1 1
0 0 −1 0 1 1 0 0
0 0 1 0 −1 −1 0 0
−1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0


, (5.38)

andwe note that the last two rows are different from B̂(1) in (5.29) (as can be seen by comparing
the frozen nodes 9 and 10 in figures 2 and 3).

Next, by applying a sequence of mutations starting with mutation µ̃1 at node 1 and success-
ively mutating at nodes 3,4 and 2, we find that the nodes are permuted by the given permutation
ρ2 = (24)(18567), so that

µ̃2µ̃4µ̃3µ̃1

(
B̂2

)
= ρ2

(
B̂2

)
,

which is equivalent to the action of a suitable pair of row/column permutation matrices on B̂2.
Hence the overall action of ψ2 = ρ−1

2 µ̃2µ̃4µ̃3µ̃1 leaves B̂2 invariant, and it is straightforward to
check that the corresponding combination of cluster mutations with a permutation is equivalent
to one iteration of the relations (5.35). Then as usual, because they are cluster variables, the
iterates are elements of the corresponding ring of Laurent polynomials, with positive integer
coefficients.

Remark 5.7. Since the subquiver with 8 unfrozen nodes in figure 3 is the same as that in
figure 2, it is also mutation equivalent to the quiver associated with the q-Painlevé VI equation
in [32].

5.4. Connection with special Somos-7 relation

Similarly to what we have seen for the examples of deformations in types A and B, on fixed
level sets of these deformed D4 maps we find that the orbits of suitable tau functions satisfy a
special Somos-7 relation, which is related to the Lyness map.
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Theorem 5.8. For each integrable case of the deformed D4 map, the variable wn = y1,n+β
satisfies the Lyness map in the form

wn+1wn−1 = (1−β)wn+ δ, (5.39)

where in case (1) we have

β = b1b3, δ = βK̃1 + 2β2 + b1 + b3,

on each level set of the invariant function K̃1 given in (5.18), while in case (2) the parameters
are specified by

β = b3b4, δ = βK̃2 + 2β2 + b3 + b4,

with K̃2 as in (5.19). Furthermore, in case (1) we can express wn by the formula

wn =
τn+2τn−3

τnτn−1
, (5.40)

where the tau function τ n satisfies the special Somos-7 relation

τn+7τn = (1−β)τn+6τn+1 + δτn+4τn+3, (5.41)

and for case (2) we have the same expression as (5.40) except that τ n is replaced by τ̂n, where
the latter satisfies the same relation (5.41) but with the modified expression for β and δ, as
above. Similarly, in each case the quantity

ŵn = y1,n+ 1

satisfies the Somos-5 QRT map, in the form of the recurrence

ŵn+1ŵnŵn−1 = ζŵn+ θ, (5.42)

where, for the appropriate value of β in each case, the coefficients are given by θ = (β− 1)ζ
with

case (1) : ζ = K̃1 + b1 + b3 + 2, case (2) : ζ = K̃2 + b3 + b4 + 2.

The proof of the preceding statements is very similar to what was done before for the other
examples, so it is omitted. The fact that the quantity ŵn satisfies the Somos-5 QRT map (5.42)
also means that there is a corresponding Somos-5 relation for τ n and τ̂n, but with a periodic
coefficient: for further details of this, see appendix B.

5.5. Tropicalization and degree growth for deformed D4 cluster maps

We have shown above that the two distinct integrable deformations of type D4, given by (5.16)
and (5.17), both correspond to cluster maps based on the same coefficient-free cluster algebra,
but with a pair of frozen variables adjoined in two different ways in each case. The fact that
the underlying coefficient-free cluster algebra is the same means that the tropical dynamics
associated with the degree growth of the cluster variables is almost identical for these two
cases, so it is convenient to describe them simultaneously and remark briefly on the minor
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differences between them. Also, because the analysis of the tropical dynamics is very similar
to that for the other examples previously considered, we will be more sparing with the details.

In both cases, we denote the extended initial cluster by x̂, as described in theorems 5.4 and
5.6. Then we can write the cluster variables for case (1) in the form

σn =
N(1)
n (x̂)

x̂fn
, rn =

N(2)
n (x̂)
x̂en

, τn =
N(3)
n (x̂)

x̂dn
,

with three sets of d-vectors associated with the three different types of tau function, while for
case (2) we can write the sequences of cluster variables as

τ̂n =
N̂(1)
n (x̂)

x̂d̂n
, r̂n =

N̂(2)
n (x̂)

x̂f̂n
, η̂n =

N̂(3)
n (x̂)

x̂ên
, σ̂n =

N̂(4)
n (x̂)

x̂ĝn
,

where in the latter case there are four different sets of d-vectors with their corresponding
sequences of tau functions. In the first case, the d-vectors satisfy the (max,+) version of the
system (5.26), given by

fn+2 + en =max(fn+dn+dn+1, fn+1 +dn−2 +dn+2) ,

en+1 + fn =max(fn+1 +dn+2 +dn−2, fn+2 +dn+dn−1) ,

dn+3 +dn−2 =max(dn+dn+1,en+1) ,

(5.43)

and in the second case, we find the (max,+) version of (5.35), namely

d̂n+2 + d̂n−3 =max
(
d̂n+ d̂n−1, ên

)
,

ên+1 + ên =max
(
f̂n+ ĝn+ d̂n−2 + d̂n+2, , d̂n+1 + 2d̂n+ d̂n−1

)
,

f̂n+1 + ĝn =max
(
d̂n+ d̂n+1, ên+1

)
,

ĝn+1 + f̂n =max
(
d̂n+ d̂n+1, ên+1

)
.

(5.44)

In both cases, the initial cluster of d-vectors is specified in terms of the 8× 8 identity matrix,
denoted I, with the initial cluster for case (1) being ordered as

(f0 f1 e0 d−2 d−1 d0 d1 d2) =−I, (5.45)

whereas in case (2) the ordering of the initial cluster is(
d̂−3 f̂0 ê0 ĝ0 d̂−1 d̂0 d̂1 d̂−2

)
=−I. (5.46)

The ordering of the initial d-vectors in the initial clusters (5.45) and (5.46), respectively,
corresponds in each case to the ordering of the initial tau functions in the set of unfrozen seed
variables (x̃1, x̃2, . . . , x̃8). The same ordering determines the appropriate tropical analogues of
the symplectic coordinates y1,y2 that satisfy the maps (5.16) and (5.17), namely

Y1,n = en−dn−1 −dn, Y2,n = fn+1 − fn+dn+2 −dn+1 −dn+dn−2
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in case (1), and

Y1,n = ên− d̂n−1 − d̂n, Y2,n = f̂n+ ĝn− d̂n+1 − d̂n+ d̂n−2 − d̂n−3

in case (2). We find that the (max,+) dynamical systems (5.43) and (5.44) lead to the same
ultradiscrete map for the vectors Y1,n,Y2,n in each case.

Lemma 5.9. The ultradiscrete analogues of (5.20) and (5.32), which are satisfied by the vec-
tors Y1,n,Y2,n, are the same in each case, being given by the following system of equations:

Wn= [Y1,n]+ ,

Y1,n+1 +Y1,n= [Wn+Y2,n]+ ,

Y2,n+1 +Y2,n+ 2Y1,n= 2 [Y2,n]+ +Wn.
(5.47)

Given arbitrary initial values (Y1,0,Y2,0) ∈ R2, every component of this system is periodic with
period 4.

Proof. Since this is very similar to the proof of lemma 4.8, it is omitted.

The quantityWn appearing in the system (5.47) is given as a combination of d-vectors by

Wn = dn+2 −dn−dn−1 +dn−3 (5.48)

in case (1), associated with denominators of the tau functions τ n, and by

Wn = d̂n+2 − d̂n− d̂n−1 + d̂n−3 (5.49)

in case (2), which is a combination of d-vectors associated with denominators of the tau func-
tions τ̂n. By the results of theorem 5.8, each of these tau functions satisfies a Somos-7 relation
of the form (5.41), with a coefficient δ that can be written in terms of the initial cluster variables
as a Laurent polynomial of the form

π̃∗
j (δ) =

Pj (x̂)
x̃1x̃2x̃23x̃4x̃5x̃6x̃7x̃8

for j = 1,2, respectively, with a suitable polynomial Pj in the numerator, and the same form of
the denominator in both cases. This immediately yields the following analogue of lemma 4.9.

Lemma 5.10. The d-vectors dn ∈ Z8 that specify the denominators of tau functions τ n gener-
ated by the system (5.43) satisfy the tropical Somos-7 relation

dn+7 +dn =max(dn+6 +dn+1, ĉ+dn+4 +dn+3) , (5.50)

with the constant vector

ĉ= (1,1,2,1,1,1,1,1)T ,

and the d-vectors d̂n ∈ Z8 that specify the denominators of tau functions τ̂n generated by (5.44)
satisfy exactly the same relation. Also, the corresponding quantityWn, defined by either (5.48)
or (5.49), satisfies the ultradiscrete Lyness map

Wn+1 +Wn−1 =max(Wn, ĉ) , (5.51)

with the same constant ĉ.
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Due to the way that the initial seeds for the d-vectors are combined in (5.45) and (5.46), in
each case the initial tau functions correspond to the same initial values

Y1,0 = (0,0,−1,0,1,1,0,0)T , Y2,0 = (1,−1,0,−1,0,1,1,−1)T

for the system (5.47). These initial values produce the period 4 orbit

W0 = (0,0,0,0,1,1,0,0)T ,W1 = (1,0,1,0,0,1,1,0)T ,W2 = (1,1,2,1,0,0,1,1)T ,

W3 = (0,1,1,1,1,0,0,1)T ,

in which the third component corresponds to an orbit of the scalar map (4.55) with c= 2,
namely the first orbit listed in (4.56), while every other component corresponds to the
orbit (4.57) of the same scalar map with c= 1. This allows the d-vectors for the tau func-
tions to be completely determined in both case (1) and case (2). Since the steps of the proof
of the following result are very similar to those for theorem 4.10, we leave the details for the
reader.

Theorem 5.11. The d-vectors dn,en, fn satisfying the (max,+) system (5.43), as well as the
d-vectors d̂n, ên, f̂n, ĝn satisfying (5.44), all lie in the kernel of the linear difference operator

L̃=
(
T 2 + 1

)(
T 2 − 1

)2 (T 3 − 1
)
.

For the tau functions generated by (5.26) and (5.35), the leading order degree growth of their
denominators is given by

dn = ân2 +O(n) , en = 2ân2 +O(n) , fn = ân2 +O(n)

in case (1), and

d̂n = ân2 +O(n) , ên = 2ân2 +O(n) , f̂n = ân2 +O(n) , ĝn = ân2 +O(n)

in case (2), with the same constant vector

a=
1
24

(1,1,2,1,1,1,1,1)T

in each case.

6. Open problems and concluding remarks

The results in this paper constitute a further proof of concept of the idea introduced by one of
us with Kouloukas in [20], that periodic dynamical systems arising from Zamolodchikov peri-
odicity of cluster maps associated with finite type simple Lie algebras admit natural deforma-
tions to discrete dynamical systems that are completely integrable in the Liouville sense (but
no longer completely periodic), and further that this dynamics can be lifted to an enlarged
phase space where the Laurent property holds (Laurentification). In all of the low rank cases
considered here, over C the level sets of first integrals are one-dimensional tori, so the spaces
of initial conditions correspond to elliptic surfaces. This is just like the well known situation
for QRT maps [4], which have been studied for a long time [34]; and indeed, the examples
of A3 and C2 treated above are related to particular cases of QRT maps. However, despite the
prior results on Laurentification obtained in [14], we do not know of any procedure to endow
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an arbitrary QRT map with the structure of a cluster algebra. However, if we interpret these
examples over Q (rather than C), then the Zamolodchikov periodicity of the original system
can be viewed as providing a family of elliptic curves with a rational torsion point of prescribed
order.

Our results on tropical dynamics of d-vectors indicate that Zamolodchikov periodicity plays
an essential role in determining the slow (quadratic) growth of degrees of tau functions for these
discrete integrable systems. In the first appendix below, we present the derivation of an addi-
tional formula (A.6) in the A3 case, which suggests that the tropical dynamics of d-vectors for
cluster variables provides an efficient way to calculate the degrees of maps in projective space.
We expect that the same approach can be applied to many other birational maps, shedding light
on some of the unexplained observations in [37, 38].

Compared with our previous results, which were all in type A, the examples of B3 and D4

considered here have revealed the new feature that the same Zamolodchikov period dynamics
can be deformed to an integrable map in more than one distinct way. Nevertheless, there seem
to be very close connections between the two cases obtained for B3; and the close connections
between the case (1) and case (2) deformations for D4 are even more apparent, given that the
underlying coefficient-free cluster algebra is the same for both.

The situation for higher rank Lie algebras becomes even more interesting, since with more
degrees of freedom one finds that the level sets of first integrals are abelian varieties of dimen-
sion greater than 1. In [20] it was shown that the periodic cluster map associated with the
A4 root system has a 2-parameter integrable deformation, which lifts by Laurentification to a
cluster map in 11 dimensions, with 2 additional frozen variables. Recently, this construction
has been generalized to 2-parameter deformations of A2N cluster maps for all N⩾ 1, which
lift to cluster maps in dimension 4N+ 3 associated with a special family of quivers [12]. The
complete description of this construction, and analogous results for the odd rank case (A2N+1),
will be the subject of future work. In addition to this, we have recently found extensions of the
results given here to types B and D in higher rank, which are also under investigation.
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Appendix A. Elliptic surface and degree growth for deformed A3 map

Here we consider the action of the maps φ̂ and ψ̂ on the elliptic surface defined by the first
integral (2.15) in the deformed A3 case. Let (y,w) be a pair of inhomogeneous coordinates for
P1 ×P1 and let Y= 1

y andW= 1
w . Then P

1 ×P1 is covered by four charts: (y,w), (Y,w), (y,W)

and (Y,W). For example, the point (∞,∞) ∈ P1 ×P1 corresponds to (Y,W) = (0,0). On each
chart, K1 is written as
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K1 =
(y+ dw+ c)((y+ 1)w+ d)

yw
=

(1+ dwY+ cY)((1+Y)w+ dY)
Yw

=
(yW+ d+ cW)((y+ 1)+ dW)

yW
=

(W+ dY+ cYW)((1+Y)+ dYW)

YW
.

The pencil defined by K1 has 8 base points on P1 ×P1:

(1) (y,w) =
(
0,− c

d

)
,

(2) (y,w) = (0,−d),
(3) (y,w) = (−c,0),
(4) (Y,w) = (0,0),
(5) (Y,w/Y) = (0,−d),
(6) (y,W) = (−1,0),
(7) (Y,W) = (0,0),
(8) (Y,W/Y) = (0,−d).

We consider the generic situation where the values of the parameters c,d are such that none
of these base points coincide, which means that we should assume

c 6= 0,1, d 6= 0, c 6= d2. (A.1)

Note that the points (5) and (8) are infinitely near (4) and (7), respectively. Blowing up P1 ×
P1 at these 8 points, we obtain an elliptic surface X on which K1 : X → P1 gives an elliptic
fibration (see figures 4 and 5). The commuting maps φ̂ and ψ̂, which were originally defined
in (2.10) and (2.17) using the affine chart (y,w) = (u1,u2), both extend to automorphisms
on X .

Let us use intersection theory to calculate degree growth for φ̂ and ψ̂. As a basis of Pic(X ),
it is common to use

Hy,Hw,E1, . . . ,E8

where Hy (resp. Hw) is the total transform of the class {y= const} (resp. {w= const}) and
Ei is the total transform of the exceptional class of the ith blowup. For convenience, however,
here we use the basis

[D1] , . . . , [D6] , [C2] , [C3] , [C5] , [C8]

(see figure 5). The matrix representations for φ̂ and ψ̂ with respect to this basis are

Mφ̂ :=



0 0 1 0 0 0 0 0 −1 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 −1 1 0
0 1 0 0 0 0 0 −1 0 0

0 0 −1 0
0 1 0 0
0 1 1 1
1 −1 1 0
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Figure 4. Blow-ups needed to obtain an elliptic surface from the pencil defined by K1.
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Figure 5. The elliptic surface X . The curves D1, D4, D2 and D6 are the strict trans-
forms of the curves {y= 0}, {y=∞}, {w= 0} and {w=∞} in P1 ×P1, respectively.
The curves D1, . . . ,D6 have self-intersection (−2) and their intersection pattern forms
the Dynkin diagram of type A(1)

5 (cf. [31]). The curves C1,C2,C3,C5,C6,C8 have self-
intersection (−1).

and

Mψ̂ :=



0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 1 0 1 2
0 0 1 0 0 0 1 0 0 1

1 0 0 0
−1 0 −1 −1
0 0 1 0
1 1 1 2


,

respectively, where the entries of the empty blocks are all zero. The intersection matrix on
Pic(X ) with respect to our basis is

AX :=



−2 1 0 0 0 1 1 0 0 0
1 −2 1 0 0 0 0 1 0 0
0 1 −2 1 0 0 0 0 1 0
0 0 1 −2 1 0 0 0 0 0
0 0 0 1 −2 1 0 0 0 1
1 0 0 0 1 −2 0 0 0 0
1 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 −1


.
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As in figure 6, X can be blown down to P2 as well. Since the total transform of the class of
lines in P2 is

[D2] + 2 [D3] + [D4] + [C3] + 2 [C5] ,

the degrees with respect to P2 can be calculated as

deg(φ̂n) = hT ·AXM
n
φ̂h

and

deg
(
ψ̂m
)
= hT ·AXM

m
ψ̂
h,

where

h= (0,1,2,1,0,0,0,1,2,0)T .

A direct calculation shows that

lim
n→∞

1
n2
Mn
φ̂ =

1
12

(
06,6 16,4
04,6 04,4

)
and

lim
m→∞

1
m2

Mm
ψ̂
=

1
3

(
06,6 16,4
04,6 04,4

)
,

where 16,4 is the matrix of size 6× 4 with all the entries 1. Hence we have

deg(φ̂n) =
3
4
n2 +O(n) (A.2)

and

deg
(
ψ̂m
)
=

9
4
m2 +O(m) . (A.3)

The calculation of the degree growth in P2, as above, can also be derived from the tropical
dynamics of the d-vectors, as determined in theorem 2.11. Indeed, the non-frozen variables in
a cluster associated with the deformed A3 map φ̂, and the QRT map ψ̂ that commutes with it,
determine a point in P2 according to

(x̃1, x̃2, x̃3, x̃4, x̃5, x̃6) 7→
(
x̃1x̃4x̃5 : (x̃2)

2 x̃6 : x̃2x̃3x̃5
)
,

so the choice of initial seed

(x̃1, x̃2, x̃3, x̃4, x̃5, x̃6) = (X,1,Z,1,1,Y)

corresponds to an arbitrary point X= (X : Y : Z) ∈ P2. Thus we can determine the action of φ̂
and ψ̂, and count the degrees of iterates of these maps, via the induced action obtained from the
cluster maps φ̃ and ψ̃. For instance, by considering φ̃n(X,1,Z,1,1,Y), we find the sequence

φ̂n (X) =
(
τn−1τn+2σn : (τn)

2
σn+1 : τnτn+1σn

) ∣∣∣
X
∈ P2, (A.4)
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Figure 6. The elliptic surface X can be obtained by blowing up P2 at 9 points, instead
of P1 ×P1 at 8 points. The centres of the blow-ups on P2 in this figure are (1 : 0 : 0) and
(0 : 1 : 0), where (y : w : 1) are inhomogeneous coordinates on P2.

where the subscript X on the right-hand side denotes the fact that we substitute the initial val-
ues x̃1 = τ−1 = X, x̃2 = τ0 = 1, x̃3 = τ1 = Z, x̃4 = τ2 = 1, x̃5 = σ0 = 1, x̃6 = σ1 = Y into each
Laurent polynomial that appears. More generally, applying a combination of the two maps
(associated with shifts in m,n respectively), for any (m,n) ∈ Z2 we can compose m steps of ψ̂
with n steps of φ̂, to obtain the (m, n) combined iterate, in the form

ψ̂mφ̂n (X) =

(
N1N4N5

Xd1+d4+d5
:
(N2)

2N6

X2d2+d6
:
N2N3N5

Xd2+d3+d5

)
(m,n;X) , (A.5)

where the dependence on m,n and X indicates the fact that numerator polynomials Nj(m,n; x̃)
in (2.41) are evaluated at (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6) = (X,1,Z,1,1,Y), and for the denominators we
write

Xd
j = XbT1dj(m,n)Yb

T
6dj(m,n)Zb

T
3dj(m,n),

where bk denotes the kth standard basis vector in R6. This leads to an exact formula for the
degrees of the combined iterates of the two maps in P2, expressed in terms of the associated
d-vectors defined on the Z2 lattice.
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Theorem A.1. For generic complex coefficients c,d, the degrees of the combined iterates of
the maps ψ̂ and φ̂ in P2 are given by

deg
(
ψ̂mφ̂n

)
= (b1 +b3 +b6)

T
(d(m,n)+ d(m,n+ 1)+ d(m+ 1,n))+ 1

2

(
3− (−1)n

)
+max

(
Y(1)
m,n,W

(1)
m,n,0

)
+max

(
Y(3)
m,n,W

(3)
m,n,0

)
+max

(
Y(6)
m,n,W

(6)
m,n,0

)
,

(A.6)

where Y(k)m,n,W
(k)
m,n respectively denote the kth component of each of the vectors defined in (2.46),

that is

Y(k)
m,n = bTkYm,n, W(k)

m,n = bTkWm,n.

Proof. Each of the entries for the three homogeneous coordinates in (A.5) corresponds to a
product of three cluster variables with X,Y,Z and 1 substituted appropriately, hence they are all
Laurent polynomials in the homogeneous coordinates (X : Y : Z) of the initial point in P2. In
order to calculate the degrees of the iterates in P2, we need to remove the denominators, which
are monomials in X,Y,Z, so that what remains is a coprime triple of homogeneous polynomials
in these coordinates; then the degree deg(ψ̂mφ̂n) of the combined (m, n) iterate of the maps
is the common degree of these three polynomials. We can clear the denominators in (A.5) by
multiplying by suitable powers of the projective coordinatesX,Y,Z. So for instance, to clear the
powers of X, we must take the maximum of the exponents of X that appear in the denominators
of the three homogeneous coordinates in the formula (A.5), and multiply through by

Xmax(bT1(d1+d4+d5),b
T
1(2d2+d6),bT1(d2+d3+d5)),

where each d-vector dj is evaluated at (m,n) ∈ Z6, corresponding to column j of the matrix
Dm,n determined in theorem 2.11. If we focus on the third entry in (A.5), then we see that the
effect of rescaling by this power of X is to produce an overall prefactor of

Xmax(bT1(d1−d2−d3+d4),bT1(d2−d3−d5+d6),0) = Xmax(Y (1)
m,n ,W

(1)
m,n ,0),

where the second equality above follows by rewriting each d-vector dj(m,n) above as an appro-
priate shift of a single vector d(m,n) defined on Z2, and then noting that Ym,n and Wm,n are
given by the relevant combinations of the latter vector, as in (2.46), with the first component of
each, namely Y(1)m,n andW

(1)
m,n, corresponding to the exponent of the homogeneous coordinate X.

Similarly, by doing an analogous rescaling by powers of the other homogeneous coordinates
Y and Z, the third homogeneous coordinate in (A.5) becomes a polynomial in X,Y,Z with an
overall monomial prefactor of

Xmax(Y (1)
m,n ,W

(1)
m,n ,0)Ymax(Y (6)

m,n ,W
(6)
m,n ,0)Zmax(Y (3)

m,n ,W
(3)
m,n ,0).

(The reader should hopefully not be confused by the doublemeaning of the letter Y in the above
formula: the unadorned letter denotes a homogeneous coordinate in P2, while the same letter
appearing in the exponents with indices and a numerical suffix denotes a tropical variable.) By
construction, both the first and the second entry have now also become polynomials in X,Y,Z,
also with monomial prefactors, so that in P2 we have

ψ̂mφ̂n (X) = (Pm,n (X) : Qm,n (X) : Rm,n (X)) (A.7)
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with Pm,n,Qm,n,Rm,n ∈ C[X,Y,Z]; but the monomial prefactors are such that X can never divide
all three of these polynomials simultaneously, and the same is true for Y and Z. Moreover, it
follows from lemma 2.8 that the prefactors oscillate periodically, repeating with period 2 in m
and period 3 in n.

Apart from the oscillating monomial factors, the main contribution to the degree of the
iterates comes from the product of three numerator factors NiNjNk appearing in each homo-
geneous component of (A.5). There are two essential properties of these polynomials that are
inherited from the cluster algebra: firstly, due to the fact that each numerator polynomial Nj

in (2.41) is not divisible by any initial cluster variable x̃i, it follows that, when the homogeneous
coordinates forP2 are substituted in, the resulting homogeneous polynomial Nj(X) is not divis-
ible byX, Y or Z; and secondly, for generic values of the coefficients c,d, the cluster variables in
each cluster are pairwise coprime Laurent polynomials, meaning that for each (m,n) ∈ Z2, the
polynomials N1(X),N2(X), . . . ,N6(X) appearing in (A.5) are themselves pairwise coprime.
(It should be noted that the latter assertion ceases to be valid in the non-generic cases (A.1),
when the numerator polynomials are reducible and have certain factors in common, which
cancel out and cause the degree to drop.) This implies that the degree of the third component
Rm,n(X), and hence the degree of the (m, n) combined iterate of the two maps, is equal to the
degree of the product of three numerators N2N3N5 appearing in (A.5), plus the degree of the
oscillating prefactor (A.7). So it remains to calculate the degree of this product of numerators,
and show that it is equal to the first line of the formula (A.6).

The products of evaluations of Laurent polynomials appearing in each entry on the right-
hand side of (A.5) have a homogeneous degree. To start with, let us fix m= 0, and consider
the action of φ̂ (shifting in n) on its own, with the sequence of products of three tau functions
that appear as components in (A.4). Then for the initial point in P2 we have the (common)
homogeneous degree of each of the projective coordinates, namely

hdeg
(
τ−1τ2σ0,(τ0)

2
σ1, τ0τ1σ0

)
= hdeg(X,Y,Z) = 1,

and we can write the pattern of homogeneous degrees in the initial cluster as

hdeg(τ−1, τ0, τ1, τ2,σ0,σ1) = (1,0,1,0,0,1) ;

but after a single iteration of the system (2.20) we find

hdeg
(
τ0τ3σ1,(τ1)

2
σ2, τ1τ2σ1

)
= hdeg

(
Y
(
dY(X+Z)+ cZ2

)
X

,
Z2 (dY+ cZ)

X
,YZ

)
= 2,

where from

τ3 =
dY(X+Z)+ cZ2

X
, σ2 =

dY+ cZ
X

we see that the pattern of homogeneous degrees in the new cluster is

hdeg(τ0, τ1, τ2, τ3,σ1,σ2) = (0,1,0,1,1,0) ;

and thereafter, with subsequent shifts in n, this pattern repeats with period 2. A similar calcu-
lation shows that, under each shift m→ m+ 1, the pattern of homogeneous degrees remains
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the same; so overall it only depends on the parity of n. Hence, for all (m,n) ∈ Z2, we see that
the homogeneous degree of the third component in (A.5) is

hdeg

(
N2N3N5

Xd2+d3+d5
(m,n;X)

)
= deg(N2N3N5 (m,n;X))

− deg
(
Xd2(m,n)+d3(m,n)+d5(m,n)

)
=

1
2

(
3− (−1)n

)
;

so the rest of the formula (A.6) then follows, by rewriting the sum of d-vectors in the expo-
nent of X above as d(m,n)+ d(m,n+ 1)+ d(m+ 1,n) and taking the sum of components 1,3
and 6 of the latter vector, which correspond, respectively, to the powers of X,Z and Y in this
monomial.

Observe that the leading order terms in (A.6) are the sum of three components of three
shifted copies of the d-vector d(m,n), and as the growth of each component of this vector is
given by the entries in (2.52), overall this contributes a factor of 3× 3= 9 times the leading
order of any of the entries of the matrix Dm,n, so that

deg
(
ψ̂mφ̂n

)
=

9
4
m2 +

3
4
n2 +O(m)+O(n) , (A.8)

which provides an independent confirmation of the results (A.2) and (A.3) obtained from inter-
section theory. We now explain what it tells us about the Mordell-Weil group of the elliptic
surface X .

For all but a finite number of values of κ ∈ P1, the corresponding fiber

(y+ dw+ c)((y+ 1)w+ d) = κyw (A.9)

in the pencil defining X is birationally equivalent to a Weierstrass equation for a smooth cubic
curve, that is

Eκ : y2 = x3 +A(κ)x+B(κ) , (A.10)

for certain rational functions A,B ∈ C(κ). Hence we can regardX as an elliptic curve E/C(κ)
defined over the function field C(κ), with the Mordell-Weil group being the group of C(κ)-
rational points. This curve has j-invariant

j(Eκ) =
f4 (κ)

3

d4κ2 g4 (κ)
,

for certain degree 4 polynomials of the form

f4 (κ) = κ4 − 4(c+ 1) κ3 + · · ·+
(
(c− 1)2 + 4d2

)2
,

g4 (κ) = cκ4 − (c+ 1)
(
4c− d2

)
κ3 + · · ·+

(
c− d2

)(
(c− 1)2 + 4d2

)2
.

From the latter one can read off the singular fibers, which correspond to the values of κ where
the j-invariant has poles: at 0,∞ and the four distinct roots of g4. One can see from j that there
are two reducible fibers: the fiber over 0, which has 2 components (double pole in j at κ= 0);
and the fiber over∞, which has 6 components (pole of order 6 at κ=∞).
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Equivalently, we can view the Mordell-Weil group as the set of sections s : P1 →X , which
are rational maps satisfying K1

(
s(κ)

)
= κ for all κ ∈ P1. To endow this with a group structure,

we must fix a zero section s0 that sends κ to Oκ, the identity element in each fiber. Then the
maps φ̂ and ψ̂ correspond, respectively, to translation by certain points P1 and P2 in the group
law of each (generic) fiber, which are associated with sections s1 and s2, say. In fact, in terms
of the biquadratic model (A.9), viewed as a curve in P1 ×P1, we find that we can take the
points O = (∞,∞), P1 = (∞,0), P2 = (−1,∞) in each fiber: these are just the base points
(7),(4),(6) previously identified in the pencil.

The Mordell-Weil group of X , or equivalently, the set of C(κ)-rational points on the curve
E
(
C(κ)

)
, has a canonical height function ĥ : E

(
C(κ)

)
→ R, which is a quadratic form having

the property that ĥ⩾ 0, with ĥ(P) = 0 iff P is a point of finite order (a torsion point), and an
associated bilinear pairing

< P,Q>= ĥ(P +Q)− ĥ(P)− ĥ(Q) .

The canonical height is unique, up to an overall choice of scale. In the case at hand, if we fix
the normalization to be consistent with the conventions in [35], then we can use the results in
Chapter III of the latter book, together with the explicit expression (A.8) for the degree growth
of the maps φ̂ and ψ̂, to calculate the canonical heights as follows:

ĥ(P1) =
1
3

lim
n→∞

n−2 deg(φ̂n) =
1
4
, ĥ(P2) =

1
3

lim
n→∞

n−2 deg
(
ψ̂n
)
=

3
4
,

ĥ(P1 +P2) =
1
3

lim
n→∞

n−2 deg
(
ψ̂nφ̂n

)
= 1.

Having calculated the canonical heights as above, we then find the Grammatrix with entries
< Pi,Pj > built from the pairing between these two points, given by(

< P1,P1 > < P1,P2 >
< P1,P2 > < P2,P2 >

)
=

( 1/2 0
0 3/2

)
.

From this we can conclude that

ĥ(n1P1 + n2P2) = n21 ĥ(P1)+ n22 ĥ(P2) 6= 0

unless n1 = n2 = 0, which implies that P1 and P2 are two independent generators in the
Mordell-Weil group, and hence this group has rank at least 2. In fact, according to theorem
3.1 in [31], since the rank of T, the root lattice associated with the reducible fibers, is cal-
culated from the multiplicities of these fibers as rkT= (2− 1)+ (6− 1) = 6, the rank of the
Mordell-Weil group is

rkE(C(κ)) = 8− rkT= 8− 6= 2,

as expected.
It is worthwhile to note that, if we treat the frozen variables c,d as parameters, then the j-

invariant j(Eκ) above is defined overQ(c,d,κ), so we can use generic rational values c,d ∈Q
and rational initial data for the maps to generate interesting examples of elliptic curves defined
over Q. One of the simplest cases that produces a curve E(Q) of rank 2 is the choice

c=−2, d=−1, (y,w) = (1,1) =⇒ κ=−2.
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In that case, the curve (A.9) becomes

(y−w− 2)((y+ 1)w− 1) =−2yw,

which has j-invariant

j =−1771561
1588

,

being birationally equivalent to the minimal model

y2 + xy+ y= x3 − 3x+ 2,

where the latter has Mordell-Weil generators (x,y) = (1,0) and (−1,2)6.

Appendix B. Three-invariant for the special Somos-7 recurrence

Here we consider the special Somos-7 recurrence relation (1.4) associated with the Lyness
map, and present a number of general results about its solutions. We begin by showing that
every solution τ n also satisfies a relation of Somos-5 type with a coefficient ξn that is periodic
with period 3, of the form

τn+5τn = ξn τn+4τn+1 − aτn+3τn+2. (B.11)

This result is connected to several of the examples in this paper, where such Somos-7 relations
appear in various places. There is another, analogous result for the Somos-5 recurrence rela-
tion itself, namely that every Somos-5 sequence satisfies a relation of Somos-4 type with one
coefficient that varies according to the parity of the index n [15]. The corresponding result for
the special Somos-7 recurrence can be stated as follows.

Proposition B.1. Suppose that the sequence (τn) satisfies the special Somos-7 relation

τn+7τn = aτn+6τn+1 + bτn+4τn+3, (B.12)

with constant coefficients a,b. Then the quantity

ξn =
τn+5τn+ aτn+3τn+2

τn+4τn+1
(B.13)

is periodic with period 3, that is ξn+3 = ξn for all n.

Proof. We begin by defining the sequence of ratios

fn =
τn+2τn
τ 2n+1

. (B.14)

In terms of fn, the Somos-7 recurrence is equivalent to the relation

fn+5 f
2
n+4 f

3
n+3 f

3
n+2 f

2
n+1 fn = afn+4 f

2
n+3 f

2
n+2 fn+1 + b. (B.15)

6 See www.lmfdb.org/EllipticCurve/Q/794/a/1 for more details.
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Upon shifting n→ n+ 1 and subtracting (or equivalently, applying the total difference operator
to the constant b), we find

fn+6f
2
n+5 f

3
n+4 f

3
n+3 f

2
n+2 fn+1 − fn+5f

2
n+4 f

3
n+3 f

3
n+2 f

2
n+1 fn

= a
(
fn+5f

2
n+4 f

2
n+3 fn+2 − fn+4f

2
n+3 f

2
n+2 fn+1

)
,

and then after dividing by fn+5f2n+4 f
2
n+3 f

2
n+2 fn+1 and rearranging, this becomes

fn+6 fn+5 fn+4 fn+3 +
a

fn+5 fn+4
= fn+3 fn+2 fn+1 fn+

a
fn+2 fn+1

.

If we substitute for fn with the formula (B.14), then the above equality says precisely that

ξn+3 = ξn,

which is the required result.

The recurrence (B.15) is equivalent to iteration of a map in 5 dimensions, that is

Ψ : ( f0, f1, f2, f3, f4) 7→ ( f1, f2, f3, f4, f5) ,

which corresponds to a lift of the Lyness map (1.2) lying between it and Somos-7. The proof
of the preceding result shows that, when considered as a function on the 5D phase space, the
quantity

ξ0 = f3f2f1f0 +
a
f2f1

,

is a three-invariant for the map Ψ, in the sense that (Ψ∗)3(ξ0) = ξ0, and by viewing Somos-7
as the 7D map defined by (B.12), ξ0 lifts via (B.14) to a three-invariant for this as well.

Note that, since the three quantities ξ0, ξ1, ξ2 are functionally independent, the three ele-
mentary symmetric functions

ξ0 + ξ1 + ξ2, ξ0ξ1 + ξ1ξ2 + ξ2ξ0, ξ0ξ1ξ2 (B.16)

provide three invariant functions that are also functionally independent; so they constitute three
first integrals, both forΨ and for Somos-7. This is a particular case of the fact that the general
Somos-7 relation, with an extra term proportional to τn+5τn+2 included on the right-hand side,
has three functionally independent invariants, as was shown by a different method in [11]. It
was also remarked there that only one of these three first integrals survives reduction to the
plane with coordinates (u0,u1) where the Lyness map

φ̂L :

(
u0
u1

)
7→
(

u1
(au1 + b)/u0

)
is defined. To be precise, if we define the map π : C7 → C2 by

π : u0 =
τ0τ5
τ2τ3

, u1 =
τ1τ6
τ3τ4

, (B.17)

then the intermediate lift corresponds to π̃ : C5 → C2, given by

u0 = f0 ( f1f2)
2 f3, u1 = f1 ( f2f3)

2 f4,
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and the coordinates fj make it easy to verify that the only surviving member of the invariant
set (B.16) is the product

ξ0ξ1ξ2 = aK̃+ b, (B.18)

where

K̃=
u0u1 (u0 + u1)+ (u0 + u1)

2
+
(
a2 + b

)
(u0 + u1)+ ab

u0u1
(B.19)

is the form of the first integral for the Lyness map φ̂L that is given in [19]. (As usual, we
are abusing notation slightly when we identify the left- and right-hand sides of (B.18): we
should really replace K̃ with π∗(K̃) or π̃∗(K̃), depending on whether we wish to regard the ξj
as functions of the quantities τ n or fn.)

Proposition B.2. Suppose that the sequence (un) satisfies the Lyness map, in the form of the
recurrence

un+1un−1 = aun+ b.

Then the quantity vn = un+ a gives a solution of the Somos-5 QRT map, in the form

vn+1vnvn−1 = α̂vn+ β̂, with α̂= aK̃+ b, β̂ =−aα̂, (B.20)

where K̃ is the first integral associated with the Lyness map, given by (B.19).

Proof. In terms of a tau function τ n satisfying (B.12), we may write

un =
τn+5τn
τn+3τn+2

=⇒ vn = un+ a=
τn+5τn+ aτn+3τn+2

τn+3τn+2
= ξn

τn+4τn+1

τn+3τn+2

from (B.13). Hence, by multiplying out and cancelling the terms that appear in the product of
three adjacent vn, we find

vn+1vnvn−1 = ξn+1ξnξn−1
τn+5τn
τn+3τn+2

=
(
aK̃+ b

)
un,

where we have used (B.18). If we set α̂= aK̃+ b and replace un by vn− a, then we obtain the
Somos-5 QRT map in the form (B.20), as required.

The preceding result shows how the Somos-5 QRT map in theorem 4.3 appears as a con-
sequence of the Lyness map in theorem 4.2, and also explains the connection between the
corresponding instances of these maps appearing in theorems 4.6 and 5.8. We now proceed to
present some additional results about the solutions of the special Somos-7 recurrence.

Theorem B.3. The general solution of the initial value problem for (B.12), with generic (non-
zero) values of the parameters a,b and initial data τ j, 0⩽ j⩽ 6, has the form

τn = exp

(
c1 + c2 n+ c3 (−1)n+ c4 e

2nπi/3+ c5 e
−2nπi/3

)
σ (z0 + nz)

σ (z)n
2 , (B.21)

where σ(·) = σ(·;g2,g3) is the Weierstrass sigma function associated with the elliptic curve

E : y2 = 4x3 − g2x− g3. (B.22)
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Proof. The proof of this result goes along very similar lines to the corresponding result for
Somos-5 in [15], so we will sketch the main details and leave it for the reader to fill in the
rest. The first part of the proof requires verifying that the analytic formula does indeed sat-
isfy (B.12), viewed as a difference equation in n, while the second part is to show that it gives
the general solution, in the sense that for a generic set of coefficients a,b and initial values
τ j, it is possible to find constants cj and z0,z,g2,g3 that solve the corresponding initial value
problem. For the first part, note that the set of gauge transformations τn → gn τn, which leave
invariant both (B.12) and the image (u0,u1) of the map π in (B.17), consists of an algebraic
torus (C∗)5 defined by the equation gngn+5(gn+2gn+3)

−1 = 1, which implies(
T 5 −T 3 −T 2 + 1

)
loggn = 0,

and the solution of the latter equation is precisely the exponential prefactor in (B.21) with arbit-
rary constants cj, 1⩽ j⩽ 5. Therefore, to verify the form of the analytic solution, it remains
only to check the part involving σ. This can be done using standard results onWeierstrass func-
tions, and in particular the three-term relation for the sigma function, which shows that (B.21)
is a solution of (B.12) if and only if the coefficients are parametrized by z,g2,g3 according to
the formulae

a=
σ (4z)

σ (2z)σ (z)12
, b=− σ (6z)

σ (3z)σ (2z)σ (z)23
. (B.23)

Now for the second part, begin by observing that the total count of coefficients plus initial
values is 9, which is the same as the count of arbitrary constants cj plus parameters z0,z,g2,g3,
so it is necessary to account for how these constants/parameters are determined from the initial
value problem. Ignoring the non-gauge part of the formula, the four parameters z0,z,g2,g3
come from the solution of the initial value problem for the iterates of the Lyness map for given
a,b and initial data (u0,u1), which has the form

(φ̂L)
n
(u0,u1) = (un,un+1) , with un =

σ (z0 + nz)σ (z0 +(n+ 5)z)

σ (z0 +(n+ 2)z)σ (z0 +(n+ 3)z)σ (z)12
.

Then the solution to the algebraic problem of reconstructing a Weierstrass cubic curve E with
invariants g2,g3 together with two points P0 = (℘(z0),℘ ′(z0)), P= (℘(z),℘ ′(z)) ∈ E, starting
from an initial point (u0,u1) on a fixed level curve of the first integral (B.19) for the Lyness
map, is presented explicitly in [19], Theorem 1, up to rescaling the y coordinate by a factor of
2. (Compared with (B.22), the Weierstrass curve in [19] is written as y2 = x3 +Ax+B.) For
generic values of a,b, K̃, the affine biquadratic equation

u0u1 (u0 + u1)+ (u0 + u1)
2
+
(
a2 + b

)
(u0 + u1)+ ab− K̃u0u1 = 0

defines a smooth curve of genus 1 in P1 ×P1, which is birationally equivalent to a Weierstrass
cubic defined by g2,g3, with non-vanishing discriminant g32 − 27g23 6= 0. Given the solution
to the purely algebraic problem of determining the elliptic curve E and the (x, y) coordinates
of the pair of points P0,P, such that the orbit of the Lyness map corresponds to the sequence
P0 + nP ∈ E, it is necessary to determine the associated pair of points on the Jacobian of the
curve, that is the values z0,z ∈ Jac(E) = C/Λ∼= E, which are found by evaluating the elliptic
integrals

z0 =
ˆ P0

∞

dx
y
, z=

ˆ P

∞

dx
y
,
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taken modulo the lattice of periods Λ. Finally, once z0,z,g2,g3 have been fixed, the system of
5 linear equations

c1 + c2 n+ c3 (−1)n+ c4 e
2nπi/3+ c5 e

−2nπi/3 = log

(
τnσ (z)

n 2

σ (z0 + nz)

)
, n= 0,1,2,3,4

allows the values of the constants cj appearing in the gauge factor to be determined from the
initial values.

In order to discuss Somos-k relations of higher order that are satisfied by solutions of (B.12),
it is convenient to introduce the sequence of division polynomials (an) associated with an
elliptic curve (B.22), whose terms correspond to the multiples nP ∈ E (see [15] and references
therein). Given the point P=

(
℘(z),℘ ′(z)

)
parametrized by z ∈ Jac(E), these can be defined

analytically by the formula

an =
σ (nz)

σ (z)n
2 . (B.24)

From the definition, the sequence is clearly antisymmetric, in the sense that an =−a−n for all
n. This sequence is another solution of the recurrence (B.12), corresponding to the same value
of the first integral K̃ as for the solution (B.21), but with different initial conditions; we also
refer to (an) as the elliptic divisibility sequence associated with (B.21). In particular, when the
parameters and initial conditions are chosen suitably, then (an) consists entirely of integers
which satisfy the divisibility property an|am whenever n|m: this is the usual meaning of the
name elliptic divisibility sequence (EDS).

In general, the terms of the EDS associated with a solution of (B.12) are determined com-
pletely as algebraic functions of a,b, K̃. Note that we have a0 = 0,a1 = 1, and the first few
terms are specified by

(a2)
4
= K̃+ a, (a3)

3
= aK̃+ b, a4 = a2a, a5 = a2 − b,

a6 =−a2a3b, a7 =−abK̃− a4 + a2b− b2,
a8 =−a2a

(
abK̃+ a4 − 2ab+ 2b2

)
, a9 =−a3

(
a3bK̃+ a6 − 2a4b+ 3a2b2 − b3

)
.

The terms of the EDS satisfy a Somos-k relation for each k⩾ 4, which means that they can be
considered as polynomials in a2,a3,a,b, K̃ with the appropriate divisibility property, namely

an ∈R∗ := Z
[
a2,a3,a,b, K̃

]
/∼, with n|m =⇒ an|am in R∗,

where ∼ denotes the equivalence relation defined by the algebraic identities (a2)4 = K̃+ a,
(a3)3 = aK̃+ b. Now from the analytic definition (B.24) and the formula (B.21), we can use
the three-term relation for the sigma function to derive infinitely many higher Somos relations
for τ n, which must be of odd order k= 2j+ 1, but with the further requirement that k cannot be
a multiple of 3, since relations of this order are the only ones that are invariant under the gauge
transformations gn described in the proof of theorem B.2. In this way, we arrive at infinitely
many relations that can be written concisely in the following form:

a3a4τn+j+1τn−j =

∣∣∣∣ aj+1τn+4 aj−3τn
aj+4τn+1 ajτn−3

∣∣∣∣ . (B.25)

However, the above relation can be modified by making use of the Somos-7 recurrence (B.12)
to replace the product τn+4τn−3 on the right-hand side of (B.25), and further simplified by
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using the fact that the terms aj of the associated EDS satisfy the same Somos-7 relation. Thus
we arrive at

Corollary B.4. For all integers k⩾ 7 that are odd and not a multiple of 3, every solution
of (B.12) satisfies a Somos-k relation with constant coefficients, given by

τn+j+1τn−j = αj τn+3τn−2 +βj τn+1τn, (B.26)

with k= 2j+ 1 and j 6≡ 1(mod 3), where

αj =
aj+1aj
a3a2

, βj =−
aj+3aj−2

a3a2
. (B.27)

We can now conclude this appendix with a strong version of the Laurent property for (B.12),
which was an ingredient in the proof of theorem 4.4.

Theorem B.5. The iterates of the special Somos-7 recurrence (B.12) possess the strong
Laurent property, in the sense that τn ∈ R̃ for all n⩾ 0, where

R̃= Z
[
a,b, K̃, τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 , τ4, τ5, τ6

]
.

Proof. The proof follows very closely the approach used in [16] to show analogous results
for Somos-4 and Somos-5. To begin with, it is clear that τj ∈ R̃ for 0⩽ j⩽ 10, taking the 7
initial data and applying (B.12) four times, which requires division by τ0, τ1, τ2, τ3. Thereafter,
the higher relations (Somos-11, Somos-13, etc) can be used to calculate τ j for j⩾ 11, setting
n= j, j+ 1, j+ 2 in (B.26) with j⩾ 5 (for j 6≡ 1(mod 3)), so that only divisions by τ0, τ1, τ2 are
necessary, and all τ n appearing on the right-hand side are previously determined elements of
R̃. The result then follows by induction, once it has been shown that the coefficients αj,βj ∈
Z[a,b, K̃]. To see this, it is enough to verify from the recursive relations satisfied by the EDS that
each an is equal to a prefactor times an element ofZ[a,b, K̃], where the prefactor simply repeats
the pattern 1,a2,a3,a2,1,a2a3 with period 6, and hence for each j 6≡ 1(mod 3) the coefficients
in (B.27) are of the desired form.
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