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Abstract—This paper presents the methodical development of a state-error-driven self-adaptive 

Fractional Order PID (AFOPID) control algorithm to efficiently regulate the velocity of pneumatically 

conveyed particles at the desired set point as well as to prevent the blockage of particles in a pipe due 

to an imbalanced combination of their velocity and corresponding mass flow rate. The proposed 

fractional control law is constituted by adaptively modulating fractional orders of the integral and 

differential operators in the control based on the state-error variations in the velocity of solid particles. 

The particle’s velocity is measured and updated via electrostatic sensors in conjunction with cross-

correlation signal processing algorithms. All the other fixed hyper-parameters associated with the PID 

control scheme are meta-heuristically optimized by using a genetic algorithm. The proposed AFOPID is 

benchmarked against conventional integer-order PID and the Fractional Order PID (FOPID) controllers. 

Experiments are performed on a laboratory-scale test rig to comparatively analyze the aforesaid control 

schemes; where each controller is examined for three velocity set points and three disturbance levels. 

The experimental results validate the superior time-optimality and robustness of the proposed AFOPID 

controller against bounded disturbances and abrupt velocity set-point variations by manifesting 

relatively faster settling time, low overshoots (and undershoots), and smaller steady-state fluctuations. 

 

Index Terms—Adaptive Fractional Order PID, Genetic Algorithm, PID, Velocity control 

Faisal Abbas, Omer Saleem, Lijuan Wang, Yong Yan 

A Self-Adaptive Fractional Order PID Controller for the Particle 
Velocity Regulation in a Pneumatic Conveying System 
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I. INTRODUCTION 

Two-phase gas-solid flow systems are widely seen in many industrial processes such as food processing, 

handling of fertilizers in agricultural cycles, cement production, shipping, and power generation [Yan et al. 

(2021)]. One of the most commonly seen examples of such a system is the pneumatically conveyed pulverized 

coal particles in the fuel lines of coal-fired power plants [Qian et al. (2017)]. Applications of pneumatic 

conveying systems for handling bulk solids are undergoing rapid growth as they can significantly enhance the 

efficiency of material transportation, prevent environmental pollution, and boost manufacturing safety and 

reliability. However, the complex flow patterns in pneumatic conveying pipelines create intricate modeling and 

measurement challenges [Yan (1996)]. An uncontrolled flow rate is wasteful, as it can either lead to energy 

wastage or eventually result in an unscheduled shutdown of the plant due to a deficiency of fuel.  

To avoid these circumstances, the transportation of material through pipes should be optimized, which generally 

requires the flow rate to be controlled within a certain range. Measuring the velocity of solid particles in the 

aforementioned industrial processes is very important, as the product of velocity and concentration results in 

the mass flow rate of solid particles, which is required to control the efficiency of the process. Furthermore, 

velocity measurement is an important factor in evaluating pipeline erosion, as erosion is directly proportional 

to velocity and concentration [Xu et al. (2018)]. Also, in some industrial processes, it is observed that an 

uncontrolled and imbalanced amount of velocity and mass flow rate of these solid particles can sometimes block 

the pipe, which eventually results in a catastrophic situation. As the velocity of solid particles plays an important 

role in determining the above-mentioned factors, it is therefore highly desirable to develop such agile control 

schemes that can flexibly regulate the velocity of ongoing solid particles whenever the system encounters a 

blockage or any kind of disturbance problem inside a pneumatic pipe. 
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A. Literature Review 

Pneumatic conveying systems are widely used in industries for transporting bulk materials through pipelines 

using air or another gas [Abe et al. (2023), Klinzing et al. (2015)]. Control of particle velocity in these systems 

is critical for ensuring efficiency, minimizing wear and tear, reducing energy consumption, and preventing 

blockages or damage to the materials being conveyed [Weber and Molerus (1990)]. Pneumatic conveying can 

be broadly classified into dilute-phase and dense-phase systems [Wypych (1995)]. Dilute-phase conveying 

involves transporting particles suspended in the conveying gas at high velocities, whereas dense-phase 

conveying operates at lower velocities with particles moving in a more plug-like manner [Mills (2004)]. 

Developing and incorporating agile closed-loop particle-velocity control techniques with pneumatic conveying 

systems is also crucial for the said industrial processes. However, this development depends on the availability 

of accurate velocity measurements so that they can be fed back to the closed-loop controller. Hence, it is of 

utmost importance to discuss the state-of-the-art velocity measurement and acquisition methods that are 

available in the open literature and discuss their suitability for the proposed control system development. A 

variety of sensor paradigms have been proposed for monitoring particle velocity and concentration in a bulk 

strong pneumatic conveyor scheme, including radiometric [Barratt et al. (2000)], capacitive [Zhang et al. 

(2012)], ultrasonic [Zulkiflli et al. (2019)], optical [Qian et al. (2015)], microwave [Penirschke et al. (2008)], 

and heat transfer methods. All these sensors are non-intrusive and can monitor the velocity as well as the 

concentration of particles. However, their usage poses challenges in some cases.  Radiometric devices pose a 

serious threat to the user's health and safety. The capacitive sensor measurements tend to get corrupted by the 

dielectric properties of the material(s) being monitored. The optical detectors require a transparent window in 

the pipe that is prone to pulverized material contamination and abrasion. The ultrasonic sensors are susceptible 

to error-induced false signals. Finally, the microwave sensors work with moderate accuracy at the cost of being 
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very expensive. Electrostatic charge-based sensing devices are preferred due to their simple design, cost-

effectiveness, durability, and robustness [Yan et al. (1995), Coombes & Yan (2016)]. Owing to their 

aforementioned attributes, non-invasive electrostatic sensors are adopted in this work to accurately analyze the 

flow conditions of solid particles in the pipe without disturbing flow dynamics.  

A lot of attempts have been made in the literature to develop robust particle velocity regulation schemes for 

pneumatic conveying systems. The PLC-based automatic control system for pneumatic conveying systems, 

proposed in [Genxi et al. (2008)], lacks the design flexibility to address the system’s state error deviations. 

Proportional-Integral-Derivative (PID) controllers are widely favored due to their simple structure and reliable 

yield to control industrial processes [Bequette (2003)]. A PI control system assisted by tomographic imaging 

was developed to control the particle velocity in the conveying system [Deloughry et al. (2001)]. However, it 

lacked the robustness to address rapid variations in setpoint velocity and random disturbances. The sliding-

mode controllers tend to deliver robust control effort at the cost of highly discontinuous control activity and 

increased chattering content in the state response [Ren, Wang, Fan & Kaynak (2019)]. Despite their design 

flexibility, fuzzy controllers require an elaborate set of qualitative rules that are empirically synthesized based 

on the expert's knowledge and, hence, are bound to contain inaccuracies [Barbosa & Seleghim (2011), Neuffer 

et al. (1999)]. The statistical control scheme presented in [Ramonowski et al. (2006)] uses statistical Bayesian 

modeling combined with a Markov chain Monte Carlo (MCMC) sampling algorithm to analyze the data and 

generate appropriate control commands. The fuzzy-PID control scheme proposed in [Sun et al. (2022)] yields 

fast, stable, and high-precision flow control in the pneumatic conveying system. To improve the controller’s 

adaptability to efficiently reject the exogenous disturbances, a neural network-based controller is employed that 

tracks a well-postulated gain-scheduled PID reference controller to yield robust control effort [Barbosa & 

Seleghim (2003)]. The simulation results show that the proposed scheme yields a 50% improvement in power 
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efficiency as compared to the conventional control schemes. The multivariable controllers have also been 

rigorously analyzed for pneumatic conveying of particulate material [Birk (1999)]. Despite their optimality, 

model predictive controllers (MPCs) rely upon a multitude of parameters that require accurate tuning [Jones 

and Jabob (2007)]. The nonlinear MPCs have demonstrated enhanced reference tracking accuracy and a 

reasonably enhanced closed-loop response with minimal control effort [Satpati et al. (2014)]. However, they 

require complex computational algorithms for their realization. An optimal control design for the pneumatic 

conveying system is presented in [Wilms and Dhodapkar (2014)]. However, its performance is prone to 

degradation under parametric uncertainties.  

To address the shortcomings of state-of-the-art control schemes, fractional calculus is integrated with the 

integer-order PID controller to formulate the Fractional Order PID (FOPID) controller [Shekher et al. (2012), 

Erenturk (2013)]. This scheme is widely preferred for controlling nonlinear and chaotic systems [Ren, Fan & 

Kaynak (2019), Zhang & Pi (2012), Giernacki (2016)]. In addition to the PID gains, the FOPID controller 

introduces two new parameters (, ) that serve as its integral and derivative operator's fractional orders [Mishra 

& Chandra (2014)]. These fractional operators increase the controller's degree of freedom and design flexibility 

[Dumlu & Erenturk (2014)]. The performance of the ubiquitous FOPID controllers can be further enhanced by 

adaptively modifying the parameters (, ) via an online parameter adaptation mechanism [Saleem & Abbas 

(2017), Saleem et al. (2020)]. Different variants of adaptive FOPID controllers have been observed to yield 

promising results by improving the robustness of closed-loop energy-conversion and electro-mechanical 

systems against exogenous disturbances [Saleem & Abbas (2017), Saleem et al. (2020), Saleem & ul Hasan 

(2019)]. 
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B. Main Contributions 

The main contribution of this paper is the formulation of a well-postulated adaptive FOPID (AFOPID) 

controller to regulate the velocity of solid particles in a pneumatic conveying system. The proposed control 

procedure is realized by augmenting the conventional FOPID controller with an online adaptation mechanism 

that serves as a superior regulator to dynamically adjust the fractional orders in real-time. The key contributions 

of this article are thus listed below: 

• Constitution of the baseline FO-PID controller for a pneumatic conveying system. 

• Realization of the proposed adaptive FO-PID controller by retrofitting it with an online adaptation law. 

• Formulation of the adaptation law by employing a pre-configured nonlinear hyperbolic secant function that 

depends on the real-time error variations in the particle velocity. These functions are formulated via well-

established meta-rules that self-tune the fractional power to speed up the transient response and alter the 

damping control force as the error conditions change, respectively. 

• Experimentally validating the efficacy of the designed controller variants by conducting real-time 

experiments on a standard pneumatic conveying hardware setup.   

The proposed AFOPID controller is benchmarked against the conventional PID and FOPID to justify its 

efficacy. The proportional, integral, and derivative gains of the three aforesaid controller variants are meta-

heuristically tuned offline via the Genetic Algorithm (GA) and are kept constant during every experimental trial 

[26]. The performance of the proposed control scheme is validated by conducting customized real-time 

hardware-in-the-loop experiments on a pneumatic conveying test rig. The experimental results and the 

corresponding comparative analysis, presented later in the article, also validate that the proposed methodology 

can effectively regulate the velocity of solid particles at the specified set point with cross-correlation as a 

velocity measurement method using two ring-shaped flush-mounted electrostatic sensors. The robustness of the 
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implemented system is also validated by introducing three levels of disturbances in the system’s steady-state 

response.  

 

C. Features of the Proposed Scheme 

There are several advantages to using the proposed control procedure. Fractional controllers are suitable to 

realize and address the intrinsic nonlinear dynamics and chaotic behavior of physical systems. The introduction 

of self-tuning fractional orders increases the controller's degree-of freedom and flexibility of controller design, 

which enhances the system's robustness against random exogenous disturbances. The self-tuning fractional 

orders achieve the aforesaid control objective by smoothly alternating the fractional controller to act 

predominantly like a PD controller under large error (transient) conditions to damp the overshoots and ensure 

a rapid transit, and like a PI controller as the response converges to the setpoint to minimize the steady-state 

fluctuations. This is indeed an innovative feat. Additionally, the nonlinear scaling functions formulated to 

adaptively self-tune the fractional orders can be algebraically solved in a single step after every sampling 

interval, which does not put any recursive computational burden on the processor. Hence, the proposed scheme 

can be realized using modern digital computers. The bounded variation of the fractional orders dictated by the 

nonlinear functions also serves to preserve the system's closed-loop stability. 

As compared to the traditional PID controllers, the FOPID controllers introduce two additional parameters 

(fractional orders of the integral and derivative terms), providing more flexibility to handle external 

disturbances. However, the tuning of these parameters is generally quite labor-intensive. The proposed 

controller addresses this issue by adaptively modulating the fractional orders. Apart from yielding better 

performance in adapting to changing system dynamics, this arrangement obviates the necessity to offline 

optimize the said parameters. However, the fractional calculus in conjunction with the adaptive system results 
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in slightly higher computational requirements. But modern digital computers have sufficient processing power 

to handle the computational burden. The SMCs are simpler to implement, but the smooth dynamic adjustment 

of the fractional orders in the proposed controller results in generating smoother control actions, thus, 

deliberately avoiding the chattering problem. 

Unlike the LQRs, the model-free nature of the proposed controller enables it to effectively handle the intrinsic 

nonlinearities and model uncertainties. Its implementation is quite easier for systems whose precise 

mathematical model is either not available or is difficult to derive. However, its control effort may be suboptimal 

in terms of a quadratic cost function. The MPC solves optimization problems online, which inevitably makes it 

computationally expensive. The proposed scheme requires relatively less computational resources compared to 

MPC. The translation of expert knowledge into fuzzy rules simplifies the fuzzy control design. However, the 

definition of these heuristic rules or their tuning may not always be precise, which degrades the controller’s 

performance. On the contrary, the proposed controller provides a clear analytical framework for design and 

tuning. Unlike the neural controllers, the proposed scheme can adapt to reject disturbances in the system in real-

time without extensive training, which makes it computationally simpler. The proposed controller indeed 

possesses some shortcomings as compared to the existing control schemes. However, its benefits tend to 

outweigh its limitations.  

The idea of using an adaptive FOPID controller with self-tuning fractional orders to robustly regulate the 

particle velocity in a pneumatic conveying system under disturbances has never been attempted in the scientific 

literature. Hence, the proposed scheme is novel and innovative. 

The remaining paper is organized as follows: The measurement system is described in Section II. The proposed 

control scheme is formulated in Section III. The parameter optimization methodology is discussed in Section 

IV. The experimental analysis is presented in Section V. The article is concluded at the end. 
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II. PARTICLE VELOCITY ESTIMATION SYSTEM 

As discussed earlier, pneumatic conveying systems are significant in various industries due to their efficiency, 

flexibility, and reliability to handle a wide range of materials. They enhance operational efficiency, ensure 

product quality, and contribute to safer and more sustainable industrial practices. However, developing a robust 

and agile control system that regulates the particle velocity in the system poses a challenging problem for the 

scientists. However, it is imperative to derive a mathematical model of the particle motion in the conveying 

system to analyze the dynamics of the system and then develop a suitable control scheme around it. This section 

presents a nominal model of particle motion as well as a comprehensive description of the particle velocity 

determination system. 

 

A. Mathematical Model of Particle Motion 

To model the system dynamics of a particle flowing in a fluid, consider a constant horizontal input force 𝑇 

applied to a spherical inertial particle as it travels across a pneumatic conveying channel. The one-dimensional 

equation of motion of a particle having mass 𝑚 subject to a drag force 𝐹𝑑 is expressed as given below [18]. 

𝑚𝑣̇ = 𝐹𝑑 + 𝑇                                                                                       (1) 

 where, 𝑣 represente the particle's velocity in the inertial frame, 𝑣̇ is the particle's acceleration, is 𝑇 is the 

constant thrust force input. Ideally, the particle is subjected to a linear Stokes drag force, as shown in (2). 

𝐹𝑑 = −3𝜋𝑑𝜌(𝑣 − 𝑤)                                                                          (2) 

 where, 𝑑 is the diameter of the spherical particle, 𝜌 is the dynamic viscosity of the fluid (air in this case) at 

room temperature, and 𝑤 is the velocity of the fluid flow in the inertial frame. By substituting Equation (2) in 

(1), the first-order differential equation representing the particle motion dynamics is formulated as given below. 
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𝑣̇ = − (
3𝜋𝑑𝜌

𝑚
) 𝑣 + (

3𝜋𝑑𝜌

𝑚
) 𝑤 + (

1

𝑚
) 𝑇                                                           (3) 

 Assuming that the velocity of fluid flow 𝑤 is negligible, the aforementioned expression can be simplified as 

shown in (4). 

𝑣̇ = − (
3𝜋𝑑𝜌

𝑚
) 𝑣 + (

1

𝑚
) 𝑇                                                                                (4) 

 The expression resembles the state equation of a linear dynamic system 𝑥̇ = 𝑎𝑥 + 𝑏𝑢; where, 𝑥 = 𝑣 is the 

state variable, 𝑎 = −
3𝜋𝑑𝜌

𝑚
 is the system variable, 𝑏 =

1

𝑚
, and 𝑢 = 𝑇 is the system's input. The transfer function 

of the system for 𝑣(0) = 0 at is expressed in (5). 

𝐺(𝑠) =
𝑉(𝑠)

𝑇(𝑠)
=

1

𝑚𝑠 + 3𝜋𝑑𝜌
                                                                         (5) 

 where, 𝑠 is the Laplace operator. In this work, the pneumatic conveyance of fine wheat flour particles is used 

for experimentation. The model parameters are shown in Table I [29]. 

TABLE I 

Identification of System Parameters 

Symbol Description Value Unit 

𝑚 Mass of the particle 2.48×10-9 kg 

𝑑 Diameter of the particle 200 µm 

𝜌 Dynamic viscosity of the fluid (air) 1.85×10-5 kg/m.s 

 

B. Cross-Correlation Scheme for Particle Velocity Estimation 

The cross-correlation technique is used to evaluate the likelihood between two signals, 𝑞1(𝑡) and 𝑞2(𝑡), as a 

function of the time delay 𝜏𝑝 between them. These signals are acquired via two transducers that are deployed 
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upstream and downstream in the pipe at a fixed distance from each other. The cross-correlation 𝑅12 of the 

acquired signals is computed as shown in (6) [Zhang et al. (2016)]. 

𝑅12(𝑝) =
∑ 𝑞1(𝑖)𝑞2(𝑖 + 𝑝)𝑁

𝑘=1

(√∑ 𝑞1
2(𝑖)𝑁

𝑘=1 )(√∑ 𝑞2
2(𝑖)𝑁

𝑘=1 )
                                                              (6) 

 where, 𝑁 is the number of sampling points, 𝑃 is the maximum number of delayed points 𝑝 (𝑃 = 0, 1, 2, … , 𝑝), 

and 𝑞1(𝑖) and 𝑞2(𝑖) represent the discretized signals, 𝑞1(𝑡) and 𝑞2(𝑡), respectively. The value of 𝜏𝑝 is 

determined by computing the location of the dominant peak in the cross-correlation function, which corresponds 

to the point in time where the two signals are best aligned [Yang et al. (2022)]. Since the spacing between the 

two transducers is already known, the particle velocity is calculated as shown in (7).  

𝑣 =  
𝐿

𝜏𝑝

                                                                                                (7) 

 where, 𝐿 is the distance between upstream and downstream electrodes and 𝜏𝑝 is the time that solid particles 

take to move from upstream to downstream transducer electrodes. 

C. Electrostatic Sensor Setup 

In this research, electrostatic sensors are used as transducers to acquire the correlated signals. The electrostatic 

sensor is a passive device that measures the charge value of the solid particles. Hence, first, the charge signals 

are converted into corresponding voltage signals [Qian et al. (2017)]. These voltage signals are amplified to 

ensure their accurate recognition and interpretation by the acquisition system. The final stage of the conditioning 

circuit comprises a low pass filter that removes the high-frequency noise to remove unnecessary chattering 

content from the signal. The sensor layout is shown in Figure 1 (a). The two ring-shaped electrostatic electrodes 

are flush mounted with the walls of the sensing head [Yan (2005)]. In this work, the value of 𝐿 is set at 16 mm. 

the disturbance in the gas-solid flow is introduced using a rectangular shape strip as shown in Figure 1 (b). 
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Upstream 
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Downstream 
Electrode
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(a) 

 

(b) 

Figure 1. (a) Layout of sensor design (b) Sensing head with source of disturbance. 

 

III. PROPOSED CONTROL METHODOLOGY 

The proposed control scheme works by dynamically updating the fractional orders based on the real-time error 

variations in the velocity of solid particles. The overall closed-loop system, along with the proposed 

methodology, is shown in Figure 2 (a). The whole process starts with a velocity setpoint 𝑣𝑠𝑒𝑡 prescribed by the 

user. The difference between 𝑣𝑠𝑒𝑡  and the particle’s actual velocity 𝑣𝑜 yields the velocity error 𝑒(𝑡). The values 

of 𝑒(𝑡) and its derivative, 𝑒̇(𝑡), are fed to pre-calibrated hyperbolic secant functions (HSFs) that modify the 

fractional orders online. The PID gains and the variation rates of the HSFs are pre-calibrated offline by using 

the GA. The AFOPID controller uses the error variations to generate a voltage signal that is bounded within 0 

Electrodes and Circuit 

Signal Conditioning 

Point of Disturbance 
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- 10 V. The variable frequency drive (VFD) uses this voltage to vary the pump’s frequency between 0 - 50 Hz 

to control its suction power. The schematic of the test rig used for this purpose is shown in Figure 2 (b). 

Adaptive-FOPID Controller  

Electrostatic Sensor

VFD Pump

Genetic Algorithm

HSFd/dt

м н

Kp KdKi

err

-
Vset Vo

 ɻ ˃

 

(a) 

 

(b) 

Figure 2. (a) AFOPID control algorithm (b) Test rig schematic. 
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A. Integer Order PID Controller 

The conventional PID controller is formulated as the weighted sum of the classical error variable, the integer-

order error-integral variable, and the integer-order error-derivative variable. The linear combination of the 

aforesaid error variables is expressed as shown in (8). 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝜏)
𝑡

𝑜

𝑑𝜏 + 𝑘𝑑𝑒̇(𝑡)                                                          (8) 

such that, 𝑒(𝑡) = 𝑣𝑠𝑒𝑡 − 𝑣𝑜 

where, 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 are the proportional, integral, and differential gains, respectively. The proportional 

controller improves the reference-tracking accuracy of the closed-loop system. The integral controller attenuates 

the overshoots and minimizes the steady-state fluctuations. The derivative controller enhances the phase margin 

and the response speed of the system [Shang et al. (2009)]. Altogether, these terms increase the controller’s 

agility to flexibly manipulate the stiffness of the control input as the error conditions vary [Saleem et al. (2020)]. 

The PID gains are optimized offline via GA discussed in Section IV.  

 

B. Fractional Order PID Controller 

Despite its reliability, the integer-order PID controller lacks the robustness to compensate for nonlinear 

disturbances [20]. This problem can be addressed by retrofitting the integer-order PID control law with 

fractional calculus. 

Fractional calculus serves as an effective tool to realize and reject intrinsic and unmodeled nonlinear 

disturbances. The fractional control law is realized by replacing the integer-order integral and differential 

operators with their fractional-order counterparts. This augmentation increases the controller's flexibility, which 

enhances its resilience against exogenous disturbances. To implement the fractional control law, integral and 
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differential operators are assigned fractional number powers. In this article, the fractional operators are denoted 

as 𝐷𝜀 , where 𝜀 is the fractional order. The three well-known definitions governing fractional calculus are given 

by Riemann-Liouville, Gruunwald-Letnikov, and Caputo [24]. These definitions are expressed as follows, 

respectively. 

𝐷𝜀𝑓(𝑡) =
1

𝛤(𝑛 − 𝜀)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡 − 𝜏)𝜀−𝑛+1
𝑑𝜏

𝑡

𝑎

                                                         (9) 

where, 𝑓(𝑡) is an arbitrary function, 𝛤(. ) is the Euler gamma function, 𝑛 is an integer number, and 𝑛 − 1 <

𝜀 < 𝑛. 

𝐷𝜀𝑓(𝑡) = lim
ℎ→0

1

ℎ𝜀
∑ (−1)𝑗 (

𝜀
𝑗)

(𝑡−𝑎) ℎ⁄

𝑗=0

𝑓(𝑡 − 𝑗ℎ)                                                         (10) 

 where, (
𝜀
𝑗) = 𝛤(𝜀 + 1) 𝛤(𝑗 + 1)⁄ 𝛤(𝜀 − 𝑗 + 1), and h is the step size. 

𝐷𝜀𝑓(𝑡) =
1

𝛤(𝜀 − 𝑛)
∫

𝑓𝑛(𝜏)

(𝑡 − 𝜏)𝜀−𝑛+1
𝑑𝜏

𝑡

𝑎

                                                            (11) 

The integer-order PID control law, designed in the previous subsection, is retrofitted with fractional order 

integral and derivative operators to realize the FOPID control law. The fractional powers of the integral and 

derivative operators, 𝛿 and 𝜇, are treated as the two new hyper-parameters. The FOPID control law is formulated 

as shown in (12). 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 (𝐷−𝛿𝑒(𝑡)) + 𝑘𝑑(𝐷𝜇𝑒(𝑡))                                                     (12) 

where, 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 are the same proportional, integral, and differential gains as prescribed in the last sub-

section. The fractional orders 𝛿 and 𝜇 are meta-heuristically tuned via the GA. The offline tuning procedure is 

discussed later in this article. The transfer functions of the control laws 𝑢(𝑡) is presented in (13). 
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𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 + 𝑘𝑑𝑠𝜇 +

𝑘𝑖

𝑠𝛿
                                                                     (13) 

It is quite difficult to computationally realize the terms 𝑠𝛿  and 𝑠𝜇 due to their fractional nature. Hence, these 

fractional operators are digitally implemented by using the Oustaloup recursive filtering technique [27]. The 

fractional operator 𝑠𝜀 is approximated via the Oustaloup filter, as shown in (14). 

𝑠𝜀 = 𝑃 ∏
1 + (𝑠

𝜔𝑧,𝑖⁄ )

1 + (𝑠
𝜔𝑝,𝑖⁄ )

𝑀

𝑖=1

                                                                         (14) 

such that,   𝜔𝑧,𝑖 = 𝜔𝑙(
𝜔ℎ

𝜔𝑙
⁄ )

2𝑖−1−𝜀
2𝑀⁄

,
  
𝜔𝑝,𝑖

= 𝜔𝑙(
𝜔ℎ

𝜔𝑙
⁄ )

2𝑖−1+𝜀
2𝑀⁄

 

where, 𝜔ℎ and 𝜔𝑙 are the upper and the lower translational frequencies of the filter, respectively, and 𝑀 is the 

filter order. The value of 𝑃 is selected such that (𝑗𝜔)𝜀 = 1 at 1.0 rad/s. In this research, a fifth order Oustaloup’s 

recursive filter is employed with 𝜔𝑙 = 10−4 rad/s and 𝜔ℎ = 102 rad/s to realize the fractional operators. The 

stability and robustness of the designed FOPID controller are analyzed as per the basic definitions of the gain 

margin and phase margin in the frequency domain. The feedback control system is required to satisfy the 

following conditions to ensure its stability [Hui et al. (2019)].  

• The phase of the open loop at the gain cross-over frequency 𝜔𝑐 satisfies: 𝑎𝑟𝑔(𝐶(𝑗𝜔𝑐)𝐺(𝑗𝜔𝑐)) = 𝜑𝑚 − 𝜋, 

where 𝜑𝑚 is the phase margin. 

• The gain of the open loop at 𝜔𝑐 satisfies: |𝐶(𝑗𝜔𝑐)𝐺(𝑗𝜔𝑐)| = 0 𝑑𝐵 

• To ensure robustness against loop gain variations, the phase satisfies: 
𝑑

𝑑𝜔
[𝑎𝑟𝑔(𝐶(𝑗𝜔)𝐺(𝑗𝜔))]|𝜔=𝜔𝑐

= 0. 

• To attenuate high-frequency noise 𝜔 ≥ 𝜔ℎ, the magnitude of the closed-loop transfer function 𝑄 must satisfy: 

|𝑄(𝑗𝜔ℎ) =
𝐶(𝑗𝜔ℎ)𝐺(𝑗𝜔ℎ)

1+𝐶(𝑗𝜔ℎ)𝐺(𝑗𝜔ℎ)
| < 𝐻 𝑑𝐵 . 
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• To attenuate low-frequency noise 𝜔 ≤ 𝜔𝑙, the sensitivity function 𝑆 satisfies: |𝑆(𝑗𝜔𝑙) =
1

1+𝐶(𝑗𝜔𝑙)𝐺(𝑗𝜔𝑙)
| ≤

𝑀 𝑑𝐵. 

 For the setup uses in this work, the following specifications can be considered; 𝜑𝑚 = 0.785 𝑟𝑎𝑑., 𝜔𝑐 = 0.5, 

𝐻 = −10, and 𝑀 = −20. These specifications can be used to compute the five parameters of the FOPID 

controller while preserving its asymptotic stability. Since it is quite hard to evaluate the analytical solutions, 

GA is used in this work to optimize the said parameters. The GA-based offline tuning of the FOPID controller 

parameters is discussed in Section IV. 

 

C. Adaptive Fractional Order PID Controller 

Despite the optimum tuning of the fractional orders, the consequent FO-PID controller would still lack the 

adaptability to flexibly manipulate the stiffness of the control effort to robustly compensate for the bounded 

exogenous disturbances, load-step variations, and measurement noise. This is because assigning a unique set of 

preset values to the controller gains and fractional orders is insufficient to address and yield the best control 

behavior against every disturbance condition.  

The aforementioned problem can be easily addressed by retrofitting the FO-PID controller with an online 

adaptation mechanism that dynamically modulates the fractional orders 𝛿 and 𝜇 as a nonlinear function of state 

error variables [26]. It is well-known that an appropriate setting of 𝛿 and 𝜇 can transform the FO-PID controller 

into its integer-order variants; the P, PI, PD, and PID controllers. Each of these controller subclasses exhibits 

beneficial features to handle the response as it commutes between its different phases. 
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Hence, in this work, the proposed adaptation mechanism acts as a superior regulator to adaptively modulate the 

fractional orders so that the FO-PID controller can be smoothly transformed into its appropriate subclasses as 

the error conditions vary. The adaptation mechanism is formulated by using the following meta-rules [27]. 

• The value of 𝜇 is increased during the initial start-up as well as the transient disturbances, and vice versa, to 

strengthen the derivative action. This arrangement increases the system's response speed and tightens the 

control application.  

• The value of 𝛿 is increased during steady state conditions, and vice versa, to strengthen the integral action. 

This improves the system's damping against steady-state fluctuations, allowing it to settle smoothly at the set 

point.  

These rules tend to increase the system's response speed while strengthening its damping effort against 

overshoots. The arrangement enables the controller to satisfy the desired objectives while addressing the 

disturbances. The AFOPID controller is formulated as per the aforementioned meta-rules. The fractional orders 

are dynamically adjusted as a nonlinear function of the classical error and its derivative. The AFOPID control 

law is formulated as shown in (15). 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 (𝐷−𝛿(𝑧,𝑡)𝑒(𝑡)) + 𝑘𝑑(𝐷𝜇(𝑧,𝑡)𝑒(𝑡))                                             (15) 

where, 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 are the proportional, integral, and differential gains, respectively. The fractional orders 𝛿 

and 𝜇 are dynamically modified via the hyperbolic secant functions (HSFs) shown in (16) and (17). 

𝛿(𝑧, 𝑡) = sech(𝛾1𝑧(𝑡))                                                                         (16) 

𝜇(𝑧, 𝑡) = 1 − sech(𝛾2𝑧(𝑡))                                                                    (17) 

where, 𝛾1 and 𝛾2 depict the variation rates of the HSF sech (. ), and 𝑧(𝑡) is the maximum value chosen between 

the normalized value of classical error 𝑒̂(𝑡) and derivative of normalized errors 𝑒̂̇(𝑡). The HSFs are chosen in 
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this work because they are continuous, even-symmetric, and bounded between zero and unity. These features 

lead to smooth transitions of  𝛿 and 𝜇 while restricting them between zero and unity, irrespective of the sign of 

𝑧(𝑡). The variable 𝑧(𝑡) is expressed as shown in (18). 

𝑧(𝑡) = max(𝑒̂, 𝑒̂̇)                                                                                (18)  

The particle velocity is estimated via the cross-correlation technique, which is then used to compute 𝑒(𝑡). 

Numerical differentiation of 𝑒(𝑡) delivers 𝑒̇(𝑡). The instantaneous values of 𝑒(𝑡) and 𝑒̇(𝑡) are normalized, as 

shown in (19). 

𝑒̂(𝑡) =  |
𝑒(𝑡)

𝑒𝑚𝑎𝑥

| = |
𝑒(𝑡)

𝑣𝑠𝑒𝑡

| , 𝑒̂̇(𝑡) =  |
𝑒̇(𝑡)

𝑒̇𝑚𝑎𝑥

|                                                          (19) 

The maximum error occurs when the particle’s velocity is zero. In this case, the error becomes equal to the 

reference velocity. The maximum value of the derivative of error is determined experimentally to be 12 m/s for 

this research work. To ensure the system’s stability with the proposed methodology, all the controller gains and 

the other parameters need to be kept within the range described in Table I. The parameter adaptation procedure 

does not put any recursive computational burden on the computer. Hence, the scheme can be easily realized 

with modern digital computers. The proposed control guarantees asymptotic convergence if the conditions 

prescribed in the previous sub-section are satisfied. The parameters 𝑘𝑝, 𝑘𝑖, 𝑘𝑑, 𝛾1, and 𝛾2 are tuned offline via 

the GA as discussed in Section IV.  

IV. PARAMETER OPTIMIZATION 

The GA is a heuristic search and optimization algorithm that is inspired by the theory of natural evolution by 

Charles Darwin. The GA technique offers several advantages over other optimization schemes [Lazarevic et al. 

(2013)].  
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Table I. Range of Controller parameters 

Parameters Min.  Max. 

𝒌𝒑 0.01 1 

𝒌𝒊 1 10 

𝒌𝒅 0.001 0.1 

𝜹 0.1 1 

𝝁 0.1 1 

𝜸𝟏 0.01 1 

𝜸𝟐 1 20 

 

The GA is a stochastic search method that imitates the evolution processes observed in nature [Guo et al. 

(2010)]. It can afford parallelism to solve optimization tasks. It is simple, requires less information, offers a 

higher convergence rate, and can handle larger sets of solution spaces as compared to other techniques [Guo 

et al. (2010)]. It represents natural genetics using chromosomes to perform parameter optimization and can be 

applied to a vast variety of practical engineering problems. These features make GA the ideal candidate to 

optimize the controller parameters for this work. This algorithm uses the natural selection process in which the 

most suitable people are chosen for reproduction to generate the next generation of children. The algorithm 

contains five steps that are described as follows: 

1) Initia li za tio n:  The method starts with a collection of random parameters denoted as the ‘population’. Every 

parameter in the population is a candidate solution to the optimization problem. The population is chosen 

such that the algorithm yields faster convergence while preserving the quality of the solutions as well as the 

computational economy. For this purpose, different population sizes (e.g., 50, 100, 200) were analyzed, and 
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the algorithm’s corresponding performance in terms of convergence speed and quality of solutions was 

observed. Consequently, a population size of 100 is selected for this application. 

2) Eva lua tio n:  The likelihood of selecting a parameter for reproduction is based on its fitness value. Every 

parameter is assigned a fitness value. The percentage overshoot (𝑃𝑂), settling time (𝑡𝑠), rise time (𝑡𝑟), and 

summation of all steady-state errors (𝑒𝑠𝑠) are used to ascertain the fitness of the parameter. The fitness 

function is shown in (20). 

𝐽𝑓 =  |𝑃𝑂| + 𝑡𝑠 + 𝑡𝑟 + ∫ |𝑒𝑠𝑠(𝑡)|𝑑𝑡
∞

0

                                                         (20) 

The computation of the solutions to the optimization problem is directly impacted by the selection of the 

weighting factors of the performance indices in the cost function. Applying a higher weighting factor to 𝑡𝑠 

and 𝑡𝑟  allows the controller to respond more quickly to changes in the system, leading to a faster transient 

response, and better tracking of desired references. However, it also contributes to larger overshoots and 

steady state fluctuations. On the contrary, applying a higher weighting factor to 𝑃𝑂 or integral of 𝑒𝑠𝑠 reduces 

the overshoots and potentially attenuates the steady-state fluctuations. However, it also slows the response 

speed and prevents the controller from keeping up with rapid changes in the system, leading to poor tracking 

performance.  

Imposing equal weights on each performance index typically establishes a beneficial trade-off between the 

system’s tracking performance, robustness against disturbances, and transient speed. By setting all weights 

to unity, each performance index is considered equally important. This approach assumes that all parameters 

have the same impact on the overall cost, thus simplifying the optimization problem. In the absence of 

specific knowledge about the relative importance of different performance indices, setting all weights to 
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unity is a neutral starting point. This avoids the introduction of bias that might come from arbitrary 

weighting. Hence, in this research, a weighting factor of 1 is applied to each performance metric in 𝐽𝑓. 

3) Selectio n:  This stage selects the fittest parameters and transfers their properties to the next generation. The 

number of iterations (or generations) is determined based on empirical testing with various numbers of 

generations (e.g., 50, 100, 200) via pilot algorithmic runs until improvements in fitness are negligible 

(convergence). The algorithm is thus run for 50 iterations in this research because the entire system takes 

considerable time to converge to the reference velocity. The chosen number of iterations yielded near-

optimal solutions while preserving the computational economy. 

4) Cro s so ve r:  Two previously existing parameters exchange their properties to reproduce the next generation 

of parameters that can be added to the population. The new parameters are generated as shown in (21) and 

(22). 

𝑌1 = |𝛽1𝑋1 + (1 − 𝛽2)𝑋2|                                                                 (21) 

𝑌2 = |(1 − 𝛽1)𝑋1 − 𝛽2𝑋2|                                                                 (22) 

where, 𝛽1 and 𝛽2 are crossover rates that are bounded between 0 and 1, 𝑋1 and 𝑋2 are the parent elements 

that contribute their properties to generate new parameters 𝑌1 and 𝑌2. Generally, a higher crossover rate 

promotes exploration but can disrupt good solutions, whereas, a lower crossover rate promotes exploitation 

but can lead to premature convergence. By conducting preliminary runs of the algorithm, 𝛽1 = 0.4 and 𝛽2 =

0.6  is selected. This set of empirically selected crossover rates balances exploration and exploitation for 

this application. 

5) Muta tio n:  Mutation happens within the population to preserve diversity and damp premature convergence 

by flipping some of the bits within one parameter. 
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The inner parameters of the GA are empirically tuned via the following steps: An initial set of inner parameters 

(populations, generations, and crossover rates) is chosen based on literature and general guidelines. A few pilot 

runs of the algorithm are then performed to understand the GA’s behavior. One inner parameter is adjusted at 

a time, and its impact on the GA’s performance is observed. This process of refining the inner parameters and 

testing the algorithm until its performance is satisfactory. That is, the algorithm’s convergence rate improves 

while preserving the quality of the solutions as well as the computational budget.  

The algorithm’s flow is illustrated in Figure 3. The controller parameters (𝑘𝑝, 𝑘𝑖 , 𝑘𝑑, 𝛿, 𝜇, 𝛾1, and 𝛾2) of the PI, 

PID, FOPI, FOPID, and AFOPID controllers are optimized offline via GA to ensure a fair comparison between 

the three control variants. While optimizing a particular controller variant, the GA chooses the random initial 

value of the parameters from the selection ranges (identified in Table I) and evaluates their fitness 𝐽𝑓 by running 

the conveying system to track the 20 m/s velocity set point for 40 sec. The optimized controller parameters are 

recorded in Table II. 

V. EXPERIMENTAL ANALYSIS  

This section describes the experimental procedure and analyzes the experimental outcomes. 

 

 

Figure 3. Flow chart of GA. 
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Table II. Selected control parameters 

Controller  𝒌𝒑 𝒌𝒊 𝒌𝒅 𝜹 𝝁 𝜸𝟏 𝜸𝟐 

PI 0.50 5.1 - - - - - 

PID 0.50 5.0 4.9×10-3 - - - - 

FOPI 0.52 3.1 3.4×10-3 0.85 - - - 

FOPID 0.52 3.2 3.4×10-3 0.92 0.181 - - 

AFOPID 0.48 2.1 4.8×10-3 HSF HSF 0.05 10 

 

A. Experimental Setup 

All experiments are conducted on a laboratory-scale negative pressure test rig, as shown in Figure 4 (a). In this 

research, the velocity of pneumatic conveyance of fine whole-grain wheat flour particles is used to analyze the 

performance of the proposed control scheme in the physical environment. The flour particles are placed in the 

vibratory feeder that conveys them to the pipe inlet of 0.05 m diameter. A suction pump is installed at the pipe’s 

other end to move these particles at the desired velocity. Hence, a VFD is commissioned to control the pump’s 

suction power via a personal computer (PC). A separate sensing head is installed at 2.6 m from the starting 

point of the horizontal pipe to analyze the behavior of the charge absorbed by the solid particles. The 

measurements are acquired via the NI-DAQ card at a sampling rate of 50 kHz. The acquired signals are 

conditioned and serially transferred to the software control routine running on the PC. The DAQ card also 

receives control commands from the PC and applies them to the VFD, as shown in Figure 4 (b).  

The proposed control system is programmed in the Windows-based MATLAB application using the FOMCON 

toolbox. The toolbox uses the Oustaloup recursive approximation to approximate fractional-order operators in 

the continuous domain. This involves generating a continuous-time rational transfer function with a specified 

number of poles and zeros to approximate the fractional order over a given frequency range. 



 25 

 

(a) 

 

PC

VFD

Electrostatic 
Sensors

Signal 
Conditioning

NI DAQ Card

Suction 
Pump
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Figure 4. (a) Laboratory scale test rig, (b) Data acquisition 

and control system. 

 

For implementation in digital controllers, FOMCON provides built-in functions to discretize the continuous-

time approximation. This is typically done using methods like the Tustin (bilinear) transformation or other 

discrete approximation techniques, allowing the continuous-time model to be used in discrete-time systems. 

DAQ and signal 

conditioning circuit 

Sensing Head 

VFD 

Pump 

Feeder 
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The Oustaloup filter provides a rational function approximation that can be applied in the continuous domain, 

which can then be discretized for implementation in digital systems. 

The implementation of the proposed control algorithm involves a higher computational burden compared to 

simpler control algorithms like the traditional PID controller. This increased computational complexity arises 

from the need to approximate fractional order integrals and derivatives, which inevitably increases the memory 

requirements as well as the complexity and the number of calculations per sampling interval. However, the said 

computational load can be easily handled with modern day programmable-logical-controllers (PLCs) or digital 

controllers; given that these systems support a high-level programming language (such as, structured text and 

function block diagrams), a sufficient sampling rate (at least 50 kHz), an adequate memory, and processing 

power. Hence, the proposed scheme can be practically integrated into industrial applications. 

 

B. Tests and Results 

Two unique experimental scenarios are used to assess the real time performance of the proposed control scheme. 

In every experimental trial, irrespective of the controller variant being used or the test condition being applied, 

the system starts with the vibratory feeder supplying the same (preset) quantity of solid particles while the 

pump’s VFD adjusts the suction power to meet the desired set point. The details of the two experimental tests, 

the corresponding results, and the performance analysis are presented as follows: 

1. Tests under Different Velocity Set Points 

The reference-tracking behavior of each control scheme is tested with three different velocity set points for a 

duration of 40 sec. to analyze their performance. The variation in velocity set points is a common occurrence 

in practical conveying systems and this test case emulates the aforementioned phenomenon. The minimum 
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velocity required to drive the particles in the pneumatic pipeline of the hardware setup used in this work is 15 

m/s. Below this threshold, the particles tend to accumulate at the bottom of the pipe. 

The air velocity measurement capability of the hot anemometer used in this work is limited to 26 m/s. In 

compliance with the aforementioned constraints, the three equally spaced velocity set-points are chosen from 

the range of 15 m/s to 25 m/s. Hence, the test results for 15 m/s, 20 m/s, and 25 m/s velocity set points are 

illustrated in Figure 5(a) to 5(c) respectively. The performance of AFOPID is compared with classical PI, PID, 

FOPI, and FOPID controllers. The AFOPID outperforms the other control techniques in terms of rise time (tr), 

settling time (ts), percentage overshoot (PO), steady-state error (ess), integral square-of-error (ISE), and integral 

time-weighted absolute error (ITAE) as shown in  

 

Table III. The PI and FOPI controllers minimize the chattering content but also slow down the response. The 

PID exhibits faster transition at the cost of large overshoots and chattering. The FOPID controller exhibits a 

mediocre improvement in time-domain performance. The AFOPID controller yields the most time-optimal 

behavior with minimal fluctuations. 
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(a) 

 

(b) 
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(c) 

Figure 5. Response of the controllers with velocity set point (a) 15 m/s (a) 20 m/s 

(a) 25 m/s 

 

 

Table III. Experimental Result Summary under Different Velocity Set Points 

Velocity 

(m/s) 

Controller  

𝒕𝒓  

(s) 

𝒕𝒔 

(s) 

𝑷𝑶 

(%)  

𝒆𝒔𝒔 

(m/s) 

ISE 

(m/s)2 

ITAE  

(m) 

15 

PI 8.56 27.55 23.17 0.41 4.21×103 42.23 

PID 4.62 21.15 80.18 0.48 2.90×103 33.29 

FOPI 6.72 20.18 22.88 0.33 1.89×103 20.21 

FOPID 4.16 18.15 25.79 0.38 1.25×103 18.30 

AFOPID 4.05 7.50 8.46 0.27 0.98×103 13.61 

20 

PI 9.38 35.33 20.12 0.33 5.12×103 45.87 

PID 4.33 34.32 51.52 0.37 4.92×103 39.01 
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FOPI 7.51 33.95 21.18 0.28 4.14×103 32.33 

FOPID 5.18 33.63 21.95 0.29 3.20×103 31.92 

AFOPID 4.62 10.28 11.11 0.23 2.91×103 26.23 

25 

PI 9.18 37.25 14.56 0.47 8.65×103 63.25 

PID 5.77 36.84 25.00 0.56 7.60×103 55.44 

FOPI 8.26 31.89 14.23 0.51 7.23×103 40.02 

FOPID 5.77 23.55 14.29 0.46 6.63×103 39.36 

AFOPID 6.93 12.64 5.26 0.24 5.62×103 29.87 

 

2. Tests under Different Disturbance Levels 

The second set of experiments is done with three different disturbance levels. The disturbances are injected into 

the system by blocking a portion of the pipe with a rectangular strip of three different sizes, as shown in Figure 

1. This practical disturbance scenario is designed specifically to emulate different levels of blockage that occur 

in the conveying system in real time. Three different disturbance levels (L1, L2, and L3) are chosen that block 

25%, 50%, and 75% of the cross-section area of the pipe, respectively. The aforementioned blockage 

percentages are chosen to analyze the system at three different (equally spaced) blockage levels. This test 

assesses the system’s robustness as the disturbance levels are systematically increased by a 25% step in each 

case. The test results are illustrated in Figure 6(a) to 6(c), respectively. In each case, the disturbance is 

introduced during steady-state conditions. Each controller is analyzed based on its transient-recovery time 

(𝑡𝑟𝑒𝑐), mean absolute error (MAE), ISE, and ITAE. 

The experimental results are summarized in Table IV. The introduction of a bounded disturbance in continuous 

flow causes a sudden fall in velocity, as shown in Figure 6 (a). However, the sudden rise in velocity in Figure 

6 (b) and Figure 6 (c) at the time of disturbance application is caused by the incremental blockage level, which 
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enables the particles lying at the bottom of the pipe to flow with higher air pressure and a higher velocity. The 

PI controller and the FOPI controller exhibit fragile damping against disturbance-induced undershoots, along 

with a slow transient recovery. The PID exhibits a relatively quicker transient recovery behavior while 

contributing a large undershoot. The FOPID controller exhibits a reasonable improvement in damping control 

activity and response speed. The AFOPID controller exhibits rapid transits with relatively stronger damping 

against undershoots. 

The system learns about the disturbances by observing the variations in the state error dynamics, namely, the 

error, error derivative, and integral of error. Together, these three state variables provide the closed-loop system 

with an accurate estimate regarding the magnitude of disturbance encountered by it. The customized state 

observers are not used to avoid additional computational load, noise sensitivity, and implementation complexity 

[Yuan and Gao (2019)].  

 

(a) 

Occurrence of disturbance 
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(b) 

 

(c) 

Figure 6. Response of the controllers upon disturbance level (a) L1 (b) L2 (c) L3 

 

Occurrence of disturbance 

 

Occurrence of disturbance 
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VI. CONCLUSION 

This article systematically formulates an innovative self-adaptive FOPID control scheme for particle velocity 

regulation in an industrial pneumatic conveying system to enhance its time optimality, adaptability, and 

robustness against bounded disturbances. The innovative adaptive tuning of fractional orders using error-driven 

scaling functions has enhanced the flexibility of the proposed control law to achieve the desired control 

objectives. Three control algorithms are implemented and investigated to regulate the velocity of pneumatically 

conveyed solid particles. Reliable hardware experiments are conducted to analyze the efficacy of the AFOPID 

control law. The AFOPID controller surpasses all the other controller variants by displaying enhanced time-

domain performance and superior disturbance-compensation capability. 

Table IV. Experimental result summary under different disturbance levels 

Disturbance Controller  

𝒕𝒓𝒆𝒄 

(s) 

MAE  

(m/s) 

ISE 

(m/s)2 

ITAE  

(m) 

L1 

PI 40.23 0.56 105.21 5.12 

PID 38.17 0.48 99.96 4.93 

FOPI 36.47 0.42 72.58 4.23 

FOPID 10.70 0.38 69.76 3.91 

AFOPID 2.91 0.27 23.32 2.23 

L2 

PI 40.74 0.51 350.57 7.89 

PID 35.26 0.37 302.75 6.83 

FOPI 33.82 0.33 88.13 5.14 

FOPID 4.45 0.26 87.81 4.09 

AFOPID 3.52 0.16 32.35 2.33 

L3 

PI 35.83 0.57 700.21 12.18 

PID 26.71 0.56 684.48 10.62 
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FOPI 21.66 0.49 145.29 6.65 

FOPID 8.67 0.46 133.86 4.69 

AFOPID 3.52 0.24 31.25 2.58 

 

It exhibits rapid transits with strong damping against overshoots and steady-state fluctuations while tracking 

the velocity set points: 15 m/s, 20 m/s, and 25 m/s. Under different disturbance levels, when the cross-section 

area of the pipe was blocked systematically, it was observed that the AFOPID accurately tracks the set point 

velocity and quickly converges to the setpoint, effectively rejecting the overshoot. It exhibits the strongest 

immunity against bounded exogenous disturbances and improves the transient recovery time by 10 folds as 

compared to the conventional control schemes analyzed in this research. Similarly, it also improves the MAE, 

ISE, and ITAE metrics by at least two times. The study shows that the FOPID controller for the pneumatic 

conveying system demonstrates superior agility and robustness as compared to the other controllers due to the 

introduction of the two self-adjusting parameters that increase the controller's design flexibility. Thus, it is 

concluded that the AFOPID controller performs better than other classical control schemes by effectively 

rejecting disturbances.  

There is still a lot of room for future enhancements. The proposed scheme can be investigated with other meta-

heuristic optimization algorithms. Other expert adaptation systems can be assessed to improve the control yield 

of the proposed scheme. With the specialized hardware setup and data acquisition of the appropriate state 

variables, the proposed scheme has the potential to be applied to networked control applications as well. 

Furthermore, the proposed scheme can be modified to control the behavior of under-actuated mechatronic 

systems, renewable energy conversion systems, robotic manipulators, aircraft control, satellite attitude and 

orbital control, humanoid robot control, and biological systems (such as glycemic regulators). Finally, the 
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transient response speed and reference tracking accuracy of the proposed AFOPID controller can be 

experimentally compared with those of the adaptive PID controller whose integral and differential gains are 

dynamically adjusted online using pre-calibrated adaptation functions, customized to address the requirements 

of pneumatic conveying systems. 
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