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Count data at surveyed sites are an important monitoring tool for several
species around the world. However, the raw count data are an underestimate
of the size of the monitored population at any one time as individuals can tem-
porarily leave the site (temporary emigration, TE) and because the probability
of detection of individuals, even when using the site, is typically much lower
than one (observation error). In this paper, we develop a novel modelling
framework for estimating population size, from count data, while accounting
for both TE and observation error. Our framework builds on the popular class
of N-mixture models but extends them in a number of ways. Specifically, we
introduce two model classes for TE, a parametric, which relies on tempo-
ral models, and a non-parametric, which relies on Dirichlet process mixture
models. Both model classes give rise to interesting ecological interpretations
of the TE pattern while being parsimonious in terms of the number of param-
eters required to model the pattern. When accounting for observation error,
we use mixed-effects models and implement an efficient Bayesian variable
selection algorithm for identifying important predictors for the probability
of detection. We demonstrate our new modelling framework using an exten-
sive simulation study, which highlights the importance of using mixed-effects
models for the probability of detection and illustrates the performance of the
model when estimating population size and underlying TE patterns. We also
assess the ability of the corresponding variable selection algorithm to iden-
tify important predictors under different scenarios for observation error and
its corresponding model. When fitted to two motivating data sets of parrots
counted at their roosts, our results provide new insights into how each species
uses the roost throughout the year, on changes in population size between and
within years, and on observation error.

1. Introduction. The loss of Earth’s biological diversity negatively impacts ecosystem
services that are vital for human health and prosperity (Cardinale et al., 2012). This global
issue is recognised by International agreements and policy frameworks including the Conven-
tion on Biological Diversity (CBD) and the United Nations Sustainable Development Goals
(SDGs), which call upon all United Nations Member States to take urgent action to restore
and protect habitats and to halt further biodiversity loss.

With an increasing number of species suffering population declines (Thomas, 2013; Al-
mond, Grooten and Peterson, 2020), it is paramount to develop innovative monitoring meth-
ods in order to characterise population dynamics, understand how environmental changes

Keywords and phrases: N-mixture model, roost counts, Bayesian variable selection, Dirichlet process, tempo-
ral models, population size.
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affect populations, identify species that require protection, and develop or appraise manage-
ment practices, policies and guidelines (Jetz et al., 2019). Count data play a crucial role in
monitoring wildlife populations, providing valuable insights into species population size, dis-
tribution, and trends over time. Such data are collected by camera trapping (Karanth, 1995;
Jackson et al., 2006), acoustic monitoring (Ross et al., 2023), and aerial surveys (Koh and
Wich, 2012), among others (see for example volunteer-based surveys Schmeller et al., 2009),
and are generally less costly and time-consuming to collect than data requiring unique iden-
tification of individuals (Williams, Nichols and Conroy, 2002). However, these count data
cannot serve as an index of population size due to observation error, with the probability
of detecting individuals that are available for detection typically being much lower than one,
and often due to individuals exhibiting temporary emigration (TE), and hence becoming tem-
porarily unavailable for detection. Therefore, statistical modelling needs to be employed for
accounting for these two sources of error and reliably inferring population size and TE pat-
terns from count data. This is the aim of this paper, as we describe below.

Count data for closed populations that do not exhibit TE are often analyzed using stan-
dard N-mixture models (Royle, 2004), which can estimate population size using spatially-
replicated counts over time by accounting for observation error. The time-for-space substi-
tution N-mixture model (Kéry and Royle, 2015) uses temporally replicated counts without
spatial replication, giving temporal estimates of population size and enabling estimation of
a single population trend, but also does not account for TE. However, Chandler, Royle and
King (2011) showed that failure to account for TE can result in positively biased estimates of
population size.

Count survey sampling often takes place under Pollock’s robust design (Pollock, 1982),
with several short secondary periods, eg days, across various primary periods, eg months.
This is the case for both motivating case studies of this paper. The population size is then as-
sumed constant across secondary periods within the same primary period (closed population)
but can change between primary periods (open population) due to births, deaths, immigra-
tion, or permanent emigration. In this case, Chandler, Royle and King (2011) extended the
standard N-mixture models to account for TE. This model has two processes: an ecologi-
cal process for the latent number of individuals present and available for detection, and an
observation process, for the available individuals detected. The proportions of individuals in
the population in any given primary period that are available for detection on each secondary
period are either assumed constant for the duration of the study period (Chandler, Royle and
King, 2011) or are estimated separately of each other, requiring one parameter to be esti-
mated for each primary period (Kéry and Royle, 2020). However, the first option may be too
restrictive and the latter is parameter-greedy, and does not allow for an intuitive ecological
interpretation of the results. Finally, existing models do not provide information on TE cycli-
cal patterns, where certain primary periods of each year correspond to certain levels of TE.
Identifying and inferring these cyclical patterns can give new insights into the behaviors of
the species, such as breeding patterns and seasonal availability of foods.

Naturally, detection probability, and hence observation error (with the two terms used
interchangeably in this paper), is expected to vary between sampling occasions as a response
to changes in environmental and weather conditions or effort. This variation can be captured
within a logistic regression model accounting for the effect of covariates, such as time of
sampling and weather conditions at the time of surveying (see for example Kéry and Royle,
2020; Neubauer et al., 2022). All of the existing modelling approaches can account for the
effect of covariates (referred to as variables or predictors in the literature and in this paper)
on detection probability through fixed effects models for a given variable set. However, it
is unlikely that these fixed effects will capture all of the variation in detection, as other,
unobserved or unobservable effects, such as the behaviour of the surveyed species, can have
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a substantial impact on observation error. As we demonstrate with our simulation study, using
fixed-effects models can lead to substantial bias in the estimation of population size when the
model for observation error is misspecified, that is when important variables for observation
error are omitted, which is likely to be the case in reality. Additionally, the potential set
of variables to be considered as predictors for observation error can be large, and hence
corresponding tools are required to identify the subset of important variables in the model.

In this paper, we develop a novel modeling framework that can be used to estimate time-
varying population size at a site from count data, while accounting for TE and observation
error. We extend the TE N-mixture model developed by Chandler, Royle and King (2011)
by proposing two model classes: a parametric approach, which employs different temporal
models that account for temporal auto-correlation of different order, and a non-parametric
approach based on the Dirichlet process (DP) prior (Ferguson, 1973) that allows us to cluster
the primary periods according to site use by the surveyed individuals, and leads to interesting
ecological insights about the behavior of the population.

To account for variation in observation error, in addition to that captured by a fixed-effects
model, we introduce a mixed-effects logistic regression model on the detection probability.
Additionally, we implement a recent efficient Bayesian variable selection (BVS) algorithm,
the Bayesian Group Lasso Spike and Slab (BGLSS) (Xu and Ghosh, 2015; Liquet et al.,
2017), to perform variable selection for the probability of detection in this mixed-effects
model framework.

We implement our novel modelling framework in a Bayesian setting using Markov Chain
Monte Carlo (MCMC) methods via R package NIMBLE (de Valpine et al., 2017) version
0.13.0 with the code freely available on GitHub.

We present an extensive simulation study that assesses the performance of the proposed
models in estimating population size and TE patterns under different scenarios, such as when
the model for observation error is misspecified. For the first time in N-mixture models and
related literature, we highlight the risks of using misspecified fixed-effects models for ob-
servation error and demonstrate how the risks are mitigated by instead using mixed-effects
models, as we propose in this paper. We also demonstrate the performance of our proposed
variable selection approach in identifying important predictors for observation error in our
novel mixed-effects modelling framework under these scenarios.

Finally, we apply our new modelling framework to two case studies, considering roost
count data on Ecuadorian Amazon parrots Amazona lilacina and on Orange-winged Amazon
parrots Amazona amazonica. We use cross-validation to select the most appropriate model for
the TE pattern in each case and obtain interesting ecological results on temporal population
sizes, TE trends, and cyclical patterns.

The paper is organized as follows. In Section 2 we define our new modelling framework,
including background on the methods on which it builds. Simulation results are presented
in Section 3 and the results for the two case studies are presented in Section 4. Section 5
concludes the paper and provides ideas for potential future directions.

2. Models. Sampling follows Pollock’s robust design (Pollock, 1982) with T open pri-
mary periods (e.g. months) and J closed secondary periods (e.g. days within a month). Often,
studies can have Y additional top-level primary periods, e.g. Y years, with T primary peri-
ods, e.g. months, and J secondary periods, e.g. days within them. The data are summarised
in counts Cj,t,y of individuals detected on secondary occasion j, primary period t, within
top-level primary period y.

We assume there is an overall super-population of M individuals that can visit the site
at least once during the survey period. These M individuals can contribute to the Y super-
population sizes (Ky, y = 1, . . . , Y ), indicating the number of individuals that can visit the
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site at least once in each top-level primary period and denote the probability that an individual
from the super-population has used the site at least once in top-level primary period y by δy .
Conditional on Ky , we denote the number of individuals using the site in primary period t
within top-level primary period y by Nt,y ∼ Bin(Ky, θt,y) (temporal population size), with
θt,y referred to as the availability parameters (meaning that these individuals are available
for detection in that primary period). Finally, individuals that use the site in primary period
t within top-level primary period y are detected on secondary occasion j with probability
pj,t,y . The hierarchical representation of the model is given in Equation (1), while a graphical
representation of the model is given in Fig 1.

M ∼ Poisson(λ)

Ky ∼ Binomial(M,δy)

Nt,y ∼ Binomial(Ky, θt,y)

Cj,t,y ∼ Binomial(Nt,y, pj,t,y)(1)

The Ky variables allow us to study the availability pattern within each top-level primary pe-
riod, conditional on the corresponding population size, and hence identify changes in avail-
ability patterns across top-level primary periods, without these changes being confounded
to changes in population size. When there are no top-level primary periods, this model can
be simplified by dropping the Ky level, i.e. setting Ky =M ∀y, and the y subscript in all
subsequent levels.

The main novelty of our proposed framework lies in the way in which we model detec-
tion probability, as described in Section 2.1, and the availability parameters, as described in
Section 2.2.

M Ky Nt,y Cj,t,y
δy θt,y pj,t,y

Fig 1: Graphical model representation

2.1. Detection probability. The model of Equation (1) is a function of the detection prob-
ability on secondary occasion j, primary period t, and top-level primary period y, pj,t,y . This
probability cannot be freely varying, as that introduces more parameters than we can estimate
into the model. Instead, it can be assumed as constant for all j, t, y or, more realistically, as a
function of variables (covariates), which can vary between secondary and/or primary periods,
within a logistic regression framework, as for example in Kéry and Royle (2020). However,
it is likely that, in practice, such models are misspecified, and that the variables considered
are only a subset of the variables that affect detection probability in the field. In such cases,
as we demonstrate in our simulation study in Section 3, the estimation of population size can
be substantially biased, and for that reason we propose the use of a mixed effects model:

(2) logit(pj,t,y) = ηj,t,y = µ+

G∑
g=1

Xj,t,y,gβg + ϵj,t,y

where g = 1, . . . ,G are continuous/categorical variables, such that variable g requires Cg

coefficients to model its effect, so that if g is a continuous variable, Cg = 1, and if g is a
categorical variable, Cg is its number of levels (excluding baseline). Finally, βg is the (Cg ×
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1) vector corresponding to the logistic regression coefficients for variable g, Xj,t,y,g is the
vector of length Cg containing variable g on occasion t, y, j, and ϵj,t,y ∼ Normal(0, σ2ϵ ) are
corresponding independent random effects.

The inclusion of the random effect terms allows for any variability in detection probability
that is not captured by the variables considered by the fixed effects to be absorbed by the ran-
dom effect variance, which, as we demonstrate using simulation, leads to reliable inference
on population size, even when the detection probability model is misspecified. However, an
overparameterised fixed effects model can lead to increased uncertainty around variable ef-
fects and population size, and therefore, we suggest the use of a Bayesian variable selection
algorithm, and specifically of the Bayesian Group Lasso Spike-and-Slab (BGLSS) algorithm
(Xu and Ghosh, 2015), for identifying important predictor variables for p. The BGLSS places
a prior on each group of coefficients, where a group can consist of coefficients introduced to
model the effect of a categorical variable and can number a single coefficient in the case of
continuous variables. This prior is given in Equation (3) below, and more details are provided
in Section 1 of the Supplementary material.

βg|τ2g ∼ (1− γg)δ0(βg) + γgN(0, σ2ϵ τ
2
g ICg

)

τ2g ∼ Gamma
(
Cg + 1

2
,
ψ2

2

)
γg ∼ Bernoulli(ϕg)

ψ ∼ Gamma(a, b)(3)

where γg is a binary variable that indicates whether variable g is included (1) in the model
or not (0), δ0(βg) denotes a point mass at 0 ∈RCg , ICg

is the identity matrix (Cg ×Cg), ψ is
the shrinkage parameter, and ϕg is the prior inclusion probability, which can be fixed to 0.5
or can be assigned a uniform or Beta prior distribution.

The BGLSS accommodates group-level variable selection by using a spike and slab prior
(Mitchell and Beauchamp, 1988), with coefficients exactly zero for excluded variables, and
the Bayesian group lasso (BGL) (Casella et al., 2010) for included variables, enforcing the
L1 penalization (Tibshirani, 1996), giving more parsimonious models. This Bayesian formu-
lation can reduce the computational cost by proposing a prior on ψ rather than testing several
values and choosing the best value by cross-validation.

2.2. Availability parameters. We propose two model classes for modelling the availabil-
ity parameters, a nonparametric approach and a parametric approach, both of which are de-
scribed below. We define θℓ = θt,y , with ℓ= t+ T (y− 1) for ℓ= 1, . . . T · Y to model corre-
lation in the availability parameters for the whole time series, across primary periods. When
there are no top-level primary periods, Y = 1 and θℓ = θt for ℓ= 1, . . . , T . Table 1 provides
the terminology used hereafter for each model considered for the availability parameters.

TABLE 1
Models proposed for availability parameters.

Notation Model
DP Dirichlet process (DP) mixture model

RW1 Random walk of order 1
RW2 Random walk of order 2
Cor Across level correlation model
AR1 Auto-regressive model of order 1
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2.2.1. Nonparametric approach. We model availability non-parametrically via a Beta
Dirichlet process (DP) mixture model (Kottas, 2006). This formulation provides a flexible
and robust specification of the distribution of availability parameters by describing it as a
mixture model with an unknown number of components, with primary periods clustered ac-
cording to their corresponding availability parameters, e.g. low, medium, and high. This is
ecologically relevant as it enables the study of TE trends and hence site use patterns through-
out the season(s).

The Beta DP mixture model can be represented using the Chinese restaurant process (CRP)
algorithm, which relies on the inferred cluster allocation variables, zℓ, ℓ= 1, . . . , T ·Y , indi-
cating the cluster to which primary period ℓ has been allocated. The CRP is used to represent
the sequential way in which cases, i.e. periods in our case, are allocated to clusters, with the
number of clusters being infinite a priori, but finite in practice and inferred as part of the
process. The corresponding model for the availability parameters is given in Equation (4).

θℓ|γ̃, ψ̃, zℓ ∼ Beta(γ̃zℓ , ψ̃zℓ), ℓ= 1, . . . , (T · Y )

zℓ ∼ CRP(α), α∼ Gamma(ζ, τ)

γ̃k ∼ Gamma(µ,ν), ψ̃k ∼ Gamma(ϑ,ω), k = 1, . . . ,K.

(4)

where ζ, τ,µ, ν,ϑ,ω ∈R and K ≤ (T · Y ).

2.2.2. Parametric approach. Alternatively, availability can be modelled parametrically
using temporal models, specifically random walk models and auto-regressive models. These
temporal models share information across primary periods by accounting for temporal auto-
correlation, which is meaningful ecologically since, as also mentioned above, the availability
pattern is expected to be smooth and allows for borrowing strength in cases where the data
are sparse.

1. Random walk models, which enable estimation of non-linear temporal trends retaining
the smoothing-varying feature that is present in observed time series data. As highlighted
in Fahrmeir and Lang (2001), random walk models can be rewritten in an undirected
symmetric form, as a one-dimensional version of the spatial intrinsic conditional autore-
gressive (ICAR) model (Besag, 1974). Generally, random walk models can be defined as
a set of conditional probability distributions under the ICAR models as

(5) θℓ|θ−ℓ, σ
2,WRW ∼N

[∑T ·Y
n=1wℓnθn
wℓ+

,
σ2

wℓ+

]
, ℓ= 1, . . . , T · Y.

where WRW represents the temporal weights matrix with entry ωℓn in the ℓth row and the
nth column, wℓ+ is the sum of the elements in the ℓth row, σ2 is the ICAR variance and
σ2/ωℓ+ is the conditional variance.

Consequently, random walk models possess the same set of properties as the ICAR
model. That is, positive auto-correlation is assumed via a chosen W that imposes a
neighbourhood structure on time points in the study period and determines the amount
of information borrowed from other time points. This shared information across tempo-
ral neighbours results in temporally smooth time trends, with estimation of θℓ borrowing
information from past time points eg. (ℓ− 1, ℓ− 2) but also from future time points eg.
(ℓ+ 1, ℓ+ 2), provided that these time points are within the study period. In addition, as
the conditional variance increases, θℓ can deviate more from its neighbours, producing a
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temporal pattern that is less smooth but more flexible. This model representation allows
us to infer the variance of the ICAR model (σ2) and θℓ ∀ℓ.

• Random walk of order 1 (RW1) can be defined as an ICAR model with binary weights,
WRW1, such that the entry ωℓ,n = 1 if points ℓ,n are neighbours and 0 otherwise. In the
RW1 model, each ℓ has 2 neighbours ℓ− 1, ℓ+ 1, except the first and the last, which
only have one neighbour, adjacent to the right and left respectively. The binary temporal
weights matrix, WRW1, assumes that equal strength of information is borrowed from
adjacent neighbours.

• Random walk of order 2 (RW2). Similarly, the RW2 model can be defined as an ICAR
model but with a general weights matrix (WRW2). The elements in WRW2 are derived
from the conditional distributions of each θℓ conditioned on all other parameters in θ
and the variance σ2 (conditional distributions listed in Section 3 the Supplementary ma-
terial). The elements are the coefficients in the numerator of the conditional mean for
θℓ. As can be seen in Equation (5), the conditional variance depends on the number of
neighbours, hence, the RW2 model generally produces smoother temporal trends than
the RW1 model as it borrows information from more time points. In addition, using a
general weights matrix instead of a binary weights matrix specifies the strength of the
information borrowed, with more information borrowed from close neighbours.

• Across level correlation (Cor) model. This model allows time point ℓ to borrow in-
formation from other, related, time points, in addition to the ℓ− 1, ℓ+ 1 time points,
provided time points are within the study period. For instance, this allows a specific
month in a year to be correlated to months directly before and after that month, but also
the same month across years. This model is defined similarly to the RW1 model with a
binary weights matrix (WCor) such that the entry ωℓ,n = 1 if points ℓ,n are neighbours
and 0 otherwise, where neighbours in this case are the adjacent time points, but also time
points that are c time periods apart, where c= 12 in the case of monthly patterns across
years. Therefore, the first time point is a neighbour with (ℓ+1, ℓ+ qc) time points, the
last time point with (ℓ − 1, ℓ − qc) time-points and others with (ℓ − 1, ℓ + 1, ℓ ± qc)
time-points, for q = 1, . . . , ((T · Y )/c)− 1, provided time points are within the study
period.

2. Auto-regressive models. An auto-regressive model of order 1 (AR1) on the set of time-
specific parameters can be defined as

θℓ = ρθℓ−1 + ϵℓ, ℓ= 2, . . . , T · Y,(6)

θ1 ∼N(0, σ2(1− ρ2))

where ρ is the temporal correlation coefficient (|ρ| < 1) and ϵℓ ∼N(0, σ2) are indepen-
dent noise effect terms. The RW1 model is a subset of the AR1 model when ρ = 1. As
such, the AR1 is a more flexible model as it accommodates both positive and negative tem-
poral auto-correlation. However, if positive auto-correlation is present, the RW1 model is
preferable as one fewer parameter needs to be estimated.

2.3. Inference. We fit models in a Bayesian framework using MCMC methods via R
package NIMBLE (de Valpine et al., 2017) version 0.13.0 with all code freely available on
GitHub. Specifically, for variables assigned an ICAR model, we follow NIMBLE’s recom-
mendation and update these variables without the zero constraints and then centering (Pa-
ciorek, 2009). We implement the Beta mixture DP model by using the collapsed sampler

https://github.com/Fabian-Ketwaroo/Models-with-observation-error-and-temporary-emigration-for-count-data
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(Neal, 2000) provided in NIMBLE. We use methods developed by Wade and Ghahramani
(2018) to summarise DP cluster results. We employ the median probability model in vari-
able selection (Barbieri and Berger, 2004) to identify influential variables. All variables with
a marginal posterior inclusion probability (PIP) of at least 0.5 are included in the median
probability model.

3. Simulation study. In this section, we present an extensive simulation study to explore
a number of different cases, listed in Table 2. For each case, we perform 50 simulation runs
and we set T = 36, J = 8, assuming no top-level primary periods with λ= 100 and consider
high and low detection levels, p≈ (0.6,0.3), with p as a function of covariates. The coeffi-
cients for fixed effects are set as: β = (β1 = 1.25, β2 = 0.2, β3 = 2, β4 = 0, β5 =−0.6, β6 =
0.5, β7 = −1, β8 = 0) with the first five corresponding to continuous variables, x1, . . . , x5,
and last three to categorical variables, x6 and x7, with two and three levels, respectively.
Continuous variables were generated from a standard normal distribution and categorical
variables were from a multinomial distribution with equal probabilities. To obtain the desired
level of average detection, as stated above, the intercepts, β0, were set to (0.75,−1.5), for
high and low detection probability, respectively. To introduce misspecification in the model
for detection, variables x1 and x6 were not included in the model in each of the two cases
described in Table 2. When the DP model was used to generate the data, we specified two
clusters of equal size (18) from Beta(10,10) and Beta(10,1) respectively. When the RW1
model was used to generate data, we set σ = 1.

The following prior distributions were used in all cases: λ ∼ Gamma(0.01,0.01),ψ ∼
Gamma(0.001,0.001), ϕg = 0.5, β1 ∼ Normal(0,4), σ ∼ Uniform(0,15), α∼ Gamma(1,1),
γ̃k ∼ Gamma(2,0.1), ψ̃k ∼ Gamma(2,0.1). The MCMC settings in terms of the number of
iterations, burn-in, and thinning in each case are reported in Section 4 of the Supplementary
material.

TABLE 2
Simulation settings.

Case Description
1 Comparing estimation of population size under different models for the availability parameters

when the correct model for these parameters is fitted to the data and we do not perform variable
selection and
a) the model for detection probability is correctly specified.
b) the model for detection probability is misspecified (fixed vs mixed effects models).

2 Assessing the performance of BGLSS in variable selection under the RW1 model for the availability
parameters when
a) the model for detection probability is correctly specified.
b) the model for detection probability is misspecified (mixed effects model).

We use mean relative bias (RB), mean root mean square error (RMSE), and mean 95%
posterior credible interval (PCI) coverage across simulation runs to summarise the estima-
tion of population size and covariate effects. We also use mean misclassification rate for
summarising the DP mixture clustering and the BGLSS performance. RB and RMSE are
calculated as shown in the Supplementary material together with the detailed results of the
simulation study for each case. Key findings are summarised in Table 3 and discussed below.
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TABLE 3
Mean relative bias (RB), mean root mean square error (RMSE) and mean 95% PCI coverage of population size

and covariate coefficients for each simulation scenario and setting for detection probability, as described in
Table 2.

CS: correctly specified; MS: misspecified; FE: fixed effects; ME: mixed effects.

Case Model for θ Model for p Average p Parameters RB RMSE Coverage
1. a)

DP CS - FE
0.6

Coefficients 0.002 0.024 94
Population size −0.002 0.017 99

0.3
Coefficients 0.006 0.024 98

Population size −0.002 0.053 98

RW1 CS - FE
0.6

Coefficients 0.001 0.029 96
Population size −0.001 0.041 98

0.3
Coefficients −0.003 0.030 96

Population size −0.003 0.128 98

1. b)

DP MS - FE
0.6

Coefficients −0.753 0.776 2
Population size 8.298 10.100 0

0.3
Coefficients −0.590 0.646 4

Population size 4.417 5.472 0

RW1 MS - FE
0.6

Coefficients −0.745 0.728 4
Population size 6.066 12.815 2

0.3
Coefficients −0.502 0.593 12

Population size 3.347 7.290 4

DP MS - ME
0.6

Coefficients 0.029 0.445 94
Population size −0.007 0.045 98

0.3
Coefficients 0.005 0.506 90

Population size −0.019 0.169 96

RW1 MS - ME
0.6

Coefficients 0.006 0.451 98
Population size −0.004 0.084 100

0.3
Coefficients 0.009 0.507 96

Population size 0.011 0.298 92

2. a)

RW1 CS - FE
0.6

Coefficients 0.001 0.029 96
Population size −0.001 0.043 98

0.3
Fixed effects −0.006 0.031 96

Population size 0.001 0.125 98

2. b)

RW1 MS - ME
0.6

Coefficients −0.359 0.647 74
Population size −0.005 0.084 100

0.3
Coefficients −0.379 0.652 76

Population size 0.031 0.319 90

3.0.1. Case 1. When the model for detection probability is correctly specified (a), both
the DP and the RW1 models perform well in terms of inference, with low mean RB, low
mean RMSE, and high mean coverage for covariate coefficients and population size. The
DP mixture model has a low misclassification rate, on average equal to 0.055 for both lev-
els of detection. In addition, the standard deviation of the RW1 model (σ) is also estimated
well with low mean RB (0.011,−0.035) and high mean coverage (0.98,1) at high and low
levels of detection respectively. Consequently, this scenario shows that both models for the
availability parameters perform well in terms of inference when the model for detection prob-
ability is correctly specified.

However, when the model for detection probability is misspecified (b) and a fixed effects
detection model is used, the estimation of population size is considerably positively biased,
large mean RMSE and with very poor coverage in all cases. Similarly, covariate coefficients
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are estimated with high mean RB, high mean RMSE and low mean coverage. The DP mix-
ture model performs poorly, with a misclassification rate on average equal to (0.111,0.444)
for high and low detection probability, respectively. However, using a mixed effects model
for detection probability corrects for the misspecification and produces population size and
covariate coefficient estimates with negligible meanRB, relatively low mean RMSE and high
mean coverage. The DP mixture model also performs better, with a misclassification rate on
average equal to (0.055,0.111) for high and low detection probability, respectively.

3.0.2. Case 2. Similarly, when the model for detection probability is correctly specified
(a), BGLSS performs well in identifying both influential (PIP ≥ 0.5) (strong and weak) and
non-influential (PIP < 0.5) variables with mean misclassification rates of 0 across both levels
of detection. As such, population size and covariate coefficients are estimated well in all
cases.

When the model for detection probability is misspecified (b) and a mixed effects detection
model is employed, BGLSS has, as expected, lower power to identify weak effects (β2 = 0.2)
with average misclassification rate (0.38,0.4) at high and low detection probability, respec-
tively, but still high power to identify strong effects with average misclassification rate 0 at
both levels of detection. The power to identify non-influential variables also declines, with
a mean misclassification rate (0.1,0.06) at high and low detection levels respectively. In ad-
dition, as can be seen from Table 7 in Section 4.3 of the Supplementary material, variables
identified as influential can have coefficients with corresponding 95% PCI covering 0. How-
ever, even in these cases, the direction of the identified effect is always correctly identified by
the posterior mean. Importantly, inference on population size is unaffected in all cases when
mixed effects models for detection probability are employed.

4. Case studies.

4.1. Ecuadorian Amazon parrots. We consider roost count data collected as part of
an ongoing conservation project for the Ecuadorian Amazon parrot (Amazona lilacina) in
Ecuador (Biddle et al., 2020, 2021a,b). Counts were obtained from a single site close to the
El Salado Mangrove Reserve, where parrots roost overnight, for 36 consecutive months be-
tween 2016 and 2019. Each year, surveys took place between November and October, with
surveys taking place on three to five days within each month, and two surveys being per-
formed each day, AM and PM. We assume that the population is closed within each month,
but open between months.

We model the data using the model defined in Equation (1), fitting all models listed in
Table 1 and using k-fold cross-validation to select the most appropriate model for the avail-
ability parameters. In each case, we consider a mixed effects model for detection probability,
and perform variable selection via BGLSS, considering the following variables: median tem-
perature, average relative humidity, visibility, average wind speed, rain/drizzle, storm/thunder
(taken from the Simon Bolivar weather station approximately 14km from the roost site), time
of sampling (AM/PM), and weather recorded by the observer at the roost site (clear, cloud,
rain, sunshine). The prior distributions were set as described in the simulation study.

k-fold cross-validation was performed by splitting the data into monthly subsets (k = 36)
and using RMSE as the loss function to evaluate the predictive accuracy of the models con-
sidered at each fold. The cross-validation (CV) value is obtained by averaging RMSE over
all folds to produce a single out-of-sample loss estimate. Smaller CV values indicate better
model performance. Cor was selected as the model with the lowest CV value, as seen in Table
4. Cor, RW1, and DP are the top three models, having similar CV values. Notably, all these
models considered produced similar estimates of population size, BVS results, and model
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fit. Consequently, we display the results obtained from the Cor model in the paper, while the
results obtained from the other models are presented in Section 5.1 of the Supplementary
material, with the exception of the DP model clustering results, which are shown in Table 5
and discussed as they provide us with new insights about the use of the roost throughout and
across years.

TABLE 4
Ecuadorian Amazon parrots case study. k-fold cross-validation results.

Model DP RW1 RW2 Cor AR1
CV value 41.079 40.586 41.188 39.590 41.999

Fig 2a shows posterior summaries of the month-specific population sizes,N1, . . . ,N36, ob-
tained from the Cor model. The pattern suggests two peaks in the year, January/February/March
and then June/July/August. The first peak, which is more consistent across years, could rep-
resent chicks fledging and returning to the roost with the adults, while the second peak, which
varies more between years, could represent social gathering before the breeding season, giv-
ing opportunities for time to create breeding pairs and highlighting the importance of these
communal roosts for the formation of new breeding pairs.

We assessed the fit of models using posterior predictive goodness of fit. For that, we define
monthly rate to be the sum of the counts obtained in a month divided by the number of surveys
in that particular month. Using MCMC samples, we simulated counts, and hence rates, from
our models and compared these to the observed rates. Fig 2b displays that the Cor model fits
the data well as it produces similar monthly rates to the observed rates, with the true values
falling within the 95% posterior credible interval of simulated values and with no consistent
pattern of bias observed.
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(a) Population size

0

25

50

75

100

125

N
ov

1
D

ec
1

Ja
n1

F
eb

1
M

ar
1

A
pr

1
M

ay
1

Ju
n1

Ju
l1

A
ug

1
S

ep
1

O
ct

1
N

ov
2

D
ec

2
Ja

n2
F

eb
2

M
ar

2
A

pr
2

M
ay

2
Ju

n2
Ju

l2
A

ug
2

S
ep

2
O

ct
2

N
ov

3
D

ec
3

Ja
n3

F
eb

3
M

ar
3

A
pr

3
M

ay
3

Ju
n3

Ju
l3

A
ug

3
S

ep
3

O
ct

3

Month

R
at

e

 

(b) GOF

Fig 2: Ecuadorian Amazon parrots case study. (a) The black dots represent the posterior mean
population size for each month and the thick bands represent the corresponding 95% poste-
rior credible interval. (b) The diamonds are the observed monthly rates and the thick bands
represent the 95% intervals of simulated monthly rates. In both cases, the x-axis represents
the months in each year with months ending in 1, 2, and 3 denoting months in the 1st, 2nd,
and 3rd year, respectively.
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The results of the Cor model are consistent with the clustering output of the DP model
(Table 5), where two clusters of equal size (18) have been identified for each year. These cor-
respond to months with low (L) and months with high (H) availability probabilities, with the
clustering pattern fairly consistent across years and agreeing with the general trend identified
by the Cor model. Locating and observing individual nests for this species can be difficult,
and hence this clustering pattern of the overall roosting population provides supportive ev-
idence to reports of seasonal breeding behaviour. The first peak corresponds with months
when chicks fledge from nests (January / February / March) and so is likely to represent
population recruitment, whilst the second peak in October occurs just before breeding pairs
start to nest together in the dry forest and could represent an increase in attendance at the
social roost to form or strengthen pair bonds. Due to the fluctuating nature of this particular
roost site, accounting for detection probability allows us to identify robust patterns for eco-
logical interpretation that would not be visible clearly in the raw data, helping conservation
managers to determine breeding phenology more broadly so that efforts can be more focused
on finding nest cavities and documenting breeding success at the right time of year. In other
Amazon parrot species roost attendance is also linked with food availability (i.e. in times of
food scarcity, roost attendance is greater to allow information sharing) so it is also possible
that fluctuating food availability in this seasonal climate may drive high/low distinction.

TABLE 5
Ecuadorian Amazon parrots case study. Cluster allocations from the DP model.

Months
Year Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

1 L L H H H L L H L H L H
2 L L H H H L L L H L H H
3 L L H H L L H H H L L H

Baseline detection probability is fairly low (posterior mean = 0.358 with (0.261,0.445)
95% PCI). Rain, storm, and time of sampling are identified as important predictors for obser-
vation error with PIPs: 0.519,0.651, and 0.721 respectively, but all with 95% PCIs covering
0 (Table 6). We note here that the simulation results presented in Section 3 demonstrated
that in these mixed effects models, variables with PIP ≥ 0.5 can have coefficients with corre-
sponding 95% PCIs that cover 0, as is the case for this example, but that the posterior means
reliably capture the direction of the effect, so we decide to conservatively conclude that storm
and surveying in PM instead of AM have an estimated positive effect on the probability of
detection in this case (rain a PIP very close to 0.5 and a posterior mean coefficient very close
to 0). The presence of storm can force parrots to fly lower down in the sky and land close to
the observation point to gain shelter, increasing the probability of detection. Higher detection
probability in PM than in AM is possibly due to the character of final destination: in the PM
parrots are flying to one communal roost while in the AM parrots fly in multiple directions
based on food dispersal and nest location, making it more difficult to detect them.
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TABLE 6
Ecuadorian Amazon parrots case study. Posterior summaries of coefficients for the detection probability model.

Coefficient Mean SD 95% PCI
Intercept −0.586 0.209 (−1.040, −0.219)
Median Temperature 0.014 0.047 (−0.043, 0.162)
Humidity 0.003 0.033 (−0.065, 0.099)
Visibility −0.000 0.023 (−0.053, 0.059)
Wind Speed −0.025 0.062 (−0.224, 0.031)
Rain 0.053 0.110 (−0.036, 0.377)
Storm 0.224 0.334 (−0.031, 1.090)
Time-PM 0.128 0.140 (−0.001, 0.420)
Weather-Cloud −0.013 0.044 (−0.152,0.035)
Weather-Rain 0.000 0.039 (−0.092, 0.087)
Weather-Sunshine 0.000 0.039 (−0.088, 0.094)

4.2. Orange-winged Amazon parrots. We next consider roost count data from Orange-
winged Amazon parrots (Amazona amazonica) in Brazil. Counts were collected from a single
site at an island near Belém, Pará between September 2004 and September 2005, with 96 sur-
veys conducted (54 in the afternoon and 42 in the morning) across 50 weeks. More details
can be found in De Moura, Vielliard and Da Silva (2010). We assume that the population
is closed within each week, but open between weeks. Therefore, in this case, the primary
periods correspond to weeks, and there are no top-level primary periods. Detection probabil-
ity is modelled as a function of the following categorical covariates: Cloud (cloudy, partially
cloudy, no cloud), wind (strong wind, medium wind, low wind), rain (yes, no) and time of
sampling (AM or PM).

k-fold cross-validation, performed by leaving one week out at the time (k = 50) and RMSE
as the loss function, selected AR1 as the best model as seen in Table 7. We note that the Cor
model is not an option in this case as the data are collected in a single year, so we cannot
model correlation between weeks across different years. All models considered produced
similar estimates of temporal population size, with a similar model fit. We display the results
produced from the AR1 model in the paper, with the results obtained from the other models
in Section 5.2 of the Supplementary material.

TABLE 7
Orange-winged Amazon parrots case study. k-fold cross-validation results.

Model DP RW1 RW2 AR1
CV value 2273.242 819.262 797.985 794.483
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Fig 3: Orange-winged Amazon parrots case study. (a) The black dots represent the posterior
mean population size each week and the thick bands represent the corresponding 95% pos-
terior credible interval. (b) The diamonds are the observed weekly rates and the thick bands
represent the 95% intervals of simulated weekly rates.

Fig 3a shows the posterior summaries of the temporal population size estimates obtained
for each week using the AR1 model. The primary factor influencing the fluctuation in pop-
ulation size at the roosting site is the breeding season (De Moura, Vielliard and Da Silva,
2010). Consequently, the period of low population size (weeks 1-31) is possibly when paired
individuals leave the roost in search of a nest, where they breed, nest, and rear young until
the nestlings can fly. This long period of low population size may be due to the asynchronous
reproduction of Orange-winged Amazons. The period of high population size (weeks 41-48)
corresponds to the return of pairs with young, while the period of medium population size
(weeks 32-40 and 49-50) corresponds to the time when individuals start returning with young
(weeks 32-40) and when individuals start to disperse (weeks 49-50). Finally, like the Ecuado-
rian Amazon parrots, we use posterior goodness of fit to assess model fit, defining weekly
rate to be the sum of counts obtained in a week divided by the number of surveys in that
particular week. Fig 3b suggests that the AR1 model fits the data well as it produced similar
weekly rates to the observed rates for the majority of the weeks.

Baseline detection probability is estimated as high (posterior mean = 0.868 with
(0.805,0.907) 95% PCI), possibly because in this case parrots were counted from a boat by
a minimum of three teams of two observers, each team oriented in a different direction. Pre-
dictors cloud and rain are the only ones with PIP ≥ 0.5, but only marginally so (0.535,0.507,
respectively), and their coefficients are estimated close to 0 (Table 8), therefore in this case,
we refrain from providing interpretation of effects on detection probability.

TABLE 8
Orange-winged Amazon parrots case study. Posterior summaries of coefficients for detection probability.

Coefficient Mean SD 95% PCI
Intercept 1.888 0.216 (1.418,2.283)
Partially cloudy −0.003 0.055 (−0.151, 0.116)
Cloudy −0.022 0.081 (−0.303, 0.005)
Low wind −0.002 0.018 (−0.049, 0.015)
Strong wind −0.003 0.030 (−0.068, 0.017)
Rain-Yes −0.004 0.041 (−0.135, 0.029)
Time-PM −0.004 0.037 (−0.123, 0.035)



MODELS WITH OBSERVATION ERROR AND TEMPORARY EMIGRATION FOR COUNT DATA 15

5. Discussion. Count surveys are widely used and, for many species, the only viable tool
for population monitoring. This is particularly the case for roost count surveys, as individuals
may nest in elevated cavities in trees or cliffs that are difficult to find, reach, and capture
(Dénes, Tella and Beissinger, 2018). Thanks to new technologies, such as drones (Beaver
et al., 2020), camera traps (Gilbert et al., 2021) and acoustics (Zwerts et al., 2021), count
data are becoming more widely available for wildlife population monitoring.

In this paper, we have developed a new modelling framework for count data that accounts
for observation error and TE, non-parametrically and parametrically to provide key estimates
of population size, information on TE trends, and predictors of detection via variable selec-
tion. All of these estimates can serve as fundamental tools in adaptive wildlife monitoring,
conservation, and management.

Moreover, we have performed an extensive simulation study to assess the performance
of our novel modelling framework under different scenarios. When the model for detection
probability is correctly specified, reliable estimates of population size and patterns of TE are
obtained using both the nonparametric and parametric approaches introduced in the paper,
even when the probability of detection is low. However, when the model for detection prob-
ability is misspecified, which is likely to be the case in practice, our results demonstrate the
importance of using a mixed effect model for the probability of detection, so that the random
effects part can absorb the lack of fit introduced by omitting important predictors for obser-
vation error. Failure to employ a mixed-effects model, in this case, gives rise to highly biased
estimates of population size.

We applied our modelling framework to two case studies on parrots. We found substan-
tially different sizes of population and detection probabilities. The observation methods and
roost site characteristics for each parrot species can explain in part these differences. Detec-
tion probability was much higher for the Orange-winged amazons, which were counted by
a team of six people from a boat directly under the flight path between the mainland and an
island roost, vastly reducing the chance of missing individuals. Detection however was lower
for the Ecuadorian Amazon parrots, which were counted by two people from an observation
tower on the mainland, where birds fly over and amongst buildings and human development
to patches of scattered mangroves interspersed with aquaculture.

Similarly, we identified differences in phenology between the two species, with the roost
use pattern of Ecuadorian Amazon parrots being described by a two-mixture model, whereas
that of Orange-winged Amazon parrots by a three-mixture model, when the DP approach is
used to describe TE. This can be due to different levels of population and habitat fragmen-
tation. There was a large difference in the population size between the two species, with the
Ecuadorian Amazon parrots being just a few hundred birds, whilst the Orange-winged Ama-
zon parrots population consists of over ten thousand birds. The Ecuadorian Amazon parrots
have faced a 60 percent population decline at this roost site in the past two decades, in part
attributed to habitat fragmentation, with the feeding, nesting, and roosting areas now occur-
ring amongst a highly transformed landscape on the edges of a large city, vastly different to
the relatively undisturbed roosting habitat of the Orange-winged Amazon parrots.

We have demonstrated our new modelling framework on parrot data, but bats and other
species are also routinely monitored in the same way. The model can be readily fitted to
such data and can be extended to account for data from multiple sites when these are avail-
able, and to account for spatial correlation between sites. Spatial models such as the ICAR
and the Besag, York and Mollié (BYM) model (Besag, York and Mollié, 1991) can be con-
sidered to account for spatial correlation. Similarly, the model applies readily to any count
data collected under the RD, with some short periods of assumed population closure so that
the TE pattern can be inferred separately from observation error. In our case studies, sam-
pling was performed in fairly regular intervals in a relatively standardised way. However, in
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practice, count data can be collected at irregular intervals and hence contain missing observa-
tions because of site inaccessibility, weather phenomena or lack of resources. Thanks to the
use of temporal models and covariates, the model can deal with irregularly placed sampling
occasions and corresponding missing values, by sharing information from time points and
occasions when sampling took place, but care should be taken in cases with substantial levels
of missing values.

Additionally, our modelling framework can be easily extended to cases when count sur-
veys are only done in the breeding season of each year. For random walk models as ICAR
models, the way information is shared across time depends on the weighted matrix (W ). See
Haining and Li (2020) for more details. Thus, ICAR models can account for temporal auto-
correlation during the months/periods of a breeding season and also temporal auto-correlation
of breeding season months/periods across years. Our Cor model accomplishes this by sharing
information between neighboring months and specific months across all years. The DP and
AR1 models are also flexible in this scenario by modelling breeding seasons as one long time
series. Additionally, availability parameters can be driven by season and can be modelled by
logit(θℓ) = µ+βSine(ℓ/a)+ϵℓ where a is a scaling parameter that can be predetermined and
ϵℓ can be modelled using the random walk model or the auto-regressive model introduced.
Similarly, availability parameters can be modelled as a function of covariates (e.g. season)
with a random effect that accounts for temporal auto-correlation, whilst our modelling frame-
work can also be extended to explicitly model the processes governing the temporal variation
of Ky by following Dail and Madsen (2011).

Variable selection on detection probability via BGLSS performed well when the model
is correctly specified or when misspecified and a mixed effect model is used for detection.
BGLSS had lower power to identify weaker effects when using a mixed effect model for
observation error. Zhao and Yu (2006) highlighted that when there is very strong correlation
between the covariates of interest, the Lasso selection accuracy is no longer ensured, and
often a single covariate is selected while the others are shrunk toward 0. We performed a
simulation study with mildly and strongly correlated covariates to investigate the effect of
correlated covariates on BGLSS. Our results demonstrate the robustness of our variable se-
lection approach and modelling framework in general. Details and results of this simulation
study are presented in Section 4.4 of the Supplementary material. Additionally, BGLSS can
only identify influential categorical covariates, but not influential levels of categorical vari-
ables. We also considered Bayesian Sparse Group selection (BSGS). BSGS, developed by
Chen et al. (2016) has the advantage of identifying both influential categorical covariates and
their relative levels. However, results shown in Section 2 of the Supplementary material sug-
gest that BGLSS generally outperforms BSGS. Performance of other BVS methods such as
the variable selection method of Griffin et al. (2020) can also be investigated in this scenario.
Thus, future work can be focused on investigating/improving BVS methods when using a
mixed-effect model.

The Beta DP mixture model in this framework enables our model to perform clustering
of primary periods independently for top-level primary periods, and hence treats the obser-
vations as being from one long time series, with clusters, as a result, independent across top-
level primary periods. An alternative would be to implement a hierarchical Dirichlet process
(HDP) model (Teh et al., 2004), which allows clusters with the same locations but poten-
tially different weights to be identified across top-level primary periods, providing a way to
model dependence between top-level primary periods. In addition, Frühwirth-Schnatter and
Malsiner-Walli (2019) showed that clustering from Dirichlet process mixture models is sensi-
tive to the specification of the prior on the concentration parameter. To address this, as shown
in Sections 5.1.1 and 5.2.1 of the Supplementary material, we considered different prior spec-
ifications for the concentration parameter for both case studies. We consider a range of vague
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priors: priors suggested by West and Escobar (1993); Escobar and West (1995); Dorazio
(2009) and commonly used priors. Results indicate that our results are not sensitive to prior
specification in this case since the numbers and sizes of clusters are the same in all cases.

Another direction of future work is model selection. The proposed options for modelling
the availability patterns define different, competing models (Table 1) for the TE pattern, each
with its own advantages. We use the well-established approach of cross-validation to se-
lect between competing models. However, cross-validation can be computationally intensive
as it requires fitting the model multiple times. Other model selection methods such as the
Wantanable-Akaike information criterion (WAIC) (Watanabe and Opper, 2010) only require
fitting the model once and can be easily computed using popular software, such as NIMBLE
and STAN (Carpenter et al., 2017). Notably, WAIC computation relies on the independence
assumption of data given the parameters. This assumption is often violated in temporal mod-
els where dependence among the data is a key modelling feature. Hence, future work can be
focused on investigating/developing efficient model selection methods for temporally corre-
lated data.

Finally, in our modelling framework we have assumed that each available individual can
only be counted once on each occasion, that is, there is no double counting of individuals.
This is a reasonable assumption in this case because individuals move in a single direction and
hence are counted as they enter or leave the roost. However, we have performed a simulation
study in Section 4.5 of the Supplementary material that highlights the danger of unaccounted
double counting, namely overestimation of population size, a finding which agrees with Link
et al. (2018) and Nakashima (2020). Our modelling framework can be easily extended to
account for double counting by replacing the Binomial distribution in the observation process
with a Poisson distribution (Nakashima, 2020).

SUPPLEMENTARY MATERIAL

Supplementary material includes the following sections: Section 1: Bayesian Group Lasso
Spike and Slab, Section 2: Bayesian Sparse Group selection, Section 3: Temporal models,
Section 4: Simulation study and Section 5: Case studies.
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