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Abstract13

DNA-based biodiversity surveys, which involve collecting physical samples from14

survey sites and assaying them in the laboratory to detect species via their diagnos-15

tic DNA sequences, are increasingly being adopted for biodiversity monitoring and16

decision-making. The most commonly employed method, metabarcoding, combines17

PCR with high-throughput DNA sequencing to amplify and read ‘DNA barcode’18

sequences, generating count data indicating the number of times each DNA bar-19

code was read. However, DNA-based data are noisy and error-prone, with several20

sources of variation, and cannot alone estimate the species-specific amount of DNA21

present at a surveyed site (DNA biomass). In this paper, we present a unifying mod-22

elling framework for DNA-based survey data that allows estimation of changes in23

DNA biomass within species, across sites and their links to environmental covariates,24

whilst for the first time simultaneously accounting for key sources of variation, error25

and noise in the data-generating process, and for between-species and between-sites26

correlation. Bayesian inference is performed using MCMC with Laplace approxima-27

tions. We describe a re-parameterisation scheme for crossed-effects models designed28

to improve mixing, and an adaptive approach for updating latent variables, which re-29

duces computation time. Theoretical and simulation results are used to guide study30

design, including the level of replication at different survey stages and the use of31

quality control methods. Finally, we demonstrate our new framework on a dataset32

of Malaise-trap samples, quantifying the effects of elevation and distance-to-road on33

each species, and produce maps identifying areas of high biodiversity and species34

DNA biomass.35

Keywords: crossed-effects model, environmental DNA, joint species distribution modelling,36

observation error, occupancy modelling37
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1 Introduction38

Ecology is undergoing a technology revolution that is making it possible to rapidly39

generate species inventories via automated and high-throughput DNA sequencers and via40

electronic sensors, such as drones, satellites, camera traps, and acoustic recorders. These41

techniques can, if coupled with appropriate algorithms and databases, simultaneously iden-42

tify large numbers of target species, including those that are cryptic, difficult-to-access, tiny,43

and low-abundance (Bush et al., 2017; Besson et al., 2022; Piper et al., 2019; Ley, 2022).44

So far, the most efficient method for generating species-resolution inventories is DNA-based45

surveys, which rely on reading DNA barcodes: short, standardized sections of the genome46

that can be compared to a reference library to enable taxonomic identifications without47

the need to examine organism morphologies (Ratnasingham and Hebert, 2007).48

DNA barcoding refers to the identification of single species (Hebert et al., 2003), and49

DNA metabarcoding refers to the detection of large numbers of species from environ-50

mental DNA (eDNA), which is the collective name for DNA isolated from environmental51

samples (Taberlet et al., 2018). These environmental samples include water (Thomsen and52

Willerslev, 2015), soil (Frøslev et al., 2019), air (Clare et al., 2022), and bulk tissue (i.e.53

mass-trapped organisms) (Ji et al., 2013). For instance, Thomsen and Sigsgaard (2019)54

demonstrated that traces of eDNA on flower petals could be analysed to describe the di-55

versity of arthropods that visit wildflowers, including pollinators, parasitoids, predators,56

and herbivores. Ji et al. (2022) used the trace amounts of residual vertebrate blood left in57

30,468 blood-sucking leeches to map vertebrate wildlife across a 677 km2 nature reserve in58

China. Finally, Abrego et al. (2021) sequenced 542 mixed-species, bulk-tissue samples of59

arctic arthropods captured over 14 years and showed that species richness in the study site60

had declined by 50% during a time period in which local mean temperature had increased61

by 2C.62

The potential of DNA-based surveys for monitoring and managing biodiversity comes63

with a number of statistical challenges. Firstly, species-specific absolute abundances can-64
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not be estimated using DNA data alone. Secondly, DNA-based surveys yield data that65

are overdispersed (including zero-inflation) relative to a Poisson distribution due to several66

types of error and noise (see Section 1.1), some of which are species-specific. The framework67

presented in this paper addresses these challenges by developing a novel model and corre-68

sponding efficient inferential tools. Using our framework, we model within-species change69

in DNA biomass across sites (described in Section 1.1), which under certain conditions can70

be considered as a proxy for change in abundance, hence addressing the first challenge. To71

address the second challenge, we propose a hierarchical crossed-effects model that expresses72

key sources of variation, error and noise in the data collection and analysis pipeline, whilst73

accounting for correlation across species and across sites, and for covariate effects on DNA74

biomass. We also model frequently employed controls at the PCR stage and evaluate their75

effect on inference.76

1.1 DNA-based surveys and associated challenges77

Each individual of a species sheds tissue and waste products, and thus its DNA, into78

the environment. We will refer to this as DNA biomass. As we explain in Section 2,79

the estimates of species DNA biomass obtained from DNA-based surveys alone are only80

meaningful in comparison between sites, and for that reason, in this paper we focus on81

modelling changes in DNA biomass within species, across sites, referred to as changes in82

DNA biomass throughout. We achieve this by assuming that the processes are standardised83

across sites, samples, and PCR replicates and that any differences in the efficiencies of the84

processes are explained by covariates that can be included in the model. We highlight85

that, theoretically, the overall amount of DNA biomass for each species is proportional to86

the species’ abundance at that site, but the rate at which each species sheds DNA into87

the environment is unknown and not estimable using eDNA data alone. Additionally, the88

relationship between DNA biomass and abundance can vary between species and sites due89

to environmental conditions, such as DNA degradation rates, and we return to this point90

in Section 6. Under the assumption that this relationship does not vary with sites then we91
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Figure 1: Representation of the DNA biomass collection stage (Stage 1, Sites to Samples) and
the DNA biomass analysis stage (Stage 2, Samples to PCR to OTU table). Each of the selected
sites to be surveyed hosts a community of species, and hence a certain amount of DNA biomass for
each species. One or more physical samples are collected from each surveyed site, and a ‘spike-in’
or ‘internal standard’ ISD, can be added to each sample (last column). Each sample is PCR’d
one or more times and then sequenced. This process gives rise to the OTU table.

can interpret changes in species DNA biomass as corresponding changes in abundance.92

DNA-based surveys comprise two stages (Figure 1): the sample collection stage (Stage93

1), taking place in the field, and the sample analysis stage (Stage 2), taking place in the94

lab.95

In Stage 1, physical samples are collected from each surveyed site. However, the amount96

of DNA biomass of each species collected in each sample is the result of a noisy and error-97

prone process (see Table 1). Specifically, the sampling method inevitably favours some98

species over others, and as a result, DNA biomass collection rates, conditional on the99

available DNA biomasses, are species-specific (Stage 1 species effect). The amount of DNA100

biomass collected for each species also varies between samples collected at the same site101

(Stage 1 noise). Finally, there are non-negligible probabilities that (a) no DNA biomass102

is collected for a species even if there was DNA biomass of that species at the site (false103

negative error) and (b) the DNA biomass in the sample is not the result of species presence,104

but instead reflects contamination or deposition from elsewhere (false positive error) (Stage105

1 false negative and false positive errors are jointly referred to as Stage 1 error).106

In Stage 2, the physical samples are assayed in the lab. The most frequently used method107

for reading DNA barcodes from eDNA samples is ‘amplicon sequencing’ (see Lindahl et al.,108

4



2013, for an excellent review). In short, from each sample, all DNA is extracted and purified.109

After extraction, a small aliquot of DNA from each sample is subjected to Polymerase Chain110

Reaction (PCR), which selectively amplifies (makes many copies of) just the DNA-barcode111

sequences. It is common practice in Stage 2 for a sample to be PCR-assayed multiple times,112

known as technical replicates to distinguish them from sample replicates in Stage 1. The113

PCR outputs (‘amplicons’) from all the samples and their technical replicates are pooled114

and read on a high-throughput DNA sequencer. This procedure ultimately leads to a list115

of many millions of individual DNA sequences (known as reads), which are processed in a116

bioinformatic pipeline that removes low-quality reads, groups the remainder into clusters of117

similar reads that are species hypotheses known as OTUs (Operational Taxonomic Units),118

and apportions each OTU’s reads back to its original samples and PCRs. The resulting119

OTU table dataset indicates the number of reads for each OTU in each PCR in each sample120

in each site (Figure 1), with columns representing the species and rows representing the121

PCR runs. For simplicity, we hereafter use the terms OTUs and species interchangeably.122

A real-world complication in DNA-based laboratory pipelines is that samples are typ-123

ically ‘normalised’ one or more times. For instance, after the samples are enzymatically124

digested to break down cells and release their DNA into their ‘lysis-buffer’ solutions, each125

sample constitutes a larger volume of liquid than can be used for DNA extraction. The126

samples are thus normalised by taking a fixed volume from each sample for processing.127

Another normalisation step happens after PCR, because different PCR replicates can gen-128

erate different amounts of product. In this case, the PCR products are normalised by129

taking a certain amount of liquid from each PCR output, either inversely proportional to130

their concentration, or fixed across PCRs. In the first (lysis buffer) normalisation step,131

the numerator (amount of lysis buffer taken for extraction) is fixed, while the denominator132

(total volume of lysis buffer) varies. In the second (PCR product) normalisation step, the133

numerator (amount of PCR liquid taken for sequencing) varies, while the denominator (to-134

tal volume of PCR liquid) is fixed. It is standard procedure to record these normalisation135
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fractions, and in Section 2, we show how this information is incorporated into the model.136

Generally, we should expect a positive relationship between the DNA biomass of a137

species in a sample and the count of reads obtained for that species in that sample (Luo138

et al., 2022), but this relationship is imperfect, due to noise and error (see Table 1). First,139

even given best practice, there are small but non-negligible probabilities (a) that a species’140

DNA in a sample fails to be amplified or sequenced, leading to false-negative error and (b)141

that a species’ DNA cross-contaminates other samples and is amplified, leading to false-142

positive error (Stage 2 false negative and false positive errors are jointly referred to as Stage143

2 error). We say that a PCR yields non-negligible reads for a species when the PCR product144

of that species is successfully read by the DNA sequencer (i.e. the PCR is successful), and145

otherwise, a PCR yields zero or non-zero but negligible reads, in which case we say that146

the PCR is not successful for that species. We note that a PCR can be successful, that147

is, yield non-negligible reads, not only when the biomass is present in the sample but also148

when it is not, in the latter case because of contamination. Additionally, PCR amplification149

also inevitably favours some species over others, due to PCR primer mismatch, resulting150

in species-specific amplification rates (Stage 2 species effect, equal within columns of the151

OTU table), and PCR and sequencing stochasticity results in different total numbers of152

reads across all species, even for the same sample (Stage 2 pipeline effect, equal within rows153

of the OTU table). Finally, due to the inherent stochasticity of the PCR and sequencing154

process, there is added noise in the resulting reads in each cell of the OTU table (Stage 2155

noise).156

In Stage 2, in addition to recording the normalisation fractions, different approaches157

are employed to understand and monitor some of the noise and error. One such approach158

is the so-called internal standard or spike-in, during which a known amount of DNA of a159

synthetic sequence or of a species that is known to be absent from all surveyed sites, is160

added to each sample. In addition, negative controls, which are samples that are known to161

not include DNA of any species, can be introduced in Stage 1 and Stage 2 (Ficetola et al.,162
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2015).163

Table 1: Description of noise, error, and species/pipeline effects in the two stages of DNA-based
surveys.

Stage 1 - DNA biomass collection

Species effect Every sample contains a certain amount of DNA biomass of each species,
with the amount proportional to the DNA biomass available at the site.
However, the proportionality constant is unknown and species-specific,
since the DNA of different species can be collected at different rates.

Noise The amount of DNA biomass collected for each species varies stochasti-
cally between samples collected at the same site and time.

Error It is possible for the DNA of a target species that is present at a site not
to be sampled (false negative error), or traces of DNA from one sample
to contaminate another sample (false positive error).

Stage 2 - DNA biomass analysis

Species effect As a result of differences in gene copy number, DNA extraction efficiency,
and PCR amplification efficiency, the correspondence between the source
sample DNA biomass and the number of amplicon reads is species-specific
(each column of the OTU table).

Pipeline effect PCR stochasticity and the passing of small aliquots of liquid along the
laboratory pipeline affects the total number of reads per technical repli-
cate for all species (each row of the OTU table).

Noise In addition to the species and pipeline effect, there is added noise in the
number of reads per OTU and PCR (each cell of the OTU table).

Error It is possible for the DNA of a target species that is present in the sample
not to be amplified in the lab (false negative error), or traces of DNA
of one sample to contaminate and be detected in other samples (false
positive error), due to the high species-detection power of amplicon se-
quencing.

1.2 Existing approaches164

A common approach for modelling metabarcoding data is to convert them to detection/non-165

detection data by thresholding the number of reads in the OTU table, with user-specified166

criteria. This allows the use of a generalized linear model (GLM) framework (Saine et al.,167

2020), which has also been extended to account for species correlation, for example using168

joint species distribution models (JSDMs) (Ovaskainen and Abrego, 2020). However, this169

approach does not account for the two stages or the noise and error inherent in DNA-based170

surveys (Table 1).171

To that end, several different but related approaches have been proposed. A common172

approach applies occupancy models that account for false negative observation error to173
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the binary detection/no detection data (Ficetola et al., 2015). More recently, multi-scale174

extensions of these occupancy models have been proposed to account for false negative175

error in both stages (Mordecai et al., 2011; Schmidt et al., 2013) and for false positive176

error (Guillera-Arroita et al., 2017; Griffin et al., 2020) for a single species. However, the177

occupancy model framework disregards the information in the reads and relies on arbitrary178

thresholds about what constitutes a detection. Alternatively, the reads have also been179

modelled within a GLM framework (Takahara et al., 2012; Carraro et al., 2018) but without180

considering the errors in each stage. A joint model of species occupancy and corresponding181

reads was developed by Fukaya et al. (2022) but without considering the direct link between182

species DNA biomass at the site and species reads, or the correlation between species.183

Finally, we note that an area of research similar to DNA-based biodiversity surveys184

is microbiome biology, which is the genetic material of all microbial life in an abiotic185

substrate (e.g. soil) or in a living host (e.g. the human microbiome). When modelling186

microbiome data, analysis has usually focused on understanding changes in the relative187

composition of each taxon across different samples. As a result, modelling approaches in188

this field have revolved around the Dirichlet-Multinomial, which allows inference of the189

changes, across samples, of the proportions of the species DNA biomasses(Fordyce et al.,190

2011; Coblentz et al., 2017; McLaren et al., 2019; Clausen and Willis, 2022), although191

within-species changes in DNA biomass are argued to be informative (Tkacz et al., 2018).192

A more detailed comparison between the model we introduce in this paper and models for193

microbiome data is given in Section 2.1.194

1.3 Structure of the paper195

In this paper, we present a unifying hierarchical modelling framework for OTU reads196

that considers key sources of variation, noise, and error at both stages of DNA-based197

biodiversity surveys (Table 1), while also modelling correlation between species and between198

sites. The model allows us to infer changes in DNA biomass and to link these changes to199

site-specific covariates.200
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We use state-of-the-art MCMC (Markov chain Monte Carlo) methods that build on201

recent work for hierarchical and crossed-effects models (Zanella and Roberts, 2021) as well202

as adaptive MCMC techniques (Andrieu and Thoms, 2008). In particular, we develop a203

novel sampling technique to improve mixing in the special case of a multivariate crossed-204

effect model with PCR-specific random effects, and we use adaptive updates of latent205

variables to focus sampling effort. This allows us to fit our model (with many latent206

variables across the different stages of DNA surveys) to data from large numbers of sites,207

samples per site, PCRs per sample, and species.208

The new model, its properties, and links to existing models are presented in Section209

2. Details on our approach to inference are given in Section 3. Issues of study design are210

explored and corresponding simulations are presented in Section 4. A case study of a large211

Malaise-trap metabarcoding dataset is presented in Section 5, and the paper closes with a212

discussion in Section 6.213

2 Model214

We assume that Mi physical samples are collected from site i, i = 1, . . . , n, and Kim215

PCR replicates are performed on the m-th sample from site i. We denote by ysimk the216

number of DNA reads of the s-th species, s = 1, . . . , S in the k-th PCR replicate of the217

m-th sample collected at the i-th site. We have nz site covariates and Xz
i represents their218

value at site i and nw sample covariates, represented as Xw
im for the m sample at the i-th219

site. In what follows, i indexes sites, m samples, k PCR replicates, and s species.220

Our proposed model (see Figure 2) is hierarchical, with three levels. The first level221

models the amount of DNA biomass of each species at the surveyed sites, which is a222

function of environmental and landscape covariates as well as between-species and between-223

sites correlation (DNA biomass availability). The second level models the amount of224

DNA biomass collected for each species in each physical sample from each site (DNA225

biomass collection). Lastly, the third level models the number of reads obtained for226

each species in each PCR from each physical sample (DNA biomass analysis). Data are227
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observed only at the third level, as the result of Stage 2 of the survey, with levels one and228

two corresponding to latent states.229

DNA biomass availability L = {lsi } ∼ MN(B0 +XzB,Σ, T ), T−1 ∼ GH

DNA biomass collection

logit(θsim) = ϕs
0 + ϕs

1l
s
i +Xw

imϕ
s

P(δsim = 1) = θsim,
P(γsim = 1 | δsim = 0) = ζs,

vsim ∼
{

N(ηs + lsi +Xw
imβ

W
s , σ

2
s) if δsim = 1

N(µs, ν
2
s ) if δsim = 0, γsim = 1

DNA biomass analysis

P(csimk = x | δsim, γsim)
δsim γsim x = 0 x = 1 x = 2
1 − 1− ps ps 0
0 1 1− ps ps 0
0 0 1− qs 0 qs

ysimk ∼



πδ0 + (1− π)(1 + NB(µ0, n0)) if csimk = 0
NB(exp(ms

imk), rs)

ms
imk = λs + vsim + uimk + oimk

uimk ∼ N(0, σ2
u)

if csimk = 1

Pois(µ̃) if csimk = 2

(a)

(b) (c)
Figure 2: (a): Model summary, (b): Directed acyclic graph representing the relationships be-
tween the variables in the model. (c) Graphical representation of the latent indicator variables in
the model.

DNA biomass availability We denote the logarithm of the amount of DNA biomass of230

species s in site i available for collection by lsi and denote the n×S matrix L by {L}is = lsi .231

We model DNA biomass correlation between species and spatial correlation between sites232

by assuming that L follows a matrix normal distribution, L ∼ MN(B0+X
zB,Σ, T ) (Dawid,233

1981), where B0 is an n×S matrix with columns 1nβ
s
0, with β

s
0 a species-specific intercept,234

Xz is a design matrix whose rows are Xz
i , B is an nz × S matrix of regression coefficients,235

Σ is an n × n matrix modelling the correlation across sites, and T is an S × S matrix236

modelling the correlation across species. We note that, within this framework, the amount237
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of DNA biomass of a species at the surveyed site cannot be exactly 0, but can be negligible238

for modelling purposes as we describe below. We employ a graphical horseshoe (GH) prior239

(Li et al., 2019) for the inverse species covariance matrix Q = T−1, which is defined by240

specifying the following a priori independent distributions on each element241

Qss ∝ Exp

(
λ

2

)
, s = 1, . . . , p, Qts = Qst ∼ N(0, λ2stτ

2), λst ∼ C+(0, 1), s < t ≤ S

subject to the constraint T ∈ ΩS, where ΩS is the space of the positive definite S × S242

matrices, C+ represents the half-Cauchy distribution (Gelman, 2006), and τ ∼ C+(0, 1).243

Unlike Li et al. (2019) who specified a flat prior Qss ∝ 1, we follow Wang (2012) and244

define a proper prior Qss ∼ Exp(λGH

2
), ensuring that T , which is latent, has a proper245

posterior. We model the spatial correlation matrix Σ using an exponential kernel function,246

so that Σi1i2 = σ2 exp
{
− (xi1

−xi2
)2

l2

}
, where xi1 and xi2 are the locations of site i1 and i2,247

respectively. We note that we have accounted for species correlations in the DNA biomass248

availability stage, but any residual correlations of this type could also be the result of249

species correlations in the collection or analysis stages, discussed below. It is not possible,250

with metabarcoding data alone, to identify the source of these inferred correlations, and251

therefore, species correlations should be interpreted with caution.252

DNA biomass collection We denote by ws
im the amount of DNA biomass of species s253

collected in sample m from site i and vsim := log(ws
im). To account for Stage 1 false negative254

error at this stage, we introduce the latent variable δsim that is equal to 1 if DNA biomass255

for species i has been collected in the m-th physical sample from site i, and 0 otherwise.256

We assume that δsim = 1 with probability θsim, which is a function of covariates Xw
im, and257

of lsi , since higher amounts of DNA biomass are expected to lead to a higher probability258

of collecting DNA biomass in the sample, leading to logit(θsim) = ϕs
0 + ϕs

1l
s
i + Xw

imϕ
s. We259

note that as lsi tends to −∞, θsim tends to 0, and therefore the species becomes practically260

impossible to detect. If the amount of DNA biomass collected is greater than 0 (δsim = 1),261

we model vsim ∼ N(ηs + lsi + Xw
imβ

w
s , σ

2
s), where ηs models Stage 1 species effects on the262

DNA biomass collection rate and σ2
s models the species-specific Stage 1 noise in the DNA263
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biomass collection rate. To account for Stage 1 false positive error, we introduce latent264

variable γsim, which is equal to 1 with probability ζs if the collected DNA biomass is the265

result of contamination and 0 otherwise. We assume that γsim can be 1 only if δsim = 0266

and that vsim ∼ N(µs, ν
2
s ) if γ

s
im = 1. In this way, we assume that a sample which already267

contains DNA biomass of a species cannot be further contaminated by the DNA of the268

same species from another sample or site. We make this assumption as there is not enough269

information in the data to partition the collected DNA biomass between that which was270

truly collected from the site and that which was contamination from elsewhere.271

DNA biomass analysis As mentioned above, by non-negligible reads we mean that some272

of the PCR product is successfully read by the DNA sequencer. We introduce latent variable273

csimk to model the success of PCR k, sample m, and site i for species s, i.e. Stage 2 error.274

Firstly, if sample m from site i contains DNA biomass of species s (ws
im > 0), PCR run k275

can be successful, i.e. non-negligible reads (true positive), csimk = 1, or not successful, i.e.276

negligible reads (false negative), csimk = 0, and we assume that csimk = 1 with probability277

ps. We note that we have assumed here that ps only varies by species and not across sites278

or replicates in either stage. However, ps could depend (negatively) on the total amount279

of DNA biomass in the sample, particularly in cases of low DNA concentration for that280

species or could vary across primers or between labs. We return to these issues in Section281

6. Secondly, if sample m from site i does not contain DNA biomass of species s (ws
im = 0),282

PCR run k can be successful if it yields non-negligible reads due to lab contamination283

(false positive), csimk = 2, or not successful (again, csimk = 0, true negative) and assume284

that csimk = 2 with probability qs.285

We model the reads conditional on csimk as follows. Conditional on csimk = 1, ysimk ∼286

NB(exp(λs + vsim + uimk + oimk), rs), where λs models the Stage 2 species effect on the287

amplification rate, uimk is the Stage 2 pipeline effect, with uimk ∼ N(0, σ2
u), oimk is an288

offset modeling the normalisation steps described in Section 1.1, and rs is a species-specific289

variance of the Stage 2 noise. If more than one normalisation step is employed, then290
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they can all be incorporated into the same offset as a sum. Conditional on csimk = 0,291

ysimk ∼ πδ0 + (1− π)(1 + NB(µ0, n0)), that is, there are zero reads with probability π, and292

non-zero but negligible reads otherwise. Finally, conditional on csimk = 2, ysimk ∼ Pois(µ̃s).293

The negative binomial is parameterised in terms of the mean and the number of failures.294

A visual representation of the PCR process when csimk = 1 is shown in Figure 1 of the295

Supplementary material.296

Stage 2 negative control samples (which are known to not contain DNA of any species)297

can be easily accounted for in our model by having additional samples for which δ̃sl =298

γ̃sl = 0. Accounting for spike-ins corresponds to having S⋆ additional species for which299

(vS+1
im , . . . , vS+S⋆

im ) is known. Since the pipeline effect is shared across all species (including300

spike-ins), the known values of vsim for the spike-ins help to better estimate uimk. We further301

investigate this effect in Section 4.302

The model is summarised in Figure 2 (a), the directed acyclic graph of the model is303

shown in Figure 2 (b), while a graphical representation of the latent variables introduced304

across both stages is shown in Figure 2 (c). The model allows both zero-inflation and305

overdispersion (even after accounting for zero-inflation) of the reads. In the case of true306

positives (when csimk = 1), we allow overdispersion through the negative binomial distribu-307

tion and the introduction of the offset. The use of negative binomial is a standard choice308

for overdispersed data, particularly in Bayesian modelling. Ver Hoef and Boveng (2007)309

discuss the merits of negative binomial and quasi-Poisson regression modelling in ecological310

data. Datta and Dunson (2016) discuss how a scale mixture of negative-binomial regression311

models can be used for so-called quasi-sparse counts, which are often small, not zero.312

The model presented in Figure 2 is not identifiable in its general form unless certain313

constraints are applied, as we discuss below. For example, choosing for simplicity Σ and T314

to be diagonal, if we define ṽsim := vsim − ηs − lsi and l̃si := lsi − βs
0, the model for θsim and315

ysimk conditional on csimk = 1 and all offsets oimk set to 0 can be expressed as316
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l̃si ∼ N(Xiβ

z
s , τ

2
s )

ṽsim ∼ N(Ximβ
w
s , σ

2
s)

θsim = logit(ϕs
0 + ϕs

1β
s
0 + ϕs

1l̃
s
i + ϕsXs

im)

ysimk ∼ NB
(
exp(βs

0 + l̃si + ηs + ṽsim + λs + uimk), rs

) (1)

It is evident that the model is invariant to transformations of the form

(βs
0)

⋆ = βs
0 + c+ d, (λs)

⋆ = λs − c, (ηs)
⋆ = ηs − d, (ϕs

0)
⋆ = ϕs

0 − ϕs
1(c+ d).

The reason for this unidentifiability is that data are observed only in the third level of317

the model, and hence the following sets of species-specific parameters are confounded: the318

baseline amount of DNA biomass across all sites (βs
0) with the baseline collection rate (ηs)319

and the baseline amplification rate (λs), and the former again with the baseline detection320

rate ϕs
0. However, by assuming that all these baseline rates are constant across sites,321

samples, and PCRs, we are able to infer species-specific changes in DNA biomass across322

sites and therefore covariate effects.323

For inferential purposes, we reparameterise the model and set the new baseline (log)324

amount of DNA biomass, (βs
0)

⋆, equal to βs
0 + ηs, which means that we can only estimate325

the sum of the baseline amount of available DNA biomass and the corresponding baseline326

collection rate for the same species. Similarly, we set the new baseline (logit) collection327

probability (ϕs
0)

⋆, equal to ϕs
0 − ϕs

1ηs, since the baseline collection probability is also con-328

founded with the baseline collection rate (equivalent to setting ϕs
0 ≡ 0 and ηs ≡ 0 in329

Equation (1)).330

As a result, we cannot infer the amount of available DNA biomass separately from the331

collection rate, and hence the estimates of log DNA biomass obtained, as mentioned above,332

are only meaningful for comparison within each species. For the same reason, comparisons333

of absolute amount of DNA biomass across species are not meaningful. We also note that334

depending on the survey design in terms of the number of samples collected per site and335

the number of PCR replicates per sample, additional sets of parameters can be confounded336

and not estimable. Specifically, the following pairs of parameters are confounded:337

• S = 1: pipeline effect uimk and PCR variance rs,338
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• K = 1: PCR variance rs and sample noise ṽsim,339

• M = 1: sample noise ṽsim and site noise l̃si .340

These are pathological cases that arise when there is no replication at the site/sample/PCR341

levels. Replication is vital for being able to account for and to estimate the effects of the342

different sources of noise and error (Buxton et al., 2021), an issue to which we return in343

Section 4.1. Finally, we note that if the offsets oimk introduced in the model due to the344

several normalisations occurring in the pipeline are not recorded, the link between the345

amount of DNA biomass in the environment and the reads is broken. However, a potential346

way to restore this link is the introduction of spike-ins, which contribute to the estimation347

of the “overall” pipeline effects ũimk = uimk + oimk.348

2.1 Special cases349

Two models available in the literature (Section 1.2) arise as special cases of our model.350

First, the Dirichlet-Multinomial model (DMM) (Fordyce et al., 2011) is expressed through351

the following hierarchy (omitting the indexes m and k to simplify notation):352 {
(y1i , . . . , y

S
i ) ∼ Multi(Ni, π

1
i , . . . , π

S
i )

(π1
i , . . . , π

S
i ) ∼ Dirichlet(wα1, . . . , wαS)

. (2)

where Ni =
∑S

s=1 y
s
i . The DMM can be seen as a special case of the model described in353

Section 2, for the Stage 2 process, conditional on δsi = 1. Specifically, ysi ∼ NB(exp(λs +354

vsi + ui), rs), and therefore, assuming λs = ui = 0, if rs → ∞, the distribution for ysi con-355

verges to a Pois(exp(vsi )). Conditional on Ni, the model is a Multi
(
Ni, π

1
i , . . . , π

S
i

)
, where356 (

π1
i , . . . , π

S
i

)
=

(
exp(v1i )∑
s exp(v

s
i )
, . . . ,

exp(vSi )∑
s exp(v

s
i )

)
. Next, assuming exp(vsi ) ∼ Gamma(wαs, θ), we357

obtain (π1
i , . . . , π

S
i ) ∼ Dirichlet(wα1, . . . , wαS). Finally, as the DMM does not take errors358

into account, the equivalence with our model can be obtained by setting ps ≡ 1.359

McLaren et al. (2019) propose to account for the Stage 2 species effect in the DMM360

framework by modelling the probabilities (π1
i , . . . , π

S
i ) as (

e1π̃1
i∑

s e
sπ̃s

i
, . . . ,

eS π̃S
i∑

s e
sπ̃s

i
), where es361

models the species-specific efficiencies, which in our model is achieved by using a species-362

specific λs. The DMM can be extended hierarchically if nested treatments are considered363
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(Coblentz et al., 2017) by defining a nested prior (α1, . . . , αS) ∼ Dirichlet(α1
0, . . . , α

S
0 ) for364

each level. In our model, this is achieved by a hierarchy of normal priors. This highlights365

a key difference between the DMM approach and the approach we introduce in this paper,366

since we model the propagation of the absolute amount of DNA biomass across the different367

stages, while the DMM models the propagation of the relative amount of DNA biomass.368

Secondly, the occupancy model of Griffin et al. (2020), in the simple case of no covariates,369 
zi ∼ Be(ψ)

wim ∼ Be(ziξ1 + (1− zi)ξ0)

yimk ∼ Be(wimp+ (1− wim)q)

(3)

designed for (single-species) qPCR, can be seen as a special case of our model when the370

information in the counts is not considered. Specifically, letting li be binary, with li ∈371

{−∞, 0}, and defining zi = exp(li), we obtain θim|(li = −∞) = 0 and θim|(li = 0) =372

logit(ϕ0). Hence, the model for δ and c becomes373 {
δim ∼ Be(zi(logit(ϕ0) + (1− logit(ϕ0))ζ) + (1− zi)ζ)

cimk ∼ Be(δimp+ (1− δim)q)
,

which is identical to the Griffin et al. (2020) model after defining ξ1 = logit(ϕ0) + (1 −374

logit(ϕ0))ζ and ξ0 = ζ.375

3 Inference376

Samples can be drawn from the posterior distribution of the parameters using a Gibbs377

sampler. Posterior sampling is greatly helped by representing the negative binomial dis-378

tribution as a Gamma-Poisson mixture, which allows many parameters to be updated in379

closed form from their full conditional distribution.380

For the parameters σs, µs, B and B0, the full conditional distribution is available in381

closed form, and therefore posterior sampling is straightforward. We use simple random382

walk Metropolis-Hastings steps for parameters π, µ0, n0, and rs and Metropolis-Hastings383

steps with a Laplace approximation proposal for the parameters lsi , λs, v
s
im, uimk and rs.384

However, on its own, this naive Gibbs sampler will mix slowly since we have a complex385

hierarchical model with crossed-effects and many latent variables. We address this by386
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updating parameters in blocks using re-parameterisation and an adaptive updating scheme387

for the discrete latent variables.388

To illustrate our approach to blocking and re-parameterisation, we consider the error-389

free version of our model390 
lsi ∼ N(0, τ 2s )

vsim ∼ N(lsi , σ
2
s)

uimk ∼ N(0, σ2
u)

ysimk ∼ NB(exp(λs + vsim + uimk), rs)

(4)

A naive Gibbs sampler updating each parameter from its full conditional leads to pro-391

hibitively slow mixing, due to the form of the likelihood where λs, v
s
im and uimk appear as392

a sum. To address the slow mixing in the nested effects, λs and vsim, the use of a centred393

parameterisation (Papaspiliopoulos et al., 2007) has been suggested, which corresponds to394

defining v̄sim := λs+v
s
im and l̄si := λs+ l

s
i . However, issues of slow mixing still exist between395

v̄sim and uimk and, as noted by Zanella and Roberts (2021), re-parameterisation does not396

improve mixing in the case of crossed-effects models. In a classic crossed-effect model of the397

form yjkl ∼ N(λ+vj+uk, σ
2), Papaspiliopoulos et al. (2020) propose a collapsed Gibbs sam-398

pler by first jointly sampling λ with vj and then λ jointly with uk. However, this approach399

does not scale well in our setup, since it would involve sampling all the λs and uimk jointly,400

which have dimensions S and the total number of PCR technical replicates
∑

i,mKim re-401

spectively. Zanella and Roberts (2021) propose the use of identifiability constraints on402

the model, which in Equation (4) correspond to assuming
∑

s v
s
im =

∑
k uimk = 0. Since403

sampling conditionally on constraints can be challenging, we propose a simpler strategy to404

improve mixing that is more suited to our framework. We consider re-parameterising to405

the factor averages v̂im = 1
S

∑S
s=1 v̄

s
im and ûim = 1

K

∑K
k=1 uimk and the factor increments406

ṽsim = v̄sim − v̂im and ũimk = uimk − ûim and performing an update by first sampling jointly407

the factor means conditional on the increments, that is, from (v̂im, ûim|ṽsim, ũimk) and next408

using the standard updates (uimk|v1im, . . . , vSim) and (vjim|uim1, . . . , uimK). In our simula-409

tions, we have found that jointly updating the factor means considerably improves mixing.410
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The sampling scheme for the complete model is presented in the Supplementary material.411

The indicator variables (δsim, γ
s
im, c

s
imk) can be updated directly from their full condi-412

tional distributions but, since there are nMS(K̄ + 2) (where K̄ is the average number of413

PCR replicates) of these variables and often one value of (δimk, γimk, cimk) has probability414

very close to 1, evaluating every full conditional distribution in every iteration can be very415

time-consuming and computationally wasteful. Therefore, we use a cheap approximation as416

a proposal in a Metropolis-Hastings step. Specifically, every B iterations, we update the ap-417

proximation p̂((δsim, γ
s
im, c

s
imk) = (ϵ1, ϵ2, ϵ3)) =

1
T

∑T
t=1 I

(
(δsim)

(t), (γsim)
(t), (csimk)

(t)) = (ϵ1, ϵ2, ϵ3)
)
,418

where (δsim)
(t), (γsim)

(t), (csimk)
(t) is the value of (δsim, γ

s
imc

s
imk) at the t-th iteration, I(A) is419

the indicator function, which takes the value 1 if A is true and 0 otherwise, and T is the420

number of current iterations. Using this update scheme, we only need to evaluate the421

likelihood if the state is proposed to change. If the probability of one state is close to422

one, the adaptive scheme often proposes the current state, which can be accepted without423

computation. The adaptive scheme does not affect convergence of the MCMC algorithm424

since the approximation clearly has diminishing adaptation, and the state space of the425

indicator variables is discrete (see e.g. Roberts and Rosenthal, 2009, for more discussion of426

conditions for convergence of adaptive MCMC schemes).427

4 Study design428

In this section, we use a simplified version of the model to investigate the properties429

of our modelling approach under different study designs in terms of the number of sites,430

samples per site, and PCRs per sample, as well as the number of spike-ins. In each section,431

we consider the estimates of the differences in log DNA biomass, when log DNA biomass432

is not a function of site-specific covariates (no covariate case), and the estimates of the433

covariate coefficients when log DNA biomass is a function of a single continuous covariate434

(regression case). In Section 4.1 we present theoretical results using a continuous version435

of our model that does not account for error in either stage. In Section 4.2 we fit our model436

as presented in Section 2 under different scenarios for study design by varying the number437
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of sites, number of samples per site, and number of PCRs per sample. Finally, in Section438

4.3, we explore the effect of spike-ins for different levels of noise in each stage of the process439

and different study designs.440

4.1 Theoretical results for a simplified version of the model441

We consider a normal approximation of the model presented in Section 2, which assumes442

no species or site correlations, that both stages are error-free by setting θsim = ps = 1, and443

that the variances of the distributions of the noise at each stage are the same across species.444

As mentioned in Section 2, the use of spike-ins corresponds to the presence of species in445

the sample for which (vS+1
im , . . . , vS+S⋆

im ) is known. We assume, without loss of generality,446

that vS+j
im = 0 for j = 1, . . . , S⋆. We have the following proposition.447

Proposition 4.1. Consider the model λs ∼ N(0, σ2
λ) for s = 1, . . . , S + S⋆ and, for

i = 1, . . . , n, k = 1, . . . , K, m = 1, . . . ,M ,

uimk ∼ N(0, σ2
u), vsim

 ∼ N(lsi , σ
2), s = 1, . . . , S

= 0, s = S + 1, . . . , S + S⋆
,

ysimk ∼ N(uimk + λs + vsim, σ
2
y), s = 1, . . . , S + S⋆

where σ2, σ2
u and σ2

y are known.448

(a) If we assume p(lsi ) ∝ 1 and σ2
λ ∈ (0,∞) is known, then

Var(ls1 − ls2|y) =
1

M

σ2 +
σ2
y

K

1 +

σ2
u

σ2
y

σ2
u

σ2
y
S⋆ + 1

 . (5)

449
(b) If we observe a single covariate Xi

i.i.d.∼ N(0, 1) for the i-th site and assume lsi ∼

N(Xiβs, τ
2) with σ2

λ = ∞ (i.e. p(λs) ∝ 1) and p(βs) ∝ 1, then

Var(βs|y) =
1

n− 1

(
τ 2 +

1

M

(
σ2 +

σ2
y

K

))
× (1 + C) (6)

where C = σ2
u

σ2
y+(Mτ2+σ2)K(1+S⋆ σ2

u
σ2
y
)+σ2

u(S+S⋆−1)
.450
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Here σ2
y models the variance of the noise in Stage 2, as was the case for rs in the original451

model. Equations (5) and (6) show the contributions of the variances at each stage to the452

posterior variance of the corresponding estimates (changes in biomass between sites, on the453

log scale, and covariate coefficients, respectively) in this special case.454

The results for this special case suggest that, for both Var(ls1 − ls2|y) and Var(β|y),455

increasing replication at a given stage decreases the contribution of the error variance at456

that stage and all downstream stages. For example, increasing the number of samples M457

per site reduces the contribution of the noise variance σ2 at Stage 1 and at all downstream458

stages, i.e. σ2
y and σ2

u in Stage 2. Whereas, increasing the number of PCR replicates, K,459

only reduces the contribution of the Stage 2 variances (σ2
u and σ

2
y). Additionally, the benefit460

of the spike-in is greater as the ratio of variances σ2
u

σ2
y
increases. Moreover, in the case of461

Var(β|y), if σ2 is much greater than σ2
y, the benefit of the spike-in is negligible, as the noise462

induced by σ2 greatly outweighs the noise that can be mitigated via the use of spike-ins.463

4.2 Simulated results for the full model; varying n, M , and K464

We turn our attention to the full model in Fig. 2 and again consider two cases: no465

covariates and a single covariate, Xi ∼ N(0, 1). In the no covariate case, we consider the466

model’s ability to estimate the correct sign of the difference of species log DNA biomasses467

at two sites. We use the Brier score b(i1, i2, s) := (p̄(lsi1 > lsi2)− δi1,i2)
2, where p̄(lsi1 > lsi2) is468

the posterior probability of lsi1 > lsi2 and δi1,i2 is 1 if the true value of lsi1 is greater than the469

true value of lsi2 and 0 otherwise. We generate lsi ∼

 N(1, τ 2s ) i odd

N(0, τ 2s ) i even
which separates470

the sites between those with “high” DNA biomass and those with “low” DNA biomass. We471

use S = 40 species, n = 300 sites, M ∈ {1, 2, 3, 4, 5} samples per site and K ∈ {1, 2, 3, 4}472

PCR replicates. The values of the other parameters are reported in the Supplementary473

Material. We have performed 50 replications for each combination of values of the design474

parameters, M and K. We report the average b(i1, i2, j) spanning i1 across the sites with475

low DNA biomass, i2 across the sites with high DNA biomass, and s across all species476
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and across the replicates. As expected, the Brier score decreases, and hence the ability to477

distinguish between sites with low and high DNA biomass increases, as M and K increase478

(Figure 3). However, the benefit of increasing K decreases with M , which highlights the479

greater importance of multiple sample replicates per site in Stage 1.480

Figure 3: Brier score for distinguishing high and low DNA biomass sites, as a function of the
number of samples (M) and number of PCR replicates (K). We have only considered M ≤ 5,
since greater M is unrealistic, and set n = 300.

In the regression case, we consider the absolute error and posterior standard deviation481

of the covariate coefficient βs. We use n ∈ {50, 100, 200} sites, M ∈ {1, 2, 3} samples per482

site and K ∈ {1, 2, 3} PCR replicates per sample and S = 40 species. The values of the483

other parameters are reported in the Supplementary Material. We performed 50 replicates484

for each combination of values of the design parameters and averaged results across all485

replicates. and species. Results are shown in Figure 4.486

As expected, absolute error and posterior standard error both decrease with more sites487

n, samples per site M , and PCRs per sample K. Doubling the number of sites from 50488

to 100 has a bigger effect than doubling them again from 100 to 200, suggesting that the489

benefit of increasing the number of sampled sites decreases as the number of sites gets large.490

Collecting two samples per site instead of one drastically decreases both absolute error and491

posterior standard deviation, whereas the effect is less pronounced when the number of492

samples is further increased to three compared to two, and the same can be said about the493

number of PCRs.494
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(a) (b)
Figure 4: Mean absolute error, (a), and posterior standard deviation, (b), averaged across all
species and all simulations, of the covariate coefficient βs for varying numbers of sites (n), samples
per site (M), and numbers of PCR replicates per sample (K).

4.3 Spike-ins495

In this section, we consider the improvement in inference when S⋆ spike-ins are employed496

in Stage 2. The effect of the spike-ins is maximised in the case of no false negative/positive497

errors, otherwise the benefit of the spike-ins is lower, and dependent upon the level of498

error. Therefore, in this section we consider data and corresponding model with no false499

positive/negative errors.500

We simulated data on n = 300 sites, M ∈ {1, 2, 3} samples per site, and K ∈ {1, 3}501

PCR replicates per sample on S = 10 species. For each setting of M and K, we have fitted502

the model when S⋆ ∈ {0, 1, 2, 3} and report in each case the posterior relative error and503

posterior relative variance of the estimates, which are calculated by dividing the posterior504

error/variance by the corresponding error/variance when using S⋆ = 0 (which is the case505

with the greatest error/variance).506

Results of the simulation study are presented in Figure 5. In both cases, improvements507

diminish for S⋆ ≥ 2, and in most cases S⋆ = 1 already provides most of the improvement,508

suggesting that the benefit of more than one spike-ins is minimal. The no covariate case509

is shown in the first row of Figure 5. Spike-ins contribute more to reducing biomass-510

change estimation error and variance with M > 1, with M = 1 resulting in virtually no511
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No covariate

Regression

Figure 5: Effect of spike-ins on inference. The three facets per figure represent simulations with
M = 1/2/3 samples per site. The between-samples standard deviation, σ, is represented by the
line type, the between-sites standard deviation, τ , is represented by the color, the number of PCR
replicates, K, is represented by the symbols. The first column represents the posterior relative
error of the estimates and the second column represents the posterior relative variance.

improvements for any setting considered in the simulation. When M > 1, improvement512

is more pronounced when K = 1 instead of K = 3, because in the latter case, thanks513

to this replication at Stage 2, there is already increased information for estimating the514

pipeline effect. This is particularly true when τ is 1 instead of 0.5, because in this case,515

the differences between sites are more pronounced. For both values of τ , improvements are516

bigger when the between-samples standard deviation (σ) is smaller, since otherwise, Stage517

1 noise dominates the process and understanding noise in Stage 2 decreases the overall518
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variance proportionally less.519

The second row of Figure 5 shows the regression case. We have chosen smaller values520

for σ and τ (.2 and .5), since the relative contribution of the spike-ins is negligible with521

larger values. Spike-ins contribute more to reducing error and variance when the between-522

samples standard deviation (σ) and the between-sites standard deviation (τ) is smaller523

because, similar to before, the noise at early stages dominates the process, and therefore524

the relative contribution of the spike-ins is smaller. Also similar to the no covariate case,525

the contribution of the spike-ins is higher for K = 1 PCR replicates compared to K = 3.526

However, unlike that case, the contribution does not appear to increase as the number of527

samples per site M increases.528

5 Case study529

We apply our model to an unpublished amplicon sequencing dataset of arthropod inver-530

tebrates collected using 121 Malaise-trap samples from 89 sample sites in the H.J. Andrews531

Experimental Forest (HJA), Oregon, USA (225 km2) in July 2018 (site details are provided532

in Li et al. 2024). Each trap was left to collect for seven days, and samples were transferred533

to fresh 100% ethanol to store at room temperature until extraction. The management ob-534

jective that motivated the collection of this dataset is to interpolate continuous species535

distributions among the 89 sample points so that areas of higher and lower conservation536

value at the HJA can be identified.537

For each sample, the collected invertebrate samples were combined with a lysis buffer,538

in an amount proportional to the starting sample mass, to digest the tissue, and a fixed539

aliquot was then taken from the overall mixture (and recorded) for DNA extraction and540

subsequent three PCRs. This normalization, as described in Section 2, was accounted for541

in the model by setting the offset oimk equal to the log ratio between the aliquot and the542

overall amount of liquid mixture in each case. We included 50 species in the study by543

selecting the species that have the most non-zero counts across all PCR replicates. Log544

DNA biomass is modelled as a function of two environmental covariates: log elevation and545

24



log distance-to-road.546

Figure 6 presents the 95% posterior credible intervals (PCIs) for the species-specific547

coefficients of log elevation and log distance-to-road in the model for log DNA biomass. The548

effects of the covariates on species DNA biomass are not consistent within each taxonomic549

order, which suggests low phylogenetic inertia at this rank for response to these landscape550

characteristics. Elevation is a stronger predictor for species DNA biomass than distance-to-551

road for this ecosystem. This makes ecological sense, since distance-to-road is only expected552

to exert an effect over about 100 meters, via canopy openness, whereas elevation exerts a553

pervasive effect via its effects on temperature, precipitation, and vegetation.554

Figure 6: Case study: 95% PCI of the species-specific coefficients of log elevation (left) and
distance to road (right) in the model for log DNA biomass. Species are grouped taxonomically.

Figure 7 (a) presents the posterior mean of the between-species residual correlations.555

We set λGH = 1 in the GH prior and we emphasize that the GH prior assumes no prior556

structure imposed on the taxa. Species in the Diptera (flies, spp. 14-30) exhibit higher pos-557

itive correlations with each other, as well as with several species in the Hymenoptera (ants,558

bees, and wasps) and Lepidoptera (butterflies and months). We conservatively interpret559

these positive residual correlations as indicative of unmeasured environmental covariates,560

such as canopy openness, rather than of biotic interactions. We also note that two species in561
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the Lepidoptera, (spp. 41, 43), one in the Hymenoptera (sp. 33), and one in the Psocodea562

(barklice, sp. 50) are among the few species showing strong negative residual correlation563

with many of the other species, and again, we conservatively interpret these correlations564

as indicative of unmeasured environmental covariates. There is a strongly positive, pair-565

wise correlation between two tabanid fly species Hybomitra liorhina and Hybomitra sp.566

(spp. 12, 13), which might indicate the oversplitting of one biological species into two567

OTUs during the bioinformatic pipeline. Finally, there is also a strongly positive, pairwise568

correlation between the moth species Ceratodelia gueneata (sp. 44) and the predatory fly569

(Scathophagidae, Microprosopa sp., (sp. 20), which might indeed indicate a specialised570

predator-prey relationship. All that said, we highlight that these inferred correlations have571

been accounted for in the DNA availability stage of the model, but, as we discuss in Section572

2, they can also be the result of the DNA biomass collection or analysis stages, so should573

be interpreted with caution.574

Figure 7: Case study. Left: Correlation plot of all species. Red represents positive correlations
while blue represents negative correlations. Species are grouped taxonomically. Right: Posterior
mean of biomass-weighted species richness across the study area. For each species, we rescale the
log-biomass amount across all study sites into the range [0, 1] and next we compute the species
richness as the sum of all the rescaled biomasses across all species.

In Figure 7 (b), we show the biodiversity map for the area, which is useful for identifying575

areas of higher species richness and compositional distinctiveness, which together can be576
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used to identify areas of higher conservation value (i.e. higher ‘site irreplaceability’ sensu577

Baisero et al., 2022). The predicted mean log DNA biomasses on a continuous map over578

the HJA for all individual species are presented in the Supplementary Material. These can579

be used to identify species with a wide spatial range, such as the click beetle (Megapenthes580

caprella), or with a restricted range, such as the leafhopper (Osbornellus borealis).581

Finally, Figure 8 (a) suggests that generally, there is a similar amount of variation582

between sites and between samples for these species. As suggested by Figure 8 (b), the583

species that we have considered have similar collection probabilities across the several sites,584

possibly due to the fact that the most frequently detected species across PCRs have been585

selected. Figure 8 (c) demonstrates, as expected, that the Stage 2 true positive probability586

is close to 1 for all species. We highlight here that this probability is modelled as species-587

specific but assumed constant across all replicates. Similarly, the figure also suggests that588

the probability of a Stage 2 false negative error is very close to 0 for all but three species.589

One of these three (sp. 14) is in the fly family Tachinidae, which are parasitoids of other590

insects and thus might have been collected not only as adults but also occasionally as eggs591

attached to the adults of other (insect) host species, with the latter case being classified as592

false positives in Stage 2, given that an egg would contribute very low amounts of starting593

DNA biomass.594

elfig:cov˙results595

596

6 Discussion597

Over the last decade, DNA-based biodiversity studies, primarily using metabarcoding,598

have rapidly increased in popularity, and multivariate statistical models are now starting599

to be deployed to analyse metabarcoding data (e.g. Lin et al., 2021; Pichler and Hartig,600

2021; Abrego et al., 2021; Fukaya et al., 2022; Ji et al., 2022). Our paper provides the601

first unifying modelling framework that considers and quantifies key sources of variation,602

error and noise in metabarcoding surveys (Table 1). As a result, our modelling framework603

allows more reliable and more powerful biodiversity monitoring and inference on species604
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Figure 8: Case study: (left) 95% PCI of the species-specific between-samples standard deviation
σs and between-sites standard deviation

√
Tss (in bold). (center) 95% PCI of the species-specific

average collection probability θsim across all sites. (right) 95% PCI of the species-specific Stage
2 false-positive probabilities qs (on the left of the plot) and true-positive probabilities ps (on the
right of the plot). Species are grouped taxonomically.

responses to landscape characteristics than has been possible before. We have employed,605

extended, and developed a number of inferential tools to deal with the complexity of the606

proposed hierarchical model, which involves two latent stages and a large number of latent607

variables. Finally, this is the first modelling approach that accounts for spike-ins and608

negative controls (empty tubes), which are widely used quality-control methods in DNA-609

based biodiversity surveys but rarely explicitly considered within a modelling framework.610

We explored the benefits of spike-ins on inference and provided analytical and simulation611

results of the effects of study design choices on parameter estimates. As is the case in all612

models, we make certain assumptions about the data-generating process and if (any of)613

these assumptions are violated, then inference can be biased. Below, we discuss the key614

assumptions and corresponding model extensions, when appropriate.615

Our new framework allows us to infer and map species DNA biomass change across616

surveyed sites (Figure 7 (b)), and to link these to landscape characteristics (Figure 6).617

The resulting maps can be used to identify areas of high conservation value, as well as618

areas where particular species or groups of species are more or less prevalent, and to619

detect species-specific shifts, expansions, and shrinkage. We are also able to study pairwise620
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correlations across large numbers of species (Figure 7 (a)), which is considerably more621

scalable using metabarcoding data than using standard observational data. We note that,622

as discussed in the corresponding sections of the model and the case study, we cannot623

unambiguously identify the sources of the estimated correlations using the available data624

alone, as factors other than the affinity between species, such as competition for primers,625

could affect the inferred species correlations. We have shown that using spike-ins can626

substantially increase inference accuracy for parameters of interest (Figure 5). Our results627

also demonstrate that the current practice of collecting a single sample from each surveyed628

site considerably reduces our ability to infer changes in species DNA biomass and that629

replication at both stages as well as the use of normalisation-ratio offsets or spike-ins is the630

optimal approach to designing metabarcoding studies (Figure 3).631

In metabarcoding data, the baseline DNA biomass of each species is confounded with its632

species-specific collection and amplification rates. Hence, we cannot infer absolute values633

of species-specific DNA biomass across sites using metabarcoding data alone. However,634

by assuming that baseline species-specific collection and amplification rates are the same635

across sites, samples, and PCR replicates, we can infer species-specific DNA biomass change636

across sites, species-specific covariate effects, and pairwise species correlations. Finally, we637

model species amplification rates as independent random effects, but competition between638

species for primers, polymerases and nucleotides during PCR amplification might violate639

this independence assumption, and future experimental work, alongside model extensions,640

should explore this issue further.641

We note that we have not allowed the probability of Stage 2 species detection, ps, to vary642

between samples or PCR replicates, and hence we have assumed that it does not depend643

on the DNA biomass of other species in the sample/PCR replicate. However, because644

of the PCR product normalisation step, described in Section 1.1, in PCR replicates with645

relatively high resulting overall DNA biomass, relatively low-DNA-biomass species might646

be less likely to be drawn in high enough concentration to be detected, an issue that is647
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often referred to as PCR dropout. Empirically, it is known that such PCR competition can648

be mitigated by using a lower number of PCR cycles (Yang et al., 2021) and by sequencing649

each sample replicate more deeply. When extending the model of this paper, Stage 2 species650

detection can be modelled as a function of DNA biomass, so that logit(psimk) = βp
0+βp(v

s
im+651

oimk). Model extensions of this type are important but are expected to introduce further652

identifiability issues and computational challenges and hence require careful investigation.653

Generally, modelling changes in (proxies of) abundance, such as changes in DNA654

biomass, is a more powerful monitoring tool than modelling changes in species presence655

across survey sites (Joseph et al., 2006). Metabarcoding studies yield count data without656

any consequence on associated cost, and hence overcome the time and cost implications657

associated with collecting count data for multiple species. Our model uses the raw count658

data, and does not rely on ad-hoc rules about what constitutes a practically zero count for659

converting them to binary data, which has been the standard practice thus far (Ovaskainen660

et al., 2017; Bush et al., 2020). To model changes in (log)biomass for each species across661

sites, we rely on the investigator being able to record any normalisation steps (or to include662

a spike-in), otherwise the relationship between change in read counts and change in the663

amount of biomass in the environment cannot be inferred, and instead the counts can only664

be used to infer composition, as is standard practice in metabarcoding studies. We have665

allowed for over-dispersion in the count data using a negative binomial distribution, but666

future work could consider alternative parametrisations, such as the discrete Weibull distri-667

bution. The model can also be extended to account for multiple primers or for differences668

between labs, if samples are processed by more than one lab, by introducing regression669

models for corresponding parameters.670

Metabarcoding studies, particularly when applied to microbiomes and meiofauna (e.g.671

nematodes, micro-eukaryotes), can detect 1000s of species, which leads to large numbers of672

latent variables and coefficients in the model. There are several ways that the inferential673

tools presented here could be further extended to scale to these cases. Firstly, the posterior674
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distribution conditional on the uimk is independent across species. If uimk could be esti-675

mated at a first stage then inference across species could be easily parallelized. Secondly,676

variational Bayes methods could be applied to avoid the use of sampling methods. The677

choice of variational distribution will be important and can exploit the conditional normal-678

ity of much of the model. Alternatively, the model could be adapted by assuming that the679

coefficient matrices such as βz = (βz
1 , . . . , β

z
S), have a low-dimensional representation. We680

highlight that in its current format, the model assumes species-specific parameters, and681

hence there is potentially a large number of parameters to be estimated for each species.682

Therefore, if a species only has a few non-zero PCR reads from potentially only a few sites,683

estimating all of these species-specific parameters is difficult. Future work should explore684

sharing parameters between species, making inference for rarely-observed species possible.685

We are not modelling species presence/absence and instead we have focused on mod-686

elling biomass on a continuous scale. As a result, we cannot infer whether a species is687

absent from a particular study site, but instead only if its DNA biomass at a given site is688

practically zero. We have assumed that a sample which already contains DNA biomass of689

a species cannot be further contaminated by the DNA of the same species from another690

sample or site in Stage 1. This is a reasonable but also necessary assumption, because of691

model identifiability issues otherwise. It is possible that there exists contamination from692

other sites if their samples are all processed in the same laboratory, especially at the same693

time, or that there is contamination during the collection or transfer of samples. However,694

with only metabarcoding data to hand, it is not possible to identify the source of contami-695

nation, or to model the possibility that a sample that contains DNA of a species has been696

further contaminated by the DNA of the same species from another sample or site in Stage697

1. This is yet another reason to take measures that minimise contamination risk.698

eDNA metabarcoding has revolutionised the cost-effectiveness, precision, and scale at699

which biodiversity assessment can be performed. Nevertheless, the multiple stages at which700

imperfect detection of DNA biomass can occur during the workflow are not insignificant. By701
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facilitating estimates of within-species changes in DNA biomass as a function of covariates,702

while accounting for workflow uncertainties, our modelling framework provides a substantial703

improvement in the design and analysis of eDNA metabarcoding data.704

Data Availability705

The sequence data, bioinformatic scripts, and the three sample by species tables and706

environmental covariates are archived on DataDryad at doi.org/10.5061/dryad.4f4qrfjjb.707

7 Acknowledgments708

The work was funded by NERC project NE/T010045/1 “Integrating new statistical709

frameworks into eDNA survey and analysis at the landscape scale” and benefited from the710

sCom Working Group at iDiv.de. DWY and MJL were supported by the Strategic Priority711

Research Program of Chinese Academy of Sciences, Grant No. XDA20050202, the Key712

Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC024), the State Key Lab-713

oratory of Genetic Resources and Evolution (GREKF19-01, GREKF20-01, GREKF21-01)714

at the Kunming Institute of Zoology, and the University of Chinese Academy of Sciences.715

References716

Abrego, N., Roslin, T., Huotari, T., et al. (2021). Accounting for species interactions is717

necessary for predicting how arctic arthropod communities respond to climate change.718

Ecography, 44(6):885–896.719

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Statistics and Comput-720

ing, 18(4):343–373.721

Baisero, D., Schuster, R., and Plumptre, A. J. (2022). Redefining and mapping global722

irreplaceability. Conservation Biology, 36(2):e13806.723

Besson, M., Alison, J., Bjerge, K., et al. (2022). Towards the fully automated monitoring724

of ecological communities. Ecological Letters, to appear.725

Bush, A., Monk, W. A., Compson, Z. G., et al. (2020). DNA metabarcoding reveals726

metacommunity dynamics in a threatened boreal wetland wilderness. Proceedings of the727

National Academy of Sciences, 117(15):8539–8545.728

Bush, A., Sollmann, R., Wilting, A., et al. (2017). Connecting Earth observation to high-729

32

https://doi.org/10.5061/dryad.4f4qrfjjb


throughput biodiversity data. Nature Ecology & Evolution, 1(7):0176.730

Buxton, A., Matechou, E., Griffin, J., et al. (2021). Optimising sampling and analysis731

protocols in environmental DNA studies. Scientific Reports, 11(1):11637.732

Carraro, L., Hartikainen, H., Jokela, J., et al. (2018). Estimating species distribution and733

abundance in river networks using environmental DNA. Proceedings of the National734

Academy of Sciences, 115(46):11724–11729.735

Clare, E. L., Economou, C. K., Bennett, F. J., and others. (2022). Measuring biodiversity736

from DNA in the air. Current Biology, 32(3):693–700.e5.737

Clausen, D. S. and Willis, A. D. (2022). Modeling complex measurement error in micro-738

biome experiments. arXiv preprint arXiv:2204.12733.739

Coblentz, K. E., Rosenblatt, A. E., and Novak, M. (2017). The application of Bayesian740

hierarchical models to quantify individual diet specialization. Ecology, 98(6):1535–1547.741

Datta, J. and Dunson, D. B. (2016). Bayesian inference on quasi-sparse count data.742

Biometrika, 103:971––983.743

Dawid, A. P. (1981). Some matrix-variate distribution theory: notational considerations744

and a Bayesian application. Biometrika, 68(1):265–274.745

Ficetola, G. F., Pansu, J., Bonin, A., et al. (2015). Replication levels, false presences746

and the estimation of the presence/absence from eDNA metabarcoding data. Molecular747

Ecology Resources, 15(3):543–556.748

Fordyce, J. A., Gompert, Z., Forister, M. L., and Nice, C. C. (2011). A hierarchical Bayesian749

approach to ecological count data: a flexible tool for ecologists. PloS One, 6(11):e26785.750

Frøslev, T. G., Kjøller, R., Bruun, H. H., et al. (2019). Man against machine: Do fungal751

fruitbodies and eDNA give similar biodiversity assessments across broad environmental752

gradients? Biological Conservation, 233:201–212.753

Fukaya, K., Kondo, N. I., Matsuzaki, S.-i. S., and Kadoya, T. (2022). Multispecies site occu-754

pancy modelling and study design for spatially replicated environmental DNA metabar-755

coding. Methods in Ecology and Evolution, 13(1):183–193.756

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.757

Bayesian Analysis, 1(3):515–533.758

Griffin, J. E., Matechou, E., Buxton, A. S., et al. (2020). Modelling environmental DNA759

data; Bayesian variable selection accounting for false positive and false negative errors.760

Journal of the Royal Statistical Society: Series C (Applied Statistics), 69(2):377–392.761

Guillera-Arroita, G., Lahoz-Monfort, J., van Rooyen, A., Weeks, A., and Tingley, R. (2017).762

33



Dealing with false-positive and false-negative errors about species occurrence at multiple763

levels. Methods in Ecology and Evolution, 8(9):1081–1091.764

Hebert, P. D., Cywinska, A., Ball, S. L., and DeWaard, J. R. (2003). Biological identifi-765

cations through DNA barcodes. Proceedings of the Royal Society of London. Series B:766

Biological Sciences, 270(1512):313–321.767

Ji, Y., Ashton, L., Pedley, S. M., et al. (2013). Reliable, verifiable and efficient monitoring768

of biodiversity via metabarcoding. Ecology Letters, 16(10):1245–1257.769

Ji, Y., Baker, C. C. M., Popescu, V. D., et al. (2022). Measuring protected-area effectiveness770

using vertebrate distributions from leech iDNA. Nature Communications, 13(1):1555.771

Joseph, L. N., Field, S. A., Wilcox, C., and Possingham, H. P. (2006). Presence–absence ver-772

sus abundance data for monitoring threatened species. Conservation Biology, 20(6):1679–773

1687.774

Ley, R. (2022). The human microbiome: there is much left to do. Nature,775

606(7914):435–435.776

Li, Y., Craig, B. A., and Bhadra, A. (2019). The graphical horseshoe estimator for inverse777

covariance matrices. Journal of Computational and Graphical Statistics, 28(3):747–757.778

Li, Y., Devenish, C., Tosa, et al. (2024). Combining environmental dna and remote sensing779

for efficient, fine-scale mapping of arthropod biodiversity. Philosophical Transactions of780

the Royal Society B: Biological Sciences, 379(1904):20230123.781

Lin, M., Simons, A. L., et al. (2021). Landscape analyses using edna metabarcoding and782

earth observation predict community biodiversity in california. Ecological Applications,783

31(6):e02379.784

Lindahl, B. D., Nilsson, R. H., Tedersoo, L., et al. (2013). Fungal community analysis785

by high-throughput sequencing of amplified markers–a user’s guide. New Phytologist,786

199(1):288–299.787

Luo, M., Ji, Y., Warton, D., and Yu, D. W. (2022). Extracting abundance information788

from DNA-based data. Molecular Ecology Resources, to appear.789

McLaren, M. R., Willis, A. D., and Callahan, B. J. (2019). Consistent and correctable bias790

in metagenomic sequencing experiments. Elife, 8:e46923.791

Mordecai, R. S., Mattsson, B. J., Tzilkowski, C. J., and Cooper, R. J. (2011). Addressing792

challenges when studying mobile or episodic species: hierarchical Bayes estimation of793

occupancy and use. Journal of Applied Ecology, 48(1):56–66.794

Ovaskainen, O. and Abrego, N. (2020). Joint Species Distribution Modelling: With Appli-795

34



cations in R. Cambridge University Press.796

Ovaskainen, O., Tikhonov, G., Dunson, D., et al. (2017). How are species interactions797

structured in species-rich communities? A new method for analysing time-series data.798

Proceedings of the Royal Society B: Biological Sciences, 284(1855):20170768.799

Papaspiliopoulos, O., Roberts, G. O., and Sköld, M. (2007). A general framework for the800
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