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ABSTRACT
Most classification (supervised learning) algorithms optimise a 
single objective, typically the predictive performance of the 
learned classification model. However, in high-stake classification 
applications, involving e.g. decisions about whether or not an 
individual should undergo a medical surgery, be granted a loan or 
be hired for a job, often there is a need to optimise multiple 
objectives, such as the predictive performance, interpretability or 
fairness of the learned model. In this context, this position paper 
discusses the pros and cons of two different multi-objective 
optimisation approaches (the Pareto and the lexicographic 
approaches), and proposes a conceptual framework for hybrid 
multi-objective optimisation, combining those two approaches. 

Keywords
Classification, multi-objective optimisation, Pareto dominance, 
lexicographic optimisation. 

1. INTRODUCTION
Classification algorithms, a major type of supervised machine 
learning algorithms [39], [64] are currently ubiquitously applied 
in a wide range of application domains; including domains that 
involve high-stakes decisions about people, e.g. predicting who 
should be granted a loan, hired for a job, undergo a surgery, etc. 
In such applications, it is often desirable that a classification 
algorithm should optimise not only predictive accuracy but also 
several other quality criteria of the learned model, such as its 
interpretability, fairness, etc. Optimising these criteria separately, 
one at a time, is in general not a good option, since there are 
usually strong trade-offs between different types of criteria – for 
instance, the trade-offs between accuracy and interpretability [12], 
[42], [62], [52] between accuracy and fairness [63], [1], [49], [59], 
between accuracy and inference time [65], [31], and between 
accuracy and privacy [8], [50]. Hence, there is a clear need for 
multi-objective optimisation methods that optimise multiple 
criteria (objectives) at the same time. 
Furthermore, for each of these broad types of criteria (e.g. 
accuracy, interpretability, fairness), there are usually multiple 
specific measures of the quality of a predictive model measuring 
different aspects of that criterion  – discussed e.g. in [25], [30], 
[37] for predictive accuracy measures; [38], [10], [60] for fairness
measures; and [6], [41] for interpretability measures. Each of such
specific measures of a model’s quality can also be considered as a
separate objective to optimised, leading again to the need for
multi-objective optimisation methods to obtain more robust
results. For example, there is no predictive accuracy measure
which is universally superior to all other measures, with different
accuracy measures having different pros and cons [21], [23], [44];
and so, in practice it makes sense to try to optimise more than one
accuracy measures, to perform a more robust evaluation of
predictive accuracy. There are also trade-offs between different

measures of interpretability [48], [40] and different measures of 
fairness [2], [29], [9].  

The need for multi-objective optimisation also arises naturally in 
several types of machine learning (sub)-areas. For example, multi-
task learning problems in general can be naturally cast as multi-
objective optimisation problems [53], where predictive accuracy 
in each task is an objective to be optimised. In addition, in the 
area of multi-label classification, which is a specific type of multi-
task learning, it is standard procedure to report the results of 
multiple measures of predictive accuracy, since no measure 
captures all the nuances of multi-label classification performance 
[58], [45], [4]. Optimising multiple multi-label predictive 
accuracy measures can be naturally cast as a multi-objective 
optimisation problem. As another example, in federated learning 
[33], since the data and model computation have to be distributed 
across many local processors, including low-speed, low-memory 
local devices, objectives to be optimised include predictive 
accuracy, model complexity, communication costs and memory 
requirements on local devices [66]. 
Yet another machine learning area with a strong and natural need 
for multi-objective optimisation is Automated Machine Learning 
(Auto-ML), which essentially consists of using an optimisation 
method to search for the best learning algorithm (or pipeline) and 
its best hyper-parameter settings for an input dataset [3], [26], 
[67]; where, in the literature, “best” usually means “most 
accurate” based on a given objective function. However, given the 
very large and heterogenous search space of Auto-ML systems, 
there is a clear motivation to optimise not only predictive 
accuracy but also the computational resources (e.g. time) to learn 
each classifier, leading to ‘resource-aware multi-objective 
optimisation’ [65]. This is particularly relevant in the area of 
neural architecture search, a sub-area of Auto-ML where the 
search space includes (deep) neural network architectures – whose 
training usually requires a large amount of time and memory [24], 
[66]. In this scenario, multi-objective optimisation has been used 
to simultaneously optimise predictive accuracy and other 
objectives such as a network’s inference time [28], [15], [16], a 
network’s number of parameters [16], [15] or number of floating 
point operations / multiply-add operations [15], [36], [16], or 
memory usage on mobile phones [15]. 

Despite this clear need for multi-objective evaluation of predictive 
models in a wide range of classification problems, the vast 
majority of the literature still focus on the traditional framework 
of single-objective optimisation, focusing mainly on predictive 
accuracy – and often a single measure of predictive accuracy.  

When multiple objectives are optimised in supervised learning, 
this is usually implemented by converting the original multi-
objective problem into a single-objective one by using a linear 
combination (weighted sum) of the original objectives of the 
form: w1  Obj1  +  . . .  +  wm  Objm, where wi, i = 1,…,m, 
denotes the weight assigned to objective Obji, and m is the 
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number of objectives to be optimised. This approach has the 
advantage of conceptual simplicity, but it also has clear 
disadvantages: it requires the specification of ad-hoc weights to 
each objective, and each run of the optimisation algorithm 
considers only one possible trade-off among the objectives. In 
practice, to consider multiple trade-offs, users could run the 
algorithm many times by varying the objectives’ weights across 
the runs, but this is inefficient (very time-consuming) and 
ineffective [13], [11], [19], since each run of the algorithm ignores 
valuable information about the qualities of candidate solutions 
evaluated in previous runs of the algorithm.  

This article focuses instead on two genuinely multi-objective 
optimisation approaches, namely the Pareto and the lexicographic 
approaches [13], [18]. Both approaches have the advantage of 
exploring multiple trade-offs between the different objectives in a 
single run of the optimisation algorithm, avoiding the need for 
mixing different objectives into a linear combination of weighted 
objectives. In essence, the Pareto approach finds a set of ‘non-
dominated solutions’ (the Pareto front) where, for each solution s 
in the Pareto Front, there is no other solution that performs better 
than s for at least one objective and performs at least as well as s 
for all other objectives; whilst the lexicographic approach 
optimises the multiple objectives in decreasing order of their 
priorities. These approaches will be reviewed in Section 2. 

In the literature on multi-objective optimisation for machine 
learning, the Pareto approach is in general much more popular 
than the lexicographic approach. Actually, the Pareto approach is 
often presented as the only good approach to avoid the 
disadvantages of the weighted sum approach, and the Pareto 
approach’s limitations are often ignored or downplayed; whilst the 
lexicographic approach is often ignored. As evidence for this, 
several surveys of multi-objective optimisation do not even 
mention the lexicographic multi-objective optimisation approach 
[56], [57], [34], [35], [43], [54].  

In this context, this position article has two contributions. The first 
one is to show that the Pareto and the lexicographic approaches 
have to a large extent complementary pros and cons, i.e., none of 
them is inherently better than the other; and in real-world 
applications, their use should be determined mainly by the needs 
and interests of users and the requirements of the target 
application domain. The second contribution is to propose a new 
conceptual, hybrid multi-objective optimisation framework 
designed for synergistically combining the best aspects of the 
Pareto and lexicographic approaches, in order to offer users an 
effective and flexible approach for multiple objective optimisation 
– particularly in the context of high-stakes real-world machine
learning applications, where there is a strong need for optimising
multiple objectives, as discussed earlier.

The remainder of this article is organised as follows. Section 2 
briefly reviews background on the Pareto and lexicographic 
approaches, to make this article more self-contained. Section 3 
discusses the pros and cons of these two approaches. Section 4 
described the proposed conceptual, hybrid framework for multi-
objective optimisation. Section 5 reports the conclusions. 

2. BACKGROUND
The Pareto approach is based on the concept of Pareto dominance 
between candidate solutions  (classifiers, in this article). When 
comparing two classifiers, a classifier C1 dominates another 
classifier C2 if and only if: C1 is better than C2 with respect to at 

least one objective, and C1 is not worse than C2 with respect to all 
the objectives [13], [17], [18]. More formally, let fi(Cj) denote the 
value of the i-th objective for classifier Cj. Assuming, without loss 
of generality, that all m objectives are to be maximised, a 
classifier C1 dominates another classifier C2 if and only if: i such 
that fi(C1) > fi(C2) and i, i=1,…,m, fi(C1) ≥ fi(C2); where m is the 
number of objectives being optimised. A classifier is said to be 
non-dominated if it is not dominated by any other classifier. 
The concept of Pareto dominance is illustrated in Figure 1, using 
as an example a hypothetical case where there are two objectives 
to be maximised, namely the predictive accuracy of a classifier 
and the fairness of its predictions. In Figure 1, classifier B is 
clearly dominated by classifier A, which has better accuracy and 
better fairness. Likewise, classifier D is dominated by classifier C. 
Classifier E is also dominated by classifier C, because, although 
classifiers C and E have the same accuracy, C has better fairness, 
which satisfies the aforementioned definition of Pareto 
dominance. In addition, classifier G is dominated by classifiers C, 
E, F. Finally, classifiers A, C, F are non-dominated, and they form 
the Pareto front in the context of the 7 classifiers in this simple 
example. 

Fairness 

 A 
  B   

    C 
 D 

    E 
 F 

    G    
      Accuracy 

Figure 1: Examples of Pareto dominance 

In the Pareto approach, in general the optimiser aims at finding 
the set of all non-dominated classifiers. However, the only way to 
guarantee that all non-dominated solutions are found would be to 
perform an exhaustive search evaluating all candidate solutions in 
the search space, which is not feasible in general. Hence, in 
practice Pareto-based optimisers return the best estimate of the set 
of non-dominated solutions that they were able to find within their 
computational budget. In most works in this area, it is simply 
assumed that all the non-dominated solutions found by the 
optimiser can be returned to the user and that the user would then 
presumably choose one of those solutions to be deployed in the 
real-world, based on the user’s preferred trade-off among the 
multiple objectives [13], [27] (the pros and cons of leaving such 
choice to the user are discussed later). In some works, however, 
the optimiser returns only a subset of the found non-dominated 
solutions to simplify the user’s analysis of those solutions, as 
discussed later. 

The lexicographic approach requires the user to define a priority 
ordering for the objectives, and then the objectives are optimised 
in decreasing order of priority [18], [68], [20], [5]. That is, in 
order to select the best out of two classifiers, they are first 
compared with respect to the first (highest-priority) objective. If 
one classifier is better than the other regarding that objective, the 
former is declared the winner. Otherwise (i.e. there is a “tie” in 
the objective values of the two classifiers), the two classifiers are 
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compared with respect to the second objective. Again, if one 
classifier is better than another regarding that objective, the 
former is declared the winner, and so on, until a winner is chosen. 
When comparing classifiers, the choice of a winner depends on 
how “a tie” is defined for two values of an objective. In the 
simpler case of objectives with discrete values, a tie can be 
defined as two classifiers having exactly the same discrete value 
for an objective. However, in machine learning it is more common 
to have real-valued objectives, and in this case a tie is usually 
defined as a difference of objective values that is smaller than or 
equal to a small ε (a “tolerance threshold”), so that a classifier is 
“better than” another regarding an objective only if the difference 
in their objective values is greater than ε. Finally, if two classifiers 
are tied regarding all objectives based on the tolerance threshold, 
the best classifier can be chosen as the one with the best value of 
the first objective, ignoring the tolerance threshold. 

To clarify the use of the lexicographic approach, let us consider a 
hypothetical case where again there are two objectives to be 
maximised, namely the predictive accuracy of a classifier (Acc) 
and the fairness of its predictions (Fairn), both objectives taking a 
value in the range [0…1] for each classifier. Assume that the user 
specified that maximizing Acc has priority over maximizing 
Fairn, and the tolerance threshold is ε = 0.01.  

Consider now two classifiers: C1, with Acc = 0.7 and Fairn = 0.8; 
and C2, with Acc = 0.9 and Fairn = 0.6. When comparing 
classifiers C1 and C2 based on the lexicographic optimization 
approach, C2 is declared the better classifier because it has 
substantially better Acc, i.e., the difference between C2’s Acc and 
C1’s Acc, 0.2 (0.9 – 0.7), is greater than ε (0.01). In this case, the 
fact that C1 has substantially better fairness does not affect the 
result of the lexicographic comparison, because C2 won over C1 in 
the higher-priority objective of accuracy, so there is no need to 
consider the lower-priority objective of fairness. 

Extending the previous example, consider now a classifier C3, 
with Acc = 0.69 and Fairn = 0.85, and the classifier C1 of the 
previous example (with Acc = 0.7 and Fairn = 0.8). Now, when 
comparing classifiers C1 and C3 based on the lexicographic 
optimization approach, they are “tied” in the higher-priority Acc 
objective, i.e. there is no substantial difference in their Acc values, 
since their Acc difference of 0.01 is not greater than the tolerance 
threshold ε (0.01). Hence, C1 and C3 need to be compared in terms 
of the lower-priority objective of fairness. In this case, C3 has a 
substantially better Fairn value than C1, with a difference of 0.05 
(0.85 – 0.8), which is greater than the tolerance threshold ε (0.01). 
Therefore, C3 is declared the winner of the lexicographic 
comparison; meaning that, in this case, it is acceptable to incur a 
small, non-substantial (1%) loss of accuracy in order to achieve a 
substantial gain of fairness, based on the user-defined priority 
order of the objectives and tolerance threshold. 

Several examples of the use of the Pareto and lexicographic 
approaches in the classification task will be given in Section 4, 
where a hybrid Pareto/lexicographic multi-objective optimization 
framework is proposed. 

3. PROS AND CONS OF THE PARETO
AND LEXICOGRAPHIC APPROACHES
This section discusses the pros and cons of these two approaches 
in the context of two main issues: (a) how each approach copes 
with users’ preferences about different objectives (Section 3.1); 

and (b) how users cope with the solution(s) returned by the multi-
objective optimizer (Section 3.2). 

3.1 Coping with Users’ Preferences About 
Different Objectives 
First, since the Pareto approach is agnostic regarding the relative 
importance of the objectives, it is a natural choice in scenarios 
where the user does not have any preference about the objectives. 
This partly explains the popularity of the Pareto approach in the 
academic literature. In many papers on multi-objective machine 
learning, the authors are data analysts with expertise on machine 
learning, rather than users with expertise on the data and its 
application domain, and the learned models are not used to make 
decisions in the real-world. In this context of academic research, it 
is intuitively appealing to data analysts to use the Pareto approach, 
which avoids the need to decide how to prioritise some 
objective(s) over others in the real-world. 
In many real-world applications, however, users may naturally 
want to prioritise the optimisation of some objective(s) over 
others. For example, intuitively most users would prioritise the 
optimisation of a model’s predictive accuracy over other 
objectives, like a model’s interpretability or fairness; whilst some 
users might prioritise, e.g., fairness or privacy even over accuracy, 
if there is a legal requirement for fairness or privacy. In scenarios 
where users can easily specify a clear priority ordering for 
multiple objectives, the lexicographic approach is intuitively more 
natural, since it allows the optimisation algorithm to take the very 
important user preferences into account, whilst those preferences 
would be ignored by the Pareto approach [5]. It should also be 
noted that, in  practice, it is usually much easier for users to 
specify a (qualitative) priority order for objectives than specifying 
the precise numerical (quantitative) weights for all objectives as 
required in the weighted-sum approach. For example, it is natural 
for a user to say that predictive accuracy has priority over model 
size; but it would be much harder for a user to justify why the 
weights for accuracy and model size should be e.g. 0.8 and 0.2, or 
0.67 and 0.33, or whatever other weights. 

In addition, a point that is usually ignored in the Pareto 
optimisation literature is that often the user will be interested in 
just a region of the Pareto front [19], [61], [47], and in such cases 
searching for the entire Pareto front would involve a waste of 
computational resources. For example, in the common scenario 
where maximising predictive accuracy has priority over 
minimising model size, a model with the smallest possible size 
and very low accuracy might be selected and remain in the Pareto 
front (to be compared against other models for updating the Pareto 
front) for many iterations of the optimiser, despite being clearly 
an unacceptable solution to users. In general, such a model would 
not be selected by the lexicographic approach, due to its very low 
accuracy (as the higher-priority objective). 

On the other hand, an argument commonly used against the 
lexicographic approach is that, unlike the Pareto approach, the 
lexicographic approach has the disadvantage of requiring the 
specification of ad-hoc tolerance thresholds. At first glance, one 
could argue that, in theory, such tolerance thresholds are about as 
much ad-hoc as the numerical weights for each objective in the 
baseline weighted-sum approach. Actually, in the lexicographic 
approach, broadly speaking, other things being equal, an 
objective’s importance is inversely proportional to its tolerance 
threshold value – since the smaller the tolerance threshold for an 
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objective, the fewer the “ties” between two values of that 
objective (for two solutions), meaning that the objective will be 
used more often to choose the winner solution when comparing 
two candidate solutions. 

However, as the old saying goes: “in theory there is no difference 
between theory and practice, but in practice there is”. In practice, 
the tolerance thresholds of the lexicographic approach are less 
problematic than the numerical weights of the weighted-sum 
approach, as follows.  

First, there is in principle no need for any tolerance threshold 
when an objective to be optimised takes discrete values (like e.g. 
the objective of minimising the depth or size of a decision tree), 
since in this case there is a natural “tie” between two solutions 
when they have exactly the same discrete value of that objective. 
However, as mentioned earlier real-valued objectives are more 
common in machine learning; and some tolerance threshold is 
required when comparing two classifiers regarding a real-valued 
objective, for two reasons: in practice a difference very close to 
zero tends to be irrelevant, and strict equality is not a good 
operator to use when comparing two real-valued numbers in a 
computer (with finite arithmetic).  

Note, however, that although the tolerance thresholds of the 
lexicographic approach have the effect of performing some fine-
tuning of the relative importance of the different objectives, in 
practice the relative importance of an objective in this approach is 
still by far primarily determined by its position in the ordered 
priority list. In theory we could use a tolerance threshold to 
radically change an objective’s importance, e.g. if we set the 
tolerance threshold of the highest priority objective to infinite, 
then there would always be a tie in that first objective, which 
would eliminate that objective’s importance. In practice, however, 
no one sets tolerance threshold to infinite or even large values, 
tolerance thresholds are in general simply set to small values, say 
from about 1% to 5% of the range of values for an objective. With 
such “reasonably small values”, tolerance thresholds have much 
less influence on the relative importance of different objectives 
than the user-specified priority order of objectives (which is an 
effective form of incorporating the user’s preferences into the 
optimiser).  

Another point is that, as long as different objectives have been 
normalised to the same range of values, in many cases it seems 
reasonable to specify a single value of a tolerance threshold for all 
(real-valued) objectives, rather than different values for different 
objectives. This substantially reduces the number of “ad-hoc” 
parameters. 

In summary, arguably the need for specifying tolerance thresholds 
still counts as a disadvantage of the lexicographic approach, by 
comparison with the Pareto approach (which does not use such 
thresholds), but this disadvantage is in general substantially 
smaller than the disadvantage of having to specify ad-hoc 
numerical weights for the objectives in the weighted-sum 
approach. In addition, the use of tolerance thresholds is usually a 
price worth paying for the benefit of directly specifying the user’s 
relative preferences for the multiple objectives to be optimised, in 
cases where the user has clear preferences (which would be 
ignored in the standard Pareto approach). 

Note also that, although the Pareto approach does not explicitly 
require any parameter to cope with the users’ preferences about 
different objectives, in practice, at the algorithm level, in order to 

search for the best Pareto front, a Pareto-based optimiser usually 
has some implicit parameters associated specifically with the 
Pareto optimisation process. For example, the NSGA-II algorithm 
[14], probably the most popular Pareto-based optimiser, uses a 
“crowding” procedure that encourages diversity in the non-
dominated solutions in the Pareto front maintained by the 
algorithm along its search. It is claimed in [14] that this procedure 
does not require any user-specified parameter, but this procedure 
involves at least the choices of a distance function and a 
normalisation procedure for distance computation, which in 
practice can be considered implicitly user-specified parameters. 

3.2 Coping with the Solution(s) Returned by 
the Multi-Objective Optimiser 
In the Pareto approach the optimiser returns a set of non-
dominated solutions, since the Pareto dominance concept is 
completely agnostic with respect to the relative importance of the 
different objectives, and so there is no clearly “best” solution 
among all the non-dominated solutions. As mentioned earlier, the 
standard approach for coping with a large number of non-
dominated solutions returned to the user is to simply assume that 
it is up to the user to choose a single best among all non-
dominated solutions using their own subjective preference [13], 
[27]. This approach is usually acceptable in academic research 
where the solutions returned by the optimiser will not be deployed 
in the real world. 
However, in real-world applications, this approach can be 
regarded as a double-edged sword, considering that in many 
applications ultimately a single solution needs to be chosen for 
practical reasons. On one hand, returning many non-dominated 
solutions provides more flexibility to users, giving them the 
chance of using their subjective evaluation of the pros and cons of 
different solutions (i.e. the extent to which different measures 
were optimised) to choose the best solution. Importantly, since the 
user makes this choice by considering a set of “high-quality” non-
dominated solutions a posteriori (after the optimiser returned its 
results), this is a much more well-informed choice than the much 
less well-informed choice of ad-hoc weights for each objective a 
priori (before running the optimiser) in the weighted-sum 
approach [13], [18].  

On the other hand, users may find it difficult to subjectively 
choose among a large (often very large) set of non-dominated 
solutions. There are automated methods for choosing a subset of 
“the best” non-dominated solutions [46], [55], [65], [32], so that 
the user could focus their attention on a relatively small set of 
most promising solutions. However, there is no guarantee that 
such methods will choose the solution that would be really the 
best solution for the user in practice, since such methods tend to 
ignore users’ preferences. 

By contrast, in the lexicographic approach the optimiser returns a 
single optimised solution, representing the best trade-off among 
the objectives found by the lexicographic optimiser, which took 
into account the user’s priority ordering of objectives.  

Table 1 summarises the above discussion on the main differences 
between the Pareto and lexicographic approaches. Note that these 
two approaches have largely complementary pros and cons, i.e. 
none is inherently superior to the other. 
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Table 1: Summary of the main differences between the Pareto 
and lexicographic approaches for multi-objective optimization, 
with their complementary pros and cons 
Issue 1: How the optimiser copes with users’ preferences 
about different objectives 

Pareto approach Lexicographic approach 
Agonistic about users’ 
preferences for objectives; 
optimiser searches for all 
non-dominated solutions 

Optimises objectives in decreasing 
order of priority, which is specified 
by the user 

Pro: no parameter required 
for representing users’ 
preferences 

Pros: Incorporates users’ 
preferences for objectives as 
background knowledge; optimiser 
focuses on solution space region 
more interesting for users 

Con: optimiser can waste 
time finding solutions in 
Pareto front regions not 
relevant for users 

Con: Requires tolerance-threshold 
parameters for real-valued 
objectives (not necessarily for 
discrete objectives) 

 
Issue 2: How the user copes with the solution(s) returned by 
the optimiser 

Pareto approach Lexicographic approach 
Optimiser returns a set of 
non-dominated solutions; 
user chooses preferred non-
dominated solution a 
posteriori 

Optimiser returns a single solution 
to the user 

Pro: provides users with 
flexibility for choosing 
their preferred solution 

Pros: the returned solution was 
chosen based on the users’ 
priorities for different objectives;  
user does not need to spend time or 
to make a difficult decision for 
selecting a solution among many 
non-dominated solutions 

Con: users may find it 
difficult to select a solution 
from a (often  very large) 
set of non-dominated 
solutions 

Con: users cannot evaluate the 
different trade-offs among 
objectives in multiple non-
dominated solutions 

 

4. A FRAMEWORK FOR HYBRID 
PARETO AND LEXICOGRAPHIC MULTI-
OBJECTIVE OPTIMISATION 
In the literature on multi-objective optimisation (MOO) in 
machine learning, normally authors simply use either the Pareto or 
the lexicographic approach (much more often the former), without 
considering the possibility of combining these two approaches to 
improve the effectiveness of the MOO optimiser. To address this 
gap, this section proposes a framework for creating hybrid MOO 
optimisers, to try to synergistically combine ‘the best of both 
worlds’ into a more effective MOO optimiser. 
In the proposed framework, the multiple objectives to be 
optimised are divided into groups. The framework is designed to 
be flexible about how the objectives are divided into groups. This 

is a task that should be performed by the user, based on their 
expertise and subjective preferences regarding which objectives 
should be prioritised over others (using the lexicographic 
approach) in some group(s) and which objectives should be 
optimised without specifying their relative priorities (using the 
Pareto approach) in other group(s).  

In the case of real-world applications, in general the user would be 
the person who would use the predictions of the learned models to 
make decisions in the real world, and ideally the user would be an 
expert on the data and its application domain. In purely academic 
research, without real-world applications and without access to 
real world users, the role of the user would be simulated by the 
data analyst, usually the authors of the paper, who typically have 
expertise on machine learning. 

When creating the groups of objectives, there are two types of 
decisions to be made by the user, about which type of MOO 
approach should be used. First, at the ‘within-group’ level, for 
each group of objectives, the user specifies the type of MOO 
approach (i.e., the Pareto or the lexicographic approach) to be 
used to optimise objectives in that group. Different groups can use 
different types of MOO approaches, but all objectives within a 
group will be optimised by the same type of MOO approach.  
Second, at the ‘across-groups’ level, the user specifies the type of 
MOO approach to be used for the joint optimisation of all groups 
of objectives as a whole. 

These two types of decisions lead to four possible scenarios, 
summarised in Table 2. When the Pareto approach is used at the 
across-groups level (Scenarios 1 and 2), at the within-group level 
we can have either have a homogenous use of the lexicographic 
approach, i.e. it is used within all groups of objectives (Scenario 
1); or a heterogeneous use of the Pareto and lexicographic 
approaches, i.e. some group(s) of objectives use one of these 
approaches whilst other group(s) use the other approach (Scenario 
2). Analogously, when the lexicographic approach is used at the 
across-groups level (Scenarios 3 and 4), at the within-group level 
we can have either a homogeneous use of the Pareto approach in 
all groups of objectives (Scenario 3) or a heterogeneous use of the 
Pareto and lexicographic approaches (Scenario 4). Note that we 
do not consider the trivial scenarios where one approach (Pareto 
or lexicographic) is used at the across-groups level and the same 
approach is used in every group at the within-group level because 
these scenarios would not lead to any hybrid MOO approach. 
 
Table 2: Four scenarios for a hybrid Pareto and lexicographic 
multi-objective optimization (MOO) approach 

MOO 
scenario 

Across-groups 
MOO approach 

Within-group 
MOO approach(es) 

1 
Pareto 

Homogeneous lexicographic 

2 Heterogeneous Par & Lex 
3 

Lexicographic 
Homogeneous Pareto 

4 Heterogeneous Par & Lex 

 
In the remainder of this paper, to simplify the discussion of the 
scenarios shown in Table 2, we will refer to two groups of 
objectives, each group containing only two objectives (i.e. 4 
objectives in total). In practice, 4 objectives might often be 
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enough to give users a reasonably robust multi-criteria perspective 
on the performances of different classifiers, the kind of 
perspective usually missing in the literature. However, if 
necessary, the ideas proposed in this paper can be naturally 
extended to more complex scenarios with more than two groups 
of objectives and/or more than two objectives per group. 

Scenario 1: Pareto approach at the across-groups level and 
homogeneous use of the lexicographic approach at the within-
group level 
In this scenario, when two classifiers are compared, first, for each 
group of objectives, a lexicographic optimiser determines the 
winner classifier using the lexicographic approach. Then, the 
Pareto approach is used by the optimiser at the across-groups level 
in order to determine if one of the classifiers dominates the other.  
More precisely, in the Pareto optimiser at the across-groups level, 
a classifier C1 dominates a classifier C2 if and only if: (C1 is 
lexicographically better than C2 in at least one group of 
objectives) and (C1 is lexicographically better than or tied with C2 
in all groups of objectives). In other words, within each group of 
objectives there is a lexicographic comparison between C1 and C2 
based on the objectives in that group, and a classifier will be a 
winner at the across-groups level when that classifier is a 
lexicographical winner within at least one group of objectives and 
that classifier is not a lexicographical loser in any of the groups of 
objectives. 
Note that in this scenario the Pareto approach is applied to the 
qualitative results of the lexicographic approach applied to each 
group of objectives, rather than the numerical values of the 
individual objective functions (like in the standard definition of 
Pareto dominance, in Section 2).   
Conceptual Example for Scenarios 1 and 2: Consider a 
classification task where the class variable indicates whether or 
not the patient has a specific type of cancer, with 4 objectives to 
be optimised, divided into 2 groups (2 objectives per group). The 
first group has two objective functions measuring predictive 
accuracy: Recall and Precision of the class: ‘Cancer=yes’. The 
user decided that maximizing Recall has higher priority than 
maximizing Precision, because it is more important reducing the 
number of false negatives (cancer patients wrongly classified as 
no-cancer patients) than reducing the number of false positives 
(no-cancer patients wrongly classified as cancer patients) – since a 
false negative result is more likely to lead to the death of a patient 
(due to not treating a cancer patient) than a false positive result. 
The second group has two objective functions measuring a 
classifier’s interpretability: the degree of violation of 
monotonicity constraints by the classifier [7], [22], and the 
classifier’s size. The user decided that minimizing the classifier’s 
violation of monotonicity constraints (related to domain 
knowledge) has higher priority than minimising the classifier’s 
size (a purely syntactic measure of simplicity). 
Numerical Example for Scenarios 1 and 2: Consider two 
classifiers C1 and C2, whose values for each of the above 4 
objectives are as shown in Table 3. Assume that, for all 
objectives, the tolerance threshold for the lexicographic approach 
is 0.01. Regarding the two objectives in group 1, there is no 
substantial difference between the classifiers C1 and C2 regarding 
the higher-priority recall measure (the difference of their recalls is 
within the tolerance threshold of 0.01), and classifier C2 has a 
substantially higher precision; so C2 wins the lexicographic 
comparison in group 1. Regarding the two objectives in group 2, 

C2 has a substantially smaller degree of violation of monotonicity 
constraints, which is the higher-priority objective in group 2, and 
so C2 also wins the lexicographic comparison in group 2. Then, 
comparing C1 and C2 across the two groups of objectives using 
the Pareto approach, based on the qualitative results of the 
lexicographic comparisons within each group, C2 is lexicographic 
better than C1 in both groups 1 and 2, so C2 dominates C1. 
 
Table 3: Example for the use of the hybrid framework in 
scenarios 1 and 2 

 
Classifier 

Objectives in group 1 Objectives in group 2 

Recall Precision Monot-Viol Size 

C1 0.61 0.50 0.50 0.30 
C2 0.60 0.65 0.45 0.50 

 
Note that in this example of scenario 1, the result of the hybrid 
MOO approach, i.e. C2 dominates C1, is very different from the 
result that we would obtain if we simply applied the Pareto 
approach to all 4 objectives in Table 3, in which case neither of C1 
or C2 would dominate the other, i.e., they would be both non-
dominated. This example also illustrates the fact that, broadly 
speaking, as the number of objectives grows, it becomes harder to 
find a solution that dominates others, and so there is an increasing 
tendency to have larger sets of non-dominated solutions, 
potentially a problem for users that have to select one out of a 
large number of non-dominated solutions, as mentioned earlier. In 
this example, the application of the lexicographic approach at 
each of the two smaller groups of objectives allowed the Pareto-
based optimiser at the across-groups levels to conclude that C2 
clearly dominates C1, since C2 won the lexicographic comparisons 
in both group 1 (accuracy-related objectives) and group 2 
(interpretability-related objectives). This is arguably an intuitively 
better result, based on the user’s declared preferences in each of 
the two groups of objectives. 

Scenario 2: Pareto approach at the across-groups level and 
heterogenous use of the Pareto and lexicographic approaches 
at the within-group level 
In this scenario the user has chosen to use the Pareto approach at 
the across-groups level (like Scenario 1), and has chosen to use 
the lexicographic approach in some group(s) and the Pareto 
approach in other group(s) of objectives, at the within-group level. 
Since our running example (Table 3) has only two groups, we 
have to consider only two cases in this scenario, as follows. 
Case (A): lexicographic approach in group 1 and Pareto approach 
in group 2: In group 1, classifier C2 wins the lexicographic 
comparison as mentioned earlier for scenario 1. In group 2, 
classifiers C1 and C2 are non-dominated (neither dominates the 
other). Therefore, the Pareto optimiser at the across-groups level 
considers that C2 is better than C1 in group 1 and there is a tie 
between C1 and C2 in group 2, concluding that C2 dominates C1. 
Case (B): Pareto approach in group 1 and lexicographic approach 
in group 2: In group 1, classifiers C1 and C2 are non-dominated. In 
group 2, classifier C2 wins the lexicographic comparison as 
mentioned earlier for Scenario 1. Therefore, the Pareto optimiser 
at the across-groups level considers that there is a tie between C1 
and C2 in group 1 and C2 is better than C1 in group 2, concluding 
again that C2 dominates C1. 
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In the example of Table 3, the Pareto optimiser at the across-
groups level obtained the same result in both case (A) and case 
(B), because the lexicographic comparisons in both group 1 and 
group 2 consistently return the result of C2 being better than C1, 
and when the lexicographic approach is replaced by the Pareto in 
one of the two groups, although there is tie (non-dominance) in 
that group, the lexicographic win of C2 in the other group is 
enough to make C2 win based on the Pareto approach at the 
across-groups level.  
Note, however, that this kind of result pattern does not generalize 
to all uses of this scenario. For example, suppose the Recall of 
classifier C1 in Table 3 was 0.62 (or higher), and all other data in 
Table 3 remained the same. Then, C1 would be lexicographically 
better than C2 in the group 1 of objectives, and C2 would be 
lexicographically better than C1 in group 2; whilst C1 and C2 
would be non-dominated (in the Pareto sense) in both groups. In 
this case, the winner classifier at the across-groups level would be 
different for the above cases (A) and (B) – i.e., the winner would 
be C1 in case (A) and C2 in case (B). 

Scenario 3: Lexicographic approach at the across-groups level 
and homogeneous use of the Pareto approach at the within-
group level 
In this scenario, when two classifiers are compared by the 
optimiser, first, for each group of objectives, the Pareto optimiser 
determines whether one classifier dominates the other. Then, the 
lexicographic optimiser is used at the across-groups level in order 
to find the winner classifier. 

Note that in this scenario the lexicographic approach at the across-
groups level is applied to the qualitative results of the Pareto 
approach (whether or not a classifier dominates another) applied 
to each group of objectives, rather than the numerical values of 
the individual objective functions, since in this scenario the user 
assigns relative priorities to groups of objectives, rather than to 
individual objectives. That is, when comparing two classifiers, the 
lexicographic optimiser starts considering the highest-priority 
group of objectives. If the Pareto optimiser determines that one 
classifier dominates the other regarding the objectives in that 
group, then the dominating classifier is declared the winner of the 
lexicographic comparison across groups, since this is the highest-
priority group – i.e., there is no need to determine the dominance 
relationships in the other lower-priority groups. If none of the 
classifiers dominates the other in that group of objectives, then 
there is a tie between the classifiers in that group, and the 
lexicographic (across-groups) optimiser proceeds considering the 
other groups of objectives, one in turn, in their priority order, until 
one classifier dominates the other for some group, when the 
dominating classifier is declared the winner of the lexicographic 
comparison across groups. If none of the classifiers dominates the 
other in any group of objectives, this overall tie would have to be 
broken by either selecting a classifier at random or using another 
criterion.  

Conceptual Example for Scenarios 3 and 4: Consider a 
classification task where the class variable indicates whether or 
not an employee should be promoted. The first group, predictive 
accuracy measures, has two objective functions to be maximised: 
the Area Under the ROC curve (AUROC) and the Area Under the 
Precision-Recall curve (AUPRC) [25]. The user decided that 
neither of these two measures has priority, so a Pareto approach is 
appropriate for this objective group. The second group has two 
objective functions related to classification fairness, both to be 

minimised: the difference of True Positive Rates (TPR-diff) 
between males and females, and the difference of True Negative 
Rates (TNR-diff) between males and females [38]. Again, the user 
decided that neither of these two objectives has priority over the 
other, so a Pareto approach is appropriate for this objective group 
also. At the across-groups level, however, the user decided that 
the group of predictive accuracy measures has higher priority than 
the group of fairness measures. 

Numerical Example for Scenarios 3 and 4: Consider two 
classifiers C1 and C2, whose values for each of the 4 objectives are 
as shown in Table 4. Regarding the two accuracy-related 
objectives in group 1, C1 has a better AUROC value but a worse 
AUPRC value than C2, so none of these classifiers dominates the 
other in objective group 1. Regarding the two fairness-related 
objectives in group 2, C1 is better than C2 regarding both TPR-diff 
and TNR-diff, so C1 dominates C2 in objective group 2. Then, 
comparing C1 and C2 across the two groups of objectives, based 
on the qualitative results of the Pareto-dominance check within 
each group, the lexicographic optimiser first checks the Pareto-
dominance result for the higher-priority group 1 (accuracy 
measures). C1 and C2 are tied in group 1, since none of them 
dominates the other, so the lexicographic (across-groups) 
optimiser checks next the Pareto-dominance result for the lower-
priority group 2 (fairness measures). C1 dominates C2 regarding 
the objective group 2, therefore, C1 is the winner of the 
lexicographic comparison across groups. 
 
Table 4: Example for the use of the hybrid framework in 
scenarios 3 and 4 

 
Classifier 

Objectives in group 1 Objectives in group 2 
AUROC AUPRC TPR-diff TNR-diff 

C1 0.73 0.60 0.20 0.25 

C2 0.70 0.64 0.22 0.30 

 
It is worth considering also a variation of the example in Table 4 
where C2 would have an AUROC ≥ 0.73, and all other data in 
Table 4 would remain the same. In this case, C2 would dominate 
C1 regarding objective group 1. In this case, when applying the 
lexicographic approach across the two objective groups, C2 would 
be immediately declared the overall (lexicographic) winner, due 
to it being the winner for the higher-priority group 1; i.e. there 
would be no need to check the Pareto-dominance results for the 
lower-priority group 2.  
It is interesting to note that in this scenario there is no need to 
specify a tolerance threshold for the lexicographic approach, 
because the lexicographic optimiser is applied to the binary results 
of Pareto-dominance relations computed within each group of 
objectives, rather than applied to continuous objective values. 
Hence, this scenario avoids one of the aforementioned criticisms 
of the lexicographic approach, the need to specify ad-hoc 
tolerance thresholds. 

Scenario 4: Lexicographic approach at the across-groups level 
and heterogenous use of the Pareto and lexicographic 
approaches at the within-group level 
In this scenario the user has chosen to use the lexicographic 
approach at the across-group level (like Scenario 3), and has 
chosen to use the Pareto approach in some group(s) and the 
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lexicographic approach in other group(s) of objectives, at the 
within-group level. In our running example (Table 4), this 
scenario involves two different cases, as follows. 
Case (A): Pareto approach in group 1 and lexicographic approach 
in group 2: In group 1, classifiers C1 and C2 are non-dominated 
(neither dominates the other), as mentioned earlier for Scenario 3. 
In group 2, regardless of which objective is chosen by the user to 
have higher priority, classifier C1 wins the lexicographic 
comparison, since C1 is better than C2 regarding both objectives. 
Therefore, the Pareto lexicographic optimiser at the across-groups 
level considers that there is a tie in group 1 and proceeds to 
consider group 2, where C1 is the lexicographic winner. 
Therefore, C1 is the winner at the across-groups level. 
Case (B): Lexicographic approach in group 1 and Pareto approach 
in group 2: Assume that the user has specified that AUPRC has 
priority over AUROC, based on the argument that AUPRC copes 
better with class imbalance [51], [44]; and the tolerance threshold 
has been set to 0.01 (as in the example for scenarios 1 and 2). In 
this case, classifier C2 wins the lexicographic comparison in group 
1, and therefore C2 is also the lexicographic winner at the across-
groups level, regardless of the values of the objectives in group 2 
for C1 and C2. If, however, the used had decided that AUROC has 
priority over AUPRC, then C1 would win lexicographically in 
group 1 and would also be the winner classifier at the across-
groups level. 

5. CONCLUSIONS 
In real-world applications of classification (supervised learning) 
algorithms, particularly in high-stakes applications involving 
decisions about people, users often would like to optimise several 
quality criteria of the learned predictive models – i.e., optimising 
not only predictive accuracy, but also, e.g., model interpretability, 
fairness, privacy, etc. Despite this, the large majority of works on 
classification are still optimising a single objective (criterion), 
typically predictive accuracy. Even when multiple objectives are 
optimised, most works in this area use a simple weighted-sum 
approach, with numerical weights assigned to the objectives to be 
optimised, which in practice transforms the original multi-
objective problem into a single-objective one (optimising the 
weighted sum). This simple approach is inefficient and ineffective 
in general [13], [11], [19]. Hence, this article focused on two 
genuinely multi-objective optimisation approaches which in 
general avoid the drawbacks of the weighted-sum approach, 
namely the Pareto and the lexicographic approaches. 
As mentioned earlier, between these two, the Pareto approach is 
much more popular in machine learning. Actually, several surveys 
of multi-objective optimisation (MOO) do not even mention the 
lexicographic MOO approach [56], [57], [34], [35], [43], [54]; and 
so the literature often gives the misleading impression that the 
Pareto approach is the only good genuinely MOO approach 
available for researchers and practitioners. To correct that 
misleading impression, this article discussed the pros and cons of 
the Pareto and lexicographic approaches, showing that they are 
largely complementary; i.e., none of these two approaches is 
inherently better than the other. In real-world high-stakes 
applications, the choice between these two multi-objective 
optimisation approaches should be made based mainly on the 
needs and interests of users and the requirements of the target 
application domain. 

In addition, this article has proposed a new conceptual, hybrid 
MOO framework, designed for synergistically combining the best 

aspects of the Pareto and lexicographic approaches. This 
framework provides the basis for the design of effective MOO 
algorithms in supervised machine learning, allowing users to 
flexibly decide which group(s) of objectives should be optimised 
according to the principles of the Pareto or lexicographic 
approach. This article has also given several hypothetical but 
plausible conceptual examples of the use of the framework, which 
hopefully illustrate the advantages of flexibly combining Pareto 
and lexicographic concepts into an MOO optimiser.  
However, this article has the clear limitation of being just a 
position paper. Therefore, a natural direction for future research 
would be to design hybrid Pareto/lexicographic MOO 
classification (supervised learning) algorithms based on this 
framework, as well as empirically evaluating their effectiveness in 
high-stakes real-world machine learning applications. 
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