
Torrens, Paulo, Orchard, Dominic A. and Vasconcellos, Cristiano (2024) On
the operational theory of the CPS-calculus: Towards a theoretical foundation
for IRs. Proceedings of the ACM on Programming Languages, 8 (ICFP). pp.
147-176.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/106878/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3674630

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/106878/
https://doi.org/10.1145/3674630
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

On the Operational Theory of the CPS-Calculus: Towards a
Theoretical Foundation for IRs
PAULO TORRENS∗, University of Kent, United Kingdom

DOMINICORCHARD,University of Kent, United Kingdom andUniversity of Cambridge, United Kingdom

CRISTIANO VASCONCELLOS, Santa Catarina State University, Brazil

The continuation-passing style translation often employed by compilers gives rise to a class of intermediate

representation languages where functions are not allowed to return anymore. Though the primary use of

these intermediate representation languages is to expose details about a program’s control flow, they may be

equipped with an equational theory in order to be seen as specialized calculi, which in turn may be related to

the original languages by means of a factorization theorem. In this paper, we explore Thielecke’s CPS-calculus,

a small theory of continuations inspired by compiler implementations, and study its metatheory. We extend

it with a sound reduction semantics that faithfully represents optimization rules used in actual compilers,

and prove that it acts as a suitable theoretical foundation for the intermediate representation of Appel’s and

Kennedy’s compilers by following the guidelines set out by Plotkin. Finally, we prove that the CPS-calculus is

strongly normalizing in the simply typed setting by using a novel proof method for reasoning about reducibility

at a distance, from which logical consistency follows. Taken together, these results close a gap in the existing

literature, providing a formal theory for reasoning about intermediate representations.

CCS Concepts: • Software and its engineering → General programming languages; Compilers; •
Theory of computation→ Type theory.

Additional Key Words and Phrases: Continuations, intermediate representations, strong normalization.

ACM Reference Format:
Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos. 2024. On the Operational Theory of the CPS-

Calculus: Towards a Theoretical Foundation for IRs. Proc. ACM Program. Lang. 8, ICFP, Article 241 (August 2024),
30 pages. https://doi.org/10.1145/3674630

1 Introduction
The concept of a continuation is anything but new to computer scientists. Ever since their many

discoveries [Reynolds 1993], continuations have been widely studied and have proven themselves

useful for many different purposes, theoretical and practical alike. In the realm of compilers, the

continuation-passing style (CPS) translation bears great importance as a program transformation

technique and has found its way into several production compilers, especially when trying to

extract the imperative program lying underneath a functional one.

Source code is most commonly written in the so-called direct style (DS): there is a notion of a

call stack and, upon termination, a function returns to the point where it was called, resuming any

remaining work. The CPS translation aims to turn a program in DS into an equivalent program in

∗
The first half of this work has been carried during the first author’s time working at Santa Catarina State University.

Authors’ Contact Information: Paulo Torrens, University of Kent, Canterbury, United Kingdom, paulotorrens@gnu.org;

Dominic Orchard, University of Kent, Canterbury, United Kingdom and University of Cambridge, Cambridge, United

Kingdom, d.a.orchard@kent.ac.uk; Cristiano Vasconcellos, Santa Catarina State University, Joinville, Brazil, cristiano.

vasconcellos@udesc.br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART241

https://doi.org/10.1145/3674630

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

HTTPS://ORCID.ORG/0000-0003-3838-652X
HTTPS://ORCID.ORG/0000-0002-7058-7842
HTTPS://ORCID.ORG/0000-0001-7581-4146
https://doi.org/10.1145/3674630
https://orcid.org/0000-0003-3838-652X
https://orcid.org/0000-0002-7058-7842
https://orcid.org/0000-0001-7581-4146
https://doi.org/10.1145/3674630

241:2 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

CPS by internalizing the context in which every function call appears: it gives the context explicitly

as an extra parameter, thus removing the need for a call stack. In this process, every call becomes a

tail call, evaluation contexts themselves become trivial, and functions need not return anymore. By

doing so, many details of the source program are exposed, including the evaluation order which is

made explicit and intermediate results which become named.

Such details are of remarkably great importance during compilation. So, in order to explore these

details in the process of lowering a program written in some high-level programming language into

a low-level target language, compilers employ intermediate representation (IR) languages, which are

designed specifically for this task. There are, of course, different styles of IRs, but, as pointed out in

the pioneering work of Steele [1978], a program in CPS is not only well-suited for optimization

but it also allows for a very natural imperative interpretation by seeing calls to continuations

as jumping, indeed making the transformed program closer to machine code. This makes a CPS
language, in which all programs are written in CPS, a strong candidate for a good IR.

Reasoning about programs in CPS. It is well-known that the 𝜆-calculus is both the prototypical

functional programming language and a suitable theoretical foundation for studying functional

languages. While it is common to use the 𝜆-calculus to reason about CPS terms if they are to be

closed under 𝛽-reduction [Flanagan et al. 1993], this is not always the case. For example, the IRs

used by Appel [1991] and Kennedy [2007] require that every value is named and referenced through

a variable. While the image of some common CPS translations have this property, 𝛽-reduction

breaks it. Even though these kind of languages have been used in production compilers for a long

time now (e.g., in SML/NJ and SML.net), they still lack a common theoretical foundation, relying

on either repeatedly reinventing the wheel or using ad hoc methods. Ideally, there should be some

theoretical foundation for reasoning about such IRs that would relate to them in the same sense

that the 𝜆-calculus relates to a functional language. We are left to ask how to properly demonstrate

that they are related. Fortunately, there is already a well-trodden path for doing so set by Plotkin

[1975], who demonstrated the relationship between the 𝜆𝑣-calculus and ISWIM. In this paper, we

follow Plotkin’s program as a guideline to establish a foundation for name-passing IRs.

As a motivating example which has inspired this paper, even though we do not explore this

subject further in it, consider the study of type-preserving compilation [Morrisett et al. 1999]. It

has been noted that preserving the types from the source program into the IR is desirable as it

allows for more optimization opportunities and may be used to achieve link-time safety [Bowman

et al. 2017]; however, compilation typically targets either the 𝜆-calculus or some new, custom IR

designed for the purpose. Trying to take a similar approach for an IR arising from existing practical

implementations, such as Appel’s, may not be so simple, though. For example, it is not clear how to

prove properties such as subject reduction or normalization for these IRs as there is no established

notion of reduction semantics for them. Our thesis is that such investigations are better served by

having a well-understood foundation with well-established results such as one finds, e.g., with the

𝜆-calculus and the 𝜋-calculus, but which are not yet established for common IRs.

However, if we are to explore this idea, then we must first consider: what is a prototypical IR? We

recall that CPS translations are generally a technique for embedding one language into another. For

example, in yet another one of its discoveries, a CPS translation was used to encode the 𝜆-calculus

into the 𝜋-calculus [Milner 1992]. Given that translations may be given to several different targets,

one may wonder: what exactly is the structure necessary for interpreting CPS terms? This question

led to categorical interpretations of continuation-passing and CPS translations [Führmann and

Thielecke 2004] and to Thielecke’s CPS-calculus [Thielecke 1997b], which we study here. If we can

relate the CPS-calculus to an IR in the same way as Plotkin did for the 𝜆-calculus and programming

languages, then this demonstrates that it can be used as a theoretical foundation for such IRs.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:3

Contributions. We summarize our contributions as follows:

• We adapt the evaluator given by Kennedy [2007] as the operational semantics for his IR,

and demonstrate that computation in it matches the one derived by essential steps in the

CPS-calculus. As a consequence, behavioral equivalences in both coincide.

• We give a new reduction semantics to the CPS-calculus based on rewriting rules used in

compilers, accommodating both computational steps and optimizations through a notion of

shrinking reduction steps, and prove that it is sound.

• We demonstrate that the CPS-calculus is a computationally adequate compilation target by

showing that it can simulate evaluation for the 𝜆-calculus by using Plotkin’s CPS translations,

and explore how this may be used for proving optimizations correct.

• We investigate our new reduction semantics, showing it to be confluent by introducing a

theory of residuals, and showing that it allows for the factorization of essential steps, from

which follows that the CPS-calculus is related to Appel’s IR as expected.

• As a last step, we study the simply typed CPS-calculus, for which we prove type soundness

and type preservation. We also show that reduction is strongly normalizing for well-typed

terms, which requires adapting the well-known reducibility proof method by showing that

semantic types are preserved under the usual structural typing rules.

Additionally, most results presented in this paper have been at least partially mechanically verified

in the Coq proof assistant, having nearly 22,000 lines of code as of writing. This is still a work in

progress, with the remaining proofs having been written on pen and paper and currently in the

process of being formalized (notably Theorems 2.1 and 4.5 and Lemmas 7.5 to 7.7). At the moment,

some results still rely on admitted properties (most of which are technical in nature), but they work

in increasing our confidence in the proofs presented in this paper. Therefore, we delegate most

of the technical details to the source code, which is available on GitHub
1
under a permissive free

software license, and to its accompanying documentation. Though this is left as future work, we

aim that this may be used as the basis for the implementation of a verified optimizing compiler.

Proceeding, we will start in Section 1.1 by briefly expanding on the required background. Section 2

reviews the CPS-calculus and existing results, serving to fix its syntax and key components used in

the rest of the paper. Our novel contributions begin with Section 3, where we adapt the machine

semantics and propose the novel reduction semantics. In Sections 4 to 7 we study the metatheory

of the CPS-calculus in presence of such semantics, and in Section 8 we conclude.

Notation. We first set some conventions used throughout this paper. For clarity, we write terms

in the CPS-calculus in blue and sans-serif, terms in the 𝜆-calculi in red and bold, and terms in the

𝜋-calculus in pink and italic, following the suggestions by Patrignani [2020]. We also take the set

of variables in each calculus to be distinct but isomorphic, so, for example, for any variable x in the

CPS-calculus, there is a corresponding variable x in the 𝜆-calculi. We represent a possibly empty,

comma separated list of some syntactic object by writing a vector arrow above them, such that

⃗⃗⃗
x

represents a list 𝑥1, ..., 𝑥𝑛 , and freely treat such lists as a set and distribute operations pointwise

over them. Any kind of association list, such as a typing environment, is treated as a function from

variables to its mapped set. For any relationR, we writeR?
,R+

andR∗
for its reflexive, transitive,

and reflexive and transitive closures respectively, and we freely denote relation composition by

juxtaposition. For any given syntactic class, we reserve the same symbol as a metavariable ranging

over such class, as well as the immediately following symbols in alphabetical order as required.

1
The formal development is available at https://github.com/takanuva/cps. A copy is also archived on Zenodo, available at

https://zenodo.org/doi/10.5281/zenodo.11498450 [Torrens 2024].

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

https://github.com/takanuva/cps
https://zenodo.org/doi/10.5281/zenodo.11498450

241:4 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

1.1 Background
CPS languages and the 𝜆-calculi. What exactly qualifies a CPS language? It is not enough that we

consider only that a language may be used as the target for a CPS translation, as that would be too

broad. For example, several CPS translations from the 𝜆-calculus onto itself have been proposed in

the literature. Instead, we focus on those languages that are only large enough to accommodate

a CPS translation such that they do not allow functions in direct style (DS) anymore, instead

providing only a way to encode them. In order to illustrate this idea, let us recall the definitions of

the call-by-name (CBN) and call-by-value (CBV) 𝜆-calculi, as given by Plotkin [1975]:

Expressions e F v | e e
Values v F x | 𝝀x.e
Contexts C F [−] | C e | e C | 𝝀x.C

Continuations r F k | 𝝀x.s
Trivial exprs. t F x | 𝝀x.𝝀k.s
Serious exprs. s F r t | t t r | (𝝀k.s) r

e →𝛽 e Reduction for the 𝜆-calculus

(𝛽) (𝝀x.e) f →𝛽 e[f/x]

e →n e Call-by-name reduction

(𝝀x.e) f →n e[f/x]
e1 →n e2

e1 f →n e2 f
e1 →n e2

x e1 →n x e2

e →𝛽v e Reduction for the 𝜆𝑣-calculus

(𝛽𝑣) (𝝀x.e) v →𝛽v e[v/x]

e →v e Call-by-value reduction

(𝝀x.e) v →v e[v/x]
e1 →v e2

e1 f →v e2 f
e1 →v e2

v e1 →v v e2

We consider Church’s 𝜆-calculus as a programming language, which we call 𝜆𝑛 (cf. Abramsky

[1990]), by taking →n above as its semantics.
2
Similarly, we consider Plotkin’s 𝜆𝑣-calculus as

a programming language, which we call 𝜆𝑣 , by taking →v as its semantics, while noticing that

both relations are deterministic (i.e., they are partial functions). As several CPS translations exist,

consider for now the CBV translation given by Plotkin [1975], which will be formally defined in

Section 4. As it has been noted, a simple way to define a CPS language is to take the image of the

CPS translation under consideration and close it under some desired notion of reduction [Sabry and

Wadler 1997]. For Plotkin’s CBV translation, a DS term e is turned into some CPS term s [Sangiorgi
and Walker 2001], which belongs to the strict subset of the 𝜆-calculus terms able to encode the

CBV evaluation order in CPS, as characterized above. We could then define a CPS language for

it by taking either the CBN or the CBV reduction as its semantics given that, by the indifference

lemma [Plotkin 1975], they coincide for terms strictly in CPS.

Plotkin’s program. One of our main goals is to demonstrate that the CPS-calculus works as a

foundation for Appel’s and Kennedy’s IRs, but how exactly can this be stated? In his seminal work,

Plotkin [1975] investigates a similar question and shows how to relate a calculus and a programming

language:
3
namely, a language is considered correct with regard to a calculus if its evaluator can be

properly mimicked by the calculus’ theory, and a calculus is considered correct with regard to a

language if it can only equate terms that cannot be distinguished within the language.

2
Although the third CBN rule in →n is often omitted, we include it as it was originally defined, where it was necessary for

the indifference result.

3
Informally, we consider a calculus as an equational theory and a programming language as an operational semantics given

through an abstract machine or an interpreter for the same syntax (cf. Ariola et al. [1995]).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:5

Plotkin’s paper sets out a program of work for establishing such a relationship: he defines the

theory of the 𝜆𝑣-calculus by taking the (𝛽𝑣) rule and treating it symmetrically as the only axiom of its

equational theory, and shows that →v emulates the execution of the SECD machine used to define

the semantics of Landin’s ISWIM, resulting in a program reducing to a value only when execution

under the machine terminates with the same value. Plotkin gives a reduction semantics for the

calculus using →𝛽v , which is the contextual closure of the (𝛽𝑣) rule, and proves that it is confluent

and that reduction may always be reordered to start with →v, from which the correspondence

follows. He does the same thing for the standard 𝜆-calculus and 𝜆𝑛 , using, respectively, the (𝛽) rule

as an axiom,→𝛽 (also contextual) as the reduction relation, and→n as the evaluator. This same

route has also been used to study the call-by-need 𝜆-calculus by Ariola et al. [1995].

Digression: on the choice for an IR. While considering the concept of a prototypical IR, we must

point out the different successful choices that have been used in production compilers, such as the

static single assignment (SSA) form [Cytron et al. 1991], which is the go-to choice for compiling

imperative languages, and A-normal form (ANF) [Flanagan et al. 1993], both of which resemble

code in DS. In fact, there has been a long debate on what exactly constitutes a good IR and whether

a CPS language is the best choice. Although we do not wish to contribute to this discussion, we

refer the reader to the works of Kennedy [2007], Maurer et al. [2017], and Cong et al. [2019].

While Appel’s compiler allows the use of control effects, such as Lisp’s call/cc or Felleisen’s
C operator, it has been argued by Kennedy [2007] that a CPS language might still be useful in

the absence of these. His IR, based on Appel’s, presents a syntactic distinction between source

variables and continuations, which is enough to prevent control effects and to make such a language

equivalent to SSA [Appel 1998; Kelsey 1995] and also to ANF and Moggi’s 𝜆𝑐 -calculus [Sabry and

Felleisen 1992], the latter of which has also been used as an IR [Benton et al. 1998; Kennedy 2007]. In

a way, we could argue that the equivalence between those calculi suggests that an important aspect

of a good IR is its monadic structure: evaluation must be sound in the presence of any possible

side effects, something that doesn’t happen in the 𝜆-calculus, and which rules it out as a proper

foundation for IRs in its usual presentation.

We thus justify our choice of the CPS-calculus, which allows control effects just as Appel’s IR, as

being the more general setting, where a simple syntactic restriction would be enough to keep the

language equivalent to SSA or ANF if desired. While the explicit use of continuations may be seen

as a downside, we note that, as argued by Cong et al. [2019], most stock hardware actually works

in CPS by storing the return address as if it were a continuation, meaning that it’s not a question of

whether to add explicit continuations in a compiler pipeline or not, but rather when to do so. While

we remark this as an important and relevant issue, we leave the formal investigation about the

relationship between the CPS-calculus and idealized versions of SSA and ANF as future work.

2 The CPS-calculus
The CPS-calculus is a simple name-passing calculus, inspired by and based upon the IR of Appel’s

compiler [Appel 1991]. It was originally introduced by Thielecke [1997b], and further explored in

his PhD thesis [Thielecke 1997a], where it was used to aid in the study of ⊗¬-categories.4 It may

also be seen as “a common idiom for the 𝜆-calculus and the 𝜋-calculus” [Thielecke 1997a], as it

is “the distilled target of CPS translations” [Merro 2010] presented as a calculus in its own right.

Compared to Appel’s IR, it drops non-essential features such as integers and recursion (which can

be derived in the untyped setting), in a similar fashion to how 𝜆𝑣 captures the core components of

ISWIM. In this section, we briefly review existing results on its theory.

4
Pronounced as “tensor-not categories”, as confirmed by Paul Blain Levy: https://mathoverflow.net/q/363297/142280.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

https://mathoverflow.net/q/363297/142280

241:6 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

2.1 Syntax
Though some variants of the CPS-calculus were introduced by Thielecke [1997a], we will focus on

the polyadic, non-linear and non-recursive variant, which has just enough structure to be used as a

compilation target (cf. Kennedy [2007]). Its syntax is defined as follows:

Commands b F x⟨ ⃗⃗x⟩︸︷︷︸
jump

| b { x⟨ ⃗⃗x⟩ = b }︸ ︷︷ ︸
bind

A CPS term, also called a command, is defined as either a jump or as a bind. In the former, k⟨ ⃗⃗x⟩
represents a call to k with

⃗⃗
x as arguments, and in the latter, b { k⟨ ⃗⃗y⟩ = c } composes two terms by

defining k in b as a continuation c, which will take

⃗⃗
y as parameters. In the syntax of Appel and Jim

[1997], these terms would be written respectively as k(⃗⃗x) and let k(⃗⃗y) = c in b, which might be

more familiar to some readers. However, due to the more theoretical nature of this work, closer in

spirit to Thielecke’s, we rather stick with his syntax, reserving Appel’s for an actual in-practice IR.

Terms will always be identified up to renaming of bound variables
5
and as such any relation on

terms said to be reflexive will contain 𝛼-convertibility. We write c[⃗⃗x/ ⃗⃗y] for the capture-avoiding
parallel substitution of variables

⃗⃗
y free in c by variables

⃗⃗
x, defined in a standard way, noting that we

always make the implicit assumption that

⃗⃗
x and

⃗⃗
y are lists of variables with the same size (otherwise

the substitution is undefined). We also write FV(c) for the set of free variables in c and, as usual,
say a term is closed if it has no free variables.

Before proceeding to formally define the semantics of the calculus, and in order to first illustrate

the intended meaning of terms, consider the following two translations, given by Thielecke [1997b],

respectively into the 𝜆-calculus and the 𝜋-calculus:

b◦ = e Translation into the 𝜆-calculus

k⟨ ⃗⃗x⟩◦ = k
⃗⃗
x

b { k⟨ ⃗⃗x⟩ = c }◦ = (𝝀k.b◦) (𝝀 ⃗⃗x.c◦)

b• = p Translation into the 𝜋-calculus

k⟨ ⃗⃗x⟩• = k⟨ ⃗⃗⃗x⟩
b { k⟨ ⃗⃗x⟩ = c }• = (𝜈k) (b• | !k(⃗⃗⃗x).c•)

(w.l.o.g., k ∉ FV(c))

Notice that the latter maps terms into the localized, asynchronous variant of the 𝜋-calculus: only

asynchronous outputs are used in the translation, and, as input always happens inside of a local

environment [Pierce and Sangiorgi 1993], the input capability cannot be transmitted.

2.2 Equational Theory
Just as in the 𝜆-calculi and the 𝜋-calculus, the CPS-calculus had its semantics originally given

through an equational theory, also called the axiomatic semantics by Merro [2010]. The equational

theory is defined through a set of axioms that form a contextual equivalence relation, allowing one

to derive equality between terms that “behave the same”. In order to define a contextual relation,

we must first define what constitutes a context, which will play an important role in defining the

formal meaning of terms.

The set of contexts is generated by the following grammar:

Contexts C F [−] | C { x⟨ ⃗⃗x⟩ = b }︸ ︷︷ ︸
static

| b { x⟨ ⃗⃗x⟩ = C }

5
Formally, we use the convention of Barendregt [1981], i.e., that in every mathematical context, free and bound variables

are always assumed to be distinct. Note this also implies that every bound variable has to be different from each other.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:7

The special symbol [−], called a hole, represents a single missing subterm in a context. We write

C[c] to denote the action of filling a context, which replaces the hole in a context C with the term

c (allowing for name capture). A context which is generated by the first two context productions

alone is called a static context [Merro 2010], where the hole appears only in the leftmost position,

which we also call the head position. A relation on terms is said to be compatible if it is preserved
by arbitrary contexts, and a congruence if it is both compatible and an equivalence. We also write

dom(C) for the set of variables that the context binds in its hole, where:

dom([−]) = ∅ dom(C { k⟨ ⃗⃗y⟩ = c }) = {k} ∪ dom(C) dom(b { k⟨ ⃗⃗y⟩ = C }) = { ⃗⃗y} ∪ dom(C)
The equational theory for the CPS calculus may be properly defined now as the least congruence

closed under the following four axioms (from Thielecke [1997b]):

b = b Equational Theory

(JMP) k⟨ ⃗⃗x⟩ { k⟨ ⃗⃗y⟩ = c } = c[⃗⃗x/ ⃗⃗y] (given k ∉
⃗⃗
x)

(DISTR) b { k⟨ ⃗⃗x⟩ = c } { j⟨ ⃗⃗y⟩ = d } = b { j⟨ ⃗⃗y⟩ = d } { k⟨ ⃗⃗x⟩ = c { j⟨ ⃗⃗y⟩ = d } }
(w.l.o.g., k ≠ j, j ∉

⃗⃗
x, and k,

⃗⃗
x ∉ FV(d))

(ETA) b { k⟨ ⃗⃗x⟩ = j⟨ ⃗⃗x⟩ } = b[j/k] (given j ∉
⃗⃗
x)

(GC) k⟨ ⃗⃗x⟩ { j⟨ ⃗⃗y⟩ = c } = k⟨ ⃗⃗x⟩ (given j ∉ FV(k⟨ ⃗⃗x⟩))

The (JMP) rule effectively drives computation by allowing jumps to be performed to the closest

bound continuation. In order to achieve that, the (DISTR) rule allows the reordering of continuations,

which requires duplicating subterms due to the rigid syntax of the calculus. The (ETA) rule captures

extensionality, and the (GC) rule states that the meaning of a term is unchanged by unused

continuations in it. All the above naming restrictions in the rules above are used simply to state

that they are to be defined in a capture-avoiding way in either direction.

We remark that the (JMP) rule may seem restrictive: it imposes the condition that the bound

continuation k is not used in the parameters and then removes it on the right-hand side. This

happens as these rules were given with a system of simple types in mind, and there is no simple

type for k⟨ ⃗⃗x⟩ when k ∈ ⃗⃗
x. The following rule however lifts these restrictions and is admissible, i.e.,

it is derivable from the above axioms:

(RECJMP) k⟨ ⃗⃗x⟩ { k⟨ ⃗⃗y⟩ = c } = c[⃗⃗x/ ⃗⃗y] { k⟨ ⃗⃗y⟩ = c }

Notably the bound continuation is preserved after the jump.

The four axioms of the equational theory are also sound with regard to the two translations

given above. Namely, if b = c, then b◦ = c◦ in both 𝜆-calculi [Thielecke 1997b], and b• = c• in some

variants of the 𝜋-calculus [Merro and Sangiorgi 2004]. The (DISTR) rule, for example, corresponds

directly to a sharpened replication axiom in the 𝜋-calculus [Sangiorgi and Walker 2001].

2.3 Operational Semantics
Historically, the first formulation of an operational semantics for the CPS-calculus has been sketched

in the PhD thesis of Thielecke [1997a]. He suggested the use of directed versions of the above

(DISTR) and (JMP) axioms as computational steps, with the former bringing continuations to the

right place for the latter to act upon. However, as (DISTR) also duplicates continuations, this may

have undesirable consequences; for example, it cannot be strongly normalizing.

Later, Merro and Sangiorgi [2004] presented a generalization of this approach. They remark that

every command may be represented by a jump in head position followed by a sequence of binds,

and so, they propose a reduction semantics by using a reduction relation with a single global (i.e.,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:8 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

non-compatible) rule that behaves as a contextual variant of the (RECJMP) rule, jumping to any

bound continuation within a sequence of binds, preserving that sequences of binds after the jump:

b → b Head Reduction

ki⟨
⃗⃗
x⟩ { k1⟨

⃗⃗ ⃗⃗ ⃗
y1⟩ = c1 } · · · { kn⟨

⃗⃗⃗⃗ ⃗⃗
yn⟩ = cn } → ci [

⃗⃗
x/ ⃗⃗ ⃗⃗yi] { k1⟨

⃗⃗ ⃗⃗ ⃗
y1⟩ = c1 } · · · { kn⟨

⃗⃗⃗⃗ ⃗⃗
yn⟩ = cn }

(given 1 ≤ 𝑖 ≤ 𝑛 and, w.l.o.g., kj ∉ FV(ci) for all 𝑗 < 𝑖)

The above relation, which we call head reduction, captures the intuition that a jump in head position

is responsible for specifying the behavior of a term. By performing only the leftmost jumps, head

reduction thus can simulate the evaluation semantics which was internalized by the CPS translation,

acting at a distance [Accattoli and Kesner 2010] so as to preserve the syntactic structure.

A head-redex may be thus characterized by a jump at head position to a bound variable, given

that arguments and parameters are of the same size; if there is a mismatch between the jump and

its binding, a term is said to be stuck. Note that any closed term, unless it gets stuck, will necessarily

loop, as reduction cannot introduce free variables and thus the jump at head position will always

form a head redex (in a way, the term always knows how to continue). In a similar setting, this

notion of reduction semantics also appears to have been independently described by Amadio and

Régis-Gianas [2012] for an equivalent calculus (cf. Amadio [2017]).

2.4 Observational Semantics
The definition of an operational semantics naturally induces the idea of a behavioral equivalence:
we consider two terms equivalent if we are free to replace one for the other in any context without

possibly changing the result. This is particularly important for IRs, as we would like to optimize

terms by replacing them by more efficient versions without changing the overall program behavior.

Since the only action that a term may perform is jumping, this is also the only way it may interact

with its context. Informally, if a term has a jump to a free variable at head position, then an external

observer may interact with it by binding such variable to a continuation. It is therefore possible to

define a convergence predicate (in the terminology of Milner and Sangiorgi [1992]) which acts as a

barb and states that a term may immediately perform an observable action:

b ↓x Convergence

(k⟨ ⃗⃗x⟩ { k1⟨
⃗⃗ ⃗⃗ ⃗
y1⟩ = c1 } · · · { kn⟨

⃗⃗⃗⃗ ⃗⃗
yn⟩ = cn }) ↓k (given k ≠ ki for 1 ≤ 𝑖 ≤ 𝑛)

Convergence in a term is a notion similar to that of being a value in 𝜆𝑛 and 𝜆𝑣 , as in both cases this

implies that there are no more redexes (neither under CBN nor CBV). We say that c converges to k
if c ↓k. Notice that, if a term converges to some k, then it is in head-normal form, and if it does not,

the term is either a head-redex or is stuck. We also say that c weakly converges to k if c →∗↓k, i.e.,
if c converges to k after zero or more steps.

Several possible different notions of behavioral equivalence for the CPS-calculus were studied by

Merro [2010], including variants of Morris’ contextual equivalence, Milner and Sangiorgi’s barbed

congruence, and Abramsky’s applicative bisimulation. Merro showed that all of these definitions

actually coincide; this relation, which we will simply refer to as bisimilarity, may be defined among

other ways as follows:

b ≈ b Bisimilarity

b ≈ c = ∀C,∀k, C[b] →∗↓k ⇐⇒ C[c] →∗↓k

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:9

It follows by definition that if b ≈ c then these two terms cannot be taken apart6 internally by any

observer while using head reduction, and bisimilarity is indeed the largest relation closed under

this property. Now, if we want to use head reduction as a semantics for the CPS-calculus, we would

expect that the equational theory is also sound with respect to it: two terms deemed equal to each

other by the equational axioms should not be able to be taken apart either. Fortunately, it is already

known that this is the case, as head reduction is a sufficient and necessary condition to capture the

computational content of a term.

Theorem 2.1 (Eqational Soundness, Merro and Sangiorgi [2004]). The equational theory is
sound with regard to the observational equivalences. Thus, if b = c, then b ≈ c.

This theorem implies that, just as →n and →v work as essential steps [Accattoli et al. 2019],
required for termination in the respective 𝜆-calculi, so does head reduction for the CPS-calculus.

3 Operational Semantics, Revisited
We follow Plotkin’s program by first taking into account the different possible ways of giving

meaning to terms. While a calculus often has its meaning given through some reduction rules,

the act of decomposing a term into a redex and context pair, performing the redex, and then

recomposing them is costly from a computational point of view. So, programming languages (and

by extension IR languages) will usually opt for a more direct approach: defining either an interpreter

or an abstract machine. Just as the SECD machine for ISWIM interprets terms as if by 𝛽𝑣-reduction,

so should a semantics meant for an IR match reductions in the CPS-calculus.

3.1 Machine Semantics
Though Merro and Sangiorgi’s head reduction was the first operational semantics given for the

CPS-calculus, it was not the first semantics given for the corresponding language. In his book,

Appel [1991, ch. 3] defines a denotational semantics for his IR by writing an interpreter in the host

language of his compiler. Later, Kennedy [2007] captures the idea behind such an interpreter in

the form of an abstract machine semantics, which we take as the evaluator for our IR. Kennedy’s

machine is given in terms of a big-step relation of a term c underneath a heap 𝜌 ,7 written as 𝜌 ⊢ c ⇓.
Heaps are given as follows, adapted to the CPS-calculus’ syntax:

Heaps 𝜌 F · | 𝜌, x = ⟨𝜌, 𝜆 ⃗⃗x.b⟩︸ ︷︷ ︸
𝑐𝑙𝑜𝑠𝑢𝑟𝑒

That is, a heap works as an association list in which ⟨𝜎, 𝜆 ⃗⃗y.c⟩ represents a closure for continuations
which captures, as a pair, another heap 𝜎 and a command c with parameters

⃗⃗
y (where we merely

use the 𝜆 symbol to express this binding). The machine’s rules are then defined:

𝜌 ⊢ b ⇓ Machine Semantics

𝜌, k = ⟨𝜌, 𝜆 ⃗⃗y.c⟩ ⊢ b ⇓
(1)

𝜌 ⊢ b { k⟨ ⃗⃗y⟩ = c } ⇓
𝜌 (k) = ⟨𝜎, 𝜆 ⃗⃗y.c⟩ 𝜎,

⃗⃗
y = 𝜌 (⃗⃗x) ⊢ c ⇓

(2)

𝜌 ⊢ k⟨ ⃗⃗x⟩ ⇓
𝜌 (k) is undefined

(3)

𝜌 ⊢ k⟨ ⃗⃗x⟩ ⇓
These rules are adapted almost directly from Kennedy [2007], and defined in a straightforward way,

working as the trace of an interpreter (going up the proof tree). Although the original interpretation

makes a distinction between continuations and source-level functions, we generalize it for the case

6
We say that terms b and c can be taken apart internally if they are semi-separable: there is a context C such that C[b]
halts and C[c] diverges, so there is a program that can use these two terms in a way that it finds a difference between them.

7
This corresponds to the usual notion of a machine environment, but we reserve this name for typing environments.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:10 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

where continuations are first-class, similar to the machine later used by Bélanger and Appel [2017].

If we restrict the syntax of the CPS-calculus to keep continuations as second-class citizens, the

original formulation is recovered.

If a term is a bind, by (1) then the bound continuation is added into the heap as a closure,

capturing the current heap 𝜌 , then computation proceeds with b. Otherwise, if a term is a jump, two

things might happen: a jump is performed to a closure by (2) if it is defined, in which case its heap

is extended to account for the arguments

⃗⃗
x being used to bind the parameters

⃗⃗
y that are defined

8

before proceeding, or computation halts by (3) because a jump is performed to a continuation

which is not bound. When the heap is empty, we simply write c ⇓ instead of ⊢ c ⇓, meaning that

evaluation will eventually terminate, in a fresh heap, by jumping into a free variable.

The condition for termination is the same as convergence: the need to interact with the context

in order to know how to proceed (after all, CPS terms do not return!). In fact, it is possible to

notice a close relationship between this machine and head reduction: only the leftmost jumps are

performed, and indeed the same number of times in each style. The following theorem formalizes

this intuition, which means that the machine semantics characterizes weak convergence.

Theorem 3.1 (Machine Correctness). The machine semantics is sound and complete with regard
to head reduction. In other words, c ⇓ if and only if c →∗↓k for some k.

Proof Sketch. For the “if” side (completeness), we show that if b → c and c ⇓, then b ⇓. Doing
so requires a generalized lemma to apply substitution in a heap: we say that heap 𝜌 corresponds

to heap 𝜎 under a substitution of variables 𝑓 at time 𝑛 (that is, after performing 𝑛 steps in the

interpreter, which coincides with the height of the proof tree) if, for every variable x, the closure
𝜌 (x[𝑓]) corresponds to 𝜎 (x) at 𝑛, and we say a closure ⟨𝜌, 𝜆 ⃗⃗x.b⟩ corresponds to closure ⟨𝜎, 𝜆 ⃗⃗y.c⟩
at time 𝑛 if, for all 𝑚 < 𝑛, 𝜌 ′, 𝜎 ′

, 𝑓 ′ and
⃗⃗
z such that 𝜌 ′ corresponds to 𝜎 ′

under 𝑓 ′ at 𝑚 and

𝜌,
⃗⃗
x = 𝜌 ′ (⃗⃗z[𝑓 ′]) ⊢ b ⇓ with the proof tree having height𝑚, we have that 𝜎,

⃗⃗
y = 𝜎 ′ (⃗⃗z) ⊢ c ⇓ with the

proof tree having height𝑚. We then prove, by induction over the height of the proof tree, that if 𝜌

corresponds to 𝜎 under 𝑓 and 𝜌 ⊢ c[𝑓] ⇓, then 𝜎 ⊢ c ⇓, which is enough to show that a head-redex

is valid. For the “only if” side (soundness), we give an interpretation ⟦−⟧ turning heaps into static

contexts, where we define that ⟦·⟧ = [−] and ⟦𝜌, k = ⟨𝜎, 𝜆 ⃗⃗y.c⟩⟧ = ⟦𝜌⟧[[−] { k⟨ ⃗⃗y⟩ = ⟦𝜎⟧[c] }],
and we prove, by induction on the proof tree, that 𝜌 ⊢ c ⇓ implies that ⟦𝜌⟧[c] →∗↓k for some k by

using bisimilarity between heaps at each step of the tree. □

A simple consequence of this result is that the notion of behavioral equivalence between b and c
in the IR, namely that C[b] ⇓ if and only if C[c] ⇓ for any C, actually coincides with bisimilarity:

two terms can be taken apart in the IR if and only if they can be taken apart in the CPS-calculus.

We note that an alternative definition for a behavioral equivalence in the IR using heaps instead of

contexts, given as 𝜌 ⊢ b ⇓ if and only if 𝜌 ⊢ c ⇓ for any 𝜌 , will still coincide with bisimilarity.

Theorem 3.2 (Machine Eqivalence Characterization). Bisimilarity for terms b and c can be
characterized by the definitions of behavioral equivalences in the IR. I.e., b ≈ c if and only if:
(1) ∀C,C[b] ⇓ ⇐⇒ C[c] ⇓
(2) ∀𝜌, 𝜌 ⊢ b ⇓ ⇐⇒ 𝜌 ⊢ c ⇓

Proof. For (1), by Theorem 3.1, it is enough to show that if C[b] ↓k and C[c] ↓j for k ≠ j, there is
a discriminating context where b ⇓ but not c ⇓, which is a contradiction. For (2), we use the Context

Lemma given by Merro [2010] that says we only need to consider static contexts in a contextual

equivalence, and use the heap interpretation from Theorem 3.1 to show the correspondence. □

8
Note that for any xi ∈

⃗⃗
x, if 𝜌 (xi) is undefined, then the corresponding yi ∈

⃗⃗
y is also not defined on the extended heap.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:11

Again, we recall that CPS is not necessarily useful only for compiling languages with control

effects [Kennedy 2007]. Although the notion of bisimilarity would be different if we consider

restrictions to prevent such effects, the result from Theorem 3.2 would still hold.

3.2 Reduction Semantics
The CPS-calculus, as studied by Merro [2010], is actually deterministic: each term has, at most, a

single head-redex. This is somewhat restrictive, as the equivalence closure for this relation equates

too few terms under head-normal form. We proceed to look for a larger reduction relation satisfying

some desirable properties, but that remains sound with regard to the equational theory.

In a similar manner to how Plotkin demonstrated that the CBV reduction strategy was not as

order-sensitive as previously thought, we generalize the notion of head reduction → (Section 2.3)

by allowing jumps to be performed anywhere in a term. The derived notion of jump reduction is

taken as the compatible closure of the following rule:

b⇝j b Jump Reduction

C[k⟨ ⃗⃗x⟩] { k⟨ ⃗⃗y⟩ = c } ⇝j C[c[⃗⃗x/ ⃗⃗y]] { k⟨ ⃗⃗y⟩ = c }
(w.l.o.g., k ∉ dom(C))

It follows immediately that→ ⊂⇝j since a head-redex can be seen as a jump-redex taking place

strictly in static contexts. A term is therefore in jump-normal form if it contains no jump to any

defined continuation anywhere inside of it. While this allows for a finer notion of normal form,

which is able to identify strictly more terms then by head reduction alone, unfortunately performing

jump reductions can quickly result in a blowup in the term’s size. Consider a simple sizing function

|−| which counts the number of jumps in a term: we can check that if b⇝j c, then |b| ≤ |c| < 2|b|.
Even though a term can almost double in size at the worst case, it will never decrease.

In order to better deal with ever-growing terms, we also introduce a garbage collection step,

which removes continuations which are no longer being used, as the compatible closure of a slight

generalization of the (GC) axiom (Section 2.2):

b⇝g b Garbage Collection Reduction

b { k⟨ ⃗⃗y⟩ = c } ⇝g b (given k ∉ FV(b))

We now derive our notion of full reduction, which we denote by⇝, by taking the union of⇝j and

⇝g. This new notion of reduction is capable of equating more terms under a full-normal form, but,

nevertheless, it is still sound, and conservative: additional reductions cannot be observed.

b⇝ b Full Reduction
⇝ = ⇝j ∪⇝g

Lemma 3.3 (Reduction Soundness). Full reduction is sound with regard to the equational theory.
Thus, if b⇝ c, then b = c. As a consequence, b ≈ c as well.

Theorem 3.4 (Convergence Characterization). The relations →∗↓k and⇝∗↓k coincide. As a
consequence, bisimilarity for terms b and c can be characterized by the contextual equivalence derived
from full reduction. I.e., b ≈ c if and only if ∀C,∀k, C[b] ⇝∗↓k ⇐⇒ C[c] ⇝∗↓k.

Proof. Follows directly from Lemma 3.3 and the definition of bisimilarity, as→∗ ⊂⇝∗ ⊂ ≈. □

At first glance, this notion of reduction may look like an obvious generalization of head reduction.

Remarkably it has, however, appeared before in the literature in multiple seemingly unrelated

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:12 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

places. First, it appears exactly as optimization rules for IRs, where jump and garbage collection

steps represent, respectively, function inlining and dead code elimination [Appel and Jim 1997;

Kennedy 2007]. In fact, function inlining has already been suggested as a semantics for an IR by

Appel and Jim [1997], but, to the best of our knowledge, this had not been explored before. This

same exact relation has also appeared as a proof method for the 𝜋-calculus [Honda and Laurent

2010; Yoshida et al. 2004], where it has been shown to be justified by the cut-elimination rules on

linear proof nets. Under the same considerations, it has also appeared in a more granular variant as

a reduction relation for explicit substitution calculi inspired by linear logic [Accattoli et al. 2014;

Accattoli and Kesner 2010] and for the call-by-need 𝜆-calculus [Ariola et al. 1995].

3.3 Shrinking Reductions
Even though our full reduction is sound with regard to the equational theory of the calculus, it is

still not complete. Ideally, we would like to find a notion of reduction with good properties and

whose congruence closure approximates the equational theory up to some decidable structural

equivalence, so that we can simply orient the axioms in order to have the reduction rules. Following

the idea that we are taking compiler optimization rules as a reduction semantics, we turn our

attention to the notion of shrinking reductions.
A shrinking reduction [Appel and Jim 1997] is a kind of optimization which necessarily decreases

the size of a term, and thus may be applied exhaustively. Examples of shrinking reductions include

dead code elimination, linear function inlining (where a function is called only once), tail call

elimination and contification [Kennedy 2007], for which there are near-linear time algorithms by

representing terms as a graph [Benton et al. 2004]. Though we proceed with our development by

using the garbage collection step alone, we note that it would be possible to take other notions of

shrinking reduction instead of⇝g, using some abstract⇝s. We consider a notion of a shrinking

reduction as some reduction relation that satisfies the following tidying requirements, which are

needed for preserving our results (cf. Appel and Jim [1997, appendix]).

Definition 3.5 (Tidying Requirements). A notion of reduction⇝s satisfies the tidying requirements

if it contains the following properties:

(1) Shrinking: it should be strongly normalizing, strictly decreasing in some notion of size.

(2) Soundness: it should be included in the equational theory, so b⇝s c should imply b = c.
(3) Confluence: it should be confluent, so that if b⇝∗

s c1 and b⇝
∗
s c2, then there is some d such

that both c1 ⇝∗
s d and c2 ⇝∗

s d.
(4) Commutation: it should commute with jumping, so that if b⇝∗

s c1 and b⇝∗
j c2, then there

is some d such that both c1 ⇝∗
j d and c2 ⇝∗

s d.
(5) Reordering: it should be able to be reordered with regard to jumping, so b⇝s⇝

+
j c should

imply b⇝+
j⇝

∗
s c. As a consequence, shrinking steps can’t create jumps.

From these conditions, it is possible to derive that the union of a shrinking reduction with

jumping preserves the desirable properties for a reduction relation. This is, of course, the case of

garbage collection, which is indeed a shrinking reduction.

Theorem 3.6 (Tidying Preservation). Let⇝s be a shrinking reduction, and let R =⇝j ∪⇝s.
Then confluence, factorization, and strong normalization of⇝j imply the respective properties for R.

Corollary 3.7 (Garbage Collection). The relation⇝g is a shrinking reduction, and thus⇝
preserves confluence, factorization, and strong normalization for⇝j.

As described by Appel and Jim [1997], the requirements for computation and for optimization

are not quite the same. For example, confluence is not necessary for optimization, but is still a

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:13

useful property as this allows for the design of different optimization algorithms with regard to

optimization order without having to reason about the resulting terms, solving a phase ordering
problem. The tidying requirements above thus allow us to consider both computation rules (arbitrary

function inlining) and practical optimization rules within the same framework without needing to

deal with extra technical details, while still preserving the metatheory of the CPS-calculus.

Still, we remark that it is unclear what constitutes a “complete” set of shrinking reductions, and

that there could be different conflicting notions of shrink-normal form. While dead code elimination

satisfies the tidying requirements above, adding tail call elimination to it, which is simply an oriented

version of the (ETA) rule, breaks confluence. For example, the term x⟨k, j⟩ { k⟨ ⃗⃗y⟩ = j⟨ ⃗⃗y⟩ } { j⟨ ⃗⃗y⟩ = c }
may perform tail call elimination leading to x⟨j, j⟩ { j⟨ ⃗⃗y⟩ = c }, while performing a jump leads to

x⟨k, j⟩ { k⟨ ⃗⃗y⟩ = c } { j⟨ ⃗⃗y⟩ = c }, both of which might be in normal form. To join those two terms

together, a contraction step is needed, as a directed, contextual variant of the following rule:

(CONTR) b { k⟨ ⃗⃗y⟩ = c } { j⟨ ⃗⃗y⟩ = c } = b[k/j] { k⟨ ⃗⃗y⟩ = c }
(given j ∉ FV(c) and k, j ∈ FV(b))

This rule, akin to identical code folding optimization, had been taken as an additional axiom in

previous works [Führmann and Thielecke 2004], but is in fact admissible and may be derived in the

equational theory. Additionally, the converse of a directed contraction step, specialization, could
also be considered (such as done by Accattoli and Kesner [2010]), though these two notions are

incompatible with each other, since by undoing each other they wouldn’t terminate. We thus leave

the investigation of larger or more interesting notions of shrinking reductions for future work.

3.4 Structural Equivalence
We also remark that it might be useful to consider additional structural rules for the CPS-calculus,

similar to the structural congruence used in the 𝜋-calculus and in some explicit substitution

calculi [Accattoli and Kesner 2010]. As an example of possible choices, Thielecke [1997a] gives

a decomposition of the (DISTR) rule into a couple of floating rules for the linear variant of the

CPS-calculus as follows:

(FLOAT-L) b { k⟨ ⃗⃗y⟩ = c } { j⟨ ⃗⃗z⟩ = d } = b { j⟨ ⃗⃗z⟩ = d } { k⟨ ⃗⃗y⟩ = c }
(given k ≠ j and j ∉ FV(c))

(FLOAT-R) b { k⟨ ⃗⃗y⟩ = c } { j⟨ ⃗⃗z⟩ = d } = b { k⟨ ⃗⃗y⟩ = c { j⟨ ⃗⃗z⟩ = d } }
(given k ≠ j, j ∉ FV(b), and ⃗⃗

y ∉ FV(d))

The rules are named after which continuation, b (on the left) or c (on the right), has a reference

for the continuation j. Although these rules are taken as axioms in the linear CPS-calculus, they

are admissible in the variant used in this work. Notice that (FLOAT-L) cannot possibly lead to the

duplication of any redex through jumping, but (FLOAT-R) can. It still does so in a bounded way, as

we will prove in Section 7. One could, then, work with full reduction modulo floating if so desired.

3.5 Summary so Far
Following Plotkin’s steps, we have compared the machine semantics for the IR (which is Kennedy’s

refinement of Appel’s interpreter) to the CPS-calculus’ equational theory, showing that it is indeed

equivalent to a notion of reduction through essential steps (Section 3.1). We extended this notion

of reduction by allowing extra steps which cannot be observed (Section 3.2) but that nevertheless

are sound within the theory, based on compiler optimization rules. As this reduction is still by no

means complete, we entertain the idea of extending it in a way that preserves desired properties in

order to accommodate for more optimizations (Section 3.3) and structural rules (Section 3.4). Now,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:14 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

we continue
9
this line of work, as Plotkin did, by checking that this reduction semantics is enough

to show that we can correctly compile programs into the CPS-calculus.

4 Computational Adequacy
The purpose of an IR is, of course, to serve as a compilation target. Appel’s IR has been battle-tested

in production compilers for a long time, and is clearly suited for the job. But, as the last section

demonstrated that computation on his IR matches that of the CPS-calculus, we now have evidence

that we can use the CPS-calculus as a tool for reasoning about code within a compiler. We proceed

to do so by using the CPS-calculus to demonstrate the unsurprising but still important result that

Appel’s IR is indeed an adequate compilation target for both the 𝜆-calculi.

4.1 CPS Translations
Among his other contributions, Plotkin [1975] introduces two CPS translations of the 𝜆-calculi

into each other and shows that they capture the intended meaning of a program. Namely, the CBN

translation for the 𝜆-calculus allows its execution to be simulated in the 𝜆𝑣-calculus, and, similarly,

the CBV translation for the 𝜆𝑣-calculus allows its execution to be simulated in the 𝜆-calculus. Even

though these two translations are not the most efficient ones, as they introduce some administrative

redexes, we chose them for both their simplicity and their historical importance.

The CPS translations ⟦−⟧N and ⟦−⟧V into the CPS-calculus, respectively for CBN and CBV, were

already given by Thielecke [1997a] and are defined as follows:

⟦e⟧N = b Plotkin’s call-by-name translation

⟦x⟧N = x⟨k⟩
⟦𝝀x.e⟧N = k⟨v⟩ { v⟨x, k⟩ = ⟦e⟧N }
⟦f e⟧N = ⟦f⟧N { k⟨f⟩ = c { v⟨k⟩ = ⟦e⟧N } }

⟦e⟧V = b Plotkin’s call-by-value translation

⟦x⟧V = k⟨x⟩
⟦𝝀x.e⟧V = k⟨v⟩ { v⟨x, k⟩ = ⟦e⟧V }
⟦f e⟧V = ⟦f⟧V { k⟨f⟩ = ⟦e⟧V { k⟨v⟩ = c } }

In both translations, we take c = f⟨v, k⟩.10 Variables that do not appear in the source term are

considered fresh, namely f, v (which are immediately bound and thus the choice of variable name

does not matter when considering terms up to 𝛼-convertibility), and k. Both translations expect k
to be free, and, in fact, a single k may be used [Danvy et al. 1999], as both translations bind it in

the context for the translation of subterms. We can recover Plotkin’s original translations (up to

𝛽-equality, as his translations did not enforce that values are named) as 𝝀k.⟦−⟧◦N and 𝝀k.⟦−⟧
◦
V. We

remark the duality that arises between the two translations [Levy 2001; Wadler 2003].

4.2 Simulation
We follow the method of Yoshida et al. [2004] for proving adequacy, where they take the same

reduction relation as full reduction but in the 𝜋-calculus and show that adequacy for the CBN

translation holds. They do so by first proving a simulation lemma: if any reduction step is taken in

the source calculi, the respective translation should be able to take some reduction steps in order to

match it. The CBV translation, however, is a lot trickier.

Lemma 4.1 (Simulation). Reductions on the target calculi may be simulated on the CPS-calculus.
(1) If e →n f , then ⟦e⟧N →+⇝∗ ⟦f⟧N.
(2) Let R be the least reduction relation closed under⇝, specialization and floating. If e →v f ,

then ⟦e⟧V →+
eR∗ ⟦f⟧V.

9
Pun intended. We apologize for this.

10
Interestingly, in both contexts, this term becomes 1⟨0, 2⟩ in a de Bruijn setting such as used in our formalization.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:15

Proof. By induction and case analysis. Performing substitution requires an extra induction step

on the number of free occurrences of the parameter within the redex. □

In the above, we take→e as a small generalization of head reduction, whose formalization we

omit, that may be applied in any context that syntactically guarantees that the hole will be moved

into head position, thus necessarily decreasing the necessary number of steps into head-normal

form. So, we know that if a computation can proceed in the source, it can also proceed in the target.

All we have to show now is the complementary property, that if computation has halted in the

source, it will also halt in the target.

Lemma 4.2 (Termination). The translations preserve termination. Namely, the following holds:

(1) If there is no f such that e →n f , then ⟦e⟧N converges.
(2) If there is no f such that e →v f , then ⟦e⟧V weakly converges.
(3) If e is in 𝛽-normal form, then ⟦e⟧N is in full-normal form.
(4) If e is in 𝛽𝑣-normal form, then ⟦e⟧V is strongly normalizing.

Proof. Statements (1) and (2) follow by induction on the structure of the term. Statement (3)

follows by induction, while noticing that a target term may only contain jumps to variables that

were free in the source term or to the distinguished continuation k. Statement (4) follows as (3), by

noticing that the only existing redexes are linear jumps, which are shrinking reductions. □

We can observe that full reduction is not enough to exactly simulate 𝛽𝑣-reduction for CBV. In

order to see why, recall that a 𝛽-redex and a 𝛽𝑣-redex both replace each occurrence of the parameter

by a copy of the argument, and in both cases, this happens through a continuation x which is only

bound in the context for e’s translation inside a redex. But, in ⟦(𝝀x.e) v⟧V, the argument needs to

be copied through specialization and moved to the right place through floating as x is used as an

argument in the jump, as ⟦x⟧V = k⟨x⟩. On the other hand, in the CBN version this can be done

through jumping alone, as ⟦x⟧N = x⟨k⟩. This issue is indeed not surprising, as the CBN translation

can be seem as a special case of the CBV translation, since the CBN one can be decomposed into

thunking in the source language, followed by the CBV one (sometimes regarded as the de-facto CPS

translation) and then by the simplification of administrative redexes [Hatcliff and Danvy 1997].

However, this mismatch in the reduction relation does not prevent adequacy of CBV. We conjecture

that there exists a notion of shrinking reduction that may be used to simplify this result.

4.3 Adequacy
The CPS translations may be seen as a form of denotational semantics: we can give meaning

to terms in the 𝜆-calculi by demonstrating how they translate into the CPS-calculus. For such

interpretation to be considered correct, then all observably distinct programs should have distinct

denotations. Informally, this can be seen as stating that we cannot possibly compile two programs

distinct in the source language’s semantics into the same CPS term.

The only observable action that terms may have in the 𝜆-calculi is termination. We follow the

usual tradition of identifying programs with closed terms, but note that these notions naturally

generalize to open terms as shown by Abramsky [1990]. In the following, we define e ⇓N to mean

that there is a v such that e →∗
n v and e ≈N f if for all contexts C such that C[e] and C[f] are

closed, C[e] ⇓N if and only if C[f] ⇓N, with corresponding e ⇓V and e ≈V f for CBV. We can now

conclude that Appel’s IR is an adequate compilation target for the 𝜆-calculi.

Theorem 4.3 (Computational Adeqacy). The CPS translations are computationally adequate.
Let e be a closed term, then e ⇓N if and only if ⟦e⟧N ⇓, and e ⇓V if and only if ⟦e⟧V ⇓.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:16 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

Proof. Follows from Lemmas 4.1 and 4.2. The “only if” sides is similar to the proof in Yoshida

et al. [2004]. For CBN, the “if” side follows by induction on the reduction path to head-normal form,

by reordering steps using Theorem 6.1. For CBV, as reduction cannot be simply reordered due to

floating, the “if” case follows by induction on the number of steps to head-normal form instead, as

→e decreases this amount and floating doesn’t change it. □

As a consequence, we have that the CPS translations are sound as a denotational semantics.

Corollary 4.4 (Denotational Soundness). Both CPS translations map distinct terms into distinct
results. Let e and f be closed terms. Then ⟦e⟧N ≈ ⟦f⟧N implies e ≈N f , and ⟦e⟧V ≈ ⟦f⟧V implies e ≈V f .

The converse of Corollary 4.4, however, is not true: for example, e ≈N f is not enough to have

⟦e⟧N ≈ ⟦f⟧N. Such a property, called full abstraction [Ahmed and Blume 2011], would mean that

the translation not only reflects but also preserves equalities. This however does not hold here as

the CPS-calculus may distinguish more terms than the 𝜆-calculi due to control effects which are

not present in the source languages as they were presented. In a variant of the CPS-calculus that

does not allow for control effects, such as by using the restrictions from Kennedy’s IR, it would

be possible to derive full abstraction by using a back-to-DS translation [Ahmed and Blume 2011;

Danvy and Lawall 1996].

Even so, the relationship between evaluation in Appel’s IR and in the CPS-calculus given by

Theorem 3.1, along with the adequacy result of Corollary 4.4, demonstrates that the CPS-calculus

is suitable for reasoning about optimizations within a compiler. If an optimization can be shown to

change terms only up to bisimilarity, then it follows that it does not change the observable behavior

from the source program as well. Thus, to prove an optimization correct one can freely benefit

from the equational theory, similar to how it has been done for the IR given by Maurer et al. [2017],

as well as from bisimulation proof methods such as those presented by Merro [2010].

4.4 Back to Compilers
In the previous section, we extended the work of Merro [2010] by showing more characterizations

of the bisimilarity relation, using either the machine semantics or full reduction (Theorems 3.2

and 3.4, respectively). We can then leverage the results above to reason about optimizations.

One of the key motivations for designing a theoretical foundation for an IR should be, of course,

its practical use within a compiler. To illustrate this, we now proceed to give a simple proof that

a common optimization technique, contification, is sound. As discussed, Kennedy’s IR departs

from Appel’s by the use of some syntactic restrictions (which are respected by the above CPS

translations) such as treating continuations as second-class citizens, which is enough to rule

out control effects. As there is a syntactic distinction between functions and continuations, the

contification optimization is then used to check for runtime functions which may be turned into

continuations, thus avoiding allocation and turning function calls into jumps.

The contification transformation, which we adapt directly fromKennedy [2007], may be described

as the compatible closure of the following rewriting rule, where H is a multi-hole context (whose

formal definition we omit for brevity):

cont(b) = b Contification

cont(C[H[f⟨x1, j⟩, ..., f⟨xn, j⟩]] { f⟨y, k⟩ = c }) = C[H[h⟨x1⟩, ..., h⟨xn⟩] { h⟨y⟩ = c[j/k] }]
(f, h ∉ FV(C) ∪ FV(H) ∪ {j, x1, ..., xn}, and H minimal)

We note that every call to the function f is given the same continuation j to which it should return,

and as such, we can actually turn f into a fresh continuation h as it is always supposed to return to

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:17

the same point. Consequently, in the result of contification, every call to f becomes a jump to its

new continuation form, which is now defined inside of C to ensure that the continuation j is within
scope for c. In order to prove that this transformation is sound, we use the equational theory as a

tool to derive the desired bisimilarity between terms:

Theorem 4.5 (Contification). The contification transformation is sound. Thus, for every c, it
holds that c ≈ cont(c).

Proof. By Theorem 2.1, we show that, if cont(b) = c, then b = c. By applying the floating

rules on the left-hand side, which are admissible in the equational theory, we need to show that

C[H[f⟨x1, j⟩, ..., f⟨xn, j⟩] { f⟨y, k⟩ = c }] is equivalent to C[H[h⟨x1⟩, ..., h⟨xn⟩] { h⟨y⟩ = c[j/k] }].
By induction on the number of holes in H, applying the jump in each hole, and then applying

a garbage collection step, both steps which are sound by Lemma 3.3, then both sides become

C[H[c[x1/y, j/k], ..., c[xn/y, j/k]]]. □

We can conclude that e ⇓N if and only if cont∗ (⟦e⟧N) ⇓ and also accordingly for the CBV, which

shows that contification cannot change the meaning of a source program for either 𝜆𝑛 and 𝜆𝑣 .

5 Confluence
The full reduction relation introduced in Section 3 is a sound extension to head reduction, and it is

no longer deterministic. This allows for additional steps to be performed, at the cost of introducing

the notion of evaluation order in the CPS-calculus. Though this is distinct from the evaluation order

captured by the CPS translation, which can be simulated through head reduction alone, having

different evaluation orders imposes similar issues as they do in a programming language. Can we

be sure that performing computation in two different ways will lead to the same result? In order to

do so, we have to show that full reduction is confluent.

Confluence guarantees that no matter which reduction order we pick, or how many reduction

steps we take in each direction, two reduction sequences can always be joined back together. For

proving confluence, if some relation R has the diamond property, i.e., if b R c1 and b R c2 imply

that there is a d such that c1 R d and c2 R d, it is well known that R is confluent. However, as is

the case for 𝛽-reduction in the 𝜆-calculus, this does not hold for full reduction in the CPS-calculus.

Consider the following example:

(1) k⟨⟩ { k⟨⟩ = j⟨⟩ } { j⟨⟩ = c }

⇝ ⇝

(2) k⟨⟩ { k⟨⟩ = c } { j⟨⟩ = c } j⟨⟩ { k⟨⟩ = j⟨⟩ } { j⟨⟩ = c } (3)

⇝

(4) c { k⟨⟩ = c } { j⟨⟩ = c }

Term (3) can reduce to (4), but it requires two jumps to do so, and they can be done in any order, so

there are two possible reduction paths for it. Things get still more complicated when considering

garbage collection steps. But, as confluence for full reduction follows from confluence for jump

reduction alone by Corollary 3.7, we only need to specify how to join two distinct sequence of

jump reductions back together.

5.1 Residuals
The usual trick for proving confluence is by using a notion of parallel reduction: if we have some

relation R such that⇝j ⊂ R? ⊂ ⇝∗
j , then, as R∗ = ⇝∗

j , the diamond property of R?
implies

confluence for⇝j. In the 𝜆-calculus, the notion of parallel 𝛽-reduction has a simple and elegant

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:18 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

inductive characterization as given by Takahashi [1989], but, as jump reduction works at a distance

and needs to quantify over contexts, a similar approach does not work for it. Instead, we use an

older proof technique, by building a theory of residuals [Barendregt 1981], similar to how it’s been

done for explicit substitution by Accattoli et al. [2014].

Consider some reduction b⇝+
j c. If we take note of some set of redexes that exist in b, and keep

track of what happens to them while performing the reduction (either by erasure or duplication),

we will now have a corresponding set of redexes in c, which we call the residuals. In order to do so,

we give a syntactic representation for sets of redexes as follows:

Redexes r F x⟨ ⃗⃗x⟩ | x⟨ ⃗⃗x⟩ | r { x⟨ ⃗⃗x⟩ = r }

A set of redexes r for a term b is given by taking the same structure as b while marking the jumps

that belong to the set by underlining them. This leads to a natural inclusion with b itself acting

as an empty set of redexes (since it cannot contain any marks). In order to track what happens to

redexes in a term, we additionally give a list of mark definitions:

Definitions 𝛿 F · | 𝛿, 𝑥 = 𝜆
⃗⃗
x.r

We can now define the residuals relation as follows:

𝛿 ⊢ r\r = r Residuals Relation

(1)

𝛿 ⊢ k⟨ ⃗⃗x⟩ \ k⟨ ⃗⃗x⟩ = k⟨ ⃗⃗x⟩ (2)

𝛿 ⊢ k⟨ ⃗⃗x⟩ \ k⟨ ⃗⃗x⟩ = k⟨ ⃗⃗x⟩

𝛿 (k) = 𝜆
⃗⃗
y.r

(3)

𝛿 ⊢ k⟨ ⃗⃗x⟩ \ k⟨ ⃗⃗x⟩ = r[⃗⃗x/ ⃗⃗y]
𝛿 (k) = 𝜆

⃗⃗
y.r

(4)

𝛿 ⊢ k⟨ ⃗⃗x⟩ \ k⟨ ⃗⃗x⟩ = r[⃗⃗x/ ⃗⃗y]

𝛿 ⊢ s1\s2 = s3 𝛿, k = 𝜆
⃗⃗
y.s3 ⊢ r1\r2 = r3

(5)

𝛿 ⊢ r1 { k⟨
⃗⃗
y⟩ = s1 } \ r2 { k⟨

⃗⃗
y⟩ = s2 } = r3 { k⟨

⃗⃗
y⟩ = s3 }

Assume that 𝛿 ⊢ r\s = t. We say that redexes t are the residuals of r after s, meaning that r reduces
to t by performing all the jumps marked by s. We note that the above is a partial function, and

it is only defined if r and s are compatible with each other, i.e., they represent redexes for the

same underlying term. As each marked jump in s has to be performed, the residuals are also not

defined unless s is well-marked, meaning that all the marked redexes are actually jumps to a bound

continuation and with the right arity. In the following, we write r\s instead of ⊢ r\s when the

residuals are defined in an empty environment, and write #t for the number of marks in t.
If we have some term b, and we perform two distinct sets of redexes in it resulting in b\s = c1

and b\t = c2, we now need a way to conciliate these two terms and merge them back together,

which can be done adapting of Lévy’s cube lemma [Barendregt 1981] to the CPS-calculus:

Lemma 5.1 (Cube Property). The residuals relation satisfies the cube property. Let r, s and t be
compatible marked terms; then (r\s)\(t\s) = (r\t)\(s\t).

Proof. By induction and case analysis. □

This means that, to join c1 and c2, all we have to do is perform t\s in c1 and s\t in c2. We can

now go back to the example given at the start of this section, taking s = k⟨⟩ { k⟨⟩ = j⟨⟩ } { j⟨⟩ = c }
and t = k⟨⟩ { k⟨⟩ = j⟨⟩ } { j⟨⟩ = c }. Noticing these two sets are compatible, we can verify:

• The residuals of s after t are defined as s\t = k⟨⟩ { k⟨⟩ = c } { j⟨⟩ = c }.
• The residuals of t after s are defined as t\s = j⟨⟩ { k⟨⟩ = j⟨⟩ } { j⟨⟩ = c }.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:19

The redexes marked above are precisely the ones needed to close the diagram.

5.2 Developments
Besides being able to find which jumps are necessary to conciliate two reduction paths, we also

need to be sure that those jumps can actually be performed individually. For doing so, all we need

to show is that, by partially performing any subset of the desired set, we will still get to the same

resulting term.

Lemma 5.2 (Partial Development). Subset of marks in a marked term may be partially reduced.
Let r, s and t be compatible marked term. If t ⊂ s, then r\s = (r\t)\(s\t).

In fact, not only will we reach the same result by picking any order of redexes, but we also always

get there eventually: even though partially applying a set of redexes might copy some marks in a

set, we can still check that, as no newly created redex can ever be marked, this cannot loop.

Theorem 5.3 (Finite Development). Marks may be reduced in any order without looping. Let R
be a notion of reduction on marked terms such that r R s is defined if and only if there is a t with
#t > 0, t ⊂ r, and r\t = s. Then R is strongly normalizing.

5.3 Parallel Reduction
The residuals relation is defined over sets of redexes. We turn it into a proper notion of reduction

for terms, which we define as follows, by allowing any nonempty set of existing jumps to be

simultaneously performed:

b↠ b Parallel Reduction

b↠ c = ∃r, #r > 0 ∧ b\r = c

The remaining details are standard [Barendregt 1981; Yoshida et al. 2004]. We show that parallel

reduction indeed is a notion of parallel reduction, which allows us to derive that↠∗ =⇝∗
j , and

hence confluence for⇝j from the cube property.

Lemma 5.4 (Parallel Moves). Parallel reduction performs a sequence of one or more jumps.
(1) If b⇝j c, then b↠ c.
(2) If b↠ c, then b⇝+

j c.

Proof. Statement (1) follows by checking that b\r = c with r being a mark for the single jump

performed from b to c. Statement (2) follows from Lemma 5.2 and Theorem 5.3. □

In the above, the use of Lemma 5.2 and Theorem 5.3, is not actually necessary; it would be possible,

for example, to just pick reduction from right to left instead (by induction on the number of marks).

Lemma 5.5 (Parallel Diamond). The reflexive closure of parallel reduction satisfies the diamond
property. I.e., if b↠? c1 and b↠? c2, then there’s a d such that c1 ↠? d and c2 ↠? d.

Proof. Follows by case analysis and by Lemma 5.1. □

Theorem 5.6 (Confluence). Full reduction is confluent. If b⇝∗ c1 and b⇝∗ c2, then there is a d
such that c1 ⇝∗ d and c2 ⇝∗ d.

Proof. Follows by standard argument using Lemma 5.5 and Corollary 3.7. □

The usual corollary of confluence is that normal forms are unique. As such, we can guarantee

that choosing any reduction strategy will still lead to the same result, as long as it finishes.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:20 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

6 Factorization
Even though full reduction is confluent, this does not guarantee that every reduction strategy will

lead to a normal form. Consider a term k⟨⟩ { j⟨⟩ = Ω }, where Ω is given as k⟨k⟩ { k⟨k⟩ = k⟨k⟩ },
which is closed. This term has a normal form, k⟨⟩, that can be achieved by a garbage collection

step. However, as Ω⇝ Ω, it also contains an infinite reduction sequence.

Both 𝜆-calculi have a notion of normal order, which is a reduction strategy that guarantees to lead

to a normal form if one exists. Though the result for the standard 𝜆-calculus is older [Barendregt

1981], Plotkin gives a proof for this by demonstrating that both calculi can reorder reductions into

a standard reduction sequence by always performing redexes from left to right. From this it follows

that the CBN and CBV reduction relations, though deterministic, are enough to reduce a term into

a value, as the standard sequence always starts with them. In fact, this standardization result is

used as a means to show a different but related result, factorization of head reduction, which says

that any reduction sequence may be reordered to start with head steps [Accattoli et al. 2019]. So, as

our final step for following Plotkin’s program, we prove factorization of head reduction, meaning

that any reduction sequence can be reordered such that it does every required head-redex first.

6.1 Postponing Inner Steps
We follow the method set out by Accattoli et al. [2019], which generalizes a technique given by

Takahashi [1989] for proving factorization in the 𝜆-calculus. As with confluence, we only need

to reason about jump reductions because garbage collection is a shrinking reduction. The proof

then follows directly from the theory of residuals which is used to sort head-redexes, as parallel

reduction allows us to perform jumps in any order.

Two additional auxiliary notions of reduction are necessary: we write⇝i for an inner jump,
i.e., a single jump that occurs anywhere in a term other than head position, and we write↠i for a

notion of parallel inner reduction, where any jumps in a term that are not in head position can be

simultaneously reduced. As we already have every necessary piece, as those were also used in the

proof of confluence, we can proceed to prove factorization.

Theorem 6.1 (Factorization). Reduction sequences can always be reordered such that they start
with head reduction, followed by inner steps, and finally by garbage collection steps. So, if b⇝∗ c,
then b →∗⇝∗

i⇝
∗
g c.

Proof. By Corollary 3.7, since b ⇝∗ c, then b ⇝∗
j⇝

∗
g c. Then the proof follows as given by

Accattoli et al. [2019], by showing that {→, ⇝i} is a macro-step system. Namely, it is enough to

demonstrate that (1)⇝j = → ∪⇝i, (2)⇝i ⊂ ↠?

i ⊂⇝
∗
i , (3)↠

?

i→ ⊂ ↠?
, and (4)↠? ⊂ →∗↠?

i . □

6.2 Plotkin’s Program
We now have everything set to prove that the CPS-calculus is related to Appel’s IR in the same

sense that the 𝜆-calculus is related to a functional programming language. We formally state this

relationship as follows:

Corollary 6.2 (Foundation). Appel’s IR is related to the CPS-calculus in the sense of Plotkin
[1975]. Namely, the following statements hold:
(1) If b ⇓ then there are c and k such that b = c and c ↓k.
(2) If b = c then, for any C, C[b] ⇓ if and only if C[c] ⇓.

Proof. Both statements follow from Theorems 2.1 and 3.1 and the definition of bisimilarity. □

A careful reader might have noticed: everything we needed to prove they are related had already

been given by Section 3. So why did we decide to postpone this result? The proof given by Merro

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:21

and Sangiorgi [2004] for Theorem 2.1 follows from a close correspondence between evaluation

for a term b and its translation b• into the asynchronous localized 𝜋-calculus. However, we also

now have the necessary tools to prove this property internally in the CPS-calculus and to do so by

following the approach set out by Plotkin.

We define⇌, which we call the structural relation, to be the least equivalence relation closed

under contraction, floating, and an additional global rule (ETA’), admissible in the equational theory,

given as follows:

(ETA’) C[b { k⟨ ⃗⃗x⟩ = j⟨ ⃗⃗x⟩ }] = C[b[j/k]]
(given j ∉

⃗⃗
x, j ∉ dom(C), and k ∈ FV(b))

The above rule is not meant to be compatible in the structural relation (hence⇌ is not a congruence).

Intuitively, we want to capture the subset of (ETA) that cannot be performed by garbage collection

nor by contraction and jumping. With the aid of Lemma 7.5 (postponed till Section 7), the proof of

Theorem 2.1 follows:

Proof for Theorem 2.1. Let b1 = b2 and C[b1] →∗ c ↓k. As equality is a congruence and by

Lemma 3.3, c = C[b2]. We proceed by first showing that, by Lemma 7.5, the relationR =↠? ∪⇝∗
g

is confluent modulo ⇌, and, as a consequence, it is also Church-Rosser modulo ⇌. As R∗/⇌
coincides with =, there are terms d1 and d2 such that c⇝∗ d1, C[b2] ⇝∗ d2, and d1 ⇌ d2. As⇝
and⇌ are barb preserving, it follows that d2 ↓k. Then, by Theorem 6.1, C[b2] →∗⇝∗

i⇝
∗
g d2 ↓k,

and, as neither⇝i nor⇝g can change a jump in head position, C[b2] →∗↓k as required. □

We have now a proof that the CPS-calculus is indeed a sound theoretical foundation for IRs such

as Appel’s and Kennedy’s. As such, compiler developers are free to use the CPS-calculus as a tool

for proving program transformations correct and otherwise reasoning about CPS terms.

7 Strong Normalization
Up to this point, our main focus was the untyped CPS-calculus. We recall that, at its inception, the

CPS-calculus was studied in a categorical setting, and as such its type system was pervasively taken

into account [Thielecke 1997a]. Our final goal is to investigate this type system for its properties

and prove a similar result to that of many typed 𝜆-calculi: reduction is strongly normalizing for

well-typed terms. In other words, computation terminates regardless of evaluation strategy.

7.1 Simple Type System
The simple type system given by Thielecke [1997a] contains a single type constructor, namely a

polyadic negation type, used to type continuations, with environments defined as usual. Base types,

ranged over by 𝑋 , are also considered, although they are not necessary.
11

Types 𝜏 F ¬ ⃗⃗
𝜏 | X Environments Γ F · | Γ, x: 𝜏

We write, e.g., ¬(𝜏, 𝜐) for a binary instance of polyadic negation to make it clear the precedence of

negation in the syntax. Type environments represent association lists between variables and types.

Typing judgements are represented by one-sided sequents. While environments assign types to

each free variable in a term, there is no type associated to a term directly as they never return a

value. Alternatively, terms may be seem as having a single fixed type, bottom, and a judgement

asserts that its environment entails a contradiction. The typing rules are given as follows:

11
Differently from the simply typed 𝜆-calculus, base types are not needed in here as a base case since ¬() is a valid type.

However, base types require extra considerations which we deem interesting for the normalization proof.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:22 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

Γ ⊢ b Simple Type System

Γ(k) = ¬ ⃗⃗
𝜏 Γ(⃗⃗x) = ⃗⃗

𝜏
(J)

Γ ⊢ k⟨ ⃗⃗x⟩
Γ, k: ¬ ⃗⃗

𝜏 ⊢ b Γ,
⃗⃗
x:

⃗⃗
𝜏 ⊢ c

(B)

Γ ⊢ b { k⟨ ⃗⃗x⟩ = c }
Also, the usual structural rules, namely weakening, contraction and exchange, are admissible, as

already stated by Thielecke [1997a]:

Γ ⊢ b x ∉ FV(b)
(W)

Γ, x: 𝜏 ⊢ b
Γ, x: 𝜏, y: 𝜏 ⊢ b

(C)

Γ, x: 𝜏 ⊢ b[x/y]
Γ, x: 𝜏, y: 𝜐, Δ ⊢ b

(X)

Γ, y: 𝜐, x: 𝜏, Δ ⊢ b
As the CPS-calculus is polyadic and terms can get stuck, and as we have introduced a new notion

of reduction, it is important to ensure that the type system is actually sound. This is proven in the

standard way, through the progress and subject reduction properties.

Theorem 7.1 (Type Soundness). The simple type system is sound. Assuming Γ ⊢ b then we have:
(1) Progress: either b ↓k for some k or b → c for some c. Thus, b is not stuck.
(2) Subject reduction: if b⇝ c for some c, then Γ ⊢ c.

Note that statement (2) above works for full reduction, not for some arbitrary shrinking reduction.

7.2 Typed CPS Translation
While working in a typed setting, it may be desirable to also verify that a CPS translation is type

preserving: if a term is typed in the source language, then it is also typed in the target. This is the

case for the simply typed 𝜆-calculus using both of Plotkin’s translations presented in Section 4. We

extend both translations to types and typing environments:

Functional Types 𝐴 F 𝐴 → 𝐴 | 𝑋
⟦𝑋⟧N = ¬𝑋

⟦𝐴 → 𝐵⟧N = ¬¬(¬⟦𝐴⟧N, ⟦𝐵⟧N)

⟦ ⃗⃗x:

⃗⃗ ⃗⃗
A ⊢ e: 𝐵⟧N =

⃗⃗
x:

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
¬⟦A⟧N, k: ⟦𝐵⟧N ⊢ ⟦e⟧N

⟦𝑋⟧V = 𝑋

⟦𝐴 → 𝐵⟧V = ¬(⟦𝐴⟧V, ¬⟦𝐵⟧V)

⟦ ⃗⃗x:

⃗⃗ ⃗⃗
A ⊢ e: 𝐵⟧V =

⃗⃗
x:

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
⟦A⟧V, k: ¬⟦𝐵⟧V ⊢ ⟦e⟧V

We omit the typing rules for the 𝜆-calculus, as those are standard. Formally, we can now state type

preservation for both translations as follow:

Theorem 7.2 (Type Preservation). Both CPS translations are type preserving. If
⃗⃗
x:

⃗⃗ ⃗⃗
A ⊢ e: 𝐵, then

both ⟦ ⃗⃗x:

⃗⃗ ⃗⃗
A ⊢ e: 𝐵⟧N and ⟦

⃗⃗
x:

⃗⃗ ⃗⃗
A ⊢ e: 𝐵⟧V are derivable.

Proof. By simple induction on the typing derivation and case analysis. □

Also, as we shall now proceed to prove that the simply typed CPS-calculus is strongly normalizing,

we anticipate ourselves a bit by deriving a corollary, namely that we can derive that the simply

typed 𝜆-calculus is strongly normalizing as well.

Corollary 7.3. The simply typed 𝜆-calculus is strongly normalizing.

Proof. Follows by Lemma 4.1, by using the CBN translation, and by Theorems 7.2 and 7.12. □

Although it’s straightforward to derive that the simply typed 𝜆𝑣-calculus is strongly normalizing

too from the above result, since 𝛽𝑣-reduction is a strict subset of 𝛽-reduction, this may also be

proven using the CBN translation and simulation results directly (instead of the CBV translation),

by repeatedly applying a 𝛽𝑣-redex if one exists (note that, if e →𝛽v f , then ⟦e⟧N ⇝+ ⟦f⟧N). In
a sense, the CPS translations capture a notion of observational equivalence rather than a strict

evaluation order, and a 𝛽𝑣-reduction step is sound for the CBN equivalence.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:23

7.3 Reducibility at a Distance
The study of strong normalization is commonplace for functional calculi, usually motivated by the

logical interpretation of terms. It has also been explored in the setting of process calculi: given that

a client sends a message to a server, it is useful to be able to assert that the server will eventually

provide an answer [Yoshida et al. 2004]. Similarly, it has been explored for explicit substitution

calculi [Accattoli 2013, 2022]. But why would we care about strong normalization in an IR, though?

As Kennedy [2005] puts it, if we know that a set of reductions is strongly normalizing, then we are

allowed to apply them as we see fit during compilation, without worrying about an infinite loop.

The strong normalization result follows by adapting a well-known technique developed for

the 𝜆-calculus: Tait and Girard’s reducibility method [Girard et al. 1989]. The basic idea of this

technique is to define sets of untyped terms, called reducibility predicates, indexed by a type. The

proof then holds by demonstrating that each predicate contains only strongly normalizing terms,

and that each well-typed term is contained in the predicate for its type. However, the rigid syntax

of the CPS-calculus imposes some technical difficulties.

The first issue that needs to be addressed is how to define each reducibility predicate, which are

expected to be indexed over a type. Given a typing judgement, what should be considered the type

of a term? Of course, we cannot consider only bottom as this would result in a single predicate,

which would not help the proof go through. Instead we note that a reducibility predicate represents

a logical relation that says that a term is well-behaved (in this case, strongly normalizing) when

placed in any well-defined elimination context. In the 𝜆-calculus, the elimination context for an

abstraction is simply [−] e, while in the CPS-calculus the elimination context for a jump k⟨ ⃗⃗x⟩ is
any context C that binds the variable k to a continuation with the correct arity. Our main insight,

then, is to work with reducibility at a distance: to represent well-defined elimination contexts for a

jump, we have to simultaneously consider all the continuations that its context binds, and we can

do so by indexing the reducibility candidate not by a type, but by an environment. Because of this,

we call the reducibility predicate indexed over a term’s environment its semantic type.
In order to perform a jump-redex C[k⟨ ⃗⃗x⟩] { k⟨ ⃗⃗y⟩ = c } ⇝j C[c[

⃗⃗
x/ ⃗⃗y]] { k⟨ ⃗⃗y⟩ = c } (as defined

in Section 3.2), we can perform the exact same reasoning as in the proof for subject reduction

in Theorem 7.1. We can apply several transformations on the environment for c: introducing
variables with which c does not interact to account for the context C, reordering the bindings in the

environment, and applying the substitutions for each parameter. These can be done, precisely, by

the structural typing rules: weakening, exchange, and contraction. So, if we can show that semantic

types are closed under structural rules, then we can prove strong normalization.

Although not a necessary component in the proof method by itself, proving that semantic types

are closed under structural rules will require some auxiliary results in the case of the CPS-calculus,

as its syntax is too constrained: in comparison to the 𝜆-calculus, every value has to be named and

there is no direct equivalent to a 𝛽-redex, and in comparison to the 𝜋-calculus, there is no scope

extrusion rule or a terminal term 0 to reason about. Even so, it is possible to show that the required

rewrites are admissible, by showing that strong normalization is closed under them. Just as in the

adequacy result for CBV, though, it’s possible that a larger notion of shrinking reduction could be

used to simplify the following results.

7.4 Conservation
To show admissibility of structural rules on semantic types, we must first demonstrate some

conservation results. Due to Corollary 3.7, we only need to focus on showing that jump reductions

are strongly normalizing, as strong normalization for jump reduction and for full reduction coincide,

and as such we simply refer to terms as strongly normalizing.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:24 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

We draw attention to the fact that performing a jump cannot possibly erase an ill-behaved

subterm, and as such, there are no critical steps: a step b⇝j c such that c is strongly normalizing

while b is not. This property, which is called conservation, was first proved by Church for the

𝜆𝐼 -calculus [Barendregt 1981], where a 𝛽𝐼 -redex has the form (𝝀x.e) f with x ∈ FV(e), and shows

that the existence of a normal form implies strong normalization. In the following, let WN be the set

of terms in jump-normal form and SN be the set of strongly normalizing terms.

Theorem 7.4 (Conservation). The following statements are both true and equivalent:
(1) If b⇝j c, then b ∈ SN if and only if c ∈ SN.
(2) The sets WN and SN coincide: ∀c, c ∈ WN if and only if c ∈ SN.

This property of jumps has been noticed before, and plays a key role in the strong normalization

proof for the 𝜋-calculus by Yoshida et al. [2004]: the authors prove that a well-typed term has a

normal form, and, from this, they derive that it is strongly normalizing. Though we remark that

our method does not rely directly on this property, it is nevertheless of great help to prove the

required conditions, and we use this property to yield simpler proofs for the following results.

Our goal of showing that semantic types admit structural rules will require a few additional

conservation results. The structural relation given in Section 6 is also conservative in that it

preserves the strong normalization property. As a proof technique, we introduce two auxiliary

relations. We write↠d as the full development of a term: a deterministic relation such that b↠d c
means that b reduces to c by performing all existing jumps in parallel, defined as b\r = c with r
being the nonempty maximal set of redexes in b (which is unique). We say that a relation R is a

strong development simulation if b1 ↠d c1 and b1 R b2 imply that there is a c2 such that b2 ↠d c2
and c1 R c2. If R and its converse relation are strong development simulations, which happens

trivially if R is symmetric, then we say R is a strong development bisimulation. We then write
.∼

for strong development bisimilarity, defined as the largest strong development bisimulation, and

prove that it includes the structural relation, and prove the corresponding conservation result.

Lemma 7.5 (Structural Bisimulation). Strong development bisimulation is closed under the
structural relation. So, if b⇌ c, then b .∼ c.

Proof. It is enough to show that⇌, which is symmetric, is a strong development simulation. □

Lemma 7.6 (Structural Conservation). Structural rules preserve full normalization. So, if b⇌ c,
then b ∈ SN if and only if c ∈ SN.

Proof. It suffices to show one direction as ⇌ is symmetric. By Lemma 5.4 and 7.4, strong

normalization for⇝j and↠d coincide. As
.∼ is a strong bisimulation, it preserves reduction lengths

thus if b .∼ c and b ∈ SN then c ∈ SN. By Lemma 7.5, from b⇌ c and b ∈ SN, we have c ∈ SN. □

A last additional conservation result is required. We need to show that if two terms are strongly

normalizing under some elimination context, then we can compose them together within such a

context, as long as they do not interact with each other (and, in a sense, they just run in parallel,

similar to the 𝜋-calculus). In this case, we say that these two terms are independent.

Lemma 7.7 (Independence). Strong normalization is preserved by composition of two independent
terms in a static context. I.e., for any C static and any D, if C[b] ∈ SN, C[D[c]] ∈ SN, dom(D) = ⃗⃗

x,
and k ∉ FV(b), then C[b { k⟨ ⃗⃗x⟩ = c }] ∈ SN.

7.5 Main Theorem
Our goal at last is to prove reducibility, which we can do by using the conservation results. We

proceed to define semantic typing over typing environments, denoted by ⟦−⟧:

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:25

(1) ⟦·⟧ = SN

(2) ⟦Γ, k: ¬ ⃗⃗
𝜏⟧ = { b | ∀c ∈ ⟦Γ, ⃗⃗

x:

⃗⃗
𝜏⟧, b { k⟨ ⃗⃗x⟩ = c } ∈ ⟦Γ⟧ }

(3) ⟦Γ, y: 𝑋⟧ = { b | ∀x, k⟨x⟩ { k⟨y⟩ = b } ∈ ⟦Γ⟧ }

This definition is sound, as it follows by well-founded induction on the number of type terms in

the environment. Each case progressively builds a well-defined elimination context around a term

by inspecting the type of each variable in the environment. In the definition for (3), we note that

base types cannot be eliminated, they may only be passed around to other continuations, and, as

such, we just require that the term should still be valid by replacing y by any possible x by using a

delayed substitution (as k⟨x⟩ { k⟨y⟩ = b }⇝+ b[x/y]).
We use an auxiliary lemma to simplify reasoning about which rules are admissible for semantic

types. We say that a context C is well-behaved for an environment Γ if it binds a continuation for

every variable with a negation type in Γ, and such continuation has the corresponding semantic

type. As an example, say that C is well-behaved for some Γ. For any decomposition such that

Γ = Δ1, k: ¬ ⃗⃗
𝜏, Δ2, it follows that C binds the continuation k to some term c and c ∈ ⟦Δ1⟧. By

unfolding the definition of the semantic type and building a well-behaved context C for Γ, we can,
to show that

⃗⃗
b ∈ ⟦Γ⟧ implies c ∈ ⟦Γ⟧, simply show that C[

⃗⃗
b] ∈ SN implies C[c] ∈ SN.

Lemma 7.8 (Semantic Type Preservation). Semantic types are closed under any transformation
that preserves strong normalization under well-behaved contexts. Assume that, for every context C
well-behaved for Γ, if b ∈ ⟦Γ⟧ implies C[b] ∈ SN for any b, then C[c] ∈ SN. It follows that c ∈ ⟦Γ⟧.

Admissibility of the structural rules on semantic types follows:

Lemma 7.9 (Structural Soundness). Semantic types are preserved under structural rules. As
such, the following statements hold:
(1) Weakening: if c ∈ ⟦Γ⟧ and x ∉ FV(c), then c ∈ ⟦Γ, x: 𝜏⟧.
(2) Exchange: if c ∈ ⟦Γ, x: 𝜏, y: 𝜐, Δ⟧, then c ∈ ⟦Γ, y: 𝜐, x: 𝜏, Δ⟧.
(3) Contraction: if c ∈ ⟦Γ, x: 𝜏, y: 𝜏⟧, then c[x/y] ∈ ⟦Γ, x: 𝜏⟧.

Proof. The statements are proved by mutual induction with Lemma 7.10 on the number of type

terms in the environment. For simplicity and without loss of generality, consider only negation

types appearing in the environment, with the rules for base types proved in a similar way.

(1) Let b ∈ ⟦Γ⟧ and c ∈ ⟦Γ, ⃗⃗
y:

⃗⃗
𝜏⟧. Then, by Lemma 7.10 on a smaller environment, there is

a context D such that D[c] ∈ ⟦Γ⟧ and dom(D) =
⃗⃗
y. By Lemma 7.8, we have to prove that

C[b] ∈ SN and C[D[c]] ∈ SN imply that C[b { k⟨ ⃗⃗y⟩ = c }] for a fresh k, which follows by

Lemma 7.7 by deriving a static context equivalent to C.
(2) Let b ∈ ⟦Γ, x: ¬ ⃗⃗

𝜏, y: ¬ ⃗⃗
𝜐⟧, c ∈ ⟦Γ, x: ¬ ⃗⃗

𝜏,
⃗⃗
z:

⃗⃗
𝜐⟧, and d ∈ ⟦Γ, z: ⃗⃗𝜏⟧. Then, by statement (1),

the inductive hypothesis on smaller environments, and Lemma 7.8, we have to show that

C[b { y⟨ ⃗⃗z⟩ = c } { x⟨ ⃗⃗z⟩ = d { y⟨ ⃗⃗z⟩ = c } }] ∈ SN implies C[b { x⟨ ⃗⃗z⟩ = d } { y⟨ ⃗⃗z⟩ = c }] ∈ SN,
which follows by Corollary 3.7 and Lemma 7.6.

(3) Let b ∈ ⟦Γ, x: ¬ ⃗⃗
𝜏, y: ¬ ⃗⃗

𝜏⟧ and c ∈ ⟦Γ, ⃗⃗
z:

⃗⃗
𝜏⟧. Then, by statements (1) and (2) and by

Lemma 7.8, we are left now to prove that C[b { y⟨ ⃗⃗z⟩ = c } { x⟨ ⃗⃗z⟩ = c }] ∈ SN implies that

C[b[y/x] { y⟨ ⃗⃗z⟩ = c }] ∈ SN, which follows by Corollary 3.7 and Lemma 7.6. □

We remark that the terms that appear in the cases for exchange and contraction correspond

directly to instances of the (DISTR) and (CONTR) rules, respectively. For weakening, the proof

follows by independence as two terms run in parallel without interacting, which acts like a refined

version of (GC) where the unused continuation is well-behaved within its context. All that remains

are the two pieces of the reducibility proof method: showing that each semantic type is reducible,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:26 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

and thus is a nonempty set of strongly normalizing terms, and that every well-typed term is

contained in its semantic type.

Lemma 7.10 (Reducibility). Semantic types are reducible. For an arbitrary environment Γ then:
(1) If c ∈ ⟦Γ⟧, then c ∈ SN.
(2) There is a c such that c ∈ ⟦Γ⟧.

Proof. The statements are proved by mutual induction with Lemma 7.9 on the number of

subtypes in the environment Γ, then by simple case analysis. □

Lemma 7.11 (Fundamental Lemma). All well-typed terms are contained in their respective semantic
types. So Γ ⊢ c implies that c ∈ ⟦Γ⟧.

Proof. By induction on the typing judgement.

Case (B): b { k⟨ ⃗⃗y⟩ = c } ∈ ⟦Γ⟧. Follows directly from the inductive hypotheses and from the

definition of the semantic types.

Case (J): k⟨ ⃗⃗x⟩ ∈ ⟦Γ⟧. By Lemma 7.8, there is a context C that is well-behaved for Γ, and
knowing that for any b ∈ ⟦Γ⟧ it follows that C[b] ∈ SN, we need to show that C[k⟨ ⃗⃗x⟩] ∈ SN. As
Γ(k) = ¬ ⃗⃗

𝜏 , there is a term c such that Γ = Δ1, k: ¬ ⃗⃗
𝜏, Δ2 and c ∈ ⟦Δ1,

⃗⃗
y:

⃗⃗
𝜏⟧. By Lemma 7.9, we can

use successive applications of exchange to treat semantic types up to permutation. We can use

successive applications of weakening to show that c ∈ ⟦Γ, ⃗⃗
y:

⃗⃗
𝜏⟧, and, from that, c[⃗⃗x/ ⃗⃗y] ∈ ⟦Γ⟧. By

our hypothesis, it follows that C[c[⃗⃗x/ ⃗⃗y]] ∈ SN, which is just one step away from our goal. Since C
is well-formed for Γ and by Theorem 7.4, it follows that C[k⟨x⟩] ∈ SN as required. □

We now state our last theorem, that full reduction is strongly normalizing in the simply typed

CPS-calculus, meaning that there are no non-terminating reduction strategies in it.

Theorem 7.12 (Strong Normalization). The simply typed CPS-calculus is strongly normalizing.
For every well-typed term Γ ⊢ c, it follows that c ∈ SN.

Proof. Follows directly from Lemmas 7.11 and 7.10. □

7.6 A Logic of Continuations
A usual consequence of strong normalization in a typed calculus is that logical consistency follows.

This is also the case for the CPS-calculus, where consistency can be characterized simply by the

absence of closed well-typed terms.

Corollary 7.13 (Consistency). The simply typed CPS-calculus is consistent as a logic system.
The following statements are both true and equivalent:
(1) There is no well-typed term on an empty environment.
(2) There cannot be terms b and c such that

⃗⃗
x:

⃗⃗
𝜏 ⊢ b and k: ¬ ⃗⃗

𝜏 ⊢ c.

Intuitively, as computation does not return, it instead stops when it does not know how to

proceed. If a term is closed and it cannot be stuck, as is the case for well-typed terms, then it can

always continue jumping indefinitely. Indeed, the fact that there cannot be any closed terms in the

simple type system was already conjectured by Thielecke [1997a], and later proven by Levy [2001]

in his PhD thesis by using a domain-theoretic approach, whereas we give a syntactical proof.

Consider, finally, the following example. Besides being capable of representing terms from the

simply typed 𝜆-calculus through the CPS translations given above in Section 4.1, the simply typed

CPS-calculus is also capable of representing control effects. We can define call/cc, which is typed

by Peirce’s law for any types 𝐴 and 𝐵 [Griffin 1989], in CBV as follows:

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:27

k: ¬⟦((𝐴 → 𝐵) → 𝐴) → 𝐴⟧V ⊢ k⟨f⟩ { f⟨x, j⟩ = x⟨v, j⟩ { v⟨y, h⟩ = j⟨y⟩ } }

This demonstrates that the simply typed CPS-calculus is yet another constructive interpretation

for classical propositional logic. However, it is an interpretation whose computational content has

been used in compilers for the past three decades.

8 Conclusion
Throughout the history of programming language research, the 𝜆-calculus has been a very important

tool, established as both a prototypical functional language and as a foundational theory for

functional programming. The 𝜋-calculus plays a similar role for concurrent programming languages,

both as a prototype and a foundation. In this paper, we approached the question: could something

similar be established for intermediate representations as used in production compilers? To answer

that, we investigated the relationship between Thielecke’s CPS-calculus, a theory of continuations

motivated by categorical structure inherent in continuation-passing, and name-passing intermediate

representations such as the one used in Appel’s compiler, which are not closed under the usual

notion of 𝛽-reduction.

By following the guidelines set by Plotkin, we give an affirmative answer to this question. In order

to reach this result, we considered the abstract machine semantics given by Kennedy as the evaluator

for his intermediate representation, and proposed a new reduction semantics for the CPS-calculus

which is based on actual rewriting rules used in compilers as suggested by Appel, while separating

these rules into computational steps, characterized by function inlining, and shrinking steps, meant

to capture common optimizations such as dead-code elimination. Among our results, we proved

that our reduction semantics is confluent and allows for the factorization of essential steps, which

allows us to characterize the computational content of a term. As Kennedy’s machine coincides

with evaluation in the CPS-calculus, the notions of computational and behavioral equivalence in

them are the same, a fact that we used to prove that the CPS-calculus is an adequate compilation

target for both the 𝜆-calculus and the 𝜆𝑣-calculus by using both of Plotkin’s CPS translations. This

allows us to use the CPS-calculus as a tool for formally reasoning about optimizations, which we

do by proving that contification preserves the meaning of a source program.

Finally, we studied the simply typed version of the CPS-calculus, as presented originally by

Thielecke, showing that it is strongly normalizing for our notion of reduction. We did so by using a

new proof method which is based on Tait and Girard’s reducibility proof, but that reasons about

reduction at a distance by using structural rules (weakening, exchange and contraction) on semantic

types, which we hope can be adapted for proving strong normalization for other typed process

calculi and explicit substitution calculi. As a standard consequence, the simply typed CPS-calculus

is sound as a logic system, acting as a constructive interpretation for classical logic, meaning that

the CPS-calculus not only may be used to prove correctness of optimizations within a verified

compiler but may also work as a proof system itself. As future work, it’s our goal to investigate

more advanced type systems in the CPS-calculus, such as dependent and substructural types,

using the metatheory developed here to study type-preserving compilation into an intermediate

representation that was created from practical considerations.

Acknowledgments
We’d like to thank the anonymous reviewers for their helpful comments and suggestions. We also

thank Beniamino Accattoli for an insightful discussion on proof techniques for the rewriting theory

of calculi with reduction at a distance. The second author is supported in part by Schmidt Sciences.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

241:28 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

References
Samson Abramsky. 1990. The Lazy Lambda Calculus. Addison-Wesley Longman Publishing Co., Inc., USA, 65–116.

Beniamino Accattoli. 2013. Linear Logic and Strong Normalization. In 24th International Conference on Rewriting Techniques
and Applications (RTA 2013) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 21), Femke van Raamsdonk

(Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 39–54. https://doi.org/10.4230/LIPIcs.

RTA.2013.39

Beniamino Accattoli. 2022. Exponentials as Substitutions and the Cost of Cut Elimination in Linear Logic. In Proceedings of
the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (Haifa, Israel) (LICS ’22). Association for Computing

Machinery, New York, NY, USA, Article 49, 15 pages. https://doi.org/10.1145/3531130.3532445

Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. 2014. A Nonstandard Standardization Theorem.

SIGPLAN Not. 49, 1 (Jan 2014), 659–670. https://doi.org/10.1145/2578855.2535886

Beniamino Accattoli, Claudia Faggian, and Giulio Guerrieri. 2019. Factorization and Normalization, Essentially. InAPLAS 2019
- 17th Asian Symposium on Programming Languages and Systems. Springer, Bali, Indonesia. https://doi.org/10.1007/978-

3-030-34175-6_9

Beniamino Accattoli and Delia Kesner. 2010. The Structural 𝜆-Calculus. In Computer Science Logic, Anuj Dawar and Helmut

Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 381–395. https://doi.org/10.1007/978-3-642-15205-4_30

Amal Ahmed and Matthias Blume. 2011. An equivalence-preserving CPS translation via multi-language semantics. SIGPLAN
Not. 46, 9 (sep 2011), 431–444. https://doi.org/10.1145/2034574.2034830

Roberto M. Amadio. 2017. Operational methods in semantics (lecture notes). https://api.semanticscholar.org/CorpusID:

67205591 Accessed on June, 2024.

Roberto M. Amadio and Yann Régis-Gianas. 2012. Certifying and Reasoning on Cost Annotations of Functional Programs.

In Foundational and Practical Aspects of Resource Analysis, Ricardo Peña, Marko van Eekelen, and Olha Shkaravska (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 72–89. https://doi.org/10.1007/978-3-642-32495-6_5

Andrew W. Appel. 1991. Compiling with Continuations. Cambridge University Press, USA. https://doi.org/10.1017/

CBO9780511609619

Andrew W. Appel. 1998. SSA is Functional Programming. SIGPLAN Not. 33, 4 (apr 1998), 17–20. https://doi.org/10.1145/

278283.278285

Andrew W. Appel and Trevor Jim. 1997. Shrinking Lambda Expressions in Linear Time. J. Funct. Program. 7, 5 (sep 1997),

515–540. https://doi.org/10.1017/S0956796897002839

Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. 1995. A Call-by-Need Lambda

Calculus. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San
Francisco, California, USA) (POPL ’95). Association for Computing Machinery, New York, NY, USA, 233–246. https:

//doi.org/10.1145/199448.199507

Hendrik Pieter Barendregt. 1981. The Lambda Calculus: Its Syntax and Semantics. Elsevier Science Pub. Co. https:

//doi.org/10.2307/2274112

Olivier Savary Bélanger and AndrewW. Appel. 2017. Shrink fast correctly!. In Proceedings of the 19th International Symposium
on Principles and Practice of Declarative Programming (Namur, Belgium) (PPDP ’17). Association for Computing Machinery,

New York, NY, USA, 49–60. https://doi.org/10.1145/3131851.3131859

Nick Benton, Andrew Kennedy, Sam Lindley, and Claudio Russo. 2004. Shrinking Reductions in SML.NET. In Proceedings of
the 16th International Conference on Implementation and Application of Functional Languages (Lübeck, Germany) (IFL’04).
Springer-Verlag, Berlin, Heidelberg, 142–159. https://doi.org/10.1007/11431664_9

Nick Benton, Andrew Kennedy, and George Russell. 1998. Compiling standard ML to Java bytecodes. In Proceedings of
the Third ACM SIGPLAN International Conference on Functional Programming (Baltimore, Maryland, USA) (ICFP ’98).
Association for Computing Machinery, New York, NY, USA, 129–140. https://doi.org/10.1145/289423.289435

William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017. Type-Preserving CPS Translation of Σ and Π Types

is Not Not Possible. Proc. ACM Program. Lang. 2, POPL, Article 22 (dec 2017), 33 pages. https://doi.org/10.1145/3158110

Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. 2019. Compiling with Continuations, or without?

Whatever. Proc. ACM Program. Lang. 3, ICFP, Article 79 (Jul 2019), 28 pages. https://doi.org/10.1145/3341643

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Computing Static

Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (oct 1991), 451–490.
https://doi.org/10.1145/115372.115320

Olivier Danvy, Belmina Dzafic, and Frank Pfennin. 1999. On proving syntactic properties of CPS programs. Electronic Notes
in Theoretical Computer Science 26 (1999), 21–33. https://doi.org/10.1016/S1571-0661(05)80281-6 HOOTS ’99, Higher

Order Operational Techniques in Semantics.

Olivier Danvy and Julia Lawall. 1996. Back to Direct Style II: First-Class Continuations. BRICS Report Series RS-96-20 (1996).
Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.

In Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation (Albuquerque,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

https://doi.org/10.4230/LIPIcs.RTA.2013.39
https://doi.org/10.4230/LIPIcs.RTA.2013.39
https://doi.org/10.1145/3531130.3532445
https://doi.org/10.1145/2578855.2535886
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1145/2034574.2034830
https://api.semanticscholar.org/CorpusID:67205591
https://api.semanticscholar.org/CorpusID:67205591
https://doi.org/10.1007/978-3-642-32495-6_5
https://doi.org/10.1017/CBO9780511609619
https://doi.org/10.1017/CBO9780511609619
https://doi.org/10.1145/278283.278285
https://doi.org/10.1145/278283.278285
https://doi.org/10.1017/S0956796897002839
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/199448.199507
https://doi.org/10.2307/2274112
https://doi.org/10.2307/2274112
https://doi.org/10.1145/3131851.3131859
https://doi.org/10.1007/11431664_9
https://doi.org/10.1145/289423.289435
https://doi.org/10.1145/3158110
https://doi.org/10.1145/3341643
https://doi.org/10.1145/115372.115320
https://doi.org/10.1016/S1571-0661(05)80281-6

On the Operational Theory of the CPS-Calculus: Towards a Theoretical Foundation for IRs 241:29

New Mexico, USA) (PLDI ’93). Association for Computing Machinery, New York, NY, USA, 237–247. https://doi.org/10.

1145/155090.155113

Carsten Führmann and Hayo Thielecke. 2004. On the call-by-value CPS transform and its semantics. Information and
Computation 188, 2 (2004), 241–283. https://doi.org/10.1016/j.ic.2003.08.001

Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and Types. Cambridge University Press, USA. https:

//doi.org/10.2307/2274726

Timothy G. Griffin. 1989. A formulae-as-type notion of control. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (San Francisco, California, USA) (POPL ’90). Association for ComputingMachinery,

New York, NY, USA, 47–58. https://doi.org/10.1145/96709.96714

John Hatcliff and Olivier Danvy. 1997. Thunks and the 𝜆-calculus. Journal of Functional Programming - JFP 7 (05 1997),

303–319. https://doi.org/10.1017/S0956796897002748

Kohei Honda and Olivier Laurent. 2010. An exact correspondence between a typed pi-calculus and polarised proof-nets.

Theoretical Computer Science 411, 22 (2010), 2223–2238. https://doi.org/10.1016/j.tcs.2010.01.028

Richard A. Kelsey. 1995. A Correspondence between Continuation Passing Style and Static Single Assignment Form. In

Papers from the 1995 ACM SIGPLAN Workshop on Intermediate Representations (San Francisco, California, USA) (IR ’95).
Association for Computing Machinery, New York, NY, USA, 13–22. https://doi.org/10.1145/202529.202532

Andrew Kennedy. 2005. [TYPES] normalization and programming languages. http://lists.seas.upenn.edu/pipermail/types-

list/2005/000970.html Sent to the [TYPES] mailing list. Accessed on July 11th, 2023.

Andrew Kennedy. 2007. Compiling with Continuations, Continued. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming (Freiburg, Germany). Association for Computing Machinery, New York, NY, USA,

177–190. https://doi.org/10.1145/1291151.1291179

Paul Blain Levy. 2001. Call-by-push-value. Ph. D. Dissertation. Queen Mary University of London, UK. https://ethos.bl.uk/

OrderDetails.do?uin=uk.bl.ethos.369233

Luke Maurer, Paul Downen, Zena M. Ariola, and Simon Peyton Jones. 2017. Compiling without Continuations. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI
2017). Association for Computing Machinery, New York, NY, USA, 482–494. https://doi.org/10.1145/3062341.3062380

Massimo Merro. 2010. On the Observational Theory of the CPS-Calculus. Acta Inf. 47, 2 (Mar 2010), 111–132. https:

//doi.org/10.1007/s00236-009-0112-9

Massimo Merro and Davide Sangiorgi. 2004. On Asynchrony in Name-Passing Calculi. Mathematical. Structures in Comp.
Sci. 14, 5 (Oct 2004), 715–767. https://doi.org/10.1017/S0960129504004323

Robin Milner. 1992. Functions as processes. Mathematical Structures in Computer Science 2, 2 (1992), 119–141. https:

//doi.org/10.1017/S0960129500001407

Robin Milner and Davide Sangiorgi. 1992. Barbed Bisimulation. In International Colloquium on Automata, Languages, and
Programming. Springer, 685–695. https://doi.org/10.1007/3-540-55719-9_114

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From system F to typed assembly language. ACM Trans.
Program. Lang. Syst. 21, 3 (may 1999), 527–568. https://doi.org/10.1145/319301.319345

Marco Patrignani. 2020. Why should anyone use colours? or, syntax highlighting beyond code snippets. arXiv preprint
arXiv:2001.11334 (2020). https://doi.org/10.48550/arXiv.2001.11334

Benjamin C. Pierce and Davide Sangiorgi. 1993. Typing and subtyping for mobile processes. Proceedings Eighth Annual IEEE
Symposium on Logic in Computer Science (1993), 376–385. https://doi.org/10.1017/S096012950007002X

Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the 𝜆-calculus. Theor. Comput. Sci. 1 (1975), 125–159. https:

//doi.org/10.1016/0304-3975(75)90017-1

John C. Reynolds. 1993. The Discoveries of Continuations. LISP and Symbolic Computation 6 (1993), 233–247. https:

//doi.org/10.1007/BF01019459

Amr Sabry and Matthias Felleisen. 1992. Reasoning about Programs in Continuation-Passing Style. SIGPLAN Lisp Pointers
V, 1 (Jan 1992), 288–298. https://doi.org/10.1145/141478.141563

Amr Sabry and Philip Wadler. 1997. A Reflection on Call-by-Value. ACM Trans. Program. Lang. Syst. 19, 6 (nov 1997),

916–941. https://doi.org/10.1145/267959.269968

Davide Sangiorgi and David Walker. 2001. Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press, USA.

https://doi.org/10.2178/bsl/1182353926

Guy L. Steele. 1978. Rabbit: A Compiler for Scheme. Technical Report. USA.
Masako Takahashi. 1989. Parallel reductions in 𝜆-calculus. Journal of Symbolic Computation 7, 2 (1989), 113–123. https:

//doi.org/10.1016/S0747-7171(89)80045-8

Hayo Thielecke. 1997a. Categorical Structure of Continuation Passing Style. Ph. D. Dissertation. University of Edinburgh.

Hayo Thielecke. 1997b. Continuation Semantics and Self-adjointness. Electronic Notes in Theoretical Computer Science 6
(1997), 348–364. https://doi.org/10.1016/S1571-0661(05)80149-5

Paulo Torrens. 2024. Artifact for "On the Operational Theory of the CPS-calculus". https://doi.org/10.5281/zenodo.11498450

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113
https://doi.org/10.1016/j.ic.2003.08.001
https://doi.org/10.2307/2274726
https://doi.org/10.2307/2274726
https://doi.org/10.1145/96709.96714
https://doi.org/10.1017/S0956796897002748
https://doi.org/10.1016/j.tcs.2010.01.028
https://doi.org/10.1145/202529.202532
http://lists.seas.upenn.edu/pipermail/types-list/2005/000970.html
http://lists.seas.upenn.edu/pipermail/types-list/2005/000970.html
https://doi.org/10.1145/1291151.1291179
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1007/s00236-009-0112-9
https://doi.org/10.1007/s00236-009-0112-9
https://doi.org/10.1017/S0960129504004323
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1145/319301.319345
https://doi.org/10.48550/arXiv.2001.11334
https://doi.org/10.1017/S096012950007002X
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/BF01019459
https://doi.org/10.1007/BF01019459
https://doi.org/10.1145/141478.141563
https://doi.org/10.1145/267959.269968
https://doi.org/10.2178/bsl/1182353926
https://doi.org/10.1016/S0747-7171(89)80045-8
https://doi.org/10.1016/S0747-7171(89)80045-8
https://doi.org/10.1016/S1571-0661(05)80149-5
https://doi.org/10.5281/zenodo.11498450

241:30 Paulo Torrens, Dominic Orchard, and Cristiano Vasconcellos

Philip Wadler. 2003. Call-by-value is dual to call-by-name. SIGPLAN Not. 38, 9 (aug 2003), 189–201. https://doi.org/10.1145/

944746.944723

Nobuko Yoshida, Martin Berger, and Kohei Honda. 2004. Strong normalisation in the𝜋 -calculus. Information and Computation
191, 2 (2004), 145–202. https://doi.org/10.1016/j.ic.2003.08.004

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 241. Publication date: August 2024.

https://doi.org/10.1145/944746.944723
https://doi.org/10.1145/944746.944723
https://doi.org/10.1016/j.ic.2003.08.004

