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A B S T R A C T

We employ the green revenue factors of firms, used in the computation of the FTSE Russell 1000 Green Revenues
index to create corresponding green-adjusted share prices. We compute the firm betas, under both the standard
and the green-adjusted share pricing. Our findings suggest that tilting of firm stock returns towards green finance
could change temporarily asset pricing views. The Fama-French risk factors display very high correlations be-
tween the two settings. Nevertheless, there are some significant differences between standard and green-adjusted
betas during periods associated with green activism and positive political decisions of financially supporting the
global climate action.

1. Introduction

The recent environmental concerns and societal changes leading to
the global commitment towards a green economy have refocused the
analysis on financial markets through various “lenses of sustainability”
towards the degree of green activities reflected in the prices and in the
returns of market securities (e.g. Matsumura et al., 2014; Pastor et al.,
2022; Zerbib, 2022). In this context, the future of finance is directly
determined by how well the social, environmental and economic sys-
tems are organized (Shiller, 2013).

In this paper, we take advantage of a novel methodology developed
by FTSE Russell of dynamically capturing the green revenues exposure
of individual firms by evaluating each business activity according to a
robust Green Revenues Classification System (GRCS). Based on a
bottom-up view of the green economy, the GRCS aligns with the envi-
ronmental EU taxonomy, as it considers products and services according
to their impact on climate change mitigation, climate change adapta-
tion, pollution prevention and control, protection of healthy ecosystems,
sustainable use and protection of water and marine resources, transition
to a circular economy, waste prevention and recycling, sustainable and
efficient agriculture.1 Mapping revenues from the balance sheet with a
comprehensive range of activities across 10 sectors, 64 sub-sectors and

133 micro sub-sectors, the Green Revenues 2.0 data model proposed by
FTSE Russell provides the green revenues estimates for each company.
Based on these estimates, FTSE Russell computes a unique metric for
each company – the green revenues factor (GRF). Exploring in more
detail the GRF metric, we found it possesses some desirable character-
istics. First, it is a dynamic measure, therefore facilitating the process of
monitoring the trend in the green activities of a firm, as it captures both
the speed and level of a firm’s transition to the green economy. Second,
the GRF metric allows for the direct ranking of companies by reflecting
the level of net environmental impact of companies’ business activities.

Through the lens of green revenues, which is a financial dimension
compared to the traditional physical dimensions such as carbon emis-
sions and fossil fuel reserves, the GRF measure enables investors to
compare companies based on various levels of “greenness”. We employ
the GRF green metric to distinguish between green, neutral and brown
companies. Within our simplified categorisation, a green/brown com-
pany has a positive/negative green exposure (net positive/negative
environmental impact), while a company with an insignificant green
exposure (similar levels of negative and positive environmental impact)
is considered neutral. Matsumura et al. (2014) argue that equity values
should be lower for firms with higher emissions if investors are
considering the likelihood of future regulatory actions arising from high

* Correspondence to: University of Sussex, University of Sussex Business School, Falmer BN1 9SL, UK.
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1 For more details see https://www.lseg.com/content/dam/ftse-russell/en_us/documents/other/ftse-russell-green-revenues-classification-system.pdf
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carbon emission. The GRF measure has an amplifying effect towards
green companies and a deflationary effect for brown companies, which
is also in line with the ESG integration investment practice of over-
weighting assets with high ESG ratings and underweighting those with
low ESG ratings (Zerbib, 2022).

The novelty of our research consists in exploiting these properties of
the GRF metric to construct daily pseudo green share prices (green-
adjusted share prices). Using the FTSE 1000 Green Revenues Index as a
proxy for the “green” U.S. market and our green-adjusted share prices of
the index constituent firms, we estimate the green-adjusted analogues to
the CAPM beta and conduct a comprehensive comparative analysis by
reapplying the classic modelling frameworks such as the dynamic con-
ditional correlation (DCC) model of Engle (2002) and Fama-MacBeth
(1973) regression analysis.

We compare the views of a standard investor with that of a “twin”
green investor who has the same risk preferences, but also holds high
views on the necessity of green finance. For the latter, the “value” of
firms’ share prices is determined by a tilting factor towards green
finance. In other words, “green” investors operate in a green-adjusted
investment world where all the share prices are green-adjusted based
on the value of its green revenues factor. Compared to a standard
investor, a green investor manifests his green preferences by differen-
tiating between green, neutral and brown companies when selecting
his/her equity portfolio in order to hedge against climate change risks.
Our main aim is to examine whether the standard and the green in-
vestors reach the same asset pricing calculations. More specifically, we
investigate if there is a statistically significant difference between their
betas, risk factors and the estimation of the dynamic CAPM.

For the purposes of this study, we analyse 1555 U.S. stocks which
constitute the FTSE Russell 1000 Index during the period from May 26,
2016 to December 31, 2021. We estimate the “green” betas corre-
sponding to share prices adjusted for the level of green revenues in each
company and we test whether there are significant cross-sectional and
time series differences between these green betas and the standard betas.
Based on daily returns, we find that, overall, there is no statistically
significant difference between the standard and the green-adjusted
betas. Moreover, we find that the four Fama-French and Carhart risk
factors are all significant in explaining stock returns and green-adjusted
stock returns respectively, and the correlations between the respective
factors are very high. In other words, operating in a green-adjusted
world is not very different from operating in the standard world. How-
ever, the two investment worlds seem to distance from each other during
periods of intensified green activism and heightened level of climate-
related finance commitments.

Numerous previous empirical studies investigate the link between
firms’ level of engagement with the green economy and their financial
performance through multidimensional sustainable metrics such as the
ESG scores (e.g. Avramov et al., 2022; Pastor et al., 2021; Cao et al.,
2022). By comparing FTSE USA 4 Good index with the FTSE USA index,
Berk and van Binsbergen (2021) conclude that there is no significant
effect on expected returns that can be attributed to screening for green
stocks during the period 2015–20. The FTSE 4 Good index measures the
performance of firms that have evidenced strong Environmental, Social
and Governance (ESG) practices. Our approach is different in that we
focus only on the environmental pillar, as the green revenues point es-
timate quantifies a company’s exposure to environmental impact. To our
knowledge, no previous study has used this type of information, namely
dollar adjusted values of share prices, where the adjustment is applied in
accordance with the green revenue factor. The unique data set under-
pinning our study comprises the daily FTSE Russell 1000 index, the daily
Green Revenue Factor for all constituents of the index and the daily FTSE
Russell 1000 Green Revenues index.

Examining the impact of ESG on firm values, Heinkel et al. (2001)
show that firms with superior ESG performance are a good hedge for
investors concerned about climate change policy. Chava (2014) con-
siders the implied costs of capital for green companies versus non-green

(brown) and finds evidence of lower ex ante returns on green assets.
Focusing on European individual stock returns, Alessi et al. (2021)
introduce a pricing factor as the combination of greenhouse gas emis-
sions and the quality of the environmental disclosure and find evidence
of negative greenium. Asimakopoulos et al. (2023) look at the impact of
ESG rating on a firm’s debt structure and find that market and book
leverage ratios, and information asymmetry are reduced for ESG rated
firms which also switch their financing from public debt to private debt.
Focusing on systemic risk, Curcio et al. (2023) establish that the riski-
ness in green indexes is higher than in brown indexes.

Another strand of this literature (see In et al., 2019; Bolton and
Kacperczyk, 2021, 2023; Aswani et al., 2024) examines realized returns
for green and for brown stocks and their linkages to carbon risk.
Following on new regulations regarding compliance with the climate
change agenda, firms look to internalize the cost of carbon emissions
and to report them. This process becomes more prominent when the
market is apprehensive about climate change risk. Pastor et al. (2022)
argue that high green returns reported in recent years should not be
taken as indicative predictors of the future returns. Similarly, Pedersen
et al. (2021) implement an ESG adapted CAPM and find that following a
strategy based on a new efficient environment frontier does not neces-
sarily lead to a considerable improvement of the Sharpe ratio. Avramov
et al. (2022) highlight the impact of ESG uncertainty on asset pricing
and portfolio management by proposing an ESG-augmented equilibrium
asset pricing model. In line with Pastor et al. (2021), their results indi-
cate a negative relationship between the ESG rating and future perfor-
mance for stocks with low ESG uncertainty, while there is evidence of an
insignificant or positive association when ESG uncertainty elevates.
Pastor et al. (2022) suggest that a temporary surge in the prices of
“green” stocks is just a simple reflection of the climate concerns and of
the liquidity of green assets that are suddenly in demand, without
leading to long-lasting high monetary returns. Ardia et al. (2022)
confirm that an unexpected surge in concerns about climate change is
associated with a rise in green firms’ stock prices and a drop in brown
firms’ stock prices. On the other hand, Cao et al. (2022) argue that the
ESG agenda brings changes in stock return patterns, with abnormal
returns linked to quantitative mispricing signals and larger returns for
stocks owned by socially responsible institutions.

This paper is organised as follows. In Section 2, we define the green-
adjusted share price by following the green revenues model of FTSE
Russell. In Section 3, we present the methods of estimating uncondi-
tional and conditional betas, that we will apply to both standard and
green-adjusted market prices/returns. In Section 4, we describe and
analyse the unique database containing green revenue adjustments
based on individual companies’ cash-flows. The main empirical results
are presented and discussed in Sections 5 and 6. Section 7 concludes.

2. Green-adjusted equity valuation

2.1. Green revenues

While the green economy opportunities are increasing continuously
and several green taxonomies have been developed both globally and
nationally, there are still important challenges in the implementation of
these green frameworks due to a lack of diverse and in-depth data on
green activities. According to Kooroshy et al. (2020), less than 30% of
companies with green revenues provide granular enough disclosures
that permit investors to systematically identify and quantify companies’
green business activities.

In this paper, we focus on the FTSE Green Revenue Index family
which reflects contemporaneous performance of 98.5% of listed com-
panies, including those without an open green finance agenda. The FTSE
Russell’s Green Revenues data model estimates the green revenue
exposure of more than 16,000 securities across 48 developed and
emerging markets based on FTSE Russell’s Green Revenues Classifica-
tion System. Based on a unique industrial taxonomy, where the green

E. Quaye et al.
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economy covers 133 micro-sectors, only 2951 listed companies were
found to generate green revenues from green products and services. For
each company, green revenues are then filtered from the cash-flow
statements based on their exposure to these green sectors. If a com-
pany has green exposure to multiple sub-sectors, then a total percentage
(s) of revenue from green products is calculated. Total return indices
include income based on ex-dividend adjustment with all dividends
applied as declared, and the indices are calculated in several currencies
on an end of day basis.2 For each company, the FTSE Green Revenues
ratio (GRR) is calculated as the ratio of the green revenues as classified
by the FTSE Russell GRCS to the total company revenues.

2.2. The green-adjusted equity price

To help investors identify companies with high green exposure, the
FTSE Russell GRCS is based on a tiering system that measures the net
environmental impact of each business activity.3 According to this
classification of activities, a companymay have activities across all three
tiers, however on aggregate level its net environmental impact is still
negative. Hence, as investors do not have access to this type of granular
data, it will be very useful for investors to have a similar classification of
greenness at company level. In the computation of the Russell 1000
Green Revenues Index, the investable market capitalisation weights are
adjusted using the GRF, where GRFi = 1+GRRi for each company.

The GRF measure plays a vital role in our study and has several at-
tributes. More specifically, GRF is a number between 0 and 2 and it can
be seen as a measure of a company’s greenness. Based on the GRF value,
we introduce three types of companies: green companies with 1 <

GRFi ≤ 2, neutral companies with GRFi ≅ 1 and brown companies
with 0 ≤ GRFi < 1. A GRF value under one applies to companies in the
FTSE 1000 Index but not in the FTSE1000 Green Revenues Index. Hence,

brown companies have an implied negative green revenue ratio. This
reflects that it is possible for a company to have a net negative envi-
ronmental impact, despite recording some exposure to green products
and services. We can observe that the GRF metric has an inflationary
effect on green companies, with almost no effect for neutral companies
and a contraction/deflationary effect for brown companies. GRF can be
interpreted as a green performance indicator,4 which awards “green”
companies and applies a penalty for “brown” companies, a mechanism
in line with the suggestion that the prices of shares for firms with higher
emissions should be lower (Matsumura et al., 2014). Hence, it can
provide investors with a crucial tool in tracking and assessing the
engagement of public companies in the transition to a global green
economy, and in monitoring the green revenue exposure of their port-
folios. In addition, it can be used as a signal to regulators, corporate
managers and also consumers when companies become more lenient
toward intensifying their green efforts. That is, disengagement from the
green agenda is reflected in a decreasing GRF value over time, as their
current green revenue assessment is inferior compared to a previous
measurement.

We explore the link between this novel GRF metric and the climate
change policy uncertainty (CPU) index. Fig. 1 illustrates the monthly
evolution of the average GRF versus the CPU index.5 Over the entire
study period (May 26, 2016 to December 31, 2021), the correlation
coefficient is − 0.3586.6 This negative relationship between GRF and
CPU index confirms the intuition that when climate policy becomes
more certain, companies will increase their presence in green activities,
whereas higher climate policy uncertainty is associated with a lower
GRF value.

[Fig. 1 about here]

Fig. 1. The Evolution of Climate Policy Uncertainty Index versus average Green Revenues Factor. Notes: This plot shows the climate policy uncertainty index
(https://www.policyuncertainty.com/climate_uncertainty.html) on the scale on the left versus the average green revenue factor from FTSE Russell, on the scale on
the right.

2 For more detailed information on the FTSE Green Revenues Classification
System visit: https://www.lseg.com/content/dam/ftse-russell/en_us/documen
ts/other/green-revenues.pdf

3 The three tiers are defined as following: tier 1 covers activities (micro-
sectors) with significant environmental benefits (e.g. solar); tier 2 covers ac-
tivities with more limited, but net positive environmental benefits (e.g. water
utilities); and tier 3 covers activities which have some environmental benefits
but are overall net neutral or negative (e.g. nuclear).

4 The closer GRF is to two, the greener the company is considered, whereas
the closer the GRF is to zero the browner that company is. Investors may refine
this classification to allow for various levels of both, greenness and brownness,
helping them in a more efficient way to reflect the strengths of their green
preferences in their portfolio selection.

5 The average GRF is calculated cross sectionally and across all days in one
month, to allow like for like comparison.

6 The negative correlation coefficient is even stronger in the first half of the
period (-0.5217), while almost zero (0.0221) in the second half of the study
period, which includes the Covid-19 period.
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To create the framework for a green-adjusted CAPM, we introduce
for the first time in the literature a proxy for the green share price using the
daily GRF data provided by FTSE Russell. For each company we compute
the daily pseudo green-adjusted share price S∗as follows:

S∗ = (Market Share Price) × (Green Revenues Factor) = S× GRF
(1)

It is important to note that depending on the value of the green
revenues factor, the green share price of a company can be smaller,
equal or larger than the standard market share price of that company.7

For a green company the green share price is at least its standard market
price, while for a brown company the green factor works as a penalty
yielding a green share price smaller than the standard market price. For
each company, we compute the daily green-adjusted returns based on
the green-adjusted share prices as following:

R∗
i,t = ln

S∗i,t
S∗i,t− 1

= ln
Si,t
Si,t− 1

+ ln
GRFi,t
GRFi,t− 1

= Ri,t + ln
GRFi,t
GRFi,t− 1

(2)

The difference between the green-adjusted and the standard returns
is driven by the logarithmic ratio of two consecutive values of the green
revenues factor. From (2), we can infer that R∗ > R if and only if there is
an improvement in the green revenues factor; and vice versa, that R∗ < R
if and only if there is a deterioration in green revenues factors. Once a
company reaches a high level of GRF and then GRF stabilizes, its
adjusted return will be equal to be original return, so its adjusted beta, as
implied by Eq. (2), will be the same as the original beta of the company.
Therefore, one can argue that investors can expect benefits in terms of a
higher green adjusted beta only during periods when the GRF of the
company is improving. This resonates with Pastor et al. (2021),(2022)
who argue that any asset pricing gains in green stocks are only tempo-
rarily and in the long-run in equilibrium investors should not expect
higher returns from green stocks.

3. Research questions and methodology

3.1. Testing hypotheses

With this new set of green-adjusted variables (the green-adjusted
share prices and the green-adjusted market returns represented by the
FTSE Green Revenues Index), we can compare the asset pricing for an
investor having additional green preferences with the asset pricing for a
standard investor with no such preferences. Under the assumption that a
green investor will care only about the green-adjusted returns R∗, tilted
by the operator of green revenue factor ln GRFi,t

GRFi,t− 1
, we investigate the

relationship between the new pseudo-market green share prices and the
FTSE Russell Green Revenues stock index through the lenses of equity
beta. Our aim is to determine whether the new “green-adjusted” betas (
β∗) estimates are different from the corresponding standard betas for the
same universe of stocks; in other words, if green investors have the same
systematic risk exposure as their twin standard investors.

We explore the possibility and the magnitude of such difference by
trying to answer the following research questions: Is the distribution of
green-adjusted returns R∗

it different from the distribution of the standard
returns Rit? Are there any significant differences between the green-
adjusted and the standard betas of the stocks in the FTSE Russell 1000
Index? To answer these questions, we state and test several hypotheses.
First, we test if the distribution of beta measures derived from green-
adjusted share prices is statistically different from the distribution of
the betas for the corresponding standard share prices. Thus, we will test

the following hypothesis:

H1. Green investors have the same asset pricing views on stock prices
as standard investors.

This general research question is refined by testing the more specific
hypothesis referring to the equality between green adjusted betas and
standard betas.

H1: β∗
it = βit against the alternative that they are not equal.

We use the Kolmogorov-Smirnov test for testing this equality within
each decile of the distribution of betas, monthly across time for several
years.

In our analysis, we calculate the market factor (MKT), the book-to-
market value (HML), the size of the firm factor (SMB) and momentum
(MOM) on both, green-adjusted and standard returns. We find that the
correlation coefficients between MKT, HML, SMB and MOM under
green-adjusted share prices and the same market factors under the
standard share prices are high. These high correlations indicate that the
market structure is very much the same, irrespective whether the
investor has additional green risk preferences or not.

Another research question is whether under the Fama-MacBeth
(1973) regression methodology, the new risk-adjusted four factors
mentioned above are significant. To do that, we apply an updated
methodology for testing the following general hypothesis:

H2. The conditional CAPM explains the share price returns dynamics.

This general hypothesis can be refined by formulating a set of specific
hypotheses for each type of investor looking at the universe of respective
share prices, green revenues adjusted or standard.

H2a. For the green investor each of the four risk factors (MKT, HML,
SMB, MOM) is significant in explaining green-adjusted share price
returns.

H2b. For the standard investor each of the four risk factors (MKT,
HML, SMB, MOM) is significant in explaining standard share price
returns.

H2c. For the green investor the conditional green-adjusted CAPM
cannot be rejected by the green-adjusted data.

H2d. For the standard investor the conditional standard CAPM cannot
be rejected by the data.

It should be remarked that the Fama-French factors for the green-
adjusted category had to be calculated from first principles, which is a
first in the literature as well as far as we know. Thus, it is first and
foremost important to know whether the respective four factors are
significant in explaining not only the standard market share prices but
also the green adjusted share prices. These are framed under H2a and
H2b. Furthermore, we also test the significance of the conditional CAPM
model using the latest methodology developed by Hasler and Martineau
(2023). These are captured by hypotheses H2c and H2d. We consider
both unconditional and conditional measures for beta as described in
Bali et al. (2016). Once we have estimated the two sets of betas, the
standard betas (using the standard share prices) and the green-adjusted
betas (using the green-adjusted share prices), we compare them both,
cross-sectionally and over time.

3.2. Estimation of unconditional beta

The unconditional beta is defined directly from the capital asset
pricing model (CAPM) as

βi =
cov(Ri,Rm)

var(Rm)
(3)

where Ri,Rm are the share price return of company i and the return of
market portfolio, respectively. The historical CAPM beta is estimated
using the historical series of returns with the regression:

7 For example, from a total of 1555 constituent companies in the FTSE
Russell index during the 2016–2021 period, the “greenest” company is Apta
Group with the highest green revenue factor of GRF = 2, while the brownest
company is Sealed Air with the lowest green revenue factor GRF=0.345532.

E. Quaye et al.
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ri,t = αi + βirm,t + εi.t (4)

where ri,t , rm,t are the excess return of company i and of the market
portfolio over the risk-free rate, respectively, at time t. This leads to the
most common beta estimate βHISTi = β̂ i. Typically, the regression model
(4) is estimated based on a one-year rolling window of daily excess re-
turn data.8 That is, at the end of eachmonth t, the regression model (4) is
estimated based on the previous 12-month period of daily return data,
covering months t − 11 through t, inclusively.9

Andersen et al. (2006) define the realized beta as

βR
i,τ =

∑t=N
t=1 ri,trm,t
∑t=N

t=1 r2m,t

(5)

where N is the number of observations during the estimation window
τ.10

Fama and French (1992) employ monthly returns to estimate market
beta by including the one-month lagged market return to cover for
possible first-order autocorrelation in returns. Following Bali et al.
(2017), we use daily returns to estimate the following model:

ri,t = αi + β1,irm,t + β2,irm,t− 1 + εi,t (6)

The Fama-French beta is defined as:

βFF
i = β̂1,i + β̂2,i (7)

Using daily data allows us to compute the Scholes and Williams
(1977) estimator of beta that accounts for non-synchronous trading. To
obtain the SW beta estimator, we need to estimate first the following
three linear regression models:

ri,t = ai + β1,irm,t− 1 + ϵi.t

ri,t = ai + β2,irm,t + εi.t (8)

ri,t = ai + β3,irm,t+1 + ui.t

Then, the Scholes-Williams beta is calculated as

βSW
i =

β̂1,i + β̂2,i + β̂3,i

1+ 2ρ (9)

where ρ is the first-order autocorrelation coefficient of the market
portfolio’s excess return. For this estimator we perform computations for
stock i at the end of each month τ using daily data covering the one-year
period.

When a stock is infrequently traded, the estimations of beta using the
standard CAPM, might be severely biased (Dimson, 1979). To circum-
vent this problem, Dimson (1979) adds more betas to lagged market
results. We use one lead and four (L = 4) lags for daily returns data
Then, the new equation of the linear regression model is:

ri,t = αi,t+β(0)
i
(
rm,t
)
+β(+1)

i
(
rm,t+1

)
+β(− 1)

i
(
rm,t− 1

)
+β(− 2)

i

(
∑L

n=2
rm,t− n

)

+εi,t

(10)

The Dimson beta estimator βDi is then calculated as:

βDi = β̂
(+1)
i +

∑min{2,L}

j=0
β̂
(− j)
i (11)

3.3. Estimation of the dynamic conditional beta

The unconditional CAPM is a single period model and is subject to
mean-variance optimization assumptions. Fixing the investment op-
portunity is a significant shortcoming. Merton (1973) offered a solution
to this problem by allowing agents to trade continuously under sepa-
rable von Neumann-Morgenstern utility functions. In this dynamic
environment the conditional CAPM holds only if the cost of hedging is
nil. Then, the equation of the model can be written as

Et
(
ri,t+Δt

)
= βitEt

(
rm,t+Δt

)
(12)

In this context, the conditional beta of firm i, at time t, is

βit =
covt

(
ri,t+Δt, rm,t+Δt

)

var
(
rm,t+Δt

) (13)

To obtain the conditional beta (time varying beta), we must estimate
the conditional covariance between the excess returns on stock i and on
the market portfolio m. We employ the mean-reverting DCC model of
Engle (2002). As in Bali et al. (2017) and Engle and Kelly (2012), to
improve the parameter convergence, we use correlation targeting
assuming that the time-varying correlations mean revert to the sample
correlations. Assuming Δt = 1 , the DCC model is represented by the
following equations:

ri,t+1 = αi
0 + σi,t+1ui,t+1

rm,t+1 = αm
0 + σm,t+1um,t+1

σ2
i,t+1 = βi

0 + βi1σ2
i,tu

2
i,t + βi2σ2

i,t (14)

σ2
m,t+1 = βm0 + βm1 σ2

m,tu
2
m,t + βm2 σ2

m,t

σim,t+1 = ρim,t+1σi,t+1σm,t+1

ρim,t+1 =
qim,t+1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅qii,t+1qmm,t+1
√

qim,t+1 = ρim + a1
(
ui,tum,t − ρim

)
+ a2

(
qim,t − ρim

)

where σ2
i,t+1 is the day-t expected conditional variance of stock i,

σ2
m,t+1 is the day-t expected conditional variance of the market, ui,t+1

and um,t+1 are the standardized residuals for stock i and the market
portfolio, respectively; whilst ρim,t+1 is the day-t expected conditional
correlation between the excess returns of the stock and excess returns of
the market, and ρim is the unconditional correlation.

Then the DCC beta at time t for firm i is computed as

βDCCi,t =
σ̂ im,t+1

σ̂2
m,t+1

(15)

The same six estimation procedures above (five static and one dy-
namic) are applied to the green-adjusted variables (green-adjusted
returns and the Russell 1000 Green Revenues Index) to measure the
corresponding green-adjusted betas.

4. Data description

For our analysis, we distinguish between two sets of data. For the
first set, we collect the standard data which include the daily values of
the Russell 1000 Index from FTSE Russell, and the daily share prices for
all constituent companies of the Russell 1000 stock index from Bloom-
berg. For the second set, we collect the green-adjusted data containing

8 Recent evidence (see Liu et al., 2018) suggests that using daily data may
circumvent many of the estimation problems encountered with testing CAPM.

9 Baker et al. (2010) calculate beta using a window size of one year of daily
returns. Other window sizes may be used but the window size may have an
impact on the calculation of beta. In the online appendix of this paper, we
consider windows of one, three, six, 12, and 24 months that would require a
minimum of 15, 50, 100, 200, and 450 days of valid return daily data,
respectively, to compute the beta. The estimation windows are applied in all the
estimation methods for the unconditional beta.
10 Andersen et al. (2006) prove that under weak regularity conditions this is
the only consistent measure for the true beta.
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the daily values of the Russell 1000 Green Revenues Index and the daily
GRF values from FTSE Russell. All the data samples span the period from
May 26, 2016 to December 31, 2021 for a total of 1462 trading days.11

We take the perspective of an international investor that is unhedged
in exchange rates and employ all calculations in USD. We exclude days
when Green Revenue Factor is zero, otherwise the green share price
would be zero. Following, Hou et al. (2011), we exclude both Rt and Rt− 1
if they are higher than 100 % and if (1 + Rt )(1 + Rt− 1 ) − 1 < 20%. Any
daily returns greater than 200 % are also eliminated (see Griffin et al.,
2010). The daily return observations are winsorized at the 1 % and 99 %
levels to further limit the effect of outliers. In the case of delisted com-
panies, we consider all available observations as in Ince and Porter
(2006). Furthermore, to remove the effect of illiquidity when stocks are
traded less frequently, we discard from the sample the stocks with a
price lower than $1 or higher than $1000. The cleaned data over the
analysis period include a total of 1555 companies, with a minimum of
930 constituents on 25th of June 2018, and a maximum of 1031 con-
stituents on 21st of December 2021. For the risk-free interest rate, we

use the overnight index swap (OIS) curve with maturities matching each
estimation window, a commonly used approach in testing the CAPM
(see, Bali et al., 2016; Hendershott et al., 2020).

In Table 1, we present the summary statistics of all the variables
necessary for estimating the standard and the green-adjusted beta.

For our sample period, the results in Table 1 show that the green
revenue factors across all 1555 companies take values between 0.4 and
2, with 90 % of the firms having GRF values between 0.938 and 1.06.
This indicates that during the study period, based on our green/yellow/
brown colour system, most companies are relatively neutral (yellow).
We observe that the distributions of the green-adjusted and standard
returns are different with a lower mean and slightly higher standard
deviation for the green-adjusted returns. This can be the result of a
tilting effect that the GRF has on the standard return distribution. Given
the period we cover in this research, not surprisingly the risk-free rates
were close to zero.

5. Comparison between the green-adjusted and standard betas

In our analysis, we estimate the two sets of betas for all FTSE Russell
constituents using the methodologies presented in Section 3. They are
the unconditional measures of market beta which include the historical
(CAPM) slope coefficient beta (βHIST), Andersen et al. (2006) realized
beta (βR), Fama and French (1992) beta (βFF), Scholes and Williams
(1977) beta (βSW) and the Dimson (1979) beta (βD) and the conditional

Table 1
Descriptive statistics of the green-adjusted factors, returns and risk-free rate.

Green Revenue Factor Green Adj. Price Returns Standard Price Returns Risk-Free Rate

Mean 0.99 0.0003 0.0004 0.00003
SD 0.12 0.0168 0.0163 0.00002
Min 0.40 − 0.0994 − 0.0918 0.0000004
q5 0.94 − 0.0253 − 0.0248 0.000001
q50 0.97 0.0005 0.0005 0.00003
q95 1.06 0.0255 0.0250 0.00006
Max 2.00 0.0914 0.0874 0.00007

Notes: This table reports the summary statistics for the Green Revenue Factor, the daily log-returns for green-adjusted and standard equity prices and for the daily OIS
risk-free interest rate. We report the time series average of the cross-sectional Mean, Standard deviation (SD), Minimum (Min), 5th quantile (q5), 50th quantile (q50),
95th quantile (q95) and Maximum (Max) calculated over the sample period starting from May 26, 2016 to December 31, 2021.

Fig. 2. Evolution of average green DCC betas for all companies in the US. Notes: Daily averages of conditional green DCC betas for all constituents of Russell 1000
index starting from 27 May 2016–31 December 2021.

11 When the number of time series observations T is much smaller compared
to the number of cross-section observations N asset pricing inference on betas
can be impaired because of the large estimation error of the covariance matrix
of the test assets, as discussed by Kleibergen and Zhan (2020). Using daily data
improves the size of T.
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betas (βDCC) using the dynamic conditional correlation (DCC) model of
Engle (2002). To be consistent across these estimation procedures, we
estimated at the end of each month the conditional and unconditional
betas, using daily returns over the past 252 trading days with at least
200 observations available. Compared to the unconditional betas where
a constant market exposure over a 1-year period is assumed (see Bali
et al., 2017), the DCC beta has the advantage of applying high weights
on more recent observations and of providing us with a 1-year set of
daily beta estimates. In Fig. 2 we illustrate the daily time series evolution
of the cross-sectional average of green DCC betas between mid-2016 and
the end of 2021. There are two significant dips in green betas towards
the end of 2017, in the aftermath of the U.S. withdrawal from the Paris
Accord and in the spring of 2020, when the Trump administration
rejected the new emissions rules.

5.1. Green-adjusted and standard betas comparison: decile portfolios
analysis

We conduct our comparative analysis by constructing a set of ten
portfolios for each green-adjusted and standard share price contexts,
based on the ranking of green-adjusted and standard beta estimates,
respectively. On the last day of each month, we sort the individual eq-
uities into decile portfolios based on their betas. Decile 1 portfolio
contains stocks with lowest market beta, while decile 10 portfolio con-
tains stocks with the highest market beta. Each portfolio is held for one
month. Once the beta-sorted portfolios are constructed, we estimate the
portfolio average betas using both unconditional and conditional esti-
mators. We report the results for the green-adjusted share prices in
Table 2, while the results for the standard prices are presented in Ap-
pendix. Panels A to E in Table 2 report the portfolio results for the un-
conditional market green-adjusted beta estimators and Panel F those for
the dynamic conditional green-adjusted betas. The first row in each

panel shows the value-weighted average excess returns. The second row
of each panel reports the average log market capitalisation across all
stocks in each decile portfolio. The last row in each panel presents the
average market beta of the stocks in each decile portfolio.

The results presented in Table 2 show that unconditional estimates of
the average green-adjusted beta vary across different methods of esti-
mation. The largest difference between the average betas for the two
extreme decile portfolios is 1.7275 and it is associated with the Dimson
beta estimator, while the narrowest difference is 1.1491 and occurs for
the realized beta. The average returns across different portfolio deciles
vary as well, and for the unconditional betas the extreme decile port-
folios seem to produce larger average returns. These findings suggest a
non-linear relationship between the static betas and the expected rates
of return, hence the green-adjusted CAPM does not hold for any of the
static estimation methods.

A similar result regarding the standard unconditional betas was
provided by Hasler and Martineau (2023), who show that the uncon-
ditional CAPM fails to explain the cross section of average asset returns.
For all methods of calculating beta, the values of average beta for the
respective decile portfolios are less than 1 for the first five decile port-
folios and then gradually increase above 1 for the last five decile port-
folios. We present the analogue of this table containing the same
calculations for the standard betas in the table in Appendix A of the
Online Appendix. Comparing the empirical results from Table 2 with the
results from its analogue table in Appendix suggests that there are no
significant discrepancies between the green-adjusted and standard betas
across the estimation methods.

However, a more informed conclusion requires formal statistical
testing. To test whether the green-adjusted betas are statistically
different from the standard betas, we use the Kolmogorov-Smirnov (KS)
test with the Abadie (2002) correction based on 10,000 bootstraps to
create a heat map (see Fig. 3). We apply the KS test for each decile

Table 2
Univariate decile portfolios of stocks sorted by the green-adjusted betas.

Portfolio (j) 1(Low) 2 3 4 5 6 7 8 9 10(High)

Panel A: CAPM Beta Estimator
Avg. rj 0.0069 0.0081 0.0071 0.0083 0.0090 0.0070 0.0074 0.0092 0.0132 0.0138
Avg. ln(MktCap) 9.5978 9.4919 9.3914 9.5327 9.4256 9.4548 9.4088 9.3729 9.2145 9.1647

Avg. βCAPM 0.3360 0.5613 0.6849 0.7748 0.8542 0.9308 1.0143 1.1098 1.2298 1.4883

Panel B: Scholes-Williams Beta Estimator
Avg. rj 0.0095 0.0082 0.0109 0.0085 0.0074 0.0081 0.0066 0.0102 0.0093 0.0102
Avg.ln(MktCap) 9.6634 9.5864 9.5555 9.4594 9.5133 9.4590 9.4126 9.3564 9.1408 8.9086

Avg. βSW 0.3043 0.5931 0.7507 0.8821 0.9989 1.1115 1.2317 1.3771 1.5678 2.0234

Panel C: Dimson Beta Estimator
Avg. rj 0.0090 0.0081 0.0104 0.0072 0.0067 0.0052 0.0100 0.0109 0.0086 0.0130
Avg.ln(MktCap) 9.5556 9.4837 9.5360 9.5153 9.4585 9.5012 9.4393 9.3845 9.2242 8.9570

Avg. βDIM 0.2136 0.5101 0.6737 0.7995 0.9143 1.0269 1.1452 1.2834 1.4752 1.9411
Panel D: Realised Beta
Avg. rj 0.0072 0.0080 0.0068 0.0078 0.0096 0.0072 0.0064 0.0098 0.0134 0.0143
Avg.ln(MktCap) 9.5949 9.4886 9.3848 9.5334 9.4230 9.4415 9.4206 9.3737 9.2175 9.1770

Avg. βRealised 0.3361 0.5606 0.6846 0.7746 0.8543 0.9307 1.0140 1.1092 1.2281 1.4852

Panel E: Fama-French Beta Estimator
Avg. rj 0.0113 0.0060 0.0098 0.0105 0.0089 0.0058 0.0069 0.0089 0.0085 0.0157
Avg.ln(MktCap) 9.6226 9.5013 9.5039 9.5231 9.4830 9.4520 9.3761 9.3496 9.2509 8.9928

Avg. βFF 0.3377 0.5859 0.7202 0.8222 0.9117 0.9989 1.0942 1.2069 1.3473 1.6700
Panel F: DCC Beta Estimator
Avg. rj 0.0064 0.0090 0.0072 0.0068 0.0067 0.0063 0.0099 0.0093 0.0099 0.0068
Avg.ln(MktCap) 9.5468 9.5102 9.4294 9.4150 9.4469 9.4121 9.3910 9.3828 9.2912 9.2297

Avg. βDCC 0.2205 0.5112 0.6645 0.7857 0.8937 0.9994 1.1119 1.2435 1.4242 1.8471

Notes: The FTSE Russell index’s individual stocks are sorted into 10 decile portfolios at the end of each month (t), using the CAPM beta estimator (Panel A), Scholes-
Williams beta estimator (Panel B), Dimson beta estimator (Panel C), Realised beta estimator (Panel D), Fama-French beta estimator (Panel E), and the unconditional
DCC beta estimator (Panel E). Each portfolio is held for a full month. The daily returns for the previous one year with at least 200 observations are used to calculate both
conditional DCC and unconditional beta estimates. For each portfolio sort, we report the value-weighted average excess return (rj), average log market capitalisation

ln(MktCap), and average green-adjusted beta βEstimator. The sample covers the period from May 26, 2016 to December 31, 2021.
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portfolio based on the DCC betas. At the end of each month, starting
from June 2017 to December 2021, we create the DCC beta sorted decile
portfolios and test the null hypothesis that the green-adjusted and
standard DCC betas of companies within each decile portfolio are from
the same distribution against the alternative that the two distributions
are different.

In the heat map presented in Fig. 3, the green cells are associated
with very low p-values for the KS test, indicating that the green betas are
different from the standard betas, hence the risk preferences of green
investors are different from the risk preferences of standard investors.
There are some periods for which the hypothesis H1a is rejected across

all decile portfolios. For example, between October 2017 and September
2018, most cells in the heat map are green. One explanation for this
could be the surge in climate finance flows as reported by various or-
ganisations, and summarised in Table 3.

This was followed by a period of failing to reject the KS tests from
2019 until early 2021, including the Covid-19 period, suggesting that
there were no significant differences for beta calculations between a
green investor and a standard investor. During this period, the only
green cells appear mainly around the central deciles (the 5th and 6th
deciles), a region where investors are neither too risk-averse nor too risk
seekers. Our empirical findings support only a temporary “Greta

Fig. 3. A heat map of p-values obtained from the bootstrap Kolmogorov-Smirnov test comparing betas for all decile portfolios. Notes: At the end of each month,
starting from June 2017 to December 2021, we create the DCC beta sorted decile portfolios and test the null hypothesis that the green-adjusted and standard DCC
betas of companies within each decile portfolio are from the same distribution against the alternative that the two distributions are equal. We use the Kolmogorov-
Smirnov test with Abadie (2002) correction based on 10,000 bootstraps.
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Thunberg effect” (Ramelli et al., 2021), as the effect of the success of the
first Global Climate Strike (March 15, 2019) seems to have lasted
approximately three months. We observe that Covid-19 had a negative
impact on the transition to the green economy in the context of the U.S.
equity markets. The heat map in Fig. 3, also correctly captures the
hostility of Trump administration towards green economy, which cul-
minates in November 2020, when the U.S. officially pulled out of the
Paris Agreement. During late 2021, we can see a return to the rejection
of KS tests and hence, to a differentiation between assets perceived as
carrying green values and the other assets. This is not surprising, as this
point in time corresponds to the joint occurrence of the Glasgow climate
conference COP26 and the start of recovery from the pandemic Covid-19
as a result of successful vaccines.

The calculation of the GRF measure for all constituent companies of
the Russell 1000 index allows a direct classification of companies into
green companies (with net positive environmental impact) and brown
(with net negative environmental impact). Moreover, this classification
can be refined further to include various shades of green and brown. For

simplicity, we divide the companies into green companies (with GRF >

1.05), neutral companies (with very small close to zero, positive or
negative net Green revenues; 0.95< GRF< 1.05), and brown companies
(with GRF < 0.95). In Fig. 4, we illustrate the scatterplot of the green-
adjusted betas and standard betas for each company that was part of
the Russell 1000 index across these three company categories. Most
green companies are in the lower betas range, while there are more
brown companies than green in the higher beta range. Furthermore, for
all categories there is a very close fit between the two vectors of betas,
suggesting that the betas for the green investor are statistically the same
with the betas of the standard investor. This is evidence suggesting that
the hypothesis H1a cannot be rejected and hence the betas for green
adjusted share prices and the betas for the market share prices are not
statistically different.

5.2. Green-adjusted Fama-French factors

In this section, we analyse the MKT, HML, SMB and MOM factors on
both, green-adjusted and standard returns. Table 4 reports the summary
statistics of these four equity market factors for all the companies in the
Russell 1000 index, under both standard and green-adjusted share pri-
ces. We conclude that the four factors driving asset pricing have the
same stylised features for the green investor as it has for the standard
investor.

To further investigate this issue we calculate, for each decile port-
folio, the correlations between the beta loadings for each market factor
in that decile portfolio under standard asset pricing calculation and the
beta loadings for the same factor and the same decile portfolio under
green-adjusted calculations. The results presented in Table 5 show that
these correlations are very high, in excess of 90 % for the SMB and
MOM. For the HML, the lowest correlation is at 88.96 % for the sixth
decile portfolio, while for the MKT factor the lowest correlation is
78.04 % for the second decile portfolio. This is clear evidence that we
fail to reject the hypothesis H1b and therefore we infer that the driving
factors for equity asset pricing in the U.S. are the same for both green

Table 3
Climate finance evolution between 2013 and 2019.

Year 2013 2014 2015 2016 2017 2018 2019

Climate finance
flows (in $bn)

342 388 472 455 608 540 615*

Climate Finance
for Developing
Countries

52.2 61.8 na 58.6 71.2 78.9 na

Mobilised private
finance

12.8 16.7 na 10.1 14.5 14.6 14.0

Notes: Second row values show annual climate finance flows climate finance
flows from the Climate Policy Initiative (www.climatepolicyinitiative.org), see
Macquarie et al. (2020). Third row values are from the OECD report “Climate
finance for developing countries rose to USD 78.9 billion in 2018”, see Bremer
(2020). Fourth row data is from Ares and Loft (2021) and it shows the mobilised
private finance that is captured only from individuals and corporations.

Fig. 4. Green-adjusted betas versus standard betas. Notes: This scatterplot diagram shows the time series average of the daily green-adjusted DCC betas against those
of standard DCC betas, respectively. It is based on the clean data set of 1301 companies used to estimate the DCC models over the period 2016–2021. We classify
companies as green if their GRF is greater than 1.05, neutral (yellow) if the GRF is between 0.95 and 1.05 and brown if their GRF is below 0.95. By applying these
arbitrary criteria, we identify 156 brown companies, 1065 yellow and 80 green companies. We observe that for all three sub-sets of companies the relationship
between standard and green-adjusted betas are very similar, with very close lines-of-best-fit.
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and standard investors.

6. Empirical testing under conditional betas

6.1. Empirical testing for conditional standard betas

In order to test whether various estimators for CAPM, unconditional
or not, work with real data we need a testing framework based on the
realized stock and market returns. For the conditional betas, we employ
the testing methodology presented in Hasler and Martineau (2022),
adapted for the dynamic conditional betas in (17) and for a day-to-day
inference (Δt = 1), by estimating the following equations:

ri,t+1 = ai + b
[
βDCCit rm,t+1

]
+σitϵi,t+1 (16)

and

rm,t+1 = Et
(
rm,t+1

)
+ σmtϵm,t+1 (17)

where σit is the firm specific volatility of the company í s returns, and
ϵi,t+1 and ϵm,t+1 are independent error terms with mean zero and vari-
ance one. Recalling the definition of conditional beta in (15) the true
conditional beta satisfies the relationship βit = bβDCCit .

Combining the equations in (16) and (17) leads to

ri,t+1 = ai + bβDCCit Et
[
rm,t+1

]
+ bβDCC

it σm,tϵm,t+1 + σitϵi,t+1 (18)

Hasler and Martineau (2022) show that if the intercept term ai is not
statistically significant and the slope b is statistically significant then the
conditional CAPM holds. Moreover, if the slope b= 1, then the empirical
beta (irrespective of the model used to estimate the conditional beta) is
the true beta. However, if the coefficient b is not statistically significant,
then it follows that Et

(
ri,t+1

)
= ai and in that case the market is not a

priced risk factor.
Eq. (16) is the main vehicle for testing CAPM models based only on

the market factor, but it can be expanded to multiple factors, under a
Fama-MacBeth methodology for the 10- beta sorted portfolios. We
improve the testing in two directions. First, panel regression models can
be employed to test (16), see Pukthuanthong et al. (2018) and Martin
and Wagner (2019) for a motivation why this is highly relevant in an
asset pricing context. Second, we expand the testing to include multiple
factors.

For clarity we index the sorted decile portfolios with j ∈
{1,2,…,10}. Then, the regression specification for testing the dynamic
beta is

rj,t+1 = aj + bM
[
βDCC,Mjt rm,t+1

]
+ bHML

[
βDCC,HML
jt HMLt+1

]

+ bSMB

[
βDCC,SMB
jt SMBt+1

]
+ bMOM

[
βDCC,MOM
jt MOMt+1

]
+ σjtϵj,t+1

(19)

If F is the notation for a generic factor, then βDCC,Fjt is the corre-
sponding beta loading obtained by regressing excess returns for portfolio
j on factor F using all returns in the estimation window (one year) prior
to time t.

In Table 6, we present the results for pooled regression (with αi = α
for all i = 1, …, 10) and also for panel regressions with fixed effects αi,
for value weighted portfolios and Newey-West corrected standard er-
rors. For both types of calculations, using standard and green-adjusted
share prices, we find that the slope coefficients of the market risk fac-
tor alone are statistically not different from 1, while the intercepts are
significant. In addition, when all four factors are included, we find that
all their coefficients are statistically significant. This is evidence sup-
porting hypotheses H2a and H2b.

The R2 slightly increases when we add more risk factors (Fama-
French and Carhart), for both green-adjusted and standard share prices
calculations. Regarding the Wald tests, the conditional CAPM is valid, as
we fail to reject the null hypothesis.

Table 8 shows that there is very little difference between the slopes of
the four market risk factors for the green investor calculation versus the
standard investor calculations. This suggests that, whatever the out-
comes regarding the relevance of market factors or of the conditional
CAPM itself, the results are very likely to be the same.

In the next section we apply the Fama-MacBeth regression frame-
work, as extended in Hasler and Martineau (2022) with the assumption
that the realized market returns and market return variance follow an
ARMAX model, to test if the conditional CAPM holds.

6.2. Empirical testing of conditional CAPM for green-adjusted share
prices

The Fama-MacBeth testing framework has been expanded by Hasler

Table 4
Summary statistics on market factors.

MKT HML SMB MOM

Panel A: Standard equity market
Mean 0.0005 − 0.0002 − 0.0004 0.0001
SD 0.0116 0.0045 0.0045 0.0078
Min − 0.130 − 0.0198 − 0.0233 − 0.0422
q5 − 0.0163 − 0.0068 − 0.0072 − 0.0126
q50 0.0006 − 0.0001 − 0.0004 0.00
q95 0.0145 0.0065 0.0069 0.0116
Max 0.0904 0.0217 0.0234 0.0454
Panel B: Green-adjusted equity market
Mean 0.0005 − 0.0002 − 0.0004 0.00005
SD 0.0116 0.0046 0.0045 0.0077
Min − 0.130 − 0.0222 − 0.0233 − 0.0426
q5 − 0.0164 − 0.0069 − 0.0077 − 0.0123
q50 0.0005 − 0.0002 − 0.0003 0.00
q95 0.0146 0.0066 0.0069 0.0111
Max 0.0904 0.0226 0.0270 0.0434

Notes: This table reports the Mean, Standard deviation (SD), Minimum (Min),
5th quantile (q5), 50th quantile (q50), 95th quantile (q95) and the Maximum
(max) of each of the four factors we constructed using the FTSE Russell 1000
dataset. The sample period is from May 26, 2016 to December 31, 2021. the
MKT, HML, SMB, and MOM factors are respectively described in test.

Table 5
Correlations between the cross-sectional average DCC green-adjusted and
standard betas, respectively.

Cor(βDCC,MKT
g− adj ,

βDCC,MKT
s )

Cor(βDCC,SMB
g− adj ,

βDCC,SMB
s )

Cor(βDCC,HML
g− adj ,

βDCC,HML
s )

Cor(βDCC,MOM
g− adj ,

βDCC,MOM
s )

1 0.9513 0.9624 0.9245 0.9622
2 0.7804 0.9380 0.9049 0.9068
3 0.7952 0.9404 0.9391 0.9557
4 0.8926 0.9420 0.9193 0.9777
5 0.8825 0.9178 0.9171 0.9801
6 0.9144 0.9012 0.8896 0.9650
7 0.9460 0.9097 0.8955 0.9741
8 0.9439 0.9318 0.9544 0.9821
9 0.9687 0.9705 0.9801 0.9921
10 0.9716 0.9791 0.9872 0.9938

Notes: For each of the four factors i.e. MKT, SMB,HML, and MOM, this table
reports the correlation between average cross-sectional green-adjusted DCC
betas and standard DCC-betas for each portfolio. Column (2) reports the corre-
lation between the green-adjusted DCC betas and the standard DCC betas for the

market factor, i.e. Cor
(

βDCC,MKT
g− adj , βDCC,MKT

s

)
. The respective correlations for SMB,

HML, andMOM are reported in columns 3, 4, 5 for each of the 10 portfolios, with
1 low and 10 high. If F is the notation for a generic factor, then βDCC,Fit is the
corresponding beta obtained by regressing excess returns for portfolio i on factor
F using all returns in the estimation window (one year) prior to time t. The
sample size is 56 as a result of creating the decile portfolio sorts at the end of
each month over the sample period from May 26, 2016 to December 31, 2021.
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and Martineau (2022) to investigate the relationship between uncon-
ditional and conditional CAPM. Based on the following equation

E
(
ri,t+1

)
− αi = βiE

(
rm,t+1

)
(20)

they derive the intercepts as

αi =

[

1+
E
(
rm,t+1

)2

var
(
rm,t+1

)

]

cov
(
βDCCit ,E

(
rm,t+1

) )

−
E
(
rm,t+1

)

var
(
rm,t+1

)
[
cov
(

βDCCit , E
(
rm,t+1

)2
)
+ cov

(
βDCCit , σm,t

2)
]

(21)

We apply Eq. (21) at portfolio level and we obtain the estimate α̂j for
all decile portfolios (j=1,10) presented in Table 9, Panel A. The
improved testing for the unconditional beta is then performed by

estimating the regression

ri,t+Δt − α̂ i = a+ bβ̂ i + ei,t+Δt (22)

We work with month-on-month Fama-MacBeth regressions of stock
returns on unconditional betas with data provided by the DCC CAPM
and at portfolio level, using the portfolio intercepts from Panel A. In
Table 9, Panel B we present the estimates of Eq. (22) where the
dependent variable is the portfolio excess returns adjusted by the alpha
estimates reported in Panel A. We find that the intercepts and the slopes
are statistically significant. In addition, we consider the dependent
variable as the portfolio excess return without any adjustment (see Panel
C) and the results indicate that both the intercepts and the slopes are
insignificant. The results, in Panel B and C bring evidence that the un-
conditional CAPM does not explain the market, in contrast with the

Table 6
Pooled and Panel Regressions with value weighted portfolios (with Newey West SE).

Pooled OLS b coefficient Panel with Fixed Effects b coefficient

VARIABLES (1) (2) (3) (4) (5) (6)

PANEL A: Standard share prices
MKT 0.9984** 1.0218*** 1.0597*** 0.9957*** 1.0208*** 1.0587***

(0.0402) (0.0384) (0.0417) (0.0403) (0.0382) (0.0414)
SMB 0.2937** 0.2260* 0.2748** 0.2092*

(0.1459) (0.1306) (0.1380) (0.1239)
HML 0.2202** 0.2281** 0.2320** 0.2390**

(0.1008) (0.1060) (0.0994) (0.1056)
MOM 0.3786** 0.3780**

(0.1657) (0.1630)
Constant − 0.000606*** − 0.000222 − 0.000254

(0.000256) (0.000231) (0.000229)
Observations 550 550 550 550 550 550
R2 0.600 0.633 0.641 0.593 0.626 0.634
∑

i
1
n
ai

− 0.00061 (0.000265) − 0.00023 (0.000260) − 0.00025 (0.000257)

p-values for Wald statistics

H0 :
∑

i
1
n
ai = 0 0.943 0.808 0.839

H0 :
∑

i
1
n
ai = 0,

∑
i
1
n
a2i = 0 0.993 0.852 0.903

PANEL B: Green-adjusted share prices
MKT 1.0069*** 1.0310*** 1.0665*** 1.0044*** 1.0297*** 1.0651***

(0.0381) (0.0374) (0.0406) (0.0383) (0.0374) (0.0406)
SMB 0.2997** 0.2458** 0.2817** 0.2281**

(0.1233) (0.1088) (0.1185) (0.1048)
HML 0.1657* 0.1698* 0.1770** 0.1806*

(0.0873) (0.0903) (0.0886) (0.0926)
MOM 0.3403* 0.3387*

(0.1876) (0.1571)
Constant − 0.000751*** − 0.000374 − 0.000405*

(0.000256) (0.000235) (0.000233)
Observations 550 550 550 550 550 550
R2 0.598 0.624 0.630 0.591 0.617 0.623
∑

i
1
n
ai

− 0.00075 (0.000264) − 0.00038 (0.000264) − 0.00041 (0.000262)

p-values for Wald statistics

H0 :
∑

i
1
n
ai = 0 0.868 0.707 0.738

H0 :
∑

i
1
n
ai = 0,

∑
i
1
n
a2i = 0 0.999 0.960 0.981

Notes: The table presents results from a regression of portfolio excess returns on the market, Fama and French (1993), (2015), and Carhart (1997) risk components for
the ten beta-sorted portfolios. For the momentum (MOM) factor, at the end of each month all stocks are ranked based on previous year performance, the stocks in the
bottom decile (lowest previous performance) are assigned to the loser portfolio, those in the top decile to the Winner portfolio. The portfolio returns are values

weighted and held till the end of the next month. We estimate: Ri,t+1 = αi + b
[

β̂
MKT
i,t MKTt+1

]
+ h
[

β̂
HML
i,t HMLt+1

]
+ s
[

β̂
SMB
i,t SMBt+1

]
+ m

[
β̂
MOM
i,t MOMt+1

]
+ εi,t+1. Each

factor loading β̂
F
i ≡

Cov(Ri, F)
Var(F)

is estimated using the 1-year (daily frequency) data strictly prior to the day of portfolio creation for each of the respective factors F. Panel

A reports results using a pooled regression and Panel B presents results using a panel regression with fixed effects. The table also reports the adjusted R2, the number of
observations, and the p-values. Standard errors in parentheses with *** p<0.01, ** p<0.05, * p<0.1. The sample period is from May 26, 2016 to December 31, 2021.

The table also reports the p-values of the Wald statistics testing the joint Hypothesis H0 :
∑

i
1
n
ai = 0, and H0 :

∑
i
1
n
ai = 0 and

∑
i
1
n
a2i = 0 for green-adjusted and

standard equity fixed effects regression models. n is the number of portfolios in the cross section.
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results for the DCC CAPM where the market factor is relevant. In the
Appendix we provide further evidence for the other three factors. These
results are the same qualitatively for both green-adjusted stock prices
and standard stock prices.

7. Robustness checks

The overall conclusion so far is that there are no significant differ-
ences between betas calculated under standard share prices and the

Table 8
Summary statistics on both green-adjusted and standard DCC full loadings for all four market factors for all ten decile portfolios.

1 2 3 4 5 6 7 8 9 10

Panel A: b×βDCC,MKT
j,t for green-adjusted equity market

Mean 0.4540 0.6432 0.7646 0.8486 0.9275 1.0056 1.0794 1.1481 1.2373 1.4141
SD 0.1222 0.0815 0.0720 0.0910 0.1077 0.1467 0.1636 0.1910 0.2025 0.2888

Panel B: s×βDCC,SMB
j,t for green-adjusted equity market

Mean − 0.0104 − 0.0124 0.0118 0.0285 0.0371 0.0214 0.0165 0.0184 0.0155 0.0447
SD 0.0573 0.0850 0.1080 0.1294 0.1469 0.1623 0.1691 0.1902 0.2113 0.2568

Panel C: h ×βDCC,HML
j,t for green-adjusted equity market

Mean 0.0269 0.0284 0.0394 0.0442 0.0458 0.0159 0.0113 − 0.0032 − 0.0162 − 0.0363
SD 0.0417 0.0529 0.0722 0.0906 0.1107 0.1378 0.1549 0.1931 0.2064 0.2723

Panel D: m×βDCC,MOM
j,t for green-adjusted equity market

Mean 0.0114 0.0022 − 0.0155 − 0.0240 − 0.0269 − 0.0127 − 0.0172 − 0.0223 − 0.0023 − 0.0034
SD 0.0501 0.0582 0.0883 0.1196 0.1411 0.1596 0.1814 0.1956 0.2289 0.2991

Panel E: b×βDCC,MKT
j,t for standard equity market

Mean 0.4538 0.6399 0.7703 0.8609 0.9516 1.0125 1.0928 1.1686 1.2476 1.4373
SD 0.1097 0.0697 0.0749 0.0960 0.1309 0.1503 0.1835 0.2030 0.2191 0.2942

Panel F: s×βDCC,SMB
j,t for standard equity market

Mean − 0.0251 − 0.0111 0.0091 0.0359 0.0250 0.0314 0.0064 0.0344 0.0234 0.0438
SD 0.0611 0.0802 0.0966 0.1166 0.1397 0.1467 0.1474 0.1799 0.1948 0.2495

Panel G: h×βDCC,HML
j,t for standard equity market

Mean 0.0330 0.0520 0.0596 0.0717 0.0436 0.0473 − 0.0059 0.0270 − 0.0095 − 0.0396
SD 0.0561 0.0604 0.0836 0.1125 0.1620 0.1735 0.2017 0.2592 0.2685 0.3747

Panel H: m×βDCC,MOM
j,t for standard equity market

Mean 0.0130 − 0.0062 − 0.0153 − 0.0269 − 0.0261 − 0.0147 − 0.0098 − 0.0282 − 0.0007 − 0.0040
SD 0.0501 0.0545 0.0912 0.1203 0.1490 0.1653 0.1893 0.2043 0.2334 0.3141

Notes: This table reports the mean and standard deviation (SD) of the DCC beta adjusted factor loadings in:

Ri,t+1 = αi + b
[

β̂
DCC,MKT
i,t MKTt+1

]
+ h

[
β̂
DCC,HML
i,t HMLt+1,

]
+ s
[

β̂
DCC,SMB
i,t SMBt+1

]
+ m

[
β̂
DCC,MOM
i,t MOMt+1

]
+ εi,t+1

Panels A – D present the summary statistics for each of the 10 green-adjusted beta sorted portfolio. The summaries for the standard equity market are reported in panels
E - H. bM , bHML, bSMB, and bMOM are estimated from the Eq. 19 and respectively multiplied to βDCC,MKT

jt , βDCC,HML
j,t , βDCC,SMB

j,t , and βDCC,MOM
j,t .

Table 7
Individual portfolio fixed effects αjestimated for Panel Regression with Fixed Effects.

Model : (4) Model : (5) Model : (6)

Portfolio Decile Panel A: Green-adjusted beta-sorted portfolio
1(Low) − 0.0002(0.0008) − 0.00009(0.0008) − 0.0001(0.0007)
2 − 0.0006(0.0008) − 0.0004(0.0008) − 0.0004(0.0007)
3 − 0.0001 (0.0008) 0.00009 (0.0008) 0.00006 (0.0007)
4 − 0.0007 (0.0008) − 0.0003 (0.0008) − 0.0003 (0.0007)
5 − 0.0004 (0.0008) − 0.00005 (0.0008) − 0.00009 (0.0007)
6 − 0.0004 (0.0008) − 0.00004 (0.0008) − 0.0001 (0.0007)
7 − 0.0015 ∗ (0.0008) − 0.0011 (0.0008) − 0.0011 (0.0007)
8 − 0.0006 (0.0008) − 0.0002 (0.0008) − 0.0002 (0.0007)
9 − 0.0001 (0.0008) − 0.0006 (0.0008) − 0.0006 (0.0008)
10(High) − 0.0016 ∗ ∗ (0.0008) − 0.0009 (0.0008) − 0.0009 (0.0008)
H0 : ∀iai = 0,p-values 0.329 0.926 0.908
Panel B: Standard beta-sorted portfolio
1(Low) − 0.00002 (0.0008) 0.0001 (0.0007) 0.00004 (0.0007)
2 − 0.0003 (0.0008) − 0.0002 (0.0008) − 0.0002 (0.0007)
3 − 0.0003 (0.0008) − 0.0001 (0.0008) − 0.0001 (0.0007)
4 − 0.0005 (0.0008) − 0.0001 (0.0008) − 0.0001 (0.0008)
5 − 0.0004 (0.0008) 0.00001 (0.0008) − 0.00003 (0.0008)
6 − 0.0002 (0.0008) 0.0001 (0.0008) 0.00008 (0.0008)
7 − 0.0012 (0.0008) − 0.0009 (0.0007) − 0.0010 (0.0008)
8 − 0.00005 (0.0008) 0.0004 (0.0007) 0.0005 (0.0008)
9 − 0.0015 ∗ (0.0008) − 0.0009 (0.0007) − 0.0009 (0.0008)
10(High) − 0.0014 ∗ (0.0008) − 0.0007 (0.0008) − 0.0006 (0.0008)
H0 : ∀iai = 0,p-values 0.524 0.949 0.936

Notes: This Table reports the output of panel regression with fixed effects ai, with Newey-West adjusted standard errors. The p-values of the Wald statistics testing the
hypothesis H0 : ∀iai = 0, where i = 1,…,10 denote the respective portfolio deciles in the cross section. The sample period is fromMay 26, 2016 to December 31, 2021.
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Table 9
Fama-MacBeth regressions using value-weighted portfolio returns.

Panel A: Estimated value for α̂j

Beta-sorted portfolios Green-adjusted α̂j,greenAdjusted Standard α̂j

1(Low) 0.00187 0.00165
2 − 0.00034 − 0.00048
3 − 0.00131 − 0.00038
4 − 0.00226 − 0.00043
5 − 0.00405 − 0.00297
6 − 0.00501 − 0.00451
7 − 0.00517 − 0.00432
8 − 0.00704 − 0.00508
9 − 0.00708 − 0.00509
10(High) − 0.00975 − 0.00830
Panel B: Fama-MacBeth regressions with portfolio excess returns adjusted by alpha estimates in panel A.

Dependent variable
RgreenAdjusted
j,t+1 − α̂j,greenAdjusted Rstandard

j,t+1 − α̂j

Intercept (a) − 0.00776*** (0.00249) − 0.00725*** (0.00247)

β̂
,DCC,M
j

0.01111***
(0.00333)

0.01083***
(0.00338)

R-squared 0.492 0.491
N 550 550
Panel C: Fama-MacBeth regressions without alpha adjustment to portfolio excess returns

Dependent Variable
RgreenAdjusted
j,t+1 Rstandard

j,t+1

Intercept (a) 0.00103
(0.00246)

0.00111
(0.00237)

β̂
M
j

− 0.00396 (0.00339) − 0.00391 (0.00339)

R-squared 0.396 0.401
N 550 550

Notes: The table reports α̂j from Eq. (21) in Panel A and estimates from the Fama-MacBeth regressions for the 10 beta-sorted portfolios in Panel B for both green-

adjusted and standard equity prices. Panel B estimates Rj,t+1 − α̂j = a+γβ̂
DCC,M
j +ej,t+1 where the dependent variable is the portfolio excess returns adjusted by the

alpha estimates reported in Panel A. We also report the case where the dependent variable is simply the portfolio excess return in Panel C where Rj,t+1

= a+γβ̂
M,DCC
j +ej,t+1 for both green-adjusted and standard equities. The standard errors are presented in brackets and are calculated using the Newey-West method. In

estimating Eq. (21), the estimated green-adjusted conditional beta of the 8th decile portfolio (βDCC,M8,t ) is selected for the variable X and the lag is set to L = 5, as these

choices minimize the AIC criterion. The estimated standard conditional beta of the lowest decile portfolio
(

βDCC,M1,t

)
is selected for the variable X and the lag is set to L =

4. The sample period is from May 2016 to December 2021. ***, **, and * respectively denote two-tailed test significance level for less than 1 %, 5 %, and 10 %.

Table 10
Second-order stochastic dominance test for portfolio returns.

Panel A: Stochastic dominance test in each decile portfolio: H0 : rj,standardSSDrj,green
Portfolio 1 (Low) 2 3 4 5 6 7 8 9 10 (High)
Value-weighted 0.398 0.418 0.676 0.480 0.599 0.397 0.624 0.438 0.418 0.4915
Equally-weighted 0.526 0.560 0.284 0.791 0.559 0.209 0.270 0.347 0.526 0.4915

Panel B: Stochastic dominance test for returns in a High minus Low strategy (monthly rebalancing)
H0 : r̃standardSSDr̃green (using value-weighted return) p-value: 0.4875
H0 : r̃standardSSDr̃green (using value-weighted return) p-value: 0.4765

Panel C: Stochastic dominance test for returns in a High minus Low strategy (daily rebalancing)
H0 : r̃standardSSDr̃green(using equally weighted return) p-value: 0.1329
H0 : r̃standardSSDr̃green(using value-weighted return) p-value: 0.6204

Notes: This Table presents the p-values of the second order stochastic dominance (SSD) test of Linton et al. (2005). The p-values reported for each decile portfolio in
Panel A conform to the null hypothesis that rj,standard SSD rj,green for the j-th decile beta portfolio sort. The corresponding alternative hypothesis states that
rj,standard does not SSD rj,green. In Panel B, r̃ denotes, measures the difference between returns of a strategy that simultaneously longs the 10(High) portfolio and shorts

the 1(Low) i.e. r̃t = rHight − rLowt which is calculated for both green and standard portfolios. Panel B present results for equally-weighted and value-weighted returns. The
null hypothesis states that the strategy returns based using standard equities second-order stochastic dominates strategy returns using green equities. The Linton et al.
(2005) SSD test is based on 1000 bootstraps, using HAC standard errors. Each portfolio in Panel A and B is rebalanced at the end of each month starting fromMay 2016
to December 2021. Portfolios in Panel C are balanced daily over the same sample period.
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betas recalculated using green-adjusted share prices. In this section, we
will verify if this conclusion still holds under a second-order stochastic
dominance test and when the analysis is restricted to the Covid period
only.12

We apply the second order stochastic dominance (SSD) test of Linton
et al. (2005) on a like for like basis for all ten decile portfolios under both
value weighted and equally weighted schemes (see Table 10, Panel A).
We also compare the long high short low portfolios, green versus stan-
dard under both calculation schemes (equal and value weighted) in
Panel B. The results from these tests indicate that the compared port-
folios have similar performance in terms of returns. Since these tests

were applied with monthly rebalancing of portfolios, one may question
whether the SSD test may change when daily rebalancing occurs. Panel
C of the same Table 10 reports the results of the SSD test with daily
rebalancing and again we find that there is no difference between the
results that a green investor would observe in his green-adjusted world
and the results observed by a standard investor.

The Covid-19 pandemic period between 2020 and 2022 triggered a
huge exogenous shock to the real-economies world-wide, including the
US. During this period financial assets were impacted by various prob-
lems associated with very high uncertainty. In this section we would like
to revisit our analysis in terms of green-adjusted share prices versus
standard share prices and explore whether the Covid-19 pandemic
widened the difference between green betas and standard betas or
contracted this difference.

We repeat our previous calculations based on DCC beta within this
latter period. The results are presented in Table 10. Over this period
neither the intercepts nor the slopes are significant, showing that the
CAPM models are not representative for the stock market. Switching
from unconditional to conditional CAPM, the R2 does increase sub-
stantially. Once again, these findings apply for both the green investor
and for the standard investor.

8. Summary conclusions

In this paper, we reconstruct the associated betas for green-adjusted
share prices. The adjustments are based on the quantitative adjustments
allocated to green revenues of all companies that are the constituents of
the Russell 1000 index. Using company green revenues opens a new area
of research related to equity prices and investors with green preferences.
One possible limitation is that the green revenues calculations are done
by one company and not by the market itself. This shortcoming may be
overcome with time if the methodology employed by FTSE Russell will
be adopted more widely and if more companies decide to become
greener.

Our comparative discussions concentrate on how the concept of the
market beta of a stock will translate into a green-adjusted investment
environment. Our empirical results indicate in several ways that the risk
preferences of a green investor are only temporarily different than their
analogues under the risk preferences of a standard market agent. Sig-
nificant differences are associated with periods of high levels of uncer-
tainty about climate change policies reflected in the CPU index.

Operating in green-adjusted equity markets will not create disad-
vantages to investors who are not necessarily preoccupied with climate
change risk. In other words, if on a monetary utility basis there are no
significant differences between the green investor and the standard
investor, there are no reasons why we should not transit towards oper-
ating under the green investor world. This transition will require inde-
pendent calculations of green revenues and other accounting reporting
focused on climate finance criteria and measurables.

Further research may consider other aspects related to portfolio
construction involving firms’ measurements of green revenues beyond
CAPM style models. For example, portfolio construction embedding
green-revenue measures together with other strategies known to lead to
performing portfolios could be investigated. Textual analysis combined
with market sentiment analysis may provide useful tools that combined
with green revenues classification may help identify portfolio that are
admissible for the style of investment required in some countries.

In addition, further research may delve into a comparative analysis
of an international stage, for which data is available for some other
developed economies. We hope to report on such research in the near
future.

Acknowledgements: We are grateful to the editor and two anonymous
reviewers for giving us the opportunity to improve the paper and for
very useful suggestions. We are very grateful for comments and sug-
gestions for improvements to session participants at IFABS 2023 con-
ference in Oxford and at the Finance and Accounting Annual Research

Table 11
Fama-MacBeth regressions using value-weighted portfolio returns for the Covid-
19 period.

Panel A: Estimated value for α̂j

Beta-sorted portfolios Green-adjusted α̂j,greenAdjusted Standard α̂j

1(Low) − 0.00038 − 0.00053
2 − 0.00207 − 0.00228
3 − 0.00274 − 0.00353
4 − 0.00395 − 0.00528
5 − 0.00503 − 0.00705
6 − 0.00614 − 0.00702
7 − 0.00659 − 0.00885
8 − 0.00762 − 0.00977
9 − 0.00902 − 0.01113
10(High) − 0.01218 − 0.01196
Panel B: Fama-MacBeth regressions with portfolio excess returns adjusted by alpha
estimates in panel A.

Dependent variable
RgreenAdjusted
j,t+1 − α̂j,greenAdjusted Rstandard

j,t+1 − α̂j

Intercept (a) − 0.00735 (0.00624) − 0.00712 (0.00632)

β̂
M,DCC
j

0.01203
(0.00819)

0.01337
(0.00848)

R-squared 0.419 0.453
N 210 210
Panel C: Fama-MacBeth regressions without alpha adjustment to portfolio excess
returns

Dependent Variable
RgreenAdjusted
j,t+1 Rstandard

j,t+1

Intercept (a) 0.00277
(0.00664)

0.00261
(0.00656)

β̂
M
j

− 0.00837 (0.00664) − 0.00809 (0.00876)

R-squared 0.379 0.387
N 210 550

Notes: The table reports α̂j from Eq. (22) in Panel A and estimates from the Fama-
MacBeth regressions for the 10 beta-sorted portfolios in Panel B for both green-
adjusted and standard equity prices. Panel B estimates Rj,t+1 − α̂j

= a+γβ̂
M,DCC
j +ej,t+1 where the dependent variable is the portfolio excess returns

adjusted by the alpha estimates reported in Panel A. We also report the case
where the dependent variable is simply the portfolio excess return in Panel C

where Rj,t+1 = a+γβ̂
M,DCC
j +ej,t+1 for both green-adjusted and standard equities.

The standard errors are presented in brackets and are calculated using the
Newey-West method. In estimating Eq. (22), the estimated green-adjusted
conditional beta of the lowest decile portfolio (βM,DCC

1,t ) is selected for the vari-
able X and the lag is set to L = 5, as these choices minimize the AIC criterion.

The estimated standard conditional beta of the 8th decile portfolio
(

βM,DCC
8,t

)
is

selected for the variable X and the lag is set to L = 5. The sample period is from
May 2016 to December 2021. ***, **, and * respectively denote two-tailed test
significance level for less than 1 %, 5 %, and 10 %.

12 Considering the recent pandemic as an exogenous economic shock, Dottling
and Kim (2022) present evidence that funds with higher sustainability ratings
were exposed to abrupt falls in retail flows during the Covid-19 period, after
controlling for fund characteristics. This shows that the retail mutual fund in-
vestors’ demand for socially responsible type of funds may change suddenly
when faced with immediate economic distress.
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