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Abstract

Recently Gubbiotti, Joshi, Tran and Viallet classified birational maps in four
dimensions admitting two invariants (first integrals) with a particular degree
structure, by considering recurrences of fourth order with a certain symmetry.
The last three of the maps so obtained were shown to be Liouville integrable, in
the sense of admitting a non-degenerate Poisson bracket with two first integrals
in involution. Here we show how the first of these three Liouville integrable
maps corresponds to genus 2 solutions of the infinite Volterra lattice, being the
g =2 case of a family of maps associated with the Stieltjes continued fraction
expansion of a certain function on a hyperelliptic curve of genus g > 1. The
continued fraction method provides explicit Hankel determinant formulae for
tau functions of the solutions, together with an algebro-geometric descrip-
tion via a Lax representation for each member of the family, associating it
with an algebraic completely integrable system. In particular, in the elliptic
case (g =1), as a byproduct we obtain Hankel determinant expressions for the
solutions of the Somos-5 recurrence, but different to those previously derived
by Chang, Hu and Xin. By applying contraction to the Stieltjes fraction, we
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recover integrable maps associated with Jacobi continued fractions on hyper-
elliptic curves, that one of us considered previously, as well as the Miura-type
transformation between the Volterra and Toda lattices.

Keywords: integrable map, continued fraction, Poisson bracket,
hyperelliptic curve, discrete integrability

Mathematics Subject Classification numbers: 39A20, 14E05, 37J70, 14H70
1. Introduction

In classical mechanics, the study of integrable Hamiltonian systems, given by Hamiltonian vec-
tor fields with a sufficient number of functionally independent first integrals in involution with
respect to a Poisson bracket, has a long history that goes back to the origins of calculus. It was
further enriched in the latter half of the last century by the discovery of the method of inverse
scattering for solving certain Hamiltonian partial differential equations, which gave new per-
spectives and new techniques for deriving finite-dimensional integrable systems obtained as
reductions of the latter. The case of discrete integrable systems, in the form of difference
equations or maps preserving a symplectic (or Poisson) structure and satisfying the conditions
for a discrete analogue of Liouville’s theorem, soon began to attract attention [7, 39, 63], but
it is fair to say that, despite the fact that many examples are now known, the theory of dis-
crete integrability is much less well developed. For integrable birational maps in the plane,
the archetypal example is provided by the QRT family of maps [50], whose level sets are
biquadratic curves (generically, of genus one), are associated with elliptic fibrations [16]. If
one imposes a requirement of subexponential degree growth (zero algebraic entropy, in the
terminology of [6, 64]), then in two dimensions the only possibilities are maps that preserve
a pencil of genus one curves (like QRT), maps that preserve a pencil of rational curves, or
completely periodic maps [14]. An example of a quadratic map in the projective plane that
preserves a pencil of cubic curves was studied in [45]. This fits in with an observation of
Veselov [63], that for an infinite order birational map of the plane with an algebraic invariant,
the level curves can have genus at most one (as a consequence of the Hurwitz theorem on the
automorphism group of a Riemann surface).

Poisson maps in three dimensions with two first integrals, of which one is a Casimir, can be
reduced to the two-dimensional case by restricting to symplectic leaves, and the common level
sets are curves, so in an algebro-geometric setting this will typically lead to elliptic fibrations.
Thus, in order to see new geometrical features, with invariant tori of dimension greater than
one, it is necessary to look to integrable maps in four dimensions. Building on the work [21,
34], which was based on considering autonomous versions of the fourth-order members of
hierarchies of discrete Painlevé I/II equations from [12], in [22] Gubbiotti et al presented a
classification of four-dimensional birational maps of recurrence type, that is

@ (wo,wi,wa,w3) = (wi,wa, w3, F (wo,wi,wa,w3)), (1.1

for a suitable rational function F of affine coordinates (wg,w;,wz,w3) € C*, with ¢ being
invariant under the involution ¢ : (wg, wi, w2, w3) — (w3, w2, w;,wp) and having two func-
tionally independent polynomial invariants, K|, K, say, with specific degree patterns
(deg,, Kj,deg,, K;,deg,, Kj,deg, K;)=(1,3,3,1) and (2,4,4,2) for j = 1,2, respectively.
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The result of this classification was six maps with parameters, labelled (P.i—vi), together with
six associated maps, labelled (Q.i—vi), dual to them in the sense of [51], meaning that they
arise as discrete integrating factors for linear combinations of the first integrals. (Note that,
aside from the original connection with [12], the letter P in this nomenclature has nothing to
do with the usual labelling of continuous Painlevé equations.)

1.1. The map (Piv): an integrable map in 4D

From our point of view, the most interesting examples among those presented in [22] are the
maps labelled (P.iv), (P.v) and (P.vi). According to table 1 in [22], these are the only ones
arising from a discrete variational principle (Lagrangian), which leads to a non-degenerate
Poisson bracket in four dimensions, such that the two first integrals K, K, are in involution,
and this means that in the real case the Liouville tori are two-dimensional (cf figure 1). In this
paper, our main concern will be the case of (P.iv), which is the birational map given in affine
form by the recurrence

2 2 2
Wit dWn43Wnt2 + Wit 2Wnt 1 W & 2Wo o (Wn3 + Was 1) + Wiz (Wiy3 + Wag3Wn1 + Wiy )

+ WfH.z + UWy42 (Wil+3 + Wn+42 + Wn+1) + an+2 +a=0.
(1.2)

The above map depends on three essential parameters a, b, v (compared with [22], by rescaling
we have set the parameter d = 1), and it can be written in the form (1.1), with

WoW W2 + wiwowsz + w%wz + wzw§ + 2W1W% + 2W%W3 + w%
+v (wlwz +wowsz + w%) +bw,y +a

waws3

F=—

which is the rational function of wg,w;,w,, w3 obtained by solving for wy in the recur-
rence (1.2) with n=0. More recently, Gubbiotti showed how the equation (1.2) also arises
from a classification of additive fourth-order difference equations, based on the requirement
of a discrete Lagrangian structure alone [23].

The first integral denoted /5, in [22] is given in affine coordinates by

K| =wiw, (W2W3 + wowy — wows + (wy +wz)2 +v(w +wy) +b) +a(wi+wy). (1.3)

The latter has the degree pattern (1,3,3,1). In particular, it is linear in w3, which implies that,
on each three-dimensional level set K; = k; = const, the map (1.2) reduces to a birational map
in three dimensions, given by the recurrence

2 2
Wn3Wn2Wn1 (Wn+2 - Wn) + Wn+2wn+1wn + Wn42Wn+1 (Wn—i-l + Wn+2)

+ VW2 Whtt (Wn+l + Wn+2) + bwn+2wn+l +a (WnJrl + Wn+2) =ky.
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Figure 1. Plot of the 3D projection of 10000 points on the orbit of (1.2) with initial

values (%, %, %, %) and parameters a = —9, b =29, v = —10.

A second functionally independent invariant for (1.2), with degree pattern (2,4,4,2), is
given by

wiwy + w%wz + wows (w1 +wa) +wo (W% + ZW%) + ws (W% + 2w§)
K> = wiwy -|-3(Wo-ﬁ-W3)WlW2-i-(W12-i-W2)3
+v (W0W3 + (wo +ws3) (Wi +wa) + (W +wp) ) +b (wo+wi +wy+ws)

+a (wowl + wiwy + (w +wz)2) .
(1.4)

This differs slightly from the second invariant presented in [22], which is Ill;'éﬁ =K, —vK;.
The non-degenerate Poisson bracket between the coordinates, which was obtained in [22]
by making use of a discrete Lagrangian for (1.2), is given by

1 Wy 4+ 2w +2Wha0 + Wiz + v
{anwn+l}:0a{wnawn+2}: 7{Wn7wn+3}:_ - rt ot rt )
Wit Wn1Wn42
(1.5)

for all n. So the 4D map of the form (1.1) defined by (1.2) is a Poisson map, in the sense
that { 0*G,p*H} = ¢*{G,H} for all functions G,H on C*. Equivalently, the fact that ¢ is
Poisson with respect to a non-degenerate bracket means that it preserves a symplectic form w,
such that ¢*w = w. The two functionally independent invariants given in [22] are in involution
with respect to the Poisson bracket, which is equivalent to the involutivity of functions (1.3)
and (1.4), that is

{K,K,}=0.
Hence the four-dimensional map defined by (1.2) is integrable in the Liouville sense.

4



Nonlinearity 37 (2024) 095028 AN W Hone et al

Computing the Hamiltonian vector field for the first flow, generated by K, we find that on
the phase space C* with coordinates (wo, w1, wy,ws3) this takes the form

dw,
dr

=Wy (Wnt1 —Wy—1) for n=1,2, (1.6)

while the components of the vector field for n = 0,3 appear to be more complicated rational
functions of these 4 coordinates and the parameters a, b, . However, since (1.2) is a Poisson
map it commutes with this flow, so it follows that the relation (1.6) extends to all n € Z. To see
this, note that the vecor field § = {-, K} } commutes with the action of ¢, and * (w,) = w41
hence, if (1.6) holds for some particular n, then

dw,iq . [ dwy .
Tj = < ” ) =@  (Wa (Wnt1 —Wn—1)) = Wag 1 (Wng2 —Wa),

which is just the same equation with n — n 4 1. Thus the combined solutions of the iterated
map and the flow, which are compatible with one another, generate a sequence of functions
(wn(t))n ez satisfying (1.6), which is the Volterra lattice equation, first considered by Kac and
van Moerbeke [35]. We will see that, in a certain sense to be made precise, these are genus 2
solutions of this lattice equation.

A wide variety of difference equations admitting Lax pairs and explicit formulae for first
integrals have been presented by Svinin [56, 57], including a family that arises as reductions of
the hierarchy of symmetries of the Volterra lattice. By eliminating the parameter b from (1.2)
we get an equation of fifth order, that is

5 3

a a
Wara [ D Wasj+0 | +——=wap1 [ D wagj+v | + , 1.7)
Wn+3 =0 ‘ Wp42

j=2

and upon setting a = 0 this reduces to equation (1) in [58] when s =4 (cf also the case N =4
in [30], where an equivalent equation is obtained via a periodic reduction of the lattice KdV
equation); thus the map (1.2) can be viewed as a 1-parameter generalization of one of Svinin’s
symmetry reductions of the Volterra lattice hierarchy, which in turn is a generalization of one
of the maps considered in [13].

1.2. Outline of the paper

The purpose of this article is to give a complete description of the complex geometry of the
solutions of the map defined by (1.2). In reaching this goal, we found that all of the structures
we obtained could naturally be extended to analogous constructions associated with a family
of curves of arbitrary genus g (elliptic for g = 1, hyperelliptic for g > 2).

Section 2 presents a set of empirical observations, numerical examples and standalone res-
ults about the (P.iv) map. Originally, these were the specific clues that led us to uncover the geo-
metrical structure of the solutions of (1.2). To begin with, we use a p-adic method to identify the
singularity pattern of the solutions, leading us to introduce a tau function 7,, which lifts (1.2)
to a recurrence of order 7 with the Laurent property; this is a Laurentification of the original
map, in the sense of [24]. By considering a pattern of initial values that approaches a singular-
ity, and substituting this set of initial data into the expressions (1.3) and (1.4) on the level set
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K; = k; for j = 1,2, in the limit that the singularity is reached we find a hyperelliptic curve of
genus 2, isomorphic to the Weierstrass quintic

V= (14 vx+b2) +da(l+vx+bx) 8 + 4k +4 (ky + vk ). (1.8)

We also show that the tau function 7, satisfies a Somos-9 recurrence with coefficients that
depend on a, b, and the values of K, K, along each orbit of (1.2). It turns out that both the
singularity pattern, and the corresponding tau function substitution w, = 7,743/ (Th+1Tna2)
found for (1.2), are the same as for the QRT map associated with the Somos-5 recurrence
[25], which is associated with a family of elliptic curves; so this was a strong initial hint that
analogues of the (P.iv) map should exist for any genus g. For enthusiasts of detective stories,
the results in this section provide motivation and insight into how we made the first steps
on the trail that led to the rest of the paper. However, a reader who is not particularly fond
of experimental mathematics can safely omit section 2 on first reading, since the subsequent
sections are not logically dependent on it, and are written in a more linear, deductive style.

In section 3, we start from a hyperelliptic curve I'y of arbitrary genus g > 1, given by a
Weierstrass equation y> = f(x) where f€ C[x] is of odd degree 2g + 1, analogous to (1.8),
together with a particular choice of rational function F, on the curve, and show how a Stieltjes
continued fraction (S-fraction) expansion of this function, of the form

wi1Xx Wwi1Xx w1 X
F0:1—F—1:1 wox =1 T > (1.9)
1—-..

leads to a birational map on the coefficients w; of the fraction, in dimension 3g + 1, which we
refer to as the Volterra map V,. As we shall see, iterating V, for generic initial data produces the
infinite sequence of coefficients w, for n > 1 that appear in the fraction (1.9), while applying
the inverse map Vg’ I extends this sequence to n < 0. Furthermore, the recursion for the S-
fraction can be rewritten in the form of a discrete Lax equation. In this setting, the hyperelliptic
curve I’y is the spectral curve, and the polynomial f has 2g + 1 non-trivial coefficients which
provide conserved quantities (first integrals) for the map. In particular, for g = 1 it reduces to a
QRT map whose tau functions satisfy the Somos-5 recurrence, while when g =2 we find that,
by fixing the values of three of the first integrals to reduce it to four dimensions, the map is
precisely (1.2). We also show from the S-fraction that, for any g, the solutions of the map can
be written explicitly in terms of tau functions that (up to gauge transformations) are expressed
as Hankel determinants.

Next, in section 4, we introduce a family of compatible Poisson brackets for the map V,: it
is a Poisson map with respect to any of these brackets, and the conserved quantities provide
a sufficient number of invariants in involution, so we have a Liouville integrable map for any
positive integer g. The maps V, are examples of discrete a.c.i. systems, which we define as
follows:

Definition 1.1. Suppose that C" is equipped with a rational Poisson structure of rank 2r. A
birational map ¢ : C" — C" is said to be a discrete a.c.i. system if it is a Poisson map having
s = n — r functionally independent invariants F1, ..., F that are pairwise in involution (so that
the map is Liouville integrable) and such that

(1) The generic fiber of the momentum map p := (Fy,...,Fy) : C" — C® are affine parts of
Abelian varieties (r-dimensional complex algebraic tori);
(2) The restriction of ¢ to the generic fiber is a translation.

6
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This is the natural discrete analogue of the concept of an algebraic completely integrable
(a.c.i.) system, on which there is a considerable literature [1, 60], and that we will also discuss
insection 5.1 since a.c.i. systems and discrete a.c.i. systems are intimately connected. Although
definition 1.1 is new, several examples of discrete a.c.i. systems in the particular case of r =1
have already been discovered and thoroughly analyzed in the literature, often in connection
with QRT maps (see [16]). The case » =1 is a very particular case, as the Abelian varieties are
in this case one-dimensional, that is they are elliptic curves. In the present paper, the Abelian
varieties that appear as compactified level sets of the invariants are affine parts of Abelian
varieties of dimension g, namely the fiber is the Jacobian Jac(I'y) of the (completion of the)
corresponding spectral curve ff, and the restriction of the map to any of these complex tori is
indeed given by translation over a fixed vector which we describe explicitly. In particular, for
the map (P.iv) given by (1.2), each generic level set defined by fixing K; = k; for j = 1,2 is an
affine part of an Abelian surface—that is the Jacobian of the curve (1.8)—and the map restricts
to a translation on each of these Abelian surfaces. It is worth clarifying that the requirement
for a discrete system to be a.c.i. is much more restrictive than just being integrable (in the
Liouville sense): for example, the invariants of a generic linear map are transcendental (see
section III in [27]), so such maps cannot be a.c.i. except in certain special cases (and see also
[28] for some examples of integrable Poisson maps in 3D with transcendental invariants).

The whole basis of our construction is the S-fraction expansion (1.9), which may appear
to be a deus ex machina in section 3, but in fact has many antecedents in the literature on
integrable systems, and especially in the development of van der Poorten’s results on Jacobi
fraction (J-fraction) expansions in elliptic [47] and hyperelliptic function fields [46, 48, 49],
as presented in recent work by one of us [31]. The latter revealed the integrable structure of
maps generated by J-fractions of the form

Yozao(X)—l—f:ao(X)—f—il:ao(X)-f— I s (1.10)

where Y = (Y+ Py(X))/Qo(X) is a rational function on a hyperelliptic curve C defined by
a polynomial of even degree 2g +2, that is C : ¥? = P} + QyQ_, for polynomials P;,Q; of
degrees g + 1,g in X, respectively, with the coefficents o; = ¢;(X) in (1.10) being linear in X.
It was shown in [31] that, for appropriate such Yy, the shift from one line of the J-fraction to
the next defines a Liouville integrable map on a phase space of dimension 3g + 1, which (on
a generic level set of the first integrals) corresponds to a fixed translation on the Jacobian of
(the completion of) C.

There are classical results going back to Abel on the continued fraction expansion of the
square root of an even degree polynomial (i.e. the function Y on an even hyperelliptic curve C),
although the fact that the sequence of degrees of the coefficients o;(X) in such an expansion is
eventually periodic was proved only very recently [66] (they need not all be linear in X, as per
the above assumption about the function Yy in (1.10)). This is intimately related to elliptic [2]
and hyperelliptic analogues of orthogonal polynomials [3, 9], as well as more general types
of Padé approximation problems connected with integrable systems [5, 15]. In fact, Stieltjes
continued fractions (of finite type) were already used in the solution of the finite Volterra
lattice by Moser [42], and such fractions were applied to obtain Hankel determinant solutions
for non-isospectral extensions more recently [10].

Section 5 of the paper starts by considering the continuous Hamiltonian system that shares
the same phase space with the Volterra map V,. After proving that this continuous system is

7
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a.c.i., we show that iteration of V, (and its inverse) leads to an infinite sequence of meromorphic
functions (wn(t))n ¢z Of £, the time associated with one of the commuting Hamiltonian flows,
providing a meromorphic solution of the Volterra lattice equation (1.6) (hence reproducing
the above observation about (P.iv) in the particular case g =2). Next we show that this also
produces a meromorphic solution of the Toda lattice, taken in the form

dd,
dr

dv,
dt

=d,(Va_1 — W) , =d,—dy1, nez, (1.11)
by applying the well-known Miura transformation between the Volterra and Toda lattices. We
further show that the latter transformation arises naturally via the contraction procedure for
continued fractions, due to Stieltjes [55], which combines successive pairs of lines in an S-
fraction into a single line in a J-fraction, and thereby maps a generic solution of the Volterra
map V, to an associated solution of the map generated by van der Poorten’s construction in
genus g. The paper ends in section 6, with a few conclusions and observations concerning trans-
formations relating solutions of (P.v) and (P.vi) to solutions of the map (P.iv), which we plan to
discuss in detail elsewhere. Also, in appendix A (section A), a birational Poisson isomorphism
is established between the genus g even Mumford system (see [60]) and the Hamiltonian sys-
tem associated with the Volterra map V,, and in appendix B we provide the details of MAPLE
code used to carry out the proof of proposition 2.1 using computer algebra.

2. Laurentification and tau functions for the map (P.iv)

In this section we exhibit certain phenomena displayed by the iterates of the map (P.iv), which
are related to its discrete integrability. Firstly, we describe the singularity pattern of the iterates,
which is found from an empirical p-adic approach, and leads to the introduction of a sequence
of tau functions 7, for these iterates. On the one hand, these tau functions satisfy a homogen-
eous recursion relation of order 7 with the Laurent property; so this is a Laurentification of
(P.iv), as we state here and prove in section 3.4. On the other hand, these tau functions are
also shown to satisfy a Somos-9 relation, with invariants of (P.iv) as coefficients. Secondly, by
considering the limit where a solution of (P.iv) approaches a singularity, we are led to a family
of genus two curves which will turn out to be at the core of the Stieltjes continued fractions
(section 3) and the algebraic integrability of (P.iv) (section 4).

The Laurent property is a very special feature of certain birational transformations, appear-
ing in cluster algebras and their generalizations [18, 38], which a priori is unrelated to
integrability [26]. However, it turns out that the solutions of discrete integrable systems are
often encoded by tau functions satisfying relations that have the Laurent property, such as
bilinear equations of discrete Hirota type [40]. Despite the fact that integrable maps occur-
ring ‘in the wild’ typically do not exhibit the Laurent phenomenon, it nevertheless seems
to be a common feature of such maps that they admit Laurentification, that is, a lift to a
higher-dimensional relation that does have the Laurent property [24]. For some time, sin-
gularity analysis has been used as a tool to detect integrability of maps (see [41] and refer-
ences), and when the pattern of places where the solutions have a zero or pole is sufficiently
simple, this can further suggest an appropriate way to introduce tau functions and perform
Laurentification [30].

To start with, we apply the p-adic approach described in [30] (see also [36]) to the map (P.iv)
defined by (1.2), and derive a singularity pattern from it. This empirical approach is based on
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examining the prime factorization of the terms of specific orbits (w,,),en defined in Q, chosen
arbitrarily, and considering the behaviour of the p-adic norms |w,|, for particular primes p. As
a concrete example, upon picking the specific parameter values v =3, a =5, b =7 and setting
all four initial values to be 1, we then find a sequence of rational numbers given by

743 10541 3819540 4315187227 6624290612327  23965197528782842

© T30 7222907 78319637 13420590387 739436079902 1 3649794341246183
304709076970269230792

- 2.1
118290200741883010693 "’ @1
where the latter terms factorize as
_5.3.5 743 83127 22.3.5.63659 _ 13743 - 446753
’2.3.572.3.5.743" 83.127-743 ' 2-83-127-63659’
19-83-127-1579 -20947 B 2-59-51593-61837 - 63659
2-13.63659-446753 ' 13-19-1579-20947 - 446753’
7 23.13-967 - 446753 - 6782004923
19-59-1579-20947 - 51593 -61837°
For several different primes, e.g. p=3, 5, 83, 127, 743,..., this reveals a common pattern
whereby, for some n,
‘Wn‘p:pil s ‘Wn—&-llpzpv |Wn+2|p:pa lwn+3|p:p71 ) (2.2)

with the prime p being absent from the factorization on the previous and on the next terms:
[Wa—1lp = |Wnt4l|p, = 1. The p-adic norms (2.2) identify places where the orbit of the map over
the finite field F,, has a zero or pole, as well as the order of these [36]. Since the recurrence (1.2)
defines a birational map, any orbit defined for n > 0 can be extended to n < 0 (at least, provided
that it does not reach a singularity, where w, = 0 for some n; but see Corollary 2.6 below).
Hence, the pattern (2.2) suggests that for n € Z one should make the tau function substitution

TnTn+3
Wn =, (2.3)
Tn+1Tn+2

so that the places where a prime factor p appears in the numerators or denominators of the
sequence (w,),cz can be encoded by the appearance of the factor p in the terms of the tau
function sequence (7;,),ez. These tau functions can be defined recursively, in two quite differ-
ent ways:

Proposition 2.1. Suppose that (wy,),cz, is a solution of (1.2). Then the corresponding sequence
(Tn)nez satisfies

(1) A homogeneous recurrence of order 7 and degree 8:

2 3 2 2 4 2 2 2 3 2 2
Tn+7Tn+4Tn+3Tn+2 + Th+6Tn+3Th+2 + 2Tﬂ+67-n+57n+37—n+2 + Tn+6Tn+5Tn+4Tn+3Tn+2Tn+1
4 4 3 2 2 2 4 2 2 3 2
+ Tn+57—n+2 + 2Tn+57—n+47—n+27—ﬂ+1 + 7-nJrSTnJr47—nJr1 + Tn+57—n+4Tn+3Tn
3 2 3 3 2 3
+v (Tn+eTn+sTn+4Tn+37'n+z + Tt sTntaTn+3Tn2 + Tn+5Tn+4Tn+3Tn+2Tn+l)

2 2 2 2 3.3 _
+ DT STaaTa3Tn 2 T ATuts T 4Ty aTag2 = 0.
2.4)
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(2) A (generalized) Somos-9 recurrence:
Q1 Ty 9Tn + 02 Tut 8Tnt1 + O3 Tut 7 Tnt2 + Q4 Ty 6Tnt 3 + Q5 Tug sTnpa = 0. (2.5)

The coefficients «; are polynomial functions of the parameters of the map and of the val-
ues ky,ky of the invariants K, K,, hence are constant along each orbit (w,),cz. They are
given by

(03] Zkl, Oézzakz—k%, a3:a(ak2—2k%),
oy =a (k3 +vkiky + bk} +a*ki),  as=—ki (K +vkiky + bki +a’ky)

Proof. The proof of (/) is by a direct substitution of (2.3) in (1.2), while (2) is derived by
implementing the method from [29], which involves computing determinants of matrices with
entries that are of degree two in tau functions. More precisely, for (2) one should write five
copies of the Somos-9 relation as a matrix equation M,, & = 0, that is

Tn4+9Tn Tn+8Tn+1 Tn+7Tn+2 Tn+6Tn+3 Tn+5Tn+4 (03] 0
Tn+10Tn+1 Tn+9Tn+2 Tn+8Tn+3 Tn+7Tn+4 Tn+6Tn+5 (0%) 0
Tn+11Tn+2  Tn4+10Tn+3 Tn4+9Tn+4 Tn+8Tn+5 Tn+7Tn+6 (0%} = 0
Tn+12Tn+3  Tn+11Tn+4  Tn4+10Tn+5 Tn+9Tn+6 Tn+8Tn+7 Q4 0
Tn+13Tn+4  Tn+12Tn+5  Tn+11Tn+6  Tn+10Tn+7  Tn+9Tn+8 Qs 0

and then verify that there is a non-zero vector of coefficients ¢, lying in the kernel of M,
that is independent of n. By iterating (/), all of the entries of the matrix M,, can be written in
terms of a fixed set of 7 initial tau functions; so say for n =0 one can take 7; for 0 <j < 6 as
initial data, verify directly that det(My) = 0, then find a vector « in the kernel of this matrix,
and check that it is invariant under a shift of index j — j + 1 applied to all of these initial 7,
hence each of the components «,...,as is constant along an orbit. The latter calculations all
require extensive use of computer algebra (see appendix B). Note that, in contrast to (/), there
is not a strict equivalence between solutions of (1.2) and solutions of the Somos-9 relation (2),
because one cannot choose 9 initial data arbitrarily; rather, the latter relation is only satisfied
for particular sequences (7,), specified by 7 initial tau functions, with the coefficients a; being
fixed by these and the parameters a,b, v. O

The recursion defined by (1.2) requires 4 initial values, while (2.4) requires 7, and the dis-
crepancy between the two is described by the three-parameter group (C*)? of gauge trans-
formations, with action given by

T+ ALB'T,,  Ai,A_,BEC*, 2.6)

corresponding to the freedom to rescale even/odd terms by a different factor A, and apply
a rescaling B" that is exponential in n to all terms. Any 4 non-zero initial values wy,...,ws
of (1.2) allow a corresponding set of non-zero initial data to be determined for (2.4), up to this
gauge freedom; for example, we may take as corresponding initial data 7, = 1 for n =0,1,2
and 13 = wy, T4 = WoWy, T5 = w%wlwz and 74 = W%W%Wng,, which are polynomials (in fact,
monomials) in wy, w;, w,,w3. Notice that (2.4) can also be solved rationally for 7, in terms of
Tat1s- -+, Tnt7 SO that the sequence (7,) is actually defined for all n € Z.

10
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Example 2.2. In the case v =3, a=35, b=7, taking the initial values 7, =1 for 0 <j <6
in (2.4) yields the sequence of tau functions beginning

1,1,1,1,1,1,1,—30,—743,10541, 127318, 5807789, 628430947, — 188231024119,
52465590084328, ..., 2.7)

which consists of integers, and the terms after the initial 1 s have prime factorizations given
by —2-3-5,-743,83-127,2-63659,13 - 446753,19 - 1579 - 20947, —59 - 61837 - 51593,23 -
967 - 6782004923, etc. These correspond to the prime factors appearing in the numerators and
denominators in the particular sequence of rational values of w,, illustrated in (2.1) above. Due
to a reversing symmetry of the recurrence (2.4), this sequence extends backwards to n <0 in
such a way that the property 74_, = 7, holds for all n € Z, since the 7 initial data have this
symmetry. Furthermore, these tau functions also satisfy the Somos-9 recurrence

28Tn+97'n — 2397—n+87—n+1 — 5115 Tn+7Tn+2 + 1361257n+67n+3 — 7623007‘,,4.57’,,4.4 = 07
(2.8)

which corresponds to (2.5) with the coefficients ¢; being fixed (up to overall rescaling) by the
specified choices of v, a, b, together with the fact that the first integrals take the values K| = 28,
K> =109. For any solution of (2.4), the subsequences consisting of even/odd index terms, that
iS 7, = o, OF T2,41, respectively, also satisfy a Somos-8 relation, of the form

~ A ~ ~ A N PN ~ a A A PN
O Tyg8Tn + 62 Tpg 7 Tut1 + Q3 TugeTusn + Q4 TugpsTurs +as 7,4, =0.  (2.9)
For the particular integer sequence above, up to overall scale the coefficients are given by

G = 195848, b = —61660241775, Gz = 13236763233189375,
oy = —8064076031989579800, &5 = —3603810041796109733 .

The relation (2.9) can be regarded as an ordinary difference reduction of a constraint for a
tau function defined on a multidimensional lattice, which arises from a Hermite—Padé approx-
imation problem (cf equation (2.10) in [15]). An explanation for why this Somos-8 relation
must hold will be provided in section 5, via the connection with the Toda lattice and the results
in [31].

The following proposition shows that the recurrence (2.4) is a Laurentification of (P.iv). In
particular, this explains why the tau functions in the preceding example are all integers.

Proposition 2.3. The recurrence (2.4) has the Laurent property. More precisely, for
alln €7,

+1 _+1 _+1
TnEZ[Cl,b,V,T(hT],TZ s T3 5Ty 77-577-6] .

In principle, for n > 0 the proof of the proposition is a direct application of Theorem 2
in [24], and the same method of proof applies for n < 0, because the map defined by (2.4)
is birational. However, the formal verification to be done by this method quickly gets out
of hand, since the rational functions obtained as the formulae for the first few iterations of
the map defined by (2.4) soon become too complicated for the checks to be carried out by a
simple computer algebra program. A general proof of Proposition 2.3 that does not require
any computer algebra will be given in section 3.4.

1
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Remark 2.4. As mentioned in the introduction, through the relation (1.7), the special case
a=0 of the (P.iv) map is closely linked to a difference equation appearing in the work of
Svinin, and to a reduction of the lattice KdV equation. Thus, when the parameter a =0, the
result of proposition 2.3 is subtly related to the fact that the order 7, degree 6 recurrence

2 2 2 2 2 2
TatTTnpaTn+3Tn+2Tn+1 T Tnt6 Tnt5Tn+4 Ty 3Tn T Top6Tnt3 Tn+2Tn+1 T Tut6 Tn+5 Ty a Tht 1

2 2 2 2
+ Tn4+6Tna5Tpa2Tn+1 — OTp4-5T, 4 4Ty 3Tn+2 + BTn+6Tn+STn+4Tn+STn+2Tn+1 =0
(2.10)

has the Laurent property, in the sense that it generates Laurent polynomials in 7y, ..., 7 with
coefficients in Z[«, 3] (the case N =4 of proposition 2.3 in [30]). The point is that (2.3) coin-
cides with the tau function substitution found for maps related with lattice KdV reductions in
[30], and the relation (2.10) holds for solutions of (2.4) obtained by setting a =0, v = 3, and
taking an orbit for which the value of the first integral K is fixed to be k; = —a.

Example 2.5. Upon takinga=0,b = —17, v = —11 and making a specific choice of 7 integer
initial values for (2.4), with the 3 central values fixed to be 1, we generate an integer sequence
that begins as follows:

3,2,1,1,1,4,5,699, —25626,453024, — 112570254, 23354432973,61327997061471,
— 35520663450983076, .....

Then we see that this sequence also satisfies the relation (2.10) with = —11 and « = —k; =
327. Also, since three of the coefficients in (2.5) vanish when a =0, we see that the Somos-9
relation for this sequence takes the shorter (three-term) Gale—Robinson form

Tnt+9Tn + 327 Tyi-8Tnt1 + 3850083 7, 5744 = 0,

which is a reduction of the discrete Hirota equation, and is in agreement with the N =4 case
of theorem 1.1 in [30].

The Laurent property for (2.4), together with the formula (2.3), immediately implies that
the generic orbit (w,) of (P.iv) is well-defined, as stated in the following corollary.

Corollary 2.6. For generic non-zero initial values (wo, w1, wa,w3) € (C*), the orbit (w,)nez
exists, with w, € P! = CU {0}

Proof. As we shall see in section 3.4, the initial tau functions can be chosen so that all 7,
are polynomials in the initial data for (1.2). For a fixed index # it is then clear from (2.3)
that w,, is an indeterminate element of P! only when at least two out of three successive tau
functions in (2.3) vanish, i.e. belong to a certain proper Zariski closed subset of the space of
(non-zero) initial data for (1.2). Considering this condition for all z yields a subset of this space
of initial data, which is the intersection of a countable family of Zariski open subsets. Such
an intersection is a residual, hence dense, subset so that for generic initial data, the orbit is
well-defined. O

Note that (P.iv) was originally defined as a birational affine map in C*, but the above corol-
lary allows the existence of certain orbits defined in (P')*. Notice also that this corollary does
not state that the subset of initial data for which the orbit exists is open. This stronger statement
will follow from algebraic integrability, without use of the tau functions (see section 4).

12
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As an initial foray into the geometry of the map, defined by (1.2), we now consider the
singularity pattern in more detail, by taking three non-zero initial values wy, w;,w, € C* fol-
lowed by a fourth value proportional to a small parameter € € C, and consider the behaviour
of the solution in the limit e — 0. To reformulate this in terms of tau functions, we set

w=Z, n=m=m=1,nu=X,15=Y,1%6=¢, XYZ#O0,

where three adjacent values have been set equal to 1 by a choice of gauge. This gives,
using (2.3), four non-zero initial values

wo=2Z, wi=X, wa=—, wy=— @.11)

X Xy’
for the map (1.2), such that the fourth value w3 — 0 as e — 0. Upon substituting these values
in (1.2) we find as subsequent values

wi=Cse ' +0(1), ws=Cse '+0(1), we=Coe+0(e), wr=C;+0(e),

for certain coefficients C; which are rational functions of X, Y, Z. Notice that the leading order
behaviours of w3, w4, ws,wg are €,¢ !, e~ ¢, respectively, with terms of O(1) on either side,
which corresponds to the singularity pattern (2.2) obtained above by the p-adic method. Now
if we substitute the initial values (2.11) into K; = ky, K, = ko, where K and K> are the invari-
ants (1.3) and (1.4), and take the limit € — 0, then (after clearing denominators) we get two
polynomial relations between X, Y, Z, which define an affine algebraic curve. Upon taking res-

ultants with respect to Z, this yields a single relation between X and Y, namely
(a¥? — (vky + ko) Y — aki ) X* + ((av — k) Y* + (a* — bky) Y+ K7) X°
+ (2aY? + (ab — vk)) Y* = 2ak Y) X* + Y* ((av — k1) Y+ @) X +aY* = 0. (2.12)

This plane curve is birationally equivalent to the Weierstrass quintic (1.8), which can be seen
from the transformation

X (aY -k X)

T Y@X —kXtay)’ @13)

together with a corresponding formula for y = y(X,Y), which is rather unwieldy and so is
omitted. For generic values of ki, k>, the curve (2.12) is a smooth hyperelliptic curve of genus
2. As already said, in its Weierstrass form (1.8), this family of curves will play an important
role in all that follows.

3. S-fractions on hyperelliptic curves and Volterra maps

In this section, for a fixed integer g > 0, we introduce an affine space of triplets of polynomi-
als, reminiscent of the phase space of the Mumford system [43, 60] and use Stieltjes contin-
ued fractions (S-fractions) to construct a series of birational automorphisms of the affine space,
indexed by g, which we describe in several ways. When g = 1 we recover several known integ-
rable maps, and for g =2 we recover the map (P.iv), which was been the primary motivation
for this study, while the maps for g > 2 appear to be new. We also give solutions in terms of
Hankel determinants of the iterates of these maps, i.e. of the corresponding recursion relations.

13
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For a fixed g > 0 we consider the affine space

degP(x)<g,  PO)=1
Myi={ (P(x),Q(x),R(x) € CL’ | geg%xggg, 1 %%:g . G.1)
egR(x)<g+1, =

It is clear that M, is an affine space of dimension 3g + 1: writing

g+1

8 8
Pr)=1+) px', Q=2+ g&, RE=) rx', (2
i=1 i=1

i=1

the coefficients pi,...,pg,q1,...,qg,71,...,7q4+1 provide a natural system of linear coordinates
on M,. We will often write an element (P, Q,R) of M, as a traceless 2 x 2 matrix
Px)  R(x)
L(x):= 33
w=(o0 ) (3

which will later serve as a Lax operator, and think of M, as an affine space of matrices (Lax
operators). It is then natural to consider the map p defined by

noc M, — C[x]

L(x) = ( P(x)  Rix) ) L) =P 4 OWRE) . OY

In view of the degree constraints on the entries of L(x), the polynomial — detL(x) has degree
at most 2g + 1 and its constant term is 1; moreover, every such polynomial is contained in the
image of u. In the g = 2 case these curves are precisely the ones encountered in section 2 in the
singularity analysis of (P.iv), see (1.8), (2.12) and (2.13), which in part motivates the choice of
constraints on the polynomials P, Q and R. (When M, is endowed with a Poisson structure,
as in section 4, then y can be viewed a momentum map.)

Throughout this section, g > 0 is fixed. In each of the following subsections, the results and
phenomena being discussed will be specialized and illustrated for the cases of g=1and g =2,
when M, has dimension 4 and 7, respectively.

3.1. Stielties continued fractions

We start from a hyperelliptic curve I', defined by an odd Weierstrass equation

2g+1
Tp:y? =f(x), with f(x):=1+) ¢/ eCl. (3.5)

Jj=1

When f has degree 2g + 1 and has no multiple roots, I'; is non-singular and its genus is
g, which explains the notation used. Let (P, Q,R) be any point in x~'(f), the fiber of p
over f, so that f{x) = P?(x) + Q(x)R(x), and the spectral curve I'sis the characteristic equation
det(L(x) — y1) = 0. We consider on I’y the rational function, given by

_rPe)_ RW
BRI oo

F
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In preparation for constructing the Stieltjes continued fraction of F, we show in the follow-
ing lemma how the triplet (P, Q,R) leads to another triplet (P, Q,R) in the same fiber of ,
under the assumption that (P, Q,R) is regular, meaning that

2”P(x)—Q(x)+R(x)‘

. o =2 —q+nr#0. 3.7

Lemma 3.1. Given a regular triplet (P,Q,R) in w='(f), there exists a unique w € C* and a
unique triplet (P, Q,R) in = (f) such that

y+Px) wx
om T mrw GO
30)

The two triplets are related by

2p1—q1+r 71
- _ o 3.10
" 2 2 (3.10)
Proof. We will constructively show that we can achieve (3.8) with w € C* and (757 Q,?NQ) e
p~1(f) uniquely determined. Clearing the denominators in (3.8) and using y* = f(x) we get

Y(P@+P M) = QW) +/()+P )P (x) =P (x) Q) + wrQ(x) Q(¥) =0, (.11

an equality which holds in the field of fractions of C[x,y]/(y*> — f(x)), so that the coefficients
of y and of y° in (3.11) must be zero. The vanishing of the former coefficient gives the first
equation in (3.9) and guarantees P(0) = 1 and deg P < g. The vanishing of the y° coefficient
gives

() = SR P - Q)P ) _f(x)—(Px)—Q(x)* _2P(x)— Q) +R(x)
xQ (x) xQ (x) x ’
(3.12)

where we have used in the last step that f{x) = P?(x) + Q(x)R(x). Notice that in view of the
values of the constant terms in (3.2), the last numerator in (3.12) vanishes for x =0 and is of
degree at most g + 1. Also, as the triplet (P, Q,R) is assumed to be regular, the polynomial
(2P — Q + R)/x does not vanish at x =0, hence we can (uniquely) choose w € C* such that
Q(O) = 2. This gives the first equality in (3.10) and the second equation in (3.9). The first
equality in (3.12) also shows that f(x) — P2(x) is divisible by Q(x), with quotient —wxQ(x);
thus, if we take the third equality in (3.9) to define R, then degR = g+ 1, R(0) =0 and
f(x) = P2(x) + Q(x)R(x), completing the proof that (P, Q, R) belongs to 1~ ! (f). Notice that
the third equality in (3.9) implies the alternative formula for w in (3.10), since Q(0) =2. [

Applying the lemma to all regular points of the fiber ;[1 (f) yields a rational map of the
fiber to itself, given by (P,Q,R) — (P, Q,R) with (P,Q,R) given by (3.9). Since the lat-
ter can also be solved rationally for (P,Q,R) in terms of (P,Q,R) by using the second

expression for w in (3.10), this rational map is actually a birational automorphism of the fiber.

15
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Iterating this map starting from a triplet (P, Qo, Ro) = (P, Q,R) € u~'(f), we get an infinite
sequence (P, Q,, R, )nez of triplets as well as an infinite sequence (wy,),ez in C*, such that
(Put1, Qnt1, Rut1) and wy, 4 are related to (P, Q,, R,) as dictated by the lemma:
Z’Pn X _Qn X +Rn X
Pot ()= 0 (X) ~ Pa (), Qi (1) = ) =D Ra )

—Wp1X
Rt (X) = —wyp1xQ,, (%) . (3.13)

Writing, as in (3.2), Py(x) = 1 + Y %_, p,', and similarly for Q,(x) and R, (x), the value of
Wp1 1S given, according to (3.10), by

2n —Yn _|'rn7 'n s
Wyt = — Tl Tl S (3.14)

for all n € Z.

It is clear that (P,, Q,,R,) is obtained from (Py, Qp,Ro) by repeating the map n times
(or, when n < 0, repeating the inverse of the map —n times). As pointed out in the lemma, the
starting triplet (Py, Qo,Ro) must be regular in order for (P;,Q;,R1) and w; € C* to exist.
But nothing guarantees that (P, Q;,R) will also be regular, and in general it need not be so;
assuming (P, Q1,R) to be a regular triplet puts an open linear condition on the coefficients
of (Py,Q1,R1), namely that 2p; ; — q1,1 + 11,1 # 0, which amounts to an open polynomial
condition on (Py, Qo,Ro), and for the existence of every extra term of the sequence such
an extra condition is to be added to the triplet (Py, Qo, Ro). However, since this amounts to
a countable number of open conditions on the latter, this means that when (Py, Qp,Ro) is
generic, in the sense that it belongs to a residual subset of the fiber 1 ~!(f), the sequence of
triplets of polynomials (P,, Q,,R,) € ="' (f) and the sequence of constants w, € C*, both
indexed by n € Z, exist. For generic (Py, Qo, Ro), iterating (3.8) gives

y+Po(x) WX Wix
Fo:= —1- ==l (3.15)
yEPI(x) Wax ’
Qo (x) e 1— o
1—---

yielding the Stieltjes continued fraction, also called S-fraction, of Fy. Similarly, each triple
(Pu, On,Ry), 1 € Z, is associated with a rational function F,,, with a corresponding S-fraction
obtained by shifting each of the indices in (3.15), which for n > 0 appears on the nth line below
the top.

Example 3.2. Suppose that g = 1. Then the entries of the triplets (P, Q,R) and sequences
(7)117 Qn, Rn)ngz in Mg =M, take the form

P(x)zl—l—plx, Pn(x):1+pn,]x7
Q(x)=2+qx, and O, (x) =2+¢n1x, (3.16)
R (x) = rix+rax?, Rn(x)= r,,,lx—|—rn72x2 .

The birational automorphism (3.9), constructed in lemma 3.1, and its iterates are given by

P1=q1—pi1, Dnt1,1 = qn,1 — Pyl »

gy =—nr/w = —r w

?l 2/ 5 and 5]n+1,l n,2/ n+1 5 (317)
r = —ZW, rn+],1 = _2Wn+l 5

r=—-wq, In41,2 = —Wnti4n,l

— 2Pn,1—qn n
where w = fw and w,y| = fw forn € Z.

16
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Example 3.3. Suppose now that g =2. The entries of the triplets (P,Q,R) and sequences
(Pu, Qn, R )nez in My now take the form

P(x) =1+4pix+pax, P (x) =14 pp1x+paox’
Q(x) =2+ qix+ X%, and Q, (X) =24 gu1x + guox? (3.18)
R (x) = rix+rx® +rx®, R (X) = Fu1 X+ pax? + 1y 3x° .

From the construction in lemma 3.1, the birational automorphism (3.9) and its iterates are
given by (3.17), with the expression for ¢; modified to

G1=—0C2pr—qr+nr)/w, and Gui11=—2Pn2—Gn2+"n2)/Wat1,

further supplemented with the following formulae:

D2=q—p2, DPnt12=qn2 = Pn2
Gr=—r3/w, and Gnt12 = —Tn3/Wnt1 (3.19)
3= —-wq, "n41,3 = —Wnt14qn2
) _ 2p 1 —
where, as in the genus 1 case, w = —2‘"'++” and w, | = —W forn € Z.

3.2. Lax equation and invariants

In section 3.1 we defined a birational automorphism of the fiber ;1 ~!(f) C M,, where f = f(x)
is any polynomial of degree at most 2g + 1, satisfying f{0) = 1. This map, given by (3.9), is not
just defined on 1! (f), but is also as it stands a well-defined birational automorphism of M,.
In view of its relation to the Volterra lattice (see section 5), we call it the Volterra map, denoted
V,; explicitly,

Ve:  (P,OR)— (PQR)

where the entries of the latter are given by (3.9); also, we can write Vy(Py, Qn, Rn) =
(Pus1, Qni1, Ruy1) for all n € Z. For a fixed initial triplet (Py, Qp, Ro), the entire sequence
of triplets (P,, Q,, Ry)nez in M, is called the orbit of V, through (Py, Qo, Ro). We also refer
to a sequence of triplets that satisfies the recursion relations (3.13) for all n as a solution. The
equations (3.9) for the Volterra map, as well as the recursion relations (3.13) for its iterates, are
easily rewritten as discrete Lax equations; this fact has many important consequences which
will be worked out in what follows.

Proposition 3.4. The Volterra map V, can be written in the compact form
Ve L(x)M(x)=M (x)L(x) , (3.20)

where L(x) is given by (3.3), L(x) is L(x) with P, Q, R replaced by P, Q, R, and M(x) :=

1 0
Hy,...,Hyy1 on M,, defined by

< b , with w given by (3.10). As a consequence, the 2g + 1 polynomial functions
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2g+1
P+ QMR =1+ Hx (3.21)
i=1

are invariants of the Volterra map, i.e. H; = H; fori =1,...,2g+ 1.

Proof. It is easily checked by direct computation that (3.9) and (3.20) are the same set of
Equations. Since the latter says that L(x) is obtained from L(x) by conjugation with M(x), the
spectrum of L(x) is preserved, hence also all coefficients of the determinant of L(x), i.e. the
coefficients H; of pu(L(x)) = P(x)? + Q(x)R(x). O

Upon iterating the Volterra map, as discussed in section 3.1, starting from a generic triplet
Lo(x) of M, we get a sequence of triplets

Lo (g wi)

of M,. According to (3.20), a discrete Lax equation for this sequence is given by

L, ()C) M, (x) =M, (X) | PP (x) ) (3.22)
where
_ 2 —gq,
Mn (x) = < } W8+1x ) ’ with Wp1 = — fe qzl,l +rn,l = _rn-;hl .
(3.23)

Example 3.5. When g =1, respectively when g=2, the invariants H; can be computed
from (3.21):

H =2(pi+n),

H =2(pi+n), Hy=2py+pl+qiri +2r,
Hy=pi+qir+2r, Hy = 2pipy+2rs +qira + qort (3.24)
Hy=qirp, Hy=ps+qirs+qara

H5 =qar3 .

The formulae on the left, which correspond to g = 1, can be obtained from the first three for-
mulae on the right by setting p, = g, = r3 = 0 in them.

3.3. The Volterra map and its reductions

The invariants H; can be used to reduce the Volterra map to the submanifolds obtained by
fixing the values of some of these invariants. Here we will use this to express the Volterra map
in terms of the variables w; which we introduced when constructing the S-fraction (3.15).

We start from the linear coordinates py,...,pq,q1,---,qqe,71,- - - ,Fq+1 0f M, which are iden-
tified with po 1,...,P0,6,90,1,---,90,¢,70,1,- - -,70,g+1. The latter functions are used to define
recursively pn.i,...,Pngs Gn,1>--->Gng>Tn,1s--->Tn,g+1, as well as w,, for all n € Z. Recall that

this is done using (3.13) and (3.14).

In a first step, we will use a birational map to replace our linear coordinates for M, by
Do,1;---,D0,¢ and some of its iterates p, 1,...ps,. To do this, we fix the value of the invari-
ant H; =2(p; +r1) to an arbitrary constant c;. It means that we consider the hyperplane

18
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H; = ¢, of M,, which denote by M{'. On it, we can take pi,...,Pg,q1,---,qg: T2, -, Tg+1 @S
linear coordinates (we left out r;). The invariance of H; implies that 2(p,, ;1 + r,,1) = ¢; which,

combined with r,, | = —2w, (see (3.14)), leads to
1 C1
== (pn1——= 3.25
) (” ) ) (3-25)

for all n € Z. Using this and the first and last equations in (3.13), we can express the above
variables in terms of pg i, .. .,po, and their iterates:

1/c
Gnk =Pni1k+tDPnk, and  7npp1 = —Wpgn 1= 5 (?1 —Pn,l) (P +Pu—1k), (3.26)

where k =1,...,g. Taking n =0 we get

Gox =Pix+pokx, and ropp1= % (% —Po,1) (Pox+P-14) (3.27)
and we have expressed all coordinates of M' in terms of the 3g coefficients of the polyno-
mials P_,Py and Pj. It is clear that the (3.27) can be solved rationally for p; ; and p_; x
so that (3.27) defines a birational morphism from Mg' to the space of triplets (P—1,Po,P1).
For later use, we also express the iterates of the Volterra map as a recursion relation on the
polynomials P,. To do this, we apply (3.13) several times to get

2P, (x) — Qn (x) + R (%)
—Wp1X

1 Wy
o (P () =P )+

Pil+2 = Qn-H ()C) - Pn+l (X) =

- Pn+1 (x)

=—Puti (x) +

(P (x) +Pp—i (x)) - (3.28)

We will now go one step further and show how the above coordinates pg x,pi x and p_p x
can be expressed birationally in terms of py ; and some of its iterates p, ;. To do this, we do
a further reduction, namely we also fix the value of each one of the invariants H,...,H, to
an arbitrary constant cs,...,cg and consider the subvariety ﬂle (H; =c¢;) of Mg, which we
denote by Mg, so ¢ stands now for (c1,...,cq). Notice that this subvariety may be singular, but
that does not affect the reduction or the recursion relations. Using (3.26), we get the following
formula for the invariants H; in terms of P,, P, and P,_, valid for any n € Z:

2g+1
4 Y Hd =P () + Qu (0) Ra (x) = PR (1) = wax (Pa (1) £ P 1 () (Pa (1) + Py (1)
k=1

with w, given by (3.25). Upon comparing the coefficient of x* on both sides, for k=1 we
recover (3.25), while for k = 2,. .., g we recursively obtain p, ; in terms of py ; and its iterates,
via the following formulae:

k—1
k= 2png+ an,ipn,kfi — 2wy (2P k=1 + Pn—1 k=1 + Pat1,k—1)
i=1
k—2
— Wy Z (Pn,i +Pnt1,i) Prg—1—i F Pt p—1-i) - (3.29)

i=1



Nonlinearity 37 (2024) 095028 AN W Hone et al

Indeed, aside from the linear term in p, x, the above equation contains only the variables p,, ;
and p,+1,; with 1 <i < k. For k=2 one gets

€2 ="2pnp +Pﬁ,1 — 2w, (2Pt FPu—1,1 FPur11)

from which it is clear that p,, depends (polynomially) only on p,_i,1,p,1 and p,i1,1
(see (3.25) for the formula for w,,). An easy recursion on k using (3.29) shows that p,, x depends
ON Py—k+1,15- - - »Pntk—1,1 only. Taking n = —1, n=0 and n = —1 we get that the coefficients
of P_1,Po and P; depend only on p_, 1,...,pe 1. Conversely, it is obvious from (3.28) that
the coefficients of P,, and hence of all P, with n > 2, are rational functions of the coefficients
of P_1,Po and P;. This applies in particular to p,; with n > 2. Using the inverse recursion,
which yields a formula similar to (3.28) expressing P,_, in terms of P,41,P, and P,_; one
obtains similarly that all p, | with n € Z are rational functions of the coefficients of P_;, P
and P;. The upshot is that we have a birational map between M, and C?¢+!, equipped with the
coordinates p_g 1,...,pg 1. In view of (3.25), which we now write as

C1

Pn,1 = 2wy, + E ) (330)

2g+1
w

itamounts to a birational map between M, and C where the latter denotes C?¢t!, equipped

with the coordinates w_,,...,wq.

2g+1
w

Hence we can use the birational map between My and C to write the Volterra map on

My, restricted to Mg, as a birational automorphism of (C%f“. Since we already gave in (3.28)
the Volterra map and its iterates in terms of the variables P;, we set n = 0 therein, which gives
the Volterra map itself, and take the leading terms of both sides of (3.28):

Wi (P2, +P1,g) =Wo(Pog+P—1y) - (3.31)

In view of the dependence of p_; g,...,p2 , on the variables w;, (3.31) gives an equation for
We1, Which appears linearly in it, and the birational automorphism (w_g,wi_g,...,W,) >
(Wi—g, -, Wg,Wet1) is the Volterra map on C#™. Explicit expressions for it will be given in
the examples below.

However, we can do a further reduction, restricting the Volterra map to the subvariety H; =
¢y for some k with g < k < 2g 4 1. The relation

Hk(W_g,...,Wo,...,Wg) = Ck

defines w, as a rational function of w_,,...,w,_ because by inspection w, appears linearly
in it (the same applies to w_,). As we will see in the examples below, we can therefore take
any of the invariants Hy, with g < k < 2g + 1 which will give a birational automorphism which
is an incarnation of the Volterra map V, on M, N (Hy = ct); precisely it is conjugate, via the
above birational map, to the Volterra map, restricted to M;, N (Hy = c¢), where values of ¢ =
(c1,--.,¢,) and ¢ are arbitrary.
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Example 3.6. We first consider the case g = 1. In this case, we only need to consider k = 1
in (3.27), which combined with (3.30) yields the following birational map between M, = M'

and C3:

p1=po1 =2wo+c1/2,

g1 = qo,1 =p1,1 +po,1 =2(wo+wi)+cr,

r =ro1=c1/2—po1,
ry=rop=—wo(po1+p-1,1)=—2wo(wo+w_1+c1/2) . (3.32)

In terms of the polynomials P, Q and R this can also be written as

Px)=14+2wo+c1/2)x,
Qx)=24+2(wi+wo+c1/2)x,

R (x) = —2wox (1 + (wo+w_1+c¢1/2)x) . (3.33)
For g=1 the formula (3.31) takes the form wi(p21+p1.1) =wo(po1+p—1,1), and can
be expressed immediately in terms of the quantities w_,...,wy since p,1 = 2w, +¢1/2,
for all n:

w1 (2W2+2W1+C1)=W0(2WQ+2W_1+C1) . (3.34)

It defines the Volterra map (w_y,wo,w;) = (wo, w1, w2) on C., being the same as equation
(2) in [58], where Svinin used continued fraction expansions to construct particular solutions;
equation (3.34) also appears in [25]. Substituting (3.33) in P?(x) + Q(x)R(x) = 1 + Hyx +
Hyx> + H3x* we get the following formulas for the invariants H, and Hj of the Volterra map
in terms of the variables w_;,wy and wy:

Hy = —4wo (w1 +wo +w_ +¢1/2) +ci/4, (3.35)
Hy = —4wo (w1 +wo +c1/2) (wo +w_1+c¢1/2) . (3.36)

We now fix c¢3 and consider the Volterra map on the subvariety Hs = c3 of M,. According
to (3.36) we get

4W0(W1+W0+Cl/2)(W0+W_1+C1/2)+C3 =0, (3.37)

which defines a 2D map (w_j,wg) — (wo,w;), where w; is computed from (3.37). It has H,
(from which wy is eliminated using (3.37)) as invariant, given by

2

e —dwow_ + . (3.38)

H=-— -
: W0+W71+C1/2 4

We observe that H is a ratio of symmetric biquadratics in wg and w_; and it can be checked
that (3.37) is a symmetric QRT map [50] (and it is of type (III) in the classification of [52]).
We next fix ¢, and consider the Volterra map on the subvariety H, = ¢, of M. From (3.35) we
now get

dwo (Wi +wo+w_i +¢1/2) —ct/4+c=0. (3.39)
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It defines a 2D map (w_1,wp) — (wg, w1 ) which is an additive QRT map (type (I) in [52]) with
H3 as invariant, which (after using (3.39)) to eliminate wy) takes the form

2
Hy = (wo+w_1 n 6—21) (4w0w_1 fep— 041> . (3.40)

To finish the g = 1 example we will present a slightly more involved reduction, leading to
a map which is closely related to Somos-5. To do this, we first compare two different ways of
writing of the genus 1 curve y* = f{x), which lead to an alternative generating set of invariants
of the recursion. If we write

Y =1+cx+ex +ex’ = (1—cfx) (1 —cfx+4cjx?) —4deix’ (341)

then the constants ¢; and ¢/ are related by

/
’ ci=—c1/2
c]:—2cl, ]/ 1 / 702
2 (. _a
& =4cj+ el ci=4i(e-1), (3.42)
— ! .7 / 2
c3 = —4(cie3+¢3) céz%‘(@—%‘)—%

Next, if we write the recursion relations (3.37) and (3.39) in terms of the constants ¢/
using (3.42), we get respectively

Wo(W1+Wo*C{)(Wo+W_1*Cl/):cllcé+c3/, (3.43)
wo(wi+wo+w_1—c{)+c;3=0. (3.44)

Notice that ¢] now appears linearly in (3.44), so we can easily eliminate ¢{ between (3.43)
and (3.44), which yields the following simple relation

/
wiw_1 =c5+ ;}—Z (3.45)

on the generic level surface (H, = ¢;) N (H; = ¢}), which is also birational with C2. It defines a
2D map (w_1,wg) — (wo,w;) which is a multiplicative QRT map with ¢} and ¢} as parameters
(being of type (II) in [52]). To get an invariant for this map, we eliminate w; between (3.43)
and (3.44), to get

ciwow_1 = (wo+w_1)wow_; + ¢ (Wo +w_1) +c3. (3.46)

It leads upon division by wow_ to the following explicit formula for the invariant:

1 1 i
H{=wo+w_i+¢} (+>+3. (3.47)
wo w_1 WwWow_1
Also, the tau function substitution
W, = TnTn+3
Tn+1Tn+2

in (3.45), which we now write in the form of the recursion relation wyy1w,—1 = ¢§ + ¢4 /Wy,
yields the general form of the Somos-5 recursion relation, namely

/ /
Tnt5Tn = CyTndTnt1 + C3Tnt3Tnt2 nez. (3.48)
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In our previous work [25] we showed how to solve the initial value problem for (3.48) explicitly
in terms of the sigma function, but in section 3.4 below we will show how it can also be solved
in terms of Hankel determinants, using the S-fraction (3.15).

Note that, apart from (3.45), the maps (3.37) and (3.39) are also examples of symmetric
QRT maps [50], and the orbits of all three maps can be identified by restricting to particular
level sets of their invariants, which is a common feature of families of these maps [33]. To see
how the orbits of these different 2D maps coincide, it is necessary to identify the parameters
and values of the invariants (3.38), (3.40) and (3.47) in an appropriate way, from which it
can be seen that (on fixed level sets) H,, H3 and H{ define an identical biquadratic curve in
the (w_1,wp) plane, namely (3.46), whose coefficients can be rewritten in terms of ¢y, ¢;,c3
using (3.42). Moreover, this curve is birationally equivalent to the Weierstrass cubic (3.41).

Example 3.7. Using (3.31) when g =2, on M5 (which is birational to C?) the formula for the
Volterra map takes the form

wi (P22 +pi12) =wo(po2+p-12) » (3.49)

so we need to express p,» for n=—1,...,2 in terms of the variables w;. To do this, we
use (3.29), keeping in mind that p, | = 2w, + ¢; /2 for all n:

2Dup = —Pil + 2wy (Pug 1,1 +2Pn1 +Pn—11) +C2

i 2
=— (2w,, + El) +4w, Wpg1 + 2w+ w1+ 1)+ 2
2
C1 (&1
— 4w, (wn+1 Wy W +5) te-. (3.50)

Substituted in (3.49) and slightly reordering the terms, we get the following symmetric
relation:

CZ
wq <2W2 (W3 + Wz) + 2wy (Wl + W()) + dwowy + (WZ —|—W1)C1 +c)— 41)

2
=wy (ZWO (Wi +wo)+2w_1 (W_1+w_3) +4wow_1 + (wo+w_1)c1 +¢2 — 41) .

(3.51)

This defines a 5D map (w_y, w_1,wg, wi,ws) — (W_1,wp, w1, wa,w3), where wj is computed
from (3.51). Using the first equation in (3.9), the above formulae for p, ; and p, > lead at once
to the following expressions for the coefficients of Q,;:

qn,1 = 2WnJrl +2Wn + ¢ 5
2

C
Gn2 =2 (WaWn1 + War1Wni2) + 2 War1 +wa)> + War1 +wa) et 4+ ¢2 — Zl : (3.52)

The formulae for 7, then follow from 7, = —2w, and r,x = —W,gn—1 4—1 for k> 1, by
applying the third equation in (3.9). With these formulae we can express the invariants
Hj,... Hs in terms of the variables w;. We write this out for H3, in order to find a recursion
relation of order 4. According to (3.24), and using the above expressions for 7, «,

H3 =2p1p2 +2r3+q17r2 + g2r1 = po,1po,2 + 2103 + qo,170,2 + go,270,1
=2po,1p02 — Wo (90,1911 +2q-12+2q02) ,
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which can be written completely in terms of the variables w; using (3.50), (3.52) and the fun-
damental formula p, ; = 2w, + ¢1/2. After some simplification, we get on the hypersurface
H; = c3, which is birational to C*,

WaWWo + WoW_1W_s +2W% (w1 +w_1) —l—wg +wo (W% +wiw_; +w271)

C1 1 C% 3 C10p Ci’
+ 4 Fwodw )tz (e T wpr @92, 9 g
2wo(w1 wo+w_1) 2(6‘2 4)wo 2 8 3

This is exactly the equation (1.2) defining the 4D map (P.iv), after setting n = —2 and

2

3
_a e _ae g o L[ o
V—z, a—4 3 +32, b 2(6‘2 4). (3.53)

The invariants H4 and Hs yield the invariants for (P.iv), given in (1.3) and (1.4).

3.4. Hankel determinant solutions

The function Fy in (3.15) that defines the S-fraction admits a series expansion in x around
(0,1) € I's that we shall use to give explicit solutions to the recurrence relation defined by the
Volterra map. For a generic point (P, Q,R) in u~!(f), with f as in (3.5), we introduce new
variables s1, 57, ... by writing

wix Sl
e =1 s =1-8(x) (3.54)
1- W3X j=1

1= 1— ...

1-—

where the latter equality defines the power series S(x), which can be regarded as a generating
function for the moments s;. The moments can be defined from the integral

_ 1 (1—Fo)
Sj—ﬁ% xj'H dx,

for a sufficiently small contour around the point (0, 1) on I'y, and this leads to a linear functional
(defined on polynomials in x~!), and the connection with the classical theory of orthogonal
polynomials [53], but we shall not pursue this further here. In view of (3.15), Fp = 1 — S(x) in
the sense that the latter is a Taylor series expansion of the rational function Fy at (0, 1). It was
shown by Stieltjes [55] that the variables w; can be expressed as Hankel determinants of the
variables s;. Precisely, he showed that

An—S An

_— fi >1, .
A A orn (3.55)

w, =

where Ay _1 = det(s,‘_H‘_])ilj:]’m,k and Ay = det(si_,_j)izi:],___’k, for k > 1, that is,

S1 R Sk 52 53 Tt Skl
s - s

Az/cfl = 2 . ) and A2k = 3 (356)
Sk e e SZk—l Sk+1 e “ee S2k
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Also, by definition, A_, = A_; = Ay = 1. For example, w; = 51, wy = 52/s1, w3 = (5153 —
53)/(s152), and so on. It is clear from (3.54) that, conversely, s; can be expressed as a poly-
nomial in wy, ..., w;, for example s; = wy, 55 = wiwy, 53 = wiwz(wa + ws), and so on. (While
these expressions can be found by expanding geometric series, a systematic method using
continuants is presented in section 3.5.)

Theorem 3.8. The terms wy,, n > 1, of the recurrence sequence defined by the Volterra map
on u='(f) can be written as

Ar173 ArL
An—ZAn—l ’

W, =

where the entries of the Hankel matrices satisfy the recursion relation

g j—1 g Jj—k-1
1 :
5= (px—a)sj—k+ Zsisjfi +t3 > Z SiSj—k—iy J=8&+2. (3.57)
k=1 i=1 k=1 i=1
The initial values s1,52,...,5q41 and the coefficients for the recursion (3.57) are provided by

a generic triple (P, Q,R) € u~'(f).

Proof. In order to prove the recursion formula (3.57), we will derive a quadratic formula for
S(x) = 1 — Fy, introduced in (3.54). We use (3.15) to write

y=-P)+FQx) =-Px)+(1-Sx)Qx), (3.58)
which we substitute in

Y =fx) =P+ QxR (x (3.59)
to get the following quadratic equation for S(x):

(Q(x) - P () $() ~ 30() (1) + P (x) ~ 30(x) + yR () =0. (3:60)

Substituting the power series for S(x) into the quadratic, as well as the polynomials P, Q, R, the
coefficients of ¥ for 1 <j < g+ 1 allow the g + 1 initial values s, ... ,S¢+1 to be determined
from these polynomials. Then, upon taking the coefficient of ¥’ for j > g + 2, the recursion
relation (3.57) is obtained directly. Observe that the number of initial values plus independent
coefficients appearing linearly in the recursion is g+ 142g =3g+ 1 =dimM,. O

As we will see in the examples, it is often more practical not to fix the curve y2 =flx),
i.e. not to fix the values of all invariants, but only fix some of them and take wy, ..., w, as extra
initial conditions.

Example 3.9. We specialize the above results to g = 1, fixing arbitrary constants c¢; and ¢, and
taking the Volterra map on the surface H; = c¢;, H, = ¢, as in one of the reductions considered
in example 3.6. For the recursion (3.57) we can take p;,q; as initial conditions, since given p;
and ¢, specifying the values of H; and H, is equivalent to specifying the values of | and r;
(see the explicit formulas for H; and H; in the left column of (3.24)). It follows from (3.32)
that

c c 1 /e
Pl—CI1=—2W1—E]7 and q1:2(w1+w0+51) =—2W2+(1—02> ;
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where we obtained the last equality by using the recursion relation (3.39), shifted by 1, to
replace wo by w». Substituted in (3.57), we get the following recursive formula for s; (j > 3)
in terms of wy,w,, which we can take as initial conditions, instead of p; and ¢g;:

Jj—1 > Jj=2
Cl 1 c
Sj = (—2W1 — E) Sj—1 + igl SiSj—i + <4W1 <4f — 6‘2) — Wz) ié ISiSj_l_,' . (361)

Then specifying the two initial values wy,w, fixes the initial conditions sy, s, for the above, as
s1 =wj and s, = ww;. Notice that s; is a polynomial of degree j in w;,w», with w1 |s; for all j.

As a concrete example, consider the curve y2 =1 — 10x + 29x2 — 24x3, with initial condi-
tions s; = 1, s, =2 (or, equivalently, w; = 1, wy =2). Since ¢; = —10 and ¢, =29, the recur-
sion (3.61) becomes

j—1 Jj—2
sj=3sj_1 + E $isi—i—3 E siSi—ic1, =23,

which generates the sequence
(sj)j21 ¢ 1,2,7,27,109,456,1969,8746,39825,185260, ... .

producing A; =1, A, =2,

27
A3:‘; 3’:3,&:‘3 277’:5,A5_ 2 7 27 | =11,
7 27 109
Y
Ae=| 7 27 109 |=37,..,
27109 456

which extends symmetrically to all n € Z to produce the original Somos-5 sequence [44],
..,3,2,1,1,1,1,1,2,3,5,11,37,83,274,1217,6161,22833, ...,

generated by the bilinear recurrence
ApisAy = ApaDpp1 + A3 Ao, (3.62)

It is a particular case of (3.48) with ¢, = ¢} = 1, where the latter are computed from ¢; = —10,
=29, c3 = —24, using (3.42).

Remark 3.10. Note that Hankel determinant formulae for Somos-5 were previously obtained
in the work of Chang, Hu and Xin, using a bilinear Bicklund transformation for Somos-
4. We will return to the connection with Somos-4 in section 5, but for now we just point
out that the Hankel determinant expressions found in [8] are more complicated than the
above, because two different moment sequences are required for the terms with even/odd
indices. In particular, for the original Somos-5 sequence, there are two sequences of moments,
namely  (5j);>0: 1,—1,4,—8,25,—65,197,-571,1753,—5351,16746,—52626,..., and
(8)j=0:2,—1,3,—1,12,2,61,39,352,374,2210,3162, . . ., which are defined by
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30:1,§1:—1,§j+1——sj—|—25] 1+ SiSji—i—1, and

respectively, where the recursions hold for j > 1, and (with the indexing convention of
theorem 1.2 in [8]) the terms of the Somos-5 sequence [44] are then given by Sg = 1,5, =
1,S, =50=1,S3 =5y =2, and

1 -1 4
54:‘_11 _41’=3735=‘_21 gl‘:s,sﬁz -1 4 -8 |=11,
4 -8 25
2 -1 3
S;=| -1 3 —1|=37,...,
3 -1 12

which are not related to the determinants in example 3.9 in a straightforward manner.

Example 3.11. We now specialize the above results to g =2, thereby continuing example 3.7.
From (3.53) it is clear that fixing the values ¢y, c;, c3 is equivalent to specifying the parameters
a,b and v, which we fix, since these are the coefficients in the recurrence relation (P.iv), and
we can take wo, w, wy, w3 (Or wi, wa, w3, wy) as initial data for the latter. We now have

SI=Wwi, Sy =wiwy, §3=wiwy(wy+ws),
providing the 3 initial values for the recursion (3.57), which takes the form
§j=0Sj— 1+5s] 2+Zs,s, 1+’YZSS] i |+5Zs,sj i, Jj=4. (3.63)
i=1
While 51,57, 53 are determined by wy,w,, w3 only, wg and a,b, v are required to find the coef-

ficients &,...,0, which are computed using p; = 2w + v (recall that v = ¢;/2) and (3.50),
(3.52) for n=1, to give

G=pr—q1=-"2w —v,
B=pr—qr=—2wi (wa+wi +wo+v)—b,
o1

Y==zqg1=wi+wy+v,

2
5= —qr = w_ 1wy +wiwy+ (w0+w1)2—|—1/(w0—|—w1) +b

[\ R

a
=— <W2W3 +W1W2+W%+W0W2+I/W2+W> s (3.64)
1

where, in the last equality, we have used the recurrence relation (1.2) to replace w_; by ws. If
desired, one can apply (1.2) once again to replace wy by wy in the above expressions, but we
have not done this.
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As a particular numerical example, we take the rational orbit (2.1) of (P.iv) considered in
section 2. Upon fixing wo =w; =wy; =w3=1and v=3,a=5, b=7, we see that forj > 4
the recursion (3.63) becomes

j—1 j—2 j—3
§j = —SSJ;1 — 19Sj72 + ZS,’SJ;,‘ +5 ZSiSj,,',l —12 ZS,’SJ',,‘,2 s

i=1 i=1 i=1

and the three initial values s; = s, = 1, s3 =2 lead to the following moment sequence and
Hankel determinants:

(Sj>j>l :1,1,2,-26,45,11,—116,553,1151,—-26727,108897, —169157,—-310959,3004412,
—4722005,...,

11 1 2
Al_l,Az_l,A3_‘l ) ‘_1,A4 ‘2 2 '_—30,

11 2 1 2 —26
As=|1 2 —26|=-743A¢=| 2 —26 45 |=10541,
2 26 45 26 45 11

1 1 2 26
1 2 26 45

M=l e a5 1 |=127318.
26 45 11 116

This reproduces the sequence of tau functions in example 2.2, if we identify A, _3 = 7, in (2.7).

The preceding explicit form of the recursion for the entries of the Hankel determinants
when g = 2 yields a simple proof of the Laurent property for (2.4).

Proof of proposition 2.3 (reprise). For n > 1 we have

TnTn+3 o An—3 An

w, = =
! Tn+1Tn+2 AanAnfl ’

where 7, satisfies (2.4). Hence the tau functions are given by Hankel determinants, up to a shift
of index and a gauge transformation of the form (2.6), with a different scaling for even/odd n.
Comparing with the values A_, = A_; = Ay = 1, we see that the relation between the two
sequences is

73

k k1
Tok1 = T <T1> A, Tokgr = —— <) Aoy (3.65)

for k > 0. Recall that R denotes the ring formed of Laurent polynomials in 7,73, 74 and poly-
nomials in 79,7, 75,7 With coefficients in Z[a, b,v]. Upon rewriting the formulae (3.64) for
the coefficients in (3.63) in terms of the 7 initial tau functions, we see that &, B € R, but
(due to the presence of terms involving wy and 1/wy), 4 and 4 both have 7 appearing in the
denominator, so instead 7, Se TflR. However, the three initial values are

2

T1T4 T17T5 T2T5 To
S|l=——, SHK=—7, S3=T1| 3—+— |,

’ 2 3
T3 73 7'37'4 T3T4
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sos; € {'R forj = 1,2,3. Then by induction, since 4 and B appear in front of terms of degree
2 in s; in the recursion (3.63), it follows that s; € 7R for all j > 1. Then since Ay and Ay
are k X k determinants, a factor of 7; can be taken out of each row (or column), so they are
each given by an overall factor of 7§ times an element of R. Thus the powers of 7| exactly
cancel in (3.65), and hence 7, € R for all n > 1. O

Remark 3.12 (Hankel determinant formula for negative indices). As was previously noted,
the Laurent property for negative indices n follows automatically from the birationality and
reversing symmetry of (2.4), but it can also be shown directly from an appropriate extension
of (3.65) to k < 0. In fact, for any g there is a version of the Hankel determinant formula (3.55)
which is valid for n < 0. Indeed, the Volterra map arises from the S-fraction expansion (3.15)
of the function Fy, based on the power series S(x), with Fp =1 — S, as in (3.54), but more
precisely this is the expansion around the point (0, 1) on the curve I'; given by (3.5), with x
being a local parameter. The inverse Volterra map arises from another S-fraction, associated
with a power series S*(x), corresponding to the expansion of the same function F around the
point (0,—1) € Iy, that is

Fo= =Y s =85 (x) . (3.66)
1— | W_oX Jj=1
1—...
Then the extension of (3.55) to non-positive values of the index is
A* AT
W, = W forn <0, (3.67)

where A5, | =det(sfy;_1)ij=1,..kand A3 = det(sfy;)ij=1,.. ,fork > 1, with A* , = A* | =
A§ = 1. Mutatis mutandis, this is proved in the same way as Theorem 3.8, and the moments s;
satisfy another recursion of the form (3.57). The two sets of Hankel determinants combine to
produce a single sequence of tau functions (7,),ecz, consistently defined by taking 7, = A, _3
forn>1,and 7, = A* ., forn<3.

3.5. The birational map Mg — C39 "

Elaborating further on the S-fraction of F = £ +Q7(Dx()x ) , We construct a birational map between M,

and C;¥ ™', where the latter stands for C3$+! equipped with wy, ..., w3, as affine coordinates.
We may call it the unreduced birational map, in view of the birational map M, — CZ™ which
we obtained by reduction (fixing ¢ = (c,...,¢,)). This unreduced map turns out to be less
convenient for deriving the Volterra map in the w; coordinates, but it is nevertheless useful for
obtaining abstract results in these coordinates.

We start from the equation (3.60), which we can view as a linear relation for P(x), Q(x)
and R(x). It amounts to an infinite linear system of equations for the coefficients

Dis--sDPgsq1s---3qg:T1,. .., 7441 Of these polynomials, given in terms of the coefficients s; of
the power series S(x) defined in (3.54). We show that its solution can be expressed rationally
in terms of s1,...,83,41, and hence in terms of wy,...,w3g4 1, yielding the birational map. To

do this, we investigate the first 3g 4 1 equations only, namely the ones corresponding to the
coefficient of ¥ in (3.60). For convenience, we set

Pk = E 885,
i+j=k
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fork>2,s0that$* =37, . sisic* = 32,2, pix®, and then consider the terms of (3.60) at each
order in x. At leading order, the constant term cancels, and the coefficients of x,x,...,x8T!
can be used to obtain ry,...,7e41 in terms of py,...,pe,q1,...,q,, and s; for 1 <j< g+ 1,
so it is sufficient to show that we can solve the coefficients of ¥ with g +2 <j < 3g+1 for
Dis---:Dgsq1,---,qg interms of sy, ...,53,41. For each such j, the equation at order ¥ in (3.60)
is given by (3.57), which we can rewrite as

8 8
1 .
D osi-ipi—a)+ 5D pgi=si—p,  for g+2<j<3g+1. (3.68)
i=1 i=1

We view (3.68) as a linear system in the 2g variables p;-¢; and ¢;/2, with i =1,...,g. In
matrix form, it is written as

Sg+1 ¢ $2 Pg+1 P2 P1—q1 Sg+2 — Pg+2
§2¢ 0 Sg4d P Pl Pg —dg | _ | S2¢+1 — P2g+1

Sogt1 o Sghd Pl Pgg2 q1/2 2642 — P2g+2
$3g vt 8241 P3g Pl qs/2 $3g+1 7 P3g+1

so that the matrix which governs the linear system has the following 2 x 2 block form, each
block being a Toeplitz matrix,

Ok+1 Ok Ok—g+2
T, (s,g) T (Pag)) Oks2 Okp1 -
where T, (0,k) := (3.69)
(Tg (s,28) T, (p,28) ¢(0:k) : - .
Ok
Ok+g Ok+2  Ok+1
Our claim that py,...,pg,q1,...,q, can be solved rationally in terms of s, ..., 5341 then fol-
lows from the fact that its determinant, which is a polynomial in sy, ..., $3,41, is non-zero. To

show that the determinant is non-zero it is sufficient to show it for one particular set of values
of the s;. We pick s; = 1 fori=gandi = g+ 1 and s; = O for all other values of i. Then p; = 1
fori =2gandi =2g+2, p; =2 fori =2g+ 1 and p; = 0 for all other values of i. With this
choice, T,(s,g) is upper triangular, with all diagonal entries equal to 1, T,(s,2g) is the zero
matrix and T, (p,2g) is a tridiagonal matrix, with all diagonal entries equal to 2 and all super-
diagonal and subdiagonal entries equal to 1. It is easily verified that its determinant is g + 1,
hence non-zero, showing our claim.

Example 3.13. The simplest example is the case of g=1. Then 3g + 1 = 4. The birational
map between sy, ...,s4 and wy,...,wy is given by

S|=W1, SH=W|wy, §3=WW (W2+W3) , S =wiwy ((Wz +W3)2 +W3W4> .
(3.70)
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The linear system for pi,q;,71,7> then corresponds to the coefficients of ¥ in (3.60) with
j =1,...,4. They are explicitly given by

q1—2p1—2s1—r =0,

2p1s1 —2q1851 — 250+ 202 —1 =0,

2p3 — 253+ (p2 — 252) q1 + 250p1 =0,

2p4 — 254+ (p3 — 253) q1 + 253p1 = 0. (3.71)

As in the general case, we first solve the last 2g = 2 equations for p;,q;, which gives, upon
writing each py in terms of the s;,

2—3s%s% — ZS% +2 (slsz +s? — S3) §3 + (2sz — s%) S4

p1=
51 (253 — s153)
w3 (Wy —wy) (W) — 2w
Wi — Wyt ws 3 (W 4) (W 2)
wi (w2 —ws)
2_ 3
§254 — 85— § ws (W) —w.
g = 2423 2=—2W2<1+ 3 (i 4)>’
51 (253 — s153) wi (w2 —ws)
where we have used (3.70) to write the formulae in terms of w1, ..., wy. The first two equations
can now be solved for r; and r,, leading to the following expressions:
wi —wy) (W —w. wy—w
rl—ZW3(1+( ! 2) (i 4)) , r2—2w1W3<1+ 1 4> .
Wi (W2 — W3) Wy — w3

Note also that in this case the unreduced version of the Volterra map is the birational map of
C# defined by

(WI)W23W37W4) — (W27W37W43W5) )

2 2 2 2
WsWq + Wi — W3 —W3wy  WiWy + W5 — wi; — wiWwy

43 + 23 =0, (3.72)
Wq4 — W3 w3 —Wwp

which (after replacing each w; — w;_,) is the relation obtained by eliminating c¢; from (3.34).

For any g, we can describe an explicit algorithmic procedure for obtaining the exact expres-
sions for the birational map between sy, ...,53541 and wy,..., w3z 1. One way round, this is
given by the Hankel determinant formula (3.55), but to describe the inverse map more expli-
citly we must recall how this relates to the approximation problem originally considered by
Stieltjes [55], as well as other classical results on convergents of continued fractions in terms
of continuants (for a concise review of the latter, see [17]).

The convergents of the S-fraction (3.15) are the sequence of rational functions of x obtained
by truncating the continued fraction at some finite line n, which approximate the series for
Fy =1— S exactly up to and including the coefficient of x”, that is

T (x) ::1—1W—‘szx —1-5(x)+0 (), (3.73)

1 —wyx
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Thus, for the first few convergents we have

I—(wi+wa)x 2

1 —wox

o 1 — (w1 +wa+w3)x+wiwsx
r T 1—(wy+ws)x

-7'—0:1a \/_'.]ZI*W]X, ‘F2: )
and so on. By the usual correspondence between convergents and 2 x 2 matrices, we see that
the monodromy product over the conjugation matrices (3.23) appearing in the discrete Lax
equation is given by
Kng1 Wiyeooswnsx)  —waxKn (Wi, .o, Wp—15X)
P 3:M .XM .XM x) = n—+ 9 ) ) ) yWn ) 7
ntl 1(OM; (%) ne1 (%) ( Kn (W, .o ownsx) —wnx Ky (Wa, .o, Wy 15%)

(3.74)
with the nth convergent being the ratio of the entries in the first column, that is

Kne1 (Wi, ;w3 x)
Ko (Way .o, Wy X)

Fu (x) =

)

where the polynomial C, is a continuant of size n, that is

1 —1 0 0

—WiXx 1 -1
Kn(Wiyeeoywno15x) 1= 0 —wx 1 .0
0 0 —w,_1x 1

From (3.74), the continuants are generated recursively from the linear relation ®,,; =
®,M,,,, starting from ®; =1 (the identity matrix). Hence, by replacing the series for
Fo=1—_S1in (3.73) by its truncation at the nth term, then multiplying by K, (ws,...,w,;x)
on both sides, we find the relation

1— Zijj KWy ooy wysx) = Kugg (W, .o ,wn;x) + O (ﬂ“) ,

J=1

and comparing the coefficients of ¥’ forj = 1,...,n allows s, 5, ..., s, to be calculated recurs-
ively as polynomial expressions in wy, ..., w,. For instance, when n =4 the expressions (3.70)
are obtained from the numerator and denominator of

L= (wiHwy A+ ws Fwg) x4 (Wiws +wiwy +wowy) x?

T, =
4 1 — (wy + w3 +wq) x + wowgx?

Observe that these expressions are universal, in the sense that they depend only on the structure
of the S-fraction, so that each s, is always given by the same polynomial in w; for 1 <j < n,
independent of g.

For g > 2, the corresponding formulae for the coefficients of P(x), Q(x), R(x) in terms of
Wi,...,W3.41 become very complicated, and we do not have a compact way to write them.
However, we will not need the explicit form of these formulae in what follows, even when
dealing with the example of genus 2.
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4. Discrete integrability

We show in this section that the map (P.iv) is a discrete a.c.i. system, in the sense of defin-
ition 1.1. To do this, we will first show that the affine space M, (g > 1) of (3.1) which was
constructed in the previous section has the same integrability properties as the odd and even
Mumford systems (see [43, 60]): the invariants H; of the Volterra map are in involution with
respect to a large family of compatible Poisson structures and their generic level sets are affine
parts of Jacobi varieties. We then show that the Volterra map is a Poisson map with respect to
these Poisson structures and that it is a translation on the latter complex tori. In appendix A
(section A) we further show the precise relation between the Mumford-like system, introduced
here, and the even Mumford system.

4.1. Compatible Poisson structures for the Mumford-like system

We first introduce a g + 1-dimensional family of compatible Poisson structures on M,. The
family is parametrized by the g+ 1-dimensional vector space of polynomials ¢ € C[x]| of
degree at most g + 1, vanishing at 0, so ¢(0) = 0. For such a polynomial ¢, the corresponding
Poisson structure is most naturally written by viewing P, Q and R as generating functions,
and is defined by

{(P(), P}’ ={Q(x), ()} =0, {R(x),RM}* = (MRE) —¢(x)R()

(P, Q) = LENEOIZBONIW) i )0 — -y SIRLIZCOIRE),
{QW),R()}? = 2y¢(x)7’(y)>€: f(y)??(x) —)0). w“n

Of course, one needs to verify that the above definition is coherent, in the sense that the right-
hand side of each of these formulae is indeed a polynomial in x and y, and also that the right-
hand side does not contain any monomials x'y/ which are absent in the left-hand side. For
example, {P(x), Q(y)}” is a polynomial in x,y with only non-zero coefficients of x'y/ when
1 <i,j< g, while ¢(x)yQ(y) — ¢(y)xQ(x) is clearly divisible by x —y and the quotient has
only non-zero coefficients of xy/ in the same range. The same argument applies to the other
formulae. Moreover, we need to verify that {-, ~}¢ is a Poisson bracket, i.e. that it satisfies the
Jacobi identity. This follows easily from the formulae (4.1). Let us show for example that

[tom. 0o R} +{1e0). R .0w} +{R().2w)* 0} =0.
4.2)

The first term in (4.2) is zero since {Q(x),Q(y)}* =0. Also, by direct computation
using (4.1),

_ [
{{Q(y),R(z)}d’,Q(x)}d): {2Z¢(y)P(Z) ? ()P (y) 7mg(x)}

y—z

_ 26() ¢(0)xQ(x) ~¢(0)2Q(2) _ 226(2) p(1)xQ(x) —
y—z =X y—z y—

_ 220(0)6(@) o WWE) 4 26()80)
R Tray e Ces ey R

= |
=
=
Na¥
<
(@)
—
<
=
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By skew-symmetry. { {R(3,2()}*.@0)}" = - {{2().R(2)}*. 209} . so that

¢ 22¢(x)9(2)
=2 (x—y)

2xz¢ (y) ¢ (z)

Ot -y

{{R@.2w}". 00}

Summing up, we get indeed zero, which shows (4.2).

Notice that since {-, ~}¢ is a Poisson bracket for any ¢ € Clx] withdeg¢ < g+ 1 and ¢(0) =
0, the Poisson brackets {-,-}* are compatible, simply because {-,-}* + {-, ~}¢/ ={, ~}¢+¢/
for any such polynomials ¢, ¢’.

We show in the next proposition that the Volterra map V), is a Poisson map with respect to

each one of these Poisson brackets. Recall from (3.9) and (3.10) that V, is given by

P)=0W P, O@=TWTCWTRW 5y op),

—WwXx
4.3)

where w = —72”‘_;””‘ .

Proposition 4.1. For any ¢ = Z}gill @ix', the Volterra map V, : My — M, is a (birational)
Poisson map with respect to {-,-}*.

Proof. We need to check that V, preserves the Poisson bracket {-,~}¢. In formulae, this

~ ¢ -
means that {S (x),T(y)} = {8(x), T(y)}*, where S and T stand for any of the polyno-

mials P, Q,R. To do this, it helps to first use (4.1) to derive the following formulae for the
Poisson brackets of w with the polynomials P, Q, R

WP =m0 = Lo -2,
RO =22 w5 ) - 2 2P O)+ R W) (@)

To derive these formulae from (4.1), it suffices to use that —2w is the linear term of 2P (x) —
Q(x) + R(x). For example,

{=2w R} :}%%{27’ (x) — Q(x) + R (x),R()}*
— fim _2y¢(x)R(y) — (R

x—0 X xX—=Yy X—=y

T oM QX +RMX)-¢(X)RH)

=GR () =6 0)r +26/P (3) + 6 ) lim 2

— R — )1 + 26 P() 2"5(;) 2P a)o()

,50)
y

=01(2P(y) +R(y)) — +2wo(y) ,
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which proves the last formula in (4.4). It is now easy to prove that the Volterra map is a Poisson
map. For example, it is clear from (4.4) that {P(x) — Q(x),w}? = 0, and so

[PW.R0)} =100 - P@).~wyQm)}* =wy{P(x).Q0))°
6(1)yQ0) — ¢ (1)1Q(x)

=wy
X —

y
_SORO) ()R ()
y

)

={Px), R0}’

The other verifications are done in the same way. This shows that the Volterra map is a Poisson
map. O

We show in the next proposition that the invariants of the Volterra map, as introduced in the
previous section, are in involution with respect to any of the Poisson brackets {-, -}¢, where
we recall that deg¢ < g+ 1 and ¢(0) =0

Proposition 4.2. The 2g + 1 invariants Hy, ..., H, 1 of the Volterra map, defined by

2g+1

Px)+Q(x —1+ZHx (4.5)

are in involution with respect to {-,-}°.

Proof. We first compute from (4.1)

[P PO +Q0IRM} = 20) (PR >}¢+R< >{P<x>,9<y>}¢
_ sy LHROT 60

-y

xX=y

o) 220 R(Xi :;Q RG) 46)

and similarly

{ow P0r+ a0 R} ~200) THEWZPLICO) 4590 0(y)
4.7)
{RW.POP+ Q0RO =20 () PEIEIZPOIRE L ) 0y (o
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These formulae imply

P+ ewr <>7’2<>+Q<> R ()}
— 2P (x {P ()+Q W} + 2@ R, P20 +2MRG)}’
{Q )+Q() (>}¢
=2P(x M M'ﬁ‘g )2x6(y W M
+Q()6(y) Q) R(x) + R(@zMM: M

—R(x)¢(y)Q(x)Q(y) =0,

so that the invariants H; are in involution, {H,-,Hj}¢ =0forl1<ij<2¢g+1. O

As before, we often fix the Hamiltonians Hj,...,H, to generic values so that we actually
work on a (non-singular) subvariety of M¢, which is birational with C?¢*!. We show in the
following proposition that M, is a bi-Hamiltonian manifold, i.e. that it is equipped with a
pencil of compatible Poisson structures.

Proposition 4.3. The Hamiltonians H,, ... ,H, are Casimirs of the Poisson structure {-, -}d’ if
and only if ¢ is of the form ¢ = ¢qx8 + ¢g+1xg+l. In this case,

8

Cop= (=) 7Py g (4.9)

i=0

is also a Casimir function of {-,-}°.

Proof. Consider fori =1,...,g the Hamiltonian vector field Xy, which is given as the coeffi-
cientof y' in { ,P(y)* + Q( } which we computed in (4.6)—(4.8). These Hamiltonians
are Casimir functions for {-, } 1f and only if their Hamiltonian vector fields are zero, which
is in turn equivalent to the fact that the right hand sides in (4.6)—(4.8) are divisible by y$*!.
Notice that the latter right hand sides, without the factor ¢(y), are divisible by y since P(0) = 1,
Q(0) =2 and R(0) = 0, without being divisible by y*. Therefore, this is equivalent to ¢(y)
being divisible by )4, i.e. that ¢ is of the form ¢ = ¢ x& + ¢g+1xg+1; since degp < g+ 1,
it follows that the Poisson structures which make M into a bi-Hamiltonian manifold are
the restrictions to Mg of the Poisson pencil {-, 3 with ¢(x) = X8 + g1 x8 T It is eas-
ily shown by direct computation that Cy, given by (4.9) is a Casimir of the Poisson pencil.
For example,
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8 ¢
{P(x) 72(_1)i¢§i¢;+1H2g+1i}
R

y= 2g+2 {P ) Hogy1—i 2g+l} Z ¢g l¢g+1

=Res 2g+2{7> POP+QO)R }Z( 1) g0l 1y

=y
I [o®)yQ1) —9¢(M*xQx) PR —d(MHRW] < P e—igi

_R_egy2g+2 x—y R —y2(») x—y ]; -1 ¢§ ¢g+1y
1 YQMRE) =xQMRO) S~ vineini o

= Res Ers; y ;(—1) g b1y E(y)
1 yOO)R(X) —xQ)R(Y)

=5 y2st2 x—y (¢§+]yg + (—l)g¢§i}ylg+'>

1 yOQOREK) —xQ)R(y)
¢g+'vegyg+2 P =0,

where we have used in the last two equalities respectively that R(y) is divisible by y and that
R =xQ(x)
xX—y

the polynomial 2 RO) has degree at most g in y. O

Example 4.4. Continuing example 3.6, we specialize the above results to g = 1 and make them
more explicit. Recall that M is the 4-dimensional vector space of polynomials (P, Q, R) with

Px)=1+px, Qx)=2+qx, R(x)=rx+nrx’, (4.10)

and the invariants H,,H,,H; are given in (3.24). The Poisson structures {-, ~}¢ on M are
parametrized by ¢(x) = ¢x + ¢»x° and they all have H, as a Casimir function. The Poisson

matrices of the basic Poisson structures {-,-}" and {-, ~}x2 (with the coordinates taken in the
following order: py, q1, 1, 1) are easily determined from (4.1) and are given by

0 —q1 0 rn 0 2 0 —n
Lyl 0 e 0 w20 2 2q -
{ ’ } B 0 q1 0 —Ir ’ { ’ } B 0 -2 0 ri
-rn 0 r 0 roopr—2q —n 0

@11

For a generic ¢; € C, the subvariety M is defined by H; = c;. The pencil of Poisson structures
{-,-} can be restricted to M¢ and the Casimir function Cy on (M¢,{-, -}%), given by (4.9),
takes the simple form Cy = ¢oH, — ¢ H3. In particular, H, and H3 are Casimir functions
of {-, -}X2 and {-,-}", respectively, and {-,-}" can be restricted to H3 = c3 while {-, -}’C2 can
be restricted to H, = ¢, (for generic c¢;,c3). Since, by proposition 4.1, the Volterra map is a
Poisson map with respect to any such ¢ (of degree at most g + 1 with ¢(0) = 0), it follows that

e (3.34) defines a Poisson map with respect to the full Poisson pencil {-, -}¢;
e (3.37) defines a Poisson map with respect to {-,-}";
2

e (3.39) defines a Poisson map with respect to {-,-}" .
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It follows from the Poisson matrices (4.11) and from (3.33) that the Poisson structures
{-,-}" and {-,-}" are respectively given by {w,_1,w,}" = —(w,_1 +w,+c1/2)/2, and
2
{Waet,w ) =1/2.
In example 3.6 we also considered the recursion relation on the surface H) = ¢}, Hy = c}.

None of the Poisson structures {-, ~}¢ considered above can be restricted to these surfaces, but
a Nambu—Poisson structure with Hj and H as Casimirs can be so restricted. It leads to the
quadratic Poisson bracket

{Wn—lawn} = Wp—1Wy (412)

with respect to which (3.45) is a Poisson map. The above bracket can also be derived via
reduction of a presymplectic structure for the tau functions, by regarding (3.48) as a mutation
in a cluster algebra [19].

To see how the quadratic bracket arises here, recall from [59] that, for some fixed choice of
m-form €2, a Nambu—Poisson bracket of order m is defined by

{f],fz,...,fm}ﬂzdfl /\dfz/\‘--/\dfm.

In the case at hand (taking m =4), observe that the unreduced version (3.72) of the Volterra
map ¢ on Ci, with coordinates (w_y,wg, w;,w;) preserves the rational volume form

wowiq

Q= dw_1 Adwg Adw Adwy, e (Q)=Q.

Wo — Wi

Then the corresponding Nambu-Poisson bracket defines a Poisson bracket on C}
according to

{fl7f2} = {fl7f27H£7H3l}a

which by construction has Casimirs H; and H}, and restricts to (4.12) on the surface H; = ¢},
H), = ¢}. The same Nambu—Poisson bracket also produces any member of the pencil {-, ~}¢ for

2
g = 1: in particular, the Poisson structures {-,-}" and {-,-}" arise in this way, by taking (up to
scaling) {f1,/>,H1,Hs} and {f1,f>,H,,H,}, respectively. However, this construction does not
extend to g > 1 in a straightforward manner.

Example 4.5. Continuing example 3.7, taking ¢ = x> when g=2 we find that the Poisson
brackets on M, (with coordinates py,p>,q1,92,71,72,r3) take the form

3 3 3 3
{ri,3}" =n, {r2, 3} =n, {r,e2} =2=1{p2q1}",

3 3 3 3
{PZaQZ}X =4q1, {p23r3}x =1, {pl7r3}x :_rl:{PZaVZ}x )

3 3 3 3 3
{q1,m}" =2={q2,n}", {qu.n3}" =2p1—q1, {q2.,m2}" =2p1, {q2,73}" =2p2—qy,
where only the non-zero brackets are specified here. By restricting this Poisson structure
to My N (H; = c3), we find that (up to an overall factor of 1/2) it coincides with Poisson

bracket (1.5) for the (P.iv) map that was derived from a discrete Lagrangian in [22], where
the parameters v,a,b are fixed according to (3.53) in terms of the values cy,cs,c3 of the 3

Casimirs of {-,-}".
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4.2. The generic fibers of the momentum map

We will now give an algebro-geometric description of the generic fibers of the momentum
map 4 : Mg — C[x], which we recall is given by u(P,Q,R) = P? + QR. Precisely, we will
describe the fiber over any polynomial f € C[x] of degree 2g + 1, without multiple roots, and
satisfying f(0) = 1. Notice that such polynomials are exactly those f in the image of y for
which y? = f(x) defines a non-singular affine curve I'; of genus g; we use ff to denote the
completion of the latter, which can be thought of as a compact Riemann surface.

Proposition 4.6. Let fbe polynomial of degree 2g + 1, without multiple roots, such that f(0) =
1. Denote by I'; the non-singular affine curve of genus g, defined by y* = f(x), with Iy being its
completion. Then =" (f) is isomorphic to an affine part of the Jacobian variety of f‘f minus
three translates of the theta divisor,

p(f) 2 Jac (Ty) \ (BUOLUB_) . (4.13)

The (—1)-involution on Jac(Ty) leaves © invariant and permutes © 4 and ©_.

Proof. Let (P,Q,R) € u~'(f), so that

P?(x) + Q1) R (x)
(P(0),2(0),R(0))

f(x), degP,degQ,degR—1<g,
(1,2,0). (4.14)

Since f has degree 2g + 1, deg @ = g and deg R = g + 1; it also implies that ff is obtained
from I's by adding a single point, which we denote by oc. The hyperelliptic involution on I_‘f is
denoted by s; it fixes oo and sends (x,y) € I'rto (x,—y). To (P, Q,R) we associate a divisor
S8, (xi,yi) — goc on ff as follows: x1,x,,...,x, are the roots of Q(x) and y; := P(x;) for
i=1,...,g. Itis indeed a divisor on ffsince forj=1,...,g,

i =f(x5) =P (x) = (P* () + Q(x) R (%)) =0.

Of course, (x;,y;) # oo for all i. Notice that when Q(x) has multiple roots, say x; = - - = x,
then y; =y, = --- = yx. We show by contradiction that if x; is a root of Q(x) and y; =0 (so
that x; is also a root of P(x)), then x; is a simple root of Q(x). Indeed, if x; is a multiple root
of Q(x) and is also a root of P(x), then x; is a multiple root of f(x) = P(x)* + Q(x)R(x), so
that f is not square-free, contrary to the assumptions. The upshot is that the obtained divisors
are of the form ) ¥_, P; — goo, where P; € [y fori =1,...,¢ and P; # 1(P;) when i #}. It is
well-known that two such divisors are linearly equivalent if and only if they are the same; also,
that none of these divisors are equivalent to a divisor of the form Zf’;ll 0; — (g — 1)oo, with
Qi €l fori=1,...,g — 1. Since Jac(Iy) is the group of degree zero divisors on I';, modulo
linear equivalence, this shows that the map 1~ (f) — Jac(Ly), which associates to (P, Q,R)
the divisor class [Zle P, — goo], is injective. This map is of course not surjective. In order
to determine the image, let
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i=1

@:z{ gzp,-—<g—1>oo] |wPl~erf},

o= { [0+ Sre 1vmen —o 002

i=1

- 1
O_ = { (O,—l)—i—ZP,-—goo] | Vi P; eff} =0 +[(0,—-1)—o0] .
L i=1

The first one is the theta divisor and the other two are translates of it. Notice that +(©) = ©
and +(04) = ©_, since 1(c0) = co. As we already said, the image contains no point of the
form [ f;ll Pi—(g— 1)00}, i.e. is disjoint from ©. Since P; = (x;,y;) where x; is a root of
Q(x) and since Q(0) =2, it is clear that x; # 0, so that every P; = (x;,y;) is different from
(0,1) and from (0,—1); hence the image is also disjoint from ©, and ©_. Take now any
point in Jac(I'y) \ (O U©, UO_). It can as above be written uniquely as [>f_, P; — goo]
with P; ¢ {00, (1,0),(—1,0)} and P; # +(P;) for all i #j. When all P; = (x;,y;) are different,
there is a unique polynomial Q(x) whose roots are the x; and with Q(0) = 2, and there is a
unique polynomial P(x) of degree g, with P(x;) =y; fori =1,...,g and P(0) = 1: setting
(x0,¥0) = (0,1), they are given by

8 8 v
Q(x)2||<1;> C P@=Yn][—L (4.15)
i=1 ! e

i=0  j#i

This also works in the limiting case when some of the P; are the same upon adding in the
definition of P(x) a tangency condition (see [43, page 3.18]), which assures that f(x) — P?(x)
is divisible by Q(x). The quotient is a polynomial R (x) of degree g satisfying f(x) = P (x)? +
Q(x)R(x); by uniqueness, u(P,Q,R) = [Zf:l P;— goo] , as required. O

Example 4.7. We specialize proposition 4.6 to the case of g = 1. Notice that in this case we
should say elliptic rather than hyperelliptic, and in this case the (hyper-) elliptic involution
is not unique. Another peculiarity about g =1 is the well-known fact that a complete non-
singular genus one curve (i.e. any compact elliptic Riemann surface) is isomorphic to its
Jacobian, a fact that we will be able to illustrate here. Let f{x) = 1 +cjx+ cox* + c3x° be
an arbitrary polynomial of degree 3 with no multiple roots. We investigate p~'(f), which
is the affine curve defined by the following equations, which are found by expressing that

P2(x) + Q)R (x) =f(x):

2(pi+n)=ci,
pi+qin+2rn=c,
qir =cs.

The curve 1! (f) can be equivalently written as a plane algebraic curve by first eliminating
ry from the first two equations and then r, from the two remaining equations; writing p; and
q1 simply as p and g, the final equation takes the simple form

2
G Ig(p—q)—i—clqz—cz%—i—qzo. (4.16)
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It is easy to see that, thanks to the conditions on f, this curve is non-singular, just like I's. In
fact, if we denote the left-hand side of (4.16) by F then a singular point (g, po) of 1~ (f) must
satisfy

OF OF 1
P (90,p0) = % (90 —2po) =0, 9q (90,p0) = = (P§ — 2P0go + €190 — ¢2) = 0. (4.17)

2
Since go # 0 (as F(qo,po) = 0 and ¢3 # 0), we get go = 2py; substituted in F(go,po) = 0 and
in the second equation of (4.17) we get

Po—cipi+epo—c3 =0, 3pi—2cipo+c=0,

which can be written as f{—pg) =f'(—po) = 0. Since f has no multiple roots these equations
have no common solution, which shows that x~!(f) is non-singular.

To see that 11~ (f) and Ty are birationally isomorphic, it suffices to consider the following
rational map:

2 —1 2 -2
q=——,p= Y , withinverse x=-——,y= u. (4.18)
X

X q q

Notice that, despite the appearance of g in the denominator, the inverse map in 4.18 is actually
regular, because g # 0 on p~'(f). The rational map and its inverse extend (uniquely) to an
isomorphism of the completions I'y and 1~!(f), which can be thought of respectively as an
elliptic curve and its Jacobian. It allows us to determine the number and nature of the points at
infinity of —1(f), i.e. the points needed to complete 1~ !(f) into u~'(f); they are the points
corresponding to affine points (x, y) for which the map is not defined, to wit (x,y) = (0,£1),
and to the point at infinity co of ', making a total of three points, as asserted by proposition
4.6. More specifically, by using the map we can determine a local parametrisation around these
points from local parametrisations around the points (0, £1) and co. For the latter, we can take
(x,y) = (1,1 £ 51 +O(%)) and (x,y) = (172, \/c317 (1 + 327> + O(r*)) to obtain, again using

the map, the following local parametrisations at the three points at infinity of x—!(f):

000 : (2#,@<1+2212+0(t3)>> , 00 (3,621+(9(t)) ;
00y —%—%—c—l+(9t :
( )

tT ot 2

Again, using the map we can derive that the (hyper-) elliptic involution on I's, which is given
by (x,y) — (x,—), is given on = (f) by (¢,p) = (q,q — p). It permutes the points co; and
00, while leaving ooy fixed (together with the points (2p,p) where —p is a root of f). The
points cog, 001 and 0o, correspond to © ,© and O _, respectively.

Example 4.8. We also specialize proposition 4.6 to the case of g =2 and provide some extra
information. The polynomial f is now of degree 5, taking the form f(x) = 1 + cyx + cox”> +
c3x + c4x* + csx°, with no multiple roots, which is equivalent to the curve (1.8) associated
with the map (P.iv). In this case, the theta divisor and its translates are genus 2 curves, iso-
morphic to I';. This general fact can also be seen here directly from the description that
© = [I'y— o] and similarly for ©, = [['y+ (0,1) — 200] and ©_ = [T+ (0,—1) — 200].
We show that these curves in p~!(f) meet according to the intersection pattern in figure 2.
To do this, we first recall the general fact that two translates of the theta divisor (also called
theta curves) intersect in two points which coincide if and only if the curves are tangent.
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o, o

C)

Figure 2. When g =2 the divisor at infinity of 1 ~'(f) consist of three copies of the
curve y> = Sf(x), intersecting according to the indicated pattern.

Consider first a point (divisor class) in © N O_. It must be of the form [P+ (0,1) — 200] and
of the form [Q + (0, —1) — 200], for some P, Q € I';. In particular, the points P and Q must be
suchthat P+ (0,1) ~ O+ (0,—1); as we already recalled, a linear equivalence of such divisors
amounts to equality, so that P = (0,—1) and Q = (0,1) and there is a unique intersection
point [(0,1) + (0,—1) — 200] which is the origin O of Jac(I'y), since (0,1) + (0, —1) ~ 200.
Consider next a pointin © N © .. It must be both of the form [P — oo] and [Q + (0, £1) — 200],
for some P,Q € ff. This leads us now to the linear equivalence P + oo ~ Q + (0,+1), whose
only solutions are P = 0o, Q = (0,F1) and P = (0,£1), Q = oc; the first solution corresponds
again to the origin O while the other intersection point is the point [(0,+1) — oo] (see figure 2).

4.3. Discrete Liouville and algebraic integrability

We are now ready to show that the Volterra map V, is Liouville integrable on (M, {-, 1?) when
¢ # 0. Recall that a birational map R on an algebraic Poisson manifold (M, {-,-}) of dimension
n and (Poisson) rank 2r is said to be Liouville integrable when the following conditions are
satisfied:

(1) Ris a Poisson map;
(2) R has n — r functionally independent invariants in involution.

In the case at hand, M = M, so that n = 3g + 1, and R =V,, which we already know to
be a Poisson map (proposition 4.1). Also, we already have 2g + 1 invariants in involution
(proposition 4.2). So it will be sufficient to show, in the proof which follows, that the rank of
{, ~}¢ is 2g and that the invariants H, ..., Hy,4 are functionally independent.

Proposition 4.9. Ler ¢ € C[x] be any non-zero polynomial of degree at most g + 1, vanishing
at 0. Then the Volterra map V, is Liouville integrable on (Mg, {-, 2.

Proof. We first show that the components of yp, which are the 2g + 1 polynomial func-
tions H;, defined by u(P,Q,R) =1+ Z,zfll H;x', are functionally independent. According
to Proposition 4.6, the generic fiber of y (which is the generic fiber of Hy,...,He 1) is an

open subset of the Jacobian of a curve of genus g, hence has dimension g The dimension of
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the generic fiber of y is given by dimM, — s = 3g + 1 — s, where s denotes the number of func-
tionally independent functions in Hy,...,Hy,4 . Therefore, s = 2g + 1 and the components of
w are functionally independent.

It remains to be shown that the rank of {-,-}? is 2g. Since dimM = 3g + 1 and {-, -}* admits
2g + 1 functionally independent functions in involution, the rank of {-, -}¢ is at most 2g (see
[60, proposition 3.4]); to show equality, in a neighborhood of a generic point (P, Q,R) € M,
we take the functions xy, ..., x,,y1,...,y,, which we constructed in the proof of proposition 4.6.
Then {xi,xj}¢ = {yi,yj}¢ =0, since {P(x),P(y)}* = {Q(x),Q(y)}* = 0. We show that the
brackets {x;, yj}¢ are non-zero if and only if i = j, from which it follows that the rank of {-,-}¢
is indeed 2g. To do this, we compute for 1 < i < g the Poisson bracket {y;,In Q(y)}¢ in two
different ways. First, using (4.1),

[
0uIn QO = (P () oy = P90
ZY¢(xi)Xi<i;CF)L)))Q(xi)/Q(Y) :yf(fi}), , 4.19)
and next, using (4.15),
{9, InQ (y Z{y,,ln (1—y/x)} —yzx{y;xj} (4.20)
j=l1 ] ]
so that
{yl,X}
Z R (x5 — :

Since (generically) all x; are different, {x;, yi}? =0 when j#1i, while {x;,y;}* = —xi¢(x;), s0
that

{x,-,yj}¢ = —xiqﬁ(xi) 51:/' . (421)

Since ¢ #£ 0, this shows that the rank of {-, .}¢ is 2g. O

We now conclude with the main result of this section, namely that the Volterra map is a
discrete a.c.i. system. Recall from Definition 1.1 that this means that, besides being Liouville
integrable, the generic level sets defined by the invariants are affine parts of Abelian varieties
(complex algebraic tori) and the restriction of the map to any of these Abelian varieties is a
translation.

Theorem 4.10. The Volterra map V, is a discrete a.c.i. system on (Mg, {-, 2.

Proof. Liouville integrability was already shown in proposition 4.9. Let f € C|x] be a polyno-
mial of degree 2g + 1, without repeated roots and with f{0) = 1. Writing f(x) = 1 + Zzgtl cix',
the common level set defined by H; = c;, i = 1,2,...,2g+ 1 is the fiber ;' (f) which was
shown in proposition 4.6 to be an affine part of the Jacobian of f‘f, and this is indeed

an Abelian variety. It remains to be shown that the restriction of the Volterra map V, to

p=1(f) = Jac(Ty) is a translation; more precisely we will show that it is a translation over
[(0,—1) — 0] = [oo — (0,1)]. Let (P, Q,R) € u~'(f) be a generic point (a regular triplet) so

43



Nonlinearity 37 (2024) 095028 AN W Hone et al

that (P, Q,R) := Ve (P, Q,R) also belongs to 1~ ! (f). The degree g divisors on I's correspond-
ing to these two triplets are respectively denoted by D = > _%_, (x;,y;) and D= S8 (%, yi) (so
that the corresponding divisor classes in Jac(I'y) are [D — goo] and [D — gool, respectively).
Consider the rational function F on Iy given by the action of V, on (3.6), which in view of (4.3)
and the definition (4.14) of f, can be written in a few different ways:

VP RW -wil()
Q(x) y—Px) y—Qx)+P(x)’

Fi:=

(4.22)
It is clear from the last, respectively first, expression that F has a simple zero at the each
of the points (x;,y;) and (0,—1), and a simple pole at each of the points (¥;,;) and co. To
verify the behaviour at oo, one should introduce a local parameter z such that x = 1/z%, y =

Cogr12” %D (14 O(z)) there, which gives F = /3,414, ' /z+ O(1). For the other zero
or pole candidates in I';, coming from places where the numerators or denominators in (4.22)
vanish, one checks using one of the alternative formulae that F is finite and non-zero at these
points. Thus F has precisely g + 1 zeros and g + 1 poles, in accord with the fact that the degree

of the divisor of a rational function is zero. The upshot is that the divisor of zeros and poles of
F is given by

(F) = (iy)+(0,—1) = > (%,5) —0o =D =D+ (0,~1) — o0,

i=1 i=1

which leads to the linear equivalence D + (0,—1) ~ D + 0o, and hence to
|5~ goc] = [D—goo] +[(0,~1) ~ o] , (4.23)

as was to be shown. O

According to proposition 4.3, when ¢ = ¢ox + ¢, 1x8+! we can restrict the Volterra map
and its Poisson structure to M{, = N{_,(H; = c;), and so by the above theorem the Volterra map

is a discrete a.c.i. system on (Mg, {-, -}%). In particular, the recursion relations obtained by
fixing the invariants H, ..., H, to generic values c¢; (and possibly also fixing the other Casimir
C,4 to some generic value) are discrete a.c.i. systems.

Example 4.11. In the genus 1 case, it follows that (3.34), (3.37) and (3.39), equipped respect-

ively with the Poisson structures {-,-}?, {-,-}* and {-, '}Xz, are discrete a.c.i. systems. The
same holds for (3.45), which is a discrete a.c.i. system with respect to the quadratic Poisson
structure (4.12).

Example 4.12. In the genus 2 case, we have that for generic a, b, v the map (P.iv) is a discrete
a.c.i. system.

5. Continuous flows and the infinite Volterra and Toda lattices

The discrete integrable systems that we have discussed so far are naturally associated with
continuous systems which are equally integrable. More precisely, Liouville integrability of the
Hamiltonian systems associated with the Volterra maps comes for free, and with some extra
work we show that these continuous systems are also algebraically integrable. We further show
that in the genus g case any solution w;(¢) of one of the integrable Hamiltonian vector fields
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extends, under the action of the Volterra map, to a sequence (wn(t))n ¢z, thatis a solution to the
infinite Volterra lattice; notice that in particular, as discussed in the introduction, this applies
to the map (P.iv). We also discuss the relation between the infinite Toda and Volterra lattices,
which explains in part how some of the results in this paper are related to the results in [31],
and what motivated us to introduce S-fractions and the corresponding Mumford-like systems
to study the map (P.iv) and its higher genus analogues.

5.1 Liouville and algebraic integrability

Recall that on M, we have a family of compatible Poisson brackets {-, ~}¢ of rank 2g, as
well as a family of polynomial functions Hy,...,Hs,1 1, where H; is the coefficient in x' of
P2(x) + Q(x)R(x); said differently, H,,...,Ha, are the components of the momentum map
w : My — Clx]. For the sake of clarity, and since the choice of Poisson structure is not important
for what follows, we will only consider ¢ = x¢*! here, and henceforth write {-,-} for {-,-}%.
With this choice of ¢, (4.6)—(4.8) become

{P@). P07+ Q)R ()} =yt HE RO ZXSWIRD)
{0 P07+ omR ()}~ EUEZIPIICD)  yenigp oy,
{RW PO+ QMR =29 BIRDZPUIRL , eigyriy

As wehave seen, Hy, ..., H, are Casimir functions of the Poisson bracket, as well as Ho | = Cy

(see (4.9)). The vector fields %XHg 4, are denoted by X;; we will mainly be interested in
X = %XHK +»» Which we can compute by dividing the above equations by 2y$*2 and taking the
limit for y — 0, so that

son g YRR —xQ)R(y)  2R(x) —xQ(x)R'(0) _ R(x) n
P(x)—ylgr(l) 2y(x—y) N 2x ox 2Q(x),
5.1
where the dot denotes the derivative %, and similarly
O(x) = L;%Q(X) _ M 7
R(x):rlp(x)+L22mR( )—@ (5.2)

Notice that the vector field X, is (non-homogeneous) quadratic. From proposition 4.2, the
functions H; are in involution with one another with respect to {-,-}, which means that the
vector fields X; all commute.

Note that the Liouville integrability of this continuous system is incorporated into the
Liouville integrability of the discrete system, so the following statement is an automatic con-
sequence of proposition 4.9.
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Proposition 5.1. The Hamiltonian system (Mg, {-,-}, ) is a Liouville integrable system.

We now turn to the algebraic integrability of the Mumford-like system, which is slightly
more involved in the continuous case. Recall (for example from [1, chapter 6]) that
(Mg,{-,-}, 1) being an a.c.i. system means that

(1) (Mg, {-,-},p) is a (complex) Liouville integrable system;
(2) The generic fiber of p is (isomorphic to) an affine part of an Abelian variety;
(3) The integrable vector fields are holomorphic (hence constant) on these Abelian varieties.

Items (1) and (2) have been shown already, in propositions 5.1 and 4.6, respectively, so it
only remains to address item (3).

Proposition 5.2. The Hamiltonian system (M,,{-,-}, 1) is an algebraic completely integrable
system (a.c.i. system).

Proof. We show (3) for one of the integrable vector fields; then it also holds for the other
integrable vector fields, since the latter are holomorphic on the fiber and commute with a
constant vector field.

The vector field which we consider is the Hamiltonian vector field X, given by (5.1)
and (5.2). Let (Py, Qo, Ro) be a generic point of M, and consider for small |¢| the integral curve
t+— (P, Q1 Ry) of Xy, starting at (Py, Qo, Ro). Let D, = > F_, (x:(1),yi(t)) — goo denote the
associated divisor on the algebraic curve I';, defined by it; recall that I'y is given by y* = f(x)
where f = P + QoRo = P? + Q,R,. Since the x;(f) are the roots of Q,(x), upon substituting
x = x;(¢) in the equation (5.2) for Q(x) we get

However, we can also compute Q(x;(7)) directly from the explicit formula (4.15) for Q(x),
to wit

Y (x: (1)) = 2%; (1) E0)
Q(xi (1) % (1) g(l xj(l)> '

Comparing these two expressions gives

-t _ Xi (l)
)= (t)g <l xj (f)> ' (5.3)
It follows that for k =0,...,g— 1,
dOda() _ $ WO
iZ:; W N _;ﬁ(t)gmdt_ _5k,0dl. (5.4)

Above we have used the following identity which is well-known in the theory of symmetric
functions:

8
SR =60, k=0,...8-L; (5.5)

Xi— X
i=1 i
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the proof of the latter follows easily from the fact that any lowest degree antisymmetric poly-
nomial in g variables is, up to a factor, the Vandermonde determinant. Integrating (5.4) from
0 to  gives

D Lk
/ A S (5.6)
Dy Y

The left-hand side of (5.6) contains the differentials x*dx/y for k=0,...,g — 1, which form
a basis for the holomorphic differentials on I_‘f. Thus the left-hand side of (5.6) is the image
of the divisor D, — Dy under the Abel map, which is (by Abel’s Theorem) an isomorphism
between the algebraic Jacobian of ff, consisting of degree zero divisor classes on ff, and the
analytic Jacobian of ff, which is a complex torus, that is

Jac () = HO (9 ) /1 (T))

Formula (5.6) then says that the integral curve of X is a straight line in this complex torus, as
was to be shown. O

It follows that for, generic initial conditions, the solutions to X; are meromorphic functions
in t.

5.2. Genus g solutions to the infinite Volterra and Toda lattices

The infinite Volterra lattice is given by the set of equations
Wy =Wy (Wyg1 —Wu—1) neZz. 5.7

It was first considered by Kac and van Moerbeke [35], who also studied the N-periodic case
(WN4n = w,, for all n). We now show that the Volterra map allows us to define, for any g, infinite
sequences of meromorphic functions (w;,(#)),cz which satisfy (5.7). Since these sequences are
defined from solutions of the genus g Mumford-like system, and hence can be written in terms
of genus g theta functions, we will refer to these solutions to the Volterra lattice as genus g
solutions.

Let g > 0 be fixed and consider the vector field on (C?f“, corresponding to the vector field
%Xl on the genus g Mumford-like system, via the birational transformation constructed in
section 3.5. For the sake of brevity, let us call this the w-system (in genus g). By algebraic integ-
rability, the vector field X; has globally defined meromorphic solutions w (), ..., w3e41(f),
corresponding to generic initial conditions. Using the recursion relation induced by the action
of the Volterra map on CE, we get also globally defined meromorphic functions wy,(t) for
all n > 3g+ 1 and all n < 0. Algebraic integrability further implies that the recursion and the
flow of the vector field must commute, as they both correspond to translations on the fibers
of the momentum map, which are affine parts of g-dimensional tori. (The fact that the map
and the flow commute is already a consequence of Liouville integrability.) It follows that all
formulae only involving the variables w, remain valid when all indices are shifted by the same
integer. In the proof of the theorem which follows we will make extensive use of the birational
transformation between the w-system and the Mumford-like system. The triplet corresponding
to a meromorphic solution (w(f),...,w3g4+1(7)) of the w-system in genus g will be denoted
(Po(x;1), Qo(x;t), Ro(x;1)), the index O being added because we will also use the triplets
(Pa(x;1), On(x;1), Ru(x;1)), obtained from it by applying the Volterra map or its inverse sev-
eral times. Again, all formulae involving only the polynomials P,,, Q,,, R, n € Z, remain valid
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when all indices are shifted by the same integer, and for any n € Z, (P, (x;1), ©,(x;1), R, (x;1))
corresponds to (Wy,41(f),...,W3g4nt1(f)) under the birational map.

Theorem 5.3. The sequence of meromorphic functions (wn(t))
Volterra lattice (5.7).

ez 18 @ solution to the infinite

Proof. We first recall the recursion relations (3.9) for the triplets (P,, Q,, R, ), which we eval-
uate at any meromorphic solution to X; = %XHK 4ot

PnJrl (X; t) = Qn (x§ t) — P (X; t) ; QnJrl (X; t) = 2P (x; t> :f}:—(lxétt));_ K (x; t>

Rut1 (x;1) = =Wy () xQp (x51) . (5.9)

S CRY))

From (5.9), since H; = 2(p; + r1) is a first integral, and using p, 11,1 = ¢»,1 — Pn,1, Which fol-
lows from the first equation in the recursion relation (3.13), we have

1 1 C1

wy (1) = _Er"’l (1) = Ep"’l (1) — T and 1o (f) = —wy (1) gu—1,1 (1) , (5.10)

where c¢; is a constant. It follows that

. (5.10) 1, 5. 1 1 (5.10) Wy, (¢t
20 L 0= e gm0 2D (g () = s ()
2 2 4 2
(5.8) Wy (1) 5.10)

) (17n+l,1 (t) — Pn—1,1 (t)) ( = Wy (t) (Wfl+l (t) — Wp—1 (t)) s

as was to be shown. O

Remark 5.4. It is fairly straightforward to modify the proof of proposition 5.2, and the preced-
ing result, to all of the Hamiltonian vector fields X;, associated with times #;, 1 < i < g, which
correspond to the first g flows in the Volterra lattice hierarchy. This replaces ¢ by #; and mod-
ifies the Kronecker delta on the right-hand side of (5.6) to d;—1, hence producing solutions
that are meromorphic in t = t1,%, ..., t,.

We now apply a standard Miura-like formula, to show how a genus g solution of the Volterra
lattice, given by an infinite sequence of meromorphic functions w, (), also leads to a corres-
ponding solution to the infinite Toda lattice, given by

da,
., — Un bn— - bn ;
a (bt )

db
dt" =a, —py1 - (5.11)

(These are almost the same as the Flaschka variables for the Toda lattice, except that tradition-
ally \/a, is used in place of a,; and similarly, the quantities /w, are used in [42].)

Corollary 5.5. Let w,(t), n € Z be a genus g meromorphic solution to the infinite Volterra
lattice (5.7). Upon setting, for j € Z,

Ajg1 1= Woj_ Wy, bjpy = —wy— w1, (5.12)

the sequence of meromorphic functions a;(t), b;(t) is a solution to the infinite Toda lattice, while
another sequence of meromorphic solutions to (5.11) is given for j € Z by

aiiy = wywoip, by = —Wyp1 —Wajt2 - (5.13)

48



Nonlinearity 37 (2024) 095028 AN W Hone et al

Proof. Differentiating (5.12) and using (5.7) one gets immediately (5.11), and similarly
for (5.13). O

Example 5.6. Theorem 5.3 and corollary 5.5 imply that we can obtain elliptic (genus 1) solu-
tions to the infinite Volterra and Toda lattices, by starting from a generic solution to (3.34).
On a fixed orbit of the latter, any such solution can be identifed with an orbit of the QRT
map (3.45) associated with Somos-5. Hence this means that the analytic results of [25] can be
applied, to write the tau function explicitly as

o (20 +n2)
o(2)"

where A4 ,A_,B are non-zero constants (with AL chosen according to the parity of n), and
o(z) = 0(z;82,83) denotes the Weierstrass sigma function associated with an elliptic curve
y? = 4x> — gox — g3, isomorphic to (3.41). The parameters z, g, g3 all depend on ci,c;,c3,
while zp also depends on the initial point on the orbit. Then we can write the solution of the
map explicitly in terms of the Weierstrass zeta function, as

Th = AiBn

)

o(z0+nz)o(z0+ (n+3)z)
0(2)' o (z0+(n+1)2) 0 (z0+ (n+2)2)
=¢(C(zo+(n+2)z) = C(z0+ (n+1)z2)+C), (5.14)

n =

where ¢ = 0(2z) /o (z)*, C = ((z) — ((2z). Now extending this by the flow of the vector field
Xy, with parameter 7, we find that only zy changes, being replaced by zy + ¢ (giving a linear
flow on the Jacobian of the elliptic curve). Hence we arrive at the genus 1 solution of the
Volterra lattice, given for n € Z by

wa (1) =¢(C(zo+er+(n+2)2) =Clzo+¢t+ (n+1)2) +C)

(equivalent to the travelling waves found in [65]), and from (5.12) we get a corresponding
genus 1 solution of the Toda lattice, that is

an (1) =& (p(22) —p(z20+er+(2n—1)2)) ,
by (1) = &(C(z0+ 21+ (2n—1)2) — C(zo+ét+ (2n+1)2) —2C),  (5.15)

written in terms of the Weierstrass g function, with the constants ¢, C as above. Note that some
more general elliptic solutions of the Volterra lattice, with the form of w, depending on the
parity of n, have been presented elsewhere in the literature [37, 61, 62].

Remark 5.7. Similarly, we can produce genus 2 solutions to the infinite Volterra and Toda lat-
tices, by starting from a generic solution to the map (P.iv), extended to meromorphic functions
w, (1) by the flow of the vector field X;.

In [42], the transformation (5.12) was used to connect the finite Volterra and Toda lattices
by Moser, who attributed it to Hénon. The same transformation has further been applied to
connect real-valued solutions of the infinite lattices, subject to suitable (smoothness/bounded-
ness) conditions [20]. Moser also employed finite continued fractions in [42]. However, it turns
out that the map (5.12) has a much earlier origin in the classical theory of continued fractions,
where it arises from the method of contraction for S-fractions (see J.3 in [55], and [53]), a fact
that has perhaps been overlooked in the integrable systems literature. In the next subsection,
we show how the Volterra maps, as presented in this paper, are related to the integrable maps
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recently constructed by one of us [31]; the key is to apply contraction to the S-fraction (3.15),
which produces a J-fraction, and thereby yields the Miura-type formula (5.12).

5.3. Contraction of continued fractions

The following equivalence between a pair of continued fractions, which was introduced in
[55], is known as contraction:

X~ W]wz =X+b — = @
I_X—W3 X+b2—X ) as
_1_ W4 + 3_X-l-b4—
X— ...

The form of the fraction on the left is the original way that an S-fraction was written by Stieltjes,
in terms of a variable X = x~!, while the fraction on the right is a Jacobi continued fraction (J-
fraction). To be more precise, the above equality is an identity of continued fractions, obtained
by combining successive pairs of adjacent lines in the S-fraction into a single sequence of lines
in the J-fraction, with the coefficients a;,b; on the right being related to w; on the left by

bl = —Wwi, Ajr1 = Woj—1Wj , bj+1 = —W2j —W2jt1, for ]2 1. (516)

(Within the theory of continuants, the formulae for contraction of two or more lines of a gen-
eral continued fraction are presented in [17].) To make contact with our previous discussion,
observe that (5.16) reproduces the transformation (5.12) between the Volterra and Toda lat-
tices, but for indices j > 1 only.

In order to see how contraction arises in the context of Volterra maps, we start from a
hyperelliptic curve I'; of the form previously considered. We take a fixed set of coefficients c;,
which are arbitrary except that, as usual, we assume that the polynomial

2g+1

f) =14 cx (5.17)

i=1

is square-free with ¢4 # 0, so that the hyperelliptic curve I'y: y? = f(x) is smooth and has
genus g. In order to simplify the presentation below, initially we make the further assumption
that ¢; = 0. Then setting

!
X=-, v=-2

; =20 (5.18)

establishes a birational isomorphism between I'y and an algebraic curve C which (by complet-
ing the square) can be written in the form

C: ¥=FX), FX) =AX)+4R(X), (5.19)

where A(X) is a monic polynomial in X of degree g + 1 with no term of degree g (so that the
right-hand side of (5.19) has no degree 2g + 1 term), and R is a polynomial of degree at most g
in X, not identically zero but otherwise arbitrary; such curves are exactly the ones which were
considered in [31].
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Now let (P, Q,R) = (Po, Qo, Ro) € M, be a generic triplet satisfying P> + QR =, in the
sense discussed above (3.15). As we have seen in (3.15), the associated rational function on
I't, denoted Fo, admits the following expansion as an S-fraction:

F _y+730(x)_1 WX
0= - WX :

1—-..

(5.20)

Then, upon multiplying (5.20) by x~! = X, rewriting the S-fraction in terms of the new spectral
parameter X, and applying contraction, we find

w1

X_IFO =X—- 1— ) :X"‘b] _X+b2_ a3 5 (521)
X— W3W4 X+b3_a74
1 Xtby—--
X— ...

where the J-fraction on the right above is defined to be the contraction of the S-fraction. Thus,
via the second equality in (5.21), the coefficients a;, b; of the J-fraction are specified in terms
of the w; according to (5.16).

We now briefly recall the construction of integrable maps associated with J-fractions, as
presented in [31]. The starting point is a rational function Y, on an even hyperelliptic curve C
of the form (5.19), whose completion C includes two points 0oy, 005 at infinity. This function
has g + 1 simple poles and g + 1 simple zeros, with one pole being at the point co; (where
Y ~ X8+ ~ A(X) as X — o0), and one zero being at 0o, (where ¥ ~ —X8F! ~ —A(X)), taking
the form

Y+ Py(X)

Yo=—"— 5.22
0 00 (X) (5.22)

for polynomials Py, of degree g+ 1 with no term at O(X#), and Qo, of degree g; and there
exists another polynomial Q 1, of degree g, satisfying ¥> = P3 4+ QoQ_| = F. The expansion
of Yy around the point co;, with X —1as alocal parameter, can be considered as an element of
C((X~1)), and it was shown by van der Poorten (see [46, 49]) that this power series admits a
J-fraction expansion of the form

= =apt (5.23)

o+ —

with «, := |Y,|, the polynomial part of Y,. Furthermore, for a generic choice of such Py,
Qo in (5.22), the polynomial parts «;, are of degree 1 in X for any #n, and the recursion Y, =
an + ﬁ leads to a sequence of polynomials P, Q, satisfying the same degree constraints as
above, such that

— Y+P" (X) _ Qn— (X) _r .
"TTom vop, w — V=FX =P (X +0,(X)Qur (X)), (5.24)

where the above relations extend to all n € Z, not just n > 0, by reversing (5.23) to find Y _,
from Y, etc.
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The situation for the J-fraction expansion (5.23) is very similar to that for the expan-
sion (5.20), and allows the construction of a birational dynamical system that is defined by a
recursion for the polynomials P,,, Q,, analogous to the derivation of the Volterra map from the
S-fraction in section 3. Here we refer to the dynamical system (in dimension 3g + 1) defined
by (5.23) as the J-fraction map in genus g, denoted 7. In order to explain the very close con-
nection between V, and 7, and prove theorem 5.10, we further summarize some features of
the latter, while referring the reader to [31] for a complete description.

To describe the dynamics defined by P,,Q,, new variables u,, d, and v, are introduced
from

Pi(X)=AX)+2d, X"+ O0(X7?), 0u(X)=u, (X —v, X'+ 0 (X72)) , (5.25)

so that from the terms of O(X?$) in the equation for F on the right-hand side of (5.24), the
relation

Untty— = —4d,, £ 0 (5.26)

must hold, while calculating the (degree 1) polynomial parts in each line of (5.23) shows that,
for any n, we have a,, = (X + b,,) /u,. Thus, upon substituting for «, and rescaling each line
of the continued fraction using (5.26), we may rewrite the J-fraction (5.23) more explicitly as

1 2(X+v 1
Y, Up 2(X+vi)

. A U
where, by setting 5o = 5, we have

d
Y, 2

2|~

X+v — (5.27)

d3

X-I—vz—ﬁ
g — e

Then the J-fraction map 7, is a dynamical system on an affine phase space Mgl =0 of dimension
3¢+ 1, which fibers over the space of curves C of the form (5.19), with each (generic) fiber
being an affine part of the corresponding Jacobian variety Jac(C); and on each such fiber, the
map corresponds to a translation by the class of the divisor co, — oo;. It is defined recursively
by (5.24), in terms of the coefficients of the polynomials P,,Q,, except that the prefactors
u, in front of each Q,, as in (5.25), are completely decoupled from the dynamics. Indeed, the
constant §y in (5.27) is arbitrary: it determines the first coefficient in the series expansion of the
moment generating function 1/Y; = Zi>0 §5;X~/~!, whose coefficients allow the solutions of
J, to be written in terms of tau functions given by Hankel determinants; but 5o can be removed
by a gauge transformation on the tau functions. Moreover, once 5 is fixed, then «; and all the
other prefactors u, are determined from 5y and d,,, due to (5.26); and the phase space M? =0
(which is an affine space of Lax matrices) does not include the parameter §y. After decoupling
from u,, the map J, can be written equivalently as a recursion for the remaining coefficients
in P,,Q,, or as coupled recurrences for the quantities d,,v,. (See (5.33) and (5.35) in the
examples below for the cases g =1 and g =2, respectively.)

We would now like to identify (5.27) with the J-fraction appearing on the right in (5.21), but
there are two problems: firstly, the relation (5.16) is valid only for j > 1, and gives a different
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formula for b; when j = 0; and secondly, we initially made the assumption that ¢; =0, which
does not hold in general. To relax the latter assumption, we must shift the spectral parameter
X, make a compensating shift in b;, and allow a linear relation between x ' F and Y, yielding
a modification of (5.12), valid for all j € Z.

Proposition 5.8. The odd, genus g spectral curve Ty: y* = f(x) with f(x) =1+ Z?Sl cixi,

associated with a generic orbit of the Volterra map V,, is isomorphic to C, the even spectral
curve (5.19) for a corresponding orbit of the J-fraction map Jy, via the birational equivalence
X=x""+c1/(2g+2), Y=y/x$T\. Under this isomorphism of curves, the function Fo on I';
and the function Y| on C are related by

x 'Fy—wo = 50Y1, (5.28)

and the quantities d,, v, satisfying the map J, are given in terms of the solution of V, by

C1

dip1 = waj—1wyj Vigl = —Woj — Wojp1 —

Hence each iteration on the orbit of J, corresponds to two iterations on the corresponding
orbit of V,.

Proof. The shiftin X in the birational transformation, as in the formula X = x~! + ¢, /(2g +2),
ensures that the equation Y2 = F(X) = A(X)? + 4R(X) for C has no term at O(X?**1) in F(X),
so that A(X) = X8T! + O(X#~1), as required for a spectral curve of the J-fraction map. Also,

from the explicit fgrm of the function F in (5.20), we may rewrite the left-hand side of (5.28)
interms of Y and X =X — ¢, /(2¢g + 2), as

X (X~ EHy+ Py (X)) —woeQo (X') Y+ P (X)
Q) (X1) —01(X) /50

where we calculate P (X) = X8 Py(X™1) —woX¢Qo(X™1) = X8+ + (po.1 — 2wo)X® +
O(X2~1), and then in view of (3.25) we see that P;(X) = X¢+! + O(X¢~"), while Q;(X) =
$0X8 Qo(X~1) = 4 (2X8 + O(Xs71)) = uy (X6 + O(X¢~1)), so both of Py and Q; are polyno-
mials in X of the required form for the J-fraction map. Now from the S-fraction in (5.28), we
find that combining contraction with the shift of spectral parameter modifies (5.21), so that,
in terms of fractions in X, x ' Fy — wy is equal to

C] Wl

_2g+2_W0_1 Wy

_ W3

X_zgcjrz_l_ Wy

X_2;]+2_'"
d
:X+V]_ 2 d3 5
X+v, — - s

X+V3_X+v4f...

where we have inserted the formula for Y from (5.27), and cancelled the arbitrary constant
50 = % . Comparing the first line of the above fractions on each side, we see that v = —wp —
wy — c1/(2g 4+ 2), which is the correct form of the relation for v; in (5.29) when j=0, and
contraction of the subsequent lines on the left give these expressions for d; 1, vj4 forallj > 1.
One can also shift the fraction on the left down by two lines, to get a relation between F» and >,
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and the fraction can be inverted to find a relation between F'_, and Y; so, by continuing down
or up in this way, we find that x~' Fp; — wy; = “Y;, | holds for all j € Z, extending (5.29) to
negative j as well. In all expressions, a shift of indices j — j + 1 gives a single iteration of 7,
but all indices of the Volterra variables increase by 2, giving two iterations of V. O

Corollary 5.9. Under the action of the Hamiltonian vector field X, each generic solution of
V, produces a genus g solution of the Toda lattice equation (1.11) which also satisfies the map
Je, via the transformation (5.29).

Proof. This follows immediately from the preceding result, by applying Theorem 5.3, and
noting that the result of Corollary 5.5 still stands if we set a,, = d,,, b, = v, +¢1/(2g +2) for
all n. O

The main results of this subsection are collected in the following statement.

Theorem 5.10. By contraction of the S-fraction (5.20) for the associated rational function Fy,
a generic orbit of the Volterra map V, corresponding to a fixed odd spectral curve Iy : y? =flx)
of genus g, for square-free f(x) as in (5.17), is transformed to an orbit of the integrable map J,
constructed in [31] from the J-fraction (1.10), with the even spectral curve C given by (5.19)
with F(X) = X212 4 iji'gz ¢;X?8727. For coefficients ¢; given suitably in terms of c;, there
is a birational equivalence between 1'y and C, given by

_ Cl y
X=x'4—— Y=—. 5.30
x +2(g—|—l)’ g (5.30)

Moreover; the translation on Jac(C) associated with a single iteration of the J-fraction map
corresponds to twice the translation on Jac(T'y) associated with each iteration of V,. In fact,
each generic orbit of V, is related to two different orbits of Jy in this way.

Proof. The main statements in the theorem were already proved in proposition 5.8. For the
relation between shifts on complex tori, note that in M,, we have that ;fl (f), the fiber over
a generic curve I', is an affine part of Jac(T'y), while in Mg,' =0 the fiber over C is an affine
part of Jac(C); but then the isomorphism (5.30) between these two spectral curves means that
Jac(T'y) = Jac(C). It was shown in [31] that each iteration of the J-fraction map 7, corresponds
to a translation by the class of the divisor co, — 0oy on JacC, where 001 5 are the two points
at infinity on C, and these are equivalent to the points (0,41) on (3.5). So in terms of Jac(T}),
this is a translation by the class of the divisor (0,—1) — (0,1) =2(0,—1) — (0,—1) — (0,1) ~
2((0,—1) — o0), that is by 2[(0,—1) — o], twice the shift corresponding to the Volterra map
V, (as found in the proof of theorem 4.10). Finally, notice that in corollary 5.5 there is the
second, alternative formula (5.13), with the indices on all w; shifted one step forwards. This
corresponds to the freedom to start the contraction procedure one line lower in the S-fraction
(5.21), beginning with F'| rather than F; so the indices on all Volterra variables must be shifted
by the same amount, and the relation (5.28) with the corresponding rational function on C is
modified to x ' F; — w; = §¢Y;. Then, in terms of the J-fraction coefficients, this produces

1 .
dir1 = wywajit1, Vitl = —Wojp1 — Wojt2 — 20 for jeZ. (5.31)

g+1)’

Thus each orbit of V, is transformed to two different orbits of 7, since the resulting orbit
of the latter map remains the same when the index on the w; in (5.31) is shifted by a
multiple of 2. O
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Remark 5.11. In [31], the phase space M5 = for the J-fraction map 7, is obtained from M,
an affine space of dimension 3g + 2 with a specific Poisson structure {-, -}, by restricting to a
subvariety defined by setting the value of one of the Casimirs to zero. (This is analogous to the
situation described in appendix A, section A.) Although theorem 5.10 has been stated in terms
of a correspondence between specific orbits of V, and 7, the considerations in the proof make
it clear that, since the coresponding generic fibers are birationally equivalent, the restriction of
J, to each fiber is (conjugate to) the square (Vg)2 =V, o V. This gives a strong hint that Mg' =0
and M, should also be birationally equivalent, making this into a global statement about the
two maps. While this global statement is by no means obvious, the first example below shows
that it is correct when g = 1; but it is not true as a Poisson isomorphism, at least for the specific
Poisson structure introduced in [31]. The problem of finding alternative Poisson structures on
Mg, and making all these statements precise, is best left for future work.

Example 5.12. When g = 1, with the cubic I'y: y? = 1 +¢1x + c2x* + ¢3x°, the transforma-
tion (5.30) is

A 2 R
x:x—1+%‘, r=2 — ¢ Y2=(X2+f) 40X + 4h,
X

where the quartic curve C is written in terms of the parameters

3 1 - 1 3
1—60%, U= -c3— —Ci1Ccy+ —C?, h= 6 (c%cz —cic3 — c%) — ﬁcﬁ. (5.32)

N |

f= 56'2 -
Under the transformation (5.29), solutions of the g =1 Volterra map V), given by (3.34), or
equivalently by (3.37) (with fixed c3), or by (3.39) (with fixed ¢;), are mapped to solutions of
the corresponding J-fraction map, which (according to the results in example 3.2 in [31]) can
be written as a 2D map defined by

dny1 = —dy — Vﬁ _}.’

Vgl = =V, + , (5.33)

dn+1

on a reduced phase space with fixed parametersf, i1, which are determined from (5.32) in terms
of the values of the constants ¢, ¢, c3 for the solution of the map V. The map (5.33) has the
conserved quantity

H= d, (vﬁ +d, Jrf) — vy,

which, on the orbit corresponding to a fixed solution of V), takes the value H =h given
in (5.32). The Poisson bracket presented for the J-fraction maps in [31] becomes the canonical
bracket

(v dy} =1 (5.34)

on the 2D phase space of the map (5.33), with coordinates (d,,v,), and it can be verified dir-
ectly that the vector field {-,H} extends to the Toda lattice flow (1.11) for all n € Z under
the action of this J-fraction map. Upon comparing with example 5.6, it is clear that the ana-
lytic expressions for a,,b, in (5.15) provide explicit formulae for the solutions of both the
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map (5.33) and the Toda lattice, by setting d,,(f) = a,(t) and v, () = b,() — +c;. Upon com-
parison of (5.14) with (5.15), it can be seen that each iteration of V; gives a shift by z on the
Jacobian of the elliptic curve, while each iteration of (5.33) produces a shift by 2z.

However, the bracket (5.34) cannot be a reduction of any of the Poisson structures in
example 4.4, because the parametersj‘7 it do not correspond to Casimirs of any of these brack-
ets on the phase space M. (This is immediately obvious for the pencil of brackets generated

by {-,-}" and {-, -}xz, while a short calculation shows this to be the case for (4.12) as well.)
Nevertheless, it is still possible to interpret (5.29) as a Poisson map in terms of members of
the pencil {-, -}¢, with ¢; being the fixed value of a Casimir. For instance, using the Nambu—
Poisson structure, we can construct a birational transformation between the symplectic leaves

of {-, -}xz, thatis M¢ N (H, = ¢2), and a 2D phase space for the J-fraction map with coordinates
(dy,vy), with ¢y, ¢, viewed as fixed parameters, on which the bracket reduces to
2 1
n dy t = n— 7C1-
{vn,dp} =v id

Now we take a particular numerical example, with the elliptic curve y> = 1 — 4x +4x> (¢; =
—4,¢,=0, c3 =4),and w; = 1, w, = 2. The sequence (w,) extends backwards to n < 0 to give
a singular orbit of (3.34), with the same singularity pattern appearing as was found for (P.iv)
in section 2:

7 10 3 1 1 3 10 7
”'7@7?7_57_57271707007007071727_§7_§7?7ﬁu"”

This orbit is symmetrical, in the sense that w_, = w,,_3 for all n € Z. By applying the formulae
in example 3.9, the solution is expressed in terms of Hankel determinants A, constructed
from the moment sequence determined from s; =1, 55 =2, 55 = S| 88 — > /2 SiSj—i_1
(j = 3), thatis (s;);>1: 1,2,3,6,14,37,105,312,956,2996,9554, ..., which gives

(An)ys_a:  1,1,1,1,2,-1,3,-5,7,-4,23,29,59,129,314,....

With A_3 =0, this extends backwards to a sequence of tau functions 7,=A, 3=
(—1)"+1r_, for n € Z; hence from (3.42) and (3.48) we find ¢j = —1, ¢ =1, so for all n
they satisfy the Somos-5 relation

Tn+5Tn = —Tn+4Tn+1 + Tn4+3Tn+2-

Applying (5.30) in this case produces the quartic curve Y?> = (X> — 3)? — 4(X +2), the same
one as in example 4.2 from [31], and the contraction formulae (5.29) and (5.31) with j =1 give
initial points on two different orbits of the map (5.33) with parametersf: -3, = —1,namely
(d2,v2) = (2,—%) and (—1,3), respectively, which both correspond to the value h = —2 for the
conserved quantity of this map. For these two different orbits, we find that

o ’f_nfl’f—nqtl

dy
0

where 7, = A,,_4 (even index Hankel determinants) for the first orbit, and 7, = Ay,_3
(odd index Hankel determinants) for the second one. It follows from Proposition 5.1
in [31] that either of these even/odd index subsequences (1,1,2,3,7,23,59,314,... and
1,1,—1,—-5,—4,29,129,.. ., respectively) must satisfy the same Somos-4 relation, in this case
the original one introduced by Somos [54]:

foA A s 2
Tn+4Tn = Tn43Tn+1 + Tha2-
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This connection between Somos-5 and Somos-4 has already been exploited elsewhere (in [25],
and in [8], for example); however, the specific Hankel determinants for Somos-4 obtained here
via contraction differ from the ones found in [8], and also from the ones derived directly from
the J-fraction in [31].

Example 5.13. An orbit of the map (P.iv), with the spectral curve (1.8), can be transformed
to an orbit of the g =2 J-fraction map, as discussed in Example 3.3 of [31], which has an
associated sextic curve, related to it via X =x~! + v/3, Y= y/x3, that can be taken in the
form

N 2 “ R
C: = (X +X+g) +4 (0 +inX+h).

Defined on a 4D phase space with coordinates (d,—1,d,,v,—1,v,) and depending on the 3
parameters f, g, i1, the map in [31] is given by

drH—l +dn +dn—l + i{/dn + V% + V-1 + V;%—l +j‘: Ov
(2Vn +Vn—1)dn + (2Vn +Vn+l)dn+1 + V?; +J}Vn +g=0. (5.35)

More precisely, there are two different orbits of (5.35) obtained from each orbit of (P.iv),
depending on whether the formula (5.29) or (5.31) is applied. Then, upon writing each term
w; satisfying (P.iv) as a ratio of the Hankel determinants A; defined in example 3.11, we see
that the quantities d,, that appear in the solution of the J-fraction map, as above, are given as a
ratio of tau functions, in two different ways:
dy = %a Tw=Dop_4 o Ny, 3,

for n € Z, where the orbit is determined by the choice of parity of the index on A;. It fol-
lows from the proof of Theorem 5.5 in [31] that (regardless of which choice is made), the
tau functions 7, satisfy a Somos-8 relation, which explains why the relation (2.9) appears
in example 2.2.

6. Conclusions and outlook

We have seen how the map (P.iv) obtained by Gubbiotti ef al can naturally be viewed as the
g =2 member of a family of algebraically integrable maps, defined for each g, that are naturally
related to the infinite Volterra lattice equation, leading to genus g solutions of the latter. This
begs the question as to what can be said about the other Liouville integrable maps in 4D found
in [22], namely (P.v) and (P.vi), which take the same form (1.1) but for a different rational
function F. Note that (P.vi) depends on an extra parameter compared with (P.v), which we
denote here by § (instead of 62 in [22]). In fact, (P.v) arises from (P.vi) in the limit § — 0.
So far we have made the following observations:

e Each solution w,, of (P.v) is mapped to a solution w,, of (P.iv) via the transformation
Wn :wn+lwna 6.1)

by suitably identifying the parameters v,a,b for (P.iv) in terms of the parameters and first
integrals for (P.v).
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e Under the flow of the Hamiltonian vector field % associated with one of its first integrals,
the sequence (W, ),z generated by iteration of the map (P.v) extends to a solution of the
modified Volterra lattice in the form

dw, ., . .
P = Wi (W1 — Wa1). (6.2)

e Each solution w, of (P.vi) is mapped to a pair of solutions w,(,+), w,(,_) of (P.iv), via the

transformations
wiE) = (Wuy1 £6) (b, F0), (6.3)

by suitably identifying the parameters v,a,b for (P.iv) in terms of the parameters and first
integrals for (P.vi).

e Under the flow of the Hamiltonian vector field % associated with one of its first integrals,
the sequence (W, ),cz generated by iteration of the map (P.vi) extends to a solution of the
modified Volterra lattice in the form

dii,
(

= () = 8%) (e — ). (6.4)

The formulae (6.1) and (6.3) are the well-known expressions for the Miura transformation
connecting the two forms of the modified Volterra lattice equation, given by (6.2) and (6.4),
respectively, to the Volterra lattice (5.7). Thus the above statements about the connections
between the maps can be viewed as restrictions of a Miura transformation to a finite-
dimensional phase space. Preliminary calculations, and the results of [65] on elliptic solutions,
indicate that this picture should extend to arbitrary genus g. Our initial results, including an
explicit description of how both (P.v) and (P.vi) are related to (P.iv), have recently appeared
in [32]. We propose that the full description of the above observations, and their extension to
genus g analogues of the maps (P.v) and (P.vi), should be left as the subject of future work.

It is also worth pointing out that part of the original motivation for the work in [22] was
to consider autonomous versions of the higher order discrete Painlevé equations from [12],
and new applications of the latter have been found very recently. Non-autonomous analogues
of the Volterra maps V, have been considered in the context of Hermitian matrix models [4],
where they arise as string equations, and they also appear as recursion relations for orthogonal
polynomials associated with generalised Freud weights of higher order [11]. In these applica-
tions, the algebro-geometric structure of the Volterra maps should be relevant to the asymptotic
description of the oscillatory behaviour that is observed in specific parameter regimes.
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Appendix A. The relation between the Mumford-like and the even Mumford
system

Here we now show that the Hamiltonian system (M,, {-, 3% 1) associated with the Volterra
map is birationally isomorphic (as a Poisson isomorphism) to the even Mumford system, or
more precisely to a subsystem thereof, obtained simply by fixing the value of one of the
Casimirs. Recall from [60, chapter 6] that the even Mumford system (of genus g) is the
Hamiltonian system (Mg',{~,o}/¢,u/ ), whose phase space M is the (3g + 2)-dimensional
affine space

degU (&) =g, U monic

M= (U(©), V(). W(E) eClel | wavig<s, e O
eg =g+2, monic

Elements (U(§), V(§), W(§)) of M, are written as Lax matrices

V(§) U )
L’ = ,
©=(w vie
whose polynomial entries have the form
g—1 A g—1 ‘ g+l ‘
U =+> Ug,  VEO=Y V&, WE=¢P+> we.
i=0 i=0 i=0
The 3g + 2 coefficients W, 1, W, and U;, V;, W; with 0 < i < g are used as linear coordinates
on M. The momentum map 4’ is given by
o M, = C[¢

o= (VO VO e - v
v©O=( W) V) o —er@-veruewe.

It is clear that —detL’(¢) is monic of degree 2g+2, so 2g+2 polynomial functions
Hg,Hj,...,H;,  on My are defined by

2g+1

V) +UQW(E) =&+ > HE,

i=0
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For any non-zero polynomial ¢ of degree at most g + 1, a Poisson structure of rank 2g on M, éf
is given by

(U(©),Um)} ¥ ={v(©),vm}'* =0,
W), vy'v = LM =UmeE)

E—n ’

e VOB - V)Y

U(E).Wm)}'* = 2 — ,
{v<s>,w<n>}’www(§ ;V(") &) et Wepr — U ) U©) )

(W), Wn)} ¥ =2(E+ 0+ Wers — Up—1) (V) () — V(n)¥(€))

The polynomial functions H/ are functionally independent and in involution, which accounts
for the Liouville integrability of the even Mumford system. It is algebraically integrable, with
the fiber of i’ over any monic polynomial f’(x) of degree 2g + 2 and without multiple roots
being an affine part of the Jacobian of the smooth hyperelliptic curve defined by > = /().
For the isomorphism, we consider only the Poisson structures {-, -}’ ¥ for which 1)(0) = 0
They admit H as Casimir function, hence we can restrict (Mg, {-,-} " 1u') to the subvariety,

defined by Hg = 0; the resulting system is denoted by (M}, {-, _}o,¢ ,11%). We show that this
system is birationally equivalent to the Mumford-like system (M, {-, -}(ZS , 1), where the rela-

tion between v and ¢ will be spelled out below. To do this, we construct a biregular map ]
and a birational map ¥ making the following diagram commutative:

U]
MJ —— My

| lu

0
BgT>Bg

In this diagram, B, and Bg are the images of y and ;°, which we view as spaces of curves:
B, consists of the hyperelliptic curves of the form y* = f(x), with (0) = 1 and degf < 2g + 1,
while Bg consists of the hyperelliptic curves of the form 1> = f'(¢), with £’ monic of degree
2g + 2, vanishing at 0. The curves of Bg have two points at infinity, which we denote by oo
and 00,.

We first establish a natural correspondence between the curves of B) and the curves of By.
Let y? = f(x) be a curve of B, and substitute x =&~ and y =n¢ 471, to get > =f/(&) =
£28+2f(¢=1), where f'(0) = 0 and f” is monic of degree 2g + 2, so > = f'(£) is a curve of Bg.
From the latter, one gets back y*> = f(x) by setting ¢ =x~! and 7 = yx~¢~!. Notice that when

f0r) = 14 35750 e then n? = €642 4 372 545 &7, which yields the biregular map V.

For the construction of W, the biregular map U between the spaces of curves y> = f(x) and
n* =f'(€) is extended to divisors on these curves. To do this, we compare the description of
points (P(x),Q(x),R(x)) on a generic fiber of £ in terms of divisors on the corresponding
curve y? = f(x) with the description of points (U(£),V(£),W(£)) on a generic fiber of x’ in
terms of divisors on the corresponding curve > = f’(£). The first description was given in the
proof of proposition 4.6, while the second description, which we quickly recall, can be found
in [60, Ch. 6]. Let &,,.. ., &, denote the roots of U(§) and let 1; := V(§;), fori =1,...,g. Then
the points (&;,7;) belong to the curve n* = ¢(€) and so the divisor class [>F_, (&,7;) — goo1 |
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is a point of its Jacobian. The relation between the polynomials Q(x) and U(§) is clearly
given by

?Q(g_l) = U(f) .

Indeed, both sides of this equality are polynomials of degree 2g + 2 which vanish for § = ¢&; =
x; ! (which we may assume to be different). Similarly, P(x) is related to U(¢) and V(¢) by

UV (O - U
§Uy ’

because both sides of this equation are the unique polynomial in £ of degree less than g which
takes for £ = &; the value 7);/&;. A formula for R follows from the equations of the curves,
namely

PPEN)+QEHR(E) =AE) =22 (=22 (V(O+UEW(®Q)) .

Itis clear that this defines a birational map between M, and Mg. Under this map, H; corresponds
to Hy,\ ; fori =1,...,2g+ 1. To see that ¥ is a Poisson map, hence a birational Poisson

gEPE) - U

isomorphism, we recall that the Poisson bracket {-,-} "% is given in terms of the &; and n; by
{&m}" Y = ¥(&)dy, and hence

Pt = {& g} = 2 e Y =~ 0 (@)
=~y (x) oy

Compared with (4.21), this shows that W : (M), {-, 3y = (M, {-, 1) is a birational
Poisson isomorphism when taking ¢(x) = 1 (x~1)x$*2; notice that ¢, defined by this formula,
is indeed a polynomial of degree at most g + 1, vanishing at O and that we get all such poly-
nomials ¢ for some appropriate polynomial 1) of degree at most g + 1, vanishing at 0.

Appendix B. MAPLE code for proposition 2.1

For completeness, below we have included MAPLE code (without output) which verifies the
computer algebra required for the proof of proposition 2.1. For the reader interested in using
the code, please see the repository https://github.com/anwh1729/Volterra_maps.git
where the original MAPLE file can be downloaded.

> restart: with(LinearAlgebra):

> wrec == w[4] - w[3] - w[2] + w[2] - w[1] - w[0] + 2 - w[2]* - (W[3] + w[1]) + w[2] - (w[3]* +

wi3] - wll] +wl1]?) + w2 +nu-w(2] - (w[3] + w(2] + wl1]) + b wi2] +a;

> # The (P.iv) equation (1.2), expressedasarelationberweenvariables w[0],w[1],w[2],

w(3], wi4].

> # Making the tau function substitution (2.3) to express (P.iv) as a homogeneous

relation of order 7 for tau[n] :

>tauseven :=wrec: for n from 0 to 4 do rauseven := simplify(subs(win] =
tau[n| - tau[n + 3]

tau[n + 1] - tau[n + 2|

> tauseven := numer(tauseven);

,tauseven)): od:
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> # The above equation tauseven is the Tth order degree 8 equation (2.4).
># (2.4) is expressed here as a relation between tau[0], tau[l], tau[2], tau[3], tau[4], tau[5],
tau[6], tau[7).
> # This directly verifies the proof of part (1) of Proposition 2.1.
> # In order to derive and verify part (2), the above recurrence is iterated to generate
14 adjacent iterates
> # given in terms of the 7 initial values tau0],tau([1], tau[2], tau[3], tau[4], tau(5], tau[6).
> # The iterates are denoted t[n] for brevity.
> #1]0], (1], #[2],2[3],1[4],#[5], #[6] are T arbitrary initial data for(2.4).
> topsol := solve(tauseven,tau[7]):
>for n from 7 to 10 do f[n]:=topsol: for m from 0 to 6 do ¢[n]:=
factor(simplify(subs(tau[m] = tfm+n —7],¢[n]))): od: print(¢[n]): od:
> # Have generated t[7),1[8],1]9],#[10]. Rather than generating up to t[13], which is slow
> # due to the increasing size of the expressions, apply the inverse map to generate
f[—1],4-2],4-3].
> # This is faster and more efficient.
> botsol := solve(tauseven,tau[0]);
>for n from 1 to 3 do f[—n]:=botsol: for m from 0 to 6 do #[—n]:=
factor(simplify(subs(tau[m + 1] = tfm —n+ 1],#{—n]))): od: print(t{—n]): od:
> # Remark : Observe that these iterates are all Laurent polynomials, in accordance
with Proposition 2.3.
> # Now calculate determinant of matrix corresponding to 5 copies of
Somos — 9 recurrence.
>fi=(i,j) > tli+j—5]-tfi —j +6]: M:=Matrix(5,f): simplify(Determinant(M));
> nullM := NullSpace(M);
> nops(nullM); kernelvec := op(1,nullM);
> nullity :== 5 — Rank(M); for j from 1 to 5 do al[j] := kernelvecl]j] od;
> # Entries of vector that spans the 1 — dimensional nullspace (kernel) of matrix M.
> # Checking that Somos — 9 relation is invariant under shifts :
> # Would like to normalize the entries of the vector in the kernel, and show they are
invariant under shift.
> # It is convenient to first show they are functions of the initial data w[0],w[1],w[2],w[3],
then check invariance.
>for j from 1 to 4 do alw[j]:=alfj]: for m from 0 to 3 do alw|j]:= subs(t[m] =
wim] - fpm + 1] - thm + 2] ,alw[j]): od: od:
tfm + 3]
>forj from 1 to 4 do alwlj] := simplify(alwl]j]): print(alw[j]): od: k[1] := denom(alw[4]);
> # Can recognize this polynomial as the first integral K[1] for the map (P.iv), given
by (1.3).
>alw[5] :=1: forj from 1 to 5 do alphalj] := simplify(—k[1] - alwlj] - denom(alw[1])) od:
> # Write all normalized coefficients as polynomials in the two invariants (first integrals)
for the map (P.iv).
> k[2] := collect(collect(collect(simplify((alpha[2] +k[1]*) -a™'),a), b),nu);
> # Recognize this as the first integral K[2| for the map (P.iv), given by (1.4).
> simplify(alpha[l] — k[1]); simplify(alpha[2] — a - k[2] + k[1]%); simplify(alpha[3] —
a-(a-k[2]—2-  k[1]%);  simplify(alpha[4] —a- (a*-k[1] +b-k[1]* +nu-k[1] - k[2] +
k[2]?)); simplify(alpha[5] + k[1] - (a* - k[1] + b - k[1]* 4+ nu - k[1] - k[2] + k[2]*));
> # This completes the proof of part (2) of Proposition 2.1.

62



Nonlinearity 37 (2024) 095028 AN W Hone et al

ORCID iD

A N W Hone @ https://orcid.org/0000-0001-9780-7369

References

[1] Adler M, van Moerbeke P and Vanhaecke P 2004 Algebraic Integrability, Painlevé Geometry and
Lie Algebras (Ergebnisse der Mathematik und Ihrer Grenzgebiete vol 47) (Springer)
[2] Akhiezer N I 1990 Elements of the theory of elliptic functions Translations of Mathematical
Monographs vol 79 (American Mathematical Society)
[3] Aptekarev A I 1986 Asymptotic properties of polynomials orthogonal on a system of contours and
periodic motions of Toda lattices Mat. Sb. 53 233
[4] Benassi C and Moro A 2020 Thermodynamic limit and dispersive regularization in matrix models
Phys. Rev. E 101 052118
[5] Bertola M 2021 Padé approximants on Riemann surfaces and KP tau functions Analysis Math.
Phys. 11 149
[6] Bellon M and Viallet C M 1999 Algebraic entropy Commun. Math. Phys. 204 425-37
[7] Bruschi M, Ragnisco O, Santini P M and Gui-Zhang T 1991 Integrable symplectic maps Physica
D 49 273-94
[8] Chang X-K, Hu X-B and Xin G 2015 Hankel determinant solutions to several discrete integrable
systems and the laurent property SIAM J. Discrete Math. 29 667-82
[9] Chen Y and Its A R 2008 A Riemann-Hilbert approach to the Akhiezer polynomials Phil. Trans.
R. Soc. A 366 973-1003
[10] Chen X-M, Hu X-B and Miiller-Hoissen F 2018 Non-isospectral extension of the Volterra lattice
hierarchy and Hankel determinants Nonlinearity 31 4393-422
[11] Clarkson P A, Jordaan K and Loureiro A 2023 Generalized higher-order Freud weights Proc. R.
Soc. A 479 20220788
[12] Cresswell C and Joshi N 1999 The discrete first, second and thirty-fourth Painlevé hierarchies J.
Phys. A: Math. Gen. 32 655-69
[13] Demskoi D K, Tran D T, van der Kamp P H and Quispel G R W 2012 A novel nth order difference
equation that may be integrable J. Phys. A: Math. Theor. 45 135202
[14] Diller J and Favre C 2001 Dynamics of bimeromorphic maps of surfaces Am. J. Math. 123 1135-69
[15] Doliwa A and Siemaszko A 2023 Hermite-Padé approximation and integrability J. Approxim.
Theory 292 105910
[16] Duistermaat J J 2010 Discrete Integrable Systems: QRT Maps and Elliptic Surfaces (Springer)
[17] Duverney D and Shiokawa I 2022 Continuants and convergence of certain continued fractions
(arXiv:2210.09862v1)
[18] Fomin S and Zelevinsky A 2002 Cluster algebras I: Foundations J. Am. Math. Soc. 15 497-529
[19] Fordy A P and Hone A N W 2014 Discrete integrable systems and Poisson algebras from cluster
maps Commun. Math. Phys. 325 527-84
[20] Gesztesy F, Holden H, Simon B and Zhao Z 1993 On the Toda and Kac-van Moerbeke systems
Trans. Am. Math. Soc. 339 849-68
[21] Gubbiotti G, Joshi N, Tran D T and Viallet C-M 2020 Complexity and integrability in 4D bi-rational
maps with two invariants Asymptotic, Algebraic and Geometric Aspects of Integrable Systems
(Springer Proceedings in Mathematics & Statistics vol 338 eds F Nijhoff, Y Shi and D Zhang
(Springer) pp 17-36
[22] Gubbiotti G, Joshi N, Tran D T and Viallet C-M 2020 Bi-rational maps in four dimensions with
two invariants J. Phys. A: Math. Theor. 53 115201
[23] Gubbiotti G 2020 Lagrangians and integrability for additive fourth-order difference equations Eur.
Phys. J. Plus 135 853
[24] Hamad K, Hone A N W, van der Kamp P and Quispel G R W 2018 QRT maps and related Laurent
systems Adv. Appl. Math. 96 21648
[25] Hone A N W 2007 Sigma function solution of the initial value problem for Somos 5 sequences
Trans. Am. Math. Soc. 359 5019-34
[26] Hone A N W 2007 Singularity confinement for maps with the Laurent property Phys. Lett. A
361 341-5

63


https://orcid.org/0000-0001-9780-7369
https://orcid.org/0000-0001-9780-7369
https://doi.org/10.1070/SM1986v053n01ABEH002918
https://doi.org/10.1070/SM1986v053n01ABEH002918
https://doi.org/10.1103/PhysRevE.101.052118
https://doi.org/10.1103/PhysRevE.101.052118
https://doi.org/10.1007/s13324-021-00585-2
https://doi.org/10.1007/s13324-021-00585-2
https://doi.org/10.1007/s002200050652
https://doi.org/10.1007/s002200050652
https://doi.org/10.1016/0167-2789(91)90149-4
https://doi.org/10.1016/0167-2789(91)90149-4
https://doi.org/10.1137/130911676
https://doi.org/10.1137/130911676
https://doi.org/10.1098/rsta.2007.2058
https://doi.org/10.1098/rsta.2007.2058
https://doi.org/10.1088/1361-6544/aacd63
https://doi.org/10.1088/1361-6544/aacd63
https://doi.org/10.1098/rspa.2022.0788
https://doi.org/10.1098/rspa.2022.0788
https://doi.org/10.1088/0305-4470/32/4/009
https://doi.org/10.1088/0305-4470/32/4/009
https://doi.org/10.1088/1751-8113/45/13/135202
https://doi.org/10.1088/1751-8113/45/13/135202
https://doi.org/10.1353/ajm.2001.0038
https://doi.org/10.1353/ajm.2001.0038
https://doi.org/10.1016/j.jat.2023.105910
https://doi.org/10.1016/j.jat.2023.105910
https://arxiv.org/abs/2210.09862
https://doi.org/10.1090/S0894-0347-01-00385-X
https://doi.org/10.1090/S0894-0347-01-00385-X
https://doi.org/10.1007/s00220-013-1867-y
https://doi.org/10.1007/s00220-013-1867-y
https://doi.org/10.1090/S0002-9947-1993-1153014-1
https://doi.org/10.1090/S0002-9947-1993-1153014-1
https://doi.org/10.1088/1751-8121/ab72ad
https://doi.org/10.1088/1751-8121/ab72ad
https://doi.org/10.1140/epjp/s13360-020-00858-y
https://doi.org/10.1140/epjp/s13360-020-00858-y
https://doi.org/10.1016/j.aam.2017.12.006
https://doi.org/10.1016/j.aam.2017.12.006
https://doi.org/10.1090/S0002-9947-07-04215-8
https://doi.org/10.1090/S0002-9947-07-04215-8
https://doi.org/10.1016/j.physleta.2006.09.078
https://doi.org/10.1016/j.physleta.2006.09.078

Nonlinearity 37 (2024) 095028 AN W Hone et al

[27] Hone A N W and Senthilvelan M 2009 Note on the Poisson structure of the damped oscillator J.
Math. Phys. 50 102902

[28] Hone A N W and Petrera M 2009 Three-dimensional discrete systems of Hirota-Kimura type and
deformed Lie-Poisson algebras J. Geom. Mech. 1 55-85

[29] Hone A N W 2010 Analytic solution and integrability for a bilinear recurrence of order six Appl.
Anal. 89 473-92

[30] Hone A N W, Kouloukas T E and Quispel G R W 2018 Some integrable maps and their Hirota
bilinear forms J. Phys. A: Math. Theor. 51 044004

[31] Hone A N W 2021 Continued fractions and Hankel determinants from hyperelliptic curves
Commun. Pure Appl. Math. 73 2310-47

[32] Hone A N W, Roberts J A G, Vanhaecke P and Zullo F 2024 Open Communications in Nonlinear
Mathematical Physics Integrable maps in 4D and modified Volterra lattices (arXiv:2310.19584)

[33] Iatrou A and Roberts J A G 2002 Integrable mappings of the plane preserving biquadratic invariant
curves II Nonlinearity 15 459-89

[34] Joshi N and Viallet C-M 2018 Rational maps with invariant surfaces J. Int. Syst. 3 xyy017

[35] Kac M and van Moerbeke P 1975 On an explicitly soluble system of nonlinear differential equations
related to certain toda lattices Adv. Math. 16 160-9

[36] Kanki M, Mada J, Tamizhmani K M and Tokihiro T 2012 Discrete Painlevé II equation over finite
fields J. Phys. A: Math. Theor. 45 342001

[37] Kitaev A V 1994 A note on the averaging for single-phase elliptic solutions of the Toda and the
Volterra lattices Physica D 74 45-58

[38] Lam T, Pylyavskyy P and phenomenon algebras L 2012 Cam. J. Math. 4 121-62

[39] Maeda S 1987 Completely integrable symplectic mapping Proc. Japan Acad. A 63 198-200

[40] Mase T 2016 Investigation into the role of the Laurent property in integrability J. Math. Phys.
57 022703

[41] Mase T, Willox R, Ramani A and Grammaticos B 2019 Singularity confinement as an integrability
criterion J. Phys. A: Math. Theor. 52 205201

[42] Moser J 1975 Three integrable systems connected with isospectral deformations Adv. Math.
16 197-220

[43] Mumford D 1984 Tata Lectures on Theta II (Birkhiduser)

[44] OEIS Foundation Inc. 2021 The on-line encyclopedia of integer sequences (available at: http://oeis.
org/A006721)

[45] Penrose R and Smith C A B 1981 A quadratic mapping with invariant cubic curve Math. Proc.
Camb. Phil. Soc. 89 89-105

[46] van der Poorten A J 2001 Non-periodic continued fractions in hyperelliptic function fields Bull.
Austral. Math. Soc. 64 33143

[47] van der Poorten A J 2005 Elliptic curves and continued fractions J. Integer Seq. 8 19 (available at:
https://cs.uwaterloo.ca/journals/JIS/VOLS8/Poorten/vdp40.pdf)

[48] van der Poorten A J 2005 Curves of genus 2, continued fractions and Somos sequences J. Integer
Seq. 8 9 (available at: https://cs.uwaterloo.ca/journals/JIS/VOLS8/Poorten2/vdp89.pdf)

[49] van der Poorten A J 2006 Hyperelliptic curves, continued fractions and Somos sequences Dynamics
& Stochastics (IMS Lecture Notes Monogr. Ser. vol 48) (Inst. Math. Statist.) pp 212-24

[50] Quispel G R W, Roberts J A G and Thompson C J 1988 Integrable mappings and soliton equations
Phys. Lett. A 126 419-21

[51] Quispel G R W, Capel HW and Roberts J A G 2005 Duality for discrete integrable systems J. Phys.
A: Math. Gen. 38 3965-80

[52] Ramani A Carstea A S, Grammaticos B and Ohta Y 2002 On the autonomous limit of discrete
Painlevé equations Physica A 305 43744

[53] Shohat J 1932 On Stieltjes continued fractions Am. J. Math. 54 79-84

[54] Somos M 1989 Problem 1470 Crux Mathematicorum 15 208

[55] Stieltjes T-J 1894 Recherches sur les fractions continues, Ann Fac. Sci. Toulouse Math. 8 J1-J122

[56] Svinin A K 2014 On some classes of discrete polynomials and ordinary difference equations J.
Phys. A: Math. Theor. 47 155201

[57] Svinin A K 2016 On integrals for some class of ordinary difference equations admitting a Lax
representation J. Phys. A: Math. Theor. 49 095201

[58] Svinin A K 2021 On solutions for some class of integrable discrete difference equations J. Differ.
Equ. 27 1734-50

64


https://doi.org/10.1063/1.3244216
https://doi.org/10.1063/1.3244216
https://doi.org/10.3934/jgm.2009.1.55
https://doi.org/10.3934/jgm.2009.1.55
https://doi.org/10.1080/00036810903329977
https://doi.org/10.1080/00036810903329977
https://doi.org/10.1088/1751-8121/aa9b52
https://doi.org/10.1088/1751-8121/aa9b52
https://doi.org/10.1002/cpa.21923
https://doi.org/10.1002/cpa.21923
https://arxiv.org/abs/2310.19584
https://doi.org/10.1088/0951-7715/15/2/313
https://doi.org/10.1088/0951-7715/15/2/313
https://doi.org/10.1093/integr/xyy017
https://doi.org/10.1093/integr/xyy017
https://doi.org/10.1016/0001-8708(75)90148-6
https://doi.org/10.1016/0001-8708(75)90148-6
https://doi.org/10.1088/1751-8113/45/34/342001
https://doi.org/10.1088/1751-8113/45/34/342001
https://doi.org/10.1016/0167-2789(94)90025-6
https://doi.org/10.1016/0167-2789(94)90025-6
https://doi.org/10.4310/CJM.2016.v4.n1.a2
https://doi.org/10.4310/CJM.2016.v4.n1.a2
https://doi.org/10.3792/pjaa.63.198
https://doi.org/10.3792/pjaa.63.198
https://doi.org/10.1063/1.4941370
https://doi.org/10.1063/1.4941370
https://doi.org/10.1088/1751-8121/ab1433
https://doi.org/10.1088/1751-8121/ab1433
https://doi.org/10.1016/0001-8708(75)90151-6
https://doi.org/10.1016/0001-8708(75)90151-6
http://oeis.org/A006721
http://oeis.org/A006721
https://doi.org/10.1017/S0305004100057972
https://doi.org/10.1017/S0305004100057972
https://doi.org/10.1017/S000497270003999X
https://doi.org/10.1017/S000497270003999X
https://cs.uwaterloo.ca/journals/JIS/VOL8/Poorten/vdp40.pdf
https://cs.uwaterloo.ca/journals/JIS/VOL8/Poorten2/vdp89.pdf
https://doi.org/10.1016/0375-9601(88)90803-1
https://doi.org/10.1016/0375-9601(88)90803-1
https://doi.org/10.1088/0305-4470/38/18/007
https://doi.org/10.1088/0305-4470/38/18/007
https://doi.org/10.1016/S0378-4371(01)00619-7
https://doi.org/10.1016/S0378-4371(01)00619-7
https://doi.org/10.2307/2371078
https://doi.org/10.2307/2371078
https://doi.org/10.5802/afst.108
https://doi.org/10.5802/afst.108
https://doi.org/10.1088/1751-8113/47/15/155201
https://doi.org/10.1088/1751-8113/47/15/155201
https://doi.org/10.1088/1751-8113/49/9/095201
https://doi.org/10.1088/1751-8113/49/9/095201
https://doi.org/10.1080/10236198.2021.2012169
https://doi.org/10.1080/10236198.2021.2012169

Nonlinearity 37 (2024) 095028 AN W Hone et al

[59] Takhtajan L 1994 On foundation of the generalized Nambu mechanics Commun. Math. Phys.
160 295-315

[60] Vanhaecke P 2001 Integrable Systems in the Realm of Algebraic Geometry 2nd edn (Springer)

[61] Vereshchagin V L 1988 Hamiltonian structure of averaged difference systems Math. Zametkii
44 798-805

[62] Veselov A P 1987 Integration of the stationary problem for a classical spin chain Theor. Math. Phys.
71 446-50

[63] Veselov A P 1991 Integrable Maps Russ. Math. Surv. 46 1-51

[64] Viallet C-M 2015 On the algebraic structure of rational discrete dynamical systems J. Phys. A:
Math. Theor. 48 16FT01

[65] Yan Z 2006 Discrete exact solutions of modified Volterra and Volterra lattice equations via the new
discrete sine-Gordon expansion algorithm Nonlinear Anal. 64 1798-811

[66] Zannier U 2019 Hyperelliptic continued fractions and generalized Jacobians Am. J. Math. 141 1-40

65


https://doi.org/10.1007/BF02103278
https://doi.org/10.1007/BF02103278
https://doi.org/10.1007/BF01158418
https://doi.org/10.1007/BF01158418
https://doi.org/10.1007/BF01029106
https://doi.org/10.1007/BF01029106
https://doi.org/10.1070/RM1991v046n05ABEH002856
https://doi.org/10.1070/RM1991v046n05ABEH002856
https://doi.org/10.1088/1751-8113/48/16/16FT01
https://doi.org/10.1088/1751-8113/48/16/16FT01
https://doi.org/10.1016/j.na.2005.07.018
https://doi.org/10.1016/j.na.2005.07.018
https://doi.org/10.1353/ajm.2019.0000
https://doi.org/10.1353/ajm.2019.0000

