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Abstract: Tomographic reconstruction of three-dimensional tracer particle distributions through 
light field particle image velocimetry (LF-PIV) faces challenges in low reconstruction resolution 
owing to the elongation effect and extensive computational cost incurred by the iterative process. 
To resolve these challenges, this study proposes a deep neural network-based volumetric 
reconstruction approach to alleviate the reconstruction elongation and enhance the reconstruction 
efficiency. A tailored deep learning model (namely LF-DNN) incorporating residual neural network 
architecture and a novel hybrid loss function is established to reconstruct the particle distributions 
through LF images. The parallax information of the flow field decoded from the raw LF data is 
leveraged as the input features of the network model. Comparative studies between the proposed 
method and the traditional tomographic reconstruction algorithms (multiplicative algebraic 
reconstruction technique, MART and pre-recognition MART, PR-MART) are performed through 
synthetic datasets. Experiments on a cylinder wake flow are further conducted to validate the 
performance of the proposed LF-DNN. The results indicate that the LF-DNN outperforms MART 
and PR-MART in terms of the reconstruction quality, mitigation of elongation effect and noise 
resilience. The LF-DNN also improves the reconstruction efficiency which is 9.6 and 7.1 times 
higher than the MART and PR-MART, respectively. The relative error of the cylinder wake flow 
achieved by the LF-DNN is 2% lower than the MART. It suggests that the LF-DNN can facilitate 
accurate volumetric particle reconstruction and hence the three-dimensional flow measurement by 
single camera-based LF-PIV. 
 

Keywords: Three-dimensional flow measurement, Light field PIV, Deep learning neural network, 
Tomographic reconstruction, Tracer particle distribution 
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1. Introduction 

Volumetric particle image velocimetry (PIV) has now emerged as a powerful technique for 
characterizing three-dimensional (3D) unsteady flow structures [1,2]. The fully three-dimensional 
three-component (3D-3C) flow field can be acquired by employing 3~6 cameras to record the flow 
structures from different viewing angles [3]. The multi-camera-based volumetric velocimetry 
techniques provide high spatial resolution and are demonstrated in investigating the fine flow 
structures of turbulent flows [4-6]. Nonetheless, these techniques are constrained in industrial 
internal flows (e.g., tip-leakage flow [7]) due to limited optical access. Recently, the single-camera-
based light field PIV (LF-PIV) offers a potential solution to the space-constraint flow measurements 
[8,9]. Incorporating a dense microlens array (MLA) into a conventional camera (light field camera, 
LFC) allows the capture of a complete 3D-3C flow field via a single perspective. 

A key process of the LF-PIV is to retrieve the 3D tracer particle distributions from the recorded 
LF images, which involves solving an inverse problem [10]. Conventionally, this can be tackled by 
tomographic reconstruction algorithms [11] incorporating mathematical constraints (e.g., maximum 
entropy, minimum norm, etc.) to acquire an optimal solution. However, the tomographic 
reconstruction suffers lower spatial resolution due to the severe elongation effect [12]. This is mainly 
attributed to the finite viewing angle of the camera lens, leading to a lower imaging resolution along 
the optical axis direction [13]. The elongation effect is also demonstrated in the holographic PIV 
[14] where a single camera is employed to record the particle holograms. Various algorithms have 
been proposed to mitigate the elongation issue. Some approaches attempt to formulate an initial 
estimation of the particle distribution as a priori to remove the reconstruction elongation [15,16]. 
Others incorporate the spectral information of the light source to enhance the spatial resolution of 
LF imaging, thereby alleviating the elongation [17]. Post-processing based on line-of-the-sight has 
been developed to filter the elongation [18]. Although these approaches can partially suppress the 
elongation effect, their efficacy significantly degrades with seeding densities and calibration errors. 
Efforts have also been made to expand the viewing angle of the imaging system by adding an extra 
LFC [19,20]. This strategy has shown the potential to eliminate the elongation effect at high seeding 
densities, albeit at the cost of generating ghost particles. Moreover, the extra LFC makes the 
experimental apparatus complex and necessitates greater optical access. 

In addition to the issue of reconstruction elongation, the computational cost is another 
challenge in tomographic reconstruction. The operation of a large sparse weight matrix always takes 
a longer time and demands a larger computer storage space. Although advanced initialization 
strategies [e.g., multiplicative first guess (MFG) [21], multiplicative line-of-the-sight (MLOS) [22]] 
have been incorporated to either reduce the iteration number or to accelerate the iteration process, 
disparity persists in attaining real-time volumetric velocimetry. Recently, the graphics processing 
unit (GPU) has been used to expedite the particle reconstruction process [23] by utilizing a fine-
grained parallelism strategy where the reconstruction task is divided into numerous sub-tasks and 
executed on thousands of GPU threads. This approach demonstrated the capability of acceleration 
ratio over 20 times faster compared to the conventional CPU-based methodologies. Nonetheless, 
the finite memory capacity of GPUs requires more memory-efficient strategies to accommodate the 
weight matrix. 

The expeditious development of deep learning (DL) approaches presents a promising path for 
addressing the challenge of 3D particle reconstruction from a finite set of 2D projections [24-27]. 
The DL-based methods have been applied to the realm of computational imaging and PIV for 
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achieving volumetric reconstruction [28,29]. Specifically, in the tomographic PIV, a 3D 
convolutional neural network (CNN) incorporating the geometrical information of the imaging 
system was developed to refine the coarse reconstruction produced by the traditional tomographic 
reconstruction algorithms [30]. The deep CNN shows the superiority in terms of reconstruction 
accuracy, efficiency and robustness to noise over the traditional tomographic algorithms. Moreover, 
CNN is employed as a filter to remove ghost particles produced by tomographic algorithms and 
regularize anomalous shapes of the particles [31]. The DL methods were also applied in holographic 
PIV where a modified U-net architecture was utilized to retrieve the sizes and positions of tracer 
particles from holograms [32]. The U-net facilitates a higher particle extraction ratio and enhanced 
particle positioning accuracy in contrast to the analytical methods [33], particularly in dense seeding 
scenarios. Additionally, an integration of the physical models (e.g., free-space point spread function) 
into the neural networks was considered to augment the generalizability of the DL methods and 
diminish the requisite volume of training data [34]. Recently, a 3D U-net neural network was 
proposed for the tracer particle reconstruction in LF-PIV [35]. By utilizing a digital refocusing 
algorithm, a stack of LF-refocused images of particles was generated as a coarse reconstruction, 
which was then refined using the 3D U-net model. Experimental results show that the reconstruction 
time with the 3D U-net is ~10 times faster than that of the tomographic reconstruction algorithms. 

While the ability of DL strategies has been demonstrated to tackle the inverse problem of 3D 
particle reconstruction, some challenges remain when these methods are applied to the LF-PIV. For 
instance, (i) unlike conventional imaging where the scene is captured by a single lens, the 
incorporation of a MLA increases the complexity of the imaging model. Consequently, deploying 
neural networks to understand the underlying physics of LF imaging may fail. A potential solution 
to this issue involves extracting the perspective information encoded in the LF raw data and 
integrating it into the neural network models as prior knowledge, (ii) the LF-PIV features a relatively 
sparse seeding concentration, leading to most discrete voxels having a zero intensity. Therefore, 
volumetric particle reconstruction is a task of sparse target reconstruction, which necessitates a 
tailored network architecture and loss function to prevent overfitting and instability during the 
model training process and (iii) the current DL-based approaches usually require a coarse guess of 
particle distribution, typically obtained through traditional tomographic algorithms. End-to-end 
methods that are capable of directly predicting the particle distributions from LF images remain to 
be explored to improve the reconstruction efficiency. 

To address these above challenges, this study proposes a DL-based framework for achieving 
an accurate volumetric reconstruction of particle distributions in LF-PIV. A tailored DL model 
(named LF-DNN) integrating the residual network structure and a novel hybrid loss function is 
employed to reconstruct the particle distributions seeded in the flow field. The parallax information 
of the flow field decoded from the LF raw data is leveraged as the geometrical input features of the 
network. Synthetic tests of particle reconstructions and experiments on a 3D cylinder wake flow are 
conducted to assess the performance of the LF-DNN. Comprehensive comparative analysis between 
the proposed method and traditional tomographic reconstruction algorithms along with mitigation 
of elongation effect, reconstruction quality and efficiency, and robustness to noise are performed. 
The principle and implementation details of the LF-DNN are given and findings from the synthetic 
and experimental tests are presented and discussed. 
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2. Principle of tomographic LF-PIV 

In computational photography, the propagation of the light rays in the free space can be 
described by a 4D plenoptic function, encompassing 2D spatial and 2D angular coordinates of rays. 
A full capture of the plenoptic function allows the recovery of a 3D scene of interest, but it is 
challenging through a conventional camera because the angular information of the incoming rays is 
lost owing to the focusing of the lens unit. To capture a more complete picture of plenoptic function, 
a MLA composed of densely packed microlens with μm-level pitch is inserted in front of the image 
sensor to modulate the incoming rays. The incoming rays are initially focused on the MLA through 
the main lens and are further redirected by the microlens to different image pixels. Consequently, 
each pixel records the intensity of rays emanating from a particular direction. The LFC can therefore 
preserve both the spatial and angular information of rays, which contains the 3D spatial information 
of the scene. 

 

Fig. 1 Parameterization of the LF through a 4D plenoptic function L (x, y, θ, φ) 

In computational photography, the propagation of the light rays in free space can be described 
by a 4D plenoptic function L(x, y, θ, φ), which encompasses the 2D spatial and 2D angular 
coordinates of rays. As illustrated in Fig. 1, (x, y) and (θ, φ) define the intersection of the ray with a 
plane perpendicular to the optical axis and the propagation direction of the ray, respectively. 
Capturing the full plenoptic function enables the recovery of a 3D scene of interest, however, this 
is challenging with a conventional camera because the main lens focuses the incoming rays, leading 
to the loss of angular information, as shown in Fig. 2(a). To capture a complete plenoptic function, 
a microlens array (MLA) composed of densely packed microlenses with μm-level pitch is inserted 
in front of the image sensor to modulate the incoming rays. Depending on the distance between the 
MLA and the image sensor, the LFC can be classified into unfocused and focused configurations. 
In this study, the unfocused type is employed where the incoming rays are initially focused on the 
MLA through the main lens and are further redirected by the microlens to different image pixels, as 
illustrated in Fig. 2(b). Consequently, each pixel records the intensity of rays emanating from a 
particular direction. The LFC can therefore preserve both the spatial and angular information of rays, 
which contains the 3D spatial information of the scene. The propagation trajectory of the light ray 
can be described using a ray transfer matrix based on the principle of geometric optics, as 
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where (x′, y′, θ′, φ′) is the 4D coordinate of the light ray at the image sensor plane. The parameters 
so and si denote the object and image distances, respectively. Fm and fm are the focal lengths of the 
main lens and microlens, respectively. sx and sy represent the distances from the microlens center to 
the optical axis in the x and y directions. sμ is the distance from the MLA to the image sensor. 

     

(a) Conventional camera                                                       (b) LFC 

Fig. 2 Principle of conventional and LF imaging.  (a) Conventional camera.  (b) LFC. 

Leveraging the ability to capture the 3D flow field, the LFC employs to PIV technique to 
measure 3D flow fields. In LF-PIV, a crucial step is to reconstruct the tracer particle distribution 
from the LF projection images for flow velocity estimation. The particle reconstruction can be 
solved by a linear equation and defined as 

 ,

1

iN

i i j j

j

I w E
=

=   (2) 

where Ej and Ii denote the intensity of jth discrete voxel and ith image pixel, respectively, Ni is the 
number of voxels whose intensity contributes to the pixel, wi,j denotes the weight coefficient 
describing the intensity contribution of jth voxel to ith pixel and can be obtained through volumetric 
calibration techniques. Eq. (2) is typically underdetermined and the tomographic reconstruction 
algorithm incorporating mathematical constraints such as the minimum norm, the maximum entropy, 
the least absolute shrinkage and selection operator regularization can be utilized to acquire a unique 
solution. Various tomographic reconstruction algorithms are developed to solve Eq. (2). Among 
them, the multiplicative algebraic reconstruction technique (MART) employing the maximum 
entropy strategy has been demonstrated as a standard algorithm. The details of MART can be found 
elsewhere in [36]. 

A major challenge in the tomographic reconstruction of flow particles is the elongation effect. 
Specifically, spherical tracer particles are distorted into ellipsoidal shapes during the reconstruction, 
with elongations predominantly along the optical axis (i.e., depth direction). This effect is mainly 
attributed to the finite aperture of the camera lens, which restricts the viewing angle and 
consequently leads to a relatively lower spatial resolution in the depth than in lateral directions. The 
elongation effect degrades the estimation accuracy of the flow velocity, particularly in the depth 
velocity component [13]. To tackle this issue, efforts have been made to optimize the tomographic 
reconstruction algorithms. In particular, a pre-recognition (PR) method based on the line-of-the-
sight technique is proposed to eliminate the potential zero-intensity voxels in the measurement 
volume [16]. This PR method is then integrated with the MART to alleviate the elongations and 
accelerate the reconstruction. Nonetheless, the efficacy of the PR method gradually decreases when 
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the particle concentration increases. 
Figure 3(a) illustrates the random particle distribution generated via simulation at a seeding 

concentration (C) of 0.1 particles per microlens (ppm). The reconstructed particle volumes achieved 
by the MART and PR-MART are shown in Fig. 3(b) and (c), respectively. It can be observed that 
the particles with the actual size of 0.1 mm are elongated to 1 mm for the MART reconstruction. 
While PR-MART succeeds in partially alleviating this elongation, the length of the reconstructed 
particle remains four times larger than the true size. Therefore, further study is imperative to resolve 
the elongation issue in the reconstruction of flow particles. This study introduces a deep learning-
based volumetric reconstruction approach to mitigate the particle elongation effect of single-camera 
LF-PIV. 

 

(a) True particle distribution 

          

(b) MART                                                                      (c) PR-MART  

Fig. 3 An illustration of the reconstructed particle distribution along with the elongation effect achieved through 

the MART and PR-MART.  (a) True particle distribution.  (b) MART.  (c) PR-MART. 

3. Deep neural network-based particle reconstruction 

3.1 Network architecture 

The deep learning (DL) method is an alternative to the tomographic reconstruction algorithms 
for the 3D particle reconstruction. Instead of relating the voxels to pixels through the weight matrix, 
the mapping between the 3D particle volume and 2D particle image is established by utilizing a 
supervised deep neural network (DNN). The DNN architecture consists of multiple hidden layers 
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between the input and output layers [37]. It can be a variety of architectures including fully 
connected layers, convolutional layers, recurrent layers, etc. Among them, the convolutional layers 
are specially designed for processing structured array data, such as images. A DNN with 
convolutional layers can automatically and adaptively learn the features of spatial hierarchies of 
input images [38]. This allows the input images to be transformed into new output images with some 
specific features preserved while others are altered or enhanced. 

In general, deeper networks with more layers have the potential for higher accuracy because 
they can learn more complex features [39]. However, such networks often encounter the vanishing 
gradient problem [40], where the gradient of the loss function decreases exponentially when it 
propagates backwards from the output layer to the input layers. To mitigate this issue, residual 
blocks are incorporated into the DNN. The structure of a residual block is shown in Fig. 4. It is 
composed of primary and secondary convolutional layers. A shortcut connection that bypasses one 
or more layers is incorporated to enhance the flow of gradients throughout the network [41]. The 
underlying principle of a residual layer can be mathematically described as, 

 ( , )hy H x w x= +  (3) 

where x is the input, H(x, wh) represents the non-linear operations and y is the output. The non-linear 
operations are executed by two convolutional layers, each utilizing 33 kernels. 

 

Fig. 4 Architecture of the proposed DNN model for the 3D reconstruction of flow particle distribution. 

The architecture of the proposed DNN (named LF-DNN) is illustrated in Fig. 4. The 
perspective-shift images containing the geometry-informed features of the flow field are taken as 
the input of the network. The training target is a good approximation of the 3D particle distribution. 
The size of the input image is NxNy, where Nx and Ny represent the resolution of sub-aperture 
images. The channel of the input image is the number of viewing perspectives Np (sub-apertures). 
The spatial information of input images is encoded into feature maps through the encoding part of 
the LF-DNN, which is mainly composed of multiple convolutional layers and residual blocks. The 
feature maps are subsequently scaled up by an up-sampling layer and further decoded by the 
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decoding part of the network, which consists of several residual blocks. The output particle volume 
is generated with the dimensions of NiNjNk. 

3.2 Novel hybrid loss function 

For a DNN model, the loss function is defined to quantify the error of a model’s predictions, 
serving as crucial feedback for the training process. Specifically, the gradient of the loss function 
indicates the direction in which the network parameters should be adjusted and is calculated using 
the gradient descent optimizer. The primary objective of the training process is to fine-tune the 
network parameters to minimize the loss. A frequently used loss function for regression tasks is the 
mean squared error (MSE), which quantifies the average squared discrepancy between predicted 
outcomes and actual values. However, initial tests suggest that the MSE might not be adequate for 
tasks involving sparse target reconstruction. The limitation of the MSE lies in its uniform 
penalization of all errors, irrespective of their scale, rendering it less effective in situations where 
certain errors carry more significance. This issue becomes apparent in scenarios with sparse seeding 
concentration, where a majority of discrete voxels in the measurement volume have zero intensity. 
Under this condition, a model that predicts zero intensity across all voxels can achieve a lower MSE. 
This leads to the model mixing the non-zero signals for noise and ignoring them during the learning 
process. Consequently, a significant divergence between the reconstructed and actual particle 
distributions can be presented. 

To tackle this issue, a novel hybrid loss function is designed for the LF-DNN. The overall loss 
arises from two factors, i.e., the weighted mean absolute error (MAEweighted) and reconstruction 
quality factor error (Q). The MAEweighte is defined as, 

 
1 1

1 n nN N N

i i j j

weighted true pred n true pred

i j

MAE y y w y y
N

−

= =

 
= − + − 

 
   (4) 

where Nn is the number of non-zero intensity voxels, N is the total voxel number, ytrue and ypred 
denote the true and predicted voxel intensity, respectively, and wn denotes the weighting given to 
errors arising from the voxels with non-zero intensity. As aforementioned, the non-zero intensity 
signals are of more significance for network learning, therefore an adaptive weight coefficient larger 
than 1 is assigned to the non-zero voxels. Specifically, a maximum weight of 100 is applied for the 
sparse seeding of C = 0.1 ppm, while a weight of 5 is employed for the seeding of C = 1 ppm. 

The metric Q assesses the similarity between the reconstructed and true images [3]. It is defined 
as, 

 

( ) ( )
1

22

1 1

true pred

true pred

N
k k

k

N N
k k

k k

y y

Q

y y

=

= =


=





 
 (5) 

A high similarity between the reconstructed and actual intensity distributions yields a Q value close 
to 1, while a Q value of 0 indicates different particle distributions. The total loss is formulated as 
the sum of MAEweighted and Q losses, expressed as, 

 ( )1weightedLoss MAE Q= + −  (6) 

where α denotes the weighting of the Q loss and is optimized as a constant of 2. In this hybrid loss 
function, the MAEweighted and 1-Q serve as the standard and custom loss components, respectively. 
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The inclusion of 1-Q enhances the particle reconstruction accuracy because it aligns with the particle 
reconstruction task perfectly. However, relying solely on the Q loss could potentially lead to model 
overfitting, as this custom loss function is highly specific to certain datasets. The integration of 
MAEweighted helps to reduce this risk. The MAEweighted exhibits strong robustness against outliers and 
thus can ensure a balanced and effective guidance for the network's training process. 

3.3 Data generation 

       

(a) 0.1 ppm                                            (b) 0.5 ppm                                              (c) 1 ppm 

             

(d) 0.1 ppm                                           (e) 0.5 ppm                                             (f) 1 ppm 

Fig. 5 Random particle distributions [(a), (b), (c)] at different C and corresponding synthetic LF images [(d), (e), 

(f)] are generated for a training dataset.  

The proposed LF-DNN is trained using a dataset that comprises 3D particle distributions 
alongside their LF images. Since the true particle distributions are difficult to acquire in real-world 
experiments, thus synthetic data with labeled particle locations is employed to construct the training 
dataset. Random particle fields are generated using the particle generator described in [42] and 
corresponding LF images are generated through a ray tracing technique based on geometrical optics. 
The C varies from 0.1 to 1 ppm (as illustrated in Fig. 5), which reflects the typical seeding 
concentrations usually observed in the LF-PIV experiments. The intensity of synthetic LF images 
is normalized to a scale of 0 to 1. With the consideration of training performance and computational 
cost, a total of 20000 random particle distributions at different C accompanied by their LF images 
are generated. The resolution of generated grayscale LF raw images is 30013001 pixels. The 
dataset is split into three subsets for training, validation and testing with a ratio of 70%, 15% and 
15%. Data augmentation is performed to enhance the noise resistance of the model and prevent it 
from overfitting. This includes the addition of Gaussian noise to the LF raw images. The mean value 
of Gaussian noise (μ) varies from 0.002 to 0.02 and a large μ indicates a high noise level. 

Unlike the DL frameworks that utilize the PIV raw images as direct inputs to neural networks 
[43], this study employs a preprocessing step to decode the LF raw images before model training. 
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This is because the MLA increases the complexity of the imaging model, making it challenging to 
solely rely on a neural network to fully capture the underlying physics. Consequently, to develop a 
more robust model that can effectively learn how light rays are modulated by the MLA, it is crucial 
to integrate additional physical insights into the training process. To achieve that, the LF decoding 
is carried out to extract the perspective shift images from the LF raw data.  

 

(a) Two-plane parametrization of light field and principle of LF decoding 

 

(b) Extraction of sub-aperture images of test flow field from LF raw images  

Fig. 6 Decoding of raw LF data for acquiring parallax-informed network input features. (a) Two-plane 

parametrization of light field and principle of LF decoding.  (b) Extraction of sub-aperture images of test flow field 

from LF raw images. 

As depicted in Fig. 6(a), the main aperture is conceptualized as consisting of multiple sub-
apertures, each offering a unique viewing angle. By extracting the images captured by these different 
sub-apertures, parallax information concerning the particle field is obtained. This parallax 
information is more readily interpretable and learnable by the neural network compared to the 
unprocessed raw data. The decoding process of a LF raw image into sub-aperture images is 
illustrated in Fig. 6(a). The 4D plenoptic function L(x, y, θ, φ), which describes the light rays in a 
scene, can also be expressed as L(s, t, u, v) using the two-plane parameterization. Here, (s, t) 
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represents the spatial coordinates on the image plane, and (u, v) represents the angular coordinates 
on the lens plane. Mathematically, a sub-aperture image can be obtained by fixing the angular 
coordinates (u, v) and varying the spatial coordinates (s, t), as 

 ( ) ( ), , , , ,=u vI s t L s t u v  (7) 

where Iu,v(s,t) is the sub-aperture image corresponding to the angular position (u, v). By selecting 
different pairs of (u, v) coordinates, a set of sub-aperture images can be generated, each 
corresponding to a different perspective of the scene [as shown in Fig. 6(b)]. These images represent 
the scene as viewed from different angles, simulating a perspective shift, as 

 ( ) 2

, ,       1,2,...,=
i iu v pI s t i n  (8) 

where np is the number of pixels covered by each microlens. The resolution of a sub-aperture image 
is nxny, where nx and ny denote the number of microlens in the x and y-directions. For the synthetic 
LF image generation, nx and ny are 251, and np is calculated to be 18. Therefore, the size of the LF 
sub-aperture image, which serves as the input of LF-DNN, is 251251 pixels. In the dataset, the 
total number of sub-aperture images is 6,480,000. 

3.4 Model establishment 
To refine the model parameters and avoid local minima, the cosine annealing strategy [44] is 

employed for dynamically modulating the learning rate during the training process. The learning 
rate schedule of cosine annealing is depicted in Fig. 7(a). To optimize the hyperparameters of the 
DNN model, comparative analyses are conducted on the loss associated with different initial 
learning rates, batch sizes and optimizers. The variations of the validation loss of the DNN model 
are illustrated in Figs. 7(b)-(d). It can be observed that using the Adam optimizer [45] with an initial 
learning rate of 0.0001 and a batch size of 32 yields the lowest loss. 

To justify the proposed network architecture, the validation losses of the network with and 
without residual blocks are calculated and shown in Fig. 8(a). After 50 training epochs, the 
validation loss is 0.001 and 0.01 with and without residual blocks, respectively, demonstrating that 
the residual structure improves the training performance significantly. Fig. 8(b) illustrates the loss 
at different numbers of residual blocks, where the legend ‘E1’ indicates one residual block in the 
encoding and ‘D2’ indicates two residual blocks in the decoding. As shown in Fig. 8(b), the optimal 
architecture features contain three residual blocks in the encoding part and four in the decoding part. 
The DNN with additional residual blocks degrades the performance. Because the network learns 
excessive noise features from the training data. Fig. 8(c) depicts the loss at different numbers of 
convolutional kernels. It can be found that increasing the kernel count from 64 to 256 enhances the 
training performance, whereas further increasing it to 512 does not affect the training performance. 
Thus, the optimal network structure is obtained based on 7 residual blocks with 256 convolutional 
kernels. 
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(a) Variation of learning rate with training epochs         (b) Losses at different initial learning rates 

   

(c) Losses at different batch sizes                            (d) Losses with different optimizers 

Fig. 7 Validation loss of the proposed DNN model at different model hyperparameters.  (a) Variation of learning 

rate with training epochs.  (b) Losses at different initial learning rates.  (c) Losses at different batch sizes.  (d) 

Losses with different optimizers.  

The Sigmoid-weighted linear unit (Swish) is chosen as the activation function for all layers 
except the final layer. Swish is distinguished by its non-monotonic and smooth characteristics, 
which facilitate precise adjustments to the network weights during the optimization process. 
Additionally, Swish's continuous gradient across zero and negative inputs helps to reduce the 
occurrence of dying neurons during network training. This feature is especially valuable in 
applications that involve sparse target reconstruction. The Swish function is defined as, 

 ( ) ( )
1 x

x
Swish x x Sigmoid x

e
 −=  =

+
 (9) 

where x represents the input, β denotes a constant that modulates the function's curvature and 
Swish(x) denotes the output. The Swish activation function normalizes the output to a range of 0 to 
1, aligning well with the expected output domain. The validation loss of the DNN model under the 
Swish and commonly used Rectified Linear Unit (ReLU) functions is shown in Fig. 8(d). The result 
shows that the loss with Swish is approximately 2.5 times smaller than the ReLU, demonstrating 
that Swish is more effective for sparse particle reconstruction. The architecture and optimized 
hyperparameters of the DNN model are summarized in Table 1. 
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(a) Losses with and without residual blocks           (b) Losses at different numbers of residual blocks  

   

(c) Losses at different numbers of convolutional kernels     (d) Losses at different activation functions 

Fig. 8 Variation of validation loss of the DNN model with training epochs at different model architectures.  (a) 

Losses with and without residual blocks.  (b) Losses at different numbers of residual blocks.  (c) Losses at different 

numbers of convolutional kernels.  (d) Losses at different activation functions. 

Table 1: Architecture and hyperparameters of the proposed deep neural network 

Model parameter Value 

Number of residual layers  7 

Size of the convolution kernel  256256 

Activation function  Swish 

Learning strategy Cosine annealing 

Initial learning rate 0.0001 

Optimizer  Adam 

Batch size 32 

Ratio of Training, validation and testing  70%, 15%, 15% 

In contrast to the 3D convolution kernels, 2D kernels are chosen for the DNN model with 
consideration of memory efficiency and training data requirements. The 2D kernels require fewer 
parameters and therefore the network is less prone to be overfitting. Besides, the proposed DNN 
model is adaptable to varying resolutions of input images without compromising the model’s 
performance. This flexibility is attributed to the nature of convolution operations and is further 
enhanced by the network’s exclusion of pooling and fully connected layers. A schematic of the 
proposed LF-DNN framework for particle reconstruction is shown in Fig. 9. 
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Fig. 9 Schematic diagram of proposed LF-DNN model for reconstructing the 3D particle distributions. 

3.5 Performance assessment 
To verify the performance of the proposed LF-DNN, numerical reconstructions of the 3D 

particle field are performed by generating synthetic LF images. The 3D measurement volume that 
contains the particle field has a physical size of 14.1 mm14.1 mm7.1 mm and is discretized into 
the voxels with a resolution of 0.1 mm0.1 mm0.1 mm. Particles with a diameter of 10 μm are 
dispersed randomly in the measurement volume with seeding concentration (C) from 0.1 to 1 ppm 
with an interval of 0.1 ppm. Corresponding LF images of these particle volumes are synthetically 
generated using the ray tracing technique. The optical parameters employed in the synthetic image 
generation are listed in Table 2. The generated LF raw images are subsequently processed through 
the method described in Section 3.3 to extract perspective shift images, which are then input to the 
LF-DNN for reconstructing the particle distributions. 

Table 2: Optical parameters for the synthetic LF image generation  

Symbol Parameter Value 

M The magnification ratio of the main lens -1 

Fm The focal length of the main lens 100 mm 

F/# f-number of the main lens 4 

fm The focal length of the microlens 800 μm 

f/# f-number of microlens 8 

- Microlens geometry Square 

pm Microlens pitch 100 μm 

nx, ny Number of microlens on MLA 251251 

px Pixel size 5.5 μm 

Nx, Ny Camera resolution 30013001 
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(a) Ground truth                                                                         (b) MART 

   

(c) PR-MART                                                                       (d) LF-DNN 

Fig. 10 3D particle distributions reconstructed by the MART, PR-MART and LF-DNN at C = 0.1 ppm.  (a) Ground 

truth.  (b) MART.  (c) PR-MART.  (d) LF-DNN. 

In addition to the LF-DNN, the conventional MART and pre-recognition MART (PR-MART) 
are also employed to reconstruct the particle distributions for comparative analysis. Figure 10 shows 
the particle reconstruction achieved by these three methods at C = 0.1 ppm. Compared with the 
actual particle distribution, severe particle elongations along the depth direction are observed for 
the MART. This effect is to some extent mitigated by the PR-MART, but distortions in particle shape 
persist. In contrast, the particle distribution reconstructed by the LF-DNN is similar to the actual 
distribution with a significant reduction of the elongation and a discernible enhancement of spatial 
resolution of reconstruction. 

To assess the reconstruction accuracy quantitatively, the reconstruction quality Q along with 
the Recall and Ghost rates are calculated under various concentrations (C) and levels of image noise 
(μ). For the Recall and Ghost rates calculations, the reconstructed particle volumes are initially 
converted into 3D binary images through the application of an adaptive intensity threshold. 
Subsequently, distinct sub-regions within the binary images are identified based on a connected-
component labeling algorithm [46]. The regional maxima within these sub-regions are identified to 
determine the location of the reconstructed particles. With known locations of the reconstructed 
particles, the Recall rate is calculated by, 

 
#

Recall rate
p

VD

T
=  (10) 

where a valid detection (VD) is characterized by the identification of a reconstructed particle situated 
within a one-voxel chessboard distance from an actual particle, # symbolizes the count of VD 
instances, Tp denotes the number of actual particles. The Recall rate is in the range of 0 to 1 and a 
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larger value implies that a greater proportion of particles are being reconstructed at the correct 
locations. The Ghost rate is calculated by, 

 Ghost rate d

p

T

T
=  (11) 

where Td denotes the cumulative number of the particles that have been reconstructed. A lower 
Ghost rate indicates fewer spurious particles generated in the reconstruction result. 

Figures 11(a), (c) and (e) illustrate the variations of Q, Recall and Ghost rates with Cs under a 
noise-free case for the MART, PR-MART and LF-DNN. It can be seen that the LF-DNN 
outperforms the MART and PR-MART. Specifically, for LF-DNN, the Q index exceeds 0.75 which 
is almost twice the MART. The Recall rate for LF-DNN remains persistent at 1 for various Cs, 
indicating that all particles have been reconstructed at their original locations, even in scenarios of 
high seeding density. Conversely, the Recall rates of the MART and PR-MART decrease with the 
increasing seeding concentration. Furthermore, the Ghost rate achieved by the LF-DNN is lower 
than the MART and PR-MART, indicating that the elongation effect can largely be alleviated by the 
LF-DNN.  

  

(a) Q with C under noise-free case                                          (b) Q with μ at C = 0.5 ppm 

  
(c) Recall rate with C under noise-free case                         (d) Recall rate with μ at C = 0.5 ppm 
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(e) Ghost rate with C under noise-free case                              (f) Ghost rate with μ at C = 0.5 ppm 

Fig. 11 Comparison of Q, Recall rate and Ghost rate achieved by the MART, PR-MART and LF-DNN under 

different particle concentrations C and noise levels μ of LF images.  (a) Q with C under noise-free case.  (b) Q with 

μ at C = 0.5 ppm.  (c) Recall rate with C under noise-free case.  (d) Recall rate with μ at C = 0.5 ppm.  (e) Ghost 

rate with C under noise-free case.  (f) Ghost rate with μ at C = 0.5 ppm. 

Comparative analysis is conducted under different noise levels μ and the results are illustrated 
in Figs. 11(b), (d) and (f). It is observed that the Q and the Recall rate are reduced with an increase 
of μ from 0.002 to 0.02, indicating that an increase in noise of the raw LF image deteriorates the 
particle reconstruction accuracy. In comparison to the MART and PR-MART, the LF-DNN 
demonstrates superior resilience to noise interference. Notably, at a higher μ = 0.2, the Recall and 
Ghost rates of 0.81 and 2.16 are observed respectively for the LF-DNN whereas 0.44 and 6.68 are 
observed for the MART. Note that the higher Recall rate achieved by the LF-DNN is due to the 
influence of noise that has been considered in the generation of the training dataset. 

Computational cost also stands as a critical factor alongside the reconstruction quality and 
noise resilience. Therefore, the computational demands of these three methods for particle 
reconstruction are quantified. The computational cost of MART and PR-MART are evaluated on a 
12-core CPU (Intel Core i7-13700) and the proposed LF-DNN is deployed on both CPU (Intel Core 
i7-13700) and GPU (Nvidia RTX 3090 GPU) using the PyTorch backend. The computational costs 
achieved for these three methods are listed in Table 3. The LF-DNN has a total of approximately 30 
million parameters and the storage size of the model is 150 MB. 

Table 3: Computational costs of 3D particle reconstruction for the MART, PR-MART and LF-DNN 

Computational time MART PR-MART LF-DNN-CPU LF-DNN-GPU 

Weight matrix calculation 2.26 hrs 2.26 hrs -  

Pre-recognition step - 0.16 hrs -  

MART iterations 0.38 hrs 0.12 hrs -  

Model training  - - 50.75 hrs 15.92 hrs 

Reconstruction/LF image 0.38 hrs 0.28 hrs 3.7 s 1.2 s 

Total time cost for 100 image pairs 154.26 hrs 114.26 hrs 51.16 hrs 16.05 hrs 

The results show that the MART and PR-MART require 2.26 hours (hrs) to compute the weight 
matrix, which is not required for the LF-DNN. However, the LF-DNN experiences approximately 
50.75 hrs of training. This duration is reduced to 15.92 hours with GPU acceleration but the training 
cost is still high. The time required for the model training is a common issue for the DL-based 
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methods. In addition to the weight matrix calculation, the reconstruction times required for the 
MART and PR-MART are 0.38 hrs/LF image and 0.28 hrs/LF image, respectively. In contrast, the 
LF-DNN takes only 3.7 seconds/LF image on a CPU and 1.2 seconds/LF image on a GPU. For the 
unsteady flow structures, statistical measurements of the flow velocity field are usually required and 
several hundred repetitions of the particle reconstruction process are needed. For instance, in the 
reconstruction of 200 PIV image pairs (400 LF images), the accumulated times required for the 
MART and PR-MART are 154.26 and 114.26 hrs, respectively, whereas that for the LF-DNN is 
51.16 and 16.05 hrs by CPU and GPU. The acceleration ratios achieved by the LF-DNN are 9.6 and 
7.1 compared to the MART and PR-MART. This evidences that the LF-DNN requires less 
computational time compared to traditional iterative reconstruction approaches and thus improves 
the computational efficiency significantly. 

4. Experimental validation 

4.1 Experimental setup 

The proposed method is further validated by carrying out experiments on a 3D flow around a 
circular cylinder. As shown in Fig. 12, a cylinder with a diameter of d = 2 mm is installed inside a 
water channel. The channel is 4.6 m long and the size of a cross-section is 20 mm 20 mm. The 
cylinder is positioned at a section where the flow is fully developed. The axis of the cylinder is 
aligned with the central height of the channel. The flow climbs over the cylinder, forming the wake 
flow with shedding vortices. The flow rate is controlled by a Proportional-Integral-Derivative (PID) 
controller, maintaining the Reynolds number Red (based on d) of 140, 100 and 70 for different test 
cases. 

   

(a) Experimental setup                                                    (b) Schematic of the measurement volume 

Fig. 12 Experimental setup of the 3D flow around a circular cylinder. (a) Experimental setup. (b) Schematic of the 

measurement volume. 

The 3D velocity field of the wake flow is measured by the LF-PIV incorporating the proposed 
DNN model. Polyamide particles with a diameter of 10 μm and density of 1.02 g/cm3 are immersed 
in the test flow to serve as the tracer particles. The seeding concentration is maintained at ~0.6 ppm. 
To visualize the movement of the tracers, a double-pulse laser with a peak energy of 200 mJ and 
wavelength of 532 nm is used to provide illumination. Images of the particles are captured using a 
bespoke LFC configured to operate in double-trigger mode. To guarantee that the LF-DNN model 
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trained on synthetic data is effective in reconstructing experimental flow particles, the optical 
settings of the main lens and MLA of the LFC are maintained identically to those used in the 
simulations. With the current optical settings, the measurement domain spans 5d6.5d6d in the 
x, y, and z-directions, respectively.  

  

(a) PSFs at different depths                                                                (b) SSIM of PSFs  

Fig. 13 Comparison of theoretical and experimental PSFs of the LFC.  z = 0 mm represents the focal depth of the 

LFC. Positive and negative z values denote the far-focal and near-focal zone, respectively.  (a) PSFs at different 

depths. (b) SSIM of PSFs. 

A test is conducted to ascertain the alignment between numerical and experimental optical 
settings. This involves the acquisition of the point spread functions (PSFs) of the LFC by capturing 
a small pinhole (diameter of 5 μm). The pinhole is moved along the optical axis of the LFC by a 
high-resolution translation stage. The captured PSFs are then compared with those derived from 
theoretical calculations using the same optical parameters. The structural similarity index (SSIM) 
[47] is employed to evaluate the similarity. Fig. 13 presents the SSIM values between the theoretical 
and experimentally captured PSFs at different depths. It can be observed that the captured PSFs 
match well with the theoretical computing results. The SSIM value exceeds 0.8 at the depth of -10 
mm < z < 10 mm, indicating there is a good agreement between the experimental and numerical 
optical settings. Therefore, the LF-DNN model that is trained using synthetic LF data proves to be 
applicable for processing experimental data for the reconstruction of particle distributions. 

The reconstructed particle volumes achieved by the LF-DNN are subsequently processed by a 
cross-correlation algorithm to estimate the 3D flow velocity. Utilizing the 161616 interrogation 
window and an overlap of 50%, 253230 vectors are generated in the velocity estimation. To 
acquire the statistical measures of the cylinder wake flow, 240 LF-PIV image pairs are reconstructed 
by the DNN for subsequent flow velocity estimation. For a comparative study, the MART algorithm 
is applied to reconstruct the particle distribution. For each LF image, 5 iterations are performed to 
reconstruct the particle volume. To evaluate the measurement accuracy of the proposed LF-DNN 
model, planar PIV measurements are also carried out in a similar configuration. A conventional 
camera is employed to capture the velocity field in the central depth plane of the channel. The lens 
magnification on the regular camera is adjusted to -1, forming a field of view of 5d 6.5d. For 
cross-correlation calculation, the size and overlap of the interrogation window are set to 3232 
pixels and 50%, respectively, resulting in 109146 vectors in the final velocity field. A total of 500 
planar PIV image pairs are processed to derive the time-averaged velocity and compared with the 
proposed method. 
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4.2 Results and discussions 

The mean velocity field of the cylinder wake flow at Red of 140, 100 and 70 are measured by 
the LF-PIV and shown in Fig. 14. The spanwise, streamwise and wall-normal directions are denoted 
by x, y and z-axes, respectively. The axis of the cylinder is positioned at y = 0. The velocity 
distributions on the x-y slices at z = -2.7d, -1.5d, 0d, 1.5d and 2.7d are presented. The contour 
illustrates the magnitude of the streamwise velocity component (v).  

  

(a) Red =140, MART                                                        (b) Red =140, LF-DNN 

  
(c) Red =100, MART                                                      (d) Red =100, LF-DNN 

  

(e) Red =70, MART                                                            (f) Red =70, LF-DNN 

Fig. 14 Time-averaged 3D velocity of the cylinder wake flow at Reynolds number Red of 140, 100 and 70 

reconstructed by traditional MART and proposed LF-DNN methods. (a) Red =140, MART.  (b) Red =140, LF-

DNN.  (c) Red =100, MART.  (d) Red =100, LF-DNN.  (e) Red =70, MART.  (f) Red =70, LF-DNN. 

From Fig. 14, it can be found that a low-speed zone is formed downstream of the cylinder. The 
velocity magnitude is significantly lower than the surrounding mainstream, approximately an order 
of magnitude less. The length of this zone gradually shrinks as the slice transits from the center to 
the wall. A comparative analysis is undertaken between the MART and LF-DNN. In the case of the 
central three slices, the velocity distribution obtained by the LF-DNN closely aligns with those from 
the MART. Nonetheless, discrepancies emerge on the outermost slices (z = -2.7d and 2.7d), where 
the velocity magnitude measured by the LF-DNN is ~20% smaller than the MART at the same Red. 
This is because the MART produces particles with severe elongations along the wall-normal 
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direction. Consequently, some voxels that contain no tracers are assigned with false intensity. This 
brings additional noises in the cross-correlation analysis and thus unable to detect the correlation 
peak. The accuracy of velocity estimation is therefore degraded. For the LF-DNN, fewer elongations 
can be shown in the reconstruction, as a result, the estimated velocity obtained by the cross-
correlation algorithm provides a higher accuracy. 

Furthermore, the instantaneous velocity field at the central depth plane of the channel is 
extracted from the 3D data, as shown in Fig. 15. Both the MART and LF-DNN provide the 
downstream shedding vortices of the cylinder. The outer vortices are in good agreement with these 
two approaches in terms of shapes and locations. 

   
(a) MART                                                                         (b) LF-DNN 

Fig. 15 Instantaneous velocity field at central depth plane of the channel measured by MART and LF-DNN.  (a) 

MART.  (b) LF-DNN. 

Quantitative comparison between the LF-PIV and planar PIV is performed by extracting the 
mean streamwise velocity distribution along the spanwise direction on the central depth plane of the 
channel (z = 0, y = 3d). The result is illustrated in Fig. 16. It can be observed that streamwise velocity 
shows a U-shape distribution across the spanwise direction. A fast decrement of v is presented at the 
spanwise locations of -1.5d < x < -0.5d and 0.5d < x < 1.5d. Concurrently, the maximum streamwise 
velocity of the mainstream reduces from 0.16 m/s to 0.08 m/s with the decrease of Red from 140 to 
70. The measured velocities achieved by the MART and LF-DNN are very close and generally 
match the trends of the planar PIV results. The observed discrepancies between the LF-PIV and 
planar PIV can be attributed to the difference in the spatial resolution of the velocity measurement. 

Since the planar PIV has been developed as a standard technique for 2D flow diagnostics, 
therefore the measurement of planar PIV is considered a baseline to evaluate the measurement 
accuracy of the MART and the LF-DNN. The relative measurement error ε is calculated as, 

 
( ) ( )1 100%

t
i

l i p ii

mean

v v

v
 = −

= 


 (12) 

where vl(i) and vp(i) denote the streamwise component of the ith velocity vector measured by the LF-
PIV and planar PIV, respectively, vmean is the averaged flow velocity estimated from the flow rate 
and size of the channel. The ε achieved at Red = 140, 100 and 70 are 11.9%, 9.6% and 6.9%, 
respectively for the LF-DNN. In contrast, the ε achieved for the MART is 13.7%, 10.3% and 9.1% 
with the same Red. For the LF-DNN, the computational cost for obtaining the mean 3D velocity is 
10 mins for reconstructing the 240 LF image pairs, while the MART took about 7 days for the same 
measurement. Therefore, it indicates that the LF-DNN outperforms the MART in terms of 
reconstruction accuracy and efficiency. Despite the advantages of the LF-DNN over the 
conventional tomographic reconstruction algorithms, the limitations of the proposed model still 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
1
8
5
1
6



22 

 

remain. Firstly, the improvement of the velocity accuracy is lower than the improvement of the 
reconstruction efficiency. This discrepancy may be attributed to the calibration errors of the optical 
system and experimental noise. Secondly, the model training time is still longer even with the GPUs. 
Therefore, it is imperative to explore approaches to reduce the training time. 

   

(a) Red = 140                                                                        (b) Red = 100 

 

(c) Red = 70 

Fig. 16 Streamwise velocity along the spanwise direction on the central depth of channel (z = 0, y = 3d) at different 

Reynolds numbers Red.  (a) Red = 140.  (b) Red = 100.  (c) Red = 70.  

5. Conclusion 

This study proposes a deep learning-based volumetric reconstruction method for enhancing 
particle reconstruction accuracy and efficiency in LF-PIV. A tailored deep neural network model 
(namely LF-DNN) is employed to reconstruct the particle distributions from the LF data. 
Comparative studies between the proposed method and the state-of-the-art tomographic 
reconstruction algorithms (MART and PR-MART) are performed using the synthetic and 
experimental data. The key findings are summarized as follows: 
 The LF-DNN outperforms the MART and the PR-MART in terms of particle reconstruction 

quality, Recall and Ghost rates. Specifically, the reconstruction quality index exceeds 0.75 for 
LF-DNN which is approximately twice that of the MART. For LF-DNN, the Recall rate 
maintains at 1 across different seeding concentrations, whereas the Recall rate decreases with 
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the increasing seeding concentration for the MART and PR-MART. Furthermore, the Ghost 
rate for the LF-DNN is significantly lower than the other two methods. 

 The LF-DNN demonstrates better noise resilience compared to the MART and the PR-MART. 
With the integration of Gaussian noise into the LF images (mean noise value of μ = 0.2), the 
Recall and Ghost rates of 0.81 and 2.16 are achieved, respectively for the LF-DNN, whereas 
0.44 and 6.68 are observed for the MART. 

 The LF-DNN provides a lower computational cost compared to the MART and the PR-MART. 
For reconstructing a single LF image, the LF-DNN necessitates merely 3.7 and 1.2 seconds on 
CPU and GPU platforms, respectively, whereas the MART and PR-MART require 0.38 and 
0.28 hours. 

 For LF-DNN, the relative measurement errors of 3D cylinder wake flow are 11.9%, 9.6% and 
6.9% at Reynolds numbers of 140, 100 and 70. In comparison, the relative errors for the MART 
are 13.7%, 10.3% and 9.1% with the same Reynolds numbers. This demonstrates that the LF-
DNN can facilitate accurate volumetric particle reconstruction and hence the 3D flow 
measurement by single-camera LF-PIV.  

 

In future work, efforts will be made to investigate approaches to improve the calibration 
accuracy of the optical system and incorporate the experimental data into the training dataset. 
Additionally, flow governing equations will be integrated with the flow velocity data to improve the 
spatial resolution of the velocity measurement. 
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