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Abstract

Application Layer Multicast (ALM) is an alternative to IP multicast, which has yet to achieve a widespread

deployment in the Internet. ALM places multicast primitives directly in the multicast members, i.e. end

systems, which use an overlay topology on top of the physicalnetwork for multicasting. The overlay

consists of unicast connections between the members, hencebypasses the need for multicast support at

the infrastructure level. The overlay structure used is a key factor that determines the efficiency of an

ALM solution.

This thesis investigates efficient techniques to build bothlow cost (i.e. low resource usage) and low

delay ALM trees. We focus on self-organising distributed proposals that use limited information about

the underlying physical network, limited coordination between the members, and construct overlays with

bounded branching degree subject to the bandwidth constraint of each individual member.

This work begins with a detailed simulation evaluation of existing ALM proposals chosen from

different classes. This has resulted in enhancements to some existing proposals as well as a set of

observations that could be used to assist future development of ALM proposals. As part of the evaluation,

we devise a simple centralised greedy heuristic for creating low diameter degree-bounded mesh overlays,

for benchmarking the class of distributed proposals. With the insights collected from the evaluation

effort, we develop proposals for a distributed heuristic tobuild low delay delivery trees for both one-to-

many and many-to-many multicast. For one-to-many multicast, we propose MeshTree, which is based

on the observation that distributed delay optimisation canbe trapped by the greedy problem and delay-

cost trade-off. MeshTree addresses the problems by embedding the delivery tree in a degree-bounded

mesh containing many short links. For many-to-many multicast, we consider a multiple shared trees

approach to strike a balance between the performance and quality trade-off of the conventional single

shared tree and multiple source-specific trees approaches.We show that both our proposals perform well

compared to existing proposals. Both of these proposals arebased on a mesh-based overlay creation

and maintenance framework which we have developed. The framework offers quick failure recovery

mechanism to address the inherent dynamic characteristic of the ALM system.
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Chapter 1

Introduction

The Internet came to life as a communication medium for the research community. In its early days,

the Internet was mainly used to exchange data between research laboratories. The birth of world wide

web in the early 90s proved to be a killer application that pushed the technology to a wider audience.

This triggered a rapid growth of the Internet, and advances in the underlying technologies. The arrival

of broadband facilitated cheaper and better access to the Internet by millions of households. More and

more bandwidth-intensive applications, such as broadcastof audio and video contents, are now possible

over the Internet.

A popular broadcast event (e.g. live concert of a popular popstar, or sport event like a world cup final)

can attract an audience of millions. Today, the data exchange service provided by the Internet is mainly

based on unicast, i.e. point-to-point between two computers. However the broadcast event requires a

point-to-multipoint service. With the current unicast service, the data source needs to send a copy of data

to each of the recipients. In other words, if the broadcast involves a million recipients, the source would

have to repeatedly transmit the same packet a million times.Naturally, this injects redundant traffic into

the network, as well as overloading the data source. The network or IP (Internet Protocol) layer multicast

offers an efficient transmission mechanism for point-to-multipoint delivery. With IP multicast, the data

source only sends one copy of data which is then replicated and forwarded as necessary by the network

routers to the recipients. Each physical link will see only asingle copy of the data.

In general, multicast is useful for applications that involve communication between multiple parties,

i.e. group communication. Examples of such applications are video conferencing, distance learning,

multi-party games, distributed simulation, etc. It is clear that this diverse set of applications requires a

different kind of support from the underlying system. As described by Shi [86], we can roughly classify

the key requirements as follows: the amount of data to be delivered (bandwidth requirement); time-

liness of their delivery (latency requirement); the reliability of their delivery (reliability requirement);

the number of participants that send data (multi-source requirement); the number of recipients to be
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reached (scalability requirement); and the frequency of members joining or leaving the group (dynamics

requirement). Table 1.1 provides a summary of these requirements for some of the example applications.

Undoubtedly, this diverse set of requirements challenges the unicast-based services, and calls for native

multicast support in the Internet.

Unfortunately, despite over 15 years of active research, a global-scale deployment of IP multicast

infrastructure has yet to be seen. This is due to a number of issues such as multicast address allocation,

interdomain multicasting, security and the difficulty in providing higher level functionality. Owing to

this, in recent years, the research community has revisitedthe case of providing multicast services at the

application layer. This approach is often termed application layer/level multicast, end-system or end-host

multicast. In this thesis, we will refer to it as ApplicationLayer Multicast (ALM).

In ALM, multicast functionality is implemented by end systems. The end systems are organised

into a multicast overlay topology, and deliver data over theoverlay edges which are unicast connections.

This thesis investigates efficient techniques for creatinglow cost and low delay ALM overlays. We are

particularly interested in practical distributed techniques.

In the next section, we discuss IP multicast, including its history, problems faced and potential solu-

tions. Section 1.2 explores ALM along with its advantages and challenges with respect to IP multicast.

In Section 1.3, we briefly state the contributions of this work. The organisation of the remainder of this

thesis is given in Section 1.4.

Multi-source Scalability Dynamics Bandwidth Latency Reliability

Video all small low medium critical no
Conferencing
Distance one or few medium low medium critical no
Learning
Multi-party all large high low critical yes
Games
Distributed all large low high depends yes
Simulation
Internet one huge high high critical no
TV/Broadcast

Table 1.1: Application characteristics for group communications [86]

1.1 IP Multicasting

Early multicast support was constrained within a single local area network (LAN) domain. It was not

until the late 80s that Deering and Cheriton [25] introducedmulticast for internetworks and extended

LANs. This marks the beginning of IP multicast.

IP multicast is based on anopenservice model: there is no mechanism that restricts the hosts from

creating agroup, receiving data from or sending data to a group. Each multicast group is identified by
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a 32-bit class-D multicast address (range from 224.0.0.0 to239.255.255.255). To receive data from a

multicast group, a host must first join the group. To do so, thehost contacts its edge router using the

Internet Group Management Protocol (IGMP) [34]. Once the host joins the group, it will receive all data

addressed to the group, regardless of the identities of the sources. The data sources do not need to be

members of the group. In addition, group members can join andleave the group at will, with no need to

notify other members of, or senders to, the group. In short, an IP multicast group is not managed. Similar

to its unicast counterpart, IP multicast datagrams use best-effort delivery and are inherently unreliable.

Multicast-capable routers participate in a multicast routing protocol which manages the connections

between the routers. Typically, the connections are in the form of a single shared tree or a set of source-

rooted trees. This depends on the routing protocol used. Forexample, DVMRP (Distance Vector Mul-

ticast Routing Protocol) [25], MOSPF (Multicast extensionfor Open Shortest Path First routing proto-

col) [65] and PIM-DM (Protocol Independent Multicast — Dense Mode) [1] create separate trees rooted

at each source while CBT (Core Based Tree) [5] and PIM-SM (Protocol Independent Multicast — Sparse

Mode) [31] create a single shared tree.

The interest in IP multicast took off with the creation of theMBone — the multicast backbone [30].

MBone began its life as an overlay network which interconnected islands of multicast-capable LANs us-

ing unicast tunnels, whose end points are workstations thatrun themrouted routing daemon.Mrouted

is capable of receiving unicast-encapsulated multicast packets, and forwarding the packets to appropriate

out-going interfaces computed by DVMRP. In March 1992, the MBone achieved a remarkable milestone

by carrying the first Internet audiocast from an Internet Engineering Task Force (IETF) meeting in San

Diego to 20 sites.

DVMRP creates multicast trees rooted at each of the data sources. Each tree is built in afloodand

prunemanner. Specifically, a source transmits a packet to its edgerouter, which in turn replicates and

forwards the copies on all out-going interfaces. When a router receives such a packet, it performs a

reverse path forwarding (RPF) [24] checking to decide if thepacket will be discarded or forwarded. If

the packet is received from the interface that the router uses to reach the source, the router will forward

the packet to all other interfaces. Packets arriving from other interfaces will be discarded silently. Each

router periodically uses the IGMP to discover the existenceof group members in its local network. If

there is no group member, a router will transmit a “prune” message towards the source on the RPF

interface. An intermediate router forwards the prune message along the path towards the source if it

receives prune messages on all its interface except the interface towards the source. Owing to this,

every router needs to keep state for each existing multicastgroup, regardless of whether the router itself

actually belongs to the group. DVMRP is also known as a dense mode protocol, as it assumes a dense

availability of members where pruning occurs infrequently. Other protocols that can also be classified as

dense mode are MOSPF and PIM-DM. Dense mode protocols are notscalable due to the high volume of

broadcast traffic generated and state information needs to be maintained at each router.
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The rapid growth of the MBone has called for the development of a new class of protocols — sparse

mode protocols — which are designed to work well when the members are sparsely distributed. Sparse

mode protocols require the edge routers with group members to explicitly join in the multicast trees,

as opposed to the dense-mode’s flood and prune mechanism. Twopopular examples are CBT [5] and

PIM-SM [31], with PIM-SM seeing a wider deployment [2]. BothCBT and PIM-SM build a tree rooted

at a special node, which is called thecore in CBT and theRendezvous Point(RP) in PIM-SM. For each

multicast group, CBT uses a bidirectional shared tree wherepackets can be originated from any point of

the tree; while PIM-SM uses a unidirectional shared tree where packets are first sent to the RP, which in

turn delivers the packet down the multicast tree. PIM-SM allows the edge routers to switch to the source

rooted trees when the perceived traffic exceed a certain threshold. The sparse mode protocols generally

improve the scalability when compared with dense mode protocols.

The original MBone was built as a flat topology. Its continuous growth has resulted in problems such

as large routing state and difficulties in management. Consequently, the multicast community has began

to deploy hierarchical, interdomain multicast routing.

Current interdomain multicast routing is based on the following set of protocols: MBGP1/PIM-

SM/MSDP. MBGP (Multicast extension for Border Gateway Protocol (BGP)) [12] provides a set of

multicast extensions for the unicast-based BGP [79] so as toseparate unicast and multicast policies

for interdomain routing. PIM-SM manages trees for multicast members within each domain. In order

to allow members to join to a group with sources located in remote domains (with remote RPs), the

group-to-RP mapping must be advertised to all edge routers in other domains. This is done by MSDP

(Multicast Source Discovery Protocol) [33] which distributes this mapping and announces sources to

RPs in different domains, using a flooding mechanism.

The MBGP/PIM-SM/MSDP protocol suite is viewed as a near termsolution, due to some scalability

concerns over the flooding mechanism used in MSDP. In addition, MSDP also introduces long join

latency and is not suitable for an environment with highly dynamic membership [2]. In the near future,

the Border Gateway Multicast Protocol (BGMP) [56] is expected to provide interoperability between

multicast routing protocols in different domains.

BGMP creates bidirectional shared trees between domains. The success of BGMP depends on a

collision-free address allocation scheme. Currently, twomodels are being considered by the IETF: (i)

a static address allocation and assignment scheme called GLOB [64]; and (ii) the Multicast Address

Allocation Architecture (MAAA) [94] which consists of a setof protocols for allocating addresses dy-

namically. Multicast address allocation is difficult as theaddress space provides no geographical or

topological meaning. The static nature of GLOB is inherently not scalable. On the other hand, the

MAAA protocol set is complex, and potentially not scalable [27]. More importantly, it does not provide

a solution to the problem of address starvation if multicastbecomes a popular interdomain service.

1MBGP is also known as BGP4+.
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The address starvation problem is addressed by the next version of IP, IPv6. IPv6 drastically increases

the address space (for both unicast and multicast)2 at the expense of changing the IP packet structures.

Thus, it requires changes to the routing infrastructure, and is expected to be deployed in the Internet in an

incremental manner. An extended time period may be needed before it fully replaces the current version

of IP.

1.1.1 IP Multicast Issues and Alternative Proposals

IP multicast is attractive as it is the best bandwidth savingtechnique to deliver a message to multiple

destinations. In order to take advantage of this, it requires changes at the infrastructure level. This

results in a chicken-and-egg problem: the Internet serviceproviders are waiting for killer applications

that drive the demand for multicast support, while the usersor application developers are waiting for

widely available multicast support for them to exploit the technology. Besides, there are also a number

of outstanding issues that slow down the deployment pace of IP multicast.

• Interdomain multicasting and address allocation. A key to making multicast a universally avail-

able technology is the success of interdomain multicast routing. However, as described previously,

the current solution (MBGP/PIM-SM/MSDP) is rather complexand has scalability concerns. On

the other hand, the long term proposal (BGMP) requires a strict address allocation scheme, which

is itself a complicated problem. Address collision can result in cross traffic between two different

multicast sessions. This poses a serious inefficiency risk for multicast receivers as packets from

other sessions must be processed and dropped.

• Security concerns. As mentioned in the previous section, IP multicast is basedon an open model

where the groups are not managed. In particular, any host cantransmit data to any group. This lack

of access control makes the network vulnerable to flooding attacks by malicious sources. While

such an attack could happen in the unicast service, the fact that a single message will reach a large

number of recipients could exacerbate the situation.

• Scalability and complexity. IP multicast requires routers to maintain state information for each

multicast group. This has introduced additional complexity to the IP layer, and raised serious

scalability issue. At the higher layer, IP multicast’s best-effort property also imposes additional

difficulties in providing features such as congestion control, flow control and security, compared

to its unicast counterpart.

To reduce the complexities of MBGP/PIM-SM/MSDP and BGMP, aswell as addressing additional

multicast-related issues (e.g. security and management),the multicast community has looked at a new

2IPv6 uses 128 bits for both unicast and multicast addresses,compared to 32 bits used in current version of IP (IPv4).
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class of multicast model — Root Addressed Multicast Architecture (RAMA) [2]. RAMA is based on

the observation that most multicast applications have a single source or have an easily identifiable pri-

mary source. RAMA identifies a multicast group using the<primary source, multicast group address>

mapping. As each host has a unique address, this solves the address allocation problem. Two RAMA

proposals are Express Multicast [45] and Simple Multicast (SM) [73].

Express is specifically designed for single-source applications. It creates a unidirectional tree rooted

at the source. The source-specific approach allows strict control of the data source, thus addresses the

potential attacks from an arbitrary source. SM provides a many-to-many service over a bidirectional

shared tree, rooted at the primary source. While both proposals address some of the above issues, they

are still in the development state. Furthermore, both proposals require changes at the infrastructure level.

In particular, Express requires the deployment of IGMP version 3, which is still under development;

while SM requires changes to the packet header. Hence, a widespread adoption of these proposals may

still take some time.

There are other alternative solutions for providing multicast service over the Internet. In [29], El-

Sayed et al. provide an excellent survey of what they called Alternative Group Communication Service

(AGCS) proposals. AGCS proposals can be classified into the following groups:

• Proposals that are based on a unicast/multicast reflector. In this category, end hosts with unicast-

only service contacts a reflector. The reflector serves as a gateway between a multicast-capable

network and a set of unicast hosts. An example proposal is mTunnel [71]. The main advantage of

such proposals is simplicity. However, as a reflector potentially serves a large number of hosts, it

creates traffic hot spots near the reflector, and may not be scalable.

• Proposals that are based on a specific group communication routing service. These proposals

typically require changes to the underlying routing infrastructure. One example is XCast [14]

which is designed for applications with a very small member set. XCast includes an explicit list of

multicast destinations in each packet. The packets are delivered using the existing unicast routing

service. By carrying the whole destination list, the routers are relieved from keeping multicast state

information. However, it requires support from the routersso as to examine the packet header, and

to create and forward copies as necessary to the destinations.

• Proposals that create an automatic overlay topology. This group refers to proposals that create

self-organising multicast overlay directly at the end systems, i.e. the focus of this thesis. It will be

discussed in a greater detail in the following text.

The well-known end-to-end arguments [83] suggest that, a functionality should be (i) pushed to

higher layers if possible; (ii) unless implementing it at the lower layer can achieve larger performance

benefit that out-weighs the cost of additional complexity atthe lower layer. Conventionally, multicast is

designed based on the second consideration, where multicast primitives are implemented in the routers
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(network layer). As IP multicast is still not widely available, the research community began to revisit the

first consideration, that is to push the multicast functionality to a higher layer — the application layer.

Thus was born the so-called Application Layer Multicast (ALM).

1.2 Application Layer Multicast

The principle concept behind ALM is to implement multicast primitives directly at the end systems. The

end system could be an end host, a proxy server or an edge router. The end systems are organised into

a logical overlay network, and multicast data using the overlay edges which are unicast connections.

In this way, ALM bypasses the need for network layer multicast support, and hence offering a ready-

to-deploy solution. We may recall that the MBone is also an overlay network. What differentiates the

MBone from ALM is that the MBone is tightly integrated with IPmulticast, and it has a static topology

with occasional manual reconfiguration. ALM can work without native multicast support, and it is often

referred to as a class of self-organised proposals which construct, improve and repair the overlays without

manual intervention.

ALM proposals began to emerge in year 2000, with pioneers such as End System Multicast (ESM) [21],

Scattercast [18] and Yoid [36]. Chu et al.’s ESM introduced Narada, a self-organising protocol that cre-

ates an ALM overlay directly at the end hosts. Narada is designed for small-scale many-to-many mul-

ticast applications. Chu et al. provide the first quantitative comparison of ALM with IP multicast and

naive unicast transmission. Their results prove the case for ALM. Yatin Chawathe’s Scattercast advo-

cates an infrastructure support for ALM, where a set of proxies running ALM protocols are deployed

in the network. The proxies are connected by ALM overlays, and the clients (end hosts) subscribe to

nearby proxies. Scattercast uses Gossamer, which has a number of similarities with Narada, to construct

the ALM overlays. Paul Francis’s Yoid, on the other hand, focuses on the architectural aspect of ALM. In

particular, Yoid’s architecture consists of three protocols: Yoid Distribution Protocol (YDP), Yoid Iden-

tification Protocol (YIDP) and Yoid Tree Management Protocol (YTMP). These protocols work together

to provide generic content distribution.

Following these works, more and more ALM proposals emerge each year. For examples, ALMI [72],

HMTP [109], NICE [7], TBCP [62], switch-trees [43], Scribe [15], Zigzag [95], etc. The performance of

ALM is highly related to the structure of the overlay used. Unsurprisingly, the majority of the proposals

concentrate on strategies for building efficient ALM overlays. The aim of this thesis can be summarised

as: to understand the strengths and weaknesses of existing proposals; hence to offer improvements and

new proposals to better construct ALM overlays.
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(b) IP Multicast Tree

(d) ALM Tree (2) (e) ALM Tree (3)

R4

R3

R3

R4

R2

R2

R3

R4 R2

R1

R2

R1

R2

R1

R1 R3

R4

R1 R3

R4

S

A

C

BA B

CS

S C

BA

S

A B

C

S

A B

C
Max. link stress = 3 Max. link stress = 2 Max. link stress = 1

(a) Sample Topology

(c) ALM Tree (1)

Figure 1.1: Contrasting ALM, IP multicast and naive unicasttransmission

1.2.1 Comparing ALM, IP Multicast and Naive Unicast Transmission

In this section, we compare ALM, IP multicast and naive unicast transmission with the help of an exam-

ple, and discuss the advantages and challenges of ALM.

To contrast ALM with network layer multicast, consider the sample topology in Figure 1.1 (a) where

R1 to R4 are routers whileS, A, B andC are end systems. Assume thatS wishes to send data to all

other nodes. Figure 1.1 (b) depicts the network layer multicast tree built by protocols such as DVMRP.

We can see that the data is delivered to the receivers via the (reverse) shortest path tree rooted atS.

RouterR1 receives a single copy of the packet and forwards the replicated copies along the interfaces to

R2, R3 andR4. From the figure, we can see that at most one copy of a packet is sent over any physical

link. Also, the perceived delay at each recipient is as though the data were sent directly by unicast.

In ALM, data packets are replicated at end systems, and are delivered from one end system to another

end system using a unicast connections. Collectively, these unicast connections interconnect the end

systems into an overlay network. The resultant overlay can be in the form of a tree or a mesh which

serves two purposes: as a control topology and as a topology for data distribution. Normally, the control

topology is a mesh which provides redundant paths between the members. On the other hand, the data

topology is usually a tree to ensure loop-free routing. Figure 1.1 (c), (d) and (e) shows three examples

of ALM multicast trees on the sample topology. A naive implementation of ALM could degenerate to

the unicast transmission as shown in Figure 1.1 (c). For thiscase, the physical link fromS to R1 carries

3 copies of a transmission byS. This packet redundancy at a physical link is called link stress, which is

defined as the number of identical copies of a packet carried by a physicallink [21]. In other words, the

naive unicast transmission could lead to link stress that isas high as the number of recipients on the link

nearest to the source. Moreover, the data source needs to transmit as many copies of a packet as there

are recipients. This could potentially overload the source.
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We could build trees that have lower worst case physical linkstress. For example, the trees in Fig-

ure 1.1 (d) and (e) have worst-case stress of 2 and 1 respectively (note that we consider a physical link

between two nodes, e.g.A andR2, is consisting of two unidirectional links,〈A, R2〉 and 〈R2, A〉).

However, while these two trees improve link stress as compared to naive unicast transmission, they in-

crease source-to-receiver delay. For instance, the tree inFigure 1.1 (e) shows that to get toC, a packet

needs to be relayed fromS to A, then fromA to B, and finally fromB to C.

The above examples illustrate two salient features in ALM: potential high link stress and longer end-

to-end delay compared to the network layer multicast. Consequently, the quality of an ALM solution is

often measured relative to the network layer solution. Also, the cost or network resources used by the

overlay tree can be calculated as the sum of the delays of alloverlay linksin the tree [109]. Ideally, an

overlay should have low delay, stress and tree cost.

1.2.2 ALM Advantages

Despite the potentially poorer data delivery quality, ALM has a number of advantages over network

layer multicast. First of all, ALM provides a ready solutionfor deploying multicast services over the

Internet. Unlike IP multicast, it allows application specific naming, and thus does not require a globally

consistent naming scheme. By using a suitable overlay, ALM could avoid the high link stress and source

overloading issues cause by naive unicast transmission. While ALM has emerged only in recent years,

there have been a number of successful real-life applications. For example, the End System Multicast

project [75] uses ALM for live events broadcasting and the Jungle Monkey project [76] focuses on

distributed files sharing.

Until recently, the network layer multicast is only sparsely available in the form of islands of multi-

cast network. ALM offers an opportunity to interconnect such multicast islands into a global multicast

network. In fact, several projects such as Universal Multicast [110] and Broadcast Federation [19] are

working towards this goal. Even in an IP multicast capable network, ALM can also be useful to offer

service for groups with members that are sparsely available, or groups with a very small number of mem-

bers. Maintaining many such groups with IP multicast could prove to be costly in terms of router state

and the additional processing required.

By using unicast connections, ALM is transparent to the network layer. This helps to maintain the

stateless nature of the underlying network. And, as ALM is based on unicast, it may be possible to

leverage some well studied unicast solutions to achieve simple error, flow and congestion control in

multicasting.

ALM overlays can also have a flexible structure. This allows novel structures to be used to simplify

the maintenance of the overlay. For example, the Delaunay triangulation protocol [58] creates overlay

formed by many Delaunay triangulations; NICE [7] builds overlays with multiple levels clusters. These

overlays can be maintained with low overhead. In addition, application-specific optimisation objectives

9



CHAPTER 1. INTRODUCTION

can be easily integrated with the overlay structure.

1.2.3 Challenges in Building Efficient ALM Overlays

We have seen that ALM offers several advantages over networklayer multicast. Most importantly, it

allows rapid deployment of multicast services over the Internet. However, there are several additional

challenges faced by an application layer approach. Here we discuss issues related to building efficient

distribution overlay structures.

• Quality of data delivery. In ALM, data is delivered using unicast from one end system to another

end system. As discussed previously, this results in redundant data traffic and prolonged end-to-

end delay.

• Capacity constraint and heterogeneity. ALM requires the end systems actively to take part in

data distribution. Recently, Saroiu et al. [84] conducted ameasurement study on the end systems

participating in two popular peer-to-peer file sharing systems: Napster and Gnutella [40]. Their

results show that the end systems are highly heterogeneous in terms of bandwidth capability. In

particular, the end systems access the Internet with a variety of access technologies, e.g. dial-up,

Cable, DSL, T1 or T3. Overall, the available bandwidth for a large number of end systems (about

70%) is less than 3 Mbps. As each data connection consumes some bandwidth (depending on the

application, see Table 1.1), an end system could only support a certain number of other systems. In

other words, the branching degree (or fan-out) of an overlaydelivery structure has to be restricted.

It is important that the overlay must honour the degree limitation for each individual node.

• Robustness. End systems are usually more susceptible to problems like system failure than the

network routers. In addition, the end systems may join or leave the group at will. As the overlay

is directly formed from these systems, the overlay structure is necessarily changing over time. An

ALM solution should quickly adapt to these changes in a robust manner.

• Limited topology knowledge. Unlike network routers, end systems have little or no knowledge

about the underlying network topology. Such knowledge however is the key to building efficient

overlays. In order to obtain information about the interesting network metrics (e.g. delay, band-

width) between the nodes, end-to-end measurement techniques are often used. However, each

measurement process may consume substantial network bandwidth, and will affect the scalability

of the solution (see below).

• Scalability. In order to be useful for large-scale applications, an ALM solution needs to be scalable.

The scalability is closely related to how an overlay is constructed and how it is maintained. In

particular, the overlay construction and maintenance should not require global coordination among

the members, and should work with limited knowledge of the network.

10
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1.3 Thesis Contributions

This thesis focuses on practical distributed solutions forgenerating ALM trees that have low delay and

low cost. A solution is practical in the sense that it addresses the previously mentioned challenges. More

precisely, it needs to create and maintain a degree-boundedoverlay subject to the bandwidth constraints

at each individual node; it should work with minimum coordination between the members and limited

knowledge of the underlying network topology; also, it needs to be responsive to the changes in the

overlay membership. The focus of this thesis is the efficiency of the overlay structures used for data

delivery. Upper-level services such as the reliability of data traffic, security or congestion control are

beyond the scope of our work.

The contributions of this thesis can be summarised as follows.

• A detailed comparative study of some existing ALM overlay construction proposals using simu-

lation. The proposals considered optimise either tree costor delay, and they encompass a wide

variety of overlay creation strategies. The comparison includes the performance in both one-to-

many and many-to-many data delivery models. Unlike other work in similar areas, we perform

an in-depth analysis of the overlay construction process ofthe various proposals. By analysing

the strengths and weaknesses of these protocols, we identify enhancements to some existing pro-

posals (e.g. switch-trees [43] and TBCP [62]), as well as directions for our own proposals. As a

by-product, we developed a simple yet flexible and extensible simulator (calledALMSim) for our

evaluation.

• A simple centralised heuristic for the minimum delay degree-bounded overlay mesh creation prob-

lem, which is NP-complete. Source-specific trees can be obtained from the mesh with a shortest

path algorithm, e.g. Dijkstra’s algorithm [23]. We refer tothe algorithm as GreedyMesh, and use

it as a benchmark in our evaluation of many-to-many ALM proposals. GreedyMesh may also be

useful for creating overlays for small-scale delay-sensitive applications. We are not aware of any

other algorithms that attempt to generate low diameter degree-bounded meshes.

• A distributed mesh-based framework which provides basic procedures for creating and maintain-

ing a degree-bounded overlay tree. Its mesh-based approachoffers fast and robust failure recovery.

The framework is generic and can be used to improve the robustness of some existing ALM pro-

posals.

• A proposal for a distributed algorithm called MeshTree, which creates low delay, degree-bounded

overlay trees. MeshTree is inspired by two issues, namely the greedy problem and delay-cost

trade-off that we observed in existing distributed proposals. Trees created by MeshTree are useful

for real-time single-source applications with large receiver sets. For example, critical event notifi-

cation (e.g. synchronisation and update data), and real-time stock quotes and updates (e.g. Yahoo!
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MarketTracker [106]).

• A proposal for a distributed algorithm that uses multiple shared trees for multi-source multicast-

ing. The proposal challenges the convention of using eithera single shared tree or a set of source-

specific trees. It strikes a balance between these two approaches in terms of delay performance

and message overhead. The proposed solution is suitable forlarge-scale interactive multi-source

applications. For example, distributed simulation, distance learning or multi-party gaming (see

Table 1.1). For these applications, low latency delivery isof paramount importance as old infor-

mation is quickly invalidated by newer information.

1.4 Thesis Structure

The rest of this thesis is organised as follows.

Chapter 2 begins with a broad discussion of ALM and related work. This includes the various system

architectures, the service models considered in ALM overlay construction and a survey of prior ALM

solutions. We also discuss related areas such as ALM in mobile networks, Internet distance measurement

services and peer-to-peer file sharing.

Chapter 3 presents the system model, assumptions and the simulation design, including topologies,

multicast member selection, performance metrics and theALMSim simulator, used throughout the thesis.

In Chapter 4, we introduce the GreedyMesh algorithm. We compare it with a number of centralised

algorithms. Some of these algorithms will be used as benchmarks for our evaluation of distributed

solutions in later chapters.

In Chapter 5, we conduct a detailed performance comparison of a number of distributed ALM overlay

construction proposals discussed in Chapter 2. We choose techniques that cover a wide range of overlay

creation and maintenance strategies. The strengths and weaknesses observed help in the development of

our own proposals.

Chapter 6 introduces the mesh-based framework for creatingand maintaining a degree-boundedover-

lay tree in a distributed manner. The framework is importantas it is the basis of our proposals in later

chapters. To illustrate the working of the framework, we apply it to a degree- and delay-bounded, low

cost tree creation problem.

In Chapter 7, we study the degree-bounded, low delay trees creation problem, which is useful for

applications that require low source-to-receivers delay.By analysing the limitations of some existing

distributed proposals, we propose MeshTree, and compare itagainst proposals that performed well in

our comparison study in Chapter 5.

Chapter 8 investigates the multiple shared trees approach for many-to-many multicasting. This is

motivated by the observation that the single shared tree approach is scalable but yields trees with poor
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end-to-end delay, while the source-specific trees approachhas good delay but poor scalability. We com-

pare the proposal with other existing work, and also examineits quality and overhead trade-off.

Finally, Chapter 9 concludes this thesis with a summary of the thesis contributions and suggestions

for future work.
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Chapter 2

Background

In the previous chapter, we introduced the concept of Application Layer Multicast (ALM). This chapter

serves to provide further details on ALM, as well as to discuss some related research areas.

This chapter consists of three parts. In the first part (Section 2.1 – 2.3), we discuss several design

issues in creating ALM overlays, which range through systemarchitectures, optimisation objectives and

service models. In the second part (Section 2.4 – 2.6), we review several representative ALM proposals,

focusing on various aspects of building efficient ALM overlays. The third part (Section 2.7) describes

other related research areas: ALM in mobile networks, Internet distance measurement and peer-to-peer

networking. Section 2.8 concludes this chapter.

2.1 ALM System Architectures

The study of ALM has often centred around two basic system architectures: (i) end systems only; and

(ii) a hybrid of end systems and network layer multicast.

As described in Chapter 1, an end system can be an end user’s machine or a more powerful proxy

server. Hence, we can further classify this architecture based on the type of end system that actively

takes part in the overlay construction. This results in a pure end host-based architecture and a proxy-

based architecture.

In the end host-based architecture, an ALM protocol can be directly implemented at the end users’

machines. Examples of proposals based on this approach are Narada [21], HostCast [57] and Banana

Tree Protocol [42]. The main advantage of this approach is that no specific infrastructure machines

need to be installed in the networks, and it therefore provides instant deployment at low monetary cost.

However, there is a trade-off between the deployment cost and the data delivery quality. Poor delivery

quality may be expected as the users’ machines normally havelow access bandwidth (e.g. dial-up users).

These systems are also more prone to failure problems which affect the reliability of the overlay.
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In the proxy-based architecture, an organisation that provides value-added services deploys proxies at

strategic locations on the Internet. End hosts then attach themselves to these proxies to send and receive

data. As specialised machines are used, this solution can provide better services, but at a higher cost.

Scattercast [18], OMNI [9] and AMCast [86] are examples of such systems.

While the above proposals enable global deployment of multicast applications, they do not attempt to

exploit the existing multicast infrastructure. Consequently, several proposals [19, 110] consider a hybrid

architecture where end systems are used to interconnect islands of multicast networks. In this case, the

end systems can be either an end host or a dedicated proxy. In [19], Chawathe and Seshadri propose

Broadcast Federation, which uses specialised nodes calledbroadcast gateways (BG) to interconnect dif-

ferent broadcast networks (BN). Each of the BNs implements its own independent multicast protocol,

such as the DVMRP [25], Core Based Tree (CBT) [5], Protocol Independent Multicast (PIM) [31],

Express Multicast [45], Simple Multicast [73] or even an overlay multicast solution. The Universal Mul-

ticast proposed by Zhang et al. serves as a general frameworkthat can work with various ALM protocols

to build dynamic unicast tunnels to connect IP multicast islands. The key concept is to elect one or more

designated members (DMs) from the multicast members in eachIP multicast island. The DMs act as

representative which interconnect the islands using an ALMprotocol, e.g. HMTP or Narada.

2.2 Optimisation Objectives

The optimisation objectives of a solution are closely related to the upper-level applications. Following

are some commonly considered objectives.

2.2.1 Bandwidth

Bandwidth-intensive applications such as video distribution require high-bandwidth delivery paths. In

a study on quality of service unicast routing [101], Wang andCrowcroft define bandwidth as a concave

metric, which means that the bandwidth of a path is determined by the bottleneck link (i.e. the link with

the smallest bandwidth) in the path. This suggests that to achieve a high-bandwidth delivery tree, the

bottleneck links need to be placed as close as possible to theleaves. In [22], Cohen and Kaempfer show

that the problem of finding an overlay tree with the maximum bottleneck bandwidth is NP-complete.

Jannotti et al. propose a distributed protocol called Overcast [48] that attempts to attain bandwidth-

optimised trees.

Degree Constraints One difficulty in bandwidth optimisation is that end-to-endbandwidth measure-

ment is an expensive operation. Normally, it requires some amount of data to be transferred from one

node to another node for an extended period. A recent Internet traffic measurement study [13] suggests

that congestion normally happens at the access network, rather than the backbone network. Hence, most
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existing techniques relate the bandwidth limitation of a node to the node’s access bandwidth capability.

In particular, given the source rate and the access bandwidth, a node can place a limit on the number

of out-going flows in the delivery structure (see Chapter 3 for details). More precisely, the multicast

tree needs to be degree-bounded based on each individual node’s capacity constraint. All the proposals

in this thesis follow this degree constraint requirement. Typically, degree constraint is considered with

other objectives, such as tree cost and/or delay (Section 2.2.2 and 2.2.3).

Multiple Trees versus Single Tree Typically, data is delivered over a single multicast tree. Due to

this, the forwarding load is only carried by the interior nodes in the tree, while the leaf nodes contribute

no resources. Recently, several projects [16, 70] have begun to exploit the spare resources available at

these non-contributing nodes. The main concept is to deliver the contents that are encoded into multiple

sub-streams using techniques such as multiple descriptioncoding (MDC), and these sub-streams are then

delivered over multiple trees formed by the members. In thismanner, each node may become the interior

node in one tree and become the leaf node in the other trees, hence the forwarding load is shared more

evenly. More importantly, as the previously unused resources can now be used, the overall throughput is

often higher than the single tree delivery mechanism.

This thesis considers the single tree delivery mechanism. While the multiple trees approach provides

better throughput, it may not be applicable to all applications. For example, applications that require

timely data delivery. With multiple trees, each receiver may need to wait for the arrival of data from all

trees. This will delay the processing of the data. In addition, for applications with a low data rate, it is

possible that the overhead of maintaining multiple trees isnot worthwhile.

It is important to note that the multiple trees discussed here should not be confused with the multiple

shared trees concept to be presented in Chapter 8. Here, the multiple trees concept is referring to the

transmission of data from a data source to the receivers, using several trees simultaneously. While the

multiple shared trees approach also creates more than one tree, a data source only selects one of these

trees for data delivery.

2.2.2 Tree Cost or Network Resource Usage

In network layer multicast, tree cost is determined by the summation of individual link costs. The cost

of a physical link could be an administratively configured value or the bandwidth cost, which is known

by the multicast routers. In application layer routing, an overlay link is a unicast tunnel between two

nodes, which spans across multiple physical links. For simplicity, the cost of an overlay link is often

quantified as the summation of the delays of physical links ittraversed, i.e. the end-to-end delay of the

overlay link. This is because it is easier to estimate the distance between two end systems, rather than to

accumulate cost between them. Throughout this thesis, we treat the delay of an overlay link as its cost.

Corresponding to this, the overlay tree cost can be given as the summation of the delays of all overlay
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links in the tree:

overlay tree cost =
∑

∀e∈ET

d(e) (2.1)

whereET is the set of overlay tree links andd(e) is the link’s delay. Usually, the round-trip delay

between the nodes is used.

The overlay tree cost also provides a simplified view of the network resource used by the overlay

tree. The network resource usage is defined in [21] by Chu et al. as the sum of the product of all physical

links’ stress and the links’ delays. We recall that an overlay link is composed of a series of physical links.

Equation 2.1 adds up the delays of all overlay links. This effectively sums up the delays of the physical

links for as many times as they are used in the overlay tree, i.e. the network resource used by the overlay

tree. A low cost tree is suitable for delay insensitive applications such as bulk file transfer. The Host

Multicast Tree Protocol (HMTP) [109] is designed for this type of applications.

The optimum solution for this problem is the minimum cost spanning tree, which can be calculated

using the Prim’s or Kruskal’s algorithm [23]. However, if the delivery tree needs to be degree-bounded,

the problem (i.e. degree-bounded minimum cost tree) is NP-hard [50].

2.2.3 Delay

Delay is important for applications that require timely delivery of their data. For example, streaming me-

dia, interactive multi-party network gaming, video conferencing and distance learning. We are interested

in providing low end-to-end data delivery from the source(s) to all the recipients.

Obviously, a source-rooted shortest path tree offers the best delay performance. In an overlay, this

degenerates to the naive unicast transmission where the source node is the central hub of a star topology.

This, however, is impractical as it not only burdens the source, it also stresses the physical links close

to the source. Unfortunately, problems associated with creating low delay degree-bounded trees are

normally NP-hard.

Before we discuss some of the degree-bounded tree creation problems, we first define several ways

of measuring the delay performance for an overlay structure(either a connected mesh or spanning tree).

• Diameter. The diameter for a connected overlay is the longest of all shortest path distances (via

the overlay) between any pair of overlay members. If the overlay is in the form of a tree, the term

tree diameterwill be used. Tree diameter is used for shared tree where datacan be originated from

any point on the tree, i.e. in the case of many-to-many data delivery.

• Root-diameter. This is specific for a tree structure, which is the maximum shortest path distance

(via the tree) from the tree root to any tree members. Root-diameter is used when the tree root is

the sole data source, i.e. in the case of one-to-many data delivery.
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• Average delay. This represents the overall average delay performance observed by the members.

It is calculated as the ratio between the total delay observed by the members for each data source

and the total number of source-receiver pairs.

For single-source applications, Li and Mohapatra [57] propose HostCast to create low root-diameter

trees for delay-sensitive streaming media applications; in [54], Kostic et al. design ACDC to achieve trees

which are root-diameter bounded, and have low tree cost; andin [9], Banerjee et al. consider the problem

of minimising the average delay to the recipients in a proxy-based architecture. In terms of multi-source

applications, Shi et al. consider a centralised algorithm for the problem of minimising the tree diameter.

Distributed proposals, such as Narada [21] and Gossamer [18], that create per source trees are designed

to achieve low average delay between the members. All these proposals build degree-bounded trees.

We are particularly interested in the following three NP-complete problems, which will be studied in

detail in Chapters 4, 6 and 7 respectively.

1. Minimum diameter degree-bounded subgraph problem. The objective of this problem is to cre-

ate a connected degree-bounded subgraph (mesh) which has minimum delay between the nodes.

Degree-bounded source-specific trees can be obtained from the mesh for many-to-many data deliv-

ery. In Chapter 4, we devise a greedy heuristic called GreedyMesh for the problem. GreedyMesh

is mainly used as our benchmark for many-to-many ALM proposals.

2. Root-diameter- and degree-bounded, minimum cost tree problem. This problem aims to find a

degree-bounded tree that has the minimum tree cost, and has root-diameter that is within a given

delay target. For this problem, we provide a distributed solution called dbMeshTree in Chapter 6.

3. Minimum root-diameter degree-bounded tree problem. In this problem, the objective is to obtain

a degree-bounded tree that has the minimum root-diameter. It is thus useful for single-source

applications that require timely delivery. In Chapter 7, wepropose MeshTree, a distributed tree

building proposal for this problem.

Triangle Problem An important issue in distributed tree cost and delay minimisation is the triangle

problem [109, 57]. We explain this problem with Figure 2.1. In this figure, the value next to a link

represents the link’s cost. Figures 2.1 (b) – (d) depict three different ways to organise the nodes (A, B

andC) into a tree rooted atA. The triangle problem is depicted by Figure 2.1 (b) which includes the

longest path,A – B – C, in the configuration. Figures 2.1 (c) and (d) illustrate theminimum cost and

the minimum delay (root-diameter) configurations respectively. For tree cost minimisation, it is easy to

see that configuration (b) uses more network resources than configuration (c); for delay minimisation,

configuration (b) also yields a higher root-diameter than configuration (d). Hence, it is crucial that a

distributed solution can detect and overcome the ineffective triangle for its optimisation objective. Com-

paring configurations (c) and (d) suggests an interesting property: there still exists a trade-off between
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Figure 2.1: Triangle problem

the tree cost and the delay measures. Indeed, our simulationresults in later chapters confirm this simple

observation.

2.2.4 Scalability

Scalability is a major concern for any large-scale applications such as multi-party network games, stream-

ing media and distributed simulation. It is highly related to the approach taken to construct the overlay

(e.g. centralised or decentralised), the structure of the overlay (e.g. tree or mesh) and the way that the

overlay is maintained (i.e. the message overhead). Typically, a decentralised solution can scale better

than a centralised one; and a tree having fewer links than a mesh is often viewed as a more scalable

structure. However, the key to scalability is determined bythe volume of state information and number

of messages transmitted between the members. We are interested in solutions that can scale up to a

reasonably large group size, e.g. thousands of members.

2.3 Multicast Service Models

A tree is the natural structure for multicasting. By definition, it is loop-free. Hence, multicasting in a

tree can be done by flooding: when a node receives a message from one of its tree links, it replicates and

sends the messages out via the other tree links that emanatesfrom it. Typically, a tree can be used as a

unidirectional tree or a shared tree based on the service models under consideration: (i)one-to-many; or

(ii) many-to-many.

The one-to-many model is used by single-sender applications such as file distribution or media

streaming from a well-known source. In this model, a source rooted unidirectional tree that connects

all the receivers is used. Examples of ALM solutions that arebased on this model are Overcast [48],

HostCast [57], and Zigzag [95].

The many-to-many model is for multi-sender applications such as video conferencing or multi-party

network games. Three types of delivery tree are normally considered for this model: (i) source-specific

trees; (ii) a bi-directional group shared tree; and (iii) a unidirectional group shared tree.

The source specific trees are a set of unidirectional trees each rooted at one of the data sources.

The data items from each of the sources are mapped onto their respective trees. Examples of ALM
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protocols that use this type of delivery trees are NICE [7], Narada [21] and Gossamer [18]. In contrast,

the bi-directional shared tree model uses only a single treein data delivery. The tree is rooted at a well-

known node that is typically called the core [5]. Protocols that consider this delivery mechanism are

Yoid [36] and HMTP [109]. While the bi-directional shared tree allows all on-tree members to act as

data senders, the unidirectional shared tree allows only the tree root to do so. In this case, the actual

data source forwards the data to the tree root, which in turn forwards it onto the multicast tree. Overlay

solutions that considered this type of tree are Bayeux [112]and Scribe [15]. The main reason to use

such a tree is to impose strict access control [44] which is important for applications such as topic-based

publish-subscribe applications [15].

Recently, Zappala et al. [108] examined the case for multiple shared trees for many-to-many network

layer multicasting. In Chapter 8, we present our strategy which is based on this concept in the context of

ALM.

2.4 General Working of ALM Overlay Construction

This section describes the working of a typical overlay construction technique. We then review some

existing ALM proposals in the next two sections, with an emphasis on techniques to be examined in later

chapters.

In theory, the overlay network can be viewed as a fully connected graph, as each node can reach

every other node in the network via unicast connections. However, for practical reasons, only a small

subset of the overlay links should be included in the ALM overlay. Hence, the basic functionality of

an ALM overlay construction technique is to identify these links and maintain the connectivity of the

overlay. The resultant overlay can be in the form of a tree or amesh which serves two purposes: as a

control topology and as a topology for data distribution. Normally, the control topology is a mesh which

provides redundant paths between the members. On the other hand, the data topology is usually a tree

to ensure loop-free routing. Following this, we use the termoverlayto refer to the structure created and

maintained by an ALM solution, rather than the complete overlay graph. In addition, we will use the term

tree-basedto refer to proposals that maintain only a tree structure (asboth data and control topologies),

while we use the termmesh-basedfor proposals that maintains a mesh structure.

Figure 2.2 illustrates the working of a typical overlay construction technique, which consists of two

phases: (i) the joining phase; and (ii) the maintenance phase. The joining phase refers to the process

where a newcomer is joining an overlay, i.e. growing the overlay. The maintenance phase manages the

connectivity of the overlay. In the figure,a to g are existing members of a multicast session andx is a

newcomer.
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Figure 2.2: General working of an ALM overlay construction proposal

Typically, ALM protocols assume a well-known Rendezvous Point1 (RP) [36] to bootstrap new mem-

bers onto an existing session. The RP acts as a query server toprovide existing members’ information

to newcomers. Optionally, the RP also participates in functions like access control and overlay partition

healing. The identity of the RP can be obtained via an out-of-band mechanism, such as web publishing

or email.

The overlay can be built in a centralised or a decentralised manner. In the centralised approach, the

overlay creation and management are performed by a central controller. Newcomers can learn about the

identity of the controller from the RP. The controller uses full knowledge of all members, and potentially

the performance metrics (e.g. delay and bandwidth) betweenthe members, to compute a high quality

overlay. The computed overlay structure is then distributed to the members in the form of the neigh-

bouring relationships (i.e. links) between the nodes. On receiving such information, the members will

initiate connections to their assigned neighbours. Once attached to the overlay, the members enter the

maintenance phase. In particular, they monitor the connections with their respective neighbours. Any

changes to the neighbours’ status (e.g. leave/fail) will bereported to the controller for it to reconfigure

the overlay.

On the other hand, in the decentralised approach, the overlay creation and management are done by

the members in a distributed fashion. Consider Figure 2.2: newcomerx first requests a list of members

from the RP. From the given list,x then selects one or more members as joining targets and sendsto

each of them a joining request message. When a node, saya, receives a request message, it performs an

admission control decision for the requesting node. The main decision criterion is whether it has spare

capacity for a new link. Other application-specific criteria (e.g. optimisation objectives) may also be

used. Once joined on the overlay,x enters the maintenance phase and begins to monitor the status of

its neighbours. Any changes to the neighbours’ status is normally handled byx itself (i.e. the affected

member).

The next section discusses a number of centralised proposals, and Section 2.6 explores some decen-

tralised proposals. Figure 2.3 provides a simple classification of the proposals to be discussed.

1Note that the similarity between the RP for ALM and the RP for PIM-SM [31] is only in their names.
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Figure 2.3: Classification of ALM proposals

2.5 Centralised ALM Approaches

ALMI, Host-based Multicast (HBM) and CoopNet are three distinctive examples of centralised ALM

protocols.

ALMI [72] ALMI is designed by Pendarakis et al. as a middleware to support many-to-many multicast

applications of relatively small size (several tens of members). In ALMI, a central controller arranges the

members into a monitoring graph. Each member is responsiblefor monitoring the performance metrics

(i.e. round trip delay) of the links between the member and its neighbours in the graph. Periodically,

the collected information is reported to the controller, which will compute the multicast distribution tree

from the updated monitoring graph. In [72], ALMI is used to create minimum cost spanning trees.

HBM [80] In HBM, the set of overlay nodes is divided into two groups:core members(CMs) and

non-core members(non-CMs). CMs form the core distribution topology while non-CMs graft to the

core topology as leaves. The notions of CM and non-CM are based on the estimated stability of the

nodes. Stable nodes are categorised as CM while less stable nodes are non-CM. Unlike ALMI, HBM

uses a complete graph as its monitoring graph. In other words, each node needs to monitor the links

between itself and the rest of the nodes. HBM considers several overlay structures, which include tree,

bus, star and hybrids of these basic structures. It also includes a redundant links addition algorithm to

improves the robustness of the delivery structure.

CoopNet [70] CoopNet provides a resilient technique to deliver streaming contents from a single

source. It makes use of multiple description coding (MDC) and multiple distribution trees to achieve

robust data delivery. MDC is a method of encoding audio and/or video signal intoM > 1 separate
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streams, or descriptions, such that any subset of these descriptions can be received and decoded into a

signal with distortion (with respect to the original signal) depending on the number of descriptions re-

ceived: the more descriptions received, the better the quality of the reconstructed signal. In CoopNet,

each sub-stream is delivered using a different distribution tree (formed by the same set of members). This

delivery mechanism provides robustness as the probabilityof all streams concurrently to fail to arrive is

very low whenM is sufficiently large.

In addition to protocol design efforts, several works have also investigated efficient overlay construc-

tion algorithms. In [87], Shi et al. consider the problem of creating degree-bounded minimum diameter

overlay trees, which is NP-hard. They propose a greedy heuristic called the Compact Tree (CPT) al-

gorithm. The CPT algorithm uses an incremental approach like Prim’s algorithm to grow the tree. In

particular, starting with the root node, CPT adds new nodes to the partial tree one at a time until all nodes

are added. A node is selected for addition if it provides the smallest increment in the objective function

(i.e. the tree diameter) to the partial tree without causingdegree violation in the tree. In [60], Malouch

et al. consider the delay-bounded version of the problem in amixed system with both end hosts and

proxies. They propose a heuristic which is similar in natureto CPT.

2.6 Decentralised ALM Approaches

While the centralised approach simplifies overlay construction and management, it may not scale well.

In particular, the central controller needs to keep track ofthe information about all members, which is

highly dynamic. In addition, it creates a single point of failure problem. Hence, a greater number of

works investigate decentralised solutions.

In the decentralised approach, members actively participate in the creation and maintenance of the

overlay. Typically, the existing decentralised proposalsare classified into two groups: mesh-first and

tree-first. The following two subsections review some of theproposals from these two groups. Unless

specifically mentioned, the proposals to be discussed allowthe overlay nodes to specify their own degree

constraints so as to create degree-bounded overlays.

2.6.1 Tree-first Protocols

Tree-first protocols arrange the members directly into a tree structure. Examples of tree-first protocols are

Yoid [36], HMTP [109], switch-trees [43], Banana Tree Protocol (BTP) [42], TBCP [62], Overcast [48],

NICE [7], Zigzag [96], HostCast [57], ACDC [54], AOM [104], TMesh [100], SHDC [63] and Banerjee

et al.’s scheme [9].

The next subsection (2.6.1.1) first provides a general discussion of issues related to the construction
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and optimisation of overlay trees. Subsections 2.6.1.2 and2.6.1.3 then discuss in more detail the above-

mentioned proposals.

2.6.1.1 Overlay Tree Construction and Optimisation

A tree is defined by a set of parent-child relationships between the nodes. All on-tree nodes (except the

root) must have a parent node. The root node is normally the first member who initiates the multicast

session, or the data source in single-source applications.

In a typical distributed tree building protocol, it is the responsibility of a node to locate its parent.

Two techniques are normally used by a newcomer to locate an initial parent: (i) random selection; and

(ii) select the tree root. If the initial join request to a potential parent fails, the newcomer has to retry

with another candidate. In addition, an on-tree node may also wish to discover other nodes for overlay

maintenance and improvement. We note that the initial member list obtained from the RP may contain

only a partial view of existing members, and it may be out-of-date due to changes in the membership.

We list several ways to discover additional on-tree nodes below.

• Root path. A root path for a nodex is a list of nodes in the route via the overlay fromx to the root.

A root path can be formed in the following manner. At the tree root, the root path contains only

the root node. This information is sent to each of the root’s children which will append their own

node identifier to the list they receive. These nodes in turn send their root path to their children.

As this process continues down to the leaf nodes, all nodes will know their paths to the root. The

root path is useful for loop detection. Specifically, when a node receives a root path that contains

its own node identifier, it knows that there is a cycle in the tree and thus invokes a loop resolution

solution. Most tree-based protocols maintain a root path.

• Distributed depth-first searching (DFS). In this technique, a node searches down the tree by ex-

ploring one branch of the tree at a time as in the conventionaldepth-first traversal. The question

of which branch will be chosen depends on the search criterion used.

• Local region scoping. In this technique, an on-tree node is constrained to know only the nodes that

are within a predefined scope. The scope is normally small to reduce the communication overhead.

For example, a local region for a node may consist of its parent, siblings and grandparent.

• Tree random walk[36]. This technique is used to find a random non-descendant node in a tree. In

this technique, a node, sayx, first transmits a discovery message to its parent. The parent will then

randomly forward the message to one of its tree neighbours (other thanx), which will continue to

propagate the message in the similar way. As a tree is free of loops, the message will never reach

a descendant ofx. Useful information (e.g. an address) can be added to the message during its

propagation. The message has a time-to-live field that determines its search scope. The last node

that receives the message will reply to the originator.

24



CHAPTER 2. BACKGROUND

• RanSub[53, 54]. RanSub utilises the structure of a tree to collect and disseminate information

about the tree members. It consists of two phases: (i)collect; and (ii) distribute. In the collect

phase, information (e.g. addresses, nodes state) is propagated from the leaf nodes to the root along

the tree. At each node, the information is mixed, shuffled, and limited to a certain size before

being sent to the parent node. Once the root has collected allthe information from its children,

it redistributes them down the tree in the distribute phase.Due to the reshuffling, RanSub makes

sure that, over time, the information will be uniformly distributed to all nodes.

• Gossipping. While the above techniques are closely related to the tree structure, the gossip-style

discovery mechanism is applicable to a general topology. Inthis technique, each node keeps

a list of known members. Each member is associated with an integer as itsheartbeat counter.

Periodically, a node, sayx, increments its own heartbeat counter and randomly picks another node,

y, from the list, and sends toy its member list. Nodey will merge the received list with its own

list, and adopt the maximum heartbeat counter for each member. To avoid propagation of false

information (i.e. “dead” members), a node periodically purges nodes whose heartbeat counters

have not increased after an extended time from the member list. The gossip-based technique is

applicable in several problem areas, e.g. ALM [18], failuredetection system [97] and resource

discovery [41].

We note that some of these techniques may be used together. For example, HMTP [109] uses a node

selected from the root path to begin a DFS for a potential parent.

Basically, the overlay is periodically reconfigured to improve and adapt to the changing environment.

In particular, a member observes the performance of the links with its existing and potential neighbours.

It then consults a set of optimisation rules to decide whether to add a new link and/or remove an existing

link. For a tree, it is important to make sure that adding a newlink does not create a loop, or that deleting

a link does not partition the tree.

For our comparison study in Chapter 5, we classify the overlay reconfiguration techniques into the

following two groups:

• Distributed transformation. In this technique, nodes perform independent transformation deci-

sions to reconfigure the tree. There are two basic transformation operations: (i) switching and

(ii) swapping. Switching refers to the process that a node switches from its existing parent to a

new parent (see Figure 2.4 (a)), while swapping refers to theprocess where two nodes exchange

their parent nodes simultaneously (see Figure 2.4 (b)). These operations can be combined to ob-

tain more complex transformations such as the promotion operation in Figure 2.4 (c). We note

that during the above operations, the subtree of a switchingnode is not changed, as shown in the

figures.

• Localised central arrangement. This refers to the case where a representative node is responsible
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Figure 2.4: Type of transformations in an overlay tree

for the overlay configuration for nodes within a local region. In other words, it acts like a scaled-

down version of the centralised approach.

To simplify the following review of tree-first protocols, wegroup the protocols based on the optimi-

sation techniques used, i.e. distributed transformation and localised central arrangement.

2.6.1.2 Distributed Transformation Protocols

Examples of tree-first distributed transformation protocols are Yoid, HMTP, Overcast, switch-trees, BTP,

HostCast, ACDC, AOM, TMesh, SHDC and Banerjee et al.’s scheme. In the following discussion, we

underline the proposals (or their variants) that are considered in the performance study in later chapters

(i.e. Chapters 5, 6, 7 and 8).

Yoid [36] Yoid is one of the earliest ALM protocols. It focuses on the architectural aspect of general

content distribution using a shared tree. Yoid maintains a tree which is augmented with random mesh

links to improve robustness. While it uses the switch-parent operation to reconfigure the delivery tree,

it does so to avoid some routing pathologies such as excessive delay and packet losses, rather than to

optimise the tree.

Switch-trees[43] and BTP [42] Switch-trees defines a set of scope limited switch-parent algorithms

for generic overlay tree optimisation. In the protocol, a newcomer is first attached to the tree root and

then periodically tries to switch to a better position. Figure 2.5 illustrates the four switch-parent algo-

rithms proposed — each with a different local scope definition (for simplicity, a binary tree is used for

illustration purpose). In the figure, the grey node is the node wishing to perform a switch while the black

nodes are the set of potential parents. A switching decisionis based on the optimisation goal: for tree cost

optimisation, a node will try to switch to a node that is closer than its existing parent; for root-diameter

optimisation, a node will attempt to switch to a parent that provides a lower root delay (i.e. overlay delay

from the node to the root). BTP is a specific example of the treecost-optimised switch-1hop protocol.

HMTP [109] HMTP is also a switch parent-based protocol. It is specifically designed to build a low

cost shared tree for many-to-many applications. Unlike switch-trees, HMTP tries to achieve a good
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Figure 2.5: Switch-trees algorithms

solution quickly by placing newcomers at their (hopefully)optimal position at joining time. It employs

a recursive greedy DFS to find the nearest potential parent onthe tree. In the technique, a newcomer

measures the distances from itself to the potential parent (initially this is the tree root) and to the potential

parent’s children. The search ends when the potential parent is the closest node to the newcomer, which

will try to attach to the potential parent. Otherwise, the newcomer will continue the search with the

closest node as its new potential parent. The newcomer also keeps in memory the most recently visited

nodes so as to retrace to another branch when a join request has failed. An on-tree node periodically

performs a re-join operation from a randomly selected node from its root path to find a better (i.e. closer)

parent.

The basic joining procedures described above can be trappedinto the triangle problem (see Sec-

tion 2.2). Referring to Figure 2.1 (b), assume that nodeC is the newcomer and it has foundB as the

closest node during the searching process. Based on the above description,C will attach toB, which

results in a triangle between the nodes. HMTP solves this by lettingC knows the distance betweenB

andB’s parent,A. If C finds that the distance between it andA is smaller that the distance between

B andA, it will try to attach toA instead. Of course, this is constrained by the number of children

acceptable atA.

HostCast[57] HostCast is designed for one-to-many delay-sensitive applications such as media stream-

ing. Hence, it tries to minimise the root-diameter. Similarto HMTP, it uses DFS to attach newcomers to

the trees. However, it does not attempt to place newcomers intheir potentially optimal position. Rather, a

newcomer is attached to the tree as soon as it finds an unsaturated node. Once a node has found its parent

(called a primary parent) in the tree, it establishes a set ofpeering relationships with its grandparent and

parent’s siblings to form a control mesh. These links are called secondary links and the corresponding

peers are called secondary parents. The node monitors the quality of the primary and secondary links

and periodically tries to switch to a secondary parent if it provides a better root delay. In addition, a node

can execute a promotion transformation (see Figure 2.4 (c))to alleviate the triangle problem. Figure 2.6

shows an example of HostCast delivery, and the corresponding control mesh.

AOM [104] AOM can be viewed as an extension to HMTP to improve its delay performance. In

particular, AOM provides a set of switching conditions thatcombine effort to reduce the tree cost and
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root-diameter. Assume that a node,C, tries to switch from its parent,A, to nodeB. C will switch to B

under the following conditions.

d(C, B) ≤ α× d(C, A) (2.2)

D(B, root) ≤ D(C, A, root) (2.3)

D(C, B, root) ≤ (1 + p)×D(C, A, root) (2.4)

In the above conditions,root represents the tree root,d(x, y) represents the unicast distance between

x andy, D(x, root) representsx’s current root delay andD(x, y, root) representsx’s root delay viay,

andα andp are two configurable parameters, where0 < α < 1 andp > 0. The conditions essentially

say that a better parent forC is the one that is closer toC, closer to the root thanC, and through which

C ’s new delay from the root is not penalised too much.

Consider the example in Figure 2.7 (a), wherer is the tree root andC is deciding whether to switch

from A to B. The value beside a link depicts its delay. With HMTP,C will switch to the closer node,B,

and gives the tree as in Figure 2.7 (b). The resultant tree cost and delay are both 190 unit. With AOM,

assume thatα = 0.9, thus Equation 2.2 and 2.3 are both satisfied byC. However,C can switch toB only

if it is willing to accept poorer delay tor, i.e. from 110 unit to 190 unit. This will require2 p > 0.727.

The recommended value ofp is 0.2 [104]. Hence, we will obtain the tree as in Figure 2.7 (c) which has a

lower delay of 110 unit, but a larger tree cost of 200 unit, than the HMTP’s tree. It is interesting to note

that if the starting configuration is as Figure 2.7 (b),C will not be able to switch toA (to achieve the

2D(C, B, root) ≤ (1 + p) × D(C, A, root) ⇒ 190 ≤ (1 + p)110 ⇒ p ≥ 8/11 ≈ 0.727.
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lower delay tree, Figure 2.7 (c)), as Equation 2.2 will not besatisfied.

AOM uses a local region that is similar to HostCast. Its delayproperties have been shown to out-

perform those of HMTP [104].

TMesh [100] TMesh is an overlay optimisation technique designed for many-to-many applications

with a small set of active senders. TMesh begins with a sharedtree (created by a tree-first protocol,

such as HMTP); shortcut links are then added to the tree to form a mesh structure. The shortcut addition

is initiated by the receivers so as to improve the average delay observed from the active senders in the

session. TMesh runs a path-vector routing protocol to obtain trees rooted at each data source. TMesh will

be discussed in a greater detail in Chapter 8, when we presentour multiple shared trees many-to-many

ALM proposal.

Scalable Hierarchical Distributed Clustering (SHDC) [63] SHDC creates an overlay tree by organ-

ising the members into multiple levels clusters: all members belong to a top-level cluster that is rooted

at a well-known node; members are recursively grouped into smaller sub-clusters, until all clusters ob-

tained are singleton-clusters containing only one member.Within each cluster, a leader is elected from

the members of the cluster. A tree can be obtained by mapping the relationship of leader and members

of a cluster to the relationship of parent and children of a tree. In SHDC, newcomers join in the overlay

by recursively crossing the hierarchy to find the appropriate cluster. Periodically, a member rejoins the

overlay to locate a better cluster. The grouping of members into a cluster is based on the notion of zone,

which is defined according to the circular distance around a cluster head. SHDC does not restrict the size

of the clusters. As a result, the tree built is not degree bounded. The dynamic behaviours of the protocol,

e.g. changes of group membership and cluster leadership, were not discussed in [63].

Banerjee et al.’s Scheme[9] This scheme constructs low average latency trees for one-to-many real-

time applications under a proxy-based system. In their system, every multicast member (end host) at-

taches to a nearby proxy. The proxies organise themselves into a delivery tree, rooted at the proxy where

the data source resides. The delivery tree is created in two phases. First, all participating proxies are

centrally organised into a degree-bounded tree with increasing distance from the source proxy. In the

second phase, each proxy performs periodical distributed local transformations to improve the tree. The

local transformations include parent switching, promotion and simultaneous swapping operations for

nodes within two levels of each other. Of all the potential transformations, a node will select the one that

provides the largest improvement to the objective function. In addition to local transformations, a node

may, with a low probability, perform swapping with a node randomly selected using the tree random

walk technique (Section 2.6.1.1). This is to avoid the solution from being trapped in a local minimum.

The random swapping will be discussed in more detail in Section 5.1.1.5.
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Besides the root delay (as in HostCast and delay-based switch-trees), each node also maintains the

size of its subtree and the maximum subtree delay (i.e. the delay from the node to its farthest descendant)

to aid the transformation decision.

ACDC [54] ACDC is another example of switch-parent protocol. It is targeted to build source-rooted

trees that are degree- and root-diameter-bounded, and havelow cost. Each ACDC node maintains the

root delay and the maximum subtree delay. Together, these two values provide an estimation of the height

of the tree branch in which the node resides. ACDC first creates a randomly connected tree. Periodically,

a node performs distance measurements to a set of potential parents. Basically, if a node is currently in a

branch that has delay larger than the delay target, the node will try a switch that reduces the root delay;

if the branch is within the delay target, the node will try a switch that improves the tree cost. ACDC uses

the RanSub technique described previously to distribute information about the tree (e.g. delay bound)

and to discover switching targets.

Overcast [48] Overcast is designed for delay insensitive high-bandwidthsingle-sender applications.

As discussed in Section 2.2, a bandwidth-optimised tree hashigh-bandwidth links near to the root with

low-bandwidth links near to the leaves. Overcast attempts to achieve this structure by forcing new mem-

bers to go down the tree as far as possible while not sacrificing the path bandwidth from the root. Peri-

odically, a nodex uses the switch-parent operation to try to move up the tree (switch to its grandparent)

or move down the tree (switch to one of its siblings) to improve the tree.

2.6.1.3 Localised Central Arrangement Protocols

We focus on two distinctive protocols in this category: TBCPand NICE, and briefly mention Zigzag.

Tree Building Control Protocol (TBCP) [62] TBCP is proposed as a generic tree building protocol.

The protocol defines a local region which includes a newcomer, its current potential parent, and the

potential parent’s children. During the joining phase, thenewcomer performs distance measurements to

all other nodes in the local region, and reports the results to the potential parent. With measurements

obtained from previous rounds, the potential parent will have the complete distance matrix for the local

region. Hence, it can evaluate the goodness of all possible local configurations (see Figure 2.8) based on

a score function. The configuration with the best score valuewill be chosen to rearrange the members.

In [62], the following function is used.

score function = max
m∈(C∪{N})

D(p, m) (2.5)

In the equation,D(x, y) is the distance between nodex andy along the overlay tree,p is the current
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potential parent,C is the set ofp’s children andN the newcomer. Effectively, the score function calcu-

lates the maximum overlay distance provided by each configuration. The best configuration is thus the

one with the smallest score. Similar to HMTP, all nodes (except the root) periodically rejoin one of its

ancestors chosen at random to improve the tree quality.

In [62], Mathy et al. introduce a domain-based concept to place nodes belonging to the same domain

under the same subtree. In particular, each node is associated with a 32-bitdomainID(e.g. the bitwise

AND of a node’s IP address and a netmask). Each domain has a domain root elected by the tree root. The

first node joining from a given domain can be elected as the domain root of its domain. Domain roots

find their place in the tree with the mechanism described above, starting from the tree root. When a non-

domain-root node joins the tree, the root will redirect the node to its domain root, from which the node

will begin its joining process. Along with the domain-basedredirection, the following two constraints

need to be enforced in the above joining mechanism.

1. A nodeP will discard any configuration in which a node from its own domain becomes a child of

a node from a different domain.

2. To keep domain roots as high as possible in the tree (i.e. asclose as possible to the tree root),

configurations in which a nodeP keeps more than one node from its own domain as children, and

sends a domain root of a different domain as child of one of itschildren, are discarded.

NICE [7] NICE is designed for low bandwidth large-scale many-to-many applications. It organises the

overlay into a hierarchy of clusters, i.e. a mesh-based control topology. Unlike the previously mentioned

proposals, it uses source-specific trees (obtained from theoverlay) for data delivery. Each NICE cluster

has a size betweenk and3k − 1 inclusively, wherek is a configurable parameter. The cluster defines

the local region in NICE, and is represented by a cluster leader. Beginning from the lowest level, cluster

leaders at the same level form the next level clusters, untilthere is only a single cluster at the highest

level. Figure 2.9 (a) and (b) show an example of a NICE hierarchy and the corresponding control mesh

within each cluster.

In the NICE overlay construction process, all newcomers first join one of the lowest level clusters
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Figure 2.9: NICE: hierarchy, control structure and data forwarding trees

using a DFS beginning from the highest-level cluster leader. NICE allows a cluster to temporarily violate

the size bound. Periodically, a cluster leader checks the size of its cluster. If the cluster is too large

(> 3k−1), the leader rearranges it into two equal-sized sub-clusters and picks two new leaders such that

they are the graph-theoretic centre of the respective cluster; if the cluster is undersized (< k), the leader

will initiate a merge operation with a nearby cluster.

The NICE hierarchy implicitly defines the data forwarding paths, which are a set of source-specific

trees. The forwarding mechanism works as follows: when a node h receives a packet from a nodep,

it will replicate and forward the packet to all clusters of which it is a member at each layer, except the

clusters of whichp is also a member. Due to this mechanism, for an-node overlay, a NICE host can have

as many asO(k log n) peers in its data path. Figures 2.9 (c), (d) and (e) show threedistribution trees for

three different sources (the nodes shown in black).

Zigzag [95] Zigzag is designed for delay-sensitive single-source streaming media applications. It

adopts a similar hierarchical structure to NICE for overlaymaintenance. However, its delivery struc-

ture is a source-rooted tree which has a maximum fan-out ofO(k2). Unlike the other tree-first protocols

discussed previously, NICE and Zigzag do not strictly limitthe degree of the nodes in the resultant tree.

2.6.2 Mesh-first Protocols

Mesh-first protocols take a two-step procedure to build delivery trees. Initially, members organise them-

selves into a mesh structure. As a mesh normally includes redundant paths between the members, naive

flooding will lead to unnecessary packet duplications. Hence, an additional step — a routing mechanism

is needed to infer the delivery trees from the mesh. Existingmesh-first techniques can be classified based
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EvaluateUtility (y) begin
utility = 0
for each member m (where m 6= x) begin

CL = current latency between x and m along mesh
NL = new latency between x and m along mesh if edge 〈x, y〉 were added
if (NL < CL) then begin

utility += CL−NL
CL

end
end
return utility

Figure 2.10: Narada: the algorithmx uses in determining the utility of adding a link toy

on the mesh structure they create: unstructured and structured meshes.

2.6.2.1 Unstructured Mesh-based Protocols

An unstructured mesh is a graph where no special structural information can be inferred from the graph

to aid routing and management. For example, a random graph. Forming such a topology is simple: a

newcomer simply attaches itself to some randomly selected members. To obtain loop-free routing trees

from this type of topology, a conventional routing protocolsuch as distance-vector or link-state is needed.

Narada and Gossamer are two representative ALM protocols inthis category.

Narada [21] Narada, one of the earliest efforts on ALM, is designed for many-to-many applications.

In Narada, members first organise themselves into a random mesh, which is then improved upon in an

incremental manner. The improvement process involves two basic operations: addition of useful links

to the mesh and deletion of less useful links to keep the mesh within a manageable size. To add a new

link, x randomly selects a non-neighbour node, and requests a copy of its routing table. Assume thaty is

selected. Nodex will compute the expected delay gain fromx to other nodes if a link toy is added, using

the utility function shown in Figure 2.10. The link will be added if the gain exceeds a threshold. To drop

an existing link,x estimates the consensus cost of the links that it currently maintained. The consensus

cost of a link is calculated as the maximum number of times that the link is used in data forwarding for

both end nodes of the link. A link with consensus cost lower than a threshold will be dropped.

To obtain the distances between the members via the mesh, Narada runs a path-vector routing proto-

col, which extends the distance-vector protocol [93] by including the path information between the nodes

in the routing updates. Including such information helps toavoid the well-known count-to-infinity prob-

lem [93]. As the routing protocol provides unique paths between the nodes, the multicast trees with any

specific member as the source can then be computed using the reverse path forwarding technique [24] as

in DVMRP [25].

One important issue in mesh management is the partition problem. Detecting a partition in a mesh

is somewhat harder than in a tree. To solve the problem, Narada requires each node to maintain the

membership of the overlay, where the dissemination of the membership is integrated with the routing
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protocol. This, however, leads to a relatively high controloverhead (O(n2) for an n-node overlay).

Thus, Narada is effective only for small-scale applications.

Gossamer [18] Gossamer’s overlay creation and derivation of delivery trees bear several similarities

to those of Narada. The main difference between the two is that Narada is based on the end host-

only model while Gossamer is designed for a proxy-based system called Scattercast [18]. Gossamer

reduces the routing overhead by limiting the routing advertisement to only proxies with active senders

(so as to derive source-specific trees). A gossip-style nodediscovery protocol called Name Dropper++

is introduced to distribute membership information for overlay improvement. The utility function used

in Gossamer is slightly different from Narada, but both of them strive to minimise the average delay

between the members. Gossamer also simplifies mesh partition management by requiring every member

to observe only the liveness of a small number of selected members.

2.6.2.2 Structured Mesh

While routing in an unstructured mesh is difficult, it is possible to relate the mesh members in a structural

manner to simplify routing and management. Commonly used structural meshes are distributed hash

table (DHT), Delaunay triangulation and clique.

DHT-based Protocols DHT overlays were initially designed for object routing andlocation in peer-to-

peer networks. In a DHT overlay, each member is assigned a unique identifier (in general, we refer to it as

nodeId) which can be a numerical value or a point in a coordinate system. Each of the nodeId represents

a point in an abstract namespace. In the system, each node maintains a portion of the namespace in its

routing table. The overlay routes a message to the node responsible for the portion of the namespace

that contains the destination nodeId. In other words, all nodes only keep a small portion of member

information in their respective routing tables, and a message is routed hop-by-hop from one node to

another using the local routing table.

There are two main classes of routing algorithm in this type of topology: Chord [88], Pastry [81]

and Tapestry [111] use a longest prefix matching technique toroute in a ring; and CAN [77] routes in a

Cartesian hyper-space by choosing a neighbouring node closer to the destination at each hop. Scribe [15],

Bayeux [112] and CAN-multicast [78] are ALM protocols developed based on Pastry, Tapestry and CAN

respectively. Next we describe Scribe, which will be used inour comparison study as the representative.

Scribecreates multicast trees on top of the overlays built by Pastry. In Pastry, each overlay node is

assigned a random nodeId that is uniformly selected from a one-dimensional circular namespace of 128

bits. Given a message and a destination nodeId, Pastry routes the message to a node with the nodeId

that is numerically closest to the key, among all live nodes.Figure 2.11 illustrates an example where a

message targeted ford47a1c is routed from node65a1fc to noded37492.
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Figure 2.11: Pastry: routing in a circular namespace (each dot depicts a live node in the namespace).

The Pastry overlay is created in the following manner. First, a new member uses a deterministic hash

function to create a unique nodeId (sayd47a1c as in Figure 2.11) using inputs such as the IP address of

the node. It then sends a join message addressed to its own nodeId via a topologically close-by overlay

node, say node65a1fc as in Figure 2.11. Pastry assumes that the knowledge of such anode is learned

from some out-of-band techniques, such as an expanded ring search. Noded113ab3 then forwards the

message hop-by-hop towards the destination nodeId. Finally, the message reaches noded37492 which

has the closest nodeId tod47a1c. The newcomer obtains the state information from nodes on the path

from65a1fc to d37492 to establish its routing table and neighbours list.

Scribe builds a unidirectional shared tree for each multicast session on top of the Pastry overlay.

Each multicast session is assigned agroupId randomly selected from the namespace. Each groupId is

maintained by a root node with a nodeId that is equal or close to the groupId. New members join to a

session by sending join messages towards the root using Pastry routing primitive. When a join message

hits an on-tree node, sayy, the path from the newcomer toy forms a new branch of the tree.

In [16], Castro et al. propose SplitStream, which extends Scribe to deliver high-bandwidth contents

using multiple trees. SplitStream addresses the inherent unbalanced forwarding load in a single tree

delivery mechanism (see Section 2.2.1) by making sure that each node is the interior node in only one

tree, and is the leaf node in all the remaining trees. Such trees can easily be built with the underlying

Pastry and Scribe routing mechanism. The design is highly robust as failure of an interior node will

affect only one tree.

Delaunay Triangulation-based Protocols Consider a set of vertices,A. A Delaunay triangulation is

a triangulation graph for which each circumscribing circleof a triangle formed by three vertices inA, no

vertex ofA is in the interior of the circle (see Figure 2.12). In [58], Liebeherr et al. propose a DT protocol

that constructs a Delaunay triangulation overlay in a decentralised manner and uses it for multicasting.

In the protocol, each overlay node is assigned an(x, y) coordinate. The protocol distributedly derives

Delaunay triangulation relationships for the overlay nodes based on their coordinates. The Delaunay

triangulation graph constructed defines the neighbouring relationships among the overlay nodes: two
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Figure 2.12: Delaunay triangulation
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Figure 2.13: LARK: an example overlay and the correspondingdata delivery tree

nodes are neighbours if the edge connecting them appears in the Delaunay triangulation graph. Once the

Delaunay triangulation overlay is formed, compass routing[55] is used to derive source-specific trees

for multicasting. A compass routing routes a message hop-by-hop from a node,s, to a destination,d,

using only the coordinates ofd, the position of the current node, and the directions of the edges incident

with the current node. At each hop, the message is delivered over the edge with the closest slope to that

of the line segment connecting the current node tod. The DT protocol is scalable in the sense that each

overlay node only needs to maintain a small amount of neighbouring information. However, the data

delivery performance depends on how well the logical address (i.e. the(x, y) coordinates) is mapped to

the underlying network topology.

Clique-based Protocol LARK [49] is designed to be a light-weight and resilient protocol for many-to-

many multicasting. In LARK, overlay members are organised into several interconnected cliques, where

a clique is a fully connected graph. Figure 2.13 (a) shows an example of LARK’s overlay structure.

The nodes that interconnect different cliques are called bridge nodes. Routing in such an overlay is

simple: when a node receives a message from a neighbour in a clique, it will forward the message to

other neighbours in different cliques it belongs to. Figure2.13 (b) illustrates the data tree originated at

the source, nodeh. As a clique is a complete graph, LARK is resilient against node failures. However,

its resilient property does not necessarily provide good delivery tree quality, as shown in [49].
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2.6.3 Summary

Table 2.1 and 2.2 summarise the tree- and mesh-first distributed ALM protocols discussed previously.

In the tables, we also provide additional information (e.g.maximum path length and per node state)

about the protocols. We note that the maximum path length forseveral protocols is left undefined. For

examples, Yoid, switch-trees, HMTP, etc. These protocols produce delivery trees that have varying

degrees at each node (due to the nodes capacity constraint).The worst-case happens when all nodes can

only accommodate one out-going stream. This results in a line topology which has a maximum number

of overlay hops ofO(n), for ann-node overlay. However, if we assume that all nodes can contribute

two out-going streams, the overlay can form a binary tree. For a full binary tree (i.e. every internal node

has two children), the tree height or the maximum path lengthfrom the root to its furthest descendant is

given bylog2 n. In practice, we would expect that an overlay tree is unevenly populated, i.e. some nodes

may not have any child while some nodes may have a number of children. On average, we believe the

tree height (in terms of overlay hop) is in the order ofO(log n).

2.7 Related Research Areas

This section briefly discusses some related research areas.

2.7.1 ALM in Mobile Adhoc Networks

Mobile Adhoc Networks (MANETs) are characterised by the highly dynamic, random multihop topolo-

gies that are likely composed of relatively bandwidth-constrained wireless links. This dynamic nature

prevents the use of existing IP multicast protocols, e.g. DVMRP, CBT. AMRoute [105] is a protocol that

uses ALM over mobile wireless networks. AMRoute continuously creates a mesh of bidirectional unicast

tunnels between pairs of group members. A shared tree is created out of the mesh for data distribution.

One member node is designated as the logical core, which is responsible for initiating the tree creation

process periodically. The core can also migrate dynamically according to group membership and net-

work connectivity. A key feature that distinguishes AMRoute and the works studied and proposed in this

thesis is that AMRoute assumes a native wireless broadcast channel. Self-configuration in the absence of

such a broadcast medium is a much harder problem. We believe that the wired and wireless ALM could

be integrated with technique similar to Universal Multicast (see Section 2.1) in which a mobile member

can be elected to represent its mobile peers, and provides a bridge to the outside world. This however is

out of the scope of this thesis.
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2.7.2 Peer-to-peer (P2P) Networks

P2P systems are typically file sharing networks between end hosts. Early P2P system such as Napster

followed a semi client-server architecture. In Napster, a number of servers maintain databases of inter-

esting resources (i.e. names and locations of music files). End hosts contact the servers to obtain peers

that actually keep the desired music files, and make requestsdirectly to the corresponding hosts. While

the actual data connections happen between the end hosts, the popularity of the service may still result

in overloading of the servers. Thus, modern P2P systems suchas Gnutella [40] advocate a fully dis-

tributed approach. In particular, the members organise themselves into an overlay network as in ALM.

Unlike ALM, however, the P2P overlay is mainly used to locatefiles efficiently. For example, a host

x that wishes to find a file,F , floods the queries into the overlay. Oncex identifies the host ofF (say

y), x will request the file directly fromy. The flooding mechanism in Gnutella can potentially create a

large amount of query traffic. This has prompted research of structural overlays which provide scalable

overlay management and routing. Most notably, the distributed-hash tables proposals such as Pastry,

Tapestry, Chord and CAN, which were discussed in Section 2.6.2.2.

2.7.3 Internet Distance Measurement Systems

A key issue in ALM is inferring the network metrics (e.g. bandwidth and delay) between the members.

In this thesis, we consider only the delay metric. To obtain pair-wise delay information, the end systems

could employ tools such asping. However, having each host conducts a large number of measurements

inevitably leads to a high overhead, both to the host and the network. Hence, several projects have

emerged to provide scalable distance estimation services.We discuss two representatives below.

Internet Distance Maps Service (IDMaps) IDMaps [35] is an early attempt to provide an Internet

scale distance service. IDMaps employs special hosts called tracersat various network locations. The

tracers are organised into a logical topology and continuously monitor the distances among themselves

in the logical topology. This serves as the infrastructure to estimate the distance between any two hosts in

the Internet. For example, the distance between hostsA andB can be estimated as the distance between

A and its nearest tracerT1, plus the distance betweenB and is nearest tracerT2, plus the shortest path

distance fromT1 to T2 over the tracer logical topology.

Global Network Positioning System (GNP) GNP [68] is a coordinate-based approach to network

distance prediction. The key concept is to ask end hosts to maintain coordinates (i.e. a set of numbers)

that characterise their locations in the Internet. The network distances can then be estimated by eval-

uating a distance function over the hosts’ coordinates. GNPconsists of two parts. In the first part, a

small distributed set of hosts called Landmarks first measure the distances among themselves, and use

the measured distances to compute their coordinates in a chosen geometric space. The coordinates are
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calculated by solving a function that minimises the error between the measured distances and the com-

puted distances (i.e. using the coordinates). The Landmarks’ coordinates serve as seeds to compute the

coordinates of other end hosts in the second part. In [68], GNP has been shown to provide better distance

estimation than IDMaps.

2.8 Chapter Summary

This chapter extends the understanding of ALM, as well as some related research areas. The main focus

is on the construction of the multicast overlay topologies.We begin by discussing several important

issues in an ALM overlay creation solution, i.e. system architectures, optimisation objectives and the

service models. This is followed by a review of a number of representative centralised and decentralised

overlay construction techniques. The proposals surveyed encompass a wide variety strategies in building,

optimising and maintaining an overlay. In Chapter 5, we perform a performance comparison study of

some of the proposals.
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Max. Fanout/
No. of Neigh-
bours

State per Node Max. Path Length Applications

Distributed Transformation-based Protocols

Yoid End host only BST

Avoid
routing
patholo-
gies

Switch-parent
Random walk
+ DFS

c + 1 O(c) -
Generic content dis-
tribution

Switch-
tree

End host only
SRT/
BST

Generic:
Tree cost/
latency/
etc

Switch-parent
Local region
scoping

c + 1
Switch-1hop:O(c)
Switch-2hop:
O(c2)

-
Generic content dis-
tribution

HMTP Hybrid BST Tree cost Switch-parent
Root path +
DFS

c + 1 O(c) -
Delay-insensitive
bulk data transfer

ACDC End host only SRT
Latency +
tree cost

Switch-parent RanSub c O(c + log n) Delay constraint
Delay-sensitive ap-
plications

HostCast End host only SRT Latency
Switch-parent
+ promotion

Local region
scoping

c O(c) -
Delay-sensitive ap-
plications

Banerjee
et al.’s
scheme

Proxy-based SRT Latency
Switch-parent
+ various
swapping

Local region
scoping +
random walk

c O(c + log n) -
Delay-sensitive ap-
plications

Overcast Proxy-based SRT Bandwidth Switch-parent
Local region
scoping

c

Each node main-
tains info. about
all nodes under its
subtree:O(n)

-
Bandwidth-
intensive appli-
cations

TMesh End host only MSRT Latency
Tree + shortcut
links

Root path +
DFS

c + 1 O( # senders) -

Many-to-many
delay-sensitive
applications with
small senders set

SHDC End host only SRT Scalability Switch-parent
Root path +
DFS

c O(c) -
Creating control
structure for large-
scale applications

Localised Central Arrangement-based Protocols

TBCP End host only
SRT/
BST

Generic:
tree cost/
latency/
etc

Select the best
config. from
all possible lo-
cal config.

Local region
scoping

c
O(c+ root path
size)

-
Generic content dis-
tribution

NICE End host only MSRT Scalability
Cluster mem-
bers based on
their proximity

Local re-
gion scoping
(cluster)

O(K logK n)
Max: O(logK n)
Avg: O(K)

O(logK n) over-
lay hops

Low-bandwidth
large-scale content
distribution

Zigzag End host only SRT Latency

Cluster mem-
bers to reduce
source to re-
ceivers latency

Local re-
gion scoping
(cluster)

O(K2)
Max: O(logK n)
Avg: O(K)

O(logK n) over-
lay hops

Delay-sensitive ap-
plications

Legends
SRT: Source rooted tree c: max. # children of a tree node
BST: Bi-directional shared tree K: maximum cluster size in NICE and Zigzag
UST: unidirectional shared tree n: # of overlay nodes
MSRT: Multiple source rooted tree

Table 2.1: Summary of tree-first protocols
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State per Node Max. Path Length Applications

Unstructured Overlay-based Protocols

Narada End host only MSRT Latency
Add/ delete
links with a
utility function

Path-vector
routing proto-
col

m O(n) -
Small-scale delay-
sensitive many-to-
many applications

Gossamer Proxy-based MSRT Latency
Add/ delete
links with a
utility function

Path-vector
routing proto-
col + gossiping

m O(n) -
Delay-sensitive
many-to-many
applications

Structured Overlay-based Protocols

Scribe End host only URT Scalability Pastry routing Pastry routing

# of Pastry
neighbours:
⌈log

(2b)
n⌉×

(2b − 1) ;
Tree fanout:c

⌈log
(2b)

n⌉ ×

(2b − 1)

⌈log
(2b)

n⌉ over-
lay hops

Large-scale
Publish-subscribe
applications

Bayeux End host only URT Scalability
Tapestry rout-
ing

Tapestry rout-
ing

# of Tapestry
neighbours:
b logb n ;
Tree fanout:c

b logb n
logb n overlay
hops

Large-scale content
distribution

CAN-
multicast

End host only
CAN
directed
flooding

Scalability CAN routing CAN routing 2d 2d (d/4)×z1/4 over-
lay hops

Large-scale content
distribution

Delaunay
Trian-
gulation
(DT)
Protocol

End host only MSRT Scalability
Delaunay
triangulations
graph

Delaunay
triangulations
graph

Max: n − 1;
Avg: 6

Max: n−1; Avg: 6 -
Large-scale content
distribution

LARK End host only MSRT
Resilient
and scala-
bility

Clique struc-
ture

Clique struc-
ture

m
# number of clique
members

-
Large-scale content
distribution

Legends
SRT: Source rooted tree c: max. # children of a tree node
BST: Bi-directional shared tree m: max. # neighbours of a mesh node
UST: unidirectional shared tree n: # of overlay nodes
MSRT: Multiple source rooted tree b: design parameter in Scribe and Bayeux

z: # of zones in CAN-multicast
d: # of dimensions in CAN-multicast

Table 2.2: Summary of mesh-first protocols
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Chapter 3

System Model and Evaluation

Environment

This chapter presents the system model and the simulation design used in the rest of this thesis. In

the next section, we first describe the system and overlay network model considered. Section 3.2 then

describes the simulation design, which includes the setting of the network topologies, multicast group

and some general parameters, as well as the performance metrics used to quantify the ALM proposals.

The section also explains the working of the simulator, calledALMSim, that we have developed for the

experiments. Finally, Section 3.3 concludes this chapter.

3.1 System Model

3.1.1 System Architecture

In Chapter 2, we discuss two versions of ALM system architecture, i.e. the end systems only and the

hybrid (mixed end system and network layer multicast) approaches.

This work considers the end system only model. However, recall that the end system only model can

be further divided into the end host only and proxy-based systems. This thesis considers the first model,

where the multicast members are the end hosts which directlyparticipate in the overlay construction

and data delivery. This allows us to concentrate mainly on techniques used to build the overlays, while

avoiding any complex interaction between the end hosts and the proxies or network layer multicast

infrastructure.

It is worth pointing out that the techniques studied are directly applicable to build overlays for the

proxy-based system. However, a protocol specifically designs for such a system can further exploit the

more powerful and potentially better available bandwidth of the proxies. In addition, the overlays built
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can also be used by a hybrid approach (e.g. Zhang et al.’s Universal Multicast [110] (see Section 2.1)) to

interconnect islands of IP multicast networks.

3.1.2 Network Model

The physical network is represented by a set of routers whichare interconnected by links, as shown

by panel 1, Figure 3.1. The end systems, i.e. members of the multicast session, are connected to the

routers at different points through access links. Each router can accommodate at most one end system.

With this, we assume that each router represents a multicastcapable local network. If there is more than

one multicast member in the network, they will communicate among themselves using the underlying

network layer multicast capability, and one of them will be chosen as the representative that bridges this

network with other members in other networks.

The overlay network is formed by the end systems on top of the physical network. Theoretically, it

can be modelled as a complete graph,G = (V, E), whereV is the set of vertices andE = V × V is the

set of edges. This is illustrated as panel 2 in Figure 3.1. Each vertex inV represents an end system. An

edge,〈i, j〉 in E corresponds to the unicast path fromi to j in the physical topology. The delay of edge

〈i, j〉 is the end-to-end delay fromi to j via the physical topology.

For practical reason, an ALM overlay is often a subgraph of the complete overlay graph, which takes

the form either of a tree or of a connected mesh. An example of an ALM tree is shown in panel 3,

Figure 3.1. For conciseness, the rest of this thesis will useoverlayto refer to an ALM overlay, unless

specified otherwise.

1
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D

D

C
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A

A

B

B

B

C

C

3

Complete overlay network

Subset of overlay links, forming
the ALM overlay

Physical network

Network router

End system

Physical link

Overlay link

Figure 3.1: Representation of the network model
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Bandwidth Model We study techniques that constructs efficient ALM overlay structures. The main

requirement for the resultant overlay is that the maximum number of out-going data streams (i.e. fan-

out or out-degree) that a node can contribute is limited. In other words, the delivery structure needs to

be degree bounded. In a measurement study by Bhattacharyya et al. [13], they show that the backbone

network is often over provisioned, and thus the bottleneck is mostly at the access links of the end systems.

In other words, we can abstract the available bandwidth of anend system as the bandwidth of its access

link. Hence, if we know the bandwidth of the access link and the data rate of a multicast session, we can

calculate the number of out-degree that a member can contribute to the session. Modelling the bandwidth

limitation as the degree bound also enables us to focus on other optimisation metrics, in particular, tree

cost and delay. Most of the ALM proposals discussed in Chapter 2 allow the members to specify a degree

bound in building overlays.

Consider a multicast application in which the source transmits data at a rate ofB units per second.

We will assume that the capacity of any incoming or out-goingaccess link is no less thanB. Let the

out-going access bandwidth of a nodei be ri, we can then calculatei’s out-degree bound as⌊ri/B⌋.

The similar assumption is also being made by Banerjee et al. [9]. The access bandwidth of a node can

be approximated based on the access technology used by the node, e.g. dial-up, Cable or DSL. This

estimation may be inaccurate as a node may have other applications that connect to the Internet, and thus

need to share the bandwidth. However, we believe that cooperation between the end systems can be used

to dynamically adapt the degree constraint. For example, let nodex be an upstream node serving several

other nodes. Initially,x determines the maximum number of connections it can contribute based on its

access technology. Then, during the course of the session, the downstream nodes observe and report the

received data rate tox. Based on the reports,x may increase or decrease its degree bound. A threshold

value and the history of the data transfer can be used to improve the accuracy of the prediction process.

It is the responsibility of the overlay construction protocol to ensure that an overlay stays connected in

case of changes to node degrees. For simplicity, we assume that the degrees assigned to the end systems

are constant throughout a session.

Even if the source injects traffic at very low rate, to make good use of its memory and processing

power, the end user may also wish to limit the resources used by a single application. This is especially

true if the ALM is applied on top of the end host only model. On the other hand, while the proxy-based

systems normally have larger bandwidth capability, they normally support more than one session. Hence,

each of the sessions running on such systems may only get a share of the available capacity.

Overlay Link Delay and Cost As described previously, the delay of an overlay is the end-to-end delay

between the two end points of the link, which is the sum of the delays of all physical links that the overlay

link traverses. We also use the overlay link delay as the costof the overlay link.

For simplicity, we will assume that there will be no changes to the link delay throughout the course of
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a simulation. In practice, this assumption is certainly nottrue. In an overlay, a node typically maintains

the delays from itself to several other nodes. A change in thedelay value may require the node to re-

evaluate its on-tree position, and may result in a overlay reconfiguration. However, we believe that there

are several ways that can be used to limit the impacts of the changes to the delay metric.

• Cache and threshold. In this case, the delay value is cached, and is only updated if the difference

between the current and the new values exceeds a predefined threshold. This technique has been

discussed in HMTP [109].

• Quantise the delay value. In this case, we can quantise the delay value to several discrete levels.

For example, delay values that is smaller than 10 ms is assigned as level 1, delays that are between

10 ms and 20 ms is assigned as level 2, and so on. The delay ranges can be configured so that

smaller delay values have a finer representation, while larger delays have a coarser representa-

tion. Note that a coarser delay representation will result in more ties in decision making, which

potentially affects the quality of the overlay built.

In fact, the above ideas have been investigated in previous study of quality of service routing. For

example, Apostolopoulos et al. [4] consider several variants of the above two strategies to limit the

update of bandwidth metric. Integrating the above techniques with an overlay construction proposal and

studying their performance implications in a real-world environment is on-going work.

3.2 Simulation Design

3.2.1 Use of Simulation

In this work, we make extensive use of simulations for our performance studies. The proposals con-

sidered include both centralised algorithms and distributed protocols (more than 10 different proposals).

The size and the diversity of the proposals studied prevented us from considering a close-form analytical

evaluation.

In recent years, the ALM community has began to use PlanetLab[74], a wide-area overlay testbed,

to run real-world experiments. PlanetLab offers an opportunity to run experiments subject to realistic

network characteristics. One of our objectives is to evaluate and compare several existing proposals.

To do so requires a unified and controlled platform for the experiments. PlanetLab is thus unsuitable

for our purpose as it introduces a number of uncontrollable and unpredictable variables such as the ever

changing network conditions and the system load of the host machines. These additional factors prevent

repeatable experiments, and thus prevent a fair comparisonbetween different proposals. We also wish

to examine the proposals under some reasonably large network configurations, e.g. up to thousands of

nodes. However, at the time of writing (May 2005), PlanetLabonly consists of over 500 nodes, hosted
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at over 270 sites. Therefore simulation is used because it provides a more controllable and configurable

environment for running the experiments. It also allows us to monitor closely the mechanic of a proposal

more easily.

3.2.2 Topologies

A key challenge in studying protocol behaviour lies in the representation of the underlying topology.

There is evidence that the performance of protocols has a strong relationship with the topology used.

For example, a clustering protocol may perform well in topologies that already exhibit good clustering

properties, e.g. hierarchical networks. In order to avoid any bias in our evaluations, we use topologies

created from three distinct models:

1. Random Waxman graph. This is the popular random graph model presented by Waxman [102]. In

this model, nodes are randomly distributed over a Cartesiancoordinate system. The probability

that an edge exists between any two nodes,u andv, is given by the following probability function

P (u, v) = β exp
−d(u, v)

Lα
(3.1)

whered(u, v) is the distance between the two nodes,L is the maximum possible distance, andα

andβ are parameters in the range0 < α, β ≤ 1. Larger values ofα increase the proportion of

longer edges to shorter edges, while larger values ofβ increase the average node degree. While

there are extensions to this basic model to better representa realistic network, e.g. [28], we choose

to use the basic model as it has been used in previous work (e.g. Narada [21] and HMTP [109]),

and is included in the popular GT-ITM topology generator [39].

2. Transit-stub graph. This model represents a network as a two-level hierarchical graph consisting

of stub domains interconnected by transit domains. The stubdomains represent campus networks

or other collections of interconnected LANs, while transitdomains represent wide-area networks.

The connectivities within the stub domains and the transit domains are generated using the Wax-

man model. Both transit-stub and Waxman topologies are created with the GT-ITM topology

generator.

3. Power-law graph. This is a model based on the observations that node degree inthe AS-level

topology of the Internet is closely related to a set of power laws [32]. In particular, the probability,

P (k), that a node in the network is connected tok other nodes is bounded, decaying as a power-

law, P (k) ∼ k−γ [11]. We use the power-law generation model due to Barabásiand Albert

[11] in the BRITE topology generator [38] to generate such topologies. The model suggests two

possible causes for the emergence of power-law behaviour inthe frequency of out-degrees in

network topologies: (i) incremental growth; and (ii) preferential connectivity. Incremental growth
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refers to the growing of network size due to the continual addition of new nodes. Preferential

connectivity refers to the tendency of a new node to connect to existing nodes that are highly

connected or popular. This assumes that a network topology is generated by a set of local events,

such as the addition of new nodes and links, or rewiring of links from one node to another.

We consider topologies of reasonably large sizes, i.e. from1000 to 10000. Running experiments

on smaller networks is considerably faster than on larger networks. Hence, for the comparison study

in Chapter 4 and 5, we use the smaller (1000-node) networks due to the size of the techniques under

consideration. In Chapter 6, 7 and 8, we use networks of 5000 (power-law) and 10000 (transit-stub)

nodes to compare our proposals with the best techniques observed in the comparison study. In these

chapters, we also use the smaller networks to investigate the effects of various parameter settings on our

proposals.

Table 3.1 lists the topologies used in our simulations alongwith their characteristics. We choose

topologies that exhibit a rich diversity of configurations,both within the same model and between the

different models. For Waxman and power-law models, the topologies mainly differ in terms of node

degree. For transit-stub model, the topologies are createdsuch that they have different sizes of transit

and stub domains. For examples, TS1k-0 has 1 transit domainswith 4 routers each, each transit router is

attached with 5 stub domains, each with 50 routers; TS1k-1 has 2 transit domain with 10 routers, each

transit router is attached with 5 stub domains, each with 10 nodes (see Table 3.2). These configurations

contribute to the differences in size1 (e.g. 1004, 1010 and 1020 compared to 1000) with other models.

Note that for larger networks (5000 and 10000 nodes), we onlyconsider the transit-stub and power-

law topologies as they better represent the realistic networks. For the power-law model, we only use

topologies up to 5000 nodes as computing the all-pair paths (used byALMSim for routing purposes)

takes a considerable amount of time. On the other hand, we could take advantage of the hierarchical

structure in the transit-stub topologies to divide the computation, so that a larger size is possible.

3.2.3 Multicast Members Selection

We study the construction of efficient ALM overlays for a given set of members. The members are

randomly attached to the network routers. Note that for transit-stub topologies, the members are attached

only to routers in the stub domains. As mentioned previously, each router can only accommodate at

most one member. We assume that the latency from a router to its attached member is negligible. For

distributed proposals, the set of members will join the multicast session one at a time randomly, within

a predefined time. In most cases, we let all members join the session within the first 50 seconds of

the simulation, and let the protocols organise the members into a stable overlay. Typically, for smaller

1The number of nodes in a transit-stub network can be calculated as: (# transit domains)×(# nodes per transit domain)×[1 +
(# stub domains per transit node)×(# nodes per stub domain)].
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Model Name Nodes Links Mean Diameter Mean Path Length
Degree Hop Delay (ms) Hop Delay (ms)

WM1k-0 1000 4000 4.00 9 97 4.96 37.05
Random WM1k-1 1000 6000 6.00 7 73 3.97 26.46
Waxman WM1k-2 1000 8000 8.00 6 62 3.51 24.97

TS1k-0 1004 14522 14.46 10 367 6.38 181.97
Transit-stub TS1k-1 1020 3242 3.18 22 666 8.42 255.55

TS1k-2 1010 4074 4.03 15 622 8.04 274.62
TS10k-0 10100 39200 3.88 30 2784 12.84 1245.36
TS10k-1 10020 195852 19.55 15 1284 8.60 563.90
PL1k-0 1000 11598 11.60 5 99 3.04 32.20

Power-law PL1k-1 1000 16216 16.22 5 77 2.82 25.15
PL1k-2 1000 19614 19.61 5 65 2.65 19.37
PL5k-0 5000 46698 9.34 7 95 3.80 33.61
PL5k-1 5000 93048 18.61 5 63 2.76 21.25

Table 3.1: Characteristics of the topologies used in the simulations

Name no. of transit domains no. of transit nodes no. of stub domain no. of stub nodes
per domain per transit node per domain

TS1k-0 1 4 5 50
TS1k-1 2 10 5 10
TS1k-2 1 10 5 20
TS10k-0 10 10 4 25
TS10k-1 5 4 5 100

Table 3.2: Configurations of the transit-stub topologies

networks (with 1000 nodes), we use group sizes ranging from 32 to 256, while for larger networks (with

5000 to 10000 nodes), the group size ranges from 32 to 1024. The reason for this is to avoid the network

being too densely populated by the members.

We divide the experiments into two groups, according to the multicast service models under consid-

eration:

1. One-to-many: one of the members is elected as data source.

2. many-to-many: more than one of the members are data sources.

For both cases, the first node to join a session will become thetree root for tree-based protocols

(e.g. HMTP, TBCP, etc). For the one-to-many case, the root node is also the data source for the group.

Unless specified otherwise, all members are potential data sources in the many-to-many scenario. This

is because the data delivery quality depends on the locationof the senders, especially for protocols that

route packets over a single shared tree. In a shared tree, a sender that is a remote descendent of the tree

root will result in a higher end-to-end delay compared to a sender that is close to the root.

To account for the bandwidth limitations and its heterogeneity in end system multicast, each member

is assign a degree bound as discussed in Section 3.1. Typically, the node degree ranges from 2 to 10. To

account for any impact of the degree distribution to the proposals investigated, we consider two degree
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assignment distributions: (i) uniform; and (ii) truncatedbinomial. With the uniform distribution, the

given degree range is assigned to the overlay nodes roughly with the same probability. With the binomial

distribution, degrees around a given mean value have more chances of being assigned to the nodes. We

experiment with several values of the mean, which representthe lower end, middle and upper end of the

given range. The truncated binomial distribution is also used by Shi in [86].

3.2.4 Performance Metrics and Representation of Results

This section discusses the performance metrics used and howwe present our results in the rest of this

thesis.

3.2.4.1 Performance Metrics

Our investigations focus on the quality of the delivery structure built and the properties of the technique

under consideration.

The quality of the data distribution is judged by the following metrics:

• Relative Delay Penalty (RDP)[21]. RDP represents the additional delay incurred by an ALM

solution. We consider two versions of RDP: (i)RMP, the ratio between the maximum delay

using the overlay and the maximum delay using direct unicastconnections; and (ii)RAP, the ratio

between the average delay using the overlay and the average delay using direct unicast connections.

These metrics were introduced by Castro et al. in their comparison of distributed-hash table based

ALM proposals [17]. For the one-to-many scenario, the delayis measured from the data source to

all other nodes; for many-to-many scenario, the delay is measured between all node pairs. We note

that both RAP and RMP are normalised by two different denominators. Consequently, in some

cases, RAP may be larger than RMP. To avoid confusion, they should be interpreted independently.

The original RDP [21] is a per-pair metric, specifically, it is the ratio between the overlay delay and

the unicast delay between two nodes. The reason for not usingRDP is that it sometimes provides

a false indication of the delay performance, where a large RDP does not necessary mean a large

delay. For example, consider two nodes which has a very shortunicast distance between them, say

10 ms. If their overlay delay is 50 ms (which is a reasonably small delay value), their RDP will be

as high as 5. RAP and RMP avoid this problem by considering thedelays of all pair of nodes.

• Tree Cost Ratio [109]. Tree cost is defined as the sum of delays on the tree’s links (see Sec-

tion 2.2). It provides a simplified view of the total network resource consumption of a tree. We

calculate the ratio of the cost between an overlay tree and the corresponding network layer multi-

cast tree. The network layer multicast tree is a shortest path tree rooted at the router where the first

joining member attaches itself. This is to simulate the treecalculated due to IP multicast protocols

such as DVMRP [25]. For the many-to-many experiments, when atechnique uses more than one
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tree for data forwarding (e.g. NICE and Narada), we calculate the tree cost as the average of all

trees used.

• Link Stress [21]. Link stress represents the number of copies of an identical packet sent over

a single physical link. It represents the redundant traffic imposed by an ALM solution, as the

stress for a network layer multicast is always one. We measure the worst-case (or maximum) and

average stress due to an overlay solution. The maximum link stress gives the maximum number of

duplicates seen by any single physical link, while the average link stress is calculated as the sum

of all link stress divided by the total number of physical links involved.

Other properties of a technique that may influence protocol selection include the communication

overhead, convergenceand failure recovery speed. The measurement of convergence and failure recovery

will be explained in more detail in later chapters.

For communication overhead, we measure the number of bytes of controlmessages sent and received

by the overlay members. We assume that each message is carried using TCP over IPv4, which incurs

a basic penalty of 40 bytes per packet. We further assume thatall distributed proposals studied use a

common packet header (20 bytes) similar to ALMI [72], which includes information such as protocol

version, session identifier, packet source identifier, sequence number, control flags and packet length.

This roughly represents the basic information requires fortwo protocol hosts to communicate properly.

Any additional information, in particular, node identifier(4 bytes) and distance metric (4 bytes), is added

on top of the basic size. We do not consider the overhead due tonetwork measurement. This is be-

cause, typically, each overlay node only needs to know the distances between itself and a small number

of members. The distances can be cached to reduce measurement overhead. In addition, it may be

possible to obtain the distance information from an Internet distance service such as IDMaps [35] (see

Section 2.7.3), as they become more widely deployed.

3.2.4.2 Representation of Results

In this thesis, we typically present the results as the average of 50 independent runs of a simulation

scenario. Each scenario uses a similar ALM proposal, proposal-specific settings and general settings

such as topology and group size, but with different set of group members. We report only the average

values so as to avoid cluttering up the figures showing results, due to the number of proposals being

considered. We have found that the average values can represent the data rather well. We illustrate

this by showing the results of tree cost ratio and RMP with 95 percent confidence interval for several

representative proposals that we study in Chapter 5, in Figures 3.2 (a) and (b). We can see that the error

ranges are reasonably small, and the difference between theproposals can be clearly observed from the

figures, so we do not include the error bars in later graphs. Typically, the cost ratio has smaller error

bars than RMP. We believe that this is because the selection of members has more influence on the delay
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Figure 3.2: Sample comparison results taken from Chapter 5

(RMP) than the tree cost.

3.2.5 The Simulator:ALMSim

We have developedALMSim, a packet-level, discrete-event simulator written inJava. This section

sketches the high-level design ofALMSim and describes some of its features.

3.2.5.1 ALMSim Design

ALMSim is designed to investigate the efficiency of different overlay construction proposals. It takes

inputs from a configuration file and from the command line which specify the simulation scenario. Each

scenario consists of the configurations for the network topology, multicast members and the proposal

under study.ALMSim runs the chosen proposal to build a multicast overlay, and evaluates the overlay

with the performance metrics described previously.

In order to capture metrics such as the communication overhead and convergence speed, a packet-

level simulation is needed. While there exist many general purposes packet-level network simulator (e.g.

ns [69] andj-sim [46]), we chose to write our own. Existing simulators likens often represent the

network in a finer detail than we required. For example, for memory and processing overhead considera-

tion, we do not simulate packet queuing inALMSim (see Section 3.2.5.2 for details); however, this is an

integrated part at these simulators. Such detailed simulation consumes substantial memory, processing

power and time, which prevents large-scale evaluation.

In order to useALMSim as a comparison platform for different techniques, it is important that new

techniques can be added easily. This is done by separating the overlay construction protocols from the

underlying network operations. The underlying network performs operations such as packet forwarding

and statistic tracking, which are independent of the upper layer overlay construction technique. This
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will be discussed in detail in the next section. Together with the functional separation, the use of object-

oriented design principle in the programming improves the extendibility of ALMSim.

An important feature of a comparison platform is the abilityto configure various parameters easily.

ALMSim provides flexible configuration by reading simulation settings from an input file and from the

command line options. The inputs from the command line will override the inputs from the configuration

file. In this manner, a simple batch script can be used to automate lengthy simulations.

3.2.5.2 Functional Components

ALMSim consists of the following core functional components: parsers, network representation, events

and scheduler, statistic collection and centralised algorithms.

Parsers ALMSim consists of two main parsers. One reads inputs from a configuration file and from

the command line to determine the simulation scenario (e.g.protocol parameters, group size, simulation

time, etc). The other parser reads a topology file from the topology generator (i.e. GT-ITM or BRITE)

to construct the network structure.

Network representation The physical network is represented by nodes as routers, links which connect

two adjacent routers, protocol agents which implement the end-system multicast protocol and packets

which carry data and control information between the agents. The physical link is characterised by its

propagation delay (we do not model bandwidth as we do not model packet queuing, see below). The

protocol agent is attached to one of the physical nodes.

This architecture is essentially adopted fromns, with substantial simplification. In order to reduce

the complexity of a simulation, we do not model the queuing delay and packet loss in the network.

This is a common assumption in the study of ALM overlay construction proposals (e.g. evaluation

of Narada [21]). Without packet queuing, when a router receives a packet, it immediately sends the

packet out via the appropriate interface. Packet queuing isonly relevant if the network carries a large

amount of traffic. However, as described previously, each ofour simulation experiment involves only a

single overlay construction proposal. The only traffic in the network are relatively small control messages

exchanged between the protocol agents, and occasional datapackets injected into the network for statistic

purpose (i.e. link stress measurement). We also assume thatthe physical links are reliable such that there

are no losses of protocol messages between the members. Notethat the reliability of the applications data

is out of the scope of this thesis. In addition, we assume thatthe physical network is fixed throughout a

simulation, i.e. we do not simulate failure of physical nodes or links, and the physical links’ delays are

fixed. Finally, routing in the network layer is based on the shortest path first policy.

Events and scheduler These are the core and “engine” of an event-driven simulator. An event is

associated with a time stamp, an action and an identity of thecorresponding network element (e.g. a
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router or a protocol agent) where the action is to be performed. Examples of the events are member join,

leave, fail, send data, packet arrival and evaluation2. The scheduler orders the list of events according

to increasing time stamps. It is implemented as a priority queue using the heap data structure [23]. The

event list is initialised with certain known events and their associated times. The scheduler takes the top

event (with the smallest time stamp) and executes the actionassociated with the event. The virtual clock

of the simulation “jumps” to the time stamp of this event. Theexecution of an event might add more

future events to the event list. The scheduler repeats this process until the event list exhausted or the

virtual clock exceeds a predefined stopping time.

Statistic collection ALMSim collects a number of statistics for computing the desired performance

metrics. The statistic collector is integrated with the network structure. For examples, a stress collector

is associated with each physical link to count the number of duplicated data packets that flow over the

link; and each protocol agent keeps track of the number of control messages sent and received to measure

the protocol overhead.

Centralised algorithms In addition to the distributed protocols, we also investigate several centralised

algorithms in overlay construction. Examples are various heuristics for the degree-constrained minimum

cost and minimum delay tree problems (see Chapter 4). Each ofthese algorithms take inputs of the

network topology and the multicast members, and outputs an ALM overlay.

3.2.5.3 Validation Efforts

One major concern with simulation experimentation is the correctness of the simulation tool. We have

taken substantial efforts to validateALMSim.

ALMSim provides a detailed events and packets logging facility. This enables the user to inspect each

simulation step, and thus validate the running of the simulation engine as well as the overlay construction

techniques. For example, by comparing the step-by-step execution of an implemented proposal with its

original specification, we could verify the correctness of our implementation. For the various techniques

implemented, we also try to reproduce the results based on the published work and compare the results.

In some cases where faithful replication of the experimentsis impossible (e.g. due to the unavailability of

the topology and selection of the multicast members), we usereasoning to compare the observed results

with the expected behaviour of the technique.ALMSim is able to produce aNAM [3] formatted packet

events file.NAM is a popular network animator closely associated withns. It can be used to visualise

the communication patterns between the nodes. We typicallyuse this technique to identify quickly

misbehaving communication patterns (e.g. unnecessary packet looping) in a protocol, and resource to

the detailed events and packets logs to actually locate the error. Figure 3.3 shows an instance of NAM

2The evaluation event triggers the calculation of the performance metrics.
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Figure 3.3: An example showing an instance of NAM

running an animation for HMTP, on top of a 10 nodes network. Inthe network shown, circles represent

routers, box3 and hexagons represent the nodes with end systems.

3.3 Chapter Summary

In this chapter, we describe the system model used in this thesis. Our model assumes that multicast

members are end systems which directly take part in overlay construction and maintenance. We abstract

the bandwidth limitation at these members as the degree constraints. This requires the resultant ALM

delivery structure to be degree bounded. We also discuss thedesign of our simulation environment,

which includes the topologies, multicast group, performance metrics and the working ofALMSim, our

ALM simulator.ALMSim is used for all evaluations reported in this thesis.

3The boxed node is the first member of the multicast group.
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Chapter 4

GreedyMesh

This chapter presents a centralised greedy heuristic, called GreedyMesh, for the NP-complete minimum

diameter degree-bounded subgraph problem. The subgraph isin the form of a mesh, which serves as a

shared structure from which degree-bounded source-specific trees can be obtained.

The need for such an algorithm arises from our evaluation of distributed overlay building proposals.

We first recall that distributed proposals build ALM trees with only limited knowledge of the underlying

topology. Typically, the trees are degree constrained. Oneof the key performance metrics is the data

delivery delay from the source to the recipients. It is interesting to compare the delay performance of

these distributed proposals with an optimum or near optimumsolution using a centralised algorithm.

In Section 3.2.4.1, we have seen that the delay of an ALM overlay is judged based on two versions

of relative delay penalty (RAP and RMP), compared to the corresponding IP multicast tree. However,

IP multicast trees are formed directly by the underlying physical links, and are not concerned with the

degree limitation at the members. In other words, this does not provide a comparison with trees created

using overlay links, and subjected to members’ degree constraints. GreedyMesh provides an approximate

solution to create low delay degree-bounded source-specific trees. Hence, it is suitable for comparison

with distributed proposals for many-to-many multicasting.

The rest of this chapter is organised as follows. The next section provides a background on the mesh

creation problem, along with discussion on some related works. In Section 4.2, we present and analyse

GreedyMesh. In Section 4.3, we examine the performance of GreedyMesh by comparing it with another

centralised algorithm. Finally, Section 4.4 concludes this chapter.

4.1 Background

This section first formally describes the subgraph problem and discusses its NP-completeness, which is

followed by discussion on some related research.
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4.1.1 Minimum Diameter Degree-bounded Subgraph Problem (MDDSP)

The overlay network is modelled as an undirected complete graphG = (V, E), whereV is a set of

vertices representing the multicast members, andE = V × V is the set of edges. Each overlay edge,

e ∈ E, has an associated communication delay,c(e), and each vertex,v ∈ V of graphG, has an

associated degree constraint,dmax(v). The diameter of a graph is the maximum shortest path distance

between any two vertices via the graph. The minimum diameterdegree-bounded subgraph problem

(MDDSP) can then be stated as follows.

Given an undirected complete graphG = (V, E), a degree bounddmax(v) ∈ N for each

vertexv ∈ V and a costc(e) ∈ Z+ for each edgee ∈ E; find a subgraphG′ of G of

minimum diameter, subject to the degree constraints,dmax(v) for all v ∈ G′.

The NP-completeness of MDDSP can be proven by showing that the decision version of the prob-

lem — finding a diameter- and degree-bounded subgraph — is NP-complete. The diameter-bounded

subgraph problem can be viewed as the well-studiedk-spanner problem. Consider a connected graph,

G = (V, E). A subgraphG′ = (V, E′) is ak-spanner if for everyu, v ∈ V ,

dist(u, v, G′)

dist(u, v, G)
≤ k, (4.1)

wheredist(u, v, G′) denotes the distance fromu to v in G′ [52]. In other words, thek-spanner bounds

the diameter of the subgraph tok times the diameter of the original graph. The degree-bounded k-

spanner problem has been proven to be NP-complete by Kortsarz and Peleg in [52]. Hence, MDDSP is

also NP-complete.

4.1.2 Related Work

As discussed above, MDDSP is closely related to thek-spanner problem. In [52], Kortsarz and Peleg

consider a special case of a2-spanner with minimum maximum degree. They propose a probabilistic

algorithm that computes a2-spanner that has a maximum degree that is no more than∆1/4 times the

optimum solution, where∆ is the maximum vertex degree in the resultant spanner. The algorithm

involves solving an Integer Linear Program, which could be very time consuming. More importantly,

their algorithm does not try to honour the degree bound of each individual vertex, and thus is not suitable

for our purpose. Most studies onk-spanner consider thesparsityof the resultant spanner, where the

spanner has as few edges as possible. As explained by Kortsarz and Peleg, doing so may result in a

vertex with very high degree, which is undesirable for our purpose.

In [87], Shi et al. consider the problem of generating minimum diameter degree-bounded trees,

which is also NP-complete. The obvious difference between our problem and theirs is that they consider

a tree that must be loop-free, while our subgraph (mesh) can have loops. A tree is directly applicable
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for multicasting, while we need to first derive trees out of a mesh. Their algorithm is thus more suitable

for comparing ALM proposals that use a single tree, such as HMTP [109], TBCP [62], etc; while our

algorithm can be compared with proposals such as Narada [21]that create source-specific trees out of an

overlay mesh.

Shi et al. devise a greedy heuristic called Compact Tree (CPT) for the problem. CPT maintains a

partial tree,T , which initially contains only the tree root,r ∈ V . CPT then incrementally grows the

partial tree,T , until it includes all vertices. At each iteration, the new feasible edge (with one of its end-

points inT while the other one has yet to be included inT ) which provides the smallest increase in the

objective function (i.e. tree diameter) is added toT . An edge is feasible if adding it will not cause degree

violation of its two end vertices. The complexity of CPT isO(|V |3). Our GreedyMesh algorithm works

in a similar fashion to CPT, in the sense that it incrementally adds in new edges to a partial subgraph

until no more edges can be included.

In [60], Malouch et al. look at the problem of constructing a degree-bounded tree with given delay

bound, under a mixed end-systems and proxies network model.Their algorithm is quite similar in nature

to CPT, except that they try to minimise the delay from the root to its farthest descendant (root diameter),

rather than the delay between any two nodes on the tree (tree diameter). (Note that it is straightforward

to modify CPT’s optimisation objective so as to generate trees with small root diameters.) In [51],

Konemann et al. study the minimum root diameter degree-bounded tree problem. However, their solution

only attempts to bound the overall maximum degree, rather the degree for each individual vertex.

4.2 GreedyMesh Algorithm

This section presents GreedyMesh, our simple greedy mesh construction algorithm. The inputs to

GreedyMesh are the complete graph,G = (V, E) (which provides the complete distance matrix be-

tween the vertices), and the degree constraints for the vertices,dmax(v) ∀ v ∈ V . GreedyMesh outputs

a subgraph,G′ = (V, E′ ⊆ E) which fulfils the degree constraint at each individual vertex. Figure 4.1

illustrates the steps of the algorithm.

GreedyMesh starts with a minimally connected subgraph, i.e. a tree that spans all vertices. The initial

tree can be generated by any degree-bounded spanning tree algorithm. This will be explained shortly in

Section 4.2.1. After obtaining the initial subgraph,G′, GreedyMesh computes the spare degrees for all

vertices, as in lines 2 and 3. Next, GreedyMesh inserts the vertices that still have some spare degree

into an initially empty set,F . From line 7 onwards, GreedyMesh enters the main loop where new

edges are added intoG′ one at a time, until no more edges can be added. Within the loop, GreedyMesh

first obtains a vertex,u, from F . Our implementation simply selects a vertex fromF in a round robin

manner. Next, we calculate the set of delays fromu to all other vertices viaG′, using Dijkstra’s shortest

path algorithm [23]. From lines 10 through 16, we sum up the delay gain observed fromu to all other
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Algorithm : GreedyMesh Algorithm
Input: Complete graph G(V, E), Degree constraints dmax(v)
Output: Connected degree-bounded mesh, G′(V, E′), E′ ⊆ E, s.t. dmax(v) ∀ v ∈ V
GreedyMesh(G, dmax)

genDBST(G, dmax) := Generate a degree-bounded spanning tree from G subjects to dmax

getNode(S) := Get a node from the given set, S
sptAlg(u, G) := Compute the shortest path distances from u to all other nodes
dused(v) := Current used degree for vertex v
dspare(v) := Current spare degree for vertex v
F := Set of vertices with spare degree, dspare(v) > 0
Du := Set of shortest path delays from u to other nodes
Uu,v := Delay gain for u if a link to v is to be added

(1) G′(V, E′)← genDBST(G, dmax)
(2) foreach v ∈ V
(3) dspare(v)← dmax(v)− dused(v)
(4) F ← ∅
(5) foreach v ∈ V ∧ dspare(v) > 0
(6) F ← F ∪ {v}
(7) while |F|> 1
(8) u← getNode(F )
(9) Du ← sptAlg(u, G′)
(10) foreach v 6= u ∧ 〈u, v〉 6∈ E′ ∧ v ∈ F
(11) G′′ ← G′(V, E′ ∪ 〈u, v〉)
(12) D′

u ← sptAlg(u, G′′)
(13) g ← 0 /* g := gain */
(14) foreach w ∈ V \ {u}

(15) g ← g + Du(w)−D′

u
(w)

Du(w)

(16) Uu,v ← g
(17) b← arg max {Uu,v : ∀v ∈ F} /* 〈u, b〉 := edge with the largest gain */
(18) G′ ← (V, E′ ∪ 〈u, b〉)
(19) dspare(u)← dspare(u)− 1
(20) dspare(b)← dspare(b)− 1
(21) if dspare(u) ≡ 0
(22) F ← F \ {u}
(23) if dspare(b) ≡ 0
(24) F ← F \ {b}

Figure 4.1: The GreedyMesh algorithm

vertices, for each feasible edge incident fromu, when added toG′. The delay gain function is adopted

from Narada’s [21] utility function (see Figure 2.10). In line 17, we locate the edge,〈u, b〉 that gives

the largest delay gain. Line 18 inserts the edge intoG′. From line 19 through 24, we update the spare

degrees forb andu, as well as removing them fromF if necessary. Note that ifu fails to find a feasible

edge, it will also be removed fromF . Eventually, the algorithm terminates when there is only one vertex

in F , indicating that no more edges can be added.

The computed subgraph will be connected as long as the initial tree structure is connected. There are

two possible cases where a connected tree cannot be found [87].

1. The total available spare degree of the vertices is less than the minimum required degree, which

for a tree, is2× (|V | −1). This requirement can be easily calculated as follows: a tree has|V | −1

edges and each edge uses one incident edge at each of its two end-vertices. We could run a check

on the available degree of the vertices before running GreedyMesh.

2. During the creation of the tree, a vertex with a degree constraint of one (i.e. a leaf vertex) is added

to the tree when the total spare degree of all vertices in the partial tree is equal to one. This reduces
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the total spare degree of the partial tree to zero, hence no new vertices can be added to it. The tree

creation algorithm can alleviate this problem by keeping a count of the spare degree of the partial

tree, and defer the addition of a leaf vertex if it reduces thecount to zero.

For simplicity, our evaluation only considers vertices with degree constraint greater than or equal to 2.

4.2.1 Variants of GreedyMesh

In the GreedyMesh algorithm, there are a number possible ways to generate the initial degree-bounded

spanning tree, as represented by thegetDBST function in line 1. In Section 4.3, we examine the perfor-

mance implications of using three different initial tree structures: (i) random degree-bounded tree; (ii)

degree-bounded minimum spanning tree; and (iii) degree-bounded minimum diameter spanning tree.

• Random degree-bounded tree. We generate a random tree by growing a partial tree in an incre-

mental manner. Starting with an arbitrary vertex, we randomly pick a new feasible edge into the

partial tree until all vertices are in the tree. The random tree is used as the worst-case scenario to

compare the following more informed tree construction algorithms.

• Degree-bounded minimum spanning tree. This tree creation problem is also an NP-complete prob-

lem [50]. There have been many heuristic solutions for the problem. We consider a simple heuris-

tic [67], which is based on Prim’s algorithm for the (unconstrained) minimum spanning tree prob-

lem [23]. The algorithm starts with a partial tree containing an arbitrary vertex. At each iteration,

it adds the shortest new eligible edge to the partial tree (recall that we treat link delay as link cost).

The algorithm continues until all vertices are connected. The time complexity of the algorithm is

O(|E| log |V |). In the rest of this thesis, we will refer to the heuristic as dbMST.

• Degree-bounded minimum diameter tree. We use the Compact Tree algorithm (CPT) by Shi et

al. [87] to generate such a tree. We use the most central vertex, i.e. the vertex that has the smallest

distance to all other vertices, as the tree root. As mentioned in Section 4.1.2, the complexity of

this algorithm isO(|V |3).

4.2.2 Analysis of the Algorithm

This section analyses the time complexity of GreedyMesh. First of all, GreedyMesh calls for a degree-

bounded spanning tree algorithm to compute a connected subgraph. There are a number of possible

choices of degree-bounded spanning tree algorithm as explained in the previous section. For now, let us

assume that the running time of such an algorithm isO(λ).

Let ∆ be the maximum spare degree for all vertices in the initial subgraph. It is easy to see that the

mainwhile loop (line 7) runs for at most∆ |V | times. Each iteration executes a Dijkstra’s shortest

path algorithm calculation. By using a heap implementation, the Dijkstra algorithm has a run time of
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O(|E | log |V |) [23]. The firstforeach loop (line 10) runs at most|V | times, with each iteration

involving a Dijkstra shortest path calculation. Hence, therun time of the main loop can be calculated as

∆ |V | (|E| log |V | + |V ||E| log |V |) = O(∆ |V |2|E| log |V |).

Consequently, the overall running time of the algorithm isO(max{λ, ∆ |V |2|E | log |V |}). The

worst-case with∆ close to|V |, results in a run time ofO(max{λ, |V |3|E | log |V |}). However,

this is unlikely to happen in a practical environment, especially if the multicast members are end users’

machines.

4.3 Performance Evaluation

We first investigate the impacts of initial tree layout for GreedyMesh in Section 4.3.1. Section 4.3.2 then

compares GreedyMesh with source-specific trees generated with CPT.

We use the algorithms to build overlays out of a set of 1000-node topologies (see Section 3.2.2).

We have found that the performance trend of the algorithms stay quite similar across the topologies.

Hence, we only show results from a representative topology,i.e. TS1k-0 (see Table 3.1). A more

detailed investigation on the impacts of the underlying topologies can be found in Section 5.2.4. In the

experiments, the multicast group members are randomly chosen, and the group size ranges from 32 to

256. The degree constraint of each member is randomly assigned from a value between 2 to 10, using

a uniform distribution. As GreedyMesh is used to create source-specific trees, we only consider the

many-to-many data delivery model. With this, we assume thatevery member is a data source. For all the

results presented, each data point in the graph represents an average over 50 independent runs.

We judge the algorithms based on the quality of the overlays created, using the metrics introduced

in Section 3.2.4.1. To recap, RAP (RMP) represents the ratiobetween the average (maximum) delay

using the overlay and the average (maximum) delay obtained with direct unicast transmission; tree cost

ratio represents the ratio between the overlay tree cost andthe IP multicast tree cost; and finally, link

stress denotes the number of identical copies of a packet flows over a single physical link. For all these

metrics, the smaller the value, the better the performance.RMP also gives an indication of how well the

algorithms minimise the overlay diameter.

4.3.1 Impacts of Initial Tree Layout

We first consider the quality in terms of RMP for trees generated by the three tree generation algorithms.

Each of the trees is used as a bidirectional shared tree. Unsurprisingly, the result in Figure 4.2 shows

that their performance is in the following order: CPT gives the best RMP, which is followed by dbMST

and finally, the random tree. Note that the random tree’s RMP at group size 256, which is around 8.0, is

omitted to provide a clearer view of dbMST and CPT curves.

Figure 4.3 (a) to (d) compare the quality of GreedyMesh’s overlays based on the above three initial
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Figure 4.2: Delay performance of the tree generation algorithms

tree structures. From the figures, it is clear that the initial tree structure has a significant effect on the

resultant mesh. We can observe that meshes created from dbMST performs the best, which is followed

by CPT and finally the random tree, in all the performance metrics considered. Comparing the RMP

performance with Figure 4.2, we can see the extra links addedby GreedyMesh indeed improves the

original structures’ delay. In particular, averaged over all group sizes, GreedyMesh improves upon CPT

by 14.7%, dbMST by 38.1% and random tree by 59.4%, respectively.

To explain the observation, we first consider CPT. CPT is designed to create low diameter trees. To

do so, it incrementally grows a partial tree by adding new vertices that result in the smallest increase in

tree diameter. Let us assume that all edges have unit weight,i.e. the distance between each node-pair

is one. We can see that CPT will grow the partial tree level-by-level: starting from the root,r, it first

adds vertices to becomer’s children; oncer has used up all of its spare degree, the algorithm will try

to add new vertices tor’s children, i.e. the next level of the tree. The process continues from one level

to the next level, until all vertices are in the tree. Hence, the resultant tree will have a compact structure

where vertices at higher levels (close tor) are full of children. In our experiments, the edges have widely

different weights. But generally, trees generated by CPT will still have a compact structure. The compact

structure, when used in GreedyMesh, allows few edges to be added to vertices at higher tree levels. In

other words, new edges are mostly introduced to connect a leaf or vertices near the leaf, which results in

little delay gain. This can be confirmed from the smallest RMPimprovement (14.7%) observed above.

The dbMST on the other hand tries to connect the vertices using all the shortest edges. In this way, the

tree clusters together vertices that are topologically close. This results in a small delay between vertices

that are in a “cluster”. The extra edges introduced by GreedyMesh then help to reduce the distance

between vertices in different clusters, and this results inan overall low delay mesh. The inclusion of

many short links also explains the better tree cost ratio andlink stress performance.
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Figure 4.3: Comparing variants of GreedyMesh algorithm

Finally, in the random tree structure, edges are added arbitrarily. It is possible that some of the edges

connect vertices that are far apart, which results in many ineffective triangles (see Section 2.2.3) in the

tree. Hence, it gives the worst performance.

4.3.2 Comparison Study

We are not aware of any other algorithm that attempts to create low diameter degree-bounded meshes

like GreedyMesh. The closest candidate is an algorithm for the low diameter degree-bounded tree, such

as CPT. In the previous section, we have shown that GreedyMesh could improve upon the shared trees

generated by CPT. To provide a fairer comparison, we use CPT to generate a set of source-specific trees

for each member. For example, for a group of 32 members, we compute 32 compact trees rooted at

each member. With a source-rooted tree, we would like to minimise the root diameter, instead of the

tree diameter which is more appropriate for shared tree datadelivery. We thus modify the original CPT
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Figure 4.4: Comparing GreedyMesh with nCPT

such that when adding a new vertex to the partial tree, the vertex that results in the smallest increase in

the root diameter is chosen. We will refer to this version of CPT as nCPT. For GreedyMesh, we use the

dbMST to create the starting tree structure.

Figure 4.4 (a) to (d) depict the comparison results. For RMP,it is clear that GreedyMesh significantly

outperforms nCPT. In terms of RAP, the performance advantage of GreedyMesh diminishes with the

group size. It is worth noting that GreedyMesh creates treesthat are limited by a shared mesh. On the

other hand, trees generated by CPT are independent of each other. Potentially, for a multicast group,

the total number of links used by CPT’s trees will be more thanthose of GreedyMesh’s mesh. To prove

this, we plot the total number of unique overlay links used byGreedyMesh and nCPT in Figure 4.5. For

GreedyMesh, this is the number of links contain in its mesh overlay; for nCPT, it is the total number of

unique overlay links used by all the source-specific trees. The figure also shows the result for a shared

tree, denoted as SharedTree. Obviously, SharedTree uses the smallest number of links, i.e. one less than
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Figure 4.5: Number of links used by a shared tree, GreedyMesh’s mesh and nCPT’s source-specific trees

the group size. The results clearly confirm that nCPT uses significantly more links than GreedyMesh.

We omit the data point for nCPT at group size 256 (which is around 10000) for the sake of GreedyMesh

and SharedTree results. The advantage of having fewer linksis that it is more manageable, if the overlay

is to be used in a real-world environment. Traditionally, having more links is often considered as a way

for load sharing. However, this benefit is unclear in the caseof overlay networks. This is because each

overlay link potentially traverses multiple physically links, and it is possible that the traffic flowing over

different overlay links will be mapped onto the same physical links.

In terms of the tree cost ratio (TCR) and link stress, it is clear that nCPT results in poorer resource

usage and larger link stress. This is because GreedyMesh is based on the minimum spanning tree, hence

consists of a large number of short overlay links between themembers. We recall that we defined tree

cost as the summation of the delays of the overlay tree links.Thus, short links reduce the tree cost. In

addition, the shorter an overlay link, the smaller the likelihood that it traverses multiple physical links;

hence this reduces the chances of packets duplication.

Note that RMP, RAP and TCR are relative values. While their curves show an inconsistent growth

trend (i.e. up-and-down), the absolute tree cost and overlay delays observed (not shown here) actually

increase with the group sizes.

4.4 Chapter Summary

This chapter presents GreedyMesh, a greedy heuristic for the minimum diameter degree-bounded sub-

graph problem. From the resultant subgraph, we could derivea source-rooted tree for each vertex. Thus,

it is suitable as a benchmark for distributed ALM proposals that use source-specific trees for many-to-

many multicasting, e.g. Narada. GreedyMesh will be used in our comparison study in Chapters 5 and 8.
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GreedyMesh could also be used in a centralised ALM proposalssuch as ALMI [72] to create small-scale

low delay overlays. In such a case, the overlay members may need to implement a routing protocol to

obtain the delivery trees.

GreedyMesh grows a subgraph incrementally, beginning froma degree-bounded tree. The tree can

be generated by any existing degree-bounded tree creation algorithm. The initial tree structure has signif-

icant impacts on the quality of the resultant subgraph. We have found that the degree-bounded minimum

spanning tree provides the best starting structure. We alsoshow that GreedyMesh performs well com-

pared to source-rooted trees created by the Compact Tree algorithm.
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Chapter 5

A Performance Comparison of

Existing ALM Protocols

In Chapter 2, we reviewed a number of distributed ALM proposals which lead to a variety of choices

in creating and optimising multicast overlays. It is essential to understand the strengths and weaknesses

of these existing proposals. Previous studies of the performance of these techniques either consider

only a small number of approaches (e.g. [7]), or techniques that exhibit a similar nature (e.g. [47, 17]),

or merely provide high-level descriptive comparison (e.g.[29, 6]). More importantly, as most of the

proposals were evaluated under different assumptions and simulation settings, it becomes difficult to

relate the effectiveness of the techniques.

As described in Chapter 3, we represent the bandwidth limitation of the nodes by creating degree

bounded overlays. This narrows down our focus to two widely considered metrics: tree cost and delay.

As described in Section 2.2, tree cost indicates the networkresource consumed by an overlay tree. Hence,

a low cost tree is suitable for bulk data transfer. On the other hand, delay is important for applications that

require timely delivery. In this chapter, we conduct a detailed performance comparison of several tree

cost and delay optimised protocols, under a uniform simulation environment (Chapter 3). The chosen

proposals represent the different classes discussed in Chapter 2.

This work provides the first step towards improving and/or designing distributed proposals that create

low delay and low cost ALM trees. The experiments were designed for two main purposes: to understand

the properties of different proposals and to compare the quality of the overlays built by them. The results

and observations found in this chapter lead to the development of our own proposals in later chapters.

Some general findings are also applicable to other work on self-organising overlay creation techniques.

The rest of this chapter is structured as follows. In the nextsection, we first discuss the chosen

proposals. We then report the observed results along with the analysis in Section 5.2. Section 5.3

positions this work with some other studies. Finally, Section 5.4 concludes this chapter.
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5.1 Proposals Considered

The selected proposals are HMTP [109], AOM [104], variants of switch-trees [43] (which includes a vari-

ant of HostCast [57]), Banerjee et al.’s scheme [9], NICE [7], TBCP [62], Narada [21] and Scribe [15],

and this selection is shown in Figure 5.1. (Note that BTP is a specific version of switch-trees that

uses one-hop switching.) These proposals capture the diversity in overlay construction, optimisation

and maintenance. Specifically, HMTP, AOM, switch-trees variants, Banerjee et al.’s scheme, NICE and

TBCP all follow the tree-first approach. Within this group, we have both distributed transformation and

the localised central arrangement techniques (Section 2.6.1). In addition, NICE’s cluster-based hierar-

chical structure opens another avenue for comparison. For the mesh-first approach, Scribe and Narada

represent the structured and unstructured mesh-based proposals, respectively. There are several reasons

why we choose Scribe from the many proposals in the same class. First, it can impose strict degree

constraints on the nodes, unlike the Delaunay triangulation [58] and LARK [49] protocols. There is also

little significant differences between Scribe and Bayeux [112]. Finally, it has been shown to out-perform

CAN-multicast [17].

In the next subsection, we discuss issues related to parameter settings and the implementation of

the chosen proposals. We refer the reader to Chapter 2 for detailed description of the proposals. In

Section 5.1.2, we provide a naming system for the proposals to ease the discussion.

Tree−first Mesh−first

Dist. Transformation Localised Central
Arrangement

Unstructured Mesh Structured Mesh

DHT−based Delaunay 
Triangulation 

Clique−based

Narada
Gossamer

Scribe
Bayeux
SplitStream
CAN−multicast

Yoid

HostCast
AOM

TMesh

DT Protocol

LARK

TBCP
NICE
ZIGZAG

HMTP
Switch−trees + BTP

SHDC
Overcast

ACDC
Banerjee et al.’s scheme

Distributed Approach

Figure 5.1: Selection of proposals in our comparison study

5.1.1 Parameter Settings, Implementation and Enhancements of the Chosen Pro-

posals

For the aforementioned proposals, there are a number of configurable parameters that may affect their

performance. Two common parameters that can greatly affectthe overlays built are the frequency of the

overlay improvement process and the members’ degree-bounds. To provide a fair comparison, similar
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parameter is used when possible. For instance, all distributed proposals use an overlay improvement

period of 30 seconds. Unfortunately, not all proposals produce overlays that fulfil the given degree-

bound. In particular, Narada and NICE. This, and some other proposal-specific settings will be discussed

in the following subsections.

We have tried to implement the chosen proposals based on their original specifications. However,

for some proposals, we have made some modifications that simplify the evaluation, while preserving the

original characteristics of the proposals. The following discussion also include enhancements that we

have made to TBCP.

5.1.1.1 NICE and Narada

The implementation of NICE [7, 8] and Narada [21] is adapted from themyns simulator [66], which

was used by Banerjee et al. in [7, 8]. We have ported the originalC++ code to ourJava-basedALMSim.

NICE NICE builds an overlay in the form of multiple level clusters. The size of each cluster is con-

strained in the range ofk ≤ size ≤ 3k−1, wherek is an user-defined parameter. Unlike most proposals,

the maximum fan-out of a NICE node can be as high as(3k − 1) log3k−1 n, for ann-node overlay. In

the experiments, we typically setk to 3 (as in [7, 8]), which results in a maximum cluster size of 8.

Narada Narada builds an overlay mesh, and creates a separate tree for each of the members using

the path-vector routing protocol and reverse path forwarding technique. As described in Section 2.6.2,

Narada improves upon the mesh with an aid of a utility function (Figure 2.10). A node will add a new

mesh link if the utility of the link exceeds a given threshold, while an existing mesh link is dropped if

its consensus cost is less than a drop threshold. In [21], Chuet al. recommend that the add threshold

is calculated as a function of the group size, and of the available and maximum degree of the nodes

involved. On the other hand, the drop threshold must be less than or equal to the add threshold to avoid

dropping and adding a link immediately. We experimented with several possible functions, such as

max{fx, fy}, max{f∗
x , f∗

y},
n

max{fx,fy}
, n

max{f∗

x ,f∗

y } , n
(fx+fy)/2 , n

(f∗

x+f∗

y )/2 , and some other permuta-

tions of these functions, wheren is the group size,x andy are the nodes involved, andfx, f∗
x , fy and

f∗
y are the available and maximum degree ofx andy respectively. We found that, on average, as long

as the functions yield thresholds that are of the order of thedegree of the nodes, they result in similar

performance. In our experiments, we calculate the add threshold as n
max{fx,fy}

, while the drop threshold

is half of the add threshold.

Narada allows each individual node to decide its own maximumdegree bound. However, the actual

degree of a node (i.e. the number of overlay links keeps by a node) is regulated based only on the

configuration of the add and drop thresholds, as explained above. Obviously, a node could strictly enforce

the degree bound by accepting new links only while it still has sparse degree. Strictly enforcing the
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degree bound has two drawbacks. First, it limits the degree of freedom in overlay reconfiguration, and

could lead to a less efficient overlay structure. Secondly and more importantly, it could result in mesh

partition, as pointed out by Banerjee et al. [7]. We have implemented two versions of Narada:

• Narada: This version regulates the degrees of the nodes solely based on the configuration of the

thresholds.

• Narada-SD: This version tries to strictly enforce the degree bound — a node will reject addition

of new link if it has reached its degree bound.

We have indeed found that Narada-SD occasionally causes partitioning in the mesh, while Narada

causes some nodes to have excessive links. This will be discussed in more detail in Section 5.2.2

5.1.1.2 HMTP Variants

We have implemented two versions of HMTP [109] which differ only in the joining strategy. The first

version simulates the original HMTP as described in Section2.3.1.2. Specifically, newcomers first con-

tact the tree root, and then use its greedy depth-first search(DFS) technique to find the best attachment

point. In the second version, the newcomers begin the DFS from a randomly selected on-tree node. The

reason for doing so is to understand the efficiency of HMTP’s DFS in locating nearby nodes for tree cost

minimisation (see Section 5.2.5).

5.1.1.3 AOM

AOM [104] provides three conditions (Equation 2.2 to 2.4) for nodes to decide if a switch-parent oper-

ation is beneficial. These conditions are weighted by two parameters:α andp (where0 < α < 1 and

p > 0), and are reproduced as follows,

• Eq. 2.2:d(C, B) ≤ α× d(C, A)

• Eq. 2.3:D(B, root) ≤ D(C, A, root)

• Eq. 2.4:D(C, B, root) ≤ (1 + p)×D(C, A, root)

whereC is the node performing a switch, whileA andB areC ’s current parent and potential parent,

respectively. The value ofα determines how much closerC is to B compared to the distance between

C andA. The smallerα is, the closer the distance betweenC andB needs to be. On the other hand,

the value ofp determines the degree of degradation in overlay delay measured from the root thatC is

willing to sacrifice ifC switch fromA to B. The larger the value ofp, the larger the delay penalty. In

our experiments, we setα = 0.9 andp = 0.2, following [104].
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Figure 5.2: Switch-1hop and switch-2hop

5.1.1.4 Switch-trees Variants

In switch-trees [43], each node,i (except ifi is the tree root) performs distance measurement to nodes

within a predefined (local) search scope, and may switch to one of the node (sayj) if j provides better

performance thani’s current parent (in terms of tree cost or delay). In [43], Helder et al. propose

four variants of switch-trees algorithms: switch-sibling, switch-1hop, switch-2hop and switch-any (see

Section 2.6.1), each with a different search scope. Of thesealgorithms, we consider only switch-1hop

and switch-2hop. First, the switch-sibling’s local scope differs from the switch-1hop’s scope only by

one node (see Figure 2.5), and it has been shown to have poorerperformance [43]. On the other hand,

switch-any considers all non-descendant nodes as targets,and thus is not practical.

Assume that the maximum number of neighbours (parent and children) of any nodes in the tree is

given by∆. Consider Figure 5.2, we can estimate the size of the search scope for switch-1hop and

switch-2hop as follows.

• Switch-1hop:∆, calculated as 1 (fori’s grandparent) +(∆− 1) (for i’s siblings)

• Switch-2hop:∆2+∆, calculated as 1 (fori’s great grandparent) + 1 (fori’s grandparent) +(∆−1)

(for i’s uncles) +(∆− 1) (for i’s siblings) +(∆− 1)∆ (for i’s siblings’ children)

From the above, we can see that the size of switch-2hop’s search scope could grow rather large. For

instance, a∆ of 10 will result in a scope size of 110. First, for an end-hostonly ALM system, we would

expect the members have differing degree constraints, which are typically small. More importantly, an

implementation can limit the number of measurements based on the changes of nodes within the scope.

In addition to the two local scopes considered, we have implemented a version where a switching

node considers a randomly selected non-descendent node as target. This can be achieved by using the

tree random walk technique proposed by Francis et al. (see Section 2.6.1.1). We call this versionswitch-

random. Hence, we can compare this with the efficiency of using localised switching.

An Extension An obvious extension to the above is to combine both localised and random approaches.

To achieve this, we interleave both approaches during the course of the multicast session. Specifically, we

interleave them probabilistically with an exponential distribution such that more local switching is done

in the early stage, while more random switching is involved as the time proceeds. The intuition behind
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i := The number of improvement rounds. Initially, i = 0
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Figure 5.3: Selection of local region or random node selection technique
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Figure 5.4: The distribution of function,f(b) = b−i/b, for different values ofb

doing so is to improve the overlay quickly using local transformation, and let the random searching to

further explore the search space to yield better improvement.

When a node is carrying out the improvement process, it selects between the approaches (local-

scoped selection and random selection) with a probability of b−i/b, whereb is the exponential base and

i is the number of improvement rounds that the node has performed thus far (see Figure 5.3). Figure 5.4

depicts the distribution of the function for three values ofb: 10, 100 and 1000. It is easy to see that

the function favours local-scoped selection during the early stage, however, as the time proceeds, more

random selection will be used. The curve for smallerb (e.g. 10) also indicates that the chance of using

local-scoped selection diminishes very quickly. To avoid this,i is reset to its initial value when it reaches

b.

Henceforth, we will refer to this mixed local and random version as LR. Our evaluation includes the

1hop and 2hop versions of switch-trees for this extension. Unless specified otherwise, we present results

obtained withb = 20. The impact of the values ofb will be studied in Section 5.2.1.1.

Joining Strategies As the switch-trees algorithms are only concerned with the overlay improvement

process, we consider the following three simple joining strategies.

1. Root-first. This is similar to the approach taken in [43]. In this strategy, all newcomers first

attach themselves to the tree root. Due to this, the root may quickly exceed its fan-out capability.

To enforce the degree bound for the root, the root will force some of the nodes to switch to new

parents in their first periodic improvement round. The offloading decision is based on the distances

between the root and the nodes. In particular, the root will try to keep nodes that are close to it.
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2. Next-available. In this variant, the DFS is used by newcomers to locate an unsaturated on-tree

node as quickly as possible. Like HMTP, a newcomer begins thesearch from the tree root, and at

each level of the search the nearest branch will be considered. Unlike HMTP, the newcomer will

attach to the first feasible parent that it has found, rather than carry on the search for an optimal

position. Hence, this approach somehow simulates the joining strategy in HostCast.

3. Random. In this variant, a newcomer attaches itself to a randomly selected on-tree node. This

serves as the worst-case scenario in which the distance information about the existing overlay and

members is not available.

Each switch-trees algorithm implemented can be used to minimise the tree cost or root-diameter as

described in Section 2.6.1. To overcome the triangle problem, we include a promotion operation (see

Figure 2.4 (c)) in the protocol. In other words, our version of delay-based switch-2hop that uses the

next-available joining strategy can be viewed as a variant of HostCast. In fact, as switch-2hop considers

more switching targets than HostCast, we expect it to perform better than the original HostCast.

5.1.1.5 Banerjee et al.’s Scheme

The original scheme proposed by Banerjee et al. [9] is intended for a proxy-based system. In such

a system, the end hosts attach to their respective nearest proxies, which self-organise into a multicast

overlay. Their scheme is applied to build the proxies overlay, aiming at minimising the average latency

observed by the end hosts. In our study, we focus on the technique uses to construct the multicast overlay,

where all members actively participate in the overlay creation process. Due to this, a more suitable

optimisation metric is the maximum latency from the root to all other members, i.e. root-diameter. This

is also in line with the objective of other tree-based delay-optimised protocols, e.g. switch-trees and

HostCast.

In the original Banerjee et al.’s scheme, newcomers are firstcentrally arranged into an overlay tree

by the root proxy. While this centralised approach is suitable for more powerful proxy machines, it may

not be feasible in an end-host only environment. For this reason, we consider two of the distributed

joining strategies discussed above, i.e. next-available and random. We note that the root-first strategy

is not used as it is in conflict with the transformation strategies used in their scheme. Specifically,

most transformations require the knowledge of a grandparent, which is not available when all nodes are

directly attached to the root.

In our implementation, each node maintains the delay from the root to itself as well as the maximum

subtree delay (i.e. the delay from the node to its farthest descendant), as in the original scheme. Pe-

riodically, a node tries to perform a local transformation or random swapping that improves the delay

from the root and does not increase the maximum subtree delay(see Section 2.6.1). A node performs the

random swapping with a small probability,p. For local transformation, the node will choose of all the
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Figure 5.5: Banerjee et al.’s scheme: an example of random swapping

potential transformations, the one that provides the largest delay gain. For random swapping, the node

may still perform the swap even if it does not bring any delay gain. Figure 5.5 (a) shows an example

where nodex is trying to swap position with a randomly selected node,y, so as to achieve the configu-

ration in Figure 5.5 (b). Nodez is the least common ancestor ofx andy, while a andb are the parent of

x andy respectively. Let the increase of the maximum subtree delayof z, ∆, be as follows1:

∆ = (D′
z,x −Dz,x) + (D′

z,y −Dz,y) (5.1)

whereD′
z,x andD′

z,y denote the delays fromz to x andy respective along the overlay if the swapping

is performed, andDz,x andDz,y denote the same prior to the swapping. Banerjee et al. use a simulated

annealing based technique to decide probabilistically when to perform the swap operation. Specifically,

the swap operation is performed: (i) with a probability of 1 if ∆ < 0; and (ii) with a probability of

e−∆/T if ∆ ≥ 0, whereT is the “temperature” parameter of the simulated annealing technique. It is

easy to see that the probability of the swap gets exponentially smaller with increase in∆. On the other

hand, increase inT increases the probability of the swap.

In [9], Banerjee et al. show that random swapping can offer animprovement to their solution (for the

problem of minimising the average latency). We have conducted some experiments to study the impacts

of random swapping for our current objective function — minimising the root-diameter. We ran Banerjee

et al.’s scheme (using the next-available joining strategy) with different values of the probability of using

random swapping,p (0.00 for no random swapping, 0.02, 0.05 and 0.10), and the temperature parameter,

T (5, 10, 20, 100, 500, 1000, 2000, . . . , 5000)2. The detailed simulation settings will be explained in

Section 5.2.

We consider the delay performance in terms of RMP, which gives an indication of how well the

proposal provides low root-diameter trees (see Section 3.2.4.1). In Figure 5.6, we show a representative

result obtained withp = 0.10 and different values ofT , as well as a version that does not use random

swapping (i.e.p = 0.0). Results with other combinations ofp andT are quite similar, and thus are

omitted. We can see that for small group size (32 nodes), all versions with random swapping performs

1Equation 5.1 is adapted from the corresponding equation used in the original Banerjee et al.’s scheme [9].
2In [9], Banerjee et al. usedp =0.02, 0.05 and 0.10;T = 5, 10 and 20.
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Figure 5.6: Banerjee et al.’s scheme: performance with and without random swapping

better than the version without it. The advantage of using random swapping diminishes as the group

size increases. For the largest group size considered (256 nodes), the version without random swapping

actually outperforms those with random swapping. Overall,the results show the probabilistic swapping

gives poorer average performance in the experiments. Following this, we consider variants of Banerjee

et al.’s scheme that use only local transformation.

Aside: Implementation of Switch-tree and Banerjee et al.’sscheme For both switch-trees and

Banerjee et al.’s scheme, in order to capture the main properties of the schemes while avoiding com-

plication in distributed tree maintenance (e.g. looping and partitioning problems), we use a flow-level

approach for the transformation process. Specifically, when a node (sayx) has successfully chosen a

new parent (sayy), the simulator directly reconfigures the connections between the nodes involved:x is

detached from its current parent, and a link is established betweenx andy. We note that the detailed tree

maintenance procedures are not given in [43] and [9].

5.1.1.6 TBCP

We recall that TBCP [62] uses a changeable score function to identify the best overlay configuration for

nodes within a small region. In addition, a domain-based concept is used to organise nodes from the

same domain under the same subtree.

In our implementation of TBCP, we have excluded the domain-based technique from TBCP’s tree

building procedure. This is because the main interest of this work is to understand and compare the

efficiency of different overlay construction strategies employed by various proposals. TBCP’s domain-

based technique can easily be adapted for other proposals. In addition, the technique requires the tree

root to keep track of all the domains that participate in the overlay. This may cause a scalability concern
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Figure 5.7: TBCP: dominant link,〈P, A〉, in local configuration

about the protocol.

In [89], we propose two enhancements to the TBCP basic tree building procedure: (i) a tie-breaking

rule; and (ii) a new score function.

Tie-breaking Rule TBCP’s original score function, Equation 2.5, is designed to achieve a low delay

tree by organising nodes within the local region into a configuration that yields the smallest maximum

overlay delay. It is easy to see that there may be more than oneconfiguration that will provide the same

minimum score value. This can happen when the overlay distance between two nodes dominates the

other distances, as illustrated by the example in Figure 5.7. In the figure, the local region consists of node

P , its children, nodesA, B andC, and nodex, the newcomer. Let us assume that the minimum overlay

distance of all potential configurations is equivalent to the distance betweenP andA. For example,

the configurations in Figure 5.7 (b) are equivalent in terms of score value, and thus are all potential

solutions. In such a case, TBCP will favour configurations resulting in the newcomer “moving”, to

provide stability for already joined nodes. Then, if there is more than one possible configuration, the tie

is broken arbitrarily.

We propose a new tie-breaking rule based on the configurationcost, which for a configurationi is

given by

configuration cost, C(i) =
∑

∀e∈Ei

d(e) (5.2)

whereEi is the set of overlay links in configurationi andd(e) is the delay value of overlay linke. This

function can be easily computed byP . The configuration with the smallest cost will be chosen. Referring

to Equation 2.1 (overlay tree cost=
∑

∀e∈ET
d(e) whereET is the set of overlay links in the tree), we

can see that Equation 5.2 is essentially a scaled-down version of the tree cost metric. In other words, our

tie-breaking rule favours the configuration that consumes the least network resource.

However, there are other possible ways to break the tie. For example, one may choose to break

the tie by comparing the distances between two configurations in a lexicographic order. In this case,

we first sort the overlay distances fromP to other nodes in a configuration in a non-increasing order.

For two configurations with equal score value, we compare each of their next largest overlay distances.
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Figure 5.8: TBCP: sequence of tree construction steps

The configuration that gives the first smaller distance will be chosen. Even if this or other choices may

performs better than our new tie-breaking rule, we argue below that, TBCP’s original score function

(Equation 2.5) is not suitable for tree-wide delay optimisation.

New Score Function The following discussion is based on the example given in Figure 5.8. In the

figure, we show a sequence of hypothetical TBCP tree construction steps. First, panel (a) shows that a

newcomer,x, is joining to the tree rooted atP . Let us assume that each node has a maximum fan-out of

3 and the local region distance matrix is as shown in panel (b). According to Equation 2.5,P will select

the configuration with the smallest maximum overlay delay. It is easy to see that the best configuration

is the one with a score of 10 as in panel (c). Panel (c) also shows that another node,y is joining the tree.

Panel (d) depicts the new local region distance matrix. Notethat nodeC is not included in the current

local region as it is not a direct descendent ofP . Now, the best score of 10 can be achieved with the

configuration as depicted in panel (e). However, if we look atthe tree as a whole, we can see that the

maximum overlay delay is 16 (provided by the branch forms by nodesP , x, y andC), which is obviously

not the best possible solution. The problem gets worse as thenumber of members increases.

The above observation suggests that a score function that greedily try to minimise the delay in a local

region is not suitable for tree-wide delay optimisation. Obviously, the limitations of the score function

could be overcome by using a larger scope. However, this increases the complexity and reduces the

scalability of the original approach.

With the above observation in mind, we propose an alternative function which minimises the oc-

currence oftriangles in the overlay, rather than focusing directly on the delay metric. As described in

Section 2.2, triangles play a vital role in delay and cost optimisation. Our function prevents the formation
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of an ineffective triangle in a local region when a new node isintroduced into the region. To explain the

function, we first refer back to Figure 2.8. From the figure, wecan observe that each of the potential

configurations has at most one overlay branch that can form a triangle. Our function evaluates only the

affected branch. Now, consider the configuration in Figure 5.9 where nodeP is the potential parent

which forms a triangle withx andy. The score function for a configurationi can now be given as,

score(i) =
d(P, x) + d(x, y)

d(P, y)
(5.3)

With this, the best configuration is the one that provides thesmallest score. If there is a tie, the configu-

ration cost will again be used.

Let return to the example in Figure 5.8. Now, consider the newfunction given in Equation 5.3.

Initially, when nodex joins the overlay, two configurations give the best score: configuration that consists

of branch involves nodesP , x andA and configuration with branch involves nodesP , x andB. As both

configurations provides similar score and cost (i.e. score= 10+2
10 = 1.2 and cost= 12), P will randomly

choose one of them. Assume that the branch forms byP , x and A is chosen. Applying the same

procedure fory results in configuration (f), which gives a maximum delay of 12. By taking the overlay as

a whole, one can determine that an optimum solution has a maximum delay of 10 (e.g. the configuration

in panel (g), assuming thatd(y, C) ≤ 9). However, this requires the knowledge of all members, which

is not feasible as nodes may join at different times. Moreover, comparing the configuration in panel (f)

and (g), we can see that our solution results in lower tree cost (i.e. 28 versus 30 +d(y, C)).

Figure 5.10 plots the comparison of delay in terms of RMP and tree cost ratio (see Section 3.2.4.1)

for various group sizes, for the following three variants ofTBCP (the detailed simulation settings will be

explained in Section 5.2):

• TBCP (Original). This version uses the original score function and breaks the tie arbitrarily.

• TBCP (Original + Tie-break). In this version, on top of the original score function, we use the

configuration cost to break the tie.

• TBCP (New Function + Tie-break). This version uses the proposed new score function (Equa-

tion 5.3), and uses the configuration cost to break the tie.
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Figure 5.10: TBCP: comparing the variants

From the result, it is clear that our new score function provides a substantial improvement in both

metrics. Interestingly, a noticeable gain can be observed by a simple modification to the tie-breaking rule.

More analysis regarding the performance trends under various group sizes will be given in Section 5.2.

Henceforth, we will use TbcpD to refer to the above-mentioned TBCP (New Function + Tie-break).

We also use TbcpC to represent a version of TBCP that takes theconfiguration cost (Equation 5.3) as the

score function. This is to investigate if the function is suitable for tree cost minimisation. The suffixes

“D” and “C” indicate the optimisation objective (delay or tree cost) of the protocol.

5.1.1.7 Scribe

Scribe constructs multicast trees on top of overlays built with Pastry [81], an efficient peer-to-peer routing

and object location protocol (see Section 2.6.2). Pastry’soverlays have been shown to exhibit good

locality properties, i.e. a message can be routed from one node to another node with small relative delay

penalty, and Scribe has utilised these properties to connect nodes that are topologically close together

into a tree.

Instead of implementing the whole Pastry-Scribe protocol suite, our Scribe implementation only tries

to capture the properties of the resultant overlay. We buildScribe trees in the following manner. When

a newcomer, sayx, joins a session, we attachx to the nearest on-tree node, sayy. Essentially, this

simulates an ideal Pastry routing. Then, ify finds that addingx violates its degree bound,y will execute

the “bottleneck remover algorithm” as suggested in Scribe.Specifically,y drops its farthest child, which

will be redirected to one ofy’s remaining children. Once attached to the tree, a node periodically rejoins

the tree with the above procedures to improve its on-tree position. This is to simulate the self-organising

capability of the protocol.

78



CHAPTER 5. A PERFORMANCE COMPARISON OF EXISTING ALM PROTOCOLS

5.1.2 Naming of the Protocols

For ease of exposition, we classify the protocols into two classes: cost-optimised protocols (CoPs) and

delay-optimised protocols (DoPs), as shown in Table 5.1.

In the table, we name the variants of switch-trees and Banerjee et al.’s scheme using the following

convention:<join-strategy><transformation-type><optimisation-metric> where join-strategy refers

to one of theRoot, Na (next-available) andRandom; the transformation-type refers to one of the1Hop,

2Hop, Random, LR (mixed local and random node selection) andBanerjee; finally, the optimisation-

metric is eitherD (delay) orC (cost). As Banerjee et al.’s scheme only has the delay version, the suffix

“D” is omitted. For example, Root1HopC refers to the cost-optimised version of switch-trees that uses

the root-first joining strategy and one-hop switching, while NaBanerjee refers to a version of Banerjee et

al.’s scheme that uses the next-available joining strategy. Scribe is regarded as a CoP as its overlay trees

are formed by placing close-by nodes together. We note that NICE is included in both categories, as its

overlays provide a compromise between these two metrics, aswill be explained in the next section.

The table also includes several centralised algorithms: dbMST (degree-bounded Minimum Spanning

Tree), CPT (Compact Tree) and GreedyMesh (see Chapter 4). These algorithms help us to understand

how well the distributed approaches perform in comparison with techniques that utilise global know-

ledge. We note that two versions of CPT were used: (i) a version that minimise the tree diameter for

many-to-many multicasting; and (ii) a version that minimise the root-diameter for one-to-many multi-

casting.

Cost-optimised Protocols (CoPs) Delay-optimised Protocols (DoPs)

1. Variants ofswitch-trees: 1. Variants of switch-trees:
{Root,Na,Random}{1Hop,2Hop,Random,LR}C {Root,Na,Random}{1Hop,2Hop,Random,LR}D
2. HMTP 2. Banerjee et al.’s scheme:{Na,Random}{Banerjee}
3. TbcpC 3. TbcpD
4. AOM 4. Narada
5. Scribe 5. CPT
6. dbMST 6. GreedyMesh
7. NICE

Table 5.1: Protocols considered and their naming

5.2 Results and Analysis

This section reports the results of our performance evaluations, which serve two main purposes: (i) to

compare the quality of the overlays built; and (ii) to understand the properties of the different techniques.

The experiments were run with nine 1000-node networks, generated by the Transit-stub, Waxman

and power-law models as described in Section 3.2.2. (A subset of these experiments was also run on

some 2000- and 10000-node topologies [90, 92].) The multicast members are selected randomly from

the network nodes, as discussed in Section 3.2.3. Unless specified otherwise, we use the following
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Parameter Settings

Topology Transit-stub, Waxman and Power-law graphs with 1000 nodes.
Group size 32, 64, 128 and 256.

Simulation duration
Multicast members join the session within the first 50 seconds,
then the simulation stops when the overlay has stabilised.

Max. fan-out (per node)
2 – 10, drawn from either a uniform or a truncated binomial
distribution. For NICE,k = 3.

Overlay improvement period
(per node)

30 seconds.

Number of runs per scenario 50.
AOM specific parameters α = 0.9, p = 0.2.
LR version of switch-trees Exponent base,b = 20

Table 5.2: Settings used in the performance comparison

configurations. First, the group sizes range from 32 to 256. In most cases, the members randomly join in

the session one by one within the first 50 seconds of the simulation, and we run the simulation for 2400

seconds, sufficient for the resultant overlay to stabilise.Each member is assigned a maximum fan-out of

2 to 10, drawn from a uniform or truncated binomial distribution. For NICE, we setk = 3 as described

previously. Typically, for each simulation configuration,we run 50 independent experiments and report

the average. Table 5.2 summarises the settings used.

Our experiments can be divided into two, according to the multicast service models considered:

1. One-to-many. In this case, one member is selected as the data source whilethe other members act

as receivers. In each simulation, the first joining member serves as the data source as well as the

root of the data delivery tree. Narada is omitted from the experiments as it is designed specifically

to create multiple trees for multi-source model.

2. Many-to-many. In this case, we treat all members as both sender and receiver. For protocols

that create a single tree for data delivery (i.e HMTP, switch-trees, AOM, TBCP, Banerjee et al.’s

scheme, Scribe), the first member will become the tree root. To be fair to these protocols, CPT

uses the same node as tree root. The resultant tree will be used as a bidirectional shared tree. On

the other hand, NICE and Narada use source-specific trees formulticasting.

We report results obtained from a transit-stub network (i.e. TS1k-0 as in Table 3.1), and state the

main differences observed across the different topologies. A more detailed investigation on the impacts

of the underlying topologies is given in Section 5.2.4.

The rest of this section is organised as follows. The next twosections discuss the results for the one-

to-many and many-to-many model respectively. In Section 5.2.3 and 5.2.4, we examine the impacts of

the overlay nodes’ degrees and the underlying topologies. Section 5.2.5 and 5.2.6 study the convergence

speed and protocol overhead of some selected distributed proposals. We then offer a summary and

discussion in Section 5.2.7.
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Figure 5.11: Cost-optimised switch-trees: TCR for variousjoining strategies. (a) Root-first, (b) Next-
available, (c) Random and (d) Best proposals

5.2.1 One-to-many Data Delivery

We divide the discussion into cost- and delay-optimised protocols, according to the optimisation metrics

under consideration.

5.2.1.1 Cost-optimised Protocols (CoPs)

We begin by looking at the performance of the optimisation metric, i.e. the tree cost, followed by link

stress and delay (represented by RAP and RMP).

Tree Cost Ratio (TCR) for Switch-trees Variants As switch-trees consists of a number of alterna-

tives, we discuss its variants first, followed by other proposals. Figures 5.11 (a) to (c) plot TCR results

for variants of switch-trees grouped by the three joining strategies considered.
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Figure 5.12: Cost-optimised switch-trees: evolution of TCR with next-available joining strategy

For the root-first strategy, we can see that the TCR values forall variants, except RootRandom,

decrease with the group size. Within this group, the 2Hop and2HopLR variants perform the best,

followed closely by 1HopLR. The random version performs theworst. This confirms the observation by

Helder et al. [43] that informed parent choice is required toachieve low cost trees.

Next, we turn to the next-available and the random strategies, which show similar relative perfor-

mance. We can see that the LR variants perform considerably better than other schemes. More inter-

estingly, the switch-random version now out-performs the two local scope-only versions, which is in

contrast with the observation above. To explain this, we plot the evolution of TCR for the next-available

variants in an experiment with 256 members in Figure 5.12. From the figure, we can see that the two

local scope-only approaches (i.e. 1Hop and 2Hop) converge very quickly, while the random approach

takes a much longer time to settle down. This is because the random version allows a node to slowly

explore all the potential switching targets, and thus improve the tree gradually. This also highlights the

trade-off in the local scope approach: fast convergence time at the expense of limited search space ex-

ploration. If it is used together with the random joining strategy, its lack of exploration power will lead

to large TCR values as shown by Random1HopC and Random2HopC,in Figure 5.11 (c). Figure 5.12

also shows that the LR versions — mixed local and random scopes — indeed take advantage of the two

extremes.

Observing the trends from Figures 5.11 (a) to (c), it is clearthat the larger the switching scope,

the better the performance, as expected. Figure 5.11 (d) depicts the best schemes (all 2HopLR-based)

selected from each joining strategy considered. From the figure, it is clear that the root-first strategy
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performs the best, followed by next-available and the random approaches. We recall that in the root-

first strategy, all nodes are first attached to the root. Hence, initially, a switching node will have many

siblings (and other local region nodes), and has more chances of finding the optimum placement. The

disadvantage of this approach is that a node may need to sustain a higher measurement overhead at the

initial stage. This reduces the practicality of the solution. On the other hand, the next-available strategy

always enforces the degree constraints. Hence, it results in a smaller number of local region nodes.

However, as it uses DFS to attach a newcomer to the nearest unsaturated on-tree node that the newcomer

first encounters, the resultant tree is partially clustered. This provides a reasonably good starting point

for further optimisation, in comparison with the random strategy.

Our results generally agree with the observations made by Helder et al. [43]. Specifically, simple

switch-trees algorithms such as 1hop and 2hop switching canproduce reasonably low cost trees. These

two localised techniques provide informed parent choice, hence performs better than the random ap-

proach in most cases. We extend their work by considering several different joining strategies — their

evaluation only considers the root-first joining strategy.More importantly, we show that a mixed local

and random approach (i.e. LR) can offer improvement to pure local switching.

In general, it is interesting to note that the TCR values for some schemes fall below one3. We first

recall that TCR is the ratio between the cost of the overlay and the network layer multicast trees, where

the network layer multicast tree is the router-level shortest path tree. Figure 5.13 illustrates a simple

scenario where a shortest path tree can have a much higher tree cost than a minimum cost tree (both

rooted atA). Thus, we believe the case that TCR< 1 is due to the structure of the underlying topology.

In particular, we have found that it happens in experiments using topologies with large average node

degrees. For example, the results shown here are obtained from TS1k-0 which has an average node

degree of 14.46 (Table 3.1). A similar trend was also observed under the power-law topologies. With

more large degree nodes, the shortest path tree has the tendency to use them as a hub to connect other

nodes, as depicted by Figure 5.13 (b). This results in high tree cost. On the other hand, as the overlay

tree is built to minimise the cost, mostly short links will beincluded in the tree. Therefore, even with

3Note that the case for TCR> 1 is expected as an ALM tree generally uses more physical links than a network layer multicast
tree.
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Figure 5.14: Na2HopLRC: impacts of the value ofb

some redundancy, the overlay tree may achieve a lower tree cost.

Aside: Impacts of Exponential Base,b, for the LR Variants Here we take an aside to examine the

impacts of exponential base,b, for switch-trees variants that use the LR (mixed local and random) node

selection strategy. We show the representative results obtained with Na2HopLRC. Figure 5.14 depicts

the TCR performance for Na2HopLRC run with values ofb that range from 1 to 5000. From the figure,

we can see that small values ofb (i.e. 1, 10, 20, 100) give quite similar performance. After that, the

larger theb value (i.e. from 500 to 5000), the worse the TCR gets. As discussed in Section 5.1.1.4, large

b favours the selection of local region nodes. With largerb values, there is a high probability of using

local search. Thus, the strategy behaves like a pure local search technique. On the other hand, using a

small value ofb with a periodic reset results in a good balance of local and random node selection, and

thus benefits from both approaches. We have observed a similar trend for the delay-optimised version of

switch-trees’ LR variants. In later chapters (6, 7 and 8), weuse the LR technique in all our own proposals

for choosing potential overlay neighbours.

TCR for Switch-trees and other CoPs We are now in a position to discuss switch-trees along with

the other CoPs shown in Table 5.1. As discussed above, the root-first strategy may not be feasible, and

we thus use the Na2HopLRC which has the second best result, torepresent cost-optimised switch-trees.

Figures 5.15 (a) to (d) depicts the comparison results in terms of TCR, maximum link stress, RMP and

RAP.

From the TCR performance, we can roughly group the proposalsinto two classes: dbMST, Scribe,

HMTP and Na2HopLRC which produce relatively low cost trees,and NICE, AOM and TbcpC which

give higher cost trees. In the former class, the centraliseddbMST performs the best, as expected. It is

followed closely by HMTP, Na2HopLRC and Scribe. This provesthat low cost trees can be achieved
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Figure 5.15: CoPs comparison results: (a) Tree cost ratio, (b) Maximum link stress, (c) RMP and (d)
RAP

with relatively simple distributed solutions — the switch-parent operation of switch-trees and HMTP

with a suitable node selection strategy. The low TCR values observed for this class suggests that the

techniques can exploit the locality effect introduced whenmore members are added into a network. We

have found that under some topologies, Scribe performs slightly better than HMTP. We believe that

this is because our version of Scribe has better knowledge ofthe underlying topology. One potential

drawback of HMTP is that its search scope is unconstrained. Specifically, as the search is greedy, a node

will continue to look for a better parent as long as there are potential targets. In the experiments with 256

nodes, we have found that the maximum number of contacts thata node can make before settling down

is about 30. Other proposals typically incur smaller numberof contacts. This also partly explains why

HMTP performs better than other protocols.

While not shown in the figure, we also examine the impacts of the triangle problem in tree cost

optimisation, using HMTP. Our investigation shows that if the triangle optimisation (Section 2.6.1) is
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disabled for HMTP, the average TCR over all group sizes increases from 0.87 to 0.94. More importantly,

the average RMP and RAP values increase from 2.15 and 1.84 to 3.01 and 2.40, respectively.

We now consider the other class. For TbcpC, the TCR values increase with the group size. This

suggests that the chosen score function, i.e. Equation 5.2,is not suitable for cost optimisation. For AOM,

we first recall that an AOM node can perform a switch only if theconditions given in Equation 2.2 to 2.4,

weighted byα andp are fulfilled. The results were obtained using the best setting suggested in [104],

whereα = 0.9 andp = 0.2. We also experimented with several other combinations of the parameters.

We have found that the optimal setting ofα andp is very sensitive to the topology used, i.e. a particular

setting may permit more switching in some topologies, and thus performs better; however, the same

setting may suffer in other topologies. This is an undesirable property as the best model for the Internet

is still an open question. NICE also exhibits similar performance to these two protocols. While the TCR

for these three protocols may look higher than those of the former class, they are however smaller than

the delay-optimised techniques as shown in Figure 5.17.

Link Stress Link stress represents the redundant traffic injected into the network. Figure 5.15 (b)

illustrates the result for the maximum link stress, i.e. theworst-case load on a single link. We can

observe that the performance trend roughly follows those ofthe TCR. In other words, techniques that

produce low cost trees also have lower traffic redundancy, asobserved previously in Section 4.3.2. The

average link stress, calculated as the ratio between the total stress and the number of physical links

involved, exhibits a similar trend to TCR and the maximum stress, is therefore omitted.

RMP and RAP Figures 5.15 (c) and (d) depict the delay performance in terms of RMP and RAP,

respectively. Overall, we make the following observations. In most cases, NICE has the best delay

performance, while Scribe and Na2HopLRC perform the worst.AOM always produces lower delay trees

than HMTP; this is as expected as AOM is designed to improve the delay performance of HMTP [104],

as explained in Section 2.6.1.2. The relative performance among other proposals is not consistent across

the topologies tested. This, we believe is due to the fact that these proposals are designed to build low

cost trees — the delay of the trees is a by-product that depends on the structure of trees built, which in

turn depends on the placement of the members and the structure of the underlying topology.

To be fair to Scribe, the poor delay property shown here is because, in our version, new nodes are

attached to the nearest on-tree nodes (by exploiting the underlying topology knowledge). While this

results in a low cost structure, depending on the underlyingtopology, some nodes may be connected

in a long series, which results in high delay. However, we believe that our version approximates the

properties of Scribe under an ideal Pastry routing.
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Figure 5.16: Delay-optimised switch-trees: RMP for various joining strategies. (a) Root-first, (b) Next-
available, (c) Random, (d) Best proposals

5.2.1.2 Delay-optimised Protocols (DoPs)

We begin by looking at the performance of the optimisation metric, i.e. delay in terms of RMP and RAP,

follows by tree cost ratio and link stress.

RMP and RAP We first consider the delay-optimised variants of switch-trees. Figure 5.16 (a) to (d)

depict their RMP performance. (The RAP shows a similar trend, and thus is omitted.) If we compare the

results presented here with Figures 5.11 (a) to (d) (i.e. TCRof the cost-optimised switch-trees variants),

we can observe that the relative comparison of the variants follows a similar trend. This shows the

observations that we made on the impact of the joining strategies and switching scopes still apply for

the delay-optimised variants. Following this, we use Na2HopLRD as the delay-optimised switch-trees

representative.
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Figure 5.17: DoPs comparison results: (a) RMP, (b) RAP, (c) Tree cost ratio and (d) Maximum link
stress

Figures 5.17 (a) and (b) illustrate the RMP and RAP results for Na2HopLRD along with other propos-

als. For Banerjee et al.’s scheme, we have found that RandomBanerjee performs worse than NaBanerjee,

as expected. This is also consistent with the results for theimpacts of joining strategy observed for

switch-trees variants. We thus exclude it from the results.

In terms of RMP, unsurprisingly, the centralised CPT out-performs the distributed techniques. Within

the distributed protocols, NaBanerjee performs the best, followed by Na2HopLRD, TbcpD and finally,

NICE. Comparing the performance of NaBanerjee with Na2HopLRD (which uses a larger local scope),

we can conclude that a more flexible transformation scheme and additional information (i.e. subtree

delay) help in delay optimisation. For TbcpD, we can see thatit always provides a better RAP than

other distributed proposals. For a small group size (i.e. 32), it actually out-performs CPT (note that

CPT is used to create low root-diameter trees). We attributethis to our triangle-based score function

(Section 5.1.1.6) which minimises the ineffective triangles in the tree. It is also worth pointing out that
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Figure 5.18: TCR for Random1HopD and unicast star overlay

it uses a smaller transformation scope than other distributed proposals. On the other hand, the triangle-

based score function could not provide good RMP. We believe it is a challenging task to provide a score

function for TBCP that achieves good RAP and RMP, using only the small scope size. While NICE shows

rather poor RMP performance, its RAP (average delay) is better than NaBanerjee and Na2HopLRD. This

will be discussed shortly in Section 5.2.1.3.

Tree Cost Ratio and Link Stress Figures 5.17 (c) and (d) illustrate the TCR and maximum link

stress performance of the DoPs, respectively. Compared with the performance of RMP, we can observe

an inverse relationship between the delay and both cost and stress. This can be explained by the tree

structure built. The objective function of DoPs is to minimise the delay from the root to the receivers.

To achieve this, all receivers need to be placed as close as possible to the root. If there is no degree

constraint, all receivers can be directly attached to the root, which results in a star topology. Under a

degree-constrained environment, we can envisage that the nodes will try to fill in each level of the tree,

which results in a highly compact structure. Due to this, some long links may be introduced into the tree,

and this results in higher tree cost and link stress. A more detailed discussion on the tendency to create

a compact tree structure with delay-optimised proposals isgiven in Section 4.3.1, in the context of CPT.

Figure 5.18 shows a property of the TCR for Random1HopD. The figure compares Random1HopD’s

TCR values with those obtained from a star overlay (UnicastStar). The UnicastStar delivers the data

directly from the sender to each receiver. Thus, it providesthe best delay performance at the expense

of straining the sending node. In addition, its worst-case stress can be as high as the group size. This

indeed justifies the case for more intelligent ALM protocols. Now, it is interesting to see that the degree-

constrained trees created by Random1HopD have comparable TCR values to those of UnicastStar. We

believe there are two main reasons for this. First, delay-based switching is greedy, i.e. when a node has
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found a parent that provides low delay, it will greedily stick to it. Secondly, the random joining strategy

results in poor initial tree layout. For example, nodes thatare farther away from the root may directly

attach to the root. As this provides the best delay performance, these nodes will occupy the free slots at

the root, which prevents a better configuration from occurring. This suggests that the greedy problem

needs special attention in designing a DoP.

We point out that the stress values observed in experiments with the transit-stub topologies are much

higher compared with the corresponding cases in the power-law and random topologies. In a transit-stub

network, each stub domain is attached to a transit domain viaa limited number of stub-transit links,

and traffic from one stub domain to another stub domain must gothrough these links. As a delay-based

overlay often has a compact structure, many direct overlay links between members in different stub

domain are likely to be used. This results in high traffic concentration (i.e. stress) at the stub-transit

links. On the other hand, flat topologies (e.g. random and power-law) allow traffic to be distributed

more evenly to all links. In our simulation, the transit-stub topologies connect each stub domain to a

transit domain with only one physical link. This is to simplify the calculation of routing table used by

ALMSim for packets routing. The implication of this is that interdomain traffic can only use those limited

stub-transit links, hence producing a high stress value.

5.2.1.3 Discussion

This section discusses some of the main points from the abovefindings. The discussion is also applicable

to the analysis in the following sections, particularly evaluation of the many-to-many model.

For tree cost optimisation, we have seen that a simple switch-parent operation and a suitable parent

selection technique can yield reasonably low cost trees. For example HMTP, that uses DFS to locate a

potential parent, consistently give results that are closeto those for centralised dbMST. Our version of a

mixed local region and random node selection technique (i.e. LR) provides another promising strategy

for a tree structure. Our investigations also show that by solving the triangle problem, we not only

improve the tree cost, but also reduce the delay.

In terms of delay optimisation, the results show that Banerjee et al.’s scheme can produce trees with

the smallest maximum delay from the tree root to the other nodes. However, as low delay trees tend

to be more compact in structure, this results in high tree cost (i.e. resource usage) and link stress. As

the compact structure is built in a distributed way using limited topology knowledge, nodes that are

topologically close may be placed farther apart. Thus, the average delay performance may suffer. For

example, this can be seen from the better RAP (i.e. average delay) performance of our version of TBCP,

which tries to minimise the ineffective triangles between the nodes.

If we compare the best CoPs (HMTP, Na2HopLRC and Scribe) withthe best DoPs (NaBanerjee), we

can see a trade-off between delay and tree cost (as well as link stress). In other words, minimising tree

cost results in high end-to-end delay; minimising delay results in high tree cost and link stress. Between
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Figure 5.19: Maximum fan-out for HMTP, NaBanerjee and NICE (implementation and theory)

these two extremes, there is a wide spectrum of other trees that provide varying cost and delay values.

NICE, on the other hand, shows a compromise performance between the two extremes. Specifically,

it produces trees that have moderate tree cost, stress and delay, compared to the best CoPs and DoPs.

This can be explained by the structure of its overlays. In NICE, the members are organised into a multi-

level clustered overlay. Each cluster is bounded in size andis represented by a leader, which is the

graph-theoretic centre of the cluster. In other words, the leader has the smallest maximum distance to

all the members in the cluster. The lowest level clusters consist of all members. The leaders of lowest

level clusters form the second level clusters. This clustering process continues until the top-most level,

which consists of only one node. In our simulation, the top-most node acts as the data source. Due to

the hierarchical arrangement, nearby nodes will be contained within a cluster. This reduces the tree cost

and link stress. However, the inter-cluster communicationis done via longer links between the cluster

leaders, which increases the tree cost and stress. The use ofshort and long links also results in a moderate

delay performance.

A potential drawback of the NICE structure is that the top-most node may have a fan-out ofK logK(n)),

whereK is the maximum cluster size andn is the group size. Figure 5.19 depicts the fan-out variationfor

NICE along with HMTP, NaBanerjee and the functionK logK(n), whereK = 8 (K = 3k − 1, k = 3).

The plot shows that NICE’s theoretical worst-case fan-out roughly follows the functionK logK(n) while

HMTP and NaBanerjee fulfil the fan-out constraint used, i.e.10. The fact that a good delay-optimised

proposal such as NaBanerjee shows larger fan-out values than HMTP (cost-optimised) also proves that

the delay-optimised solution generates more compact trees.

The above observation suggests that NICE is unsuitable for high-bandwidth applications. In [8],

Banerjee et al. suggest a delegation-based data forwardingscheme to reduce the worst-case fan-out of

NICE. The scheme works as follows: a cluster leader sends data to its lowest layer cluster members,
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Figure 5.20: Link stress due to uncorrelated overlay links

which will in turn forward the data to the upper layers. This approach limits the maximum fan-out of

any node to3k, i.e. roughly the cluster size. However, this brings additional complexity to the protocol,

as the delegations need to be carefully selected to ensure efficiency. More importantly, it does not solve

the problem when each member may have a different fan-out capability. It remains unclear how to create

trees that honour the degree bound of each individual node while preserving the original properties and

integrity of NICE.

The results in previous sections show that the maximum link stress due to the proposals can be rather

high, especially for the delay-optimised proposals. We have pointed out in the previous section that this

is partly because the results were obtained from a transit-stub topology, where the connectivity between

the stub and transit domains is limited by a handful of stub-transit links. In addition, as discussed by Chu

et al. [21], the maximum stress on the Internet may be lower than seen in the simulations. This is due

to the fact that the ratio of the group size to topology size (i.e. density) is much higher in simulations

than in actual practice. For example, the results were obtained with topologies of 1000 nodes, which

are orders of magnitude smaller than the Internet. An increase in group density increases the probability

that a physical link could be shared by multiple uncorrelated overlay links. Consider the example in

Figure 5.20, uncorrelated overlay links〈A, D〉 and〈B, C〉 share the physical link〈R1, R2〉. This could

increase the maximum stress with the ALM proposals in our study, as they are only able to regulate

fan-out of the members and not stress of the physical links.

5.2.2 Many-to-many Data Delivery

In the experiments with many-to-manymodel, we include Narada (see Section 2.6.2) and the GreedyMesh

algorithm (see Chapter 4). Most observations are consistent with the one-to-many case. Thus, we only

discuss the following representatives: HMTP, Na2HopLRD, TbcpD, NaBanerjee, NICE, Narada and

CPT. Note that, except for NICE and Narada which use source-specific trees, all the other proposals use

a single shared tree for data delivery.

For shared-tree based DoPs, the appropriate objective is tominimise the tree diameter, i.e. the max-

imum delay between any two members via the tree. The centralised CPT uses this objective function.

However, it is a non-trivial task to measure and maintain this information in an environment where mem-

bers join and leave freely. Hence, our implementations of Na2HopLRD and NaBanerjee try to minimise

the root-diameter, as in the one-to-many case.
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Figure 5.21: Many-to-many performance: (a) RMP, (b) RAP, (c) TCR and (d) Maximum link stress

Figures 5.21 (a) to (d) depict the comparison results. The discussion will focus on the differences

observed from the one-to-many case. First, we can see that the centralised GreedyMesh gives the best

RMP and RAP performance, as expected. Interestingly, Narada, the distributed mesh construction pro-

tocol follows it closely. This is mainly due to the fact that some of the Narada nodes may violate their

degree constraints, as discussed in Section 5.1.1.1. Figure 5.22 confirms this by showing the maximum

fan-out observed for Narada and GreedyMesh.

As discussed in Section 5.1.1.1, we also implemented a version of Narada, called Narada-SD, which

tries to strictly enforce the degree bound. We have found that Narada-SD occasionally causes the overlay

to partition, especially in cases where the nodes have a small degree bound. In Figures 5.23 (a) and (b),

we plot the RMP and TCR of Narada-SD (averaging over cases where the overlays are connected) along

with CPT and Narada — the version that does not strictly limitthe nodes degree. We can see that

Narada-SD’s RMP is initially close to Narada, and quickly increases with the group size, and eventually
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Figure 5.23: Comparing Narada, Narada-SD and CPT: (a) RMP; and (b) TCR

is close to the RMP of CPT. Obviously, limiting the nodes degree reduces the flexibility in overlay

reconfiguration, and hence the poorer performance. The inefficiency manifests itself as the number of

members increases. However, it is worth noting that Narada-SD still outperforms all the shared-tree

proposals, for the group sizes considered. This shows that the source-specific trees approach can offer

better delay performance than the shared tree proposals. The significant difference between TCR for

Narada and Narada-SD indicates that Narada contains more short links in the overlays. We recall that in

Section 4.3.1, we show for GreedyMesh that including short links into a mesh helps to improve the delay

performance. We believe the fact that Narada has many short links provides another explanation of why

its delay is on par with GreedyMesh, as shown in Figure 5.21.

In terms of RAP (Figure 5.21 (b)), NICE now performs better than all shared tree proposals, partly

due to its source-specific trees approach (we recall that some of the NICE nodes violate their degree
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constraints). HMTP, the CoP, gives RAP that is initially better than NaBanerjee, but poorer as the group

size increases. We believe that this is because HMTP achieves its low cost tree by placing nodes that

are topologically close together, and hence reduces the average latency between most of the members

(unlike the experiments in the one-to-many case, all members are now data sources). This provides low

average delay (RAP) when the number of members is small. On the other hand, NaBanerjee creates

trees that are more compact which contain many long links; this reduces the maximum delay rather than

average delay. Finally, for TCR and link stress, we can see that NaBanerjee performs the worst, while

HMTP is the best.

To summarise, the relative comparison between the proposals are quite similar for the one-to-many

and many-to-many models. One important observation is thatprotocols that use source-specific trees

(i.e. Narada and NICE) generally provide good RMP and/or RAPperformance.

5.2.3 Effects of the Fan-out

This section investigates the impacts of fan-out (i.e. out degree) of the overlay nodes on the overlay qual-

ity. The results to be shown are obtained using the one-to-many model (similar performance trend were

observed with many-to-many model, unless specified otherwise). We consider two set of experiments:

1. Varying Fan-out. In this set of experiments, all overlay nodes are assigned asimilar maximum

fan-out, with each experiment running with 256 members. We consider fan-out values that range

from 2 to 10. By fixing the fan-out bound, it is easier to examine the relationship between the

fan-out and the quality of the overlay built. Since Narada does not strictly enforce the fan-out

bound, it is omitted from the experiments. We also study the implications of cluster size on NICE.

In particular, we vary the lower bound cluster size,k, from 2 to 10. The size of NICE clusters is

bounded by:k < size≤ 3k − 1.

2. Degree Distribution. This set of experiments is used to determine the impacts of the distribution

used for degree assignment. Earlier experiments in previous sections used a uniform distribution.

Here, we consider a truncated binomial distribution to randomly assign a maximum fan-out of

between 2 and 10 to each member. Three mean values are used: 4,6 and 8, which correspond to

the lower, middle and upper ends of the given range. As the maximum fan-out for each NICE node

is independent of the above degree assignment process, it isomitted from the experiments.

5.2.3.1 Varying Fan-out

Figures 5.24 (a) to (d) show the variation of different metrics with the fan-out (ork), for four representa-

tive protocols: HMTP, NaBanerjee, NICE and TbcpD. In the figures, thex-axis represents the maximum

fan-out assigned to the members, except NICE where itsx-axis representsk, the lower bound on cluster
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Figure 5.24: Impacts of the degree: varying fan-out

size. Due to this, the maximum fan-out for NICE nodes could belarger than other proposals. We in-

clude NICE in the same figure as the other proposals for convenience. The results for NICE should be

interpreted independently.

First, it is clear that the delay property in terms of RMP for the proposals improves with larger

fan-out values. This is as expected as a larger fan-out results in a wider, and thus shorter tree. The

results also show that the delay gain is more significant for smaller fan-out values (e.g. from 2 to 5).

The RAP results are similar to RMP. Larger fan-out also causes an increase in the worst-case link stress

(Figure 5.24 (d)), especially for NaBanerjee that builds trees that have compact structure (see discussion

in Section 5.2.1.3).

Figure 5.24 (c) shows the TCR performance. The result show a slowly decreasing trend for HMTP.

For switch-parent based protocols such as HMTP and switch-trees, a small fan-out means that a node

can easily become full with children. This restricts the movement of the nodes, and therefore results
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in poor performance. Increasing fan-out increases the freedom of movement, and thus gives a better

performance. A larger fan-out also increases the size of theDFS search space, which increases the

probability that a node locates its optimal position. Increase of fan-out also shows little impact on the

HMTP worst-case stress, as shown in Figure 5.24 (d). This is because it produces low cost trees that

consist of many short overlay links, which reduces the chances of packet duplication in the physical

links (see Section 5.2.1.1).

The results also show that TbcpD and NaBanerjee exhibit quite different properties in terms of TCR

and stress with increasing fan-out. For TbcpD, the TCR decreases slightly rather than increases, as it

does in NaBanerjee. In addition, its worst-case stress alsoincreases much slower than in NaBanerjee.

This, we believe, is because TbcpD tries to minimise the triangles in the tree, which thus helps to reduce

the tree cost. As a result, while the link stress increases, it occurs at a slower pace.

NICE shows a distinct TCR trend where the value decreases initially, and increases after a turning

point. Thek value at the turning point differs from one topology to another topology. Typically, it is

around the vicinity of 5. This can be explained as follows. Small values ofk result in many small

clusters, which requires many inter-cluster links to connect the clusters together. As the inter-cluster

links are normally longer than the intra-cluster links, this gives the higher tree cost. Ask increases, the

cluster size increases while the number of clusters decreases. Thus, fewer inter-cluster links are needed.

This results in the reduction of TCR. However, when the cluster size increases further, even nodes within

the same cluster may be quite a distance apart. Hence, TCR increases again.

In [90], we have found that for the many-to-many case, NICE’sTCR and stress values increase

linearly withk. We believe that this is due to NICE’s data forwarding strategy. In the one-to-many case,

the data is forwarded from the top-most cluster leader (the data source) to its cluster members (leaders of

the lower level clusters), which continue to forward the data in the similar manner until the bottom layer.

As the leaders are the graph-theoretic centre of their respective clusters, they use the smallest distance

to reach each of their members. Thus, the lowest cost tree is used. On the other hand, we consider all

members to be data sources in the many-to-many case. Here, data is forwarded using source-specific

trees rooted at each member (see Section 2.6.1). When a non-leader member acts as a data source, its

data paths are often longer than those of a leader member. Forexample, see Figures 2.9 (c), (d) and (e).

Therefore, not all data paths will follow the cost-effective leader to members routes. Collectively, this

results in the linear increases of TCR and stress.

5.2.3.2 Binomial Degree Distribution

In general, we have found that the relative comparison amongthe techniques under the binomial dis-

tribution is similar to those of uniform distribution. Thus, we only mention the result for HMTP and

NaBanerjee, as the representatives for CoPs and DoPs respectively. Their TCR and RMP performance

are shown in Figures 5.25 (a) and (b), respectively. In the figure, each curve represents the result for a
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Figure 5.25: Impacts of the degree: different degree distributions

protocol obtained under a particular distribution. For example, HMTP-uniform refers to HMTP run with

the uniform distribution; while HMTP-m=4, HMTP-m=6 and HMTP-m=8 refer to HMTP run with the

binomial distribution, using different values of the mean.

First, the results reassert our previous observation on thetrade-off between cost and delay. In addi-

tion, the relative performance of the techniques due to different mean values show similar trends to those

in the investigation of the impacts of degree bound. Consider the performance of TCR for HMTP and

RMP for NaBanerjee respectively. We can observe that small mean (i.e. 4) results in more nodes with a

small degree bound, and thus give poor TCR and RMP properties, while a large mean (i.e. 8) results in

more nodes with large degree bounds, and thus performs better.

5.2.4 Effects of the Underlying Topologies

Next, we consider the effects of the underlying topologies to the overlay constructed. Note that it is

not our aim to analyse the detailed relationship between a particular protocol and a particular topology

model. Rather, we are more concerned about the relationshipbetween the optimisation metrics and the

topology structure. For this reason, we consider HMTP and NaBanerjee which represent the CoPs and

DoPs, respectively. We examine their TCR and RMP propertiesunder different topologies.

Figures 5.26, 5.27 and 5.28 depict the performance of the protocols under topologies created based

on the transit-stub, power-law and random Waxman models. For each model, we consider three dif-

ferent topologies of 1000 nodes (see Table 3.1), as represented by the three curves for each protocol

(HMTP/NaBanerjee-1, 2 and 3) in each plot.

In terms of TCR, HMTP, the CoP, always produces trees with thelowest cost. For power-law and the

random Waxman graphs, we can find that the TCR values are relatively smaller than in the transit-stub

graphs. This is due to the degree distribution of the networknodes, as explained in Section 5.2.1.1.
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Figure 5.26: Impacts of the topologies: transit-stub topologies
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Figure 5.27: Impacts of the topologies: power-law topologies

Specifically, power law and random topologies have more large degree nodes. The cost ratio for HMTP

normally stays at about the same value, or shows a decreasingtrend with growing group sizes. This again

proves that it can exploit the locality introduced when the group size is close to the network size. On the

other hand, NaBanerjee always provides trees with lower delay, as expected.

In summary, the results show that a well-designed protocol can achieve its desired optimisation ob-

jective (e.g. cost or delay) under different topologies. For example, HMTP can produce low cost trees

while NaBanerjee can produce relatively low delay trees.
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Figure 5.28: Impacts of the topologies: random Waxman topologies
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Figure 5.29: Convergence properties: (a) CoPs’ TCR and (b) DoPs’ RMP

5.2.5 Convergence Properties of the Protocols

This section examines the convergence speed of various distributed protocols for experiments with 256

members. In the experiments, all members join the multicastgroup within the first 50 seconds. Once a

node has successfully joined the overlay, it initiates a periodic overlay improvement every 30 seconds.

Figure 5.29 (a) shows the convergence of TCR for the CoPs representatives: NICE, Na2HopLRC,

Random2HopLRC and variants of HMTP. As described in Section5.1.1.2, we include a modified version

of HMTP which is called HMTPRandom. This version differs from the original version only in its joining

strategy. Specifically, a newcomer begins its joining process from a randomly chosen on-tree member,

rather than from the root.

In general, we can see that TCR increases as new members are added to the system. Once all
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members have joined, it begins to decrease until a stable value is reached. Comparing the two versions

of HMTP, it is clear that the random version results in a high initial TCR due to the randomly connected

tree structure. Similar observations can be drawn from Na2HopLRC and Random2HopLRC. The fact

that HMTPRandom can quickly converge to a TCR value that is similar to HMTP demonstrates the

effectiveness of its DFS technique.

The result also shows that NICE has a rather high initial TCR —similar to the randomly connected

tree. This is because NICE allows clusters to grow over the size bound, and splits the clusters only at

each periodic round. It is also partly attributable to NICE’s longer convergence time compared to other

protocols. Another reason for this is that NICE needs to maintain the invariant that each cluster leader

must be the graph theoretic centre of its cluster. As a changein a lower layer cluster may result in changes

in higher layer clusters, it takes a longer time to settle down — about 1200 seconds with a TCR of 1.56,

which is higher than other CoPs. In [7], Banerjee et al. show that NICE’s overlay converges in less than

400 seconds, for a group of 128 members. In their evaluation,they use a much smaller improvement

period, i.e. 5 seconds, while we use 30 seconds, so as to consistent with other proposals. We have found

that using a smaller improvement period only increases NICE’s message overhead marginally, as shown

in [7]. We examine the overhead of the proposals in the next section.

Figure 5.29 (b) shows the RMP convergence properties of delay-optimised representatives: Narada,

NaBanerjee, RandomBanerjee and TbcpD. First, Narada and RandomBanerjee show high RMP at the

initial stage due to the random layout. After all members have joined, the RMP values quickly reduce

to a much smaller value for both protocols. Comparing RandomBanerjee with NaBanerjee (as well as

Random2HopLRC with Na2HopLRC for TCR), we again see that thefinal result is related to the initial

tree layout — a more structural layout often provides a better performance. For Narada, after the quick

improvement stage, the RMP continues to decrease at a much slower pace until it finally stabilises at

about 1400 seconds. This indicates that most changes happenin the early stage of the multicast session,

as reported in [21].

Unlike other protocols, TbcpD’s RMP values increase as new members join in the overlay, and stay

about the same after all members joined. We have also found a similar trend in other versions of TBCP

(i.e. the original version and TbcpC). This shows that TBCP joining mechanism can quickly place the

nodes into their best position (depends on the score function), thus requiring fewer changes at the later

stages.

5.2.6 Overhead Evaluation

The overhead of an ALM protocol largely depends on the overlay structure used and how it is maintained.

In general, the protocols investigated use three differentcontrol structures: (i) tree (i.e. switch-trees,
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Figure 5.30: Protocol overhead: HMTP, Narada and NICE

HMTP, TBCP and Scribe4); (ii) hierarchical clusters (i.e. NICE); and (iii) flat mesh (i.e. Narada).

Figure 5.30 shows the message overhead measured as the control messages sent and received per

overlay node, in kbps, for three representative protocols:HMTP, NICE and Narada. We consider mes-

sages used in the construction and improvement of the overlay, as well as refresh messages exchanged

between the neighbouring nodes for maintaining the overlay. We assume that each message is carried

using TCP over IPv4, which incurs a basic cost of 40 bytes per packet (see Section 3.2.4.1).

From the figure, it is clear that Narada, which uses a flat mesh topology and the path-vector protocol,

imposes the largest control overhead. In addition, its control overhead grows quickly with the group size,

highlighting the scalability problem of the protocol. NICE, on the other hand, shows a reasonably small

overhead which stays almost the same across the group sizes.This is because the messages are confined

within clusters that are bounded in size. Finally, we can seethat HMTP, the tree-based technique has the

lowest control overhead. This is because a tree uses significantly fewer links than hierarchical clusters

or a flat mesh topology.

5.2.7 Summary and Discussion

Based on the previous observations, we can summarise our main findings as follows.

• There exists a trade-off between delay and tree cost optimisations: minimising tree cost results in

high end-to-end delay; minimising delay results in high link stress and resource usage.

• For tree cost optimisation, the depth-first search (DFS) technique used by HMTP can effectively

construct low cost trees. By using a modified version of the protocol (HMTPRandom), we also

shows that this technique can converge rather quickly and isquite independent of the initial tree

layout. In addition, we show that by solving the triangle problem, we not only improve the tree

4While Scribe is built from the Pastry mesh, the mesh links areloosely maintained (see Pastry [81].). Therefore, the majority
of the maintenance overhead is on the multicast tree structure
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cost property, but also reduce the overlay delay. However, as this technique greedily searches for

an optimal placement, it could carry on the search while there are potential targets. This may result

in the exploration of all of the group members, although thisis unlikely to happen in a realistic

network. A real world implementation of the technique should limit the search scope.

• In terms of delay optimisation, for the one-to-many servicemodel, we found that Banerjee et

al.’s scheme performs the best for the maximum end-to-end delay metric (i.e. RMP), while our

version of TBCP performs the best for the average delay (i.e.RAP). For the many-to-many case,

Narada (which uses source-specific trees) always performs the best. NICE, which also adopts the

source-specific trees approach, has good average delay performance compared to protocols that use

shared tree routing. Hence, we conclude that the source-specific trees approach has better support

for delay-sensitive multi-sender applications. In fact, the superiority of the delay performance of

source-specific trees approach over shared tree approach has long been acknowledged in the study

of network layer multicast [103]. However, existing source-specific ALM protocols still have some

weaknesses. For examples, Narada incurs a large protocol overhead, while NICE, the Delaunay

triangulation protocol and LARK do not provide a degree constrained overlay. How to achieve

low delay degree-bounded overlay trees with low overhead for many-to-many multicasting is an

interesting research topic. In Chapter 8, we address this problem with a multiple shared trees

proposal.

• In general, an ALM overlay always yields a smaller resource usage and link stress than the unicast

star overlay. However, it is important to point out that a badly designed delay-optimised protocol

can result in poor delay performance as well as high resourceusage.

• NICE, a hierarchical cluster-based protocol, can strike a balance between tree cost and delay op-

timisation due to its overlay structure and choice of cluster leader. Unfortunately, the resultant

overlay is not constrained in nodes degree, which makes it unsuitable for environments where

members have heterogeneous capacities.

• For variants of switch-trees, we found that the initial treelayout can affect the final performance. In

particular, a simple DFS (next-available) can create a reasonably good initial tree structure for both

cost- and delay-optimised switching functions. In terms ofswitching scope, we show that local

scope switching can provide fast convergence due to informed parent choice. But its localised

properties also limit its exploration power. Fortunately,we can interleave the local scope with

random node selection to yield good convergence and better exploration.

• We demonstrate the greedy nature of delay-based switching,as in the case of Random1HopD (see

Section 5.2.1.2). The greedy problem can result in poor delay as well as poor resource usage.
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• We also examine the impacts of fan-out on the overlays built.In general, we observe that larger

fan-out values allow more flexible overlay reconfiguration to happen, and hence provide better

performance. Conversely, smaller fan-out limits the movement of the nodes, and thus gives poorer

performance.

• By experimenting with different topology models, we believe that a well-designed protocol can

achieve its desired optimisation objective under different topologies. In addition, the performance

of certain metrics (i.e. link stress and tree cost) is related to the underlying topology structures.

• In terms of protocol overhead, we show that protocols that use the spanning tree structure con-

sume the least control traffic, while protocols that use a flatmesh structure and a conventional

routing protocol have the worst overhead. The hierarchicalcluster structure has a reasonably small

protocol overhead.

5.3 Related Work

In this work, we limit our comparison to representative treecost- and delay-optimised protocols. As

discussed in Chapter 2, there are other interesting metricsthat can be considered. We believe that some

of our findings are applicable to these cases. For instance, the observations on the switching scope and

transformation techniques can be useful to other tree-based proposals. A good example is Overcast [48],

a tree-first protocol that tries to create high-bandwidth trees using local-scoped switching. It could be

improved by using the mixed local and random switching scope.

Since the initial proposals on ALM (e.g. [36, 21]), there hasbeen some other comparison work.

Typically, the investigation considers only a small numberof proposals. For examples, in [7], Banerjee

et al.’s propose NICE and compared it with Narada; in [104], Wu et al. introduce AOM and contrasted it

with HMTP.

Another class of comparison work considers proposals that exhibit a similar nature. For example,

Castro et al. [17] evaluate ALM overlays built using DHT-based overlays, in particular CAN and Pastry.

They investigate two data delivery mechanisms for these overlays: tree building and flooding. Their re-

sults show that the tree-based approach consistently outperforms the flooding approach, and that Pastry-

based overlays out-performs CAN’s.

In [47], Jain et al. evaluate the potential of DHT-based overlays. They compare CAN-multicast [78]

and Chord [88] with NICE and Narada. They consider two ways ofcreating the DHT-based overlays: (i)

topology-agnosticwhere the overlays are built without using any topology knowledge; and (ii)topology-

awarewhere the complete topology information is used, i.e. all members are assumed to have ideal topol-

ogy knowledge. Their results show that the topology-agnostic versions of CAN-multicast and Chord can

have a relative delay penalty that is more than NICE and Narada by at least a factor of two. On the other

hand, the topology-aware versions can achieve a comparableperformance with NICE and Narada.
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These comparisons indeed provide some insights into the different techniques. However, as they

mostly make different assumptions and use different simulation settings, it becomes difficult to make an

overall comparison. In this chapter, we have considered representatives from a larger class of overlay

creation and maintenance techniques, and evaluate them under a unified environment. We also looked in

detail at the various components that contribute to the good/poor performance of a particular strategy.

There are several excellent surveys on existing strategiesrelated to overlay multicast. In [29], El-

Sayed et al. review and discuss several multicast proposalsthat offer an alternative due to the lack of

deployment of network layer multicast. They classify the proposals into several categories (see Sec-

tion 1.1.1 for details): based on a reflector approach, creating an automatic overlay topology (i.e. ALM),

or relying on a specific routing service. ALM protocols studied in this chapter belong to the class of auto-

matic (i.e. self-organised) overlays. In [6], Banerjee andBhattacharjee compare several ALM protocols:

Narada, HMTP, Yoid, Scribe, CAN-multicast and NICE. Both surveys focus on the high-level proto-

col description of the various techniques. On the other hand, we have focused on detailed quantitative

evaluations.

5.4 Chapter Summary

In this chapter, we investigated the efficiency of several self-organising techniques for building low cost

and low delay ALM trees. The techniques studied encompass representatives from the two main overlay

construction techniques, i.e. tree-first and mesh-first. The tree-first protocols considered include HMTP,

TBCP, NICE, and variants of switch-trees (including a version of HostCast) and Banerjee et al.’s scheme.

We consider Scribe and Narada as the mesh-first representatives. The various aspects of the protocols

were examined under a unified simulation environment, usingALMSim.

This work is the first step towards designing protocols to building low delay and low cost ALM trees.

From the results, it is clear that these two metrics conflict with each other, and it is better to consider

them separately. The results show that HMTP, a simple distributed cost-optimised protocol, can produce

trees that have comparable costs to those created by a centralised algorithm.

The delay-optimised protocols, on the other hand, still exhibit several noticeable weaknesses. Specif-

ically, in terms of one-to-many delivery model, we show thatBanerjee et al.’s scheme can yield trees with

small root-diameter, but at the expense of the average delayto all the members. Our improved version

of TBCP provides good average but poorer worst-case delay. We thus believe, the main challenge for

a good delay-optimised protocol is that: it should provide low maximum and average delay properties,

as well as result in reasonably small traffic redundancy and network resource usage. In Chapter 7, we

introduce a mesh-based approach to create trees that exhibit the desired properties.

In terms of many-to-many multicasting, the results also reveal that the source-specific trees approach

(i.e. Narada) can yield better delay properties than the shared-tree approach. However, it imposes a much
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higher protocol overhead, which limits its usability for larger group sizes. In Chapter 8, we investigate a

multiple shared trees strategy as a compromise between the shared-tree and the source-specific trees.

This chapter emphasises techniques used to build efficient degree-bounded overlay trees. In next

chapter, we consider the problem of managing degree-bounded overlay trees. In particular, we propose

a generic framework for creating and maintaining a degree-bounded tree using a mesh structure.
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Chapter 6

Mesh-based Overlay Tree

Construction and Maintenance

Framework

This chapter considers the problem of managing a degree-bounded overlay tree. We introduce a frame-

work for creating and maintaining a loop-free degree-bounded tree by using an overlay mesh. The tree

can be used either as a source-rooted tree for single-sourceapplications, or as a shared tree for multi-

source applications. The main contribution of this work is afast tree recovery scheme, which explicitly

harnesses the multiple paths property of the mesh. We also take advantage of the tree structure to reduce

the maintenance overhead of the overlay. The framework is generic, and can thus be used by existing

protocols to maintain their tree structure.

To illustrate the working of the framework, we apply it to a case study: a root-diameter and degree-

bounded, minimum cost tree creation problem. We compare it with ACDC [54], an existing proposal for

the problem, in terms of the quality of the trees built, and two tree recovery schemes in terms of recovery

speed. Simulation results show that our proposal provides better tree quality and recovery speed.

The rest of this chapter is organised as follows. The next section first positions our work with some

related research. In Section 6.2, we present the proposed framework. Section 6.3 evaluates various

aspects of the framework using the case study. Finally, Section 6.4 concludes this chapter.

6.1 Related Work

One of the key issues in multicast overlay management is keeping the overlay connected after node

departure (fail or simply leaving the multicast session voluntarily).
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A tree is the natural structure for multicasting. It simplifies the data forwarding as it is inherently

loop-free. In a tree, when a non-leaf node departs, its immediate children (and nodes under their subtree)

will be partitioned from the main structure. They need to be able to reconnect quickly to the main tree

(i.e. obtain a new parent) so as to resume the data flow. This isthe tree restoration problem. In a degree-

bounded tree problem, it is important that the restored treedoes not violate the fan-out capacity of the

nodes. Due to the limited capacity at the nodes, a degree violation may disrupt the data service [107].

We can classify the ALM proposals based on the structure of the control topology used to manage

the overlay:

• Tree-based. In this case, a tree is used as the control or management structure. Typically, the tree

also serves as the data delivery tree. Examples of protocolsthat fall into this class are HMTP and

TBCP described in Chapter 2.

• Mesh-based. In this case, a connected overlay mesh is used to connect allmembers. The delivery

tree is embedded in the mesh. A routing mechanism is needed toobtain the delivery tree from the

mesh. As a mesh provides redundant paths between the nodes, it is considered to be more resilient

than a tree. Thus, tree-first protocols like Yoid and HostCast include extra links in addition to

the delivery tree to form a control mesh. NICE and Zigzag which use hierarchical clusters in the

overlay also fall into this group. Obviously, all mesh-firstprotocols considered in Chapter 2 are

mesh-based protocols.

It is worth noting that these two classes are difference fromthe tree-first and mesh-first (see Sec-

tion 2.6), which classify the proposals based on the way thatthe proposals construct the overlay.

Reconstructing a degree-bounded tree is a harder task compared with the unconstrained case. In the

unconstrained case, when a non-leaf node departs from the overlay, its immediate children can quickly

reconnect to their grandparent, and the recovery process isdone. On the other hand, in the constrained

case, the grandparent may not be able to accept all of its grandchildren, due to its degree limitation.

Hence, the rejected grandchildren need to locate a feasibleparent quickly.

Existing tree-based protocols often follow a reactive approach to repair a tree partition. A reactive

approach performs the tree restoration processafter detecting a node’s departure. In [107], Yang and

Fei investigate several reactive schemes — grandparent, grandparent-all, root, root-all — proposed by

Deshpande et al. [26]. Simulation results show that the grandparent scheme yields the best recovery time

— the time from when a node loses its parent until it finds a new parent. In the grandparent scheme,

when a node departs, its children will request to attach to their grandparent so as to reconnect to the tree.

As all requests go to the same node, some of them may be rejected. If the grandparent cannot accept a

request, it will redirect the request to one of its children.The rejoin process continues recursively down

the tree until the recovering nodes finally attach to the tree. As the redirection target is arbitrarily chosen,

a considerable amount of time may elapse before these nodes finally find a feasible parent. The root
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scheme is similar to the grandparent scheme, except that thechildren of the departed node contact the

root rather than their grandparent. Grandparent- and root-all differ to the corresponding schemes above

in that all the descendants of the departed node, instead of just its children, try to rejoin the tree.

A similar strategy is used in other tree-based protocols. They mainly differ in choosing the target

parent for nodes performing the recovery process. For example, in HMTP, each recovery node randomly

selects the target parent from one of the ancestors (i.e. nodes along the path from the recovery node

to the tree root). This reduces the chances that all nodes contact the same node at one time, and may

improve the recovery time. However, this approach may not besuitable for all conditions. For example,

for the delay-optimised problem, the tree is likely to have acompact structure, where nodes at tree levels

close to the root will mostly be occupied. This reduces the chances of the request being granted by the

ancestor nodes.

In their paper [107], Yang and Fei propose a proactive tree recovery scheme. As opposed to the

reactive approach, the proactive approach plans for the departuresbeforethey happen. The basic idea of

the Yang and Fei’s scheme is that each non-leaf node in the overlay tree precomputes a parent-to-be for

each of its children before it departs. Thus, when they actually depart, their children can quickly reattach

to the tree. Their proposal was found to outperform all the reactive proposals investigated.

Our mesh-based framework can be viewed as a middle ground between the reactive and proactive

approaches. Like the reactive approach, the tree restoration process starts after the node’s departure.

While not explicitly precomputing the target parent for each of the nodes, such information is implicitly

contained in the mesh overlay. In Section 6.3.2, we will showthat our approach is comparable with, and

sometimes better than, Yang and Fei’s proactive scheme.

Another concern in a tree structure is the formation of loopsin the tree. Loops typically form during

the overlay reconfiguration process. A loop will result in endless packet circulation and, potentially,

partition the tree. Thus, it is important to have a quick loopdetection and termination procedure. A root

path for a node, sayx, is the list of nodes in the route fromx to the root, via the overlay. The root path

is propagated to all tree nodes in the following manner: a node appends itself to the root path it receives

from its parent, and forwards its to all of its children. If every on-tree node maintains a root path, there

exists a simple loop avoidance technique: a node,x, accepts a new child only if the new child is not in the

root path ofx. However, as pointed out by Francis et al. [36], this simple technique does not guarantee

there are no loops at all. A loop could still happen if two or more nodes that are the roots of different

subtrees select new parents at approximately the same time.Consider the following scenario presented

by Francis et al.. Figure 6.1 (a) shows a tree rooted atr. The root paths for the nodes are given beside

the nodes. Now, assume that for some reason, nodef joinse as its new parent,h joins f , andg joins b,

then a loop involving nodesefhbg is formed (see Figure 6.1 (b)). This is because at the instantthat the

nodes join their new parents, the parents’ root paths have yet to indicate a loop. For loop detection, when

a node switches to a new parent, its new root path is quickly propagated over the subtree of that node.
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Figure 6.1: Example of loop formation [36]

If a node receives a root path that already contains its own information, it can break the loop by trying

to switch to another node. However, it is possible that more than one node will detect the loop, and try

to rejoin the tree. More importantly, there is no guarantee that the new configuration does not contain a

loop. All these could prolong the tree convergence time [36]. To counter the above problem, Francis et

al. propose to associate an integer value, calledswitch-stamp, to every node in a root path. When a node

receives the first root path from its new parent, the switch-stamp for the node is set to be greater than

any of the switch-stamps of the nodes in the received root path. With this, when a loop is formed, a node

with the largest switch-stamp can be deterministically chosen to break the loop. In addition, no new join

request will be accepted by nodes in the loop, until the loop is resolved.

Our framework maintains a mesh overlay. Unlike the tree, loops are an inherent feature of the mesh.

In other words, there is no need to prevent loop formation in the mesh. However, we do need to make sure

that the delivery tree is loop-free. Our approach consists of two parts. First, the simple loop avoidance

technique mentioned above is used when a node tries to add a tree link, so as to prevent most potential

loops. Secondly, we run the path-vector routing protocol over the mesh to resolve any loops in the tree.

The path-vector protocol is derived from the well-studied distance-vector (sometimes called dis-

tributed Bellman-Ford) routing protocol [93]. In distance-vector routing, each node periodically ex-

changes its own routing table with its neighbouring nodes. The routing table consists of<destination,

distance> tuples. On receiving a routing table from a neighbour, a nodeupdates its own routing entries

for destinations that the neighbour believes to have a better route for. As the update decision is based

solely on the distance value, distance-vector routing can be trapped by the well-known count-to-infinity

problem, in which the routing update is bouncing back and forth between several nodes for an extended

time. The path-vector protocol solves the count-to-infinity problem by including the whole path list for

each destination in the routing message. This allows nodes to quickly detect a loop, and thus improves

the route convergence time. It is easy to see that the idea of using root path in the tree-based proposals is

a variant of path-vector routing. What differentiates the tree-based proposals from ours is that they must

always maintain a tree structure, hence a loop must be resolved by altering the overlay structure. In our

case, we resolve a loop by reestablishing the on-tree relationship for nodes involved in the loop.

A common belief is that a mesh is more resilient to the partitioning problem than a tree. It is true
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that a mesh may still be connected even after some nodes disappear simultaneously. Note, however, that

the data distribution topology used is still a tree. We believe that existing mesh-based proposals have

yet to fully exploit the advantage of a mesh structure for tree restoration, specifically, in terms of the

degree-bounded tree restoration problem. We discuss some of these limitations as follows.

• Delivery tree derived from the mesh is not degree-bounded. NICE and Zigzag use a multi-level

clusters overlay for maintenance. Both protocols constraint the size of each cluster to a value

betweenk and3k− 1 inclusively, wherek is a configurable parameter. Due to this, the degree for

each individual node can be as high as(3k−1) log3k−1 n, for ann nodes overlay. Other examples

that fall into this group are Delaunay triangulation protocol and LARK. It remains unclear how

these proposals could build delivery trees that honour the degree bound for each individual node,

while still preserving the original properties and integrity of the proposals.

• Delivery tree is degree-bounded but not the mesh. Tree-first protocols like Yoid and HostCast try

to improve tree robustness by adding extra links into the tree structure (thus, result in a control

mesh topology). In Yoid, the mesh links are randomly added, while in HostCast, extra links are

added only between nodes within a predefined local region (see Figure 2.6). However, these links

are added without considering the degree constraints of thenodes. As a result, they may not be

useful when the degree constraints need to be enforced during the recovery process. A similar

problem is also faced by the DHT (distributed hash table) based protocols (e.g. Scribe, Bayeux

and CAN-multicast).

Our framework maintains a degree-bounded mesh, and the delivery tree is embedded in the mesh.

As the degree constraints are decided by each individual node based on their bandwidth limitation, the

mesh links are directly useful for tree restoration.

Our framework can be viewed as a restricted version of Narada[21] and Gossamer [18]. Both

proposals maintain a mesh overlay, and create source-specific trees for many-to-many multicasting. The

trees are obtained from the mesh using the path-vector routing protocol. Our framework follows the

mesh-based approach, and uses the same routing protocol fortree derivation. However, we only consider

a single tree in the overlay. This allows us to make some simple modifications to the routing procedure so

that it is tightly integrated with the tree structure. This reduces the number of communication messages

required. We also include procedures that take advantage ofthe redundant links information to help the

tree restoration process.

All previously mentioned schemes, as well as ours, works in the control plane. That is, they try to

provide uninterrupted data flow by repairing the delivery tree using the control topology. The reliability

of the data is managed by the upper-level applications. Complementary to this is the data plane approach,

which also tries to provide reliable data transmission. An example is PRM (Probabilistic Resilient Mul-

ticast) [10] proposed by Banerjee et al.. In PRM, besides sending data over a delivery tree, a randomised
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Figure 6.3: The components of the framework and its relationship with upper-level application

forwarding method is used to deliver extra copies of the datato the nodes. In particular, each overlay

node randomly chooses a constant number of other overlay nodes and forwards data to each of them

with a low probability. This can provide high delivery ratios in case of node failure, at the expense of

higher data volume [107]. This scheme can be used to improve the transient behaviour of the control

plane solutions.

6.2 Framework Description

Our mesh-based framework provides basic operations for theconstruction and maintenance of a degree-

bounded overlay delivery tree using an overlay mesh. Figure6.2 (a) depicts an example of the mesh

overlay. Figure 6.2 (b) shows the intermediate step to obtain the delivery tree (to be explained shortly),

which is shown in Figure 6.2 (c).

Figure 6.3 illustrates the components of the framework and its relationship with upper-level applica-

tions. The framework itself comprises two levels. The lowerlevel consists of four components which

provide basic functionality for creating and managing an overlay. They include (i) basic procedures for

setting up and tearing down the overlay links; (ii) routing information dissemination and derivation of
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the delivery tree (consists of a path-vector routing protocol); (iii) rules that ensure the connectivity of the

tree; and (iv) a procedure for updating subtree information. These four components work together to en-

sure the connectivity of the overlay, as well as the loop-free feature of the delivery tree. The upper-level

of the framework consists of two components, which include (i) the joining (i.e. how a newcomer will

join the overlay) and optimisation (i.e. rules for reconfiguring the overlay) strategies; and (ii) the path

selection policy to obtain the tree. The joining and optimisation strategies decide when and where to add

or drop an overlay link; while the path selection policy is used to guide the derivation of the delivery

tree. These two components are provided by a specific overlayconstruction proposal which applies the

framework. The joining and optimisation strategies and path selection policy are in turn driven by the

upper-level application needs (e.g. delay, bandwidth, etc).

The rest of this section describes the framework, and is structured as follows. In the next two sub-

sections (6.2.1, 6.2.2), we discuss the overlay structure and state information use by the framework. The

basic procedures provided by the framework: (i) setting up and tearing down overlay links; (ii) routing

process and delivery tree derivation; (iii) overlay maintenance; and (iv) subtree information update, will

be given in Sections 6.2.3, 6.2.4, 6.2.5 and 6.2.6, respectively. Section 6.2.7 summarises the control

messages used in the framework, which is followed by an analysis of the framework in Section 6.2.8.

In Section 6.3, we illustrate how a specific overlay construction protocol can make use of the basic

procedures using a case study.

6.2.1 Overlay Structure

The framework maintains overlays in the form of a connected degree-bounded mesh. The mesh connects

the tree root,s with all other members. The degree bound for a node,i is represented bydmax(i). It

is calculated based on the maximum fan-out ofi, which in turn depends oni’s bandwidth limitation

(see Section 3.1). The value ofdmax(i) is determined based on the type of the tree to be created. For

a source-rooted tree,dmax(i) is equal to one plus the maximum fan-out ofi, where the additional one

accounts fori’s incoming link from its parent. Ifi is the tree root, which is also the source, the one is

omitted. For a shared tree,dmax(i) is set equal toi’s maximum fan-out. This is because any node in

the shared tree can be a data source. In the rest of this chapter, we refer to the tree maintained by the

framework as thedelivery tree.

Two nodes in a session are said to have a neighbouring (or peering) relationship when the overlay

link between them exists in the constructed mesh. For nodei, the set of neighbours in the overlay is

represented byNm
i . The links betweeni and its neighbours are called mesh links (thus, all links in the

overlay are mesh links). A mesh link may or may not appear in the delivery tree as shown in Figure 6.2. In

other words, the set of mesh links can be further classified into two types (which define the neighbouring

relationship between the two end points of a link):
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1. Tree links. These are links that exist in the delivery tree. One end-point of a tree link defines the

parent node, while the other end defines the child node. All nodes (excepts) must have a parent

node. For a nodei, we useN t
i to represent its set oftree neighbours. The parent and children ofi

are represented aspi andCi respectively. Thus,N t
i = {pi} ∪Ci.

2. Non-tree links. These are links that are not included in the delivery tree. For nodei, the set of

non-tree neighboursare represented byN t′

i , i.e. N t′

i = Nm
i \N t

i .

We further defineNw
i as the pending neighbours ofi, i.e. the set of nodes thati has agreed to

accept as neighbours, while waiting for the neighbour setupprocess to complete (see Section 6.2.3).

Consider nodex in Figure 6.2, we can see thatNm
x = {q, t, v, y, z}, N t

x = {q, y, z} wherepx = q and

Cx = {y, z}, andN t′

x = {t, v}.

The degree constraint for a nodei, dmax(i) can be enforced by making sure that

|Nm
i | + |N

w
i |≤ dmax(i). (6.1)

Since the delivery tree is derived from the degree-bounded mesh, the degree bounds for the nodes in

the tree are guaranteed. This simplifies the tree restoration process as the non-tree links available in the

mesh are immediately eligible for repairing a tree partition. To aid the overlay recovery process, we also

definedres(i), the residual degree fori, as

dres(i) = dmax(i)− |N t
i | . (6.2)

It represents the number of nodes thati can still accept as its tree neighbours. We further definedres(Ti)

as the total residual degree of the subtree rooted ati. Take nodex in Figure 6.2 (c) as an example.

Assume thatdmax(x) = 5, dmax(y) = 3, dmax(z) = 3, dmax(w) = 2 anddmax(u) = 2. For x,

| N t
x | is 3, thusdres(x) is 2. This indicates thatx can still accommodate two more tree neighbours

(other thant andv). However, to do so, it needs to drop the non-tree links witht andv, so as to fulfil

the degree constraint. Fort andv, they just need to negotiate a change of status withx to becomex’s

tree neighbours. We can also calculate the total residual degree for subtree rooted atx, dres(Tx) as 6,

wherex has 2 spare degree, and each of its descendants (y, z, w, u) each has one spare degree. Table 6.1

summarises the notations used in the framework.

The delivery tree is obtained based on the reverse path tree concept used in DVMRP [25]. Every

node participates in a path-vector routing protocol to learn the paths from itself tos. Given multiple

routes tos, a node selects the “best” path as its routing path, where thegoodness of a path is judged by

the desired properties, e.g. low delay, low cost, etc1. The delivery tree is obtained as the union of all the

reverse of these paths, i.e. a reverse routing tree. The nexthop that a node uses in its path tos is therefore

1It is important to note that the path selection policy must result in loop-free paths.
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Notation Description

dmax(i) Nodei’s degree bound
dres(i) Residual degree ati
dres(Ti) Residual degree for subtree rooted ati
Nm

i Set ofi’s mesh neighbours
N t

i Set ofi’s tree neighbours
N t′

i Set ofi’s non-tree neighbours
Nw

i Set ofi’s pending neighbours
pi Nodei’s parent
Ci Set ofi’s children

Table 6.1: Notations used in the framework

the node’s delivery tree parent. For example, Figure 6.2 (b)illustrates the routing paths from each of the

nodes to the root, and the reverse delivery tree is shown in Figure 6.2 (c). The details procedures will be

explained in Section 6.2.4.

6.2.2 Overlay Node State

This section describes the basic information used by the framework. Extra information may be added by

a specific overlay construction protocol.

A node,i, maintains the following information.

• The information (IP address and communication port number)of its mesh neighbours and the root

node,s.

• Residual degree for each of its children, and the total residual degree of the nodes in the subtree

rooted at each child:dres(c) anddres(Tc)∀c ∈ Ci. This information is provided using the subtree

information update procedure, Section 6.2.6. This information will be used to redirect a node

which actively looking for a parent node (see Section 6.2.3). The idea of using the residual degree

information is borrowed from Yang and Fei’s tree recovery proposal [107] (see Section 6.3.2.2).

• Root path. A root path is the list of nodes in the overlay routefrom a node to the root. Take nodew

in Figure 6.2 (c) as an example, its root path is{w, y, x, q, s}. For ease of exposition, we classify

a root path into three types:

1. Routing path. This is the forwarding path from a node to theroot, obtained from the routing

process (see Figure 6.2 (b)). As explained before, the reverse of it forms part of the delivery

tree. A node uses the next hop of the routing path as its tree parent. The routing protocol

requires neighbouring nodes to periodically exchange their routing path. Using the whole

path provides a simple way for loop avoidance. In particular, if the path from a neighbour of

nodei includesi, i will treat it as an invalid path. An invalid path will not be considered in
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deriving the delivery tree (see Section 6.2.4). One or more performance metrics (e.g. delay,

bandwidth, etc) may be associated with a path. This gives thecost of using a path.

2. Non-tree neighbours’ root paths (non-TNRPs). For nodei, a non-TNRP is a valid path via

one ofi’s non-tree neighbours,N t′

i . It provides a first tier alternative route to the root. A

node applies the path selection algorithm on all of its non-TNRPs to find the best alternative

path to the root. The selected path will be advertised to its parent, which becomes the parent’s

tree children’s root path, as described below.

3. Tree children’s root paths (TCRPs). These are the “best” alternative paths provided byi’s

children. They serve as the second tier alternative routes to the root. Both non-TNRPs and

TCRPs are used in the overlay recovery process (see Section 6.2.5).

Referring to Figure 6.2 (b),x’s routing path is{x, q, s}, whereq is x’s parent. In addition,x has two

non-TNRPs, which are{x, t, r, s} and{x, v, p, s}, obtained fromt andv respectively. Nodex also has

one TCRP:{x, z, t, r, s} from its child,z. Note thatx’s child y does not provide any valid TCRP forx

since it does not have any non-tree neighbours.

6.2.3 Setting Up and Tearing Down Overlay Links

An overlay consists of a set of overlay links connecting the members. As mentioned previously, each

link is represented by the neighbouring relationship between two nodes. In other words, an overlay is

constructed by forming the relationships between the nodes, which involves setting up and tearing down

the links.

The establishment of a new link consists of a sequence of request, reply and acknowledgement pro-

cedures, occurring between the two end points of the link. For conciseness, we will refer to the node

that is currently performing a requesting process asi, and its potential neighbour asj. The procedures

ensure that both nodes reach a common consensus on their relationship, i.e. parent-child or merely mesh

neighbours. During the process,i and/orj may need to drop an existing neighbour so as to enforce the

degree bound.

Briefly, the three procedures perform the following functions.

• Request procedure. Nodei initiates a link establishment request to a potential neighbour. The

identity of the target neighbour is determined by the overlay construction protocol that uses the

framework.

• Reply procedure. Nodej processesi’s request, and decides ifi can be accepted as a neighbour, and

if yes, what type of relationship will be established. Again, the rules used in the decision making

is provided by the overlay construction protocol. The admission reply will be sent back toi.
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Figure 6.4: The request, reply and acknowledge sequence forsetting up an overlay link

• Acknowledgement procedure. If j acceptsi as a neighbour,i will determine if a common consensus

has been reached between the nodes. A positive or negative acknowledgement will be sent toj to

finalise the link establishment process. Ifj rejectsi’s request, no further action is needed.

Figure 6.4 offers a simple summary of the procedures. From the figure, we can see that when a node (say

i) initiates a message to another node (sayj), i may expect a reply message fromj. To avoid deadlock

in the waiting process,i will start a timer when it transmits the message. If the timerexpires before the

reply fromj reachesi, i will considerj as unreachable and clean up the intermediate information formed

during the process.

We divide the link establishment procedures based on the following two circumstances:

1. Join or rejoin the overlay. In this case, a child to parent tree link will be created. As mentioned

previously, all nodes (except the root) must have a parent node. The procedures are needed when:

(i) a newcomer tries to join in the overlay; and (ii) an existing member loses its parent, and needs

to reattach to the tree. It is worth recalling that the delivery tree is obtained from the mesh. Hence,

adding a tree link also means adding a mesh link.

2. Overlay reconfiguration. An overlay needs to be reconfigured from time to time for several rea-

sons. First, the initial structure does not necessary provide the desired robustness and/or quality in

data delivery. Secondly, the overlay needs to adapt to changes in the overlay memberships (when

members join/leave/fail) as well as changes in the underlying network conditions, which may hap-

pen throughout the session. This may result in either a tree link or a pure mesh link. The overlay

construction protocol determines when a node should perform an improvement operation, and how

to reconfigure the overlay.

The following two subsections (6.2.3.1 and 6.2.3.2) describe in details these two cases. Section 6.2.3.3

describes the procedure of tearing down an overlay link.

6.2.3.1 Join or Rejoin the Overlay

Request Procedure The request procedure marks the start of a link establishment process. To create

a new tree link,i will first select a number of potential parents, and send to each of them a JOINREQ

message. The number of potential parents should be limited to the residual degree ofi. By allowing
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multiple requests, we hope to attachi quickly to the overlay. If more than one node acceptsi’s request,

only one of them will be used asi’s parent (see the acknowledgement procedure below). How the

potential parents are chosen depends on the overlay construction protocol. For example, a newcomer

may use the tree root or some randomly selected nodes as potential parents. For a node trying to reattach

to the overlay tree, its potential parent is provided by the overlay recovery procedure (see Section 6.2.5).

Reply Procedure On receiving a JOINREQ message,j performs a simple admission control proce-

dure. The main criterion is whetherj still has spare capacity to accept a new child. (Note that a specific

protocol can provide additional admission control rules.)If j still has spare degree (see Equation 6.1),

i will be accepted as its delivery tree child; or ifj has a non-tree neighbour (sayk), j will accepti by

droppingk. Nodek will be sent a LINKDROP message (see Section 6.2.3.3). Otherwise,j will reject

i’s request. In other words, a mesh link will be dropped in favour of a tree link.

If j can accepti, it addsi into its pending neighbours set,Nw
j . The JOINREPLY message from

j to i will contain an acceptance flag andj’s routing path information. Wheni receives the reply, the

acknowledgement procedure will be used.

On the other hand, ifj rejectsi, the JOINREPLY message will contain a rejection flag and a list of

j’s tree children. The residual degree information of the children will be included. Wheni receives this

information, it first sorts the list in ascending order basedon the residual degree of the nodes, using their

total subtree degree as a tie-breaker. It then pushes the sorted list into a stack such that the node with the

largest spare degree is at the top. Ifi needs to perform a rejoin, it will pop the join targets from the stack.

This simulates depth-first searching down the delivery tree, which preventsi from randomly selecting the

join target. The use of residual degree as a tie-breaker allows nodes to quickly locate a feasible parent.

This idea is borrowed from Yang and Fei’s proactive recoveryscheme [107]. In addition,i records the

recent history of nodes that have rejected its requests, so as to prevent redundant requests. The idea of

using a stack and request history is borrowed from HMTP [109].

Acknowledgement Procedure Nodei will take the sender of the first acceptance reply that it receives

as the parent node in the delivery tree. A JOINACK message will be sent to the parent to update its

neighbour lists. For other nodes that are also able to accepti as a child,i includes them as the neighbour

nodes in the mesh and replies to them with a JOINACK about this intention — these nodes will change

their neighbour type accordingly.

6.2.3.2 Overlay Reconfiguration

Request Procedure In this case,i sends a PEERINGREQ message toj indicating its desire to estab-

lish a neighbouring relationship. Howj is chosen depends on the desired improvement under consid-

eration. For example, to achieve good robustness,i may wish to add a link to a node which provides a
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path that is disjoint fromi’s existing routing path. Again, this is determined by the overlay construction

protocol.

Reply Procedure Whenj receives the PEERINGREQ fromi, it performs an admission control pro-

cess to decide ifi can be accepted and the type of the neighbouring relationship to be established with

i. The main criterion of the admission control algorithm is the degree bound of nodej. In addition, the

algorithm must also consider the connectivity of the overlay for accepting a new neighbour. Specifically,

if by acceptingi, j needs to drop an existing neighbour — it is important that theoverlay stays connected

after the changes.

If i is accepted, it will be added intoNw
j , andj will trigger some changes such as path recomputation

and distribution (see Section 6.2.4), if necessary. The admission result will be conveyed back toi using

a PEERINGREPLY message.

Acknowledgement Procedure Wheni receives an acceptance reply fromj, it will perform the nec-

essary changes (i.e. update neighbour list and path recomputation) if it is accepted. In addition, it will

reply to j with a PEERINGACK message to confirm the neighbouring relationship to finalise the link

establishment. If the two nodes cannot reach a common consensus at this point (i.e. an agreement about

the neighbouring relationship to be established), the linkwill not be added.

6.2.3.3 Tearing Down an Overlay Link

To drop an existing link, a node simply issues a LINKDROP message to the corresponding neighbour,

and purges the neighbour from the corresponding neighbour lists. When the neighbour receives the

message, it updates its neighbour lists, and performs a check to see if there is any changes to its path to

the root. If the node finds that it is disconnected from the tree, it consults the overlay level maintenance

procedure, Section 6.2.5. For changes in the routing path (e.g. change of parent), the node will trigger

the routing procedure to distribute its new routing information. Otherwise, nothing has to be done.

6.2.4 Routing Process and Delivery Tree Derivation

This section describes the routing process uses to achieve the loop-free routing tree. The framework uses

a path-vector protocol, similar in nature to the Border Gateway Routing Protocol (BGP) [79]. Note that

BGP is a much more complicated protocol which includes complex policies that manage routes between

different routing domains. In our case, the overlay can be viewed as a single routing domain, thus every

node uses the same routing policy.

Figure 6.5 illustrates a simple model of the routing processin an overlay node. Each node maintains,

for each of its mesh neighbours, the routing path and cost metric they used to reach the tree root,s in an

incoming routing base. Examples of cost metric can be the overlay path’s hop count, delay, bandwidth
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Figure 6.5: Model of routing process in an overlay node

or a combination of them. This is determined based on the requirements of the upper-level applications.

A node will place newly received routing information from a neighbour into the incoming routing base.

It then executes a path selection algorithm which picks the best path tos using the policy provided by

the overlay construction protocol. The next hop of the selected path will become its tree parent. If the

computation results in a change in the parent node, the node will confirm its child status with the new

parent, and withdraw its child status from its existing parent. The changes will then be advertised to other

neighbours. The routing update continues to propagate until the routing path tos has converged. The

union of all the paths from every node tos form a reverse tree rooted ats, which becomes the delivery

tree (see Figure 6.2).

Routing Update: Simple Case The routing update process takes advantage of the fact that there is only

one destination (i.e. the root) in the topology, and makes use of the tree structure to reduce the number of

messages exchanged. For simplicity, we first explain how themessages are propagated in the case when

there are no changes in the routing paths. The changed case will be described in detail afterwards. Under

normal conditions, the root periodically triggers routinginformation dissemination across the overlay. It

sends to each of its neighbours a copy of its routing information using a PATHADVERT message. If

a routing message is received by a tree child, the child will propagate the message to all its neighbours,

except the sender. On the other hand, if the message is received by a mesh neighbour, the message

will not be forwarded. In this way, the routing updates travelling across the overlay roughly follow the

delivery tree structure. This is illustrated by the sample overlay in Figure 6.6. In the figure, five nodes

are connected in a ring topology. The delivery tree is rootedats, and is shown as the dark arrowed lines.

Our tree-based message propagation scheme is as shown in Figure 6.6 (b), where the small arrows depict

the direction of the routing messages. Figure 6.6 (c) depicts the working of the conventional routing

protocol which requires each neighbouring pair to exchangerouting messages. Considering ann-node

network, a spanning tree will haven − 1 links. With our technique, for each tree link (i.e. parent-child

link), the message will only flow from the parent to child. This savesn− 1 copies of routing message.

Routing Update: Detailed Description Now we describe the detailed routing operation. Periodically,

the root sends to each of its neighbours its routing information, i.e. a path consists of itself, and routing
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Figure 6.6: Example showing the dissemination of routing messages

cost of zero. The routing information will then be propagated throughout the overlay in the following

manner.

When a node, sayi, receives a routing message from a neighbour,j, it first tries to validate the

received path. That is, if the path already containsi, i will mark the path as invalid. Otherwise,i will

update the path and the corresponding cost as follows.

1. Routing path: append its own information to the path, and

2. Routing cost: set the routing cost as the cost it uses to reach the root. For example, if the shortest

path policy is used,i’s cost will be the summation of the cost betweeni andj, and the cost of the

path fromj to the root.

The path will be added intoi’s incoming routing base. In normal conditions, besidesi’s parent, only its

non-tree neighbours will provide valid paths. Given the setof valid paths in its routing base,i consults a

path selection policy to select the best path tos. The path selection policy is based on the optimisation

objective considered. For example, a node can use the shortest path first policy to select the least cost

path to the root. The path selection may result in the following cases.

1. There is no change toi’s existing routing path. In this case,i will propagate its own routing

information to its other neighbours, if and only ifj is i’s current delivery tree parent. This reduces

the message overhead as described above.

2. Nodei finds a new path via a neighbour, sayk. In this case,i will initiate a parent request tok

with a PARENTREQ message. On receiving a PARENTREQ from a neighbour (in this case,i),

k convertsi’s status to a child node and replies to it with a CHILDACK message. (Sincei and

k are already neighbours, this will not result in degree violation in either nodes.) Oncei receives

the CHILD ACK from k, it will replace the existing parent withk and update the existing parent

with a PARENTWITHDRAWAL message. The link betweeni and its old parent will not be torn

down; rather, it is changed into a mesh link. It is easy to see that this process is essentially a

parent-switch operation. However, unlike the parent-switch in tree-based proposals, no link will

be deleted. After the parent-switch operation,i will replace its routing path with the one via its

new parent,k. It then distributes the new path information to all of its neighbours, exceptk.
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Figure 6.7: Example of routing operation

3. The routing cost and/or the nodes in the path has changed, but not the next hop of the path. This

means that while there have been changes to the routing information, the best path is still via the

same neighbour. In this case,i will update its routing information, and distribute the information

to other neighbours.

4. Nodei has lost the path to the root. This may happen when a routing loop is formed due to

misinformed overlay reconfiguration operations. Nodei will trigger the overlay level maintenance

(Section 6.2.5.2) to find a new parent.

The routing information is then disseminated in a similar manner to all nodes. The routing update

will also be triggered by any node if the path information changes due to overlay recovery, an overlay

reconfiguration process or changes in the path cost.

We explain some operations of the routing process with the sample topology in Figure 6.7. In the

figure, the overlay consists of five nodes, withs acting as the root. Assume that all links have unit cost,

and the shortest path first policy is used. Panel (a) shows thecase that the overlay is connected in a line

topology. Obviously, the delivery tree for the overlay alsofollows the line structure. Panel (b) depicts

the delivery tree and the routing cost at each node. Now, assume thatd adds a link tos, thus forming the

ring topology in panel (c). Noded now learns that it can reachs via a shorter route, i.e. via the direct

link to s with a cost of 1. It will requests to be its new parent, and then withdraw its child status from

c. It then updatesc with its new routing information, i.e. the path tos with a cost of 1. Note that in an

implementation, one could piggyback the routing update with the withdrawal message to the old parent,

so as to reduce the communication overhead. Whenc receives the update fromd, it will find that the path

via d is shorter than its existing path. Thus, it will perform the parent switching operation, and update

b with its new information. Whenb receivesc’s message, there will not be any changes to its routing

path as the path viaa is shorter. Thus, the routing update is done. Now, the delivery tree will be as in

panel (d).

6.2.5 Overlay Maintenance

Overlay maintenance takes care of the connectivity of the overlay. We devise procedures that exploit the

mesh multipath properties to achieve quick recovery. We separate the maintenance tasks into two levels:
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1. Link level. This level monitors the liveness of an overlay link betweentwo nodes. If a link ap-

pears to be disconnected, the overlay level maintenance will be notified to perform any necessary

recovery process. Hence, each node only needs to monitor itsown overlay links. This reduces the

communication overhead.

2. Overlay level. This level takes care of the connectivity of the whole overlay, i.e. it repairs partitions

in the overlay.

The following two subsections detail their operations.

6.2.5.1 Link Level Maintenance

At this level, two neighbouring nodes exchanges periodic REFRESH messages (heartbeats) to monitor

the liveness of the overlay link between them. Each REFRESH message is tagged with a sequence

number to detect out-of-order delivery. A node assumes its neighbour has failed if it has not receive a

REFRESH message from its neighbour after a predefined time period. The refresh period depends on

the estimated distance between the two nodes, as well as the criticality of the link. For example, a tree

link should be monitored at a higher frequency than a mesh link. In addition, any data flows between

two nodes can be viewed as heartbeats to reduce unnecessary control messages.

In some cases, a node may wish to leave the session prematurely. We require the node to inform

each of its neighbours using a LEAVE message. On receiving such a message or on detecting neighbour

failure, a node will trigger the overlay level maintenance process to perform any necessary recovery op-

eration. We note that even if a leaving node fails to send out aLEAVE message, the heartbeat mechanism

will still detect the departure of the node, although it willtake a longer time. Hereafter, we will use the

termdepartto refer a node either failing or leaving, unless specified otherwise.

6.2.5.2 Overlay Level Maintenance

This level maintains the connectivity of the entire overlay. As the delivery tree is a spanning tree inter-

connects all the members in the overlay, it is sufficient to guarantee connectivity by making sure that the

delivery tree is not partitioned. In order to do so, each nodeclosely monitors the status of its parent using

link level maintenance.

If the departed neighbour is a child node or a non-tree neighbour, a node only needs to update its

neighbour list and the information associated with the neighbour. Otherwise (a node loses its parent), the

following restoration procedures will be used. The processmay also be triggered by the routing process

on detecting a loop (see Section 6.2.4). We note that the restoration process enforces the overlay nodes

degree constraints.

The recovery process consists of three stages, which a node will try one by one, until it is successful.

Briefly, in stage 1, a node will attempt to attach to one of its non-tree neighbours that provides an
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alternative path to the root. If this fails, in stage 2 the node will next try the neighbours of its children. If

stage 2 fails, the node will need to rejoin the overlay (stage3). The detailed operation is as follows.

Consider that a non-leaf node,p, departs from the session. We explain the recovery operation that

will be performed by one of its children,i. On detecting the departure of the parent node,i first performs

the following preparation steps:

1. Removep from its current routing path, and push the nodes in the path onto a stack in the order

such that its grandparent will be at the top while the root will be at the bottom of the stack. The

stack (which is called therejoin stack) will be used in Stage 3, in case the first two stages fail.

2. Validate all the paths obtained from its neighbours (including the TCRPs obtained from the chil-

dren). Specifically, if a path containsp, the path is considered invalid and will not be used in the

path selection algorithm.

Stage 1 (using non-TNRPs) At this stage,i will try to reconnect to the tree via one of its non-tree

neighbours, if there are any.

From the updated path information,i uses the path selection algorithm to find a neighbour that

provides the best alternative path to the root. Say that the node isk, which will becomei’s potential

parent. At this stage, the path selection only considers thenon-TNRPs. (The TCRPs will be considered

in Stage 2.) Nodei then sends a PARENTREQ message tok, and sets a waiting timer for the reply

from k. The message contains the information aboutp. If a potential parent does not exist,i will proceed

to Stage 2. If the waiting timer expires,i will invalidate k’s path, and try to recompute and request to

another alternative parent.

On receiving a PARENTREQ message which contains the information of the departed node,p from

i, k simply performs a path selection where paths viai andp will be excluded from the computation. If a

valid path is available,k returns a CHILDACK to i with an acceptance flag as well as its routing path. It

also convertsi’s status from a mesh neighbour to a child. Otherwise, the message will contain a rejection

flag. It is possible thatk cannot find a path after excludingi andp from the path selection algorithm.

For example,k just switches to a new parent that uses one of these node in thepath to reach the root,

andk’s new routing information has yet to propagate toi. In other words,k is in the same subtree asi

that has been detached from the main tree. However,k will not trigger the recovery process as long as

it believes its parent is still alive. The reason for this is to constrain the recovery process to nodes that

actually detect the partition, thus minimising the changesin the overlay.

On receiving the CHILDACK message,i first cancels the timer associated withk. If the message

indicates thatk can accepti as a child node, the recovery process is done. In this case,i updates its

routing path and triggers a distribution of PATHADVERT messages to all its neighbours, excludingk.

The PATHADVERT message triggers the recomputation of paths for its neighbours, if necessary (see

Section 6.2.4 for details.). If the parent request is rejected, i will try to recompute another alternative
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parent and retry the above procedures. The process continues until no more alternative parents are

available, in which the Stage 2 recovery process will be used.

Considerz andy in Figure 6.2 (b), and assume that they have both detected that their parent,x, has

left the overlay. Asz has a non-TNRP viat, it can quickly attach tot to repair the tree. On the other

hand,y will consider the procedures to be described below.

Stage 2 (using TCRPs) If Stage 1 recovery fails, it means thati does not have a direct neighbour that

has an alternative path to the root. Here,i will consider the TCRPs provided by its children.

Specifically,i performs the path selection algorithm using the TCRPs. If there is a valid path via a

child,c, this means that the next hop node, sayh, thatc uses to reach the root has spare capacity to accept

a new child. This is becausec is a mesh neighbour ofh, which can be dropped byh in order to accept

a new child if it has reached its degree bound. Hence,i will set h as potential parent and initiate a link

establishment procedures toh. If State 2 recovery fails,i will proceed with the procedures in Stage 3.

At this point, we can see an alternative recovery technique.Sincei knows thatc has an alternative

route viah, it can notify c so as to converth into parent. Then,i can convertc into its parent. The

obvious advantage of this approach is that there is no need tosetup a new link — the nodes only need

to reestablish their relationships. However, it requires two changes to the tree structure (i becomesc’s

child andc becomesh’c child), compared to only one in our approach (i becomesh’s child). More

importantly, the alternative approach becomes more complicated if the request fromc to h has failed —

then, shouldc carry on the recovery process, or should it notifyi so as to continue the recovery? With

our approach, the recovery decision is always local toi. Thus, we decided not to use this alternative

approach.

Refer to nodey in Figure 6.2. We can see thaty has a TCRP via its child,w: {y, w, u, z, x, q, s}.

However, as the path passes throughx, y regards the path as invalid. Thus,y will have to consider Stage

3 recovery.

Stage 3 (rejoin recovery) Reaching this stage indicates thati could not find an alternative route via

its neighbours. Here,i will performs a rejoin process similar to the initial joining procedures. However,

instead of joining from an arbitrary node,i will rejoin using the rejoin stack mentioned above. Specifi-

cally, i pops a node from the stack and begins the joining process fromthere. As described previously,

the first node isi’s old parent’s parent, i.e. the grandparent.

Figure 6.8 illustrates three sample cases that trigger the different stages of the recovery process.

6.2.6 Subtree Information Update

The framework provides a SUBTREEUPDATE message to carry information from a node along the

path to the root. Each piece of information is associated with a type and value. Examples of information
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Figure 6.8: Three stages of the recovery process

are the total residual degree in a subtree (Section 6.2.2), and the maximum subtree delay (i.e. delay from

a node to its farthest descendant), to be discussed in our case study (Section 6.3).

Take the total subtree residual degree for example. Recall that the residual degree for a node rep-

resents the number of new tree links that the node can still accommodate. For a leaf node,i, its total

subtree residual degree (dres(Ti))is equal to its residual degree (dres(i)). Each non-leaf node maintains

the total subtree residual degree for each of its children. Sayj is i’s parent. Nodei reportsdres(Ti) to j,

which in turn calculates its owndres(Tj) as

dres(Tj) =
∑

∀c∈Cj

dres(Tc) (6.3)

Nodej then reports its newdres(Tj) to its parent. The process continues along the path up to the root.

6.2.7 Summary of Control Messages

This section summarises the control messages described previously. Note that we only provide the func-

tionality of the messages, and left the exact format of the messages opens to the actual implementation.

• JOIN REQ, JOINREPLY and JOINACK. These messages are used to establish a new overlay

link between two nodes.

• PEERINGREQ, PEERINGREPLY and PEERINGACK. These messages are used for adding

new links into the overlay, during the overlay improvement process.

• LINK DROP. This message is used by a node to tear down an existing link with its neighbour.

• REFRESH. This is the periodic heartbeat message exchanges between a pair of neighbours to

monitor the liveness of the link between them.

• PATH ADVERT. This message carries the routing path information of a node to its neighbour.

• PARENT REQ, CHILD ACK and PARENTWITHDRAWAL. These messages are used between
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two neighbours to change their neighbouring relationship.For example, a node,i, sends a PAR-

ENT REQ to a mesh neighbour, sayj, to convertj to its delivery tree parent. Nodej replies with

CHILD ACK message if it agrees with the change. Nodei then sends a PARENTWITHDRAWAL

message to its old parent to convert it to a mesh neighbour.

• LEAVE. This message is sent by a node to its neighbours to inform the intention to leave the

session voluntarily.

• SUBTREEUPDATE. This message carries information (e.g. residual degree) from a node to its

upstream ancestors, up to the root.

6.2.8 Discussion

One major concern with a mesh-based approach that uses a conventional routing protocol is its scalability.

For example, as seen in Chapter 5, Narada has high protocol overhead. As pointed out in Section 6.1,

our framework has several similarities with Narada. In particular, both schemes run the path-vector

routing protocol to obtain the delivery trees. However, we note that Narada is designed for many-to-

many multicasting. For each node, a source-specific tree will be created from the mesh. Thus, all

nodes need to advertise their respective routing table. In an n-node overlay, the size of each routing

message will be in the order ofO(n). This results in an aggregated overhead ofO(n2) for the whole

population. Furthermore, Narada requires each node to maintain the liveness of other nodes for partition

detection. On the other hand, in our framework, each node needs only maintains the route to the tree root.

By exploiting the tree structure, the routing update overhead can also be reduced. In terms of overlay

management, each node only needs to know their respective neighbours.

We recall that some tree-based overlay protocols (e.g. HMTPand TBCP) maintain a root path.

The root path is delivered from the root to the members for loop detection and/or prevention. This can

be viewed as a variant of the path-vector protocol. As a tree has relatively fewer links compared to a

mesh, they will impose less control overhead. In Section 6.3.2.3, we show that our framework incurs a

reasonably low overhead, while providing several advantages over the tree-based approach.

6.3 Case Study: Root-diameter and Degree-bounded, Low Cost

Tree Problem

In this section, we demonstrate how the mesh-based framework can be used with a case study: a root-

diameter- and degree-bounded, low cost overlay tree creation problem.

We first present the problem statement. The overlay network is modelled as an undirected complete

graph,G = (V, E), as defined in Section 4.1.1. We consider the edge delay also represents the edge

cost. Thus, thetree costis defined as the summation of the delays on all the overlay links in the tree.
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The root-diameter of a tree is the maximum shortest path distance from the tree root to any vertex via

the tree. An overlay tree is to be formed using nodes inV . A special node,s ∈ V , is designated as

the data source as well as the tree root. Let∆ represents the delay bound. Now, the root-diameter and

degree-bounded, low cost tree problem can be defined as follows.

Given an undirected complete graphG = (V, E), a degree bounddmax(v) ∈ N for each

vertexv ∈ V and a delayc(e) ∈ Z+ for each edgee ∈ E; find a tree,T rooted ats spanning

nodes inV of minimum tree cost, subject to the delay constraint (root-diameter≤ ∆) and

the degree constraints,dmax(v) for all v ∈ V .

Solving this problem using global knowledge is NP-complete[82]. For scalability reason, the prob-

lem needs to be solve in a decentralised manner. Thus, the challenge is to approximate the global solution

in a decentralised manner using partial information.

The main reason for choosing the problem is because a tree-based solution, called ACDC [54], is

available. A short overview of ACDC can be found in Section 2.6.1.2, a more detailed description will

be given shortly in Section 6.3.2.1. We adapt several concepts used in ACDC in our solution, and call

the resultant protocoldbMeshTree. With this, we can perform a comparison between the mesh-based

approach and the tree-based approach. In the next subsection, we present the dbMeshTree protocol. It is

followed by an evaluation of the trees built by dbMeshTree and ACDC. We also evaluate the robustness

of the mesh-based framework compared with two tree restoration schemes.

6.3.1 dbMeshTree Description

We first provide an overview of dbMeshTree. Basically, it extends the framework in the following

manner.

• Provide a joining strategy for newcomers.

• Include an overlay improvement strategy, which is adopted from ACDC.

• Define the routing cost as the overlay delay from a node to the destination (i.e. the root), and

include a path selection policy to help to obtain the delivery tree.

In the resultant protocol, the overlay is first randomly structured, similar to ACDC. Overlay members

then use periodic improvement to try to achieve the delay bound and minimise the tree cost. The protocol

is designed to be scalable. In particular, each reconfiguration process only involves the nodes that are

engaged in the operation. Only local information at the nodes is used for decision making. In addition,

the measurement overhead per node is fixed, i.e. each node is allowed to probe only a small fixed number

of other members per improvement round.
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Figure 6.9: Local search scope for nodex

The remainder of this section describes each component of dbMeshTree. The next subsection (6.3.1.1)

presents the additional information required by dbMeshTree. Section 6.3.1.2 discusses the overlay con-

struction process. Section 6.3.1.3 presents the core of theprotocol, i.e. improving the overlay towards

the desired structure. Then, section 6.3.1.4 explains how the data delivery tree is formed.

6.3.1.1 Notation and Node State

In addition to the basic information needed by the framework(Section 6.2.2), a node,i, also maintains

the following information.

• Delay bound,∆. The target delay bound. We assume that it is provided by the application that

uses the protocol.

• The unicast delay betweeni and each of its neighbours. Henceforth, we will used(i, j) to represent

the unicast delay betweeni andj.

• Routing cost for each valid path, i.e. the delay fromi to the root using an overlay path (we also

refer to this as the root delay). It is defined as the summationof the delay of the overlay links in

the path. We useΥi(j) to represent the overlay delay fromi to the root via its neighbourj. This

information is carried in the PATHADVERT message.

• Maximum subtree delay,Λi, which represents the maximum delay fromi to its farthest descendant.

CombiningΛi with the root delay above enablesi to estimate the current tree height for the tree

branch thati is in. This information is propagated from a node to its upstream ancestors using the

SUBTREEUPDATE message.

• List of members (other thani’s neighbours) in the overlay. The list contains nodes within i’s local

scope and some randomly selected nodes. This information isused for overlay improvement.

We define the local scope for a node,x as in Figure 6.9. It includesx’s grandparent, siblings and

uncles on the delivery tree. Nodex can obtain the information in the following manner. Letx’s

parent bep. Nodep will inform x about its parent, siblings (whichp learned from its parent) and

children (excludingx). On receiving such information,x can update its local region information
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Notation Description

∆ Target delay bound
Υi(j) Overlay delay fromi to the root via a neighbour,j
Λi Maximum delay for subtree rooted ati
Hi Tree height contributed by tree branch consists ofi

Table 6.2: Additional notations introduced by dbMeshTree

as follows: parent ofp is x’s grandparent;p’s siblings arex’s uncles; andp’s other children arex’s

siblings. This information can be piggybacked on the REFRESH messages exchanged between a

child-parent pair.

To learn about other overlay nodes, we use the gossip-style node discovery technique as described

in Section 2.6.1.1. Basically, a node, sayi, maintains a list of known members. Periodically,

i randomly picks a node, sayj, from the list and sends toj a randomly constructed fixed-size

member list (8 nodes in our implementation). Whenj receives the list, it updates its own member

list, and replies toi with a list of members that it knows about. With this, each node will gradually

learn about other members of the overlay. Each node is associated with a heartbeat counter to

handle changes in the membership (see Section 2.6.1.1).

It is worth pointing out that a node does not keep the distanceinformation to these nodes. The

node also does not try to keep an accurate view of the overlay membership.

In Figure 6.10, we show an example overlay mesh structure andthe corresponding delivery tree. In

panel (a), the value beside each link represents the delay ofthe link. In panel (b), we show the values

of root delay and maximum subtree delay for each node in the form of (root delay, maximum subtree

delay). We can see that the tree has a height of 6, i.e. from theroot delay ofu or the maximum subtree

delay ofs.

Based on its root delay and the subtree delay, nodei can calculate the tree height,Hi, contributed by

its tree branch. Specifically,

Hi = Υi(pi) + Λi, (6.4)
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wherepi is i’s parent node. Hence,i will know if it is on a tree branch that is within the delay bound.

Assume that the delay bound for the example in Figure 6.10 is 5. There are three possible cases fori:

• Hi ≤ ∆: This indicates that all nodes on the path from the root toi, andi’s subtree descendants

fulfil the delay target. Examples of nodes that fulfil this condition arep, r, t, v, w andy.

• Υi(pi) ≤ ∆ andHi > ∆: This indicates that nodes in the branch from the root up toi is delay

bounded, but nodes underi’s subtree are not. Nodesq, x andz are in this category.

• Υi(pi) > ∆: The delay bound is violated byi and its subtree descendants. For example, nodeu.

6.3.1.2 Initial Overlay Construction

As mentioned earlier, dbMeshTree first creates a randomly connected overlay and relies on periodic

reconfiguration to achieve the desired structure. This section discusses the growing of the overlay as

newcomers join in.

We assume that a well-known Rendezvous Point (RP) is available to bootstrap new members into an

existing session (see Section 2.4). A newcomer,i, first obtains the information (the IP address) of the root

node, and a small list of overlay members from the RP. Nodei then selects a number of members (limited

by its degree bound) from the list as joining targets, and initiates the request, reply and acknowledgement

sequence to each of the nodes. The reason for sending multiple requests is to quickly locate a feasible

parent fori. In addition, the member list may be out-dated due to changesin the membership. The

number of initial joining targets is a configurable parameter.

The main reason for using the random joining strategy is to provide a fair comparison with ACDC,

which begins with a random tree. However, the random strategy also helps to distribute the joining

overhead among the overlay members. This avoids overloading a single node, e.g. the root, especially

during the early stage of a session where many nodes are likely to join at about the same time. This also

serves as the worst-case scenario where distance information about other nodes is initially unavailable.

6.3.1.3 Overlay Reconfiguration

Once joined to the overlay, each node (except the root) performs a periodic improvement process to try to

achieve the target tree structure. The process is adapted from the switch parent operation used in ACDC.

In particular, if a nodei finds that its descendants all lie within the delay bound (based onHi), it will try

to minimise the tree cost by finding a closer parent; otherwise, it will try to find a parent that provides

shorter route to the root so as to minimise the tree height.

Nodei periodically selects a non-neighbour node (sayj) as potential neighbour, and initiates a peer-

ing request sequence toj. To select a potential neighbour,i first forms a fixed-size candidates set. The

candidates are chosen from the overlay members thati maintains (see Section 6.3.1.1). The mixed local

and random node selection strategy (LR) described in Section 5.1.1.4 is used. In particular, candidates
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are selected from either the local region or randomly from other known members. The local/random

choice is made depending on a probability that favours localselection during the early stages (to im-

prove the overlay quickly) and random selection in later improvement rounds (to explore the search

space thoroughly).

Once the candidates are selected,i estimates the distance between itself and these nodes. Nodei also

obtains the routing information (path and cost) of these nodes during the probing process. By inspecting

the obtained paths,i can avoid choosing nodes that havei in their paths (indicating these nodes are

descendants ofi) as potential parents. Nodei selects a potential parent,j, from all the valid candidates

using one of the following conditions, based on the given order:

1. Hi ≤ ∆: i will select j if d(i, j) < d(i, pi) andΥi(j) + Λi ≤ ∆, i.e. j is closer toi thani’s

existing parent while the new tree height fori is still fulfilling the delay bound.

2. Hi > ∆ andΥx(pi) ≤ ∆: i will selectj if Υi(j) ≤ Υi(pi) andd(i, j) < d(i, pi), i.e. j provides

a shorter or equal distance to the root and it is closer toi thanpi.

3. Υi(pi) > ∆: i will selectj with the smallestΥi(j).

4. Otherwise,j is randomly chosen.

In the first three cases,i is trying to replace its existing parent with a better one (interms of cost or

delay). Thusi will send the PEERINGREQ message toj indicating a parent request. Nodej will accept

i as long as it still has spare degree, or if it has a non-tree neighbour which can be dropped to accepti. If

j acceptsi’s request,i will set j as its parent. For its old parent, sayk, there are two possibilities: first,

if the new link withj does not result in degree violation,i sends a PARENTWITHDRAWAL message

to k to change the link between them to a non-tree link; otherwise, i sends a LINKDROP message tok

to drop the link.

In the fourth case above, since there is no node that is betterthani’s existing parent,i will try to setup

a non-tree link to improve the robustness. However, the request is only sent ifi still has spare degree for

a new neighbour. In this case,j only acceptsi if it still has spare degree.

6.3.1.4 Delivery Tree Derivation

As discussed in Section 6.2.4, the routing process disseminates the path information to all nodes. Each

node validates and stores the paths from each of its neighbours in the incoming routing base. Given

multiple valid paths to the root, each node selects the best path with a route selection policy. To explain

the policy, we first define afeasiblepath as the path that gives a resultant tree height within thedelay

target,∆. Thus, for a nodei, a feasible path via a neighbourj will fulfil the relation Υi(j) + Λi ≤ ∆.

The following policy will be used byi to choose the best routing path.
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1. First, choose a feasible path. If more than one such path exists, select the one provided by the

nearest neighbour.

2. Otherwise (no feasible path), select the path that provides the smallest root distance.

The next hop (i.e.i’s neighbour) of the chosen path will becomesi’s delivery tree parent. In case of a

tie, the IP address of the next hop nodes will be considered: the node with the smallest IP address will

be chosen.

The policy essentially prioritises the delay over the tree cost, in an effort to achieve a delay-bounded

tree that has low cost. The first condition makes sure thati and its subtree nodes are within the delay

bound. If there is more than one feasible path,i selects the one that reduces the tree cost — our second

optimisation objective. However, if no feasible path exists (i.e. the second condition), the path that yields

the smallest tree height will be used.

6.3.2 Performance Evaluation

We evaluate dbMeshTree from two perspectives: (i) quality of the tree constructed; and (ii) robustness

of the protocol. For the overlay tree quality, we compare dbMeshTree against ACDC. In terms of robust-

ness, we investigate how fast the overlay tree can be restored after some nodes depart from the overlay.

We compare dbMeshTree against the grandparent and proactive tree recovery techniques studied by Yang

and Fei [107].

6.3.2.1 Comparison of Tree Quality

We first describe ACDC. Like dbMeshTree, ACDC initially constructs a randomly connected tree. It then

relies on a periodic switch parent operation to improve the tree. The switching conditions in dbMeshTree

are borrowed from ACDC. Unlike dbMeshTree, ACDC maintains only a tree structure throughout the

session. In addition, the way that it selects the switching candidates is different from dbMeshTree. In

dbMeshTree, the candidates are selected from a predefined local region and nodes learned via the gossip-

style discovery protocol. On the other hand, ACDC uses a technique calledRanSub(Section 2.6.1.1) to

distribute a set of switching targets (called a probe set) tothe nodes on the tree. All the probe sets within

each epoch are formed to follow an ordering which makes it impossible for two nodes to simultaneously

pick new parents that will introduce a loop in the tree. As a result, ACDC does not keep a root path for

loop prevention.

As ACDC and dbMeshTree use different techniques to select the switching candidates, we also con-

sidered a tree-only version of dbMeshTree to prevent bias against ACDC. Specifically, this version of

dbMeshTree maintains only the delivery tree structure, instead of a mesh. To achieve this, when a node

performs a switching operation, it drops the link to its old parent. Hence, the tree structure is preserved.

We have found that there is no significant difference betweenthis variant of dbMeshTree and ACDC.
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Group Size dbMeshTree ACDC

64 95 95
128 97 94
256 91 83
512 71 50

Table 6.3: Success rate (%) for ACDC and dbMeshTree

This shows that the performance differences observed in thefollowing results are not due the difference

in the way that the switching candidates are selected. The tree-only version of dbMeshTree is therefore

omitted from the following discussion.

In the experiments, all members randomly join the overlay within the first 50 seconds. We consider

four group sizes: 64, 128, 256 and 512. The first member is designated as the tree root. Each run

last for 3600 seconds, sufficient for the overlay tree to stabilise. For both ACDC and dbMeshTree, the

number of switching candidates is set to 5 per improvement round. For dbMeshTree, all newcomers use

only one joining target (see Section 6.3.1.2), so the overlay is initially a tree (until extra links are added

when nodes begin their improvement process), as in ACDC. FordbMeshTree, the improvement period

is 30 seconds. For ACDC, we use a smaller period (i.e. 15 seconds) which is needed to achieve similar

performance compared to dbMeshTree. We report results fromthe 10100-node transit-stub topology

(TS10k-0) described in Section 3.2.2.

We first look at how well the protocols can achieve a delay-bounded tree. In the experiments, all

members are assigned a maximum out-degree of 10 as in the evaluation of ACDC [53]. To provide a

tight delay bound, we use the root-diameter from trees calculated by the Compact Tree (CPT) algorithm

(see Chapter 4). Specifically, for a given set of members, we first ran CPT to calculate a low root-diameter

tree. The root-diameter of the tree is used as target delay bound for both ACDC and dbMeshTree, running

with the same set of members. For each group size, we conduct 100 independent runs.

Table 6.3 depicts the percentage of trials in which the protocols successfully achieve the delay targets.

It is clear that the success rate using dbMeshTree is consistently higher than ACDC. We believe this is

due to the multiple paths property of the mesh. We explain this with the following example. Consider

a node,i which has not achieved the delay target. In a tree, each node maintains a single path (via its

parent) to the root. Thus,i’s delay performance can be improved if: (i) it switches to a better parent; or

(ii) the delay performance of its current path is improved. On the other hand, in a mesh, a node maintains

multiple root paths. Hence, besides the above two cases,i may improve its delay when one of its mesh

neighbours obtains better delay performance. In other words, maintaining multiple paths at a time gives

better chances of improving the overlay.

The result also shows that the distributed solutions cannotalways achieve the delay targets. We note

that the centralised algorithm (CPT) computes trees using the full knowledge of the network topology,

the membership and the degree bound of each member. On the other hand, ACDC and dbMeshTree only
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Figure 6.11: Quality of the overlay tree: (a) RMP, (b) Tree cost ratio, (c) Maximum link stress, and (d)
Convergence properties

have partial knowledge of this information. In addition, the degree bounds of the nodes also limit the

way that the overlay can be reconfigured. These limitations become more prominent as the number of

members increases. This is confirmed by the drop in the success rate with the group size, as shown in

Table 6.3.

We also examine the actual delay performance, in terms of RMP(see Chapter 3). In Figure 6.11 (a),

we plot the RMP averages over experiments (for each group size) in which the protocols fail to achieve

the delay targets. From the figure, we can see that the delay bound (depicted by CPT’s RMP) is rather

tight, i.e. just over 1.2 times of the maximum delay using thedirect unicast connections. The RMP for

ACDC and dbMeshTree are always less than 1.4, showing that they perform reasonably well.

We examine our second optimisation objective: the tree costratio of the trees build (see Chapter 3).

Figure 6.11 (b) shows the result. From the figure, we can observe that dbMeshTree and ACDC always

yield trees with lower cost than CPT, and dbMeshTree has the best performance. The cost ratio for both

135



CHAPTER 6. MESH-BASED OVERLAY TREE CONSTRUCTION AND MAINTENANCE
FRAMEWORK

distributed protocols increases with the group size. In order to see how well the protocols optimise the

tree cost, we also consider trees computed by the centralised heuristic for the degree-bounded, minimum

cost tree problem [67] (see Chapter 4). The centralised algorithm indeed gives overlay trees with very

low cost, compared to the two protocols. In particular, the cost ratios range from 1.1 to 1.2 for the group

sizes. However, the corresponding RMP values range from 2.2to 3.4.

We also conduct some limited experiments using smaller network topologies (e.g. 600 and 2000

nodes). For these topologies, we found that both ACDC and dbMeshTree can produce trees with low

cost while keeping the delay within bound. This suggests that the delay target is easier to realise in

certain network conditions, and thus allows the nodes to carry out cost minimisation. This is in line with

the observations made by Kostic et al. [54].

Figure 6.11 (c) depicts the worst-case stress of CPT and the protocols. We can see that dbMeshTree

is marginally better than ACDC in most cases, and their stress performance is considerably lower than

CPT. The performance advantage of the protocols increases with the group size. The observation is in

line with our previous observation that trees with lower cost also have lower stress (Chapter 5).

In Figure 6.11 (d), we show the evolution of RMP and tree cost ratio of dbMeshTree and ACDC

for an experiment with 512 members. The delay target for the experiment is set to 1.2 times of the

maximum delay achieved using a unicast star overlay. From the figure, we can see that the RMP and cost

ratio increase quickly as members are joining the overlay. This is because the initial overlay is randomly

connected. In the first 200s, the RMP values of both protocolsdecrease rapidly to about a value of 2.

After that, dbMeshTree continues to improve its delay and achieve the delay target at about 750s. On

the other hand, ACDC achieves the delay target after about 1700s. The cost ratio curves show a similar

trend. We note that ACDC uses a smaller improvement period (15 seconds compared with 30 seconds

for dbMeshTree). This indicates that the dbMeshTree converges much faster than ACDC.

6.3.2.2 Robustness of the Overlay

In this section, we investigate the problem of restoring thedegree-bounded overlay tree upon node de-

partures. As mentioned in Section 6.1, it is important that the recovery process does not result in a degree

violation in any node. This problem has been considered by Yang and Fei [107], in the context of tree-

based protocols. Here we compare our mesh-based failure recovery scheme (using dbMeshTree) with

the two approaches that have been shown to perform the best intheir paper:

• Grandparent scheme. This is a reactive approach where the tree restoration process startsafter

node departures. The grandparent scheme was initially proposed by Deshpande et al. [26], along

with several other variants (grandparent-all, root, root-all, as described in Section 6.1). Each of

these schemes differ slightly in the way that a recovery nodelocates its first rejoin target. In [107],

Yang and Fei show the grandparent scheme outperforms other variants. In this scheme, the children
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Figure 6.12: The proactive recovery scheme

of the departed node first try to attach to their grandparent.The grandparent will try to accommo-

date them as long as it has spare capacity. Otherwise, it willredirect them to its descendants.

The ACDC recovery process is another version of a reactive approach. Instead of using the grand-

parent as rejoin target, the target is arbitrarily chosen from the rejoining node’s probe set. Since

both approaches differ only in their rejoin targets, we believe that there will be no significant differ-

ence in the recovery speed. Hence, we only consider the grandparent scheme in the experiments.

• Proactive scheme[107]. Unlike the reactive approach, the proactive approach plans for the de-

parturesbeforethey happen. The basic idea of Yang and Fei’s scheme is that each non-leaf node

precalculates a parent-to-be for each of its children, during the course of the session. Thus, when

a non-leaf node actually departs, its children can immediately request to their respective parent-

to-be. If a node does not have a parent-to-be2, it will try to reattach to its grandparent. Unlike the

grandparent scheme above, the grandparent node will use theresidual degree information of its

subtree nodes to redirect any request that it fails to accept.

In [107], Yang and Fei use the heuristic for the degree-bounded minimum cost tree problem [67] to

compute the parent-to-be information. Consider the case inFigure 6.12 (a) wherex is performing

the computation. Nodex will try to find a degree-bounded minimum spanning tree rooted at its

parent,p that connects all its children (a, b andc). For example, see Figure 6.12 (b). If a feasible

tree cannot be found using only these nodes (due to degree constraints),x’s grandchildren will be

used (see Figure 6.12 (c)). The distance information used byx is provided by the nodes involved.

This scheme has been shown to outperform the grandparent andother schemes proposed in [26].

In the experiments, we model the departure event as a leave event. This is because we are interested

in the recovery time — the duration from when a node loses its parent until it finally attaches to a new

parent. When a node leaves the group, it will inform all its neighbours about this intention; once it has

left the group, the node will not reply to any message send to it.

2This can happen under some cases [107]. First, when a node hasjust joined the tree, and its parent leaves before it finishesthe
computation. Secondly, it is possible that the parent was too busy with the delivery task and scheduled the computation for a later
time.
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Figure 6.13: Robustness properties of the protocols: (a) Average recovery time; (b) Average number of
nodes contacted per affected node, and (c) Cumulative distribution of the recovery time

In each experiment, we first run dbMeshTree to create an overlay tree before generating any departure

events. The tree will be used by the grandparent and proactive schemes, so that all schemes begin with

the same structure for any departure event. After that, a node is randomly chosen to leave or rejoin (from

the nodes that have left) the overlay. The rate of joining andleaving is modelled as a Poisson process as

in [107]. We use a rate of6/minute, which means that on average, there is a node joining or leaving the

overlay tree every 10s. The out-degrees of the nodes are uniformly distributed between 2 and 6. Since a

smaller degree results in a taller tree with fewer leaf nodes, the chances that a departing node is a non-leaf

node is higher. Each simulation lasts for two simulated hours. We present average results obtained from

20 independent runs.

Figure 6.13 (a) plots the result for the average recovery time, which is the average time for an affected

node to find a new parent. It is clear that the grandparent scheme always has the worst performance. This
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dbMeshTree Proactive Scheme Grandparent scheme

Stage 1 recovery/attach to parent-to-be 80.36% 89.04% N/A
Stage 2 recovery 15.93% N/A N/A
Stage 3 recovery (rejoin recovery) 3.71% 10.96% 100%

Table 6.4: Breakdown of the types of recovery perform by the different schemes

is expected since when a non-leaf node departs, all of its children will try to attach to the grandparent.

Due to the degree constraint, the grandparent can only accommodate some of these nodes. Consequently,

many nodes have to search through a number of candidate nodesbefore attaching to a new parent.

The result also shows that in most cases, our mesh-based scheme can actually outperform the proactive

scheme. We believe this is because our mesh-based scheme offers more alternatives for a recovery node,

i.e. either via the node’s direct neighbours (stage 1), or via the node’s children’ neighbours (stage 2). To

confirm this, we examine the breakdown of the types of recovery perform by these three schemes.

We first recall the types of recovery perform by each of the schemes. Our mesh-based recovery

scheme consists of three recovery stages: stage 1 where a recovery node tries to attach to a direct neigh-

bour; stage 2 where the node tries to attach to a neighbour of its child; and stage 3 where the node

performs a rejoin recovery. Correspondingly, the proactive scheme consists of two stages: the node first

tries to attach to its parent-to-be; and then tries a rejoin recovery. The grandparent scheme only performs

rejoin recovery. Table 6.4 depicts the breakdown of the recovery types, obtained from experiments with

groups of 512 nodes. It is clear that all the recoveries performed by the grandparent scheme are rejoin

recoveries. For the proactive scheme, of all the recoveriesmade, 10.96% are rejoin recoveries, while

the rest use parent-to-be recovery. For our mesh-based scheme, only 3.71% of all recoveries are rejoin

recoveries, while stage 1 and stage 2 recoveries make up the remainder 96.29%. As explained above,

rejoin recovery typically requires a longer recovery time.On the other hand, the proactive scheme’s

parent-to-be recovery and our stage 1 and stage 2 recovery allow a node to attach quickly to an eligi-

ble node. The fact that our scheme uses the fewest rejoin recoveries explains the better recovery time

achieved.

Figure 6.13 (b) plots the corresponding average number of nodes contacted by an affected node

during the recovery process. From the figures, we can observethat the grandparent recovery scheme

always has the worst performance. The fact that both dbMeshTree and the proactive scheme require a

much smaller number of contacts for tree restoration compared to the grandparent scheme also partly

explains the longer time taken by the grandparent scheme.

Figure 6.13 (c) depicts the cumulative distribution of the recovery time for experiments with 512

nodes. Results for other group sizes show a similar trend. Wecan see that for dbMeshTree, about 85%

of the recoveries are done within 2s and about 99% of recoveries are done within 5s; for the proactive

scheme, the percentages are 70% and 95% respectively; and for the grandparent scheme, the percent-

ages are 45% and 80% only. While this result indicates that our mesh-based approach can provide faster
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Figure 6.14: Protocol overhead performance

recovery time, it also shows that the worst-case result (e.g. a recovery time more than 5 seconds) may

not be acceptable. Examining the traces of the simulated event reveals that the worst results are due to

multiple simultaneous departures. In particular, this happens when a node,x, initiates a rejoin operation

to a recently departed member. The departed member will not respond tox’s request, which will eventu-

ally timeout and triggerx’s rejoin mechanism. Multiple such cases result in a long recovery time. This

suggests that a control plane only solution is not suitable for working environments with high churn rate.

However, it can be coupled with a data plane solution such as PRM [10] (see Section 6.1) to improve the

transient performance.

6.3.2.3 Protocol Overhead

Figure 6.14 (a) illustrates the protocol overhead propertyfor dbMeshTree, obtained from an experiment

with 2048 members. Each member can have up to 10 mesh neighbours. In the figure, we show the

control messages sent and received per overlay node (in kbps) during a multicast session. The following

settings are used by dbMeshTree.
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• Periodic refresh between a neighbouring pair: 5 seconds.

• Periodic routing update: 30 seconds.

• Periodic overlay improvement: 30 seconds. The gossip-style nodes discovery runs every 30 sec-

onds.

We can observe that the normal operating point is around 0.5 kbps, which is reasonably low. The

overhead is largely contributed by the refresh messages between the neighbouring nodes. Periodically,

the overhead shoots up to values from 1.5 to 2.0 kbps. This represents the control messages used during

the routing updates, overlay refinement and gossip-style node discovery. To see how the overhead scales

with the group size, we plot the average overhead for group size ranges from 32 to 2048 in Figure 6.14 (b).

We can see that the overhead increases very slowly from about0.4 kbps for 32-node overlay to less than

0.6 kbps for a group size of 2048. This is because, in our proposal, a node only communicates with

its neighbours, and a small fixed number of other nodes duringits improvement process. Increasing the

group size only marginally increases the overlay path length between the nodes. This slightly increases

the size of messages that carry path information, and thus increases the overhead slowly across the group

sizes. Note that simulations run with 2048 members typically take a considerable amount of time, thus

our later experiments only consider group sizes of up to 1024nodes.

6.4 Chapter Summary

This chapter has described a framework for creating and maintaining a degree-bounded overlay trees.

The tree is embedded in a degree-bounded mesh. Our mesh-based approach provides several advantages

over a tree-based solution. First, it improves the robustness of the tree. In addition, the mesh is more

flexible in achieving a better configuration.

As a case study, we devised a protocol, called dbMeshTree that uses the framework to build a

low cost, delay- and degree-bounded overlay tree. The tree creation problem is NP-complete, even if

computed centrally with full network and membership information. Our simulation results show that

dbMeshTree can provide a higher success rate in achieving the delay bound compared with a tree-

based solution called ACDC. In addition, it provides trees with lower cost and stress. We also compare

dbMeshTree with two tree-based recovery schemes in terms ofrecovery speed: dbMeshTree outperforms

both schemes. More importantly, the control overhead of theprotocol is reasonably small, which allows

it to be considered for large-scale applications.

The proposed framework is generic and can be used for other tree creation problems. In the next

chapter, it is used in the degree-bounded minimum delay treeproblem. In Chapter 8, we adapt the

framework for a multiple tree creation problem.
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MeshTree

This chapter considers the problem of constructing a minimum root-diameter degree-bounded overlay

tree in a distributed manner. In contrast to the root-diameter- and degree-bounded, low cost tree problem

studied in previous chapter, our current problem aims to obtain a degree-bounded tree with the lowest

(rather than bounded) root-diameter. This new problem alsodoes not explicitly try to minimise the tree

cost. This problem is NP-complete [60]. A low root-diametertree is useful for single-source applications

that require fast data delivery, for example, critical event notification.

This chapter is organised as follows. The next section discusses some issues related to the tree

creation problem. The discussion includes two issues — the greedy problem and delay-cost trade-off,

which can happen in some distributed degree-bounded, delay-optimised trees solutions. In Section 7.2,

we introduce a concept called a MeshTree that addresses the above two issues. The section also analyses

the potential of MeshTree by using a simple centralised implementation. Section 7.3 then presents and

evaluates a distributed protocol for MeshTree. Finally, Section 7.4 concludes this chapter.

7.1 Building Minimum Root-diameter Degree-bounded Trees

This section discusses the minimum root-diameter degree-bounded tree creation problem. We begin with

the problem statement. Then, we look into the differences between this problem and the root-diameter-

bounded problem. This is followed by a discussion on severalexisting efforts. We end this section

by analysing two limitations, called the greedy problem anddelay-cost trade-off, that can affect some

distributed tree building proposals. Our proposed solution, MeshTree, is explicitly devised to solve these

two problems.
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7.1.1 Problem Formulation

Using the definitions given in Section 6.3, the minimum root-diameter degree-bounded tree problem can

be stated as follows.

Given an undirected complete graphG = (V, E), a degree bounddmax(v) ∈ N for each

vertexv ∈ V and a delayc(e) ∈ Z+ for each edgee ∈ E; find a tree,T rooted ats

spanning nodes inV of minimum root-diameter, subject to the degree constraints,dmax(v)

for all v ∈ V .

In [60], Malouch et al. proved that the above problem is NP-complete even under a centralised com-

putation model where full topology information is available. For scalability reasons, we are interested in

a distributed solution.

7.1.2 Why not the Root-diameter Bounded Solution?

In Chapter 6, we show that it is possible to approximate degree-bounded trees that have bounded root-

diameter using the distributed ACDC [54] or our dbMeshTree proposal. In the chapter, we use the root-

diameter obtained from the centralised Compact Tree (CPT) algorithm [87] as the target delay bound for

both ACDC and dbMeshTree, and show that they could build trees that have root-diameters that are close

to those of the CPT. This prompts an interesting question — can a delay-bounded solution (i.e. ACDC

or dbMeshTree) be used to minimise the root-diameter, i.e. our current problem?

To use dbMeshTree or ACDC, one would need to provide an appropriate target delay bound. Assume

that there is an optimum solution which provides minimum root-diameter degree-bounded trees. The de-

lay target needs to be small enough to avoid over-estimationwhile big enough to avoid under-estimation

of the delay given by the optimum solution. It is clear that over-estimation is undesirable, as it will

result in trees with large delay. To understand the impacts of under-estimation, we conduct the following

simulation experiments.

We used dbMeshTree to create 100 overlays for a group size of 512, on top of the 10100-node transit-

stub topology (TS10k-0 as in Table 3.1). Figures 7.1 (a) and (b) depict the delay performance in terms

of RMP, and tree cost ratio respectively. In the experiments, we ran dbMeshTree with delay bounds

of 0.5, 0.75 and 1.0 times of the maximum root-diameter obtained using a unicast star overlay (these

are represented by the 0.50×, 0.75× and 1.00× curves in the figures). This ensures that the delay

target is always under-estimated. We also include the results obtained using the centralised CPT. From

Figure 7.1, we can observe that dbMeshTree’s RMP and tree cost ratio performs much worse than those

of CPT. More importantly, dbMeshTree’s RMP values vary between 1.4 to 3.0, compared to the much

smaller range of 1.2 to 1.4 given by CPT. This indicates that dbMeshTree provides an unpredictable delay

performance. The poor performance of dbMeshTree can be explained in terms of how it works (which

also applies to ACDC). In the protocol, a node keeps track of the current tree height. If the tree height
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Figure 7.1: Performance of dbMeshTree with under-estimated target delay bound: (a) RMP; and (b) Tree
cost ratio

is smaller than the delay target, the node will have more flexible transformation options. On the other

hand, if the tree height exceeds the delay target, the node can only switch to a lower delay parent. The

smaller the delay target, the fewer the possibilities for changes to the overlay, and thus the performance

is poor. Overall, the results show that the root-diameter bounded solution is not suitable for cases with

an unknown delay bound.

7.1.3 Prior Work

The problems of creating degree-bounded trees with small orbounded root-diameter have been studied

under both centralised and decentralised environments. In[87], Shi et al. propose the centralised CPT

algorithm that we use extensively in our performance evaluations. A detailed description of CPT can

be found in Chapter 4. In [60], Malouch et al. consider the delay-bounded version of the problem in a

mixed end hosts and proxies system. They designed a heuristic solution that is similar in nature to CPT.

A centralised algorithm can be used in conjunction with a centralised tree building protocol such as

ALMI [72] or HBM [80] (see Chapter 2). However, a centralisedprotocol is only suitable if the number

of members are very small, e.g. within a few tens of members. This is partly because the centralised al-

gorithm requires the complete distance matrix of the members. The distance information can be obtained

using active end-to-end measurement technique (e.g. theping program). Each measurement typically

requires two nodes to exchange some probe messages, which consume a certain amount of network

bandwidth. For ann-node overlay,O(n2) measurements will be needed to infer all the distances. This

limits the scalability of the solution. In recent years, there have been efforts to develop scalable distance

estimation system, such as IDMaps [35] and the coordinate-based global network positioning [68] (see

Section 2.7). Indeed, with the maturity of these systems, the distance information can be obtained more

easily. However, the overlay membership and underlying network conditions can change over time. Each

change may require a recomputation and redistribution of the overlay structure. This can still make the

centralised solution impractical.
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As discussed in Chapter 2, several decentralised proposalsexist for the minimum root-diameter

degree-bounded tree problem. For examples, TBCP, HostCast, switch-trees and Banerjee et al.’s scheme.

For practical reasons, these protocols limit the knowledgeof each overlay node. In particular, each node

knows only the distances to a small number of other members. Due to the limited topology knowledge,

the initial overlays typically have poor performance. Thus, these protocols improve upon the initial struc-

ture with localised incremental overlay reconfiguration. They offer different improvement strategies:

switch-trees and HostCast use simple parent switching; TBCP adopts a localised central reconfiguration

strategy; while Banerjee et al. opt for a more flexible transformation scheme. These strategies fulfil

another requirement for practicality: each operation is local to the nodes involved, i.e. there is no global

coordination between the nodes. Our comparison study in Chapter 5 reveals that Banerjee et al.’s scheme

outperforms the other proposals in creating low root-diameter trees. However, the tree may have poor

average delay from the root to its members. We have seen that our enhanced version of TBCP performs

better in terms of average delay. For both measures, switch-trees and HostCast perform the worst.

In this chapter, we propose a distributed mesh-based protocol to create low root-diameter trees. The

protocol has several similarities to earlier mesh-based protocols, such as Narada [21] and Gossamer [18].

In particular, the protocol improves the overlay from a randomly connected structure through periodic

improvement, and uses the path-vector routing protocol to help obtain the delivery tree. However, the

overlay improvement process is significantly different from these protocols. We note that both Narada

and Gossamer are designed to construct multiple source-specific trees for many-to-many multicasting.

Thus, their optimisation process is tailored to improve allthe trees involved. Our protocol, on the other

hand, is designed for single tree optimisation. Indeed, it is easy to adapt Narada and Gossamer for single

tree data delivery. However, doing so essentially translates the technique to the parent switching strategy.

We explain this in the case of Narada. As discussed in Section2.6.2, a Narada node, sayi, periodically

estimates the benefit of adding a new overlay neighbour, sayj. Link 〈i, j〉 will be added if doing so

offers a substantial performance gain. Nodei calculates the gain as the delay improvement to all other

members in the overlay that can be observed after link〈i, j〉 is added. To optimise for a single tree,i

needs only consider the delay gain to the tree root. Thus, a new neighbour that offers a shorter route to

the root will be added, and will becomei’s delivery tree parent. This is similar to the parent switching

used in switch-trees and HostCast (except that in switch-trees or HostCast, nodei will have to drop

its old parent immediately after switching to the new parent, while Narada will drop any unused links

periodically).

The parent switching approach is arguably the most basic distributed improvement solution. In the

next section, we analyse its behaviour in an effort to understand the limitations in distributed tree build-

ing. Our own proposal, MeshTree, is driven by the observed limitations.
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Figure 7.2: The greedy problem due to degree constraint in delay optimisation

7.1.4 The Greedy Problem and Delay-Cost Trade-off

Greedy Problem The optimisation problem considered attempts to minimise the delay from the tree

root to its farthest descendant. With parent switching (as in the delay-based switch-trees and HostCast),

this can be achieved as every node tries to get as close as possible to the root. This delay-based switching

is greedy in nature as a switch will only be made if a better parent is available. In a distributed envi-

ronment, nodes need to make decisions based on limited topology knowledge. Besides, there can be

little coordination between the nodes during the process. Combining the degree constraints and these

limitations, the greedy nature of delay-based switching can result in poor overlay structures. We call this

thegreedy problem.

The greedy problem can be explained using the example in Figure 7.2 (a). The figure shows a tree

rooted ats. Assume that the distance between any two nodes is proportional to its distance in the drawing.

We can see thatx, which is topologically close tos, is positioned underz. This results in a long path

from s to x, which gives poor delay performance. This can happen asy joins in the overlay beforex,

and has attached to the tree ass’s child. Obviously,s provides the best delay performance. Thus,y

will greedily stick tos. The same case also apply to other children ofs. Whens has reached its degree

bound, other nodes such asx will be prevented from attaching tos. This excludes the possibility for a

better configuration, such as the example in Figure 7.2 (b).

A simpler version of this problem is the triangle problem discussed in Section 2.2. To recall, it

arises when the inefficient structure involves three consecutive nodes along the delivery path. While this

problem can easily be solved by using the promotion operation (a child swaps position with its parent,

as in Figure 2.4 (c)), there is no such simple solution for thegreedy problem discussed above.

Delay-cost Trade-off The configuration in Figure 7.2 (b) suggests that the greedy problem can be

avoided if the nodes are connected based on their relative position on the underlying topology, i.e. if

nodes are clustered using their proximity measures. Since the aim is to construct a tree, we can view

this as the minimum spanning tree problem with the delay between two nodes as the cost function. In

Chapter 5, our evaluation results show that distributed solutions such as HMTP can yield trees with

reasonably low cost. However, the results also show that a low cost tree often has a higher end-to-end
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delay, i.e.delay-cost trade-off.

To summarise, the discussion points out that delay-based switching can be easily trapped in the greedy

problem. This results in poor overlay performance. One potential solution for the greedy problem is to

create a low cost tree. Unfortunately, a low cost tree does not necessarily provide low latency, which is

the objective of our tree creation problem.

7.2 The MeshTree Concept

This section presents the concept behind MeshTree. In the next subsection (7.2.1), we develop an overlay

structure that addresses the above two conflicting problems. As a proof of concept, we devise a simple

centralised algorithm to create the structure, and compareit against CPT, in Section 7.2.2. A distributed

version of the solution will be given in Section 7.3.

7.2.1 MeshTree Overlay Structure

The propose overlay structure is based on two simple ideas.

1. To solve the greedy problem, the structure must contain a low cost tree which connects nodes that

are topologically close together. The tree is calledbackbonetree, and is rooted at the source,s.

2. To improve the delay property of the backbone tree, shortcut links are added on top of the tree.

Essentially, this results in a mesh overlay. To fulfil the degree constraints, the mesh is degree-bounded

based on each individual node’s capacity limitation. The low delay tree can then be obtained from the

mesh as the shortest path tree rooted ats. We will refer to this idea as a MeshTree.

Figure 7.3 illustrates the concept of a MeshTree. In panel (a), we show a low cost tree rooted ats,

connecting nodes froma up tof . An overlay link〈s, e〉 is then added to form the mesh in panel (b). The

figure also depicts the length of the overlay links. Now, it iseasy to see that the tree in panel (a) has a

root-diameter of 6 units, i.e. the path froms to f . On the other hand, the shortest path tree calculated

from the mesh in panel (b) will reduce the root-diameter to just 3 units (see panel (c)).

We will examine the delay property of MeshTree overlay with acentralised implementation in the

next section. Here, we look at a more important question: canone build the MeshTree overlay in a

distributed manner? Our answer consists of three parts.

1. Creating the low cost tree. As shown in Section 5.2.1.1, simple parent switching coupled with a

suitable node selection strategy can build trees that have reasonably low cost. For example, HMTP

and variants of switch-trees that use the mixed local and random node selection strategy.
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Figure 7.3: Illustration of the MeshTree concept: (a) A low cost tree; (b) Adding a link〈s, e〉 to become
a Mesh; and (c) The low delay tree

2. Adding the shortcut links. First, each overlay node can easily maintain its overlay delay from the

root,s (as the sum of the overlay links’ delays froms to the node). With this, a simple technique

can be developed to add links that improve the delay performance.

3. Obtaining the low delay tree. With the mesh structure, the framework presented in Chapter 6 can

be used to maintain and obtain the data delivery tree. The shortest path first path selection policy

will provide the low delay tree.

At this point, we consider if the compact tree structure can be obtained in a distributed manner. We

first review the CPT algorithm. The algorithm maintains a partial tree which grows at each iteration until

all nodes are included in the tree. Thus, the nodes can be grouped into two sets: (i) on-tree nodes; and

(ii) non-tree nodes. To begin with, the partial tree contains only the root node. At each iteration, the

algorithm adds a non-tree node to the partial tree. The selected node is such that adding it will result in

the least increase in the partial tree’s delay, while preserving the degree constraints. It is clear that the

process requires a priori information of all the members, and their distance matrix.

Among the existing distributed efforts, we believe that Banerjee et al.’s scheme [9] can best achieve

the compact tree structure. In the scheme, every node maintains the overlay delay to the root and its

subtree delay. Based on this information, a node will try to perform a transformation (e.g. a switch-

ing, swapping or promotion operation as explained in Section 2.6.1) that improves its delay to the root

while not increasing the overall tree height. Each transformation improves the tree, until the tree finally

converges. In Section 7.3.6, we will compare our alternative approach to their solution.

7.2.2 Centralised Implementation

As a proof of concept, we modify the centralised mesh generation algorithm (GreedyMesh) introduced

in Chapter 4 to create the MeshTree structure. Figure 7.4 shows the algorithm.

The algorithm works as follows. To start with, it generates adegree-bounded minimum spanning tree

(line 1). This serves as the low cost backbone tree. The algorithm then calculates the available degree

at each node before entering the main loop (line 7 to 24). Within the loop, a new link (i.e. the shortcut

link) is added to the current overlay at each iteration. The chosen link is the one that gives the largest

delay improvement (in terms of the sums of weighted gains of delay to all other nodes) with respect to
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Algorithm : Centralised MeshTree Construction
Input: Complete graph G(V, E), Degree constraints dmax(v), The root node, s
Output: Connected degree-bounded mesh G′(V, E′), E′ ⊆ E, s.t. dmax(v)∀v ∈ V
CMeshTree(G, dmax)

genDBMST(G, dmax) := Generate a degree-bounded minimum spanning tree from G subject to
dmax

getNode(S) := Get a node from the given set, S
sptAlg(u, G) := Compute the shortest path distances from u to all other nodes
dused(v) := Current used degree for vertex v
dspare(v) := Current spare degree for vertex v
F := Set of vertices with spare degree, dspare(v) > 0
Du := Set of shortest path delays from u to other nodes
Uu,v := Delay gain for u if a link to v is to be added

(1) G′(V, E′)← genDBMST(G, dmax)
(2) foreach v ∈ V
(3) dspare(v)← dmax(v)− dused(v)
(4) F ← ∅
(5) foreach v ∈ V ∧ dspare(v) > 0
(6) F ← F ∪ {v}
(7) while |F|> 1
(8) u← getNode(F )
(9) Ds ← sptAlg(s, G′)
(10) foreach v 6= u ∧ 〈u, v〉 6∈ E′ ∧ v ∈ F
(11) G′′ ← G′(V, E′ ∪ 〈u, v〉)
(12) D′

u ← sptAlg(s, G′′)
(13) g ← 0 /* g := gain */
(14) foreach w ∈ V \ {s}

(15) g ← g + Ds(w)−D′

s
(w)

Ds(w)

(16) Uu,v ← g
(17) b← arg max {Uu,v : ∀v ∈ F} /* b := best selected node */
(18) G′ ← (V, E′ ∪ 〈b, u〉)
(19) dspare(u)← dspare(u)− 1
(20) dspare(b)← dspare(b)− 1
(21) if dspare(u) ≡ 0
(22) F ← F \ {u}
(23) if dspare(b) ≡ 0
(24) F ← F \ {b}

Figure 7.4: The centralised MeshTree algorithm

the source,s. Note that a link will only be considered if adding it will notresult in degree violation. The

algorithm terminates when there are no more feasible links.Overall, the algorithm differs from the one

given in Chapter 4 only in two aspects. First, it explicitly uses the low cost tree as the initial structure

(line 1). Then, when calculating the tree delay, it considers only the delay from the source,s to all other

nodes (line 9 and 12). Thus, we refer the readers to Chapter 4 for a detailed analysis of the algorithm.

Given the degree-bounded mesh, a shortest path algorithm, such as Dijkstra’s [23], can be used to

obtain the low delay tree rooted ats.

We compare the delay property of MeshTree overlays with the low delay trees built by CPT. We

ran simulations on nine 1000-node topologies (see Section 3.2.2). The group sizes range from 32 to

256. Figure 7.5 depicts two representative results (from two different topologies) in terms of RMP. We

recall that RMP represents the ratio between the maximum overlay delay and the maximum delay using

unicast froms to all other nodes. Each data point to be shown is the average of 50 independent runs. We

found that both algorithms often yield comparable performance. There are cases where the centralised

MeshTree outperforms CPT (e.g. Figure 7.5 (a)); while on other occasions, CPT performs better (e.g.
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Figure 7.5: Representative delay properties of the centralised algorithms (from two different topologies:
(a) TS1k-0; and (b) PL1k-0)

Figure 7.5 (b)). These trends were observed across the various topology models considered (i.e. transit-

stub, power-law and random Waxman, see Appendix C). In otherwords, the results are independent of

the underlying topology model used. Thus, we conclude that the MeshTree concept offers an alternative

to the centralised CPT algorithm. More importantly, unlikeCPT, it can be implemented in a distributed

manner.

7.3 Distributed MeshTree Protocol

This section presents a distributed solution for MeshTree.For conciseness, we will refer to the distributed

protocol as MeshTree, unless specified otherwise.

The main objective of the MeshTree protocol is to construct the desired overlay structure: a degree-

bounded mesh that contains a low cost backbone tree with shortcut links. Then, to obtain the low delay

tree out of the mesh for data delivery.

To achieve the overlay structure in a scalable manner, MeshTree uses the incremental improvement

strategy typically used by distributed tree building protocols. First, the overlay grows when newcomers

join in the session. Newcomers are randomly attached to the overlay. Thus, the initial overlay is unop-

timised. Then, every MeshTree node (except the source,s) periodically tries to improve its own local

overlay structure. Each improvement process involves adding/deleting links to/from the overlay using

only the topology knowledge of the nodes involved.

MeshTree makes use of the mesh-based framework introduced in Chapter 6 to construct and maintain

the mesh overlay, and to derive the delivery tree. MeshTree has several similarities with dbMeshTree

introduced in the previous chapter (Section 6.3). Thus, some notations and procedures are necessarily

common to MeshTree and dbMeshTree. For clarity, the following discussions will reiterate the shared
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ideas and information. However, to avoid unnecessary repetition, we refer the reader to previous chapter

for some detailed description.

The rest of this section describes the protocol. The next subsection introduces the notations and

state information used. The four components of the protocol: (i) initial overlay construction; (ii) overlay

reconfiguration; (iii) delivery tree derivation; and (iv) overlay maintenance, will be presented in Sec-

tion 7.3.2, 7.3.3, 7.3.4 and 7.3.5 respectively. Section 7.3.6 evaluates the performance of MeshTree, and

Section 7.3.7 discusses an alternative application of MeshTree overlay.

7.3.1 Notation and Node State

MeshTree constructs a degree-constrained overlay mesh. The mesh includes a backbone tree and a

delivery tree, both rooted at the data source,s. Since the delivery tree is used for one-to-many delivery,

every node (excepts) must have a parent node from which it receives the data stream. The degree bound

for a node,i is represented bydmax(i) which includes the incoming link from the parent (excepts) and

the out-going links to the set of downstream children.

Two overlay nodes are said to have a neighbouring (or peering) relationship when there is an overlay

link between them in the constructed mesh. In general, the set of neighbours for a node,i is represented

by Nm
i . The link betweeni and its neighbours are called mesh links. A mesh link may or may not appear

in the backbone and/or delivery tree. For ease of exposition, we group the set of mesh links into three

subsets

1. Backbone tree links. These are links included in the backbone tree. For a nodei, the set of

backbone tree neighbours is represented byN b
i . The backbone tree parent and children ofi are

represented aspb
i andCb

i , respectively. Thus,N b
i = {pb

i} ∪ Cb
i .

2. Delivery tree links. There are links that exist in the delivery tree. We useNd
i to representi’s deliv-

ery tree neighbours. As above,pd
i andCd

i refer toi’s delivery tree parent and children respectively,

andNd
i = {pd

i } ∪ Cd
i . Note that a backbone link can also be a delivery tree link, and vice versa.

3. Non-tree links. These are links that are neither the backbone nor the delivery tree link. In other

words, these are purely mesh links. Fori, the set of pure mesh neighbours is represented byNo
i .

Thus,No
i = Nm

i \ (N b
i ∪Nd

i ).

As we are using the mesh-based framework in Chapter 6, we alsouseNw
i , the pending neighbours

for i; anddres(i), the residual degree ati.

We use Figure 7.6 to help to explain the notations. Figure 7.6(a) depicts an example of a MeshTree

overlay. In the figure,s is the data source and the rest of the nodes are receivers. Thevalue beside a link

represents its delay value. Both backbone tree (Figure 7.6 (b)) and delivery tree (Figure 7.6 (c)) can be
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Figure 7.6: Example of MeshTree overlay: (a) The mesh; (b) The backbone tree; and (c) The delivery
tree

obtained from the mesh. Take nodex as an example, we can see thatNm
x = {q, t, v, y, z}, N b

x = {v, y}

with pb
x = v andCb

x = {y}, Nd
x = {q, y, z} with pd

x = q andCd
x = {y, z}, and finallyNo

t = {t}.

In addition to the basic information needed by the framework(e.g. addresses of the tree root and

mesh neighbours, residual degree and root path information; see Section 6.2.2 for details), a node,i, also

maintains the following information, as in dbMeshTree (seeSection 6.3.1.1).

• The unicast delay betweeni and each of its neighbours. Henceforth, we will used(i, j) to represent

the unicast delay betweeni andj.

• Routing cost for each valid path, i.e. the delay fromi to the root using an overlay path (we also

refer to this as the root delay). It is defined as the summationof the delay of the overlay links in

the path. We useΥi(j) to represent the overlay delay fromi to the root using its neighbourj, via

the delivery tree.

• Maximum subtree delay,Λi, which represents the maximum delay fromi to its furthest descen-

dants via the delivery tree. By combining the root delay and subtree delay,i can estimate the tree

height,Hi, contributed by its tree branch. Specifically,

Hi = Υi(p
d
i ) + Λi. (7.1)

• Information about other members in the overlay. Basically,every node loosely maintains a list

of other members currently in the overlay. The list includesnodes that are within a small over-

lay distance ofi, and other non-neighbour members acquired with a gossip-style node discovery

technique (see Section 6.3.1.1 for details). This information is used in the overlay improvement

process.

MeshTree introduces the following three pieces of information.

• Backbone tree root path. This is used as a simple loop avoidance (Section 7.3.3) and detection

(Section 7.3.5) mechanism for the backbone tree.
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• The routing cost (or root delay) viai’s delivery tree’s children’ root paths (TCRPs as in Sec-

tion 6.2.2). We recall thati’s TCRPs are the “best” alternative paths provided byi’s delivery tree

children.

• The maximum subtree delay for each of its delivery tree children.

The root delay fori’s TCRPs and delivery children’ subtree delay will be used inthe overlay reconfig-

uration process (Section 7.3.3). Briefly, during the process, a node may need to drop a delivery tree child

so as to accommodate a new neighbour. The node may select a child that, when dropped, will result in the

least increase to the tree height. This requires an estimation of the tree height when the child switches to

an alternative parent. An example is shown in Figure 7.7: panel (a) repeats the previously shown overlay

mesh, and panel (b) shows thatz can reach the root,s via two paths. With the shortest path routing,z

will choose path 1 which is 5 units away froms. Thus,x becomesz’s delivery tree parent. Nodez will

inform x about its maximum subtree delay (1 unit) and the alternativepath cost viat (6 units) tos. With

this information,x can calculate the alternative tree height forz asHz = Υz(t) + Λz = 7. Note that the

TCRP is also used in the tree recovery by the mesh-based framework, as described in Section 6.2.5.2.

7.3.2 Initial Overlay Construction

Similar to the dbMeshTree protocol, MeshTree bootstraps newcomers into the overlay randomly. Here

we point out the similarities and differences between the two protocols.

In both protocols, a newcomer, sayx, first obtains information (the IP address) about the root node,

and a small list of overlay members from the well-known Rendezvous Point (RP). Nodex then selects a

fixed number of members (limited bydmax(x)) from the list as joining targets and initiates the request,

reply and acknowledgement sequence (see Section 6.2.3.1) to each of the nodes.

The difference arises whenx’s request is rejected by a node, sayy. In dbMeshTree,y will provide x

with a list of its delivery tree children so as to continue thesearch. However, in MeshTree, the redirection

is based on the backbone tree. By using the backbone tree, it is hoped thatx can find a closer node to

attach to. Whenx finally attaches to a node, the node will becomex’s parent in both backbone and

delivery trees.
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7.3.3 Overlay Reconfiguration

Once joined in the overlay, all nodes (except the root) perform periodic reconfiguration to improve their

own local overlay structure. In the process, a node will try to locate and add a new overlay link that

will improve the overlay performance. In order to achieve the desired MeshTree structure, i.e. a low

cost backbone augmented with shortcut links, the process will favour a configuration that improves the

backbone cost over a configuration that reduces the deliverytree delay. If adding the link will result in

degree violation at either of the link’s end-points, an existing link will be dropped.

We first provide an overview of the overlay improvement process. Consider that the improvement

process is initiated by a node,x. The process consists of the following steps.

• Part I: Identify a potential neighbour. Nodex first needs to identify a potential neighbour. This

can be further divided into the following two steps.

1. Form a candidates set from the set of (non-neighbour) members thatx maintains.

2. Pick a potential neighbour (sayy) from the candidates set.

• Part II: Establish the overlay link betweenx andy. Nodex then tries to setup the overlay link to

y. This consists of the following request, reply and acknowledgement sequence.

1. Request procedure:x initiates a peering request toy.

2. Reply procedure:y processesx’s request, and decides if it will acceptx as a neighbour. This

consists of the following two steps.

(a) Determine the neighbour type. Nodey needs to first determine the neighbouring rela-

tionship to be formed withx, e.g.x asy’s backbone parent or child, or a mesh neighbour.

(b) Accept / reject. Now, based on the neighbour type determined above,y will decide if it

can acceptx as a neighbour.

The decision made byy is then sent back tox.

3. Acknowledgement procedure: On receivingy’s reply,x finalises the link establishment pro-

cess and either confirms the link betweenx andy, or rejects the creation of the link.

The detailed operations are as follows.

Part I: Identify a Potential Neighbour

I.1 Form a Candidates Set To select a potential neighbour,x first forms a fixed-size set of candidates.

The size of candidates set is a configurable parameter. The candidates are chosen from the set of overlay

members thatx maintains (see Section 7.3.1), using the mixed local and random node selection strategy

described in Section 5.1.1.4. Once the candidates are selected,x estimates the distance between itself
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and these nodes. Nodex also obtains the routing cost of these nodes during the probing process. These

nodes will also indicate if they are descendants ofx in the backbone and delivery trees. This can be done

by checking ifx is included in their respective root paths.

I.2 Pick a Potential Neighbour Using the information gathered,x will pick the node that gives the

most reduction in the backbone tree cost (to be explained shortly). If no such node exists,x will pick

the node that most improves the delivery tree delay. Otherwise, a node is randomly picked from the list.

The last case is to increase the connectivity of the mesh, andthus improves the robustness. In the last

case,x will only perform a link request if it still has spare degree.Assumey is picked as the potential

neighbour.

The reduction in the backbone cost is estimated by comparingthe distance betweenx and its current

backbone tree parent,pb
x, and the distance betweenx andy. To considery as the potential neighbour, the

distance betweenx andy must be smaller than the distance betweenx andpb
x, as well as the distances

betweenx and other candidates. As a simple loop avoidance step,x excludes candidates that are descen-

dant of its backbone tree from the estimation. In a similar fashion,x can estimate the improvement in

the delivery tree delay using the routing cost provided by the candidates.

Part II: Establish the Overlay Link

Nodex needs to initiate a request sequence toy. An overlay link will be created ifx andy can reach a

common consensus about their neighbouring relationship, i.e. whether the new link is a backbone tree

or a mesh link. The role of the link in the delivery tree will beestablished by the routing process.

Next we detail the request, reply and acknowledgement sequence that occurs during the link negoti-

ation process.

II.1 Request Procedure First,x sends a peering request message toy indicating its desire to establish

a neighbouring relationship. The message contains the following information.

• The measured distance betweenx andy, d(x, y).

• The overlay paths and costs ofx’s backbone and delivery trees. The delivery tree cost refers tox’s

routing cost, i.e. the overlay distance fromx to the root, while the backbone tree cost refers to the

distance betweenx and its backbone tree parent.

This information is needed fory’s admission control algorithm.

II.2 Reply Procedure Wheny receives the request message fromx, it needs to perform admission

control to decide ifx can be accepted and the type of neighbouring relationship that can be established

with x. The admission control results is one of the following:
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Figure 7.8: Relationship betweenx andy in the backbone tree

• Rejectx’s request,

• Acceptx as a backbone tree child,

• Acceptx as the backbone tree parent, or

• Acceptx as a pure mesh neighbour.

The result will be returned tox with a peering reply message. Ify acceptsx as a neighbour, the

reply message will containsy’s backbone and delivery trees’ information as in the request message. In

addition,y will add x into the pending neighbour list,Nw
y , and wait for the acknowledgement fromx.

Nw
y is used to enforce the degree constraint as in Equation 6.1, Section 6.2.1.

The admission control algorithm consists of two main parts:(i) determine the neighbouring relation-

ship withx; and (ii) decide whether to accept or rejectx’s request.

II.2.a Determine the Neighbour Type This process determines whetherx is treated byy as a back-

bone tree parent or child, or a mesh neighbour.

The first step of the process is to determine the relationshipbetweenx andy on the backbone tree.

Figure 7.8 illustrates three possible cases: (a)x is an ancestor ofy; (b) y is an ancestor ofx; and (c)x

andy are unrelated. This provides a clue so that an ancestor node will not try to consider its descendant

as a parent. The relationship can be easily inferred from thebackbone root paths forx (included in the

request message) and fory. The operations for the three cases are as follows.

• x is y’s ancestor (or vice versa). If x is y’s ancestor, it can only becomey’s parent or mesh

neighbour. In this case, the descendant,y will treat the ancestor (x) as a potential backbone

parent if the distance betweenx andy is smaller than the distance betweeny andpb
y. (A similar

consideration is needed in the case thaty is x’s ancestor.) Otherwise,y will regardx as a mesh

neighbour. This is to reduce the cost of the backbone tree.

• x andy are unrelated. If x andy are unrelated, one can freely become parent or child of the other

node. In this case,y will try to use the configuration that provides the lowest cost. To do so,y

compares the following distances:d(x, y), d(x, pb
x) (given in the request message), andd(y, pb

y).

If d(x, y) is smaller than one or both of thed(x, pb
x) andd(y, pb

y), the node (x or y) that has
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Figure 7.9: Example of determining a lower cost configuration

made a larger distance from its parent will be regarded as thechild node. This helps to obtain a

configuration with a lower overall cost. This can be seen in the example in Figure 7.9. Panel (a)

shows the sample configuration and the corresponding distances between the nodes. In the figure,

d(x, y) is smaller thand(x, pb
x) andd(y, pb

y), andd(y, pb
y) is smaller thand(x, pb

x). Thus, the

configuration in panel (c) will give a lower backbone tree cost than the one in panel (b). Finally, if

d(x, y) is the largest of these distances,y will regardx as a mesh neighbour.

II.2.b Accept / Reject The main decision making is based on the available degree aty. There are three

main cases.

1. If |Nm
y | + |N

w
y |< dmax(y), theny can immediately acceptx as a new neighbour.

2. Else if|Nm
y | + |N

w
y | − |N

o
y |< dmax(y), theny can still acceptx at the expense of a node chosen

from No
y .

3. Otherwise,y will execute a pruning procedure to decide if there is any neighbour that can be

dropped in flavour ofx.

The first condition indicates thaty still has spare degree, and thus can acceptx as a new neighbour.

The second condition indicates thaty has some pure mesh neighbours in its pure mesh neighbour list,

No
y . Hence,x can still be accepted, but a randomly selected node fromNo

y (if there is more than one such

node) will be dropped. The reason for including the pending neighbours (Nw
y ) in the conditions above

is to preventy from exceeding its degree bound. The third condition indicates thaty does not have any

spare degree for a new neighbour. It needs to execute a pruning decision to determine if it is beneficial

to drop an existing neighbour in order to acceptx. This will be discussed in the rest of this section.

Nodey considers a neighbour,v, is prunableif v fulfils the following criteria:

• v is y’s backbone tree parent, andx is replacingv, i.e. y is trying to switch to a closer backbone

parent.

• v is y’s delivery tree parent, andx can provide a shorter route to the root, i.e.Υy(x) < Υy(pd
y).

Hence,y is trying to improve its root delay.
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if pb
y 6∈ Nd

y

return pb
y

if pb
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return pb
y
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y
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return pb
y
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d
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if pd
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return pd
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y

return c
if d(y, x) < d(y, c) : c ∈ Cb
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return c
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y

return c
return nil

Figure 7.10: Conditions used byy to determine a prunable neighbour so as to acceptx as the backbone
tree parent

• v is one ofy’s delivery tree children, andv has an alternate path tos. In this case,y needs to make

sure that the alternative tree height forv does not exceed that ofy (see Section 7.3.1). This is to

prevent an increase in the delivery tree height.

• v is one ofy’s backbone tree children, and the distance betweenx andy is smaller than the distance

betweeny andv. Here,y is trying to reduce the backbone tree cost.

Based on the above criteria and the new neighbouring relationship to be established, we devise a

set of conditions to determine if an existing neighbour can be pruned. Figure 7.10 depicts the pruning

conditions used byy in order to acceptx as its backbone tree parent. The conditions return a neighbour

that can be dropped, if one exists.

• Acceptx as a backbone parent. To begin with,y examines its current backbone tree parent,pb
y.

Nodepb
y will be returned if it is not alsoy’s delivery tree neighbour. This is becausepb

y is to be

replaced byx, and droppingpb
y will preserve the backbone’s tree structure. In the case that pb

y

is alsoy’s delivery tree parent,pd
y, it will be selected as long asy has an alternative path (viax

or other existing neighbours) to the root,s. If pb
y is alsoy’s delivery child,y needs to make sure

thatpb
y has an alternative path which will not increase the deliverytree height. In the fourth case,

y begins by examining its current delivery tree parent,pd
y. First, y makes sure thatx provides

a shorter route to the root (Υy(x) < Υy(pd
y)). This is to replacepd

y with x to improvey’s root

delay. Now, ifpd
y is not also a backbone tree neighbour, it will be returned. Otherwise,y can only

droppd
y if d(x, y) is smaller thand(y, pd

y). This is because including link (〈x, y〉) will improve

the backbone tree cost. Next,y will examine its delivery tree and backbone tree children. Starting

with the delivery tree children,y can drop one which has an alternative path that does not increase

the tree height. For the backbone tree children, a child nodecan be dropped if it is further fromy

thanx. Finally, the last condition in Figure 7.10 considers both cases together.
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• Acceptx as a backbone child or a mesh neighbour. These two cases actually are subset of the

above conditions. Ifx is to be accepted as a backbone child,y will exclude the test for the backbone

parent. Otherwise, ifx is to be added as a mesh neighbour,y will consider conditions that involves

only its delivery tree parent.

In summary, the above procedures help to achieve a low cost backbone tree augmented with shortcut

links in the following manner:

• y will drop its current backbone tree parent if and only ifx is closer toy, andx will becomey new

backbone parent. This makes sure that the backbone is in the form of a tree. In addition, if the

backbone parent is also a delivery tree parent, it can still be dropped if doing so will not detachy

from the delivery tree.

• To improve the tree delay,y will drop its current delivery tree parent ifx offers a shorter route.

However, this can be done only if it does not increase the backbone tree cost.

• The pruning conditions prioritise the backbone neighboursover the delivery tree neighbours. In

particular, the delivery tree parent and children are considered before the backbone children. The

backbone children are also not considered whenx is to be added as a mesh neighbour.

Referring back to the greedy example in Figure 7.2, the configuration in panel (b) can be achieved

if nodes can acceptx by pruning an existing child. Otherwise, when one of the children finds a closer

node as backbone parent, it may detach itself froms and so allow another configuration to happen.

We note that the prunable neighbour is not dropped in this instance, rather, its information is recorded

and will only be dropped on receiving a positive acknowledgement fromx. To prevent transient disrup-

tion to the data delivery, a parent node continues to transmit data to the pruned child for a short time.

II.3 Acknowledgement Procedure Whenx receives the acceptance reply fromy, it will use the same

admission control procedure as described in the previous section (using its current information and the

neighbour type determined byy) to admity as a neighbour. This is to avoid any discrepancy due to

stale information. Ify is accepted,x will update the neighbours list, and trigger the route recomputation.

(The routing process will reconfigure the delivery tree links, if necessary.) It also returns an acceptance

acknowledgement toy so as to finalise the link addition process. Otherwise, ify is rejected, a rejection

acknowledge is returned toy so as to updatey’s pending neighbour list. On receiving the acknowledge-

ment message fromx (accept or reject),y will update the corresponding information accordingly.

7.3.4 Data Delivery

MeshTree uses the routing process in the mesh-based framework to disseminate the (delivery tree) path

information to all nodes. Each node validates and stores thepaths from each of its neighbours in the
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incoming routing base. As our aim is to find a low delay tree, weuse the shortest path first policy to

select the best path. That is, given multiple valid paths to the root, a node, sayx, will select the one that

provides the smallest overlay delay. The next hop (i.e.x’s neighbour) of the chosen path will become

x’s delivery tree parent,pd
x. In case of a tie, the IP address of the next hop nodes will be considered; the

node with the smallest IP address will be chosen.

7.3.5 Overlay Maintenance

The mesh-based framework is used to manage the connectivityof the delivery tree (see Section 6.2.5 for

details). This section discusses the maintenance of the backbone tree links.

Unlike the delivery tree, the backbone structure is only loosely managed. In other words, while we

try to maintain the connectivity of the backbone tree, it canoccasionally become partitioned. When a

partition happens, the protocol will not attempt to repair it immediately.

Under normal conditions, the joining and optimisation procedures will result in a loop-free backbone

tree. However, occasionally, a loop may be formed due to multiple simultaneous transformations or a

transformation which is done based on stale information (see Section 6.1).

The backbone root path is used for loop detection. In particular, a backbone tree parent node peri-

odically refreshes its children with its backbone root path. The information can be piggybacked in the

refresh messages exchanged between the neighbours. If a node, sayx, receives a root path that contains

its address, this indicates a loop has been formed, andx will break the loop by withdrawing its child sta-

tus from the parent node (while keeping the overlay link). Thus,x and its backbone tree’s descendants

are now partitioned from the backbone tree. Nodex then replaces the root path with a new list which

contains only itself, and quickly updates its descendants with the new path. This can be achieved by

including a “push” flag in the update messages to its children, so that the messages will be propagated

to its subtree descendants in the backbone tree immediately. It is clear that the process will partition the

backbone tree, with the subtree rooted atx being isolated from the main tree. Nodex will attempt to

repair the partition (by finding a new backbone tree parent) during its periodic improvement process.

7.3.6 Performance Evaluation

This section evaluates the performance of the distributed MeshTree protocol. We focus on the quality of

the overlays built. As MeshTree is layered on top of the mesh-based framework discussed in the previous

chapter, its other properties (e.g. protocol overhead, andfailure recovery) are quite similar to those of

dbMeshTree. We thus refer readers to Section 6.3.2.2 and Section 6.3.2.3 for details. In short, MeshTree

has reasonably small protocol overhead and is quick to respond to nodes departure.

We compare MeshTree with two other distributed protocols: Banerjee et al.’s scheme (NaBanerjee)

and TBCP (TbcpD), which were shown to provide the best RMP andRAP performance respectively,
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in Chapter 5. We also include the centralised CPT in the experiments. (CPT is used instead of the

centralised MeshTree as they produce comparable results, and CPT is more computationally efficient.)

We conduct extensive simulations on a set of transit-stub (≈ 10000 nodes) and power-law (5000

nodes) topologies (see Section 3.2.2). The results presented here are obtained from TS10k-0, a 10100-

node transit-stub network. We point out the differences observed from other topologies. The properties

of the topologies can be found in Section 3.2.2. For all the results to be presented (except Figures 7.11 (f),

7.13 and 7.14), each data point in the graph represents averages over 50 independent runs. In the ex-

periments, the number of members ranges from 32 to 1024. The first member is selected as the data

source. The out-degrees of the overlay nodes are uniformly distributed between 2 and 10. All distributed

proposals use a tree improvement period of 30 seconds, and the results are collected after 3600 seconds,

which is sufficient for the trees to stabilise.

MeshTree has a number of configurable parameters. First, it allows a newcomer to initiate a number

of multiple joining requests when trying to attach to the overlay. Typically, we set this value to one.

The impact of this parameter will be discussed later in this section. Secondly, MeshTree uses the mixed

local and random node selection technique (see Section 5.1.1.4), which requires an exponent base value,

b. We have observed no significant differences with values ofb ranging from 1 to 100 (the same trends

were also observed in Section 5.2.1.1). The following results were obtained withb set to 20. Finally,

at each periodic improvement process, a node selects a potential neighbour from a set of candidates

(Section 7.3.3). We use a maximum of 5 candidates in all our experiments.

We first examine the quality of the overlays built. Figure 7.11 (a) and (b) depict the delay perfor-

mance, in terms of RMP and RAP respectively. The results showthat MeshTree always outperforms

TBCP and Banerjee et al.’s scheme. For group sizes from 32 to 256, it produces trees with lower RMP

and similar RAP compared to the centralised CPT algorithm. For larger group sizes where we expect a

centralised approach to be unsuitable, MeshTree still shows reasonably good delay properties.

It is interesting to observe an inconsistent trend in the RMPand RAP curves with the growing group

size. We note that both RMP and RAP are ratios between the overlay delay with the unicast delay. The

absolute values of the overlay delays observed actually increase with the group sizes. This can be seem

in Figure 7.12 which plots the root-diameter of MeshTree andthe corresponding unicast delay against

the group size.

Figure 7.11 (c), (d) and (e) depict the worst-case and average link stress, and the tree cost ratio

performance. We can now observe that CPT produces low delay trees at the expense of high traffic

redundancy and network resource usage. The fact that its worst-case stress grows rapidly also suggests

that it is not suitable for larger group sizes. MeshTree shows a much lower maximum stress performance,

which is close to that of Banerjee et al.’s scheme. In fact, for power-law topologies (see Appendix C), we

observed that MeshTree always results in maximum stress values that are smaller than those of TBCP

and Banerjee et al.’s scheme. Interestingly, Banerjee et al.’s scheme yields the worst stress and tree
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cost performance for power-law topologies. Overall, MeshTree generally gives the lowest average link

stress and tree cost properties. We conclude that MeshTree achieves good delay properties and results in

reasonable traffic redundancy and resource usage.

In the results presented, each data point in the figures represents the average for experiments using

a different set of randomly chosen members. (We make sure that all schemes are run with the similar

set.) For an incremental improvement scheme, it is desirable that given the same data source, members

and degree constraints, a solution should converge to the same point regardless of the joining sequence.

We randomly chose a set of members and conducted 50 runs usingdifferent joining sequences. Fig-

ure 7.11 (f) depicts the result for RMP, which provides an indication on the root-diameter performance.

From the figure, we can see that MeshTree consistently produces trees with about the same delay prop-

erty, compared to Banerjee et al.’s scheme. This also suggests that our scheme can avoid an inefficient

structure better than the delay-centric approach.

We also conduct experiments where the out-degree of the nodes follow a truncated binomial distri-

bution with a minimum of 2 and maximum of 10, with different mean values (see Section 3.2.3). While

not shown here, the observed trends are similar to the above results.

In Figure 7.13, we show the convergence property of MeshTreefor a group size of 1024 members. In

the experiment, all members randomly join the overlay within the first 50 seconds. We plot the evolution

of the tree cost ratio of the backbone structure, and the RAP and RMP of the delivery tree. From

the figure, we can see that the RAP, RMP and cost ratio increasequickly as members are joining the

overlay. This is because the initial overlay is randomly connected. In the experiment, we set the periodic

improvement period to 30 seconds (as before), for each of thereceivers. Hence, the improvement process

started soon after all members have joined. We can see that the RAP and RMP values rapidly decrease

to a value less than 2 within the first 250 seconds, i.e. less than 10 improvement rounds per node. This

indicates that MeshTree can converge very quickly. The result also shows that MeshTree can gradually

improve its backbone tree cost, which suggests that the overlay contains a lot of short links between the

members. This helps to reduce the delivery tree cost and linkstress, as observed previously.

The high delay observed at the early stage is obviously undesirable. As mentioned earlier, a new

MeshTree node can send multiple joining requests when trying to attach to the overlay. This parameter,

number of initial join targets (NIJT), is configurable. Thisvalue affects the structure of the initial overlay.

With an NIJT value of one (the setting used in our previous experiments), the initial overlay will have

the form of a tree (until the nodes begin to add in extra links). Increasing the value of NIJT allows a

newcomer to attach to more than one node, and results in a meshoverlay. As a mesh contains more links

than a tree, one would expect it to increase the chances of including “good” links into the overlay which

helps to improve the delivery tree. To confirm this assumption, we reran the convergence experiments

above, but varying the NIJT for each node from 1 to 5. Figures 7.14 (a) and (b) show the RMP and RAP

results. The results show that increasing NIJT (from 1 to 3) indeed improves the initial RMP and RAP
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values, as expected. Note that the curves for NIJT of 4 and 5 are coincident with the curve of NIJT of

3, which suggests that further increases the value do not bring any improvement. This is because, as the

NIJT increases, the available degree for nodes in the overlay will quickly be occupied, and this restricts

the number of links that can be connected by nodes joining at alater time. Also, changing the NIJT

shows no significant effect on the converged state results (not shown in the region shown in the figures,

which concentrate on the early stage).

7.3.7 Further Discussion: An Alternative Usage of MeshTree

MeshTree is designed for applications that require low delay trees. The low delay tree is embedded in a

mesh overlay, which also contains a low cost backbone tree. This dual trees structure offers an alternative

usage for applications that do not require fast distribution of their normal data, but, occasionally, need to

dispatch some critical information to the members quickly.In this case, the backbone tree can be used

for normal data delivery, while the low delay tree can be usedto quickly deliver the critical information.

The benefit of this approach is that frequent data transmission can be done over a low cost tree, which

uses less network resources and results in lower packet redundancy.

We recall that in the original MeshTree, the backbone tree isonly loosely maintained. Specifically,

when a node loses its backbone tree parent, it will only try toreattach to the tree during its next improve-

ment process. For the alternative which uses the backbone tree for data delivery, we require the repair

process to start as soon as possible.

7.4 Chapter Summary

This chapter studied the problem of creating degree-constrained low delay overlay multicast trees. We

approach the problem by analysing arguably the simplest distributed solution: parent switching. Two

important issues were identified: (i) the greedy problem; and (ii) delay-cost trade-off, which can result

in an inefficient overlay structure. We then introduced a concept called MeshTree to address the above

issues. The main idea of MeshTree is to embed the delivery tree in a degree-bounded mesh containing

many short links.

We devised a distributed protocol for MeshTree that exhibits the following desirable properties:

• It constructs overlay trees in a fully distributed manner using only local information maintained at

the members. It also has fast convergence and good failure recovery properties.

• The constructed trees are degree-bounded based on each individual node’s capacity limitation. In

addition, these trees have small delay from the root.

Our simulation experiments reveal that the MeshTree overlays have delay properties comparable

with (and sometimes better than) the centralised compact tree algorithm, and always have lower delay
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than other decentralised schemes. In addition, MeshTree overlays consume fewer network resources. We

point out that MeshTree maintains a mesh structure and thus uses more state information than comparable

tree-based proposals. Consequently, its control overheadcan be slightly higher than these proposals.

However, the mesh-based approach has the advantage of addedrobustness, as shown in the previous

chapter.

In this chapter, the MeshTree concept is applied to create a single delivery tree. In the next chapter,

we will adapt the idea for the case of multiple trees. Specifically, we propose the use of multiple shared

trees for many-to-many multicasting.
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Chapter 8

A Multiple Shared Trees Approach for

Many-to-many Multicasting

Many-to-many multicast offers a service for group communication applications that involve multiple

active senders, for example, video conferencing and multi-party network gaming. Conventionally, mul-

ticasting in such groups is based on one of the two extreme cases: single shared treeor source-specific

trees. In the shared tree approach, a single tree is used as a sharedstructure for communications among

the members. On the other hand, the source-specific trees approach uses a separate tree for each of

the data sources; thus the number of trees can be as high as thegroup size. Unsurprisingly, these two

approaches complement each other in various aspects, e.g. delay, protocol overhead and robustness.

In this chapter, we investigate an intermediate solution tothe above two extremes. Specifically, we

consider a multiple shared trees solution that usesm trees for a group withn members, wherem > 1

andm≪ n. We are particularly interested in showing that for a reasonably largen (e.g. up to thousands

of nodes), a smallm can provide good delay while still incurring low protocol overhead.

The rest of this chapter is structured as follows. The next section discusses the background and

related research on the data delivery mechanism for many-to-many multicasting. In Section 8.2, we

discuss some design issues pertinent to a multiple trees approach in ALM. We then present two versions

of our proposal in Section 8.3, along with the performance evaluation. Finally, Section 8.5 summarises

the work in this chapter.

8.1 Background

The notions of using a single shared tree and source-specifictrees has long being investigated in studies

of network layer multicast. Before discussing some such works, we first recall the working principle of

the network layer multicast.
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Figure 8.1: Single shared tree vs. multiple source-specifictrees

In network layer multicast, every multicast group is identified by a unique multicast address. Each

multicast-capable router discovers the multicast membership in its local network using the Internet Group

Management Protocol (IGMP). These routers participate in amulticast routing protocol to form the

delivery trees for groups for which they have active members. For a multicast group, there can be a

single tree that is shared among the members, or a set of separate trees dedicated to each data source.

Packets addressed to a group will be delivered over the corresponding tree and reach the members. Note

that data sources do not need to be a member of the group to which they are sending.

Early works on network layer multicast, e.g. Deering’s Distance Vector Multicast Routing Protocol

(DVMRP) [25] and Moy’s multicast extension to the Open Shortest Path First (OSPF) routing proto-

col [65], adopted the source-specific approach. In these protocols, each tree is calculated based on the

(network layer) shortest routes between a source and members of a group. Due to this, the trees have

low delay. However, this inevitably requires the routers tomaintain per-source information for every

multicast group for which they have members. This limits thescalability of these protocols.

Consequently, later works such as CBT (Core-based Tree) [5]and PIM-SM (Protocol Independent

Multicast - Sparse Mode) [31], began to adopt the group-shared tree approach. As only one tree is

maintained for a group, the shared tree approach significantly reduces the routing state overhead. Hence,

it is also being used by BGMP [56], the inter-domain multicast routing protocol, to reduce state within

the Internet backbone. The shared tree is rooted at a dedicated node, typically called a core.

Despite the scalability advantage, the shared tree has a number of drawbacks relative to the source-

specific trees. In [103], Wei and Estrin conduct an extensiveset of comparisons between these two

approaches. Their simulation results show that the shared tree on average imposes a higher delay between

a source and the group members. This is because packets from asource must travel over the shared

structure to reach all other members, which in many cases does not involve the shortest path to those

members. They also show that the shared tree approach may result in traffic concentration, in which

some links in the network are much more heavily utilised thanothers. The shared tree approach is also

less robust as the core node creates a single point of failureproblem. Overall, there are trade-offs between

the single tree and all sources trees approaches, as shown inFigure 8.1.

Observing these trade-offs, Zappala et al. [108] begin to look at an intermediate design that uses

a small number of trees rather than the extreme of using one tree or all source trees. Their objective

was to investigate if the multiple trees approach can provide lower end-to-end delay and improved fault
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Figure 8.2: Alternative designs for network layer multipleshared trees

tolerance over the single tree approach, at reasonably low state overhead. They examine two multiple

trees designs: (i) senders-to-all; and (ii) members-to-all. In both designs, a small number of nodes are

selected as cores. Each core is the root of its own bidirectional, shared multicast tree, spanning some or

all of the group members.

In the senders-to-all design, members join to only one of thecores, as shown in Figure 8.2 (a). In

this figure there are three cores, each of which is the root of aseparate, bidirectional tree connecting a

subset of the group members. A sender, denoted ass, is also a member and has joined to core 1. To send

a message to the group,s transmits 3 copies, one to each core. To receive packets, a member chooses a

core and joins the core’s shared tree. The members-to-all design, on the other hand, requires the members

to join to all of the cores. This is depicted in Figure 8.2 (b).As in the previous example, there are three

cores. In this case, all members join all the cores and this results in 3 trees (Note that the tree for core 1

is only partially drawn to avoid cluttering up the figure). Totransmit data to the group, the sender,s, can

use any of the three trees. Both designs improve the fault tolerance of single tree protocol by reducing

the recovery delay when a core fails. This is because in the protocol, a sender or receiver (depending on

the variation) can quickly switch to another core, which is already installed. With a single tree protocol,

the members have to wait for the routing protocol to re-establish the new tree for the new core.

A third design, in which the senders and members both use onlyone core, the cores distribute multi-

cast packets among them, is also sketched by Zappala et al. [108]. The data distribution among the cores

could be done with a spanning tree, a ring or some other topology. Figure 8.2 (c) depicts an example

where the cores are interconnected by a bidirectional shared tree. Following this, we will refer to the

design as cores-to-cores. No performance investigation was carried out for this design by Zappala et al..

Zappala et al. carried out a set of experiments to evaluate their multiple trees designs. They first

assumed that all cores are randomly selected, and are withina small fraction of the group size. The

experiments ran on networks of 50 to 100 nodes, group size ranged from 5 to 50 and the number of

cores varied from 1 to 8. Their results confirm that both designs are feasible alternatives to the shared

tree and the source-specific trees approaches. In particular, their approaches can have lower delay than a

single shared tree and cost comparable to source-specific trees. Between the two designs, the members-

to-all variant has better performance in terms of cost and delay at the expense of more router state as all

169



CHAPTER 8. A MULTIPLE SHARED TREES APPROACH FOR MANY-TO-MANY
MULTICASTING

members need to join all of the trees.

Zappala et al. also examine the impacts of the placement of the cores. They view the multiple

cores selection in two ways: (i) the minimumd-dominating set problem; and (ii) the minimumk-centre

problem (see Section 8.2.2 for details). Both problems are NP-hard [37]. Zappala et al. introduce a

centralised heuristic called the dominating set approximation algorithm that can be adapted for both the

d-dominating set andk-centre problems. By comparing thed-dominating set andk-centre selections

with a random cores selection, they show that a carefully chosen set of cores offers better performance.

Our work applies the multiple trees concept to ALM. While theprincipal idea — using multiple trees

to strike a balance between the one or all approaches — is the same as Zappala et al.’s, the design and

working of our protocol is necessarily different from theirwork due to the different system architecture.

In the network layer approach, a multicast tree is formed by the network routers. The tree structure is

principally limited by the physical links that interconnect these routers. On the other hand, ALM trees are

created by the multicast members as an overlay on top of the physical network. Due to this, the overlay

can have a more flexible structure, which is restricted by thedegree constraints of the members. More

importantly, the overlay is evolving for better performance. In addition, Zappala et al. used a centralised

algorithm to select the multiple cores. This, however, is unsuitable for ALM as the overlay is changing

over time. Instead, we focus on a simple distributed strategy to identify the cores.

Moving to application layer multicasting, we can generallystill classify existing work as either based

on the shared tree or source-specific trees concept. Single tree ALM protocols inherit the shared tree

idea for scalability reasons. For examples, Yoid [36], HMTP[109], TBCP [62] and switch-trees [43].

Other protocols, e.g. Narada [21] and Gossamer [18], on the other hand, adopt the source-specific trees

approach. Both of these protocols use the path-vector routing protocol to help obtain the multicast trees.

Narada automatically derives trees for all members, and thus is effective only for small group sizes.

Gossamer tries to reduce the routing overhead by deriving trees for active senders. However, this is only

useful if the number of senders is relatively small, and the set of senders is consistent throughout the

session. If the set of sender is dynamic, or nodes become active (in transmitting data) and passive (act

as receiver only) intermittently, the total number of treesinvolved may still be large. This approach is

therefore not suitable for all cases.

As mentioned above, ALM trees are overlays on top of the physical network. This allows more

flexibility in organising the members into structures that simplify routing and management, and thus

improve the scalability of source-specific trees. For example, NICE [7] creates a multiple-level clusters

overlay; LARK [49] organises the members into inter-connected cliques; and the Delaunay triangulation

protocol [58] embeds Delaunay triangulation into the overlay. With these structures, source-specific trees

can be obtained easily by using only local information maintained at each overlay node. Unfortunately,

the structures of these overlays is typically driven by somesystem-wide parameters. The parameters,

rather than the actual degree constraints, will determine the number of overlay links that a node can
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maintain. For example, NICE uses a configurable parameter,k, to bound the cluster size. For ann-node

overlay, the maximum degree in the overlay can be as high asO(k log n) as discussed in Chapter 2. In

other words, to maintain the properties of the overlay, a node may have to serve more nodes than its

degree constraint. Our proposed multiple shared trees protocol honours the degree constraints of the

overlay nodes, and scales for moderately large groups.

Another related work is Wang et al.’s TMesh [100]. TMesh is anoverlay optimisation technique

designed for many-to-many applications with a small set of active senders. TMesh begins with a shared

tree (created by existing protocols such as HMTP or Yoid); shortcut links are then added to the tree to

form a mesh structure. The shortcut addition is initiated bythe receivers so as to improve the average

delay observed from the active senders in the session. To obtain the routing trees, TMesh uses the

path-vector protocol. As in Gossamer, TMesh only creates trees rooted at the active senders. By using

simulation, Wang et al. show that for multicast groups with asmall fraction of senders (i.e. 10% of groups

of up to 1000 nodes), TMesh outperforms Yoid, HMTP and Naradain terms of source-to-members delay.

Due to its routing approach, TMesh has low protocol overheadif the number of senders is small, which

however increases when more nodes begin to transmit data. Inaddition, it may need to create a large

number of trees if the senders set is dynamic, as in the case with Gossamer. Our multiple trees approach,

on the other hand, is designed to achieve low routing overhead regardless of the number of active senders.

However, we note that the knowledge of the active senders mayhelp to improve the data delivery trees.

The technique for the addition of shortcut links proposed inTMesh can also be used by our proposal.

8.2 Multiple Shared Trees for Application Layer Multicasti ng

This chapter investigates the potential of the multiple trees approach in the context of ALM. In particular,

we focus on a practical distributed solution that can offer agood balance between the one-tree and

all-trees approaches. Consistent with our system model (Chapter 3), a potential solution must honour

the capacity constraints of the members, i.e. the delivery trees are necessarily degree bounded based

on individual node capability. In addition, the protocol overhead must be small so as to scale for a

reasonably large multicast group. The rest of this section discusses some issues pertinent to the multiple

trees approach in ALM. In the rest of this chapter, we will refer to the tree root as the core, following the

convention used in network layer multicast. Also, the number of cores represents the number of trees,

and vice versa.

8.2.1 Alternative Designs

Previously we have mentioned the three designs proposed by Zappala et al., namely senders-to-all,

members-to-all and cores-to-cores [108]. We discuss the suitability of these designs in the context of

ALM.
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Senders-to-all This approach partitions the members into several disjointsets. Members within each

set join a tree rooted at one of the cores. A sender delivers data to all the cores, which in turn deliver

the data to their members. Owing to this, a sender needs to transmit as many copies of a packet as

there are cores. As the number of cores is a system-wide parameter, this inevitably requires all nodes to

have the same sending capacity, i.e. fan-out. This is in contrast with our model where nodes may have

heterogeneous capacity. Moreover, if the number of cores isreasonably large, e.g. tens of nodes, not all

members can fulfil the fan-out requirement. We thus believe this design is not suitable for our study.

Cores-to-cores This design can be viewed as a variant of the senders-to-all,as members join to differ-

ent trees. Unlike the previous approach, the sender transmits data onto the tree it has joined. The data is

then distributed to other cores using a spanning tree, ring or other suitable topology. Hence, we can view

this as a two level system — the top level consists of the interconnected core nodes and the lower level

consists of other members forming shared trees rooted at each of the cores.

We believe that this approach has a number of drawbacks. First, it is vulnerable to the core failure

problem. In particular, when a core fails, its tree is partitioned from other trees. A new core needs

to be quickly elected to heal the partition. In this design, each member can only join one tree. As end

systems have limited topological knowledge, it is unclear which tree a member should join. This problem

becomes more complicated as more cores are involved, and it also applies to the senders-to-all design.

Also, as the data is delivered from one tree to other trees viathe cores, this approach may result in longer

delivery path. Hence, we reject this design in our study.

Members-to-all We believe that this design is more appropriate for ALM. In this case, members join

all trees, and the senders choose only one of them to transmitdata. In [108], Zappala et al. actually

favour the senders-to-all over this design. This is due to the following two reasons.

1. Members-to-all will require the routers to store more state information, as they need to join more

trees. The senders-to-all, on the other hand, only requireseach router to join one tree.

2. The senders-to-all approach gives the members control over choosing a tree, while in members-

to-all, the sender is responsible for choosing a tree. They argued that in this way, senders-to-all

allows the members to select the tree that best suit their performance.

In our opinion, these two shortcomings are rather irrelevant in the context of ALM. First, in network

layer multicast, the trees are formed by the routers. There is a greater concern over the size of state

information as it is kept at the network routers, which couldneed to support a large number of multi-

cast groups. In contrast, ALM trees are formed directly among the members, which are end systems.

Typically, an end system will only participate in one or a small number of multicast sessions. More im-

portantly, storing more information at these systems does not affect the underlying routing infrastructure.
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For their second concern, as discussed previously, the end systems have limited topology knowledge and

thus face difficulty in deciding the best tree to join to.

If we assume that a subset of members has been chosen as cores,the members-to-all design can be

achieved in two ways:

1. The members run a separate tree building protocol (e.g. HMTP, TBCP) to create and maintain

each tree.

2. The members create a shared structure (i.e. a mesh) and derive the trees from the mesh.

The first approach is perhaps the most straightforward way torealise the multiple trees design. Also,

each tree can be optimised separately. However, this approach requires every node to manage multiple

instances of the tree building protocol. A complex coordination procedure may be needed to efficiently

manage the information kept for each of the trees. With the second approach, we can easily use the

path-vector routing protocol to establish trees rooted at each core node simultaneously. For this reason,

we advocate the second approach in this work.

8.2.2 Core Selection

An important factor that affects the performance of the multiple trees approach is the selection of the

core nodes. There are two major considerations here: (i) thenumber of cores; and (ii) the placement of

the cores.

As discussed in Section 8.1, the number of trees is chosen to trade-off the performance and scalability.

When the number of trees is small, the performance approaches the single shared tree solution. On the

other hand, increasing the number of cores will drive the performance towards the source-specific trees

approach. However, increasing the number of trees also increases the protocol overhead. It is crucial to

find a point that balances these two conflicting metrics.

The core placement is not a new problem. In fact, much research attention has been devoted to the

optimal core placement problem for the network layer singleshared tree protocols. Selecting an optimal

core under a dynamic environment is a non-trivial problem. Finding an optimal placement formultiple

cores is more difficult. As discussed in Section 8.1, there are two ways to view the problem. The first

is to view it as the minimumd-dominating set problem which tries to find the smallest number of cores

such that the maximum distance from the cores to the nodes is at mostd. The second is to view it as

the minimumk-centre problem which locatesk cores such that the maximum distance from a node to its

nearest core is minimised. These two problems are both NP-hard [37].

In [108], Zappala et al. introduce a centralised heuristic called the dominating set approximation

algorithm that can be adapted for both thed-dominating set andk-centre problems. The algorithm

requires complete information about the members and their distance matrix. As our proposal works on

top of the application layer that has limited topology information, we are interested in a simple distributed

173



CHAPTER 8. A MULTIPLE SHARED TREES APPROACH FOR MANY-TO-MANY
MULTICASTING

technique to do the selection. Specifically, we devise an incremental technique that adds-in cores until

a predefined number is reached. The objective of the technique is to spread the cores evenly across the

overlay. This aims to minimise the distance from the membersto their nearest core. In other words, our

technique attempts to approximate the objective of thek-centre problem.

The reason to approximate thek-centre problem is because we would like to have more controlover

the number of cores, which directly affects the scalabilityof the solution. In addition, it is more difficult

to provide a good estimation of the distance parameter for the d-dominating set problem without full

knowledge of the overlay membership and topology. Furthermore, the overlay is changing over the time.

8.3 Application Layer Multiple Shared Trees Protocol

In this section, we describe our solution to multiple sharedtrees application layer multicasting. The so-

lution is a self-organising protocol which fulfils the requirements (degree-bounded trees and reasonably

low protocol overhead) and the design considerations discussed previously. For conciseness, we refer to

the protocol as MSTP.

In MSTP, the members self-organise into a connected mesh overlay. Out of all the members,m nodes

are chosen as cores. By using the path-vector routing protocol, we derive shortest path trees rooted at

these cores. These trees are used as bidirectional shared trees. When a member wishes to multicast data,

it selects one of the trees and transmits the data by flooding the selected tree. With this approach, when

a core node fails, the overlay is still connected as long as the underlying mesh is connected.

The development of MSTP has gone through two phases. The aim of the first phase was to quickly

build a working prototype to investigate the feasibility ofthe multiple shared trees in ALM. To achieve

this, we adapt the Narada protocol to implement the multipletrees design mentioned in Section 8.2. We

refer to this version as MSTP-v1. With some limited simulations, we show that MSTP-v1 is a promising

alternative for many-to-many multicasting [91]. In the second phase, we include lessons learned from

our MeshTree protocol (Chapter 7) to further enhance the protocol. We call the second version MSTP-

v2. It is worth pointing out that MSTP-v1 was developed priorto MeshTree, and the MeshTree concept

was actually conceived during our attempt to enhance MSTP-v1. We first applied the MeshTree concept

to create source-rooted trees for one-to-many multicasting, as in Chapter 7. Then, the idea was applied

to MSTP-v2.

We next present the working of MSTP-v1. Section 8.3.2 then describes the improved version of the

protocol, MSTP-v2. In Section 8.4, we examine the performance of both versions of MSTP.

8.3.1 MSTP-v1

The first version of the protocol can be viewed as an extensionof Narada for creating multiple shared

trees. It first creates a randomly connected mesh, which is degree bounded based on the limitation of
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each individual node. Initially, only one core exists in themesh. The path-vector routing protocol is used

to obtain the tree rooted at the core. The protocol then incrementally adds in new cores up to a predefined

number. As all the trees are obtained from the degree boundedmesh, they are also degree bounded.

The protocol consists of five main components: (i) constructing the overlay; (ii) data delivery; (iii)

selection of new cores; (iv) improving the overlay; and (v) overlay maintenance. These will be discussed

in the following subsections.

8.3.1.1 Constructing the Overlay

MSTP-v1 first creates a randomly connected mesh. As in our previous proposals (dbMeshTree and

MeshTree) and in most other ALM protocols, MSTP-v1 assumes that there exists a well-known Ren-

dezvous Point (RP) as the bootstrapping entity for all new members. When a newcomer wishes to join a

group, it first contacts the RP to obtain a list of existing members. It then tries to attach to some randomly

selected members from the list. The joining procedure consists of the request, reply and acknowledge

sequence as in dbMeshTree and MeshTree. A newcomer will regard the first member that provides a

successful reply as its parent for all the trees currently inthe overlay. Once the node attaches to the

overlay, it participates in the maintenance and routing procedures. The routing procedure (explained in

the next section) will establish the best routing paths for the node.

In MSTP-v1, the first member that joins in the overlay will be designated as thelead coreby the RP.

It will become the root of the first tree, and is responsible for the creation of additional cores (thus, new

trees).

8.3.1.2 Data Delivery

MSTP uses the path-vector routing protocol to help establish the trees rooted at the cores. The rout-

ing process at each node consists of an incoming routing information base, path selection policy and

the actual routing path, as discussed in Section 6.2.4. Unlike the mesh-based framework in Chapter 6,

MSTP needs to obtain more than one tree from the mesh. Thus, its routing process uses the conven-

tional approach to propagate the routing information, rather than the tree-based approach introduced in

Section 6.2.4.

In the routing process, every member periodically exchanges its routing table with its mesh neigh-

bours. For a nodex, the routing table contains the identities of the cores, andthe overlay paths and

distances fromx to the cores. The routing information is propagated across the overlay in the following

manner. Whenx receives routing information from its neighbour, it first tries to validate the received

paths. That is, if a path already containsx, x will mark the path as invalid. Otherwise,x will add the path

into the incoming routing base. Then,x will use the shortest path first policy to select the best paths to

each of the cores. As before, the next hop of the best path to a core becomes the parent of the tree rooted

at the core. If there is a change of route after the recomputation,x will trigger the necessary response. For

175



CHAPTER 8. A MULTIPLE SHARED TREES APPROACH FOR MANY-TO-MANY
MULTICASTING

example, if a parent node is replaced by another node,x will trigger the new parent acknowledgement

and old parent withdrawal procedures (see Section 6.2.4) tore-establish the relationship.

Given multiple trees, a source first needs to select one of thetrees on which the data will be delivered.

There are several possible selection criteria, such as random selection, or selecting a tree whose core is

nearest (via the overlay) to the source member. Our cores selection approximates thek-centre problem,

which tries to minimise the distance between nodes and theirnearest cores. It is thus a natural choice to

use nearest core selection. In our performance study, we also investigate the random selection strategy.

Now, assume that a source,x, has chosen a tree rooted at core,y. The chosen tree is used as a shared

tree, i.e. a source node transmits packets to all of its tree neighbours (i.e. parent and children); when an

on-tree node receives a packet, it will replicate and forward the copies to its other tree neighbours. In

order to use the tree,x needs to include the identity of the core,y, in every packet that it transmits. When

other nodes receive the packets fromx, they can forward the packets on the chosen tree.

8.3.1.3 Core Selection

As discussed in Section 8.2.2, we are interested in a light-weight distributed strategy that approximates

thek-centre problem. To achieve this, our protocol begins with asingle tree (rooted at the lead core),

and periodically increases the number of trees up to a configurable maximum value1. The first new core

selection begins after a configurable period, e.g. 500 seconds. This is to allow the overlay to converge to

a more stable structure.

In the new core selection process, the lead core first tries toidentify a number of potential cores,

which fulfil a certain requirement. Specifically, the lead core randomly transmitsp copies of new core

discovery message to its delivery tree children. A timer is set to wait for possible replies from the mem-

bers. The valuep is configurable. The discovery message contains a basic requirement for a potential

core: hm, the minimum overlay hop distance to the nearest core. A potential core must have a hop

distance that is larger thanhm. This is an attempt to find a new core that is far away from existing cores,

i.e. spreading the cores evenly across the overlay. The reason for specifying the distance in terms of hop

count is simplicity. Instead of a predefinedhm value, one may consider a technique which adaptively

adjust the value ofhm at each new core discovery period based on the potential cores’ response. For ex-

ample, if no potential core is found, thehm value can be decremented. In our experiments, we typically

setp = 20 andhm = 3.

The discovery message also contains a sequence number. All messages transmitted by the lead core

within each period have an identical sequence number. It is used to prevent a node replying more than

once to the message.

A new core discovery message is forwarded down the lead core’s delivery tree in the following

1If a group has very small number of members (e.g. 10), it is possible that all members could become cores. In this case, our
proposal will work like the source-specific trees approach.
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manner. Say a member,x, receives a message from its parent. Ifx has not seen the message (based on

the sequence number), andx is not already a core, andx fulfils the hm requirement,x will send a reply

to the lead core. The reply message contains the distance betweenx and the core closest (via the overlay)

to it. In the case thatx is a leaf node which does not fulfil thehm requirement,x will reply (as potential

core) to the lead core if it has not done so. In other cases,x will forward the message to a randomly

selected child on the lead core’s tree.

Once the lead core receives all the replies (at mostp copies) or the timer expires, the lead core will

select a new core from the responding nodes. Specifically, itcompares the distances of the potential cores

to their respective nearest cores. The one that has the largest distance to its nearest core will be selected.

In other words, the selection tries to maximise the distanceamong the cores. The lead core than sends

an acknowledgement to the newly elected core, which will begin to advertise itself in the routing update.

The routing update will take a while to reach the whole population. Hence, when a node first learns about

a new core, the core will not be considered in the tree selection for a few cycles of the routing period

(four cycles in our implementation).

8.3.1.4 Overlay Improvement

As the initial overlay is randomly structured, and should adapt to the changes in the membership and

network conditions, the overlay needs to be reconfigured from time to time. MSTP-v1 employs a slightly

modified version of Narada’s overlay improvement technique.

In Narada, every member periodically tries to add a new link or delete an existing overlay link to

improve its delay to other members. Consider a node,x. A new link will be added byx if it believes

that the link will improve its delay. On the other hand, an existing link may be dropped byx if the link

is considered ineffective. To add a new link,x randomly selects a non-neighbour node, and requests a

copy of the routing table from the node. Assume thaty is selected. Nodex will compute the expected

delay gain fromx to other nodes if a link toy is added, using the utility function shown in Figure 2.10,

Chapter 2. The link will be added if the gain exceeds a threshold. To drop an existing link,x estimates

the consensus cost of links that it currently maintains. Theconsensus cost of a link is calculated as the

maximum number of times that the link is used in data forwarding for both nodes involved in the link. A

link with consensus cost lower than a threshold will be dropped.

To implement the above strategy in MSTP-v1, several modifications are needed. First, unlike Narada,

the MSTP-v1 routing process only distributes the identities of cores over the overlay. As a result, every

member only knows their immediate neighbours and the available cores. In order to discover other nodes

in the overlay, we uses the gossip-style node discovery protocol that has been used in dbMeshTree and

MeshTree (see 6.3.1.1 for details). Secondly, we modify theutility function so that the gain of a link is

calculated with respect to the core nodes only. The new function is shown in Figure 8.3. The link add

threshold is calculated using a function m
max{fx,fy}

wherem is the number of trees,fx andfy are the
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EvaluateUtility (y) begin
utility = 0
for each core c (where c 6= x) begin

CL = current latency between x and c along mesh
NL = new latency between x and c along mesh if edge 〈x, y〉 were added
if (NL < CL) then begin

utility += CL−NL
CL

end
end
return utility

Figure 8.3: Modified Narada utility function for MSTP-v1

available degree at the end points of the link,x andy, respectively. The link drop threshold is half of the

add threshold.

As discussed in Section 5.1.1.1, Narada does not strictly enforce the degree constraint for the nodes.

To avoid degree violation, MSTP-v1 adds in new rules in the link addition. In order to add a new link,

a node must first ensure that it has spare degree for the new link. If the node has no more spare degree,

it may still include a new link provided an existing link thatit rendered ineffective can be dropped.

Otherwise, no link can be added.

8.3.1.5 Overlay Maintenance

The objective of overlay maintenance is to ensure the connectivity of every tree in the overlay. We envis-

age that a small number of trees is sufficient for most cases. In fact, our performance study (Section 8.4)

shows that with only 10 trees (for group size ranges from 32 to1024), MSTP achieves delay as good as

the centralised Compact Tree algorithm. We thus apply the mesh-based technique developed in Chapter 6

to manage each of the trees. As shown before, the technique provides fast recovery for degree-bounded

trees. The detailed operations of the maintenance procedure (for a tree) can be found in Section 6.2.5. In

our current implementation, the control messages for maintaining each of the delivery trees is handled

separately. To further reduce the message overhead, one could aggregate the information of the different

trees in the control messages.

Another issue to consider is the departure of the cores either because they fail or leave the group

voluntarily. When a core departs, its tree is partitioned. Anew core needs to be selected quickly to re-

connect the tree. Assume thatx is the core departing from the group. In order to minimise thedisruption

to the existing tree rooted atx, a new core is elected fromx’s children, as this moves the tree root to a

nearby node. In addition, the children are the first to noticethe departure ofx (via the periodic heartbeat

or explicit leave message fromx).

As a preemptive measure, all existing cores elect their respective backup core from their children set.

Note that only a non-core node is eligible to become a backup core. The selection can be done randomly,

or based on the distance between the core and the children, oravailable degree of the children, etc. The

identity of the backup core is made known to all children. When corex actually departs, its backup core
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(sayy) will take overx’s role: if x is the lead core,y will also become the lead core. The new core

y will start advertising itself in the routing update, andx’s other children will need to join toy’s tree.

To achieve fast restoration, we could use the proactive treerestoration technique by Yang and Fei [107]

(a short description can be found in Section 6.3.2.2). In particular, the old core,x, could precompute

parent-to-be usingy as tree root, for all the other children.

8.3.2 MSTP-v2

Our early investigation on MSTP-v1 [91] shows that it is a promising strategy for many-to-many appli-

cation layer multicasting. In the experiments, we considerMSTP-v1 with 10 trees, and show that it can

achieve delay performance that is better than the single tree HMTP, and is comparable to NICE which

uses source-specific trees, for groups up to 250 members, in a2050 nodes transit-stub network. MSTP-

v1 achieves the performance with reasonably low protocol overhead compared to Narada, which creates

trees for all members.

We have later compared MSTP-v1 with other delay-optimised single tree protocols, i.e. TBCP

(TbcpD) [62] and Banerjee et al.’s scheme (NaBanerjee) [9].Surprisingly, we found that even using

a larger number of trees (i.e. 10), MSTP-v1 performs worse than Banerjee et al.’s scheme (which uses

a single shared tree) in end-to-end delay. Figure 8.42 illustrates the delay comparison in terms of RMP

and RAP, obtained from experiments with topologies of 1000 nodes. In the experiments, all members

are data sources, and are randomly assigned degrees in the range 2 to 10. For NICE, the lowest cluster

size,k is equal to 3. From the results, we can see that MSTP-v1 gives good RMP for small group sizes

(32 and 64) compared to other protocols. This is because the number of cores to group size ratio is

relatively high in such group sizes. However, as the group size increases, its RMP also increases and

performs less well than Banerjee et al.’s scheme and TBCP. Interms of RAP, MSTP-v1 consistently out-

performs other protocols, except NICE which does not observe the individual node’s degree limitation

(see Section 5.2.7).

The better average delay (RAP) performance is expected as MSTP uses more trees than other proto-

cols (except NICE). As the senders choose the tree with the nearest core, the sending quality is approach-

ing the shortest path trees. Note that the shortest path trees are based on the overlay. The poor maximum

end-to-end delay (RMP) performance suggests that there is room to further improve the overlay. Recall

that the overlay improvement process is adopted from Narada. In Section 7.1.3, we have discussed that

this technique is actually similar to switch-trees [43], which faces the greedy problem (Section 7.1.4). In

Chapter 7, we devised the MeshTree protocol to overcome thisproblem.

We thus include the MeshTree overlay improvement process into our second version of MSTP,

MSTP-v2. The new version retained most of the mechanisms of the first version. MSTP-v2 starts

2This is a replot of Figure 5.21 (a) and (b) to include the result for MSTP-v1.
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Figure 8.4: Comparing MSTP-v1 with other protocols

with a single tree rooted at the lead core, as in the first version. The MeshTree overlay construction

(Section 7.3.2) and improvement (Section 7.3.3) procedures are used to create the initial overlay, and to

improve the lead core’s tree. With this, the overlay is optimised such that it contains a low cost backbone

tree augmented with shortcut links that improves the lead core’s delivery tree.

By design, the rules and conditions used to improve the overlay in MeshTree consider only one

delivery tree. To accommodate more than one tree, more complex rules have to be introduced. For

simplicity, we instead consider the technique used in MSTP-v1: using a utility function to calculate the

gain of adding a new link. We modify the original function (Figure 8.3) to take into account the low

cost backbone tree. The new function is shown in Figure 8.5. Consider thatx is trying to add a link to

y; the new function first computes the utility as before. Then,if y is not a descendant ofx’s backbone

tree (this can be determined fromy’s backbone root path, which is included iny’s reply tox’s request)

and if the link also improves the cost of the backbone tree (i.e. the distance betweenx andy is smaller

than the distance betweenx and its backbone tree parent), a constant value is added to the utility. The

constant value should be larger than the add link threshold so as to include the new link into the overlay.

As before, a link can only be added if it will not violate the degree constraints of the nodes.

Other components of MSTP-v2 such as tree derivations, maintenance, cores selection stay as MSTP-

v1. The next section provides further evaluation of both versions.

8.4 Performance Evaluation

This section examines the performance of our multiple shared trees proposals. The evaluations are

divided into two parts: (i) MSTP properties; and (ii) comparison of MSTP with other proposals.

For all the results shown (except Figure 8.8 and 8.12), each data point is obtained as the average of
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EvaluateUtility (y) begin
utility = 0
for each core c (where c 6= x) begin

CL = current latency between x and c along mesh
NL = new latency between x and c along mesh if edge 〈x, y〉 were added
if (NL < CL) then begin

utility += CL−NL
CL

end
end
/* new condition */
if (y is not x’s backbone tree decendant) then begin

C = a constant
CBTL = current latency between x and its backbone tree parent
d(x, y) = latency between x and y
if (d(x, y) < CBTL) then begin

utility += C
end

end
return utility

Figure 8.5: Utility function for MSTP-v2

50 independent runs. Unless specified otherwise, we consider every member as a potential data source.

This is to prevent biases in the results due to the location ofthe senders with respect to the overlay

(see Section 3.2.3). The members’ degree bounds are uniformly distributed in the range 2 to 10. For

all distributed protocols, the overlay improvement periodis set to 30 seconds. For MSTP, the periodic

refresh between two neighbours is 5 seconds, the routing update period is 30 seconds, and the gossip-

style nodes discovery runs every 30 seconds. Again, the quality of the overlays built is judged by the

following metrics: RMP and RAP for the maximum and average delay penalties, tree cost ratio (TCR)

and link stress.

8.4.1 MSTP Properties

This section studies the various aspects of MSTP: the trade-off between the number of trees and the

overlay quality, the strategy used to choose among the trees, the strategy used to place the cores and

a comparison of the two versions of MSTP. The experiments were conducted with topologies of 1000

nodes (see Section 3.2.2). We show the representative results from a transit-stub topology (TS1k-0).

Unless specified otherwise, the results are obtained with MSTP-v1 using the following settings: 10 trees,

senders choose tree with the nearest core and the cores are randomly placed.

8.4.1.1 Effects of the Number of Trees

A natural question in using a multiple trees approach is: howmany trees are needed? Intuitively, more

trees will give better delivery quality, but at the same timeincrease the maintenance overhead. This

section examines this quality versus overhead trade-off. We consider a group of 256 members, and vary

the number of trees from 1 up to 64 in the experiments.

The results in Figure 8.6 clearly show that the delay (both RAP and RMP) improves as the number
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Figure 8.6: Impacts of number of delivery trees
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Figure 8.7: MSTP (with 10 trees) protocol overhead

of trees is increased. In particular, large improvement canbe observed initially, but the improvement

rate diminishes as the number of trees increases further. Unsurprisingly, the protocol overhead (bytes

of control messages sent and received per overlay node) grows linearly with the number of trees. It is

interesting to see that for up to 10 trees, the per-node message overhead is still less than 1.5 kbps. We

believe that the overhead with up to 50 trees (approximatelyless than 5 kbps), is still acceptable for some

applications. Considering the overhead (about 23 kbps) of Narada (which uses source-specific trees) for

the same group size, as shown in Figure 5.30 (Chapter 5), it isclear that MSTP has better scalability. The

comparison of the overlay quality built with MSTP and other techniques will be given in Section 8.4.2.

Figure 8.7 shows the scaling of 10 trees MSTP with the group size range from 32 to 1024, running

on a 10000-node transit-stub topology. While the per node message overhead grows with the group size

(which is doubled at each step), the overhead is still well below 2 kbps when there are 1024 members.
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Figure 8.8: Impacts of tree selection strategy

This shows the protocol is reasonably scalable, considering the performance advantage over single tree

proposals (see Section 8.4.2).

8.4.1.2 Tree Selection Strategies

As explained in Section 8.3.1.2, given multiple trees, a source will pick the tree with the core that is

closest to it. Here we compare this strategy with a naive selection where the source randomly picks one

of the trees.

To compare the strategies, we use MSTP-v1 to create 100 overlays, each with 256 members. For

each overlay, we measure the RMP and RAP obtained using both tree selection strategies. Figure 8.8 (a)

and (b) depict the results. From the figure, it is clear that the nearest core selection always provides lower

delay. We recall that each of the trees is the shortest path tree (with respect to the overlay) of its core.

Hence, the closer (with respect to the tree) a sender is to thecore, the closer the delay will approach that

of the shortest path tree. For other metrics (i.e. TCR and stress), there is no difference between the two

techniques. This is because these metrics are affected by the structure of the trees, but not by which tree

is chosen.

8.4.1.3 Impacts of Cores Placement

A key factor that may influence the performance of MSTP is where the cores are placed in the overlay.

Here we examine two cases: (i) the strategies used to place the cores; and (ii) sender-aware core selection.

A. Core Selection Strategies Assume that the total number of cores desired isk, and the lead core has

been identified, the following strategies will locate the remainingk − 1 cores.
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Figure 8.9: Comparing different cores selection techniques

1. Random. Given the number of members,n, this strategy randomly picksk − 1 nodes from the

members list with a probability of1/n. This strategy disregards any available information about

the members (e.g. distances), and thus acts as the worst-case scenario.

2. Distributed cores selection. This refers to the distributed randomised technique proposed in Sec-

tion 8.3.1.3, which consists of two parts. First, the new core discovery message is randomly

distributed to identify a number of potential cores. Then, the lead core will select one of them as a

new core. We examine two ways that a new core can be chosen:

• Random selection. A node is randomly selected from the set of potential cores.We refer to

this technique as DistRandom. This version is used to study the advantage of the following

more informed selection algorithm.

• Centre selection. The lead core selects the node that has the maximum distanceto its nearest

core. The intuition behind this technique is to spread the cores across the overlay as much as

possible. We refer to this technique as DistCentre.

3. Centralisedk-Centre. In this case, we use a centralisedk-centre algorithm to compute the cores.

As discussed previously, thek-centre problem is NP-hard. We have experimented with three

simple heuristic solutions (see Appendix D), and decided touse thek-mean algorithm which

offers the best performance. The algorithm takes as input the number of desired centres (i.e.

cores) and the complete distance matrix of the members, and outputs a set of centres that minimise

the maximum distance of nodes to their nearest centre.

The results in terms of RMP (Figure 8.9) shows that the randomcores selection performs the worst,

while the centralisedk-centre algorithm performs the best. This indicates that placing the cores at strate-

gic location helps to provide better performance. The fact that our distributed cores selection techniques
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Figure 8.10: Performance of sender-aware cores selection

(DistRandom and DistCentre) perform better than the randomstrategy shows that our randomised distri-

bution strategy indeed helps in placing the cores. This is rather encouraging as the technique uses only

limited knowledge available at the members. Between the twodistributed strategies, the DistCentre is

slightly better than the DistRandom. No significant differences have been observed for other metrics:

TCR and link stress.

B. Sender-aware Cores Selection In some many-to-many multicasting applications such as video

conferencing, the number of members that actually take partin the conversation can be small relative to

the total number of members. Here, we study the impact of using the knowledge of the data sources in

core selection.

We have implemented a simple sender-aware core selection strategy. The strategy requires the mem-

bers (most importantly, the lead core) to keep the identities of the active sources in the session. This

is a reasonable assumption as in a multi-party conversation, the upper-level applications need to know

the identity of the data source so as to perform functions such as flow control and error recovery. Thus,

every member knows all the active sources. At each core selection round, the lead core randomly picks

a number of nodes from the senders list as potential cores, and requests their distances to the existing

cores. The lead core then selects a new core according to the centre selection criterion.

We also consider a variant which combines the sender-aware and -unaware (i.e. original) core se-

lection technique. In particular, half of the cores are selected based on the original technique, while the

other half are chosen with the sender-aware technique. We refer to this strategy asmixed.

We have conducted experiments with a group of 256 members. Recall that MSTP uses 10 trees

for the purpose of evaluation. We vary the fraction of activesenders from 10% to 50% of the group

size. Figure 8.10 (a) and (b) illustrate the results of RAP and RMP. Thex-axis represents the ratio
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Figure 8.11: Comparing MSTP-v1 and MSTP-v2

between the number of senders and the group size. We first compare the performance of the original

(sender-unaware) and sender-aware approaches. It is clearthat sender-aware yields much better delay

when the number of senders is small. When the number of trees is close to the number of senders, the

trees are rooted at most senders, the performance is thus approximating the shortest path trees rooted

at the chosen senders. Unsurprisingly, the performance advantage diminishes as the number of senders

increases. Now, consider the mixed technique. Interestingly, we can see that its performance is closer

to sender-aware than to the original. For a small number of senders, it trails the sender-aware technique.

However, as the number of senders increases, it is on par withsender-aware in terms of RMP, and out-

performs sender-aware in terms of RAP.

Overall, the results show that if the number of senders is small, e.g. tens of nodes, the sender-aware

technique can be used to improve the delay performance. In practice, this could be useful for (audio or

video) conferencing applications. In particular, a conference may consist of a large audience, even though

the number of active speakers (i.e. data sources) could be small. If the average delay to the members is of

particular concern, one might consider combining the sender-aware and unaware strategies (i.e. mixed).

This mixed technique provides some cores that are independent of the senders, and hence may be useful

for applications that have a highly dynamic senders set.

8.4.1.4 Comparing MSTP-v1 and MSTP-v2

We are now in the position to compare the two version of MSTP. This comparison is used to evaluate

the advantage of including the MeshTree overlay improvement into MSTP-v2. The comparison also

includes a version of MeshTree that uses shared tree delivery.

Figure 8.11 (a) and (b) depict the RAP and RMP performance. Itis clear that MSTP-v2 always

yields trees with lower RAP and RMP than MeshTree and MSTP-v1. As MSTP-v2 can be viewed as an
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extension of MeshTree with additional trees, the results confirm the advantage of using multiple shared

trees. While MSTP-v1 trails MeshTree in RMP (except for 32-node overlay, where the cores to group

size ratio is rather large), its RAP is significantly better than MeshTree’s. This shows another advantage

of using multiple trees. The results again prove a combination of low cost tree and shortcut links can

improve the delay.

In Figure 8.12, we compare the evolution of RMP for both versions of MSTP for a group of 256

members. In the experiments, all members randomly join the overlay within the first 50 seconds. The

first member automatically becomes the lead core. The lead core begins to add in new cores after 500

seconds, one every 50 seconds until the total number of coresis 10.

From the figure, we can see RMP values increase quickly as members are joining the overlay. This

is because the initial overlay is randomly connected. Afterall members have joined, the delay quickly

improves due to the improvement process, until about 400 seconds. At this point, we can see that

MSTP-v2 already produces a better quality overlay. This again confirms the advantage of the MeshTree

improvement process. The overlay then continues to improveas new cores are added into the overlay.

8.4.2 Comparing MSTP with Other Techniques

This section compares MSTP-v2 (with 10 trees) against threedistributed protocols: TBCP, Banerjee et

al.’s scheme and HMTP. These protocols have been shown to perform well in their class: TBCP provides

low average delay between the members; Banerjee et al.’s scheme gives low member-to-member maxi-

mum delay; and HMTP yields low cost trees. NICE and Narada areexcluded as they cannot strictly limit

the nodes’ degree (see Section 5.2.7 and 5.2.2). The centralised Compact Tree [87] and GreedyMesh

algorithms (see Chapter 4) are included as benchmarks. We use the 5000- and 10000-node topolo-

gies (Section 3.2.2) for the comparison, and show the representative results from a transit-stub topology

(TS10k-0). The results for a 5000-node power-law topology can be found in Appendix C.
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Figure 8.13: Comparison results: (a) RMP; (b) RAP; (c) Tree cost ratio; and (d) Maximum link stress

Figure 8.13 (a) to (d) depict the RMP, RAP, TCR and maximum link stress results, respectively.

We first point out that the results for techniques studied in Chapter 5 are similar to those found in Sec-

tion 5.2.2, where they were discussed in detail. So we focus on the behaviour of MSTP-v2. In terms

of delay, we can see that MSTP-v2 provides RMP that is better than other distributed protocols (HMTP,

TBCP and Banerjee et al.’s scheme), and is close to the centralised CPT. Its RAP outperforms all these

techniques. The centralised GreedyMesh that creates source-specific trees always gives the lowest RAP

and RMP, as expected. The observed result is very encouraging considering that MSTP-v2 uses only 10

trees (even for 1024-node overlays), which requires reasonably low overhead. We note the experiments

consider all members as senders. If the sender population ismuch smaller than the group size, we could

further improve MSTP-v2 by choosing the cores from the senders set, as discussed in Section 8.4.1.3.

In terms of TCR, generally we can see that MSTP-v2 performs better than other techniques, except

HMTP and GreedyMesh. HMTP is a cost-optimised protocol, andit has the worst delay performance.
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The lower tree cost of MSTP-v2 and GreedyMesh (with respect to other delay-optimised protocols) is

because they both include a low cost tree in their overlay. Finally, Figure 8.13 shows that MSTP-v2

gives a moderate maximum link stress performance, which is close to those of Banerjee et al.’s scheme.

Overall, the results prove that our multiple shared trees approach is a promising technique for many-to-

many multicasting.

8.5 Chapter Summary

This chapter investigates the case of using multiple sharedtrees for many-to-many multicasting in ALM.

The motivation is to use multiple trees to bridge the performance and quality trade-off in the traditional

one tree or all source trees. We have considered a number of design issues in achieving multiple shared

trees in ALM, and chosen to use a simple mesh-based approach:the members self-organise into a degree-

bounded mesh; the trees, rooted at nodes that we called cores, are derived from the mesh with the path-

vector routing protocol. In our design, all overlay nodes attach themselves to each of the trees. When

one node is transmitting, it delivers data over one of the trees. The core nodes are added into the overlay

in an incremental manner, using a simple distributed technique. We refer to our protocol as MSTP.

The development of MSTP has gone through two phases. The firstversion is a simple variation of

the Narada protocol to study the feasibility of the multipletrees approach. The second version combines

the lesson learned in our MeshTree proposal to further improve the protocol. Our performance evalu-

ation shows that by using a reasonably small number of trees,i.e. 10, MSTP outperforms single trees

techniques such as TBCP and Banerjee et al.’s scheme, and is on par with the centralised compact tree

algorithm in terms of delay, whilst incurring a reasonably small protocol overhead.
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Chapter 9

Conclusions and Further Work

In this chapter, we conclude the thesis by revisiting the contributions and lessons learned from this work,

and presenting directions for future work.

9.1 Thesis Contributions

The focus of this thesis has been the construction of efficient ALM overlay trees for one-to-many and

many-to-many data delivery. We have restricted our investigation to building low cost and low delay

delivery trees, subject to the degree constraint impose by each individual member. For scalability reasons,

we are interested in distributed proposals that use limitedinformation about the overlay members and

the underlying network, and that require only limited coordination between the members in building the

overlays. The rest of this section discusses the contributions made by this thesis.

The past few years has seen a growing interest in using ALM to provide multicast services over the

Internet. Unsurprisingly, a wide variety of ALM construction proposals have emerged. As a first step

in this work, we have conducted a detailed performance comparison study for some existing proposals

using simulation. We have chosen proposals with different characteristics. For example, proposals that

use only a tree structure and proposals that derive trees outof a richly connected mesh; proposals that

use either a single shared tree or multiple source-specific trees in many-to-many data delivery; proposals

that use simple overlay reconfiguration technique such as parent switching and proposals that use a more

elaborated transformation scheme. The chosen proposals include: HMTP [109], TBCP [62], variants

of switch-trees [43] (which includes a version of HostCast [57]), NICE [7], AOM [104], Scribe [15],

Banerjee et al.’s scheme [9] and Narada [21].

Two by-products arise from the comparison study. First, to serve as a standard and controlled plat-

form for comparing the proposals, we have developed a simpleyet flexible and extensible simulator

which we calledALMSim. Secondly, we have devised a centralised degree-bounded overlay mesh
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creation algorithm, which we called GreedyMesh. Our evaluation shows that GreedyMesh can create

degree-bounded mesh with low diameter. In this thesis, GreedyMesh is primarily used as a benchmark

for many-to-many distributed ALM proposals.

By analysing the behaviour of the various proposals, we are able to identify their strengths and weak-

nesses. This allowed us to provide enhancements to switch-trees and TBCP. For switch-trees, we have

proposed a mixed local and random node selection scheme, which combines the precision of informed

parent choice in local-scoped selection and the exploration power of random selection. The new scheme

is generic and is applicable for other overlay constructionproposals. For TBCP, we have proposed a new

tie-breaking rule and a new score function for overlay tree reconfiguration. We have shown that these

extensions to the proposals perform better than the original versions.

From the comparison study, we have shown that for tree cost optimisation, existing proposals such as

HMTP can achieve results close to a centralised algorithm; however, there is still room for improvement

for delay optimisation, for both one-to-many and many-to-many proposals. Thus, our own proposals

have been designed to provide low delay trees for both one-to-many and many-to-many delivery models.

As a basis for our own proposals, we have presented a distributed mesh-based framework for overlay

tree construction and maintenance. The framework providesbasic procedures for creating and maintain-

ing a degree-bounded overlay tree, embedded in a mesh topology. The mesh-based approach offers fast

and robust failure recovery, as well as offering more flexibility in overlay reconfiguration. In addition,

by exploiting the structure of the delivery tree, we can lower the maintenance overheads for the mesh.

The framework is generic and can be used to improve the robustness of some existing ALM proposals.

For one-to-many data delivery, we have proposed MeshTree, adistributed proposal for creating low

root-diameter, degree-bounded overlay trees. The design of MeshTree is inspired by the greedy problem

and delay-cost trade-off that happens in some delay-based distributed proposals. MeshTree approaches

the problem by creating a structure consisting of a low cost tree and some additional links to improve

the delay performance. Our evaluation shows that MeshTree outperforms other distributed proposals in

providing trees with low root-diameter and low average root-to-receivers delay.

For many-to-many data delivery, we have proposed a distributed solution based on the concept of

using multiple shared trees. This is based on the observation that existing proposals either use a single

shared tree or source-specific trees for data delivery. The single shared tree approach is scalable, but

provides poorer delay performance; the source-specific trees approach gives better delay performance,

but does not scale well. By using a small number of shared trees, we show that our multiple shared trees

approach can provide reasonably good delay performance while maintaining low control overhead.
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9.2 Further Work

In the course of the investigations reported in this thesis,a number of interesting avenues have been

uncovered which merit further research.

9.2.1 On the Techniques Proposed by the Thesis

Besides continuing the efforts to further enhance the performance of our overlay construction proposals

(GreedyMesh, MeshTree and the multiple shared trees protocol (MSTP)), there are other areas that are

worth additional attention.

• Improve the running time of the GreedyMesh algorithm:O(max{λ, ∆n3m log n}), whereλ is the

running time of the tree building algorithm used,∆ is the maximum spare degree of all vertices,

andn andm are the number of vertices and edges respectively.

• Consider other alternative design choices for the GreedyMesh algorithm. In particular, in line 8

of the algorithm (see Figure 4.1), when adding a new edge to the partial mesh, a vertex is picked

in a round robin manner from all vertices with spare degree. It is interesting to study the impact

of other node selection strategies, such as random selection or selection of node with the largest

spare degree first.

• Incorporate the GreedyMesh algorithm into a centralised ALM protocol (e.g. ALMI [72]) for

small-scale multicast applications. In this case, a central controller is used to distribute the overlay

mesh computed by the algorithm to the group members. To obtain data delivery trees from the

mesh, a distributed routing mechanism (e.g. the path vectorrouting protocol) may be needed.

• In Section 3.1.2, we discussed two ways that can be used to limit the impact of the dynamic

variations of the delay metric to the overlay structure: (i)cache and threshold; and (ii) quantise

the delay value. It is interesting to integrate these two techniques with the proposed distributed

protocols and study their performance implication in a real-world environment (see next section).

• In Section 8.4.1.3, we have shown that the core placement strategy used has an effect on the per-

formance of MSTP. Our chosen strategy consists of two parts.First, the core discovery messages

are randomly distributed to the members to select a number ofcandidate cores. Then, a new core

is elected based solely on the overlay distances between thecandidates and the existing cores. The

random message distribution technique is used for its simplicity. In the future, it is worth con-

sidering alternative techniques that improve the distribution of the messages to the members. In

addition, other factors such as the capability of the nodes could be taken into consideration in the

core selection process.

192



CHAPTER 9. CONCLUSIONS AND FURTHER WORK

9.2.2 Real-world Testing and Applications

The performance evaluation in this thesis is based heavily on simulation. Simulation is suitable for com-

paring and for examining the detailed working of the proposals being studied. However, the simulation

environment has abstracted away several real-world characteristics (such as congestion and system load)

of a practical environment. Hence, the immediate extensionof this work is to subject our proposals to

a real-world testing in a wide-area testbed such as PlanetLab [74]. Lessons could be learned from such

testing to further improve our proposals.

In addition, it would be meaningful to apply our proposals tosome real life applications. For ex-

ample, MeshTree could be useful for single-source applications such as streaming media, while the

multiple shared trees protocol could be used by multi-source applications such as video conferencing or

multi-party network gaming. Such applications would require additional components such as security,

reliability of data, flow control and congestion control.

9.2.3 Network Address Translators (NATs) and Firewalls

In this work, we model the overlay network as a complete graph, in which every member can reach every

other members as long as the address information is available. However, this may not be the case in a

practical environment due to the use of NATs and firewalls. Specifically, hosts separated by NATs and/or

firewalls may not be able to communicate directly with one another. For example, this has been observed

by Chu et al. in their experience [20] with the End System Multicast project [75], an early wide-area

deployment of ALM for live events broadcast. They report that over 20 – 30% of viewers attempting to

join the broadcast need to be turned down due to NATs and firewalls.

Early this year, Wang et al. [99] proposed a generic protocolcallede∗ to address the limited con-

nectivity problem. Ine∗, nodes are classified into two types:openhosts andguardedhosts. Open hosts

are nodes that allow both incoming and outgoing TCP connections, while guarded hosts are nodes that

only allow incoming TCP connections. In other words, a guarded host can only serve as a leaf node.

The concept ofe∗ is to cluster the nodes into a two level overlay. The bottom-level consists of all nodes

which are grouped into several clusters. Each cluster has a cluster leader, which must be an open host.

The guarded hosts attach to one of the clusters as leaf nodes.All the cluster leaders form the top-level

overlay. Any existing overlay building protocol (e.g. HMTP, TBCP, Narada) can be used to create the

top-level overlay. It is interesting future work to incorporatee∗ into our proposals.

9.2.4 Trust

In this work, we have considered a cooperative environment in overlay construction. In particular, we

assume that the overlay members are honest and trust each other by sharing their information in building

efficient overlays. Unfortunately, in the real-world, there are incentives for a member to violate this
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assumption. For instance, a selfish member may be reluctant to contribute its own bandwidth to the

system. Such a member will refuse any request to become its child, even if it still has sufficient resources.

In [61], Mathy et al. study the impacts of some simple cheating strategies on several ALM proposals,

i.e. Narada, NICE, TBCP and HBM [80]. Their findings show thatcheating always has a negative

impact, either on the quality of the data delivery perceivedby the members, or on the underlying physical

network, or on both. How to prevent nodes from taking advantage by cheating is interesting future work.
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Acronym

AGCS Alternative Group Communication Service.

ALM Application Layer Multicast.

BG Border Gateway.

BGMP Border Gateway Multicast Protocol.

BGP Border Gateway Protocol.

BN Broadcast Network.

CBT Core Based Tree.

CoP Cost-optimised Protocol.

CPT Compact Tree.

dbMST Degree-bounded Minimum Spanning Tree.

DFS Depth first search.

DHT Distributed Hash Table.

DoP Delay-optimised Protocol.

DT Delaunay Triangulation.

DVMRP Distance Vector Multicast Routing Protocol.

GNP Global Network Positioning.

HBM Host Based Multicast.

HMTP Host Multicast Tree Protocol.

IETF Internet Engineering Task Force.

IGMP Internet Group Management Protocol.

IP Internet Protocol.

MAAA Multicast Address Allocation Architecture.
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MBGP Multicast extension for the Border Gateway Protocol.

MDC Multiple Description Coding.

MOSPF Multicast extension for Open Shortest Path First routing protocol.

MSDP Multicast Source Discovery Protocol.

MSTP Multiple Shared Trees Protocol.

NAT Network Address Translator.

non-TNRP Non-tree Neighbours’ Root Path.

OMNI Overlay Multicast Network Infrastructure.

PIM-DM Protocol Independent Multicast — Dense Mode.

PIM-SM Protocol Independent Multicast — Sparse Mode.

P2P Peer-to-Peer.

PRM Probabilistic Reliable Multicast.

RAMA Root Addressed Multicast Architecture.

RDP Relative Delay Penalty.

RP Rendezvous Point.

RPF Reverse Path Forwarding.

SM Simple Multicast.

TBCP Tree Building Control Protocol.

TCR Tree cost ratio.

TCRP Tree Children’s Root Path.
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Annotated Publications List

This appendix lists the papers written during the course of this PhD, and how they relate to this thesis.

Conference and Workshop

1. Su-Wei Tan, Gill Waters and John Crawford, ”MeshTree: Reliable Low Delay Degree-bounded

Multicast Overlays”, The 1st International Workshop on Distributed, Parallel and Network Appli-

cations (DPNA’05), Fukuoka, Japan, 20-22 July 2005.

This work presents the MeshTree proposal (Chapter 7) for creating low root-diameter degree-

bounded ALM trees.

2. Su-Wei Tan, Gill Waters and John Crawford, ”A Study of Distributed Low Latency Application

Layer Multicast Tree Construction”, London Communications Symposium, London, UK, 13-14

Sept 2004.

In this work, we present comparison study of several distributed one-to-many ALM proposals

(Chapter 5), in the light of achieving low cost and low delay ALM trees.

3. Su-Wei Tan, Gill Waters and John Crawford, ”A Multiple Shared Trees Approach for Application

Layer Multicasting”, The 39th annual IEEE International Conference on Communications (ICC),

Paris, France, 20-24 June 2004.

This paper presents the first version of our multiple shared trees approach (i.e. MSTP-v1) for

many-to-many multicasting (Chapter 8).

4. Su-Wei Tan, Gill Waters and John Crawford, ”A Multiple Shared Trees Approach for Application

Layer Multicasting”, The 8th Radicals Workshop, Cabernet,Corsica, France, Oct 2003.

This paper introduces the concept behind the multiple shared trees approach, its challenges and

design considerations (Chapter 8).
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5. Su-Wei Tan and Gill Waters, ”Building Low Delay ApplicationLayer Multicast Trees”, The 4th

Annual PostGraduate Symposium (PGNet), Liverpool, UK, 2003.

In this paper, we describe and evaluate our enhanced versionof Tree Building Control Protocol

(TBCP) (Chapter 5).

Technical Reports

1. Su-Wei Tan, Gill Waters, and John Crawford, ”MeshTree: A Delay-optimised Overlay Multicast

Tree Building Protocol”, University of Kent Technical Report, TR 5-05, April 2005.

This paper is an extended version of our DPNA’05 paper, for the MeshTree proposal (Chapter 7).

2. Su-Wei Tan, Gill Waters, and John Crawford, ”A Survey and Performance Evaluation of Scalable

Tree-based Application Layer Multicast Protocols”, University of Kent Technical Report, TR 9-03,

July 2003.

This work is our initial comparison study of various existing ALM proposals, focusing only on

tree-based proposals, for both one-to-many and many-to-many data delivery models (Chapter 5).

Under Review

1. Su-Wei Tan, Gill Waters, and John Crawford, ”A Performance Comparison of Self-organising

Application Layer Multicast Overlay Construction Techniques”, submitted to Computer Commu-

nications Journal, Elsevier Science.

This work extends the above technical report (TR 9-03) by including new proposal (i.e. Narada)

and consists of a larger set of experiments (Chapter 5).
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Appendix C

Additional Results

In this appendix, we provide some results omitted from the main text.
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Figure C.1: Average link stress performance of some cost-optimised ALM proposals, Section 5.2.1.1
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Figure C.2: RAP performance for delay-optimised switch-trees variants, Section 5.2.1.2
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Figure C.5: Comparison of MeshTree with other proposals in apower-law based topology (PL5k-0),
Section 7.3.6
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Section 8.4
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k-Centre Problem

Thek-centre problem is a basic facility location problem, wherewe are asked to locatek facilities in a

graph and to assign vertices to facilities, so as to minimisethe maximum distance from a vertex to the

facility to which it is assigned. In Section 8.4.1.3, we usedk-mean [85], a heuristic for thek-centre

problem to investigate the impacts of cores location in our multiple shared trees protocol. This appendix

describes some comparison results for three simplek-centre selection algorithms: random,k-mean and

a 2-approximation algorithm [98]. Note that this is not a comprehensive comparison. We are only

interested in technique that yields reasonably good performance.

D.1 The Problem and Solutions

Formally, thek-centre problem can be stated as follows [98].

Let G = (V, E) be a complete undirected graph with edge costs satisfying the triangle

inequality, andk be a positive integer. For any setS ⊆ V and vertexv ∈ V , define

connect(v, S) to be the cost of the cheapest edge fromv to a vertex inS. The problem is to

find a setS ⊆ V , with |S|= k, so as to minimisemaxv{connect(v, S)}.

Unfortunately, the above problem is NP-hard [37]. We are interested in simple heuristic that performs

reasonably well for the problem. We consider the following three strategies:

• Random. This technique does not uses any knowledge of the underlying graph to compute the

centres. Rather, it randomly picks centres up to the required number. Thus, it serves as the worst-

case scenario.

• 2-approximation. We consider a 2-approximation algorithm, which outputs solution that is at

most twice as bad as the optimal solution. This is the best possible case in the sense that no

r-approximation algorithm exists withr < 2, unlessP = NP [98]. We use an algorithm by

205



APPENDIX D. K-CENTRE PROBLEM

Hochbaum and Shmoys [98]. In the algorithm, edges are initially sorted in a nondecreasing order

based on their distances. For each edge length,l, the graph is pruned by removing edges with cost

greater thanl. The aim is to find a minimum dominating set in the pruned graph, i.e. the smallest

setD of vertices such that every vertex not inD is adjacent to one of the vertices inD. If the

cardinality of the minimum dominating set of the pruned graph is at mostk, then such a dominating

set is also the solution for thek-centre problem. This algorithm has also been considered inother

networking research, e.g. the Internet distance service, IDMaps [35], for placing distance tracers

in the network.

• k-mean. k-mean is a popular clustering algorithm that divides a givendata set intok subsets. For

thek-centre problem, the vertices are treated as the data set. The algorithm begins by selecting

k nodes as initial seeds or centroids. For simplicity, we randomly select the initial centroids.

Other nodes are then assigned to their nearest centroids. This results ink clusters. After that,

the algorithm computes new centroid for each cluster, and reassigns the nodes to new clusters.

For a given cluster, there are several ways to compute the centroid, e.g. average-within, nearest-

within and farthest-away (see [85] for details). We use the average-within technique which selects

a centroid,i ∈ C that minimises the intra-cluster distance:

d(i, C) =
∑

j∈C

dij

|C|
(D.1)

whereC represents nodes in a cluster, andd(i, j) is the distance between nodei andj.

The above process continues until the solution converges, i.e. the latest solution is similar to the

previous one. We also set a maximum number of iterations thatthe algorithm can run (100 in our

implementation). The output of the algorithm is nodes grouped ink clusters. The desiredk centres

are selected as the most central node (i.e. the node with the smallest maximum distance to other

nodes in the same cluster) from each cluster. The use ofk-mean was drawn to our attention by

work that applies the technique to create hierarchical multicast trees [59].

D.2 Performance Evaluation

We are interested in the following performance metrics:

• The maximum distance from a node to its nearest centre, i.e. the objective function of thek-centre

problem:

maxv{connect(v, S) : v ∈ V − S}
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Figure D.7: Comparing threek-centre heuristics

• The average distance from the set of nodes to their nearest centres:

1

|V | − |S|

∑

∀v∈V −S

connect(v, S)

We have ran some experiments on top of a 1000-node transit-stub topology (TS1k-0 in Section 3.2.2).

In each experiment, we chose 100 nodes and constructed a distance matrix using the Floyd-Warshall all-

pair shortest path algorithm [23]. The distance matrix is taken as the input graph to each of the algorithms

listed above. For each value ofk, we conduct 50 independent runs and report the average.

The results are shown in Figures D.7 (a) and (b). In both metrics, k-mean always gives the best

performance. The 2-approximation (2Approx) algorithm performs reasonably well in the maximum

distance, but poorer than the random approach in terms of average distance for a small number of centres,

i.e. k ≤ 25. Consequently, we choose to usek-mean in Chapter 8.
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