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Abstract

Application Layer Multicast (ALM) is an alternative to IP rtigast, which has yet to achieve a widespread
deployment in the Internet. ALM places multicast primigwdirectly in the multicast members, i.e. end
systems, which use an overlay topology on top of the physieddork for multicasting. The overlay
consists of unicast connections between the members, gpesses the need for multicast support at
the infrastructure level. The overlay structure used isyafketor that determines the efficiency of an
ALM solution.

This thesis investigates efficient techniques to build bothcost (i.e. low resource usage) and low
delay ALM trees. We focus on self-organising distributedpgmsals that use limited information about
the underlying physical network, limited coordinationlweéen the members, and construct overlays with
bounded branching degree subject to the bandwidth constfgach individual member.

This work begins with a detailed simulation evaluation ofsérg ALM proposals chosen from
different classes. This has resulted in enhancements te sxisting proposals as well as a set of
observations that could be used to assist future develojprhAbM proposals. As part of the evaluation,
we devise a simple centralised greedy heuristic for crgdoiw diameter degree-bounded mesh overlays,
for benchmarking the class of distributed proposals. Wi insights collected from the evaluation
effort, we develop proposals for a distributed heuristibudd low delay delivery trees for both one-to-
many and many-to-many multicast. For one-to-many multjcas propose MeshTree, which is based
on the observation that distributed delay optimisationlwatrapped by the greedy problem and delay-
cost trade-off. MeshTree addresses the problems by emigetité delivery tree in a degree-bounded
mesh containing many short links. For many-to-many muticeve consider a multiple shared trees
approach to strike a balance between the performance atitydeede-off of the conventional single
shared tree and multiple source-specific trees approadfeeshow that both our proposals perform well
compared to existing proposals. Both of these proposalbased on a mesh-based overlay creation
and maintenance framework which we have developed. Theeframk offers quick failure recovery

mechanism to address the inherent dynamic characterigtie LM system.
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Chapter 1

Introduction

The Internet came to life as a communication medium for tlseaech community. In its early days,
the Internet was mainly used to exchange data between cbhsadoratories. The birth of world wide
web in the early 90s proved to be a killer application thathgassthe technology to a wider audience.
This triggered a rapid growth of the Internet, and advanedle underlying technologies. The arrival
of broadband facilitated cheaper and better access to tam#t by millions of households. More and
more bandwidth-intensive applications, such as broaddastdio and video contents, are now possible
over the Internet.

A popular broadcast event (e.qg. live concert of a populargpap or sport event like a world cup final)
can attract an audience of millions. Today, the data exolasgrice provided by the Internet is mainly
based on unicast, i.e. point-to-point between two computelowever the broadcast event requires a
point-to-multipoint service. With the current unicast\see, the data source needs to send a copy of data
to each of the recipients. In other words, if the broadcastlires a million recipients, the source would
have to repeatedly transmit the same packet a million tilasurally, this injects redundant traffic into
the network, as well as overloading the data source. Theanktwy IP (Internet Protocol) layer multicast
offers an efficient transmission mechanism for point-tdtipaint delivery. With IP multicast, the data
source only sends one copy of data which is then replicatddawarded as necessary by the network
routers to the recipients. Each physical link will see ongirgle copy of the data.

In general, multicast is useful for applications that imetommunication between multiple parties,
i.e. group communication. Examples of such applicatioesvédeo conferencing, distance learning,
multi-party games, distributed simulation, etc. It is cl#zat this diverse set of applications requires a
different kind of support from the underlying system. Asa#sed by Shi [86], we can roughly classify
the key requirements as follows: the amount of data to beveteld (bandwidth requirement); time-
liness of their delivery (latency requirement); the relli of their delivery (reliability requirement);

the number of participants that send data (multi-sourceirement); the number of recipients to be



CHAPTER 1. INTRODUCTION

reached (scalability requirement); and the frequency ahiyers joining or leaving the group (dynamics
requirement). Table 1.1 provides a summary of these remgeinés for some of the example applications.
Undoubtedly, this diverse set of requirements challenigesihicast-based services, and calls for native
multicast support in the Internet.

Unfortunately, despite over 15 years of active researchobatyscale deployment of IP multicast
infrastructure has yet to be seen. This is due to a numbeswoésssuch as multicast address allocation,
interdomain multicasting, security and the difficulty iropiding higher level functionality. Owing to
this, in recent years, the research community has revigieedase of providing multicast services at the
application layer. This approach is often termed appliceiyer/level multicast, end-system or end-host
multicast. In this thesis, we will refer to it as Applicatibayer Multicast (ALM).

In ALM, multicast functionality is implemented by end syste. The end systems are organised
into a multicast overlay topology, and deliver data overdherlay edges which are unicast connections.
This thesis investigates efficient techniques for credtimgcost and low delay ALM overlays. We are
particularly interested in practical distributed techreg.

In the next section, we discuss IP multicast, including issdny, problems faced and potential solu-
tions. Section 1.2 explores ALM along with its advantages emallenges with respect to IP multicast.
In Section 1.3, we briefly state the contributions of this kvdFhe organisation of the remainder of this

thesis is given in Section 1.4.

| | Multi-source | Scalability | Dynamics| Bandwidth| Latency | Reliability |

Video all small low medium critical no
Conferencing

Distance one or few medium low medium | critical no
Learning

Multi-party all large high low critical yes
Games

Distributed all large low high depends yes
Simulation

Internet one huge high high critical no
TV/Broadcast

Table 1.1: Application characteristics for group commatizns [86]

1.1 IP Multicasting

Early multicast support was constrained within a singleal@rea network (LAN) domain. It was not
until the late 80s that Deering and Cheriton [25] introduoadticast for internetworks and extended
LANSs. This marks the beginning of IP multicast.

IP multicast is based on apenservice model: there is no mechanism that restricts thestasn

creating agroup, receiving data from or sending data to a group. Each mugttigeoup is identified by
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a 32-bit class-D multicast address (range from 224.0.0ZB&255.255.255). To receive data from a
multicast group, a host must first join the group. To do so,hbst contacts its edge router using the
Internet Group Management Protocol (IGMP) [34]. Once th&t fmins the group, it will receive all data
addressed to the group, regardless of the identities ofdheces. The data sources do not need to be
members of the group. In addition, group members can joineae the group at will, with no need to
notify other members of, or senders to, the group. In shorPanulticast group is not managed. Similar
to its unicast counterpart, IP multicast datagrams usedfést delivery and are inherently unreliable.

Multicast-capable routers participate in a multicastirmgprotocol which manages the connections
between the routers. Typically, the connections are indh@ fof a single shared tree or a set of source-
rooted trees. This depends on the routing protocol usedeXxample, DVMRP (Distance Vector Mul-
ticast Routing Protocol) [25], MOSPF (Multicast extensfonOpen Shortest Path First routing proto-
col) [65] and PIM-DM (Protocol Independent Multicast — Deridode) [1] create separate trees rooted
at each source while CBT (Core Based Tree) [5] and PIM-SMtfea Independent Multicast — Sparse
Mode) [31] create a single shared tree.

The interest in IP multicast took off with the creation of Mi8one — the multicast backbone [30].
MBone began its life as an overlay network which intercotetslands of multicast-capable LANS us-
ing unicast tunnels, whose end points are workstationsuinghenr out ed routing daemonir out ed
is capable of receiving unicast-encapsulated multicadtgia, and forwarding the packets to appropriate
out-going interfaces computed by DVMRP. In March 1992, tHgdvle achieved a remarkable milestone
by carrying the first Internet audiocast from an InternetiBegring Task Force (IETF) meeting in San
Diego to 20 sites.

DVMRP creates multicast trees rooted at each of the data&assuEach tree is built in #ood and
prunemanner. Specifically, a source transmits a packet to its ealger, which in turn replicates and
forwards the copies on all out-going interfaces. When aawordceives such a packet, it performs a
reverse path forwarding (RPF) [24] checking to decide ifplaeket will be discarded or forwarded. If
the packet is received from the interface that the routes tseeach the source, the router will forward
the packet to all other interfaces. Packets arriving froneointerfaces will be discarded silently. Each
router periodically uses the IGMP to discover the existesfogroup members in its local network. If
there is no group member, a router will transmit a “prune” sage towards the source on the RPF
interface. An intermediate router forwards the prune ngssdong the path towards the source if it
receives prune messages on all its interface except thdaoéetowards the source. Owing to this,
every router needs to keep state for each existing multigastp, regardless of whether the router itself
actually belongs to the group. DVMRP is also known as a derm#emprotocol, as it assumes a dense
availability of members where pruning occurs infrequer@her protocols that can also be classified as
dense mode are MOSPF and PIM-DM. Dense mode protocols asealable due to the high volume of

broadcast traffic generated and state information needs todintained at each router.
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The rapid growth of the MBone has called for the developméatreew class of protocols — sparse
mode protocols — which are designed to work well when the messare sparsely distributed. Sparse
mode protocols require the edge routers with group memibeeglicitly join in the multicast trees,
as opposed to the dense-mode’s flood and prune mechanismpdpudar examples are CBT [5] and
PIM-SM [31], with PIM-SM seeing a wider deployment [2]. Ba@BT and PIM-SM build a tree rooted
at a special node, which is called tberein CBT and theRendezvous PoifRP) in PIM-SM. For each
multicast group, CBT uses a bidirectional shared tree wpacg&ets can be originated from any point of
the tree; while PIM-SM uses a unidirectional shared treere/packets are first sent to the RP, which in
turn delivers the packet down the multicast tree. PIM-Sidvadl the edge routers to switch to the source
rooted trees when the perceived traffic exceed a certaishibl@. The sparse mode protocols generally
improve the scalability when compared with dense mode pod$o

The original MBone was built as a flat topology. Its continsguowth has resulted in problems such
as large routing state and difficulties in management. Gpresgly, the multicast community has began
to deploy hierarchical, interdomain multicast routing.

Current interdomain multicast routing is based on the iy set of protocols: MBGHPIM-
SM/MSDP. MBGP (Multicast extension for Border Gateway Bool (BGP)) [12] provides a set of
multicast extensions for the unicast-based BGP [79] so aeparate unicast and multicast policies
for interdomain routing. PIM-SM manages trees for multicasmbers within each domain. In order
to allow members to join to a group with sources located inatendomains (with remote RPSs), the
group-to-RP mapping must be advertised to all edge routenthier domains. This is done by MSDP
(Multicast Source Discovery Protocol) [33] which distriba this mapping and announces sources to
RPs in different domains, using a flooding mechanism.

The MBGP/PIM-SM/MSDP protocol suite is viewed as a near teohtion, due to some scalability
concerns over the flooding mechanism used in MSDP. In addititSDP also introduces long join
latency and is not suitable for an environment with highlypamic membership [2]. In the near future,
the Border Gateway Multicast Protocol (BGMP) [56] is exgelcto provide interoperability between
multicast routing protocols in different domains.

BGMP creates bidirectional shared trees between domaihs. sliccess of BGMP depends on a
collision-free address allocation scheme. Currently, tmadels are being considered by the IETF: (i)
a static address allocation and assignment scheme call@BG&4]; and (ii) the Multicast Address
Allocation Architecture (MAAA) [94] which consists of a sef protocols for allocating addresses dy-
namically. Multicast address allocation is difficult as thedress space provides no geographical or
topological meaning. The static nature of GLOB is inherentbt scalable. On the other hand, the
MAAA protocol set is complex, and potentially not scalal&]. More importantly, it does not provide

a solution to the problem of address starvation if multitestomes a popular interdomain service.

IMBGP is also known as BGP4+.
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The address starvation problem is addressed by the neianefdP, IPv6. IPv6 drastically increases
the address space (for both unicast and multiéast)he expense of changing the IP packet structures.
Thus, it requires changes to the routing infrastructurd,isexpected to be deployed in the Internetin an
incremental manner. An extended time period may be needediefully replaces the current version
of IP.

1.1.1 IP Multicast Issues and Alternative Proposals

IP multicast is attractive as it is the best bandwidth savedhnique to deliver a message to multiple
destinations. In order to take advantage of this, it requatganges at the infrastructure level. This
results in a chicken-and-egg problem: the Internet sempiogiders are waiting for killer applications
that drive the demand for multicast support, while the userapplication developers are waiting for
widely available multicast support for them to exploit teelinology. Besides, there are also a number

of outstanding issues that slow down the deployment pade ofulticast.

¢ Interdomain multicasting and address allocatioh key to making multicast a universally avail-
able technology is the success of interdomain multicagtrrguHowever, as described previously,
the current solution (MBGP/PIM-SM/MSDP) is rather compé#nd has scalability concerns. On
the other hand, the long term proposal (BGMP) requires et stddress allocation scheme, which
is itself a complicated problem. Address collision can lesicross traffic between two different
multicast sessions. This poses a serious inefficiency asknulticast receivers as packets from

other sessions must be processed and dropped.

e Security concernsAs mentioned in the previous section, IP multicast is basedn open model
where the groups are not managed. In particular, any hostaxasmit data to any group. This lack
of access control makes the network vulnerable to flooditagls by malicious sources. While
such an attack could happen in the unicast service, thelfacatsingle message will reach a large

number of recipients could exacerbate the situation.

e Scalability and complexitylP multicast requires routers to maintain state infororafor each
multicast group. This has introduced additional complekit the IP layer, and raised serious
scalability issue. At the higher layer, IP multicast’'s befbrt property also imposes additional
difficulties in providing features such as congestion agnftow control and security, compared

to its unicast counterpart.

To reduce the complexities of MBGP/PIM-SM/MSDP and BGMPwad as addressing additional

multicast-related issues (e.g. security and managentbetjnulticast community has looked at a new

2|Pv6 uses 128 bits for both unicast and multicast addreseespared to 32 bits used in current version of IP (IPv4).
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class of multicast model — Root Addressed Multicast Ardattitee (RAMA) [2]. RAMA is based on
the observation that most multicast applications have giesisource or have an easily identifiable pri-
mary source. RAMA identifies a multicast group using thgrimary source, multicast group address
mapping. As each host has a unique address, this solvesdhesadllocation problem. Two RAMA
proposals are Express Multicast [45] and Simple Multic&84) [73].

Express is specifically designed for single-source apiidica. It creates a unidirectional tree rooted
at the source. The source-specific approach allows stritta@oof the data source, thus addresses the
potential attacks from an arbitrary source. SM provides ay¥ta-many service over a bidirectional
shared tree, rooted at the primary source. While both pralp@sidress some of the above issues, they
are still in the development state. Furthermore, both psafsrequire changes at the infrastructure level.
In particular, Express requires the deployment of IGMP ieer8, which is still under development;
while SM requires changes to the packet header. Hence, apvieled adoption of these proposals may
still take some time.

There are other alternative solutions for providing malsicservice over the Internet. In [29], EI-
Sayed et al. provide an excellent survey of what they callkgirAative Group Communication Service

(AGCS) proposals. AGCS proposals can be classified intodf@fing groups:

e Proposals that are based on a unicast/multicast reflecttinid category, end hosts with unicast-
only service contacts a reflector. The reflector serves aseavgg between a multicast-capable
network and a set of unicast hosts. An example proposal imaij71]. The main advantage of
such proposals is simplicity. However, as a reflector padéiniserves a large number of hosts, it

creates traffic hot spots near the reflector, and may not bhetdea

e Proposals that are based on a specific group communicatigimgoservice. These proposals
typically require changes to the underlying routing infrasture. One example is XCast [14]
which is designed for applications with a very small memlegr XCast includes an explicit list of
multicast destinations in each packet. The packets areedetl using the existing unicast routing
service. By carrying the whole destination list, the rosiae relieved from keeping multicast state
information. However, it requires support from the routrss to examine the packet header, and

to create and forward copies as necessary to the destisation

e Proposals that create an automatic overlay topology. Tiuemrefers to proposals that create
self-organising multicast overlay directly at the end syst, i.e. the focus of this thesis. It will be

discussed in a greater detail in the following text.

The well-known end-to-end arguments [83] suggest that,natfonality should be (i) pushed to
higher layers if possible; (ii) unless implementing it a¢ flower layer can achieve larger performance
benefit that out-weighs the cost of additional complexitthatlower layer. Conventionally, multicast is

designed based on the second consideration, where mujtidatives are implemented in the routers
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(network layer). As IP multicast is still not widely availabthe research community began to revisit the
first consideration, that is to push the multicast functiiy#o a higher layer — the application layer.

Thus was born the so-called Application Layer Multicast ()L

1.2 Application Layer Multicast

The principle concept behind ALM is to implement multicastytives directly at the end systems. The
end system could be an end host, a proxy server or an edge.rdbteend systems are organised into
a logical overlay network, and multicast data using the layeedges which are unicast connections.
In this way, ALM bypasses the need for network layer multicagport, and hence offering a ready-
to-deploy solution. We may recall that the MBone is also aerlay network. What differentiates the
MBone from ALM is that the MBone is tightly integrated with HRulticast, and it has a static topology
with occasional manual reconfiguration. ALM can work withaative multicast support, and it is often
referred to as a class of self-organised proposals whicstagst, improve and repair the overlays without
manual intervention.

ALM proposals began to emerge in year 2000, with pioneetts aa&nd System Multicast (ESM) [21],
Scattercast [18] and Yoid [36]. Chu et al.'s ESM introduceat&tia, a self-organising protocol that cre-
ates an ALM overlay directly at the end hosts. Narada is desidor small-scale many-to-many mul-
ticast applications. Chu et al. provide the first quantiatiomparison of ALM with IP multicast and
naive unicast transmission. Their results prove the casAliM. Yatin Chawathe’s Scattercast advo-
cates an infrastructure support for ALM, where a set of mexunning ALM protocols are deployed
in the network. The proxies are connected by ALM overlaysl tre clients (end hosts) subscribe to
nearby proxies. Scattercast uses Gossamer, which has anafigimilarities with Narada, to construct
the ALM overlays. Paul Francis’s Yoid, on the other handufes on the architectural aspect of ALM. In
particular, Yoid's architecture consists of three protecdoid Distribution Protocol (YDP), Yoid Iden-
tification Protocol (YIDP) and Yoid Tree Management Proldd@@MP). These protocols work together
to provide generic content distribution.

Following these works, more and more ALM proposals emerghk gaar. For examples, ALMI [72],
HMTP [109], NICE [7], TBCP [62], switch-trees [43], Scrib&d], Zigzag [95], etc. The performance of
ALM is highly related to the structure of the overlay used surprisingly, the majority of the proposals
concentrate on strategies for building efficient ALM ovgdgaThe aim of this thesis can be summarised
as: to understand the strengths and weaknesses of existipggals; hence to offer improvements and

new proposals to better construct ALM overlays.
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(c) ALM Tree (1) (d) ALM Tree (2) (e) ALM Tree (3)

Figure 1.1: Contrasting ALM, IP multicast and naive unidesbsmission

1.2.1 Comparing ALM, IP Multicast and Naive Unicast Transmission

In this section, we compare ALM, IP multicast and naive usti¢ceansmission with the help of an exam-
ple, and discuss the advantages and challenges of ALM.

To contrast ALM with network layer multicast, consider tlzergple topology in Figure 1.1 (a) where
R1 to R4 are routers whiles, A, B andC are end systems. Assume thtatvishes to send data to all
other nodes. Figure 1.1 (b) depicts the network layer magtitree built by protocols such as DVMRP.
We can see that the data is delivered to the receivers viar¢lrerge) shortest path tree rootedSat
RouterR1 receives a single copy of the packet and forwards the répticzopies along the interfaces to
R2, R3 and R4. From the figure, we can see that at most one copy of a packati®ger any physical
link. Also, the perceived delay at each recipient is as thahg data were sent directly by unicast.

In ALM, data packets are replicated at end systems, and &ves from one end system to another
end system using a unicast connections. Collectivelyethescast connections interconnect the end
systems into an overlay network. The resultant overlay @ainkihe form of a tree or a mesh which
serves two purposes: as a control topology and as a topabeghata distribution. Normally, the control
topology is a mesh which provides redundant paths betweem#mbers. On the other hand, the data
topology is usually a tree to ensure loop-free routing. Feglil (c), (d) and (e) shows three examples
of ALM multicast trees on the sample topology. A naive impértation of ALM could degenerate to
the unicast transmission as shown in Figure 1.1 (c). Forctge, the physical link frorfi to R1 carries
3 copies of a transmission [#. This packet redundancy at a physical link is called linkss$t which is
defined as the number of identical copies of a packet cargiedaysicallink [21]. In other words, the
naive unicast transmission could lead to link stress thas isigh as the number of recipients on the link
nearest to the source. Moreover, the data source needfsniteas many copies of a packet as there

are recipients. This could potentially overload the source
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We could build trees that have lower worst case physicaldingss. For example, the trees in Fig-
ure 1.1 (d) and (e) have worst-case stress of 2 and 1 resglgdtiote that we consider a physical link
between two nodes, e.gd and R2, is consisting of two unidirectional linkg,4, R2) and (R2, A)).
However, while these two trees improve link stress as coatptir naive unicast transmission, they in-
crease source-to-receiver delay. For instance, the trEgure 1.1 (e) shows that to get € a packet
needs to be relayed frosto A, then fromA to B, and finally fromB to C.

The above examples illustrate two salient features in ALMeptial high link stress and longer end-
to-end delay compared to the network layer multicast. Cqueetly, the quality of an ALM solution is
often measured relative to the network layer solution. Atke cost or network resources used by the
overlay tree can be calculated as the sum of the delays ofailay linksin the tree [109]. Ideally, an

overlay should have low delay, stress and tree cost.

1.2.2 ALM Advantages

Despite the potentially poorer data delivery quality, ALMsha number of advantages over network
layer multicast. First of all, ALM provides a ready solutifor deploying multicast services over the
Internet. Unlike IP multicast, it allows application spgigchaming, and thus does not require a globally
consistent naming scheme. By using a suitable overlay, AbMdavoid the high link stress and source
overloading issues cause by naive unicast transmissionle \ WhM has emerged only in recent years,
there have been a number of successful real-life applitatiGor example, the End System Multicast
project [75] uses ALM for live events broadcasting and thegle Monkey project [76] focuses on
distributed files sharing.

Until recently, the network layer multicast is only spaysaVailable in the form of islands of multi-
cast network. ALM offers an opportunity to interconnectismeulticast islands into a global multicast
network. In fact, several projects such as Universal Matid110] and Broadcast Federation [19] are
working towards this goal. Even in an IP multicast capablsvoek, ALM can also be useful to offer
service for groups with members that are sparsely avajlabtroups with a very small number of mem-
bers. Maintaining many such groups with IP multicast coulavp to be costly in terms of router state
and the additional processing required.

By using unicast connections, ALM is transparent to the onétdayer. This helps to maintain the
stateless nature of the underlying network. And, as ALM isdokon unicast, it may be possible to
leverage some well studied unicast solutions to achievelsirarror, flow and congestion control in
multicasting.

ALM overlays can also have a flexible structure. This allowsel structures to be used to simplify
the maintenance of the overlay. For example, the Delaunaygulation protocol [58] creates overlay
formed by many Delaunay triangulations; NICE [7] builds dags with multiple levels clusters. These

overlays can be maintained with low overhead. In additippliaation-specific optimisation objectives
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can be easily integrated with the overlay structure.

1.2.3 Challenges in Building Efficient ALM Overlays

We have seen that ALM offers several advantages over netlaggr multicast. Most importantly, it
allows rapid deployment of multicast services over therlmee However, there are several additional
challenges faced by an application layer approach. Hereiseeiss issues related to building efficient

distribution overlay structures.

e Quality of data deliveryln ALM, data is delivered using unicast from one end systemrtother
end system. As discussed previously, this results in reghindata traffic and prolonged end-to-

end delay.

e Capacity constraint and heterogeneitALM requires the end systems actively to take part in
data distribution. Recently, Saroiu et al. [84] conductedesmsurement study on the end systems
participating in two popular peer-to-peer file sharing egst: Napster and Gnutella [40]. Their
results show that the end systems are highly heterogenedesms of bandwidth capability. In
particular, the end systems access the Internet with atyari@ccess technologies, e.g. dial-up,
Cable, DSL, T1 or T3. Overall, the available bandwidth foagye number of end systems (about
70%) is less than 3 Mbps. As each data connection consumestsamawidth (depending on the
application, see Table 1.1), an end system could only stipgm@rtain number of other systems. In
other words, the branching degree (or fan-out) of an oveltdiyery structure has to be restricted.

It is important that the overlay must honour the degree &tion for each individual node.

e RobustnessEnd systems are usually more susceptible to problems yikemm failure than the
network routers. In addition, the end systems may join ordehe group at will. As the overlay
is directly formed from these systems, the overlay strgcisinecessarily changing over time. An

ALM solution should quickly adapt to these changes in a romanner.

e Limited topology knowledgeUnlike network routers, end systems have little or no krealgke
about the underlying network topology. Such knowledge hawés the key to building efficient
overlays. In order to obtain information about the intereshetwork metrics (e.g. delay, band-
width) between the nodes, end-to-end measurement teagmiye often used. However, each
measurement process may consume substantial network lthihdand will affect the scalability

of the solution (see below).

e Scalability In orderto be useful for large-scale applications, an Aldiifon needs to be scalable.
The scalability is closely related to how an overlay is canged and how it is maintained. In
particular, the overlay construction and maintenancelshwat require global coordination among

the members, and should work with limited knowledge of thisvoek.
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1.3 Thesis Contributions

This thesis focuses on practical distributed solutionggmerating ALM trees that have low delay and
low cost. A solution is practical in the sense that it addes$ke previously mentioned challenges. More
precisely, it needs to create and maintain a degree-bownaelhy subject to the bandwidth constraints
at each individual node; it should work with minimum cooration between the members and limited
knowledge of the underlying network topology; also, it ne¢al be responsive to the changes in the
overlay membership. The focus of this thesis is the effigiavfcthe overlay structures used for data
delivery. Upper-level services such as the reliability afadtraffic, security or congestion control are
beyond the scope of our work.

The contributions of this thesis can be summarised as fsllow

e A detailed comparative study of some existing ALM overlayisiouction proposals using simu-
lation. The proposals considered optimise either tree @odelay, and they encompass a wide
variety of overlay creation strategies. The comparisotushes the performance in both one-to-
many and many-to-many data delivery models. Unlike otherkvio similar areas, we perform
an in-depth analysis of the overlay construction procegh®ifvarious proposals. By analysing
the strengths and weaknesses of these protocols, we entitncements to some existing pro-
posals (e.g. switch-trees [43] and TBCP [62]), as well asdfions for our own proposals. As a
by-product, we developed a simple yet flexible and exteasivhulator (calledLNMSi i) for our

evaluation.

e Asimple centralised heuristic for the minimum delay degiveended overlay mesh creation prob-
lem, which is NP-complete. Source-specific trees can baradatdrom the mesh with a shortest
path algorithm, e.g. Dijkstra’s algorithm [23]. We referthe algorithm as GreedyMesh, and use
it as a benchmark in our evaluation of many-to-many ALM pregde. GreedyMesh may also be
useful for creating overlays for small-scale delay-séres@pplications. We are not aware of any

other algorithms that attempt to generate low diameteredegounded meshes.

e A distributed mesh-based framework which provides basicgulures for creating and maintain-
ing a degree-bounded overlay tree. Its mesh-based appoffachfast and robust failure recovery.
The framework is generic and can be used to improve the noéssiof some existing ALM pro-

posals.

e A proposal for a distributed algorithm called MeshTree,sticreates low delay, degree-bounded
overlay trees. MeshTree is inspired by two issues, nameaygteedy problem and delay-cost
trade-off that we observed in existing distributed profmstrees created by MeshTree are useful
for real-time single-source applications with large reeesets. For example, critical event notifi-

cation (e.g. synchronisation and update data), and mealdtock quotes and updates (e.g. Yahoo!
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MarketTracker [106]).

e A proposal for a distributed algorithm that uses multiplargtl trees for multi-source multicast-
ing. The proposal challenges the convention of using edtgingle shared tree or a set of source-
specific trees. It strikes a balance between these two agimeean terms of delay performance
and message overhead. The proposed solution is suitalirderscale interactive multi-source
applications. For example, distributed simulation, dis&learning or multi-party gaming (see
Table 1.1). For these applications, low latency delivergfiparamount importance as old infor-

mation is quickly invalidated by newer information.

1.4 Thesis Structure

The rest of this thesis is organised as follows.

Chapter 2 begins with a broad discussion of ALM and relatexkwbhis includes the various system
architectures, the service models considered in ALM oyertanstruction and a survey of prior ALM
solutions. We also discuss related areas such as ALM in maobtlworks, Internet distance measurement
services and peer-to-peer file sharing.

Chapter 3 presents the system model, assumptions and thiason design, including topologies,
multicast member selection, performance metrics anétivdsi msimulator, used throughout the thesis.

In Chapter 4, we introduce the GreedyMesh algorithm. We @mijt with a number of centralised
algorithms. Some of these algorithms will be used as bendksrfar our evaluation of distributed
solutions in later chapters.

In Chapter 5, we conduct a detailed performance comparismnomber of distributed ALM overlay
construction proposals discussed in Chapter 2. We chooBeitpies that cover a wide range of overlay
creation and maintenance strategies. The strengths arkthesses observed help in the development of
our own proposals.

Chapter 6 introduces the mesh-based framework for creatidgnaintaining a degree-bounded over-
lay tree in a distributed manner. The framework is importit is the basis of our proposals in later
chapters. To illustrate the working of the framework, welgpipto a degree- and delay-bounded, low
cost tree creation problem.

In Chapter 7, we study the degree-bounded, low delay tressgtion problem, which is useful for
applications that require low source-to-receivers deBy.analysing the limitations of some existing
distributed proposals, we propose MeshTree, and compagaihst proposals that performed well in
our comparison study in Chapter 5.

Chapter 8 investigates the multiple shared trees appraaamdny-to-many multicasting. This is

motivated by the observation that the single shared treeoaph is scalable but yields trees with poor
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end-to-end delay, while the source-specific trees appribasigood delay but poor scalability. We com-
pare the proposal with other existing work, and also exartsnguality and overhead trade-off.

Finally, Chapter 9 concludes this thesis with a summary efttiesis contributions and suggestions

for future work.
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Chapter 2

Background

In the previous chapter, we introduced the concept of Apfith Layer Multicast (ALM). This chapter
serves to provide further details on ALM, as well as to discmme related research areas.

This chapter consists of three parts. In the first part (8e@il — 2.3), we discuss several design
issues in creating ALM overlays, which range through systechitectures, optimisation objectives and
service models. In the second part (Section 2.4 — 2.6), weweseveral representative ALM proposals,
focusing on various aspects of building efficient ALM ovgda The third part (Section 2.7) describes
other related research areas: ALM in mobile networks, hdaedistance measurement and peer-to-peer

networking. Section 2.8 concludes this chapter.

2.1 ALM System Architectures

The study of ALM has often centred around two basic systerit@atures: (i) end systems only; and
(i) a hybrid of end systems and network layer multicast.

As described in Chapter 1, an end system can be an end usatsmaar a more powerful proxy
server. Hence, we can further classify this architectusetan the type of end system that actively
takes part in the overlay construction. This results in eepand host-based architecture and a proxy-
based architecture.

In the end host-based architecture, an ALM protocol can tectly implemented at the end users’
machines. Examples of proposals based on this approachasegl&[21], HostCast [57] and Banana
Tree Protocol [42]. The main advantage of this approachas o specific infrastructure machines
need to be installed in the networks, and it therefore pewidstant deployment at low monetary cost.
However, there is a trade-off between the deployment cabtlaa data delivery quality. Poor delivery
guality may be expected as the users’ machines normallylbevaccess bandwidth (e.g. dial-up users).

These systems are also more prone to failure problems wifatt the reliability of the overlay.
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In the proxy-based architecture, an organisation thatigeswalue-added services deploys proxies at
strategic locations on the Internet. End hosts then attams$elves to these proxies to send and receive
data. As specialised machines are used, this solution eamderbetter services, but at a higher cost.
Scattercast [18], OMNI [9] and AMCast [86] are examples affsgystems.

While the above proposals enable global deployment of casdtiapplications, they do not attempt to
exploit the existing multicast infrastructure. Consedglyeseveral proposals [19, 110] consider a hybrid
architecture where end systems are used to interconnaatisbf multicast networks. In this case, the
end systems can be either an end host or a dedicated prox§9JinGhawathe and Seshadri propose
Broadcast Federation, which uses specialised nodes tatedcast gateways (BG) to interconnect dif-
ferent broadcast networks (BN). Each of the BNs implemeéstswn independent multicast protocol,
such as the DVMRP [25], Core Based Tree (CBT) [5], Protocdependent Multicast (PIM) [31],
Express Multicast [45], Simple Multicast [73] or even an idag multicast solution. The Universal Mul-
ticast proposed by Zhang et al. serves as a general framéwairgan work with various ALM protocols
to build dynamic unicast tunnels to connect IP multicastrids. The key concept is to elect one or more
designated members (DMs) from the multicast members in Bachulticast island. The DMs act as

representative which interconnect the islands using an Akdocol, e.g. HMTP or Narada.

2.2 Optimisation Objectives

The optimisation objectives of a solution are closely eato the upper-level applications. Following

are some commonly considered objectives.

2.2.1 Bandwidth

Bandwidth-intensive applications such as video distidsutequire high-bandwidth delivery paths. In
a study on quality of service unicast routing [101], Wang @ndwcroft define bandwidth as a concave
metric, which means that the bandwidth of a path is deterdioyethe bottleneck link (i.e. the link with

the smallest bandwidth) in the path. This suggests thath@ee a high-bandwidth delivery tree, the
bottleneck links need to be placed as close as possible tedhes. In [22], Cohen and Kaempfer show
that the problem of finding an overlay tree with the maximuntlboneck bandwidth is NP-complete.

Jannotti et al. propose a distributed protocol called Castr¢48] that attempts to attain bandwidth-

optimised trees.

Degree Constraints One difficulty in bandwidth optimisation is that end-to-dmehdwidth measure-
ment is an expensive operation. Normally, it requires someumt of data to be transferred from one
node to another node for an extended period. A recent Irtenaféic measurement study [13] suggests

that congestion normally happens at the access netwohlerriitan the backbone network. Hence, most
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existing techniques relate the bandwidth limitation of @d&to the node’s access bandwidth capability.
In particular, given the source rate and the access bangwadiode can place a limit on the number
of out-going flows in the delivery structure (see Chapter 3details). More precisely, the multicast
tree needs to be degree-bounded based on each individugsmaghacity constraint. All the proposals
in this thesis follow this degree constraint requiremerypidally, degree constraint is considered with

other objectives, such as tree cost and/or delay (Sect®2 and 2.2.3).

Multiple Trees versus Single Tree Typically, data is delivered over a single multicast treeueo
this, the forwarding load is only carried by the interior medn the tree, while the leaf nodes contribute
no resources. Recently, several projects [16, 70] haverb&geaxploit the spare resources available at
these non-contributing nodes. The main concept is to delieecontents that are encoded into multiple
sub-streams using techniques such as multiple descrigbiding (MDC), and these sub-streams are then
delivered over multiple trees formed by the members. Inttasner, each node may become the interior
node in one tree and become the leaf node in the other treese ke forwarding load is shared more
evenly. More importantly, as the previously unused resesiocan now be used, the overall throughput is
often higher than the single tree delivery mechanism.

This thesis considers the single tree delivery mechanishilethe multiple trees approach provides
better throughput, it may not be applicable to all applmagi For example, applications that require
timely data delivery. With multiple trees, each receivelymaed to wait for the arrival of data from all
trees. This will delay the processing of the data. In addijtfor applications with a low data rate, it is
possible that the overhead of maintaining multiple treemisvorthwhile.

It is important to note that the multiple trees discussee@ sbould not be confused with the multiple
shared trees concept to be presented in Chapter 8. Here,ulliplentrees concept is referring to the
transmission of data from a data source to the receivensg s&veral trees simultaneously. While the
multiple shared trees approach also creates more thanemeatdata source only selects one of these

trees for data delivery.

2.2.2 Tree Cost or Network Resource Usage

In network layer multicast, tree cost is determined by thamsation of individual link costs. The cost
of a physical link could be an administratively configuretlreeor the bandwidth cost, which is known
by the multicast routers. In application layer routing, aertay link is a unicast tunnel between two
nodes, which spans across multiple physical links. For kaityg the cost of an overlay link is often
qguantified as the summation of the delays of physical linksaitersed, i.e. the end-to-end delay of the
overlay link. This is because it is easier to estimate theadise between two end systems, rather than to
accumulate cost between them. Throughout this thesis,eatttie delay of an overlay link as its cost.

Corresponding to this, the overlay tree cost can be giveheasummation of the delays of all overlay
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links in the tree:

overlay tree cost = Z d(e) (2.1)
Vee Er

where Er is the set of overlay tree links andle) is the link’s delay. Usually, the round-trip delay
between the nodes is used.

The overlay tree cost also provides a simplified view of thevoek resource used by the overlay
tree. The network resource usage is defined in [21] by Chu asahe sum of the product of all physical
links’ stress and the links’ delays. We recall that an ovglitek is composed of a series of physical links.
Equation 2.1 adds up the delays of all overlay links. This@ffely sums up the delays of the physical
links for as many times as they are used in the overlay treethie network resource used by the overlay
tree. A low cost tree is suitable for delay insensitive aggilons such as bulk file transfer. The Host
Multicast Tree Protocol (HMTP) [109] is designed for thipéyof applications.

The optimum solution for this problem is the minimum costragag tree, which can be calculated
using the Prim’s or Kruskal’s algorithm [23]. However, iftlielivery tree needs to be degree-bounded,

the problem (i.e. degree-bounded minimum cost tree) is Atfd-[50].

2.2.3 Delay

Delay is important for applications that require timelyidety of their data. For example, streaming me-
dia, interactive multi-party network gaming, video corfiecing and distance learning. We are interested
in providing low end-to-end data delivery from the sourgédsall the recipients.

Obviously, a source-rooted shortest path tree offers tsedmay performance. In an overlay, this
degenerates to the naive unicast transmission where theeseode is the central hub of a star topology.
This, however, is impractical as it not only burdens the seyit also stresses the physical links close
to the source. Unfortunately, problems associated witltiorg low delay degree-bounded trees are
normally NP-hard.

Before we discuss some of the degree-bounded tree creatiblems, we first define several ways

of measuring the delay performance for an overlay struciteer a connected mesh or spanning tree).

e Diameter The diameter for a connected overlay is the longest of alitekt path distances (via
the overlay) between any pair of overlay members. If thelayds in the form of a tree, the term
tree diametewill be used. Tree diameter is used for shared tree wherecdathe originated from

any point on the tree, i.e. in the case of many-to-many ddizedy

¢ Root-diameterThis is specific for a tree structure, which is the maximumrsdst path distance
(via the tree) from the tree root to any tree members. Raamdter is used when the tree root is

the sole data source, i.e. in the case of one-to-many datedel
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e Average delayThis represents the overall average delay performanadod by the members.
It is calculated as the ratio between the total delay obsknyehe members for each data source

and the total number of source-receiver pairs.

For single-source applications, Li and Mohapatra [57] psgpHostCast to create low root-diameter
trees for delay-sensitive streaming media application&4], Kostic et al. design ACDC to achieve trees
which are root-diameter bounded, and have low tree costirg®4, Banerjee et al. consider the problem
of minimising the average delay to the recipients in a prbaged architecture. In terms of multi-source
applications, Shi et al. consider a centralised algoritanmte problem of minimising the tree diameter.
Distributed proposals, such as Narada [21] and GossamEttfib8 create per source trees are designed
to achieve low average delay between the members. All thregmpals build degree-bounded trees.

We are particularly interested in the following three NRrgdete problems, which will be studied in

detail in Chapters 4, 6 and 7 respectively.

1. Minimum diameter degree-bounded subgraph probldine objective of this problem is to cre-
ate a connected degree-bounded subgraph (mesh) which hissumi delay between the nodes.
Degree-bounded source-specific trees can be obtainedtimesh for many-to-many data deliv-
ery. In Chapter 4, we devise a greedy heuristic called Gidegh for the problem. GreedyMesh

is mainly used as our benchmark for many-to-many ALM profmsa

2. Root-diameter- and degree-bounded, minimum cost treelggrobThis problem aims to find a
degree-bounded tree that has the minimum tree cost, anedbidiameter that is within a given

delay target. For this problem, we provide a distributedioh called dbMeshTree in Chapter 6.

3. Minimum root-diameter degree-bounded tree problémthis problem, the objective is to obtain
a degree-bounded tree that has the minimum root-diametés. thus useful for single-source
applications that require timely delivery. In Chapter 7, prepose MeshTree, a distributed tree

building proposal for this problem.

Triangle Problem An important issue in distributed tree cost and delay migation is the triangle
problem [109, 57]. We explain this problem with Figure 2.1 this figure, the value next to a link
represents the link’s cost. Figures 2.1 (b) — (d) depicteltiéerent ways to organise the nodes (B
and() into a tree rooted al. The triangle problem is depicted by Figure 2.1 (b) whichudes the
longest pathA — B — C, in the configuration. Figures 2.1 (c) and (d) illustrate thi@imum cost and
the minimum delay (root-diameter) configurations respedi For tree cost minimisation, it is easy to
see that configuration (b) uses more network resources thafigaration (c); for delay minimisation,
configuration (b) also yields a higher root-diameter thanfiguration (d). Hence, it is crucial that a
distributed solution can detect and overcome the ineffedtiangle for its optimisation objective. Com-

paring configurations (c) and (d) suggests an interestingasty: there still exists a trade-off between
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Figure 2.1: Triangle problem

the tree cost and the delay measures. Indeed, our simufasatis in later chapters confirm this simple

observation.

2.2.4 Scalability

Scalability is a major concern for any large-scale applicetsuch as multi-party network games, stream-
ing media and distributed simulation. It is highly relatedtie approach taken to construct the overlay
(e.g. centralised or decentralised), the structure of tleglay (e.g. tree or mesh) and the way that the
overlay is maintained (i.e. the message overhead). TypiGadecentralised solution can scale better
than a centralised one; and a tree having fewer links thansh riseoften viewed as a more scalable
structure. However, the key to scalability is determinedHh®yvolume of state information and number
of messages transmitted between the members. We are ietbirssolutions that can scale up to a

reasonably large group size, e.g. thousands of members.

2.3 Multicast Service Models

A tree is the natural structure for multicasting. By defwnitj it is loop-free. Hence, multicasting in a
tree can be done by flooding: when a node receives a messageffieof its tree links, it replicates and
sends the messages out via the other tree links that emdrates. Typically, a tree can be used as a
unidirectional tree or a shared tree based on the servicelsadder consideration: (@ne-to-manyor

(i) many-to-many

The one-to-many model is used by single-sender applicatsach as file distribution or media
streaming from a well-known source. In this model, a souoz#ed unidirectional tree that connects
all the receivers is used. Examples of ALM solutions thattzsed on this model are Overcast [48],
HostCast [57], and Zigzag [95].

The many-to-many model is for multi-sender applicatiorchsas video conferencing or multi-party
network games. Three types of delivery tree are normallgictemned for this model: (i) source-specific
trees; (ii) a bi-directional group shared tree; and (iii)redirectional group shared tree.

The source specific trees are a set of unidirectional treels emted at one of the data sources.

The data items from each of the sources are mapped onto #sgective trees. Examples of ALM
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protocols that use this type of delivery trees are NICE [drddla [21] and Gossamer [18]. In contrast,
the bi-directional shared tree model uses only a singleitrdata delivery. The tree is rooted at a well-
known node that is typically called the core [5]. Protocdlattconsider this delivery mechanism are
Yoid [36] and HMTP [109]. While the bi-directional share@érallows all on-tree members to act as
data senders, the unidirectional shared tree allows omlytre root to do so. In this case, the actual
data source forwards the data to the tree root, which in tmwdrds it onto the multicast tree. Overlay
solutions that considered this type of tree are Bayeux [Bh2] Scribe [15]. The main reason to use
such a tree is to impose strict access control [44] which moirtant for applications such as topic-based
publish-subscribe applications [15].

Recently, Zappala et al. [108] examined the case for melsphred trees for many-to-many network
layer multicasting. In Chapter 8, we present our strategighvis based on this concept in the context of
ALM.

2.4 General Working of ALM Overlay Construction

This section describes the working of a typical overlay tartsion technique. We then review some
existing ALM proposals in the next two sections, with an eagif on techniques to be examined in later
chapters.

In theory, the overlay network can be viewed as a fully cotegegraph, as each node can reach
every other node in the network via unicast connections. évew for practical reasons, only a small
subset of the overlay links should be included in the ALM ¢aser Hence, the basic functionality of
an ALM overlay construction technique is to identify thesgké$ and maintain the connectivity of the
overlay. The resultant overlay can be in the form of a tree wreah which serves two purposes: as a
control topology and as a topology for data distributionridally, the control topology is a mesh which
provides redundant paths between the members. On the ahdyr the data topology is usually a tree
to ensure loop-free routing. Following this, we use the texarlayto refer to the structure created and
maintained by an ALM solution, rather than the complete layegraph. In addition, we will use the term
tree-basedo refer to proposals that maintain only a tree structurd ¢l data and control topologies),
while we use the terrmesh-basetbr proposals that maintains a mesh structure.

Figure 2.2 illustrates the working of a typical overlay couastion technique, which consists of two
phases: (i) the joining phase; and (ii) the maintenancegh@be joining phase refers to the process
where a newcomer is joining an overlay, i.e. growing the layerThe maintenance phase manages the
connectivity of the overlay. In the figure,to g are existing members of a multicast session arnsla

newcomer.
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Figure 2.2: General working of an ALM overlay constructiooposal

Typically, ALM protocols assume a well-known RendezvousiBqRP) [36] to bootstrap new mem-
bers onto an existing session. The RP acts as a query semanide existing members’ information
to newcomers. Optionally, the RP also participates in fiomstlike access control and overlay partition
healing. The identity of the RP can be obtained via an outasfd mechanism, such as web publishing
or email.

The overlay can be built in a centralised or a decentralisadrar. In the centralised approach, the
overlay creation and management are performed by a ceotralbtler. Newcomers can learn about the
identity of the controller from the RP. The controller usek knowledge of all members, and potentially
the performance metrics (e.g. delay and bandwidth) betweemembers, to compute a high quality
overlay. The computed overlay structure is then distrihiutethe members in the form of the neigh-
bouring relationships (i.e. links) between the nodes. @eiweng such information, the members will
initiate connections to their assigned neighbours. Onizela¢d to the overlay, the members enter the
maintenance phase. In particular, they monitor the coforetvith their respective neighbours. Any
changes to the neighbours’ status (e.g. leave/fail) wiltdported to the controller for it to reconfigure
the overlay.

On the other hand, in the decentralised approach, the gvadation and management are done by
the members in a distributed fashion. Consider Figure Z2ficomerzx first requests a list of members
from the RP. From the given list; then selects one or more members as joining targets and sends
each of them a joining request message. When a node, sageives a request message, it performs an
admission control decision for the requesting node. Theardacision criterion is whether it has spare
capacity for a new link. Other application-specific critefe.g. optimisation objectives) may also be
used. Once joined on the overlaygenters the maintenance phase and begins to monitor the stiatu
its neighbours. Any changes to the neighbours’ status imally handled by itself (i.e. the affected
member).

The next section discusses a number of centralised prap@sal Section 2.6 explores some decen-

tralised proposals. Figure 2.3 provides a simple classibicaf the proposals to be discussed.

INote that the similarity between the RP for ALM and the RP ftMfSM [31] is only in their names.
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ALM Proposals
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Figure 2.3: Classification of ALM proposals

2.5 Centralised ALM Approaches

ALMI, Host-based Multicast (HBM) and CoopNet are three idistive examples of centralised ALM

protocols.

ALMI[72] ALMlIis designed by Pendarakis et al. as a middleware to stppany-to-many multicast

applications of relatively small size (several tens of mersh In ALMI, a central controller arranges the
members into a monitoring graph. Each member is resporfsiblaonitoring the performance metrics
(i.e. round trip delay) of the links between the member aadhdighbours in the graph. Periodically,
the collected information is reported to the controllerjathwill compute the multicast distribution tree

from the updated monitoring graph. In [72], ALMI is used teate minimum cost spanning trees.

HBM [80] In HBM, the set of overlay nodes is divided into two groupsre memberg¢CMs) and
non-core memberénon-CMs). CMs form the core distribution topology whilem@Ms graft to the
core topology as leaves. The notions of CM and non-CM arecbhasethe estimated stability of the
nodes. Stable nodes are categorised as CM while less stadhds mre non-CM. Unlike ALMI, HBM
uses a complete graph as its monitoring graph. In other we@sh node needs to monitor the links
between itself and the rest of the nodes. HBM considers akgeerlay structures, which include tree,
bus, star and hybrids of these basic structures. It alsodies a redundant links addition algorithm to

improves the robustness of the delivery structure.

CoopNet [70] CoopNet provides a resilient technique to deliver stregndantents from a single
source. It makes use of multiple description coding (MDCJ amultiple distribution trees to achieve

robust data delivery. MDC is a method of encoding audio anditeo signal intoM > 1 separate
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streams, or descriptions, such that any subset of thesemtemts can be received and decoded into a
signal with distortion (with respect to the original signdépending on the number of descriptions re-
ceived: the more descriptions received, the better thetyualthe reconstructed signal. In CoopNet,
each sub-stream is delivered using a different distrilottiee (formed by the same set of members). This
delivery mechanism provides robustness as the probabfldayl streams concurrently to fail to arrive is

very low whenM is sufficiently large.

In addition to protocol design efforts, several works hage avestigated efficient overlay construc-
tion algorithms. In [87], Shi et al. consider the problem mfating degree-bounded minimum diameter
overlay trees, which is NP-hard. They propose a greedy $taudalled the Compact Tree (CPT) al-
gorithm. The CPT algorithm uses an incremental approaehRikm’s algorithm to grow the tree. In
particular, starting with the root node, CPT adds new nodlésd partial tree one at a time until all nodes
are added. A node is selected for addition if it provides thalkest increment in the objective function
(i.e. the tree diameter) to the partial tree without causiegree violation in the tree. In [60], Malouch
et al. consider the delay-bounded version of the problemnmx@d system with both end hosts and

proxies. They propose a heuristic which is similar in nator€PT.

2.6 Decentralised ALM Approaches

While the centralised approach simplifies overlay consimacand management, it may not scale well.
In particular, the central controller needs to keep tracthefinformation about all members, which is
highly dynamic. In addition, it creates a single point ofdaé problem. Hence, a greater number of
works investigate decentralised solutions.

In the decentralised approach, members actively parteipathe creation and maintenance of the
overlay. Typically, the existing decentralised proposals classified into two groups: mesh-first and
tree-first. The following two subsections review some of pheposals from these two groups. Unless
specifically mentioned, the proposals to be discussed allewverlay nodes to specify their own degree

constraints so as to create degree-bounded overlays.

2.6.1 Tree-first Protocols

Tree-first protocols arrange the members directly into@dtaeicture. Examples of tree-first protocols are
Yoid [36], HMTP [109], switch-trees [43], Banana Tree Piaab(BTP) [42], TBCP [62], Overcast [48],
NICE [7], Zigzag [96], HostCast [57], ACDC [54], AOM [104],Mlesh [100], SHDC [63] and Banerjee
et al.'s scheme [9].

The next subsection (2.6.1.1) first provides a general dion of issues related to the construction
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and optimisation of overlay trees. Subsections 2.6.1.2afd..3 then discuss in more detail the above-

mentioned proposals.

2.6.1.1 Overlay Tree Construction and Optimisation

A tree is defined by a set of parent-child relationships betwtbe nodes. All on-tree nodes (except the
root) must have a parent node. The root node is normally teerfiember who initiates the multicast
session, or the data source in single-source applications.

In a typical distributed tree building protocol, it is thesponsibility of a node to locate its parent.
Two techniques are normally used by a newcomer to locatei@al jparent: (i) random selection; and
(ii) select the tree root. If the initial join request to a eotial parent fails, the newcomer has to retry
with another candidate. In addition, an on-tree node maywish to discover other nodes for overlay
maintenance and improvement. We note that the initial metgieobtained from the RP may contain
only a partial view of existing members, and it may be outlafe due to changes in the membership.

We list several ways to discover additional on-tree nodésbe

e Root path A root path for a node: is a list of nodes in the route via the overlay frano the root.
A root path can be formed in the following manner. At the treetythe root path contains only
the root node. This information is sent to each of the rodtiidecen which will append their own
node identifier to the list they receive. These nodes in termdgheir root path to their children.
As this process continues down to the leaf nodes, all nodiékmnaw their paths to the root. The
root path is useful for loop detection. Specifically, wherod@receives a root path that contains
its own node identifier, it knows that there is a cycle in tleetand thus invokes a loop resolution

solution. Most tree-based protocols maintain a root path.

e Distributed depth-first searching (DFSh this technique, a node searches down the tree by ex-
ploring one branch of the tree at a time as in the conventidepth-first traversal. The question

of which branch will be chosen depends on the search critersed.

e Local region scopingin this technique, an on-tree node is constrained to kndwtbe nodes that
are within a predefined scope. The scope is normally smadidoge the communication overhead.

For example, a local region for a node may consist of its gasélslings and grandparent.

e Tree random walk36]. This technique is used to find a random non-descendut® im a tree. In
this technique, a node, sayfirst transmits a discovery message to its parent. The paittthen
randomly forward the message to one of its tree neighbotiethanz), which will continue to
propagate the message in the similar way. As a tree is fremopE| the message will never reach
a descendant of. Useful information (e.g. an address) can be added to theagesduring its
propagation. The message has a time-to-live field that mhtes its search scope. The last node

that receives the message will reply to the originator.
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e RanSulj53, 54]. RanSub utilises the structure of a tree to collect disseminate information
about the tree members. It consists of two phasesoflect and (ii) distribute In the collect
phase, information (e.g. addresses, nodes state) is patgabigom the leaf nodes to the root along
the tree. At each node, the information is mixed, shuffledi l&mited to a certain size before
being sent to the parent node. Once the root has collecteleaihformation from its children,
it redistributes them down the tree in the distribute ph&aege to the reshuffling, RanSub makes

sure that, over time, the information will be uniformly dibuted to all nodes.

e Gossipping While the above techniques are closely related to the treetare, the gossip-style
discovery mechanism is applicable to a general topologythi technique, each node keeps
a list of known members. Each member is associated with &géntas itheartbeat counter
Periodically, a node, say, increments its own heartbeat counter and randomly picahannode,

y, from the list, and sends tpits member list. Nodeg will merge the received list with its own
list, and adopt the maximum heartbeat counter for each menieeavoid propagation of false
information (i.e. “dead” members), a node periodicallygas nodes whose heartbeat counters
have not increased after an extended time from the memlyerTliee gossip-based technique is
applicable in several problem areas, e.g. ALM [18], faildegection system [97] and resource

discovery [41].

We note that some of these techniques may be used togetheex&mple, HMTP [109] uses a hode
selected from the root path to begin a DFS for a potentialrgare

Basically, the overlay is periodically reconfigured to irope and adapt to the changing environment.
In particular, a member observes the performance of the livith its existing and potential neighbours.
It then consults a set of optimisation rules to decide whetthadd a new link and/or remove an existing
link. For a tree, it is important to make sure that adding a lekvdoes not create a loop, or that deleting
a link does not partition the tree.

For our comparison study in Chapter 5, we classify the oyedaonfiguration techniques into the

following two groups:

e Distributed transformation In this technique, nodes perform independent transfoomateci-
sions to reconfigure the tree. There are two basic transtaymaperations: (i) switching and
(i) swapping. Switching refers to the process that a nodéches from its existing parent to a
new parent (see Figure 2.4 (a)), while swapping refers teptheess where two nodes exchange
their parent nodes simultaneously (see Figure 2.4 (b))s&loperations can be combined to ob-
tain more complex transformations such as the promotiomadip@ in Figure 2.4 (c). We note
that during the above operations, the subtree of a switamirag is not changed, as shown in the

figures.

e Localised central arrangementhis refers to the case where a representative node isnmeigp®
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Figure 2.4: Type of transformations in an overlay tree

for the overlay configuration for nodes within a local regiém other words, it acts like a scaled-

down version of the centralised approach.

To simplify the following review of tree-first protocols, vggoup the protocols based on the optimi-

sation techniques used, i.e. distributed transformatimhi@calised central arrangement.

2.6.1.2 Distributed Transformation Protocols

Examples of tree-first distributed transformation proteewe Yoid, HMTP, Overcast, switch-trees, BTP,
HostCast, ACDC, AOM, TMesh, SHDC and Banerjee et al.'s saelm the following discussion, we
underline the proposals (or their variants) that are cameidlin the performance study in later chapters
(i.e. Chapters 5, 6, 7 and 8).

Yoid [36] Yoid is one of the earliest ALM protocols. It focuses on thehdtiectural aspect of general
content distribution using a shared tree. Yoid maintainge which is augmented with random mesh
links to improve robustness. While it uses the switch-peoperation to reconfigure the delivery tree,
it does so to avoid some routing pathologies such as exeedsiay and packet losses, rather than to

optimise the tree.

Switch-trees[43] and BTP [42] Switch-trees defines a set of scope limited switch-pargurahms
for generic overlay tree optimisation. In the protocol, avoemer is first attached to the tree root and
then periodically tries to switch to a better position. Fig@.5 illustrates the four switch-parent algo-
rithms proposed — each with a different local scope definiffor simplicity, a binary tree is used for
illustration purpose). In the figure, the grey node is theeneshing to perform a switch while the black
nodes are the set of potential parents. A switching decisibased on the optimisation goal: for tree cost
optimisation, a node will try to switch to a node that is clogen its existing parent; for root-diameter
optimisation, a node will attempt to switch to a parent thatjdes a lower root delay (i.e. overlay delay

from the node to the root). BTP is a specific example of thedost-optimised switch-1hop protocol.

HMTP [109] HMTP is also a switch parent-based protocol. It is specifiadésigned to build a low

cost shared tree for many-to-many applications. Unlike@dwirees, HMTP tries to achieve a good
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Figure 2.5: Switch-trees algorithms

solution quickly by placing newcomers at their (hopefuthptimal position at joining time. It employs
a recursive greedy DFS to find the nearest potential parethietree. In the technique, a newcomer
measures the distances from itself to the potential pair@tia(ly this is the tree root) and to the potential
parent’s children. The search ends when the potential perére closest node to the newcomer, which
will try to attach to the potential parent. Otherwise, thevoemer will continue the search with the
closest node as its new potential parent. The newcomer atsoskin memory the most recently visited
nodes so as to retrace to another branch when a join requefitesl. An on-tree node periodically
performs a re-join operation from a randomly selected nodl@ its root path to find a better (i.e. closer)
parent.

The basic joining procedures described above can be trappedhe triangle problem (see Sec-
tion 2.2). Referring to Figure 2.1 (b), assume that n6dis the newcomer and it has fourigi as the
closest node during the searching process. Based on the deseriptionC' will attach to B, which
results in a triangle between the nodes. HMTP solves thigtiing C' knows the distance betwedhn
and B’s parent,A. If C finds that the distance between it adds smaller that the distance between
B and A, it will try to attach to A instead. Of course, this is constrained by the number otigil

acceptable a#.

HostCast[57] HostCastis designed for one-to-many delay-sensitivéegtins such as media stream-
ing. Hence, it tries to minimise the root-diameter. SimiaHMTP, it uses DFS to attach newcomers to
the trees. However, it does not attempt to place newcomeéhnginpotentially optimal position. Rather, a
newcomer is attached to the tree as soon as it finds an urnsatade. Once a node has found its parent
(called a primary parent) in the tree, it establishes a speefing relationships with its grandparent and
parent’s siblings to form a control mesh. These links arkedadecondary links and the corresponding
peers are called secondary parents. The node monitors gliéycqnf the primary and secondary links
and periodically tries to switch to a secondary parent ifivides a better root delay. In addition, a node
can execute a promotion transformation (see Figure 2.4d@lJeviate the triangle problem. Figure 2.6

shows an example of HostCast delivery, and the correspgraintrol mesh.

AOM [104] AOM can be viewed as an extension to HMTP to improve its dekfgpmance. In

particular, AOM provides a set of switching conditions thambine effort to reduce the tree cost and
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Figure 2.7: Example showing the delay improvement of AOMré¥I TP

root-diameter. Assume that a nodg,tries to switch from its parent, to nodeB. C will switch to B

under the following conditions.

d(C,B) <axd(C,A) (2.2)
D(B,root) < D(C, A, root) (2.3)
D(C, B,root) < (1+p) x D(C, A, root) (2.4)

In the above conditionspot represents the tree roat,z, y) represents the unicast distance between
z andy, D(z, root) represents’s current root delay and(z, y, root) represents’s root delay viay,
anda andp are two configurable parameters, where: o < 1 andp > 0. The conditions essentially
say that a better parent f6r is the one that is closer 0, closer to the root tha@’, and through which
C’s new delay from the root is not penalised too much.

Consider the example in Figure 2.7 (a), wheiis the tree root and’ is deciding whether to switch
from A to B. The value beside a link depicts its delay. With HMTPwill switch to the closer node?,
and gives the tree as in Figure 2.7 (b). The resultant treearmsdelay are both 190 unit. With AOM,
assume that = 0.9, thus Equation 2.2 and 2.3 are both satisfiedby{owever,C can switch taB only
if it is willing to accept poorer delay te, i.e. from 110 unit to 190 unit. This will requifep > 0.727.
The recommended value pfis 0.2 [104]. Hence, we will obtain the tree as in Figure 2)&bich has a
lower delay of 110 unit, but a larger tree cost of 200 unitntttee HMTP’s tree. It is interesting to note

that if the starting configuration is as Figure 2.7 (@)will not be able to switch t4 (to achieve the

2D(C, B, root) < (14 p) x D(C, A,root) = 190 < (1 + p)110 = p > 8/11 = 0.727.
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lower delay tree, Figure 2.7 (c)), as Equation 2.2 will nosh#sfied.
AOM uses a local region that is similar to HostCast. Its dedegperties have been shown to out-
perform those of HMTP [104].

TMesh [100] TMesh is an overlay optimisation technique designed fory¥tarmany applications
with a small set of active senders. TMesh begins with a shiesd(created by a tree-first protocol,
such as HMTP); shortcut links are then added to the tree to fomesh structure. The shortcut addition
is initiated by the receivers so as to improve the averageydsbserved from the active senders in the
session. TMesh runs a path-vector routing protocol to alitages rooted at each data source. TMesh will
be discussed in a greater detail in Chapter 8, when we presemultiple shared trees many-to-many

ALM proposal.

Scalable Hierarchical Distributed Clustering (SHDC) [63] SHDC creates an overlay tree by organ-
ising the members into multiple levels clusters: all memtigiong to a top-level cluster that is rooted
at a well-known node; members are recursively grouped imi@ller sub-clusters, until all clusters ob-

tained are singleton-clusters containing only one memidhin each cluster, a leader is elected from
the members of the cluster. A tree can be obtained by mappegetationship of leader and members
of a cluster to the relationship of parent and children ote.tin SHDC, newcomers join in the overlay

by recursively crossing the hierarchy to find the approprétister. Periodically, a member rejoins the
overlay to locate a better cluster. The grouping of membeosa cluster is based on the notion of zone,
which is defined according to the circular distance arourldster head. SHDC does not restrict the size
of the clusters. As a result, the tree built is not degree HednThe dynamic behaviours of the protocol,

e.g. changes of group membership and cluster leadership,neédiscussed in [63].

Banerjee et al.'s Schemg¢9] This scheme constructs low average latency trees for cneatyy real-

time applications under a proxy-based system. In theiregysevery multicast member (end host) at-
taches to a nearby proxy. The proxies organise themselieea ttelivery tree, rooted at the proxy where
the data source resides. The delivery tree is created in hasgs. First, all participating proxies are
centrally organised into a degree-bounded tree with irsingadistance from the source proxy. In the
second phase, each proxy performs periodical distributeal transformations to improve the tree. The
local transformations include parent switching, promoté;nd simultaneous swapping operations for
nodes within two levels of each other. Of all the potentiahsformations, a node will select the one that
provides the largest improvement to the objective functioraddition to local transformations, a node
may, with a low probability, perform swapping with a node @amly selected using the tree random
walk technique (Section 2.6.1.1). This is to avoid the sotufrom being trapped in a local minimum.

The random swapping will be discussed in more detail in 8ad&il.1.5.
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Besides the root delay (as in HostCast and delay-basedstiiies), each node also maintains the
size of its subtree and the maximum subtree delay (i.e. tlag ilmm the node to its farthest descendant)

to aid the transformation decision.

ACDC [54] ACDC is another example of switch-parent protocol. It ig&ed to build source-rooted

trees that are degree- and root-diameter-bounded, anddwaast. Each ACDC node maintains the
root delay and the maximum subtree delay. Together, thesealues provide an estimation of the height
of the tree branch in which the node resides. ACDC first cesat@andomly connected tree. Periodically,
a node performs distance measurements to a set of potestaits. Basically, if a node is currently in a
branch that has delay larger than the delay target, the ndideya switch that reduces the root delay;

if the branch is within the delay target, the node will try &tstv that improves the tree cost. ACDC uses
the RanSub technique described previously to distribudtenmation about the tree (e.g. delay bound)

and to discover switching targets.

Overcast [48] Overcast is designed for delay insensitive high-bandwsitigle-sender applications.
As discussed in Section 2.2, a bandwidth-optimised treentggsbandwidth links near to the root with
low-bandwidth links near to the leaves. Overcast attengpé&ehieve this structure by forcing new mem-
bers to go down the tree as far as possible while not sacdfitia path bandwidth from the root. Peri-
odically, a noder uses the switch-parent operation to try to move up the treiofs to its grandparent)

or move down the tree (switch to one of its siblings) to im@rtve tree.

2.6.1.3 Localised Central Arrangement Protocols

We focus on two distinctive protocols in this category: TB&#l NICE, and briefly mention Zigzag.

Tree Building Control Protocol (TBCP) [62] TBCP is proposed as a generic tree building protocol.

The protocol defines a local region which includes a newcoitgecurrent potential parent, and the
potential parent’s children. During the joining phase, lee/comer performs distance measurements to
all other nodes in the local region, and reports the resalteé potential parent. With measurements
obtained from previous rounds, the potential parent wilehdne complete distance matrix for the local
region. Hence, it can evaluate the goodness of all possibée tonfigurations (see Figure 2.8) based on
a score function. The configuration with the best score valilldbe chosen to rearrange the members.
In [62], the following function is used.

score function = D(p,m) (2.5)

max
me(CU{N})

In the equationD(z,y) is the distance between nodeandy along the overlay tree; is the current
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Figure 2.8: TBCP: local configurations

potential parent_' is the set op’s children andV the newcomer. Effectively, the score function calcu-
lates the maximum overlay distance provided by each cordigur. The best configuration is thus the
one with the smallest score. Similar to HMTP, all nodes (pkxtiee root) periodically rejoin one of its
ancestors chosen at random to improve the tree quality.

In [62], Mathy et al. introduce a domain-based concept toglaodes belonging to the same domain
under the same subtree. In particular, each node is assoeidh a 32-bitdomainiD(e.g. the bitwise
AND of a node’s IP address and a netmask). Each domain hasaidomot elected by the tree root. The
first node joining from a given domain can be elected as theailomoot of its domain. Domain roots
find their place in the tree with the mechanism described @jstarting from the tree root. When a non-
domain-root node joins the tree, the root will redirect tloel@ to its domain root, from which the node
will begin its joining process. Along with the domain-basedirection, the following two constraints

need to be enforced in the above joining mechanism.

1. A nodeP will discard any configuration in which a node from its own d@mbecomes a child of

a node from a different domain.

2. To keep domain roots as high as possible in the tree (i.€loae as possible to the tree root),
configurations in which a node keeps more than one node from its own domain as children, and

sends a domain root of a different domain as child of one aftklren, are discarded.

NICE [7] NICE is designed for low bandwidth large-scale many-to-yegplications. It organises the
overlay into a hierarchy of clusters, i.e. a mesh-basedahtopology. Unlike the previously mentioned
proposals, it uses source-specific trees (obtained froraueday) for data delivery. Each NICE cluster
has a size betwednand3k — 1 inclusively, wherek is a configurable parameter. The cluster defines
the local region in NICE, and is represented by a clusterded®keginning from the lowest level, cluster
leaders at the same level form the next level clusters, theile is only a single cluster at the highest
level. Figure 2.9 (a) and (b) show an example of a NICE hiénaend the corresponding control mesh
within each cluster.

In the NICE overlay construction process, all newcomers jii@ one of the lowest level clusters
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Figure 2.9: NICE: hierarchy, control structure and dataveoding trees

using a DFS beginning from the highest-level cluster leadBZE allows a cluster to temporarily violate
the size bound. Periodically, a cluster leader checks thee @i its cluster. If the cluster is too large
(> 3k —1), the leader rearranges it into two equal-sized sub-alsisted picks two new leaders such that
they are the graph-theoretic centre of the respectiveariui§the cluster is undersizee:(k), the leader
will initiate a merge operation with a nearby cluster.

The NICE hierarchy implicitly defines the data forwardindhs which are a set of source-specific
trees. The forwarding mechanism works as follows: when aerorkceives a packet from a noge
it will replicate and forward the packet to all clusters ofiathit is a member at each layer, except the
clusters of whiclp is also a member. Due to this mechanism, far@aode overlay, a NICE host can have
as many a®)(k logn) peers in its data path. Figures 2.9 (c), (d) and (e) show tigeebution trees for

three different sources (the nodes shown in black).

Zigzag [95] Zigzag is designed for delay-sensitive single-sourceastieg media applications. It
adopts a similar hierarchical structure to NICE for oventagintenance. However, its delivery struc-
ture is a source-rooted tree which has a maximum fan-o@(6%). Unlike the other tree-first protocols

discussed previously, NICE and Zigzag do not strictly lithé degree of the nodes in the resultant tree.

2.6.2 Mesh-first Protocols

Mesh-first protocols take a two-step procedure to buildveejitrees. Initially, members organise them-
selves into a mesh structure. As a mesh normally includaswdght paths between the members, naive
flooding will lead to unnecessary packet duplications. eao additional step — a routing mechanism

is needed to infer the delivery trees from the mesh. Existiegh-first techniques can be classified based
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EvaluateUtility (y) begin

utility = 0

for each member m (where m # x) begin
CL = current latency between = and m along mesh
NL = new latency between z and m along mesh if edge (z,y) were added
if (NL < CL) then begin

ilit _ CL-NL
utility += =757

end
end
return utility

Figure 2.10: Narada: the algorithmuses in determining the utility of adding a link 4o

on the mesh structure they create: unstructured and stegtctoeshes.

2.6.2.1 Unstructured Mesh-based Protocols

An unstructured mesh is a graph where no special structfiaination can be inferred from the graph
to aid routing and management. For example, a random gramimifg such a topology is simple: a
newcomer simply attaches itself to some randomly seleceuimers. To obtain loop-free routing trees
from this type of topology, a conventional routing protosoeth as distance-vector or link-state is needed.

Narada and Gossamer are two representative ALM protocalésrcategory.

Narada[21] Narada, one of the earliest efforts on ALM, is designed fonyato-many applications.
In Narada, members first organise themselves into a randash,méich is then improved upon in an
incremental manner. The improvement process involves @gictoperations: addition of useful links
to the mesh and deletion of less useful links to keep the mésinva manageable size. To add a new
link, = randomly selects a non-neighbour node, and requests a €apyauting table. Assume thatis
selected. Node will compute the expected delay gain franto other nodes if a link tg is added, using
the utility function shown in Figure 2.10. The link will be @eld if the gain exceeds a threshold. To drop
an existing link,x estimates the consensus cost of the links that it currergiytained. The consensus
cost of a link is calculated as the maximum number of timesttialink is used in data forwarding for
both end nodes of the link. A link with consensus cost lowanth threshold will be dropped.

To obtain the distances between the members via the meshdaleuns a path-vector routing proto-
col, which extends the distance-vector protocol [93] byuding the path information between the nodes
in the routing updates. Including such information helpavoid the well-known count-to-infinity prob-
lem [93]. As the routing protocol provides unique paths lestwthe nodes, the multicast trees with any
specific member as the source can then be computed usingdrse@ath forwarding technique [24] as
in DVMRP [25].

One important issue in mesh management is the partitiorlgmobDetecting a partition in a mesh
is somewhat harder than in a tree. To solve the problem, Mareglires each node to maintain the

membership of the overlay, where the dissemination of thebeeship is integrated with the routing
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protocol. This, however, leads to a relatively high conteérhead Q(n?) for an n-node overlay).

Thus, Narada is effective only for small-scale application

Gossamer [18] Gossamer’s overlay creation and derivation of delivergdreear several similarities

to those of Narada. The main difference between the two isNlaaada is based on the end host-
only model while Gossamer is designed for a proxy-baseasysialled Scattercast [18]. Gossamer
reduces the routing overhead by limiting the routing adsement to only proxies with active senders
(so as to derive source-specific trees). A gossip-style d@t®very protocol called Name Dropper++
is introduced to distribute membership information for &g improvement. The utility function used

in Gossamer is slightly different from Narada, but both ddrthstrive to minimise the average delay
between the members. Gossamer also simplifies mesh partifoagement by requiring every member

to observe only the liveness of a small number of selectedimaesn

2.6.2.2 Structured Mesh

While routing in an unstructured mesh is difficult, it is pids to relate the mesh members in a structural
manner to simplify routing and management. Commonly usedisiral meshes are distributed hash

table (DHT), Delaunay triangulation and clique.

DHT-based Protocols DHT overlays were initially designed for object routing dadation in peer-to-
peer networks. In a DHT overlay, each member is assignedjaeidentifier (in general, we referto it as
nodeld which can be a numerical value or a point in a coordinateesysEach of the nodeld represents
a point in an abstract namespace. In the system, each nod&inaia portion of the namespace in its
routing table. The overlay routes a message to the nodenste for the portion of the namespace
that contains the destination nodeld. In other words, atflesoonly keep a small portion of member
information in their respective routing tables, and a mgesa routed hop-by-hop from one node to
another using the local routing table.

There are two main classes of routing algorithm in this typeopology: Chord [88], Pastry [81]
and Tapestry [111] use a longest prefix matching techniqueltte in a ring; and CAN [77] routes in a
Cartesian hyper-space by choosing a neighbouring noderdlmthe destination at each hop. Scribe [15],
Bayeux [112] and CAN-multicast [78] are ALM protocols demeéd based on Pastry, Tapestry and CAN
respectively. Next we describe Scribe, which will be usedincomparison study as the representative.

Scribecreates multicast trees on top of the overlays built by RagstrPastry, each overlay node is
assigned a random nodeld that is uniformly selected fromeaddmensional circular namespace of 128
bits. Given a message and a destination nodeld, Pastrysrthegemessage to a node with the nodeld
that is numerically closest to the key, among all live nodggure 2.11 illustrates an example where a

message targeted fdd7alc is routed from nodé5alf c to noded37492.
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Figure 2.11: Pastry: routing in a circular namespace (eatlepicts a live node in the namespace).

The Pastry overlay is created in the following manner. Fastew member uses a deterministic hash
function to create a unique nodeld (s4/7alc as in Figure 2.11) using inputs such as the IP address of
the node. It then sends a join message addressed to its owldnad a topologically close-by overlay
node, say nodé5alf c as in Figure 2.11. Pastry assumes that the knowledge of soctieais learned
from some out-of-band techniques, such as an expandedaamngls Nodel113ab3 then forwards the
message hop-by-hop towards the destination nodeld. Fitladl message reaches nat8r492 which
has the closest nodeld ti2l7alc. The newcomer obtains the state information from nodes epéth
from65alf c tod37492 to establish its routing table and neighbours list.

Scribe builds a unidirectional shared tree for each mudtisgssion on top of the Pastry overlay.
Each multicast session is assignegraupld randomly selected from the namespace. Each groupld is
maintained by a root node with a nodeld that is equal or clogbe groupld. New members join to a
session by sending join messages towards the root usingy Pasting primitive. When a join message
hits an on-tree node, say the path from the newcomer {oforms a new branch of the tree.

In [16], Castro et al. propose SplitStream, which extend#8do deliver high-bandwidth contents
using multiple trees. SplitStream addresses the inhem@mdlanced forwarding load in a single tree
delivery mechanism (see Section 2.2.1) by making sure #et aode is the interior node in only one
tree, and is the leaf node in all the remaining trees. Sud@stcan easily be built with the underlying
Pastry and Scribe routing mechanism. The design is highiygbas failure of an interior node will

affect only one tree.

Delaunay Triangulation-based Protocols Consider a set of verticesl. A Delaunay triangulation is

a triangulation graph for which each circumscribing cireia triangle formed by three verticesih no
vertex ofA is in the interior of the circle (see Figure 2.12). In [58]ebeherr et al. propose a DT protocol
that constructs a Delaunay triangulation overlay in a digaésed manner and uses it for multicasting.
In the protocol, each overlay node is assigned:any) coordinate. The protocol distributedly derives
Delaunay triangulation relationships for the overlay rmtdased on their coordinates. The Delaunay

triangulation graph constructed defines the neighboutetionships among the overlay nodes: two
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Figure 2.12: Delaunay triangulation

(a) LARK Overlay (b) Source-specific Tree at Node h

Figure 2.13: LARK: an example overlay and the correspondatg delivery tree

nodes are neighbours if the edge connecting them appedus iefaunay triangulation graph. Once the
Delaunay triangulation overlay is formed, compass roufif is used to derive source-specific trees
for multicasting. A compass routing routes a message hepepyfrom a nodes, to a destinationg,
using only the coordinates df the position of the current node, and the directions of tiges incident
with the current node. At each hop, the message is delivaredtbe edge with the closest slope to that
of the line segment connecting the current nodé.tdhe DT protocol is scalable in the sense that each
overlay node only needs to maintain a small amount of neighbg information. However, the data
delivery performance depends on how well the logical addfes. the(x, y) coordinates) is mapped to

the underlying network topology.

Clique-based Protocol LARK [49]is designed to be a light-weight and resilient ol for many-to-
many multicasting. In LARK, overlay members are organised several interconnected cliques, where
a clique is a fully connected graph. Figure 2.13 (a) showsxample of LARK'’s overlay structure.
The nodes that interconnect different cliques are callédigernodes. Routing in such an overlay is
simple: when a node receives a message from a neighbour iqueeclt will forward the message to
other neighbours in different cliques it belongs to. FigRre3 (b) illustrates the data tree originated at
the source, nodk. As a clique is a complete graph, LARK is resilient againsdeéailures. However,

its resilient property does not necessarily provide godively tree quality, as shown in [49].
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2.6.3 Summary

Table 2.1 and 2.2 summarise the tree- and mesh-first ditgdb&LM protocols discussed previously.
In the tables, we also provide additional information (engaximum path length and per node state)
about the protocols. We note that the maximum path lengtkdweral protocols is left undefined. For
examples, Yoid, switch-trees, HMTP, etc. These protocotslypce delivery trees that have varying
degrees at each node (due to the nodes capacity constidietjvorst-case happens when all nodes can
only accommodate one out-going stream. This results ineattipology which has a maximum number
of overlay hops oO(n), for ann-node overlay. However, if we assume that all nodes can iborbér
two out-going streams, the overlay can form a binary tree aHall binary tree (i.e. every internal node
has two children), the tree height or the maximum path lefrgii the root to its furthest descendant is
given bylog, n. In practice, we would expect that an overlay tree is ungvpopulated, i.e. some nodes
may not have any child while some nodes may have a number lorehi On average, we believe the

tree height (in terms of overlay hop) is in the ordeflog n).

2.7 Related Research Areas

This section briefly discusses some related research areas.

2.7.1 ALM in Mobile Adhoc Networks

Mobile Adhoc Networks (MANETS) are characterised by thehfhyglynamic, random multihop topolo-
gies that are likely composed of relatively bandwidth-¢maiaed wireless links. This dynamic nature
prevents the use of existing IP multicast protocols, e.gMBRP, CBT. AMRoute [105] is a protocol that
uses ALM over mobile wireless networks. AMRoute continugageates a mesh of bidirectional unicast
tunnels between pairs of group members. A shared tree isecreat of the mesh for data distribution.
One member node is designated as the logical core, whiclsgensible for initiating the tree creation
process periodically. The core can also migrate dynamyieatording to group membership and net-
work connectivity. A key feature that distinguishes AMReand the works studied and proposed in this
thesis is that AMRoute assumes a native wireless broadeashel. Self-configuration in the absence of
such a broadcast medium is a much harder problem. We befiavéne wired and wireless ALM could
be integrated with technique similar to Universal Multic@ge Section 2.1) in which a mobile member
can be elected to represent its mobile peers, and providédgetio the outside world. This however is

out of the scope of this thesis.
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2.7.2 Peer-to-peer (P2P) Networks

P2P systems are typically file sharing networks between estsh Early P2P system such as Napster
followed a semi client-server architecture. In Napsterumber of servers maintain databases of inter-
esting resources (i.e. names and locations of music files).HBsts contact the servers to obtain peers
that actually keep the desired music files, and make reqdestgly to the corresponding hosts. While
the actual data connections happen between the end hastspllarity of the service may still result
in overloading of the servers. Thus, modern P2P systemsaunutella [40] advocate a fully dis-
tributed approach. In particular, the members organismseéses into an overlay network as in ALM.
Unlike ALM, however, the P2P overlay is mainly used to lochies efficiently. For example, a host

x that wishes to find a filel", floods the queries into the overlay. Oncédentifies the host of” (say

y), = will request the file directly fromy. The flooding mechanism in Gnutella can potentially create a
large amount of query traffic. This has prompted researchro€tiral overlays which provide scalable
overlay management and routing. Most notably, the disteithhash tables proposals such as Pastry,

Tapestry, Chord and CAN, which were discussed in Sectio2 2.6

2.7.3 Internet Distance Measurement Systems

A key issue in ALM is inferring the network metrics (e.g. bandth and delay) between the members.
In this thesis, we consider only the delay metric. To obtaiin-pvise delay information, the end systems
could employ tools such g8 ng. However, having each host conducts a large number of measunts

inevitably leads to a high overhead, both to the host and #teark. Hence, several projects have

emerged to provide scalable distance estimation serWifesliscuss two representatives below.

Internet Distance Maps Service (IDMaps) IDMaps [35] is an early attempt to provide an Internet
scale distance service. IDMaps employs special hostsddafleersat various network locations. The
tracers are organised into a logical topology and contislyomonitor the distances among themselves
in the logical topology. This serves as the infrastructarestimate the distance between any two hosts in
the Internet. For example, the distance between hosisd B can be estimated as the distance between
A and its nearest tracéh, plus the distance betwedhand is nearest tracék, plus the shortest path

distance front; to T, over the tracer logical topology.

Global Network Positioning System (GNP) GNP [68] is a coordinate-based approach to network
distance prediction. The key concept is to ask end hosts iotama coordinates (i.e. a set of numbers)
that characterise their locations in the Internet. The pdtwlistances can then be estimated by eval-
uating a distance function over the hosts’ coordinates. @blsists of two parts. In the first part, a
small distributed set of hosts called Landmarks first meathe distances among themselves, and use

the measured distances to compute their coordinates inseclgeometric space. The coordinates are
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calculated by solving a function that minimises the erraneen the measured distances and the com-
puted distances (i.e. using the coordinates). The Landsheokrdinates serve as seeds to compute the
coordinates of other end hosts in the second part. In [68F B&k been shown to provide better distance

estimation than IDMaps.

2.8 Chapter Summary

This chapter extends the understanding of ALM, as well ases@tated research areas. The main focus
is on the construction of the multicast overlay topologi®¥e begin by discussing several important
issues in an ALM overlay creation solution, i.e. system aechures, optimisation objectives and the
service models. This is followed by a review of a number ofegpntative centralised and decentralised
overlay construction techniques. The proposals surveyeoiepass a wide variety strategies in building,
optimising and maintaining an overlay. In Chapter 5, we grenfa performance comparison study of

some of the proposals.
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. ) Local region Fa?ﬁg ir?fgde erlrk])?)lth_ Bandwidth- .
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Many-to-many
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SRT: Source rooted tree
BST: Bi-directional shared tree
UST: unidirectional shared tree

MSRT: Multiple source rooted tree

c: max. # children of a tree node
K: maximum cluster size in NICE and Zigzag
n: # of overlay nodes

Table 2.1: Summary of tree-first protocols
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Legends

SRT: Source rooted tree
BST: Bi-directional shared tree
UST: unidirectional shared tree

MSRT: Multiple source rooted tree

c: max. # children of a tree node

'm: max. # neighbours of a mesh node
n: # of overlay nodes
b: design parameter in Scribe and Bayeux
z: # of zones in CAN-multicast

d: # of dimensions in CAN-multicast

Table 2.2: Summary of mesh-first protocols
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Chapter 3

System Model and Evaluation

Environment

This chapter presents the system model and the simulatisigrdesed in the rest of this thesis. In
the next section, we first describe the system and overlayanktmodel considered. Section 3.2 then
describes the simulation design, which includes the getifrthe network topologies, multicast group
and some general parameters, as well as the performandesneted to quantify the ALM proposals.
The section also explains the working of the simulator,ecbLMSi m that we have developed for the

experiments. Finally, Section 3.3 concludes this chapter.

3.1 System Model

3.1.1 System Architecture

In Chapter 2, we discuss two versions of ALM system architegti.e. the end systems only and the
hybrid (mixed end system and network layer multicast) apphes.

This work considers the end system only model. However]Irie the end system only model can
be further divided into the end host only and proxy-basetesys. This thesis considers the first model,
where the multicast members are the end hosts which dirpettcipate in the overlay construction
and data delivery. This allows us to concentrate mainly chrigues used to build the overlays, while
avoiding any complex interaction between the end hosts hadtoxies or network layer multicast
infrastructure.

It is worth pointing out that the techniques studied aredliyeapplicable to build overlays for the
proxy-based system. However, a protocol specifically dessfgr such a system can further exploit the

more powerful and potentially better available bandwidtthe proxies. In addition, the overlays built
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can also be used by a hybrid approach (e.g. Zhang et al. stha@vMulticast [110] (see Section 2.1)) to

interconnect islands of IP multicast networks.

3.1.2 Network Model

The physical network is represented by a set of routers waiehinterconnected by links, as shown
by panel 1, Figure 3.1. The end systems, i.e. members of thicasi session, are connected to the
routers at different points through access links. Eacherotan accommodate at most one end system.
With this, we assume that each router represents a multiapsble local network. If there is more than
one multicast member in the network, they will communicat®ag themselves using the underlying
network layer multicast capability, and one of them will l®sen as the representative that bridges this
network with other members in other networks.

The overlay network is formed by the end systems on top of Hysipal network. Theoretically, it
can be modelled as a complete gra@gh+= (V, E), whereV is the set of vertices anl = V' x V is the
set of edges. This is illustrated as panel 2 in Figure 3.1hkacdex inV represents an end system. An
edge,(i, j) in E corresponds to the unicast path fréno j in the physical topology. The delay of edge
(1, 7) is the end-to-end delay froirto j via the physical topology.

For practical reason, an ALM overlay is often a subgraph efdbimplete overlay graph, which takes
the form either of a tree or of a connected mesh. An examplendilaM tree is shown in panel 3,
Figure 3.1. For conciseness, the rest of this thesis willavezlayto refer to an ALM overlay, unless

specified otherwise.

oP

Subset of overlay links, forming
i the ALM overlay

AQ

D

| Complete overlay network

D —— Overlay link
— Physical link

Physical network O End system

B Network router

Cc

Figure 3.1: Representation of the network model
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Bandwidth Model We study techniques that constructs efficient ALM overlayatures. The main
requirement for the resultant overlay is that the maximumiper of out-going data streams (i.e. fan-
out or out-degree) that a node can contribute is limited. theowords, the delivery structure needs to
be degree bounded. In a measurement study by Bhattachdrgld¥8], they show that the backbone
network is often over provisioned, and thus the bottlensckastly at the access links of the end systems.
In other words, we can abstract the available bandwidth efrehsystem as the bandwidth of its access
link. Hence, if we know the bandwidth of the access link areldhta rate of a multicast session, we can
calculate the number of out-degree that a member can cotetibb the session. Modelling the bandwidth
limitation as the degree bound also enables us to focus @m ofitimisation metrics, in particular, tree
cost and delay. Most of the ALM proposals discussed in Chi@médow the members to specify a degree
bound in building overlays.

Consider a multicast application in which the source tratssdata at a rate oB units per second.
We will assume that the capacity of any incoming or out-gangess link is no less thaB. Let the
out-going access bandwidth of a nodbe r;, we can then calculatés out-degree bound &s-;/B]|.

The similar assumption is also being made by Banerjee e®lalThe access bandwidth of a node can
be approximated based on the access technology used bydke exg. dial-up, Cable or DSL. This
estimation may be inaccurate as a node may have other aaplisthat connect to the Internet, and thus
need to share the bandwidth. However, we believe that catipaibetween the end systems can be used
to dynamically adapt the degree constraint. For examglapiéexr be an upstream node serving several
other nodes. Initiallyy determines the maximum number of connections it can carntribased on its
access technology. Then, during the course of the sesh®dpivnstream nodes observe and report the
received data rate te. Based on the reports,may increase or decrease its degree bound. A threshold
value and the history of the data transfer can be used to wegh® accuracy of the prediction process.
It is the responsibility of the overlay construction praibto ensure that an overlay stays connected in
case of changes to node degrees. For simplicity, we asswanthéhdegrees assigned to the end systems
are constant throughout a session.

Even if the source injects traffic at very low rate, to makedjase of its memory and processing
power, the end user may also wish to limit the resources ugedsingle application. This is especially
true if the ALM is applied on top of the end host only model. @a bther hand, while the proxy-based
systems normally have larger bandwidth capability, theymaily support more than one session. Hence,

each of the sessions running on such systems may only geteacdtthe available capacity.

Overlay Link Delay and Cost  As described previously, the delay of an overlay is the endrd delay
between the two end points of the link, which is the sum of #ayks of all physical links that the overlay
link traverses. We also use the overlay link delay as theafdse overlay link.

For simplicity, we will assume that there will be no changethk link delay throughout the course of
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a simulation. In practice, this assumption is certainlytnaé. In an overlay, a node typically maintains
the delays from itself to several other nodes. A change irdélay value may require the node to re-
evaluate its on-tree position, and may result in a overlagméguration. However, we believe that there

are several ways that can be used to limit the impacts of taeggs to the delay metric.

e Cache and thresholdn this case, the delay value is cached, and is only updathd difference
between the current and the new values exceeds a predefmestidid. This technique has been
discussed in HMTP [109].

e Quantise the delay valuén this case, we can quantise the delay value to severaktisievels.
For example, delay values that is smaller than 10 ms is a=gigs level 1, delays that are between
10 ms and 20 ms is assigned as level 2, and so on. The delaysreagée configured so that
smaller delay values have a finer representation, whileetaglglays have a coarser representa-
tion. Note that a coarser delay representation will resuthore ties in decision making, which

potentially affects the quality of the overlay built.

In fact, the above ideas have been investigated in previoualy ®f quality of service routing. For
example, Apostolopoulos et al. [4] consider several vasiaf the above two strategies to limit the
update of bandwidth metric. Integrating the above techesguith an overlay construction proposal and

studying their performance implications in a real-worldieonment is on-going work.

3.2 Simulation Design

3.2.1 Use of Simulation

In this work, we make extensive use of simulations for ourfgrenance studies. The proposals con-
sidered include both centralised algorithms and disteithyrotocols (more than 10 different proposals).
The size and the diversity of the proposals studied predargdérom considering a close-form analytical
evaluation.

In recent years, the ALM community has began to use Plandil4ba wide-area overlay testbed,
to run real-world experiments. PlanetLab offers an opputyuo run experiments subject to realistic
network characteristics. One of our objectives is to evalnd compare several existing proposals.
To do so requires a unified and controlled platform for theeexpents. PlanetLab is thus unsuitable
for our purpose as it introduces a number of uncontrollabtewnpredictable variables such as the ever
changing network conditions and the system load of the hashines. These additional factors prevent
repeatable experiments, and thus prevent a fair compabistveen different proposals. We also wish
to examine the proposals under some reasonably large netwofigurations, e.g. up to thousands of

nodes. However, at the time of writing (May 2005), Planetbaly consists of over 500 nodes, hosted
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at over 270 sites. Therefore simulation is used becauseviges a more controllable and configurable
environment for running the experiments. It also allowsousbnitor closely the mechanic of a proposal

more easily.

3.2.2 Topologies

A key challenge in studying protocol behaviour lies in thpresentation of the underlying topology.
There is evidence that the performance of protocols hasagtrelationship with the topology used.
For example, a clustering protocol may perform well in taygiés that already exhibit good clustering
properties, e.g. hierarchical networks. In order to aveig laias in our evaluations, we use topologies

created from three distinct models:

1. Random Waxman grapfhis is the popular random graph model presented by Waxa@2].[In
this model, nodes are randomly distributed over a Cartesiandinate system. The probability

that an edge exists between any two nodesndv, is given by the following probability function

—d(u,v)

P(u,v) = Bexp (3.1)

whered(u, v) is the distance between the two nodkss the maximum possible distance, and
andj are parameters in the ran@e< «, 3 < 1. Larger values ot increase the proportion of
longer edges to shorter edges, while larger values ioicrease the average node degree. While
there are extensions to this basic model to better reprageatistic network, e.g. [28], we choose
to use the basic model as it has been used in previous workNergda [21] and HMTP [109]),

and is included in the popular GT-ITM topology generatof[39

2. Transit-stub graph This model represents a network as a two-level hierarthiegh consisting
of stub domains interconnected by transit domains. Thedufains represent campus networks
or other collections of interconnected LANs, while tramgitnains represent wide-area networks.
The connectivities within the stub domains and the trarmibdins are generated using the Wax-
man model. Both transit-stub and Waxman topologies aretenieaith the GT-ITM topology

generator.

3. Power-law graph This is a model based on the observations that node degitee iAS-level
topology of the Internet is closely related to a set of povaerd [32]. In particular, the probability,
P(k), that a node in the network is connecteditother nodes is bounded, decaying as a power-
law, P(k) ~ k=7 [11]. We use the power-law generation model due to BarahagdiAlbert
[11] in the BRITE topology generator [38] to generate sugiotogies. The model suggests two
possible causes for the emergence of power-law behaviotlreirfrequency of out-degrees in

network topologies: (i) incremental growth; and (ii) prefetial connectivity. Incremental growth
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refers to the growing of network size due to the continualittmld of new nodes. Preferential
connectivity refers to the tendency of a new node to conreeixisting nodes that are highly
connected or popular. This assumes that a network topotoggrierated by a set of local events,

such as the addition of new nodes and links, or rewiring dfdiftom one node to another.

We consider topologies of reasonably large sizes, i.e. f£660 to 10000. Running experiments
on smaller networks is considerably faster than on largaroriks. Hence, for the comparison study
in Chapter 4 and 5, we use the smaller (1000-node) networ&dalthe size of the techniques under
consideration. In Chapter 6, 7 and 8, we use networks of 5p0@€r-law) and 10000 (transit-stub)
nodes to compare our proposals with the best techniquesvelosin the comparison study. In these
chapters, we also use the smaller networks to investigateffacts of various parameter settings on our
proposals.

Table 3.1 lists the topologies used in our simulations alaitg their characteristics. We choose
topologies that exhibit a rich diversity of configuratiobsth within the same model and between the
different models. For Waxman and power-law models, the ltgpes mainly differ in terms of node
degree. For transit-stub model, the topologies are createl that they have different sizes of transit
and stub domains. For examples, TS1k-0 has 1 transit doméimg routers each, each transit router is
attached with 5 stub domains, each with 50 routers; TS1ksI2hHsansit domain with 10 routers, each
transit router is attached with 5 stub domains, each withddes (see Table 3.2). These configurations
contribute to the differences in sizée.g. 1004, 1010 and 1020 compared to 1000) with other models
Note that for larger networks (5000 and 10000 nodes), we oahsider the transit-stub and power-
law topologies as they better represent the realistic nétsvoFor the power-law model, we only use
topologies up to 5000 nodes as computing the all-pair patbsd byALMSi mfor routing purposes)
takes a considerable amount of time. On the other hand, wie take advantage of the hierarchical

structure in the transit-stub topologies to divide the catapon, so that a larger size is possible.

3.2.3 Multicast Members Selection

We study the construction of efficient ALM overlays for a giveet of members. The members are
randomly attached to the network routers. Note that forsitestub topologies, the members are attached
only to routers in the stub domains. As mentioned previguesdyh router can only accommodate at
most one member. We assume that the latency from a routey édtitched member is negligible. For
distributed proposals, the set of members will join the foalit session one at a time randomly, within
a predefined time. In most cases, we let all members join thsicse within the first 50 seconds of

the simulation, and let the protocols organise the memin¢osa stable overlay. Typically, for smaller

1The number of nodes in a transit-stub network can be catmlilas: (# transit domains)# nodes per transit domair]1 +
(# stub domains per transit nodeg}# nodes per stub domain)].
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Model Name Nodes| Links Mean Diameter Mean Path Length
Degree| Hop | Delay (ms)| Hop | Delay (ms)

WM1k-0 | 1000 4000 4.00| 9 97 4.96 37.05

Random WM1k-1 | 1000 6000 6.00| 7 73 3.97 26.46
Waxman WM1k-2 | 1000 8000 8.00| 6 62 3.51 24.97
TS1k-0 1004 | 14522| 14.46| 10 367 6.38 181.97

Transit-stub| TS1k-1 1020 3242 3.18| 22 666 8.42 255.55
TS1k-2 1010 4074 4.03] 15 622 8.04 274.62

TS10k-0 | 10100| 39200 3.88| 30 2784 12.84 1245.36

TS10k-1 | 10020 | 195852 19.55| 15 1284 8.60 563.90

PL1k-0 1000 | 11598| 11.60| 5 99 3.04 32.20

Power-law | PL1k-1 1000 | 16216| 16.22| 5 77 2.82 25.15
PL1k-2 1000 | 19614 19.61| 5 65 2.65 19.37

PL5k-0 5000 | 46698 934 7 95 3.80 33.61

PL5k-1 5000 | 93048| 18.61| 5 63 2.76 21.25

Table 3.1: Characteristics of the topologies used in theksitions

Name no. of transit domaing no. of transit nodes no. of stub domain no. of stub nodes
per domain per transit node per domain
TS1k-0 1 4 5 50
TS1k-1 2 10 5 10
TS1k-2 1 10 5 20
TS10k-0 10 10 4 25
TS10k-1 5 4 5 100

Table 3.2: Configurations of the transit-stub topologies

networks (with 1000 nodes), we use group sizes ranging fdi 256, while for larger networks (with
5000 to 10000 nodes), the group size ranges from 32 to 1024teltson for this is to avoid the network
being too densely populated by the members.

We divide the experiments into two groups, according to thitioast service models under consid-

eration:

1. One-to-many: one of the members is elected as data source.

2. many-to-many: more than one of the members are data source

For both cases, the first node to join a session will becoméréweeroot for tree-based protocols
(e.g. HMTP, TBCP, etc). For the one-to-many case, the rodern® also the data source for the group.
Unless specified otherwise, all members are potential datcss in the many-to-many scenario. This
is because the data delivery quality depends on the locafitre senders, especially for protocols that
route packets over a single shared tree. In a shared trerdardbat is a remote descendent of the tree
root will result in a higher end-to-end delay compared toradse that is close to the root.

To account for the bandwidth limitations and its heterogggriie end system multicast, each member
is assign a degree bound as discussed in Section 3.1. Tiypibalnode degree ranges from 2 to 10. To

account for any impact of the degree distribution to the psas investigated, we consider two degree
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assignment distributions: (i) uniform; and (ii) truncateidomial. With the uniform distribution, the
given degree range is assigned to the overlay nodes rougghlyive same probability. With the binomial
distribution, degrees around a given mean value have meanecels of being assigned to the nodes. We
experiment with several values of the mean, which repreaberibwer end, middle and upper end of the

given range. The truncated binomial distribution is alseduigy Shi in [86].

3.2.4 Performance Metrics and Representation of Results

This section discusses the performance metrics used anavegwesent our results in the rest of this

thesis.

3.2.4.1 Performance Metrics

Our investigations focus on the quality of the delivery stane built and the properties of the technique
under consideration.

The quality of the data distribution is judged by the follogimetrics:

o Relative Delay Penalty (RDP)[21]. RDP represents the additional delay incurred by an ALM
solution. We consider two versions of RDP: RMP, the ratio between the maximum delay
using the overlay and the maximum delay using direct unimashections; and (ilRAP, the ratio
between the average delay using the overlay and the avestyeusing direct unicast connections.
These metrics were introduced by Castro et al. in their coispaof distributed-hash table based
ALM proposals [17]. For the one-to-many scenario, the dedageasured from the data source to
all other nodes; for many-to-many scenario, the delay issuneasl between all node pairs. We note
that both RAP and RMP are normalised by two different denamoirs. Consequently, in some

cases, RAP may be larger than RMP. To avoid confusion, theyldloe interpreted independently.

The original RDP [21] is a per-pair metric, specificallysthe ratio between the overlay delay and
the unicast delay between two nodes. The reason for not &fiiyis that it sometimes provides
a false indication of the delay performance, where a larg® l[dDes not necessary mean a large
delay. For example, consider two nodes which has a very gharast distance between them, say
10 ms. If their overlay delay is 50 ms (which is a reasonablglsdelay value), their RDP will be

as high as 5. RAP and RMP avoid this problem by consideringéesys of all pair of nodes.

e Tree Cost Ratio[109]. Tree cost is defined as the sum of delays on the tra#s ljsee Sec-
tion 2.2). It provides a simplified view of the total netwokspurce consumption of a tree. We
calculate the ratio of the cost between an overlay tree amddhresponding network layer multi-
cast tree. The network layer multicast tree is a shortebttpet rooted at the router where the first
joining member attaches itself. This is to simulate the taeulated due to IP multicast protocols

such as DVMRP [25]. For the many-to-many experiments, whetlanique uses more than one
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tree for data forwarding (e.g. NICE and Narada), we caleula¢ tree cost as the average of all

trees used.

e Link Stress [21]. Link stress represents the number of copies of an idanpacket sent over
a single physical link. It represents the redundant traffipased by an ALM solution, as the
stress for a network layer multicast is always one. We mega$grworst-case (or maximum) and
average stress due to an overlay solution. The maximumtieksgives the maximum number of
duplicates seen by any single physical link, while the agelak stress is calculated as the sum

of all link stress divided by the total number of physicakkrinvolved.

Other properties of a technique that may influence protoelglcsion include the communication
overhead, convergence and failure recovery speed. Thaunesasnt of convergence and failure recovery
will be explained in more detail in later chapters.

For communication overhead, we measure the number of b/testrolmessages sent and received
by the overlay members. We assume that each message islassiig TCP over IPv4, which incurs
a basic penalty of 40 bytes per packet. We further assumalthdistributed proposals studied use a
common packet header (20 bytes) similar to ALMI [72], whidkludes information such as protocol
version, session identifier, packet source identifier, seget number, control flags and packet length.
This roughly represents the basic information requiresviar protocol hosts to communicate properly.
Any additional information, in particular, node identifi@bytes) and distance metric (4 bytes), is added
on top of the basic size. We do not consider the overhead doettwork measurement. This is be-
cause, typically, each overlay node only needs to know thiagices between itself and a small number
of members. The distances can be cached to reduce meastu@redmead. In addition, it may be
possible to obtain the distance information from an Intedigance service such as IDMaps [35] (see

Section 2.7.3), as they become more widely deployed.

3.2.4.2 Representation of Results

In this thesis, we typically present the results as the aeed 50 independent runs of a simulation
scenario. Each scenario uses a similar ALM proposal, pradgspecific settings and general settings
such as topology and group size, but with different set ofignmembers. We report only the average
values so as to avoid cluttering up the figures showing rgsdlte to the number of proposals being
considered. We have found that the average values can egpithe data rather well. We illustrate
this by showing the results of tree cost ratio and RMP with 8Ecent confidence interval for several
representative proposals that we study in Chapter 5, inrfeégy8.2 (a) and (b). We can see that the error
ranges are reasonably small, and the difference betwegrdpesals can be clearly observed from the
figures, so we do not include the error bars in later graphgic@jly, the cost ratio has smaller error

bars than RMP. We believe that this is because the seledtimembers has more influence on the delay
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Figure 3.2: Sample comparison results taken from Chapter 5

(RMP) than the tree cost.

3.2.5 The Simulator: ALMSI m

We have developeALMSi m a packet-level, discrete-event simulator writtenJimva. This section

sketches the high-level designAf MSi mand describes some of its features.

3.2.5.1 ALMSI mDesign

ALMSI mis designed to investigate the efficiency of different cagrtonstruction proposals. It takes
inputs from a configuration file and from the command line wtspecify the simulation scenario. Each
scenario consists of the configurations for the network lagg multicast members and the proposal
under study.ALNMSI mruns the chosen proposal to build a multicast overlay, aatuates the overlay
with the performance metrics described previously.

In order to capture metrics such as the communication oaerbed convergence speed, a packet-
level simulation is needed. While there exist many genargdgses packet-level network simulator (e.g.
ns [69] andj - si m[46]), we chose to write our own. Existing simulators like often represent the
network in a finer detail than we required. For example, fommgy and processing overhead considera-
tion, we do not simulate packet queuingAbhMsi m(see Section 3.2.5.2 for details); however, this is an
integrated part at these simulators. Such detailed sitonlabnsumes substantial memory, processing
power and time, which prevents large-scale evaluation.

In order to uséALMSi mas a comparison platform for different techniques, it isamant that new
techniques can be added easily. This is done by separagmy#rlay construction protocols from the
underlying network operations. The underlying networlkfgens operations such as packet forwarding

and statistic tracking, which are independent of the upager overlay construction technique. This
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will be discussed in detail in the next section. Togethehulie functional separation, the use of object-
oriented design principle in the programming improves tkterdibility of ALMSI m

An important feature of a comparison platform is the abii@yconfigure various parameters easily.
ALMSI mprovides flexible configuration by reading simulation s&ti from an input file and from the
command line options. The inputs from the command line widroide the inputs from the configuration

file. In this manner, a simple batch script can be used to aatefangthy simulations.

3.2.5.2 Functional Components

ALMSI mconsists of the following core functional components: pessnetwork representation, events

and scheduler, statistic collection and centralised élyos.

Parsers ALMSi mconsists of two main parsers. One reads inputs from a coatigarfile and from
the command line to determine the simulation scenario fgaocol parameters, group size, simulation
time, etc). The other parser reads a topology file from theltagy generator (i.e. GT-ITM or BRITE)

to construct the network structure.

Network representation The physical network is represented by nodes as routeks,Which connect
two adjacent routers, protocol agents which implement titce®/stem multicast protocol and packets
which carry data and control information between the agehite physical link is characterised by its
propagation delay (we do not model bandwidth as we do not hnpmatket queuing, see below). The
protocol agent is attached to one of the physical nodes.

This architecture is essentially adopted fras, with substantial simplification. In order to reduce
the complexity of a simulation, we do not model the queuintpyl@nd packet loss in the network.
This is a common assumption in the study of ALM overlay cangion proposals (e.g. evaluation
of Narada [21]). Without packet queuing, when a router reeeia packet, it immediately sends the
packet out via the appropriate interface. Packet queuinglis relevant if the network carries a large
amount of traffic. However, as described previously, eactunfsimulation experiment involves only a
single overlay construction proposal. The only traffic ia tietwork are relatively small control messages
exchanged between the protocol agents, and occasionglatztats injected into the network for statistic
purpose (i.e. link stress measurement). We also assumthénattysical links are reliable such that there
are no losses of protocol messages between the memberghhiotee reliability of the applications data
is out of the scope of this thesis. In addition, we assumetkigaphysical network is fixed throughout a
simulation, i.e. we do not simulate failure of physical nede links, and the physical links’ delays are

fixed. Finally, routing in the network layer is based on thersbst path first policy.

Events and scheduler These are the core and “engine” of an event-driven simulagor event is

associated with a time stamp, an action and an identity ottineesponding network element (e.g. a
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router or a protocol agent) where the action is to be perfdrre@amples of the events are member join,
leave, fail, send data, packet arrival and evaluatiofhe scheduler orders the list of events according
to increasing time stamps. It is implemented as a prioriguguusing the heap data structure [23]. The
event list is initialised with certain known events and tlasisociated times. The scheduler takes the top
event (with the smallest time stamp) and executes the aatisociated with the event. The virtual clock
of the simulation “jumps” to the time stamp of this event. Tehecution of an event might add more
future events to the event list. The scheduler repeats thisegs until the event list exhausted or the

virtual clock exceeds a predefined stopping time.

Statistic collection ALMSi mcollects a number of statistics for computing the desiredopemance
metrics. The statistic collector is integrated with thewagk structure. For examples, a stress collector
is associated with each physical link to count the numbenglidated data packets that flow over the
link; and each protocol agent keeps track of the number afobmessages sent and received to measure

the protocol overhead.

Centralised algorithms In addition to the distributed protocols, we also invegigseveral centralised
algorithms in overlay construction. Examples are varicigristics for the degree-constrained minimum
cost and minimum delay tree problems (see Chapter 4). Eatiesé algorithms take inputs of the

network topology and the multicast members, and outputslavi dverlay.

3.2.5.3 Validation Efforts

One major concern with simulation experimentation is theemness of the simulation tool. We have
taken substantial efforts to validaté M5i m

ALMSI mprovides a detailed events and packets logging facilitys €hables the user to inspect each
simulation step, and thus validate the running of the sitiari@ngine as well as the overlay construction
techniques. For example, by comparing the step-by-stequéina of an implemented proposal with its
original specification, we could verify the correctness af ismplementation. For the various techniques
implemented, we also try to reproduce the results basedeopithlished work and compare the results.
In some cases where faithful replication of the experimisritapossible (e.g. due to the unavailability of
the topology and selection of the multicast members), weessoning to compare the observed results
with the expected behaviour of the techniqéé.M5i mis able to produce &AIAM[3] formatted packet
events file.NAMis a popular network animator closely associated wih It can be used to visualise
the communication patterns between the nodes. We typicakythis technique to identify quickly
misbehaving communication patterns (e.g. unnecessakepbioping) in a protocol, and resource to

the detailed events and packets logs to actually locatertbe é-igure 3.3 shows an instance of NAM

2The evaluation event triggers the calculation of the penfimce metrics.
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Figure 3.3: An example showing an instance of NAM

running an animation for HMTP, on top of a 10 nodes networkhnetwork shown, circles represent

routers, bok and hexagons represent the nodes with end systems.

3.3 Chapter Summary

In this chapter, we describe the system model used in th&sth®©ur model assumes that multicast
members are end systems which directly take part in ovedasgteuction and maintenance. We abstract
the bandwidth limitation at these members as the degredreants. This requires the resultant ALM
delivery structure to be degree bounded. We also discusdesign of our simulation environment,

which includes the topologies, multicast group, perforogametrics and the working &LMsi my our

ALM simulator. ALMSi mis used for all evaluations reported in this thesis.

3The boxed node is the first member of the multicast group.
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Chapter 4

GreedyMesh

This chapter presents a centralised greedy heuristiedtc@reedyMesh, for the NP-complete minimum
diameter degree-bounded subgraph problem. The subgrapthis form of a mesh, which serves as a
shared structure from which degree-bounded source-spgeifis can be obtained.

The need for such an algorithm arises from our evaluationstfiduted overlay building proposals.
We first recall that distributed proposals build ALM treeshwonly limited knowledge of the underlying
topology. Typically, the trees are degree constrained. @rbe key performance metrics is the data
delivery delay from the source to the recipients. It is iating to compare the delay performance of
these distributed proposals with an optimum or near optinsotation using a centralised algorithm.
In Section 3.2.4.1, we have seen that the delay of an ALM ayed judged based on two versions
of relative delay penalty (RAP and RMP), compared to theesponding IP multicast tree. However,
IP multicast trees are formed directly by the underlyinggbal links, and are not concerned with the
degree limitation at the members. In other words, this do¢provide a comparison with trees created
using overlay links, and subjected to members’ degree cintd. GreedyMesh provides an approximate
solution to create low delay degree-bounded source-spéwfs. Hence, it is suitable for comparison
with distributed proposals for many-to-many multicasting

The rest of this chapter is organised as follows. The neximeprovides a background on the mesh
creation problem, along with discussion on some relatedksvdn Section 4.2, we present and analyse
GreedyMesh. In Section 4.3, we examine the performanceegd@Mesh by comparing it with another

centralised algorithm. Finally, Section 4.4 concludes tiapter.

4.1 Background

This section first formally describes the subgraph problathdiscusses its NP-completeness, which is

followed by discussion on some related research.
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4.1.1 Minimum Diameter Degree-bounded Subgraph Problem (\WDSP)

The overlay network is modelled as an undirected complaedply = (V, E), whereV is a set of
vertices representing the multicast members, Bng V' x V is the set of edges. Each overlay edge,
e € E, has an associated communication deldy), and each vertexy; € V of graphG, has an
associated degree constrait,...(v). The diameter of a graph is the maximum shortest path distanc
between any two vertices via the graph. The minimum diamédgree-bounded subgraph problem
(MDDSP) can then be stated as follows.

Given an undirected complete graph= (V, E), a degree bound,,,..(v) € N for each
vertexv € V and a cost(e) € ZT for each edge € E; find a subgraplG’ of G of

minimum diameter, subject to the degree constraihts,. (v) forall v € G’.

The NP-completeness of MDDSP can be proven by showing tkeadehision version of the prob-
lem — finding a diameter- and degree-bounded subgraph — isdvifiplete. The diameter-bounded
subgraph problem can be viewed as the well-studisgpanner problem. Consider a connected graph,

G = (V, E). A subgraphG’ = (V, E’) is ak-spanner if for every,, v € V,

: /
% <k, (4.1)
wheredist(u, v, G') denotes the distance fromto v in G’ [52]. In other words, thé-spanner bounds
the diameter of the subgraph totimes the diameter of the original graph. The degree-bodiide

spanner problem has been proven to be NP-complete by KoasdrPeleg in [52]. Hence, MDDSP is

also NP-complete.

4.1.2 Related Work

As discussed above, MDDSP is closely related toitrgpanner problem. In [52], Kortsarz and Peleg
consider a special case oRaspanner with minimum maximum degree. They propose a pitidtah
algorithm that computes Zspanner that has a maximum degree that is no moreAtah times the
optimum solution, where\ is the maximum vertex degree in the resultant spanner. Tdaritim
involves solving an Integer Linear Program, which could beywime consuming. More importantly,
their algorithm does not try to honour the degree bound dfi @adividual vertex, and thus is not suitable
for our purpose. Most studies diispanner consider theparsity of the resultant spanner, where the
spanner has as few edges as possible. As explained by KoaisdrPeleg, doing so may result in a
vertex with very high degree, which is undesirable for oupose.

In [87], Shi et al. consider the problem of generating minimdiameter degree-bounded trees,
which is also NP-complete. The obvious difference betwagrpooblem and theirs is that they consider

a tree that must be loop-free, while our subgraph (mesh) asa loops. A tree is directly applicable
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for multicasting, while we need to first derive trees out of@sim Their algorithm is thus more suitable
for comparing ALM proposals that use a single tree, such agANfL09], TBCP [62], etc; while our
algorithm can be compared with proposals such as Narad#dHati¢reate source-specific trees out of an
overlay mesh.

Shi et al. devise a greedy heuristic called Compact Tree J@®Tthe problem. CPT maintains a
partial tree, 7", which initially contains only the tree root, € V. CPT then incrementally grows the
partial tree T, until it includes all vertices. At each iteration, the nexasible edge (with one of its end-
points inT" while the other one has yet to be included/ipnwhich provides the smallest increase in the
objective function (i.e. tree diameter) is addedtoAn edge is feasible if adding it will not cause degree
violation of its two end vertices. The complexity of CPTa$|V|?). Our GreedyMesh algorithm works
in a similar fashion to CPT, in the sense that it incremeytatids in new edges to a partial subgraph
until no more edges can be included.

In [60], Malouch et al. look at the problem of constructingeggtee-bounded tree with given delay
bound, under a mixed end-systems and proxies network moleir algorithm is quite similar in nature
to CPT, except that they try to minimise the delay from thd todts farthest descendant (root diameter),
rather than the delay between any two nodes on the tree (ap®ter). (Note that it is straightforward
to modify CPT’'s optimisation objective so as to generatedreith small root diameters.) In [51],
Konemann et al. study the minimum root diameter degree-tbeditree problem. However, their solution

only attempts to bound the overall maximum degree, ratteedégree for each individual vertex.

4.2 GreedyMesh Algorithm

This section presents GreedyMesh, our simple greedy messiroation algorithm. The inputs to
GreedyMesh are the complete gragh,= (V, E) (which provides the complete distance matrix be-
tween the vertices), and the degree constraints for theegsrd,,...(v) V v € V. GreedyMesh outputs
a subgraph¢’ = (V, E’ C E) which fulfils the degree constraint at each individual vertéigure 4.1
illustrates the steps of the algorithm.

GreedyMesh starts with a minimally connected subgraphaiteee that spans all vertices. The initial
tree can be generated by any degree-bounded spanninggoeitheth. This will be explained shortly in
Section 4.2.1. After obtaining the initial subgragh, GreedyMesh computes the spare degrees for all
vertices, as in lines 2 and 3. Next, GreedyMesh inserts thicgs that still have some spare degree
into an initially empty set,F. From line 7 onwards, GreedyMesh enters the main loop whewe n
edges are added int& one at a time, until no more edges can be added. Within the BmedyMesh
first obtains a vertexy, from F. Our implementation simply selects a vertex fréfrin a round robin
manner. Next, we calculate the set of delays froto all other vertices vi&’, using Dijkstra’s shortest

path algorithm [23]. From lines 10 through 16, we sum up thaydgain observed from to all other

57



CHAPTER 4. GREEDYMESH

Algorithm : GreedyMesh Algorithm
Input: Complete graph G(V, E), Degree constraints dyqq(v)
Output: Connected degree-bounded mesh, G'(V, E'), E' C E, s.t. dpaz(v) Vv EV
GREEDYMESH(G, dinaz)
genDBST(G, dpmag) := Generate a degree-bounded spanning tree from G subjects to dyqz
getNode(S) := Get a node from the given set, S
sptAlg(u, G) := Compute the shortest path distances from u to all other nodes
dysed(v) := Current used degree for vertex v
dspare(v) := Current spare degree for vertex v
F := Set of vertices with spare degree, dgspare(v) > 0
D, := Set of shortest path delays from u to other nodes
Uy, := Delay gain for u if a link to v is to be added

(1)  G'(V,E') <« genDBST(G, dmaz)

(2) foreachv e V

(3) dspare('“) — dmaa:('U) - dused('“)

4) F<0

(5) foreach v € V A dgpare(v) > 0

6  F—Fu{u)

(7)  while |F|>1

(8) u «— getNode(F)

9) D,, < sptAlg(u,G’)

(10) foreach v #u A (u,v) ¢ E' N\veF
(11) G" — G'(V,E'"U (u,v))

(12) D!, — sptAlg(u,G")

(13) g+« 0 /% g:=gain */

(14) foreach w € V' \ {u}

(15) g — g+ Ll Dulv)

(16) Uup — g

(17) b «— argmax{ Uy, : Vv € F} /* (u,b) := edge with the largest gain */

(18) G — (V,E'U (u,b))

(19> dspare(“) — dsparg(’u) —1
(20) dsparc(b) — dspam(b) -1
(21> if dspare(u) =0

(22) F — F\{u}
(23) if dspare(d) =0
(24) F— F\{b}

Figure 4.1: The GreedyMesh algorithm

vertices, for each feasible edge incident frawhen added t@’. The delay gain function is adopted
from Narada's [21] utility function (see Figure 2.10). Imdi 17, we locate the edgéy, b) that gives
the largest delay gain. Line 18 inserts the edge {@toFrom line 19 through 24, we update the spare
degrees fob andu, as well as removing them froifi if necessary. Note that if fails to find a feasible
edge, it will also be removed frofl. Eventually, the algorithm terminates when there is onky wertex
in F, indicating that no more edges can be added.

The computed subgraph will be connected as long as thel imé&structure is connected. There are

two possible cases where a connected tree cannot be fouhd [87

1. The total available spare degree of the vertices is less tthe minimum required degree, which
foratree, i22 x (V| —1). This requirement can be easily calculated as follows:ahes V| —1
edges and each edge uses one incident edge at each of itsdwertices. We could run a check

on the available degree of the vertices before running Gidedh.

2. During the creation of the tree, a vertex with a degreetcaim$ of one (i.e. a leaf vertex) is added

to the tree when the total spare degree of all vertices indhtigbtree is equal to one. This reduces
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the total spare degree of the partial tree to zero, henceww@sices can be added to it. The tree
creation algorithm can alleviate this problem by keepingant of the spare degree of the partial

tree, and defer the addition of a leaf vertex if it reducescinent to zero.

For simplicity, our evaluation only considers verticeshwdiegree constraint greater than or equal to 2.

4.2.1 Variants of GreedyMesh

In the GreedyMesh algorithm, there are a number possible wagenerate the initial degree-bounded
spanning tree, as represented bydleé DBST function in line 1. In Section 4.3, we examine the perfor-
mance implications of using three different initial treeustures: (i) random degree-bounded tree; (ii)

degree-bounded minimum spanning tree; and (iii) degrestded minimum diameter spanning tree.

¢ Random degree-bounded tred/e generate a random tree by growing a partial tree in am4incr
mental manner. Starting with an arbitrary vertex, we ranigqgrick a new feasible edge into the
partial tree until all vertices are in the tree. The randoge s used as the worst-case scenario to

compare the following more informed tree construction gthms.

e Degree-bounded minimum spanning tréais tree creation problem is also an NP-complete prob-
lem [50]. There have been many heuristic solutions for tlodiem. We consider a simple heuris-
tic [67], which is based on Prim’s algorithm for the (uncaasted) minimum spanning tree prob-
lem [23]. The algorithm starts with a partial tree contaghan arbitrary vertex. At each iteration,
it adds the shortest new eligible edge to the partial trema(réhat we treat link delay as link cost).
The algorithm continues until all vertices are connecteduke fime complexity of the algorithm is
O(|E| log [V]). In the rest of this thesis, we will refer to the heuristic &848T.

e Degree-bounded minimum diameter tré#/e use the Compact Tree algorithm (CPT) by Shi et
al. [87] to generate such a tree. We use the most centrakyérethe vertex that has the smallest
distance to all other vertices, as the tree root. As mentioné&Section 4.1.2, the complexity of
this algorithm isO(|[V|?).

4.2.2 Analysis of the Algorithm

This section analyses the time complexity of GreedyMestst Bf all, GreedyMesh calls for a degree-
bounded spanning tree algorithm to compute a connected-apiing There are a number of possible
choices of degree-bounded spanning tree algorithm asiegglan the previous section. For now, let us
assume that the running time of such an algorith@(3).

Let A be the maximum spare degree for all vertices in the initiagsaph. It is easy to see that the
mainwhi | e loop (line 7) runs for at mosA |V | times. Each iteration executes a Dijkstra’s shortest

path algorithm calculation. By using a heap implementatiba Dijkstra algorithm has a run time of
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O(|E| log | V) [23]. The firstf or each loop (line 10) runs at mogtV | times, with each iteration
involving a Dijkstra shortest path calculation. Hence, rilne time of the main loop can be calculated as
A [V] (1| log [V] + [V]|E| log [V]) = O(A [VI2|E| log [V]).

Consequently, the overall running time of the algorithn®ignax{\, A |V|?|E| log |V'|}). The
worst-case withA close to| V|, results in a run time 0O (max{\, |V || E| log |V |}). However,
this is unlikely to happen in a practical environment, eggbcif the multicast members are end users’

machines.

4.3 Performance Evaluation

We first investigate the impacts of initial tree layout for@dyMesh in Section 4.3.1. Section 4.3.2 then
compares GreedyMesh with source-specific trees generéte CRT.

We use the algorithms to build overlays out of a set of 100@enimpologies (see Section 3.2.2).
We have found that the performance trend of the algorith@g gtiite similar across the topologies.
Hence, we only show results from a representative topology, TS1k-0 (see Table 3.1). A more
detailed investigation on the impacts of the underlyingotogies can be found in Section 5.2.4. In the
experiments, the multicast group members are randomlyech@sd the group size ranges from 32 to
256. The degree constraint of each member is randomly asbigom a value between 2 to 10, using
a uniform distribution. As GreedyMesh is used to create a®gpecific trees, we only consider the
many-to-many data delivery model. With this, we assumedhaty member is a data source. For all the
results presented, each data point in the graph represeat&eage over 50 independent runs.

We judge the algorithms based on the quality of the overlagated, using the metrics introduced
in Section 3.2.4.1. To recap, RAP (RMP) represents the katween the average (maximum) delay
using the overlay and the average (maximum) delay obtairgddivect unicast transmission; tree cost
ratio represents the ratio between the overlay tree costtentP multicast tree cost; and finally, link
stress denotes the number of identical copies of a packes fheer a single physical link. For all these
metrics, the smaller the value, the better the performaRBR also gives an indication of how well the

algorithms minimise the overlay diameter.

4.3.1 Impacts of Initial Tree Layout

We first consider the quality in terms of RMP for trees gerextdly the three tree generation algorithms.
Each of the trees is used as a bidirectional shared tree. rphiwingly, the result in Figure 4.2 shows
that their performance is in the following order: CPT givies best RMP, which is followed by dbMST
and finally, the random tree. Note that the random tree’s RMfPaup size 256, which is around 8.0, is
omitted to provide a clearer view of dbMST and CPT curves.

Figure 4.3 (a) to (d) compare the quality of GreedyMesh’'slays based on the above three initial
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4.5

RMP

Group Size

Figure 4.2: Delay performance of the tree generation algms

tree structures. From the figures, it is clear that the init&e structure has a significant effect on the
resultant mesh. We can observe that meshes created fromTdpdtfrms the best, which is followed
by CPT and finally the random tree, in all the performance itetonsidered. Comparing the RMP
performance with Figure 4.2, we can see the extra links atige@reedyMesh indeed improves the
original structures’ delay. In particular, averaged oJkgeoup sizes, GreedyMesh improves upon CPT
by 14.7%, dbMST by 38.1% and random tree by 59.4%, respégctive

To explain the observation, we first consider CPT. CPT isgatesd to create low diameter trees. To
do so, it incrementally grows a partial tree by adding newiiees that result in the smallest increase in
tree diameter. Let us assume that all edges have unit wéighthe distance between each node-pair
is one. We can see that CPT will grow the partial tree leveldwgl: starting from the root;, it first
adds vertices to becomés children; oncer has used up all of its spare degree, the algorithm will try
to add new vertices te's children, i.e. the next level of the tree. The processicomts from one level
to the next level, until all vertices are in the tree. Henbe,resultant tree will have a compact structure
where vertices at higher levels (close-are full of children. In our experiments, the edges haveslyid
different weights. But generally, trees generated by CRITstili have a compact structure. The compact
structure, when used in GreedyMesh, allows few edges to thedaih vertices at higher tree levels. In
other words, new edges are mostly introduced to connect ale@rtices near the leaf, which results in
little delay gain. This can be confirmed from the smallest RMprovement (14.7%) observed above.

The dbMST on the other hand tries to connect the verticegadithe shortest edges. In this way, the
tree clusters together vertices that are topologicallgeld his results in a small delay between vertices
that are in a “cluster”. The extra edges introduced by Gritbh then help to reduce the distance
between vertices in different clusters, and this resultanroverall low delay mesh. The inclusion of

many short links also explains the better tree cost ratidiakdtress performance.
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Finally, in the random tree structure, edges are addedaribjt It is possible that some of the edges

connect vertices that are far apart, which results in maafféntive triangles (see Section 2.2.3) in the

Figure 4.3: Comparing variants of GreedyMesh algorithm

tree. Hence, it gives the worst performance.

4.3.2 Comparison Study

We are not aware of any other algorithm that attempts to ereat diameter degree-bounded meshes
like GreedyMesh. The closest candidate is an algorithmhietaw diameter degree-bounded tree, such
as CPT. In the previous section, we have shown that Greedybtadd improve upon the shared trees
generated by CPT. To provide a fairer comparison, we use GBe€&rierate a set of source-specific trees
for each member. For example, for a group of 32 members, weguotaB2 compact trees rooted at
each member. With a source-rooted tree, we would like tomige the root diameter, instead of the

tree diameter which is more appropriate for shared treedtdigery. We thus modify the original CPT
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Figure 4.4: Comparing GreedyMesh with nCPT

such that when adding a new vertex to the partial tree, thexénat results in the smallest increase in
the root diameter is chosen. We will refer to this version BffGas nCPT. For GreedyMesh, we use the
dbMST to create the starting tree structure.

Figure 4.4 (a) to (d) depict the comparison results. For RiM®clear that GreedyMesh significantly
outperforms nCPT. In terms of RAP, the performance advantdgsreedyMesh diminishes with the
group size. It is worth noting that GreedyMesh creates titegtsare limited by a shared mesh. On the
other hand, trees generated by CPT are independent of eaeh &totentially, for a multicast group,
the total number of links used by CPT’s trees will be more ttierse of GreedyMesh’s mesh. To prove
this, we plot the total number of unique overlay links useddrgedyMesh and nCPT in Figure 4.5. For
GreedyMesh, this is the number of links contain in its mestriay; for nCPT, it is the total number of
unique overlay links used by all the source-specific tredg figure also shows the result for a shared

tree, denoted as SharedTree. Obviously, SharedTree wsssmtilest number of links, i.e. one less than
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Figure 4.5: Number of links used by a shared tree, Greedy®lassh and nCPT'’s source-specific trees

the group size. The results clearly confirm that nCPT usesfgigntly more links than GreedyMesh.
We omit the data point for nCPT at group size 256 (which is adolL0000) for the sake of GreedyMesh
and SharedTree results. The advantage of having fewerifirikat it is more manageable, if the overlay
is to be used in a real-world environment. Traditionallywihg more links is often considered as a way
for load sharing. However, this benefit is unclear in the adsm/erlay networks. This is because each
overlay link potentially traverses multiple physicallghis, and it is possible that the traffic flowing over
different overlay links will be mapped onto the same phyldin&s.

In terms of the tree cost ratio (TCR) and link stress, it imckhat nCPT results in poorer resource
usage and larger link stress. This is because GreedyMesaBésimn the minimum spanning tree, hence
consists of a large number of short overlay links betweemibmbers. We recall that we defined tree
cost as the summation of the delays of the overlay tree lifiksis, short links reduce the tree cost. In
addition, the shorter an overlay link, the smaller the likebd that it traverses multiple physical links;
hence this reduces the chances of packets duplication.

Note that RMP, RAP and TCR are relative values. While theives show an inconsistent growth
trend (i.e. up-and-down), the absolute tree cost and oveetays observed (not shown here) actually

increase with the group sizes.

4.4 Chapter Summary

This chapter presents GreedyMesh, a greedy heuristic éomihimum diameter degree-bounded sub-
graph problem. From the resultant subgraph, we could darseurce-rooted tree for each vertex. Thus,
it is suitable as a benchmark for distributed ALM proposhb tuse source-specific trees for many-to-

many multicasting, e.g. Narada. GreedyMesh will be usediircomparison study in Chapters 5 and 8.
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GreedyMesh could also be used in a centralised ALM propassals as ALMI [72] to create small-scale
low delay overlays. In such a case, the overlay members mey teeimplement a routing protocol to
obtain the delivery trees.

GreedyMesh grows a subgraph incrementally, beginning frafegree-bounded tree. The tree can
be generated by any existing degree-bounded tree credgiarthm. The initial tree structure has signif-
icant impacts on the quality of the resultant subgraph. We feund that the degree-bounded minimum
spanning tree provides the best starting structure. Wesllsw that GreedyMesh performs well com-

pared to source-rooted trees created by the Compact Treethig.
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Chapter 5

A Performance Comparison of

Existing ALM Protocols

In Chapter 2, we reviewed a number of distributed ALM propgeséhich lead to a variety of choices
in creating and optimising multicast overlays. It is esig#id understand the strengths and weaknesses
of these existing proposals. Previous studies of the pedace of these techniques either consider
only a small number of approaches (e.g. [7]), or technighasexhibit a similar nature (e.g. [47, 17]),
or merely provide high-level descriptive comparison (¢29, 6]). More importantly, as most of the
proposals were evaluated under different assumptions iamdagion settings, it becomes difficult to
relate the effectiveness of the techniques.

As described in Chapter 3, we represent the bandwidth fiioitaof the nodes by creating degree
bounded overlays. This narrows down our focus to two widelysidered metrics: tree cost and delay.
As described in Section 2.2, tree cost indicates the netvesdurce consumed by an overlay tree. Hence,
alow cost tree is suitable for bulk data transfer. On therdthad, delay is important for applications that
require timely delivery. In this chapter, we conduct a dethperformance comparison of several tree
cost and delay optimised protocols, under a uniform sinadaenvironment (Chapter 3). The chosen
proposals represent the different classes discussed ppt€ia

This work provides the first step towards improving and/aigieing distributed proposals that create
low delay and low cost ALM trees. The experiments were desidar two main purposes: to understand
the properties of different proposals and to compare thétgwéthe overlays built by them. The results
and observations found in this chapter lead to the developofeour own proposals in later chapters.
Some general findings are also applicable to other work drosghnising overlay creation techniques.

The rest of this chapter is structured as follows. In the rsextion, we first discuss the chosen
proposals. We then report the observed results along wéhattalysis in Section 5.2. Section 5.3

positions this work with some other studies. Finally, Sath.4 concludes this chapter.
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5.1 Proposals Considered

The selected proposals are HMTP [109], AOM [104], variafitsmtch-trees [43] (which includes a vari-
ant of HostCast [57]), Banerjee et al.'s scheme [9], NICE TBCP [62], Narada [21] and Scribe [15],
and this selection is shown in Figure 5.1. (Note that BTP ipec#ic version of switch-trees that
uses one-hop switching.) These proposals capture thesdivén overlay construction, optimisation
and maintenance. Specifically, HMTP, AOM, switch-treegaras, Banerjee et al.'s scheme, NICE and
TBCP all follow the tree-first approach. Within this groupe Wave both distributed transformation and
the localised central arrangement techniques (Sectiad)2.61 addition, NICE'’s cluster-based hierar-
chical structure opens another avenue for comparison. Heomesh-first approach, Scribe and Narada
represent the structured and unstructured mesh-basedsalsprespectively. There are several reasons
why we choose Scribe from the many proposals in the same. ckisst, it can impose strict degree
constraints on the nodes, unlike the Delaunay trianguid&i8] and LARK [49] protocols. There is also
little significant differences between Scribe and BayeuW?]1Finally, it has been shown to out-perform
CAN-multicast [17].

In the next subsection, we discuss issues related to pagasettings and the implementation of
the chosen proposals. We refer the reader to Chapter 2 failetbtdescription of the proposals. In

Section 5.1.2, we provide a naming system for the proposalage the discussion.

Distributed Approach

Tree—first Mesh—first

Dist. Transformatior) Localised Centrpl[ Unstructured Mesh| | Structured Mesh
JYaid - oo oo I_@r[apge_r?ent | Narada
1 HMTP " TBCP Gossamer
| Switch~trees + BTP HINICE _ : DHT-based | Delaunay | [Clique-based
' HostCast | ZIGZAG il Triangulation | LARK
1 AOM . LScribe
| Banerjee _et_a_l_’_s_sgh_er_n:e Bayeux DT Protocol

ACDC SplitStream

TMesh CAN-multicast

Overcast

SHDC

Figure 5.1: Selection of proposals in our comparison study

5.1.1 Parameter Settings, Implementation and Enhancemesbf the Chosen Pro-

posals

For the aforementioned proposals, there are a number ofgcwalile parameters that may affect their
performance. Two common parameters that can greatly affeciverlays built are the frequency of the

overlay improvement process and the members’ degree-Isodidprovide a fair comparison, similar
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parameter is used when possible. For instance, all distdbproposals use an overlay improvement
period of 30 seconds. Unfortunately, not all proposals peedoverlays that fulfil the given degree-
bound. In particular, Narada and NICE. This, and some otregrgsal-specific settings will be discussed
in the following subsections.

We have tried to implement the chosen proposals based anattiginal specifications. However,
for some proposals, we have made some modifications thalifirthye evaluation, while preserving the
original characteristics of the proposals. The followirigcdssion also include enhancements that we
have made to TBCP.

5.1.1.1 NICE and Narada

The implementation of NICE [7, 8] and Narada [21] is adaptednfthenyns simulator [66], which
was used by Banerjee et al. in [7, 8]. We have ported the @i@in+ code to oudava-basedALMSi m

NICE NICE builds an overlay in the form of multiple level clustefBhe size of each cluster is con-
strained in the range &f < size < 3k—1, wherek is an user-defined parameter. Unlike most proposals,
the maximum fan-out of a NICE node can be as higli3gs— 1) logs;,_, n, for ann-node overlay. In

the experiments, we typically sktto 3 (as in [7, 8]), which results in a maximum cluster size of 8

Narada Narada builds an overlay mesh, and creates a separate treadio of the members using
the path-vector routing protocol and reverse path forwaydéchnique. As described in Section 2.6.2,
Narada improves upon the mesh with an aid of a utility furrctiéigure 2.10). A node will add a new
mesh link if the utility of the link exceeds a given thresholhile an existing mesh link is dropped if
its consensus cost is less than a drop threshold. In [21],e€lali recommend that the add threshold
is calculated as a function of the group size, and of the alvlgland maximum degree of the nodes
involved. On the other hand, the drop threshold must be kessar equal to the add threshold to avoid
dropping and adding a link immediately. We experimentedhwsitveral possible functions, such as

max{ fz, fy}, max{fy, f;}, max{?w“fy}, max{?i;j,f;‘}' (fﬁ?‘y)/?' (f;f+?";‘)/2' and some other permuta-

tions of these functions, whereis the group sizeg andy are the nodes involved, and, £, f, and

, are the available and maximum degreexaindy respectively. We found that, on average, as long
as the functions yield thresholds that are of the order ofdégree of the nodes, they result in similar
performance. In our experiments, we calculate the addhbtdasm, while the drop threshold
is half of the add threshold.

Narada allows each individual node to decide its own maximdegree bound. However, the actual
degree of a node (i.e. the number of overlay links keeps bydehis regulated based only on the
configuration of the add and drop thresholds, as explainedalDbviously, a node could strictly enforce

the degree bound by accepting new links only while it stilf lsparse degree. Strictly enforcing the
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degree bound has two drawbacks. First, it limits the degféeedom in overlay reconfiguration, and
could lead to a less efficient overlay structure. Secondtiyranre importantly, it could result in mesh

partition, as pointed out by Banerjee et al. [7]. We have enpnted two versions of Narada:

e Narada This version regulates the degrees of the nodes solelydlaséhe configuration of the

thresholds.

e Narada-SD This version tries to strictly enforce the degree bound —edenwill reject addition

of new link if it has reached its degree bound.

We have indeed found that Narada-SD occasionally causéigrang in the mesh, while Narada

causes some nodes to have excessive links. This will bestisdun more detail in Section 5.2.2

5.1.1.2 HMTP Variants

We have implemented two versions of HMTP [109] which diffefyoin the joining strategy. The first

version simulates the original HMTP as described in Se@i8nl.2. Specifically, newcomers first con-
tact the tree root, and then use its greedy depth-first s¢Bfe8) technique to find the best attachment
point. In the second version, the newcomers begin the DHS &candomly selected on-tree node. The
reason for doing so is to understand the efficiency of HMTH®SIN locating nearby nodes for tree cost

minimisation (see Section 5.2.5).

5.1.1.3 AOM

AOM [104] provides three conditions (Equation 2.2 to 2.4)fiodes to decide if a switch-parent oper-
ation is beneficial. These conditions are weighted by twapaters:c andp (where0 < o < 1 and

p > 0), and are reproduced as follows,
e Eq.2.2:d(C,B) < axd(C,A)
e Eq. 2.3:D(B,root) < D(C, A, root)
e Eq.2.4:D(C, B,root) < (1 +p) x D(C, A, root)

where(C' is the node performing a switch, whilé and B areC"s current parent and potential parent,
respectively. The value of determines how much closér is to B compared to the distance between
C and A. The smaller is, the closer the distance betwe€rand B needs to be. On the other hand,
the value ofp determines the degree of degradation in overlay delay mead$tom the root tha€' is
willing to sacrifice if C' switch from A to B. The larger the value qgf, the larger the delay penalty. In

our experiments, we set= 0.9 andp = 0.2, following [104].
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i's great grandparent

i’'s grandparent i’'s grandparent

i's uncles

i's siblings

i’s siblings’ children
(a) Switch—1hop (b) Switch—2hop

i's siblings

Figure 5.2: Switch-1hop and switch-2hop

5.1.1.4 Switch-trees Variants

In switch-trees [43], each nodé(except ifi is the tree root) performs distance measurement to nodes
within a predefined (local) search scope, and may switch éoodthe node (say) if j provides better
performance tham’s current parent (in terms of tree cost or delay). In [43]|dde et al. propose
four variants of switch-trees algorithms: switch-siblisgvitch-1hop, switch-2hop and switch-any (see
Section 2.6.1), each with a different search scope. Of thkgwithms, we consider only switch-1hop
and switch-2hop. First, the switch-sibling’s local scopeds from the switch-1hop’s scope only by
one node (see Figure 2.5), and it has been shown to have gmofermance [43]. On the other hand,
switch-any considers all non-descendant nodes as taagetshus is not practical.

Assume that the maximum number of neighbours (parent arddreh) of any nodes in the tree is
given by A. Consider Figure 5.2, we can estimate the size of the seaagedor switch-1hop and

switch-2hop as follows.
e Switch-1hop:A, calculated as 1 (fai's grandparent) tA — 1) (for 4’s siblings)

e Switch-2hop:A2+ A, calculated as 1 (fars great grandparent) + 1 (fo's grandparent) £A—1)
(for #'s uncles) + A — 1) (for ¢’s siblings) +(A — 1) A (for i’s siblings’ children)

From the above, we can see that the size of switch-2hop’stseaope could grow rather large. For
instance, a\ of 10 will result in a scope size of 110. First, for an end-lady ALM system, we would
expect the members have differing degree constraints,hadrie typically small. More importantly, an
implementation can limit the number of measurements basedeochanges of nodes within the scope.
In addition to the two local scopes considered, we have imptged a version where a switching
node considers a randomly selected non-descendent nodegas tThis can be achieved by using the
tree random walk technique proposed by Francis et al. (set@8&.6.1.1). We call this versiawitch-

random Hence, we can compare this with the efficiency of using ieedlswitching.

An Extension An obvious extension to the above is to combine both locdlsel random approaches.
To achieve this, we interleave both approaches during thesemf the multicast session. Specifically, we
interleave them probabilistically with an exponentiakdmition such that more local switching is done

in the early stage, while more random switching is involvedree time proceeds. The intuition behind
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i := The number of improvement rounds. Initially, i =0
p— b*i/b
if uniform(0,1) <p
Select switching targets from local region
else
Randomly selects a non-descendeant node as target
i ++

Figure 5.3: Selection of local region or random node sededtchnique
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Figure 5.4: The distribution of functiorf,(b) = b=*/?, for different values ob

doing so is to improve the overlay quickly using local tramsfation, and let the random searching to
further explore the search space to yield better improveémen

When a node is carrying out the improvement process, it seleetween the approaches (local-
scoped selection and random selection) with a probability &, whereb is the exponential base and
1 is the number of improvement rounds that the node has peeidthus far (see Figure 5.3). Figure 5.4
depicts the distribution of the function for three value$ofl0, 100 and 1000. It is easy to see that
the function favours local-scoped selection during théyesiage, however, as the time proceeds, more
random selection will be used. The curve for small¢e.g. 10) also indicates that the chance of using
local-scoped selection diminishes very quickly. To avbid,ti is reset to its initial value when it reaches
b.

Henceforth, we will refer to this mixed local and random vensas LR. Our evaluation includes the
1hop and 2hop versions of switch-trees for this extensioness$ specified otherwise, we present results
obtained withh = 20. The impact of the values éfwill be studied in Section 5.2.1.1.

Joining Strategies As the switch-trees algorithms are only concerned with trerlay improvement

process, we consider the following three simple joiningtewies.

1. Root-first This is similar to the approach taken in [43]. In this stggteall newcomers first
attach themselves to the tree root. Due to this, the root méagkly exceed its fan-out capability.
To enforce the degree bound for the root, the root will formme of the nodes to switch to new
parents in their first periodic improvementround. The offiog decision is based on the distances

between the root and the nodes. In particular, the root willd keep nodes that are close to it.
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2. Next-available In this variant, the DFS is used by newcomers to locate aaturated on-tree
node as quickly as possible. Like HMTP, a newcomer beginsehech from the tree root, and at
each level of the search the nearest branch will be considéhelike HMTP, the newcomer will
attach to the first feasible parent that it has found, rathan tarry on the search for an optimal

position. Hence, this approach somehow simulates thenjgisiirategy in HostCast.

3. Random In this variant, a newcomer attaches itself to a randomlgcsed on-tree node. This
serves as the worst-case scenario in which the distanaariafion about the existing overlay and

members is not available.

Each switch-trees algorithm implemented can be used tawmiseithe tree cost or root-diameter as
described in Section 2.6.1. To overcome the triangle propige include a promotion operation (see
Figure 2.4 (c)) in the protocol. In other words, our versidrdelay-based switch-2hop that uses the
next-available joining strategy can be viewed as a varifihiostCast. In fact, as switch-2hop considers

more switching targets than HostCast, we expect it to perfmetter than the original HostCast.

5.1.1.5 Banerjee etal.’s Scheme

The original scheme proposed by Banerjee et al. [9] is irgdrfdr a proxy-based system. In such
a system, the end hosts attach to their respective neamegepr which self-organise into a multicast
overlay. Their scheme is applied to build the proxies oyedéming at minimising the average latency
observed by the end hosts. In our study, we focus on the tgglnises to construct the multicast overlay,
where all members actively participate in the overlay ¢omaprocess. Due to this, a more suitable
optimisation metric is the maximum latency from the root t@mther members, i.e. root-diameter. This
is also in line with the objective of other tree-based dagyimised protocols, e.g. switch-trees and
HostCast.

In the original Banerjee et al.'s scheme, newcomers arecinstrally arranged into an overlay tree
by the root proxy. While this centralised approach is suédtr more powerful proxy machines, it may
not be feasible in an end-host only environment. For thisoeawe consider two of the distributed
joining strategies discussed above, i.e. next-availamterandom. We note that the root-first strategy
is not used as it is in conflict with the transformation stgégs used in their scheme. Specifically,
most transformations require the knowledge of a grandpandrich is not available when all nodes are
directly attached to the root.

In our implementation, each node maintains the delay framdlot to itself as well as the maximum
subtree delay (i.e. the delay from the node to its farthesteledant), as in the original scheme. Pe-
riodically, a node tries to perform a local transformatiarrandom swapping that improves the delay
from the root and does notincrease the maximum subtree (fdaySection 2.6.1). A node performs the

random swapping with a small probability, For local transformation, the node will choose of all the
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(a) Before Swapping (b) After Swapping

Figure 5.5: Banerjee et al.'s scheme: an example of rand@apsing

potential transformations, the one that provides the Erdelay gain. For random swapping, the node
may still perform the swap even if it does not bring any delaing Figure 5.5 (a) shows an example
where noder is trying to swap position with a randomly selected nagleso as to achieve the configu-
ration in Figure 5.5 (b). Node is the least common ancestorofndy, while a andb are the parent of

x andy respectively. Let the increase of the maximum subtree delayA, be as follows:

A= (D/z,m - Dzw) + ( : DZ,y) (5-1)

2y

whereD’  andD; , denote the delays fromto x andy respective along the overlay if the swapping
is performed, and), , andD,, , denote the same prior to the swapping. Banerjee et al. usewesed
annealing based technique to decide probabilisticallynitbgperform the swap operation. Specifically,
the swap operation is performed: (i) with a probability off IN < 0; and (ii) with a probability of
e~ /T if A > 0, whereT is the “temperature” parameter of the simulated anneatogrtique. It is
easy to see that the probability of the swap gets exponbndialaller with increase id\. On the other
hand, increase ifi" increases the probability of the swap.

In [9], Banerjee et al. show that random swapping can offémgmovement to their solution (for the
problem of minimising the average latency). We have coretusbme experiments to study the impacts
of random swapping for our current objective function — mmrging the root-diameter. We ran Banerjee
et al's scheme (using the next-available joining strategth different values of the probability of using
random swappings (0.00 for no random swapping, 0.02, 0.05 and 0.10), and thpeéeature parameter,
T (5, 10, 20, 100, 500, 1000, 2000, ..., 5000The detailed simulation settings will be explained in
Section 5.2.

We consider the delay performance in terms of RMP, whichgyae indication of how well the
proposal provides low root-diameter trees (see Sectiod 32 In Figure 5.6, we show a representative
result obtained witlp = 0.10 and different values df’, as well as a version that does not use random
swapping (i.e.p = 0.0). Results with other combinations pfandT" are quite similar, and thus are

omitted. We can see that for small group size (32 nodes)geadlions with random swapping performs

1Equation 5.1 is adapted from the corresponding equatiod insthe original Banerjee et al.'s scheme [9].
2|n [9], Banerjee et al. usepl =0.02, 0.05 and 0.1GF = 5, 10 and 20.
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Figure 5.6: Banerjee et al.'s scheme: performance with &trtbwt random swapping

better than the version without it. The advantage of usimgloan swapping diminishes as the group
size increases. For the largest group size considered @& the version without random swapping
actually outperforms those with random swapping. Ovetladl,results show the probabilistic swapping
gives poorer average performance in the experiments. wiolpthis, we consider variants of Banerjee

et al.'s scheme that use only local transformation.

Aside: Implementation of Switch-tree and Banerjee et al.’'sscheme For both switch-trees and
Banerjee et al’s scheme, in order to capture the main ptiepesf the schemes while avoiding com-
plication in distributed tree maintenance (e.g. loopingd partitioning problems), we use a flow-level
approach for the transformation process. Specifically,nmd@ode (say) has successfully chosen a
new parent (say), the simulator directly reconfigures the connections ketwthe nodes involved:is

detached from its current parent, and a link is establisietédden: andy. We note that the detailed tree

maintenance procedures are not given in [43] and [9].

5.1.1.6 TBCP

We recall that TBCP [62] uses a changeable score functiatetatify the best overlay configuration for
nodes within a small region. In addition, a domain-basedephis used to organise nodes from the
same domain under the same subtree.

In our implementation of TBCP, we have excluded the domaised technique from TBCP’s tree
building procedure. This is because the main interest sfwurk is to understand and compare the
efficiency of different overlay construction strategiespdoged by various proposals. TBCP’s domain-
based technique can easily be adapted for other proposagidition, the technique requires the tree

root to keep track of all the domains that participate in theray. This may cause a scalability concern
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Figure 5.7: TBCP: dominant link,P, A), in local configuration

about the protocol.
In [89], we propose two enhancements to the TBCP basic triédifiprocedure: (i) a tie-breaking

rule; and (ii) a new score function.

Tie-breaking Rule TBCP’s original score function, Equation 2.5, is desigreddhieve a low delay
tree by organising nodes within the local region into a canfigjon that yields the smallest maximum
overlay delay. It is easy to see that there may be more thacamf@guration that will provide the same
minimum score value. This can happen when the overlay disthetween two nodes dominates the
other distances, as illustrated by the example in Figurelb the figure, the local region consists of node
P, its children, nodes!, B andC, and noder, the newcomer. Let us assume that the minimum overlay
distance of all potential configurations is equivalent te tlistance betweeR and A. For example,
the configurations in Figure 5.7 (b) are equivalent in terfsaore value, and thus are all potential
solutions. In such a case, TBCP will favour configuratiorsuléng in the newcomer “moving”, to
provide stability for already joined nodes. Then, if thes@riore than one possible configuration, the tie
is broken arbitrarily.

We propose a new tie-breaking rule based on the configuratisth which for a configurationis
given by

configuration cosC(i) = Y d(e) (5.2)

Ve€E;

whereFE; is the set of overlay links in configuratiarandd(e) is the delay value of overlay link. This
function can be easily computed By The configuration with the smallest cost will be chosen eRéig
to Equation 2.1 (overlay tree cost ) .. . d(e) whereEr is the set of overlay links in the tree), we
can see that Equation 5.2 is essentially a scaled-dowroves$ithe tree cost metric. In other words, our
tie-breaking rule favours the configuration that consurhedeast network resource.

However, there are other possible ways to break the tie. ¥ample, one may choose to break
the tie by comparing the distances between two configuraiioma lexicographic order. In this case,
we first sort the overlay distances frafhto other nodes in a configuration in a non-increasing order.

For two configurations with equal score value, we comparé eatheir next largest overlay distances.
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(a) x joining (b) Local region distance (c) Selected config. &
matrix y joining

(d) Local region distance (e) Selected config. (f) Conf. selected by new (g9) Optimum config.
matrix Max. delay = 16 function. Max. delay = 10 Max. delay = 10

Figure 5.8: TBCP: sequence of tree construction steps

The configuration that gives the first smaller distance wglidhosen. Even if this or other choices may
performs better than our new tie-breaking rule, we arguevbe¢hat, TBCP’s original score function

(Equation 2.5) is not suitable for tree-wide delay optirticza

New Score Function The following discussion is based on the example given iufed.8. In the
figure, we show a sequence of hypothetical TBCP tree conigtrusteps. First, panel (a) shows that a
newcomeryg, is joining to the tree rooted &. Let us assume that each node has a maximum fan-out of
3 and the local region distance matrix is as shown in pane{&jording to Equation 2.5 will select

the configuration with the smallest maximum overlay delays basy to see that the best configuration
is the one with a score of 10 as in panel (c). Panel (c) also stioat another nodg,is joining the tree.
Panel (d) depicts the new local region distance matrix. NuaenodeC' is not included in the current
local region as it is not a direct descendentrbf Now, the best score of 10 can be achieved with the
configuration as depicted in panel (). However, if we lookhattree as a whole, we can see that the
maximum overlay delay is 16 (provided by the branch formsdyasP, =, y andC), which is obviously
not the best possible solution. The problem gets worse asuiimder of members increases.

The above observation suggests that a score function thedldy try to minimise the delay in a local
region is not suitable for tree-wide delay optimisation.vidlisly, the limitations of the score function
could be overcome by using a larger scope. However, thieases the complexity and reduces the
scalability of the original approach.

With the above observation in mind, we propose an alteradtinction which minimises the oc-
currence ofrianglesin the overlay, rather than focusing directly on the delayrine As described in

Section 2.2, triangles play a vital role in delay and cosimisiation. Our function prevents the formation
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ther ‘éhildren of P

Figure 5.9: TBCP: the segment that forms a triangle in looafiguration

of an ineffective triangle in a local region when a new nodetioduced into the region. To explain the
function, we first refer back to Figure 2.8. From the figure,c@@ observe that each of the potential
configurations has at most one overlay branch that can foriarggte. Our function evaluates only the
affected branch. Now, consider the configuration in Figu@ghere nodeP is the potential parent

which forms a triangle witl: andy. The score function for a configuratiecan now be given as,

d(P,z) + d(x,y)

score(i) = APy

(5.3)

With this, the best configuration is the one that providessthallest score. If there is a tie, the configu-
ration cost will again be used.

Let return to the example in Figure 5.8. Now, consider the fgwetion given in Equation 5.3.
Initially, when noder joins the overlay, two configurations give the best scorafigaration that consists
of branch involves nodeB, x and A and configuration with branch involves nodesx and B. As both
configurations provides similar score and cost (i.e. seoﬁﬁg—z = 1.2 and cost= 12), P will randomly
choose one of them. Assume that the branch form$by: and A is chosen. Applying the same
procedure foy results in configuration (f), which gives a maximum delay &f By taking the overlay as
a whole, one can determine that an optimum solution has aimuamidelay of 10 (e.g. the configuration
in panel (g), assuming thdty, C') < 9). However, this requires the knowledge of all members, tvhic
is not feasible as nodes may join at different times. Morea@mparing the configuration in panel (f)
and (g), we can see that our solution results in lower tree(ces 28 versus 30 #(y, C)).

Figure 5.10 plots the comparison of delay in terms of RMP aee tost ratio (see Section 3.2.4.1)
for various group sizes, for the following three variant§8{CP (the detailed simulation settings will be

explained in Section 5.2):
e TBCP (Original). This version uses the original score fiorcand breaks the tie arbitrarily.

e TBCP (Original + Tie-break). In this version, on top of thegimal score function, we use the

configuration cost to break the tie.

e TBCP (New Function + Tie-break). This version uses the psegamew score function (Equa-

tion 5.3), and uses the configuration cost to break the tie.
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Figure 5.10: TBCP: comparing the variants

From the result, it is clear that our new score function pitegia substantial improvement in both
metrics. Interestingly, a noticeable gain can be obseryeddimple modification to the tie-breaking rule.
More analysis regarding the performance trends underwsgooup sizes will be given in Section 5.2.

Henceforth, we will use ThcpD to refer to the above-menttbhBCP (New Function + Tie-break).
We also use ThcpC to represent a version of TBCP that takestifeguration cost (Equation 5.3) as the
score function. This is to investigate if the function istabie for tree cost minimisation. The suffixes

“D” and “C” indicate the optimisation objective (delay oe# cost) of the protocol.

5.1.1.7 Scribe

Scribe constructs multicast trees on top of overlays built ®Wastry [81], an efficient peer-to-peer routing
and object location protocol (see Section 2.6.2). Pastyé&rlays have been shown to exhibit good
locality properties, i.e. a message can be routed from ode twanother node with small relative delay
penalty, and Scribe has utilised these properties to camuetes that are topologically close together
into a tree.

Instead of implementing the whole Pastry-Scribe protogidésour Scribe implementation only tries
to capture the properties of the resultant overlay. We Haddbe trees in the following manner. When
a newcomer, say, joins a session, we attachto the nearest on-tree node, say Essentially, this
simulates an ideal Pastry routing. Thery, finds that adding: violates its degree boung will execute
the “bottleneck remover algorithm” as suggested in Sci$pecifically,y drops its farthest child, which
will be redirected to one af's remaining children. Once attached to the tree, a nodegieglly rejoins
the tree with the above procedures to improve its on-tregiposThis is to simulate the self-organising

capability of the protocol.
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5.1.2 Naming of the Protocols

For ease of exposition, we classify the protocols into tvassés: cost-optimised protocols (CoPs) and
delay-optimised protocols (DoPs), as shown in Table 5.1.

In the table, we name the variants of switch-trees and Baaeij al.'s scheme using the following
convention: <join-strategy> <transformation-type <optimisation-metric- where join-strategy refers
to one of theRoot Na (next-available) aniRandomthe transformation-type refers to one of thidop,
2Hop, Random LR (mixed local and random node selection) @aherjee finally, the optimisation-
metric is eitheD (delay) orC (cost). As Banerjee et al.’s scheme only has the delay vertdie suffix
“D” is omitted. For example, Root1HopC refers to the costiajsed version of switch-trees that uses
the root-first joining strategy and one-hop switching, wihlaBanerjee refers to a version of Banerjee et
al.'s scheme that uses the next-available joining strat8gsibe is regarded as a CoP as its overlay trees
are formed by placing close-by nodes together. We note tH@ENs included in both categories, as its
overlays provide a compromise between these two metriasilldse explained in the next section.

The table also includes several centralised algorithmstRib(degree-bounded Minimum Spanning
Tree), CPT (Compact Tree) and GreedyMesh (see Chapter €seTdlgorithms help us to understand
how well the distributed approaches perform in comparisah wechniques that utilise global know-
ledge. We note that two versions of CPT were used: (i) a veriat minimise the tree diameter for
many-to-many multicasting; and (ii) a version that minientee root-diameter for one-to-many multi-

casting.

| Cost-optimised Protocols (CoPs)

Delay-optimised Protocols (DoPs) |

1. Variants ofswitch-trees: 1. Variants of switch-trees:

{Root,Na,Randory{ 1Hop,2Hop,Random,LRC {Root,Na,Randory{ 1Hop,2Hop,Random,LFD

2. HMTP 2. Banerjee et al.’s scheméNa,Randorm{Banerjeé
3. TbepC 3. TbcpD

4. AOM 4. Narada

5. Scribe 5. CPT

6. dbMST 6. GreedyMesh

7. NICE

Table 5.1: Protocols considered and their naming

5.2 Results and Analysis

This section reports the results of our performance evialnsit which serve two main purposes: (i) to
compare the quality of the overlays built; and (ii) to undans the properties of the different techniques.
The experiments were run with nine 1000-node networks, rgée@ by the Transit-stub, Waxman
and power-law models as described in Section 3.2.2. (A $ulfdbese experiments was also run on
some 2000- and 10000-node topologies [90, 92].) The muglticeembers are selected randomly from

the network nodes, as discussed in Section 3.2.3. Unlessfisdeotherwise, we use the following
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| Parameter | Settings |
Topology Transit-stub, Waxman and Power-law graphs with 1000 nodes.
Group size 32, 64, 128 and 256.

Multicast members join the session within the first 50 sespnd
then the simulation stops when the overlay has stabilised.
2 — 10, drawn from either a uniform or a truncated binomial
distribution. For NICEk = 3.

Simulation duration

Max. fan-out (per node)

Overlay improvement period

30 seconds.
(per node)
Number of runs per scenario | 50.
AOM specific parameters a=0.9p=0.2.
LR version of switch-trees Exponent basé, = 20

Table 5.2: Settings used in the performance comparison

configurations. First, the group sizes range from 32 to 256 dst cases, the members randomly join in
the session one by one within the first 50 seconds of the siionjaand we run the simulation for 2400
seconds, sufficient for the resultant overlay to stabilissch member is assigned a maximum fan-out of
2 to 10, drawn from a uniform or truncated binomial distribat For NICE, we sek = 3 as described
previously. Typically, for each simulation configuratiave run 50 independent experiments and report
the average. Table 5.2 summarises the settings used.

Our experiments can be divided into two, according to theticagt service models considered:

1. One-to-manyln this case, one member is selected as the data sourcethdideher members act
as receivers. In each simulation, the first joining membereseas the data source as well as the
root of the data delivery tree. Narada is omitted from thesgxpents as it is designed specifically

to create multiple trees for multi-source model.

2. Many-to-many In this case, we treat all members as both sender and recdtee protocols
that create a single tree for data delivery (i.e HMTP, switeles, AOM, TBCP, Banerjee et al.'s
scheme, Scribe), the first member will become the tree rootbéeTfair to these protocols, CPT
uses the same node as tree root. The resultant tree will ldeasse bidirectional shared tree. On

the other hand, NICE and Narada use source-specific treesiiticasting.

We report results obtained from a transit-stub network (.81k-0 as in Table 3.1), and state the
main differences observed across the different topolodienore detailed investigation on the impacts
of the underlying topologies is given in Section 5.2.4.

The rest of this section is organised as follows. The nextdgaiions discuss the results for the one-
to-many and many-to-many model respectively. In Secti@35and 5.2.4, we examine the impacts of
the overlay nodes’ degrees and the underlying topologiestid 5.2.5 and 5.2.6 study the convergence
speed and protocol overhead of some selected distributgubpals. We then offer a summary and

discussion in Section 5.2.7.
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Figure 5.11: Cost-optimised switch-trees: TCR for varifmising strategies. (a) Root-first, (b) Next-
available, (c) Random and (d) Best proposals

5.2.1 One-to-many Data Delivery

We divide the discussion into cost- and delay-optimisedquals, according to the optimisation metrics

under consideration.

5.2.1.1 Cost-optimised Protocols (CoPs)

We begin by looking at the performance of the optimisatioririogi.e. the tree cost, followed by link

stress and delay (represented by RAP and RMP).

Tree Cost Ratio (TCR) for Switch-trees Variants As switch-trees consists of a number of alterna-
tives, we discuss its variants first, followed by other pregds. Figures 5.11 (a) to (c) plot TCR results

for variants of switch-trees grouped by the three joinimgtegies considered.
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Figure 5.12: Cost-optimised switch-trees: evolution oRI@ith next-available joining strategy

For the root-first strategy, we can see that the TCR valueslforariants, except RootRandom,
decrease with the group size. Within this group, the 2Hop 2AdpLR variants perform the best,
followed closely by 1HopLR. The random version performswlugst. This confirms the observation by
Helder et al. [43] that informed parent choice is requireddhieve low cost trees.

Next, we turn to the next-available and the random strasegibich show similar relative perfor-
mance. We can see that the LR variants perform considerabigrithan other schemes. More inter-
estingly, the switch-random version now out-performs thie tocal scope-only versions, which is in
contrast with the observation above. To explain this, wé thie evolution of TCR for the next-available
variants in an experiment with 256 members in Figure 5.12nFthe figure, we can see that the two
local scope-only approaches (i.e. 1Hop and 2Hop) convezgequickly, while the random approach
takes a much longer time to settle down. This is because tidoma version allows a node to slowly
explore all the potential switching targets, and thus impre tree gradually. This also highlights the
trade-off in the local scope approach: fast convergence &itrthe expense of limited search space ex-
ploration. If it is used together with the random joiningas&gy, its lack of exploration power will lead
to large TCR values as shown by Random1HopC and Random2Hiop@ure 5.11 (c). Figure 5.12
also shows that the LR versions — mixed local and random scep@deed take advantage of the two
extremes.

Observing the trends from Figures 5.11 (a) to (c), it is ckbat the larger the switching scope,
the better the performance, as expected. Figure 5.11 (dytdepe best schemes (all 2HopLR-based)

selected from each joining strategy considered. From thedigt is clear that the root-first strategy

82



CHAPTER 5. A PERFORMANCE COMPARISON OF EXISTING ALM PROTOCGO

10/ | 10 10 10
100 10

(a) Sample Topology (b) Shortest Path Tree  (€) Minimum Cost Tree
Tree Cost = 30 Tree Cost = 12

Figure 5.13: Comparing shortest path tree with minimum test

performs the best, followed by next-available and the ramdpproaches. We recall that in the root-
first strategy, all nodes are first attached to the root. Heind&lly, a switching node will have many
siblings (and other local region nodes), and has more clsanfcinding the optimum placement. The
disadvantage of this approach is that a node may need tarsagtéggher measurement overhead at the
initial stage. This reduces the practicality of the solnti®n the other hand, the next-available strategy
always enforces the degree constraints. Hence, it resulissmaller number of local region nodes.
However, as it uses DFS to attach a newcomer to the nearegtusited on-tree node that the newcomer
first encounters, the resultant tree is partially clustefus provides a reasonably good starting point
for further optimisation, in comparison with the randonagtgy.

Our results generally agree with the observations made bgeret al. [43]. Specifically, simple
switch-trees algorithms such as 1hop and 2hop switchingpoaauce reasonably low cost trees. These
two localised techniques provide informed parent choiesce performs better than the random ap-
proach in most cases. We extend their work by consideringraédifferent joining strategies — their
evaluation only considers the root-first joining stratelylore importantly, we show that a mixed local
and random approach (i.e. LR) can offer improvement to pagallswitching.

In general, it is interesting to note that the TCR values tone schemes fall below ohieWe first
recall that TCR is the ratio between the cost of the overlal/tae network layer multicast trees, where
the network layer multicast tree is the router-level shairpath tree. Figure 5.13 illustrates a simple
scenario where a shortest path tree can have a much higkerdse than a minimum cost tree (both
rooted atAd). Thus, we believe the case that T&RI is due to the structure of the underlying topology.
In particular, we have found that it happens in experimesisgutopologies with large average node
degrees. For example, the results shown here are obtaioedTE1k-0 which has an average node
degree of 14.46 (Table 3.1). A similar trend was also obskweler the power-law topologies. With
more large degree nodes, the shortest path tree has thetgrideuse them as a hub to connect other
nodes, as depicted by Figure 5.13 (b). This results in higga ¢ost. On the other hand, as the overlay

tree is built to minimise the cost, mostly short links will meluded in the tree. Therefore, even with

SNote that the case for TCR 1 is expected as an ALM tree generally uses more physicas timn a network layer multicast
tree.
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Figure 5.14: Na2HopLRC: impacts of the valuehof

some redundancy, the overlay tree may achieve a lower tste co

Aside: Impacts of Exponential Base)p, for the LR Variants Here we take an aside to examine the
impacts of exponential bask, for switch-trees variants that use the LR (mixed local eardiom) node
selection strategy. We show the representative resultsredzt with Na2HopLRC. Figure 5.14 depicts
the TCR performance for Na2HopLRC run with value$ dat range from 1 to 5000. From the figure,
we can see that small valuesofi.e. 1, 10, 20, 100) give quite similar performance. Afteat; the
larger theb value (i.e. from 500 to 5000), the worse the TCR gets. As dised in Section 5.1.1.4, large
b favours the selection of local region nodes. With largealues, there is a high probability of using
local search. Thus, the strategy behaves like a pure loaattséechnique. On the other hand, using a
small value ofb with a periodic reset results in a good balance of local andeen node selection, and
thus benefits from both approaches. We have observed aisireita for the delay-optimised version of
switch-trees’ LR variants. In later chapters (6, 7 and 8)uaethe LR technique in all our own proposals

for choosing potential overlay neighbours.

TCR for Switch-trees and other CoPs We are now in a position to discuss switch-trees along with
the other CoPs shown in Table 5.1. As discussed above, thdirstostrategy may not be feasible, and
we thus use the Na2HopLRC which has the second best restgptesent cost-optimised switch-trees.
Figures 5.15 (a) to (d) depicts the comparison results msesf TCR, maximum link stress, RMP and
RAP.

From the TCR performance, we can roughly group the propastagwo classes: dbMST, Scribe,
HMTP and Na2HopLRC which produce relatively low cost tresasj NICE, AOM and ThcpC which
give higher cost trees. In the former class, the centralifdST performs the best, as expected. It is

followed closely by HMTP, Na2HopLRC and Scribe. This protest low cost trees can be achieved
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Figure 5.15: CoPs comparison results: (a) Tree cost rdijayiaximum link stress, (¢) RMP and (d)
RAP

with relatively simple distributed solutions — the switplarent operation of switch-trees and HMTP
with a suitable node selection strategy. The low TCR valueseoved for this class suggests that the
techniques can exploit the locality effect introduced wheare members are added into a network. We
have found that under some topologies, Scribe performhbtkligpetter than HMTP. We believe that
this is because our version of Scribe has better knowledgleeotinderlying topology. One potential
drawback of HMTP is that its search scope is unconstraingeciScally, as the search is greedy, a node
will continue to look for a better parent as long as there atemtial targets. In the experiments with 256
nodes, we have found that the maximum number of contactsithatle can make before settling down
is about 30. Other proposals typically incur smaller nundfesontacts. This also partly explains why
HMTP performs better than other protocols.

While not shown in the figure, we also examine the impacts efttangle problem in tree cost

optimisation, using HMTP. Our investigation shows thathi¢ triangle optimisation (Section 2.6.1) is
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disabled for HMTP, the average TCR over all group sizes esme from 0.87 to 0.94. More importantly,
the average RMP and RAP values increase from 2.15 and 1.80X@8d 2.40, respectively.

We now consider the other class. For ThcpC, the TCR valuesase with the group size. This
suggests that the chosen score function, i.e. Equatioismat suitable for cost optimisation. For AOM,
we first recall that an AOM node can perform a switch only if teaditions given in Equation 2.2 to 2.4,
weighted bya andp are fulfilled. The results were obtained using the bestraggtiuggested in [104],
wherea = 0.9 andp = 0.2. We also experimented with several other combinationseptrameters.
We have found that the optimal settingefindp is very sensitive to the topology used, i.e. a particular
setting may permit more switching in some topologies, ang therforms better; however, the same
setting may suffer in other topologies. This is an unde$grpboperty as the best model for the Internet
is still an open question. NICE also exhibits similar penfi@nce to these two protocols. While the TCR
for these three protocols may look higher than those of thado class, they are however smaller than

the delay-optimised techniques as shown in Figure 5.17.

Link Stress Link stress represents the redundant traffic injected inéortetwork. Figure 5.15 (b)

illustrates the result for the maximum link stress, i.e. wmast-case load on a single link. We can
observe that the performance trend roughly follows thosta®fTCR. In other words, techniques that
produce low cost trees also have lower traffic redundanaybasrved previously in Section 4.3.2. The
average link stress, calculated as the ratio between thé dtvess and the number of physical links

involved, exhibits a similar trend to TCR and the maximunesst is therefore omitted.

RMP and RAP Figures 5.15 (c) and (d) depict the delay performance in $esffRMP and RAP,
respectively. Overall, we make the following observatioms most cases, NICE has the best delay
performance, while Scribe and Na2HopLRC perform the wa®iM always produces lower delay trees
than HMTP; this is as expected as AOM is designed to improgeltiay performance of HMTP [104],
as explained in Section 2.6.1.2. The relative performanteng other proposals is not consistent across
the topologies tested. This, we believe is due to the fadttiese proposals are designed to build low
cost trees — the delay of the trees is a by-product that dep@mdhe structure of trees built, which in
turn depends on the placement of the members and the stwfttire underlying topology.

To be fair to Scribe, the poor delay property shown here isbse, in our version, new nodes are
attached to the nearest on-tree nodes (by exploiting theriyiidg topology knowledge). While this
results in a low cost structure, depending on the underl{opglogy, some nodes may be connected
in a long series, which results in high delay. However, weelbelthat our version approximates the

properties of Scribe under an ideal Pastry routing.
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Figure 5.16: Delay-optimised switch-trees: RMP for vasguining strategies. (a) Root-first, (b) Next-
available, (c) Random, (d) Best proposals

5.2.1.2 Delay-optimised Protocols (DoPs)

We begin by looking at the performance of the optimisatiotrimg.e. delay in terms of RMP and RAP,

follows by tree cost ratio and link stress.

RMP and RAP We first consider the delay-optimised variants of switaes. Figure 5.16 (a) to (d)
depict their RMP performance. (The RAP shows a similar trand thus is omitted.) If we compare the
results presented here with Figures 5.11 (a) to (d) (i.e. ©CRe cost-optimised switch-trees variants),
we can observe that the relative comparison of the variaiews a similar trend. This shows the
observations that we made on the impact of the joining gir@seand switching scopes still apply for
the delay-optimised variants. Following this, we use Na@ERD as the delay-optimised switch-trees

representative.
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Figure 5.17: DoPs comparison results: (a) RMP, (b) RAP, (egTcost ratio and (d) Maximum link
stress

Figures 5.17 (a) and (b) illustrate the RMP and RAP resuttsli&2HopLRD along with other propos-
als. For Banerjee et al.'s scheme, we have found that Randasrige performs worse than NaBanerjee,
as expected. This is also consistent with the results foirtipacts of joining strategy observed for
switch-trees variants. We thus exclude it from the results.

In terms of RMP, unsurprisingly, the centralised CPT outigrens the distributed techniques. Within
the distributed protocols, NaBanerjee performs the beigwed by Na2HopLRD, ThcpD and finally,
NICE. Comparing the performance of NaBanerjee with Na2Hpl(which uses a larger local scope),
we can conclude that a more flexible transformation scherdeadditional information (i.e. subtree
delay) help in delay optimisation. For ThcpD, we can see ithalways provides a better RAP than
other distributed proposals. For a small group size (i.€), Bzctually out-performs CPT (note that
CPT is used to create low root-diameter trees). We attrithiteto our triangle-based score function

(Section 5.1.1.6) which minimises the ineffective trisagin the tree. It is also worth pointing out that
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it uses a smaller transformation scope than other dis&ibptoposals. On the other hand, the triangle-
based score function could not provide good RMP. We belieigeai challenging task to provide a score
function for TBCP that achieves good RAP and RMP, using drdysimall scope size. While NICE shows
rather poor RMP performance, its RAP (average delay) iebthn NaBanerjee and Na2HopLRD. This

will be discussed shortly in Section 5.2.1.3.

Tree Cost Ratio and Link Stress Figures 5.17 (c) and (d) illustrate the TCR and maximum link
stress performance of the DoPs, respectively. Comparddthétperformance of RMP, we can observe
an inverse relationship between the delay and both costtaesss This can be explained by the tree
structure built. The objective function of DoPs is to minsmithe delay from the root to the receivers.
To achieve this, all receivers need to be placed as close ssibpm to the root. If there is no degree
constraint, all receivers can be directly attached to tl¢, nohich results in a star topology. Under a
degree-constrained environment, we can envisage thabtiesrwill try to fill in each level of the tree,
which results in a highly compact structure. Due to this, sdong links may be introduced into the tree,
and this results in higher tree cost and link stress. A motailde discussion on the tendency to create
a compact tree structure with delay-optimised proposajs/en in Section 4.3.1, in the context of CPT.
Figure 5.18 shows a property of the TCR for Random1HopD. Tthedicompares Random1HopD's
TCR values with those obtained from a star overlay (Unidas}S The UnicastStar delivers the data
directly from the sender to each receiver. Thus, it provitiesbest delay performance at the expense
of straining the sending node. In addition, its worst-cdsess can be as high as the group size. This
indeed justifies the case for more intelligent ALM protocdsw, it is interesting to see that the degree-
constrained trees created by Random1HopD have compar@iite/@lues to those of UnicastStar. We

believe there are two main reasons for this. First, delsgebawitching is greedy, i.e. when a node has
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found a parent that provides low delay, it will greedily &tto it. Secondly, the random joining strategy
results in poor initial tree layout. For example, nodes #ratfarther away from the root may directly
attach to the root. As this provides the best delay perfooaatmese nodes will occupy the free slots at
the root, which prevents a better configuration from ocogyriThis suggests that the greedy problem
needs special attention in designing a DoP.

We point out that the stress values observed in experimétitgive transit-stub topologies are much
higher compared with the corresponding cases in the paveahd random topologies. In a transit-stub
network, each stub domain is attached to a transit domaim Viilmited number of stub-transit links,
and traffic from one stub domain to another stub domain mugtigaugh these links. As a delay-based
overlay often has a compact structure, many direct oveitdgs Ibetween members in different stub
domain are likely to be used. This results in high traffic @ntecation (i.e. stress) at the stub-transit
links. On the other hand, flat topologies (e.g. random andepdaw) allow traffic to be distributed
more evenly to all links. In our simulation, the transitistwpologies connect each stub domain to a
transit domain with only one physical link. This is to sinfplthe calculation of routing table used by
ALMSI mfor packets routing. The implication of this is that intendain traffic can only use those limited

stub-transit links, hence producing a high stress value.

5.2.1.3 Discussion

This section discusses some of the main points from the dbwliags. The discussion is also applicable
to the analysis in the following sections, particularly lenadion of the many-to-many model.

For tree cost optimisation, we have seen that a simple syidchnt operation and a suitable parent
selection technique can yield reasonably low cost trees ekample HMTP, that uses DFS to locate a
potential parent, consistently give results that are dogkose for centralised doMST. Our version of a
mixed local region and random node selection technique (iR provides another promising strategy
for a tree structure. Our investigations also show that Wyirsg the triangle problem, we not only
improve the tree cost, but also reduce the delay.

In terms of delay optimisation, the results show that Baeeeit al.'s scheme can produce trees with
the smallest maximum delay from the tree root to the otheeaodHowever, as low delay trees tend
to be more compact in structure, this results in high tre¢ G&s resource usage) and link stress. As
the compact structure is built in a distributed way usingitith topology knowledge, nodes that are
topologically close may be placed farther apart. Thus, tlgage delay performance may suffer. For
example, this can be seen from the better RAP (i.e. averdgg)gerformance of our version of TBCP,
which tries to minimise the ineffective triangles betwelea hodes.

If we compare the best CoPs (HMTP, Na2HopLRC and Scribe)tvdlbest DoPs (NaBanerjee), we
can see a trade-off between delay and tree cost (as welllastligss). In other words, minimising tree

cost results in high end-to-end delay; minimising delayitssn high tree cost and link stress. Between
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these two extremes, there is a wide spectrum of other treéptbvide varying cost and delay values.

NICE, on the other hand, shows a compromise performancesleetiihe two extremes. Specifically,
it produces trees that have moderate tree cost, stress &g cdempared to the best CoPs and DoPs.
This can be explained by the structure of its overlays. InEIthe members are organised into a multi-
level clustered overlay. Each cluster is bounded in sizeiamdpresented by a leader, which is the
graph-theoretic centre of the cluster. In other words, #aelér has the smallest maximum distance to
all the members in the cluster. The lowest level clustersisbiof all members. The leaders of lowest
level clusters form the second level clusters. This clisggprocess continues until the top-most level,
which consists of only one node. In our simulation, the topstmode acts as the data source. Due to
the hierarchical arrangement, nearby nodes will be coethaivithin a cluster. This reduces the tree cost
and link stress. However, the inter-cluster communicasotione via longer links between the cluster
leaders, which increases the tree cost and stress. The siserbéind long links also results in a moderate
delay performance.

A potential drawback of the NICE structure is that the topstmmde may have a fan-out&flog . (n)),
whereK is the maximum cluster size ands the group size. Figure 5.19 depicts the fan-out varidtion
NICE along with HMTP, NaBanerjee and the functiinog ;- (n), whereK = 8 (K = 3k — 1, k = 3).
The plot shows that NICE'’s theoretical worst-case fan-oughly follows the functiori log . (n) while
HMTP and NaBanerjee fulfil the fan-out constraint used, 1@. The fact that a good delay-optimised
proposal such as NaBanerjee shows larger fan-out valuedHNE'P (cost-optimised) also proves that
the delay-optimised solution generates more compacttrees

The above observation suggests that NICE is unsuitableifr-thandwidth applications. In [8],
Banerjee et al. suggest a delegation-based data forwasdimme to reduce the worst-case fan-out of

NICE. The scheme works as follows: a cluster leader sendstdats lowest layer cluster members,
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Figure 5.20: Link stress due to uncorrelated overlay links

which will in turn forward the data to the upper layers. Thipeoach limits the maximum fan-out of
any node t®3k, i.e. roughly the cluster size. However, this brings addiil complexity to the protocol,
as the delegations need to be carefully selected to endigierdy. More importantly, it does not solve
the problem when each member may have a different fan-oabdiég. It remains unclear how to create
trees that honour the degree bound of each individual node wteserving the original properties and
integrity of NICE.

The results in previous sections show that the maximum lirdss due to the proposals can be rather
high, especially for the delay-optimised proposals. Weshaninted out in the previous section that this
is partly because the results were obtained from a trahgitiepology, where the connectivity between
the stub and transit domains is limited by a handful of staln<it links. In addition, as discussed by Chu
et al. [21], the maximum stress on the Internet may be lonen 8een in the simulations. This is due
to the fact that the ratio of the group size to topology size. (density) is much higher in simulations
than in actual practice. For example, the results were oédaivith topologies of 1000 nodes, which
are orders of magnitude smaller than the Internet. An isg@agroup density increases the probability
that a physical link could be shared by multiple uncorrelaigerlay links. Consider the example in
Figure 5.20, uncorrelated overlay linkd, D) and(B, C) share the physical linkR1, R2). This could
increase the maximum stress with the ALM proposals in oudystas they are only able to regulate

fan-out of the members and not stress of the physical links.

5.2.2 Many-to-many Data Delivery

In the experiments with many-to-many model, we include Nai@ee Section 2.6.2) and the GreedyMesh
algorithm (see Chapter 4). Most observations are consigtiémthe one-to-many case. Thus, we only
discuss the following representatives: HMTP, Na2HopLRb¢dD, NaBanerjee, NICE, Narada and
CPT. Note that, except for NICE and Narada which use soypeeiic trees, all the other proposals use
a single shared tree for data delivery.

For shared-tree based DoPs, the appropriate objectiven@imise the tree diameter, i.e. the max-
imum delay between any two members via the tree. The cesg#thiCPT uses this objective function.
However, it is a non-trivial task to measure and maintais ithfiormation in an environment where mem-
bers join and leave freely. Hence, our implementations &HNaLRD and NaBanerjee try to minimise

the root-diameter, as in the one-to-many case.
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Figure 5.21: Many-to-many performance: (a) RMP, (b) RAPTCR and (d) Maximum link stress

Figures 5.21 (a) to (d) depict the comparison results. Theudision will focus on the differences
observed from the one-to-many case. First, we can see thaetitralised GreedyMesh gives the best
RMP and RAP performance, as expected. Interestingly, Nartae distributed mesh construction pro-
tocol follows it closely. This is mainly due to the fact thainse of the Narada nodes may violate their
degree constraints, as discussed in Section 5.1.1.1.6F5BPR confirms this by showing the maximum
fan-out observed for Narada and GreedyMesh.

As discussed in Section 5.1.1.1, we also implemented aorecdiNarada, called Narada-SD, which
tries to strictly enforce the degree bound. We have fountdNheada-SD occasionally causes the overlay
to partition, especially in cases where the nodes have d demlee bound. In Figures 5.23 (a) and (b),
we plot the RMP and TCR of Narada-SD (averaging over casesaithe overlays are connected) along
with CPT and Narada — the version that does not strictly lithé nodes degree. We can see that

Narada-SD’s RMP is initially close to Narada, and quicklgremses with the group size, and eventually
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is close to the RMP of CPT. Obviously, limiting the nodes @egreduces the flexibility in overlay
reconfiguration, and hence the poorer performance. Thédieefcy manifests itself as the number of
members increases. However, it is worth noting that Na@dsstill outperforms all the shared-tree
proposals, for the group sizes considered. This showshleaddurce-specific trees approach can offer
better delay performance than the shared tree proposaks.sighificant difference between TCR for
Narada and Narada-SD indicates that Narada contains morglislks in the overlays. We recall that in
Section 4.3.1, we show for GreedyMesh that including slikslinto a mesh helps to improve the delay
performance. We believe the fact that Narada has many shkstprovides another explanation of why
its delay is on par with GreedyMesh, as shown in Figure 5.21.

In terms of RAP (Figure 5.21 (b)), NICE now performs bettarttall shared tree proposals, partly

due to its source-specific trees approach (we recall thaesufnthe NICE nodes violate their degree
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constraints). HMTP, the CoP, gives RAP that is initiallytbethan NaBanerjee, but poorer as the group
size increases. We believe that this is because HMTP achiesviow cost tree by placing nodes that
are topologically close together, and hence reduces thragedatency between most of the members
(unlike the experiments in the one-to-many case, all meséer now data sources). This provides low
average delay (RAP) when the number of members is small. ©mwtther hand, NaBanerjee creates
trees that are more compact which contain many long linksréduces the maximum delay rather than
average delay. Finally, for TCR and link stress, we can saeNBanerjee performs the worst, while
HMTP is the best.

To summarise, the relative comparison between the propasalquite similar for the one-to-many
and many-to-many models. One important observation isgh@bcols that use source-specific trees

(i.e. Narada and NICE) generally provide good RMP and/or RARormance.

5.2.3 Effects of the Fan-out

This section investigates the impacts of fan-out (i.e. @gfrde) of the overlay nodes on the overlay qual-
ity. The results to be shown are obtained using the one-toymendel (similar performance trend were

observed with many-to-many model, unless specified otlse)wiVe consider two set of experiments:

1. Varying Fan-out In this set of experiments, all overlay nodes are assigngichéar maximum
fan-out, with each experiment running with 256 members. Wesider fan-out values that range
from 2 to 10. By fixing the fan-out bound, it is easier to exaenihe relationship between the
fan-out and the quality of the overlay built. Since Naradegoot strictly enforce the fan-out
bound, it is omitted from the experiments. We also studytigications of cluster size on NICE.
In particular, we vary the lower bound cluster sikefrom 2 to 10. The size of NICE clusters is

bounded by% < size< 3k — 1.

2. Degree Distribution This set of experiments is used to determine the impactseolistribution
used for degree assignment. Earlier experiments in prexdeations used a uniform distribution.
Here, we consider a truncated binomial distribution to manly assign a maximum fan-out of
between 2 and 10 to each member. Three mean values are u€eand 8, which correspond to
the lower, middle and upper ends of the given range. As thémanr fan-out for each NICE node

is independent of the above degree assignment procesenittied from the experiments.

5.2.3.1 Varying Fan-out

Figures 5.24 (a) to (d) show the variation of different mestrivith the fan-out (ok), for four representa-
tive protocols: HMTP, NaBanerjee, NICE and TbcpD. In the fgg) ther-axis represents the maximum

fan-out assigned to the members, except NICE whete &zis represents, the lower bound on cluster
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Figure 5.24: Impacts of the degree: varying fan-out

size. Due to this, the maximum fan-out for NICE nodes coulddbger than other proposals. We in-
clude NICE in the same figure as the other proposals for caemea. The results for NICE should be
interpreted independently.

First, it is clear that the delay property in terms of RMP fbe tproposals improves with larger
fan-out values. This is as expected as a larger fan-outtgesub wider, and thus shorter tree. The
results also show that the delay gain is more significant fweller fan-out values (e.g. from 2 to 5).
The RAP results are similar to RMP. Larger fan-out also caaseincrease in the worst-case link stress
(Figure 5.24 (d)), especially for NaBanerjee that builéegrthat have compact structure (see discussion
in Section 5.2.1.3).

Figure 5.24 (c) shows the TCR performance. The result shdevdysdecreasing trend for HMTP.
For switch-parent based protocols such as HMTP and swiggst a small fan-out means that a node

can easily become full with children. This restricts the emment of the nodes, and therefore results
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in poor performance. Increasing fan-out increases thaelfm@eof movement, and thus gives a better
performance. A larger fan-out also increases the size oDR® search space, which increases the
probability that a node locates its optimal position. lase of fan-out also shows little impact on the
HMTP worst-case stress, as shown in Figure 5.24 (d). Thiedsbse it produces low cost trees that
consist of many short overlay links, which reduces the charaf packet duplication in the physical
links (see Section 5.2.1.1).

The results also show that ThcpD and NaBanerjee exhibi¢ glifterent properties in terms of TCR
and stress with increasing fan-out. For ThcpD, the TCR desae slightly rather than increases, as it
does in NaBanerjee. In addition, its worst-case stressiatseases much slower than in NaBanerjee.
This, we believe, is because ThcpD tries to minimise thadflies in the tree, which thus helps to reduce
the tree cost. As a result, while the link stress increasescurs at a slower pace.

NICE shows a distinct TCR trend where the value decreastaliyiand increases after a turning
point. Thek value at the turning point differs from one topology to amsttopology. Typically, it is
around the vicinity of 5. This can be explained as follows. aBnaalues ofk result in many small
clusters, which requires many inter-cluster links to cartribe clusters together. As the inter-cluster
links are normally longer than the intra-cluster linkssthives the higher tree cost. Asincreases, the
cluster size increases while the number of clusters deesed$us, fewer inter-cluster links are needed.
This results in the reduction of TCR. However, when the eusize increases further, even nodes within
the same cluster may be quite a distance apart. Hence, TCEases again.

In [90], we have found that for the many-to-many case, NICEZR and stress values increase
linearly with k. We believe that this is due to NICE’s data forwarding stygitén the one-to-many case,
the data is forwarded from the top-most cluster leader (#ta source) to its cluster members (leaders of
the lower level clusters), which continue to forward theadatthe similar manner until the bottom layer.
As the leaders are the graph-theoretic centre of their otispeclusters, they use the smallest distance
to reach each of their members. Thus, the lowest cost tregeid. UOn the other hand, we consider all
members to be data sources in the many-to-many case. Heaeisdarwarded using source-specific
trees rooted at each member (see Section 2.6.1). When a&adarlmember acts as a data source, its
data paths are often longer than those of a leader membeexBorple, see Figures 2.9 (c), (d) and (e).
Therefore, not all data paths will follow the cost-effeetieader to members routes. Collectively, this

results in the linear increases of TCR and stress.

5.2.3.2 Binomial Degree Distribution

In general, we have found that the relative comparison antle@gechniques under the binomial dis-
tribution is similar to those of uniform distribution. Thuse only mention the result for HMTP and
NaBanerjee, as the representatives for CoPs and DoPs tigspecTheir TCR and RMP performance

are shown in Figures 5.25 (a) and (b), respectively. In theréigeach curve represents the result for a
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Figure 5.25: Impacts of the degree: different degree 8istions

protocol obtained under a particular distribution. Forrapée, HMTP-uniform refers to HMTP run with
the uniform distribution; while HMTP-m=4, HMTP-m=6 and HN#¥m=8 refer to HMTP run with the
binomial distribution, using different values of the mean.

First, the results reassert our previous observation otréloe-off between cost and delay. In addi-
tion, the relative performance of the techniques due terbfit mean values show similar trends to those
in the investigation of the impacts of degree bound. Comgite performance of TCR for HMTP and
RMP for NaBanerjee respectively. We can observe that smedimfi.e. 4) results in more nodes with a
small degree bound, and thus give poor TCR and RMP propgvilée a large mean (i.e. 8) results in

more nodes with large degree bounds, and thus performs.bette

5.2.4 Effects of the Underlying Topologies

Next, we consider the effects of the underlying topolog@she overlay constructed. Note that it is
not our aim to analyse the detailed relationship betweerrticpkar protocol and a particular topology
model. Rather, we are more concerned about the relatiobgitipeen the optimisation metrics and the
topology structure. For this reason, we consider HMTP an8awarjee which represent the CoPs and
DoPs, respectively. We examine their TCR and RMP propeutieler different topologies.

Figures 5.26, 5.27 and 5.28 depict the performance of thpots under topologies created based
on the transit-stub, power-law and random Waxman models.e&oh model, we consider three dif-
ferent topologies of 1000 nodes (see Table 3.1), as repesbéy the three curves for each protocol
(HMTP/NaBanerjee-1, 2 and 3) in each plot.

In terms of TCR, HMTP, the CoP, always produces trees wittaivest cost. For power-law and the
random Waxman graphs, we can find that the TCR values aré/edjesmaller than in the transit-stub

graphs. This is due to the degree distribution of the netwmrttes, as explained in Section 5.2.1.1.
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Specifically, power law and random topologies have moreeldegree nodes. The cost ratio for HMTP
normally stays at about the same value, or shows a decrdasitthwith growing group sizes. This again

proves that it can exploit the locality introduced when theugp size is close to the network size. On the
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other hand, NaBanerjee always provides trees with lowerygak expected.

In summary, the results show that a well-designed protomolachieve its desired optimisation ob-

jective (e.g. cost or delay) under different topologiesr &mample, HMTP can produce low cost trees

while NaBanerjee can produce relatively low delay trees.
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5.2.5 Convergence Properties of the Protocols

This section examines the convergence speed of variougdistd protocols for experiments with 256
members. In the experiments, all members join the multigemip within the first 50 seconds. Once a
node has successfully joined the overlay, it initiates @iz overlay improvement every 30 seconds.

Figure 5.29 (a) shows the convergence of TCR for the CoPeseptatives: NICE, Na2HopLRC,
Random2HopLRC and variants of HMTP. As described in Se&iaril.2, we include a modified version
of HMTP which is called HMTPRandom. This version differsrfréhe original version only in its joining
strategy. Specifically, a newcomer begins its joining pssdeom a randomly chosen on-tree member,
rather than from the root.

In general, we can see that TCR increases as new membersdeeé tadthe system. Once all
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members have joined, it begins to decrease until a stable v&lreached. Comparing the two versions
of HMTP, it is clear that the random version results in a higitial TCR due to the randomly connected
tree structure. Similar observations can be drawn from Ng2IRC and Random2HopLRC. The fact
that HMTPRandom can quickly converge to a TCR value thatrslar to HMTP demonstrates the
effectiveness of its DFS technique.

The result also shows that NICE has a rather high initial TCRimilar to the randomly connected
tree. This is because NICE allows clusters to grow over the lsound, and splits the clusters only at
each periodic round. It is also partly attributable to NIEEnger convergence time compared to other
protocols. Another reason for this is that NICE needs to tagirthe invariant that each cluster leader
must be the graph theoretic centre of its cluster. As a chiswgykwer layer cluster may result in changes
in higher layer clusters, it takes a longer time to settle Wlewabout 1200 seconds with a TCR of 1.56,
which is higher than other CoPs. In [7], Banerjee et al. shwat NICE’s overlay converges in less than
400 seconds, for a group of 128 members. In their evaluati@y, use a much smaller improvement
period, i.e. 5 seconds, while we use 30 seconds, so as tetamsivith other proposals. We have found
that using a smaller improvement period only increases Kl@essage overhead marginally, as shown
in [7]. We examine the overhead of the proposals in the netise

Figure 5.29 (b) shows the RMP convergence properties ofeamdéimised representatives: Narada,
NaBanerjee, RandomBanerjee and ThcpD. First, Narada anddrR&éBanerjee show high RMP at the
initial stage due to the random layout. After all membersehjained, the RMP values quickly reduce
to a much smaller value for both protocols. Comparing Rarigiamerjee with NaBanerjee (as well as
Random2HopLRC with Na2HopLRC for TCR), we again see thafitted result is related to the initial
tree layout — a more structural layout often provides a bgieformance. For Narada, after the quick
improvement stage, the RMP continues to decrease at a mmekrspace until it finally stabilises at
about 1400 seconds. This indicates that most changes hapitenearly stage of the multicast session,
as reported in [21].

Unlike other protocols, ThcpD’s RMP values increase as n@mbers join in the overlay, and stay
about the same after all members joined. We have also foumdilaistrend in other versions of TBCP
(i.e. the original version and ThcpC). This shows that TBGiRipg mechanism can quickly place the
nodes into their best position (depends on the score fumgtibus requiring fewer changes at the later

stages.

5.2.6 Overhead Evaluation

The overhead of an ALM protocol largely depends on the oyestlaicture used and how it is maintained.

In general, the protocols investigated use three diffecentrol structures: (i) tree (i.e. switch-trees,
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HMTP, TBCP and Scritf; (i) hierarchical clusters (i.e. NICE); and (iii) flat megi.e. Narada).

Figure 5.30 shows the message overhead measured as thel coegsages sent and received per
overlay node, in kbps, for three representative protodddTP, NICE and Narada. We consider mes-
sages used in the construction and improvement of the gyadawell as refresh messages exchanged
between the neighbouring nodes for maintaining the oveNgy assume that each message is carried
using TCP over IPv4, which incurs a basic cost of 40 bytes peket (see Section 3.2.4.1).

From the figure, it is clear that Narada, which uses a flat n@gstldogy and the path-vector protocol,
imposes the largest control overhead. In addition, itsrebotverhead grows quickly with the group size,
highlighting the scalability problem of the protocol. NIC&h the other hand, shows a reasonably small
overhead which stays almost the same across the group Elzess because the messages are confined
within clusters that are bounded in size. Finally, we cantkaeHMTP, the tree-based technique has the
lowest control overhead. This is because a tree uses smtifidfewer links than hierarchical clusters

or a flat mesh topology.

5.2.7 Summary and Discussion

Based on the previous observations, we can summarise oarfimaings as follows.

e There exists a trade-off between delay and tree cost ogtiioiss: minimising tree cost results in

high end-to-end delay; minimising delay results in highk ltress and resource usage.

e For tree cost optimisation, the depth-first search (DF)riepie used by HMTP can effectively
construct low cost trees. By using a modified version of theqmol (HMTPRandom), we also
shows that this technique can converge rather quickly andite independent of the initial tree

layout. In addition, we show that by solving the trianglelem, we not only improve the tree

4While Scribe is built from the Pastry mesh, the mesh linksl@osely maintained (see Pastry [81].). Therefore, the ritgjo
of the maintenance overhead is on the multicast tree staictu
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cost property, but also reduce the overlay delay. Howegdhia technique greedily searches for
an optimal placement, it could carry on the search whileetlage potential targets. This may result
in the exploration of all of the group members, although thignlikely to happen in a realistic

network. A real world implementation of the technique slildirit the search scope.

e In terms of delay optimisation, for the one-to-many servicedel, we found that Banerjee et
al’'s scheme performs the best for the maximum end-to-efay deetric (i.e. RMP), while our
version of TBCP performs the best for the average delay RAPR). For the many-to-many case,
Narada (which uses source-specific trees) always perfdrensast. NICE, which also adopts the
source-specific trees approach, has good average delaymparfce compared to protocols that use
shared tree routing. Hence, we conclude that the souragfispgeses approach has better support
for delay-sensitive multi-sender applications. In fabg superiority of the delay performance of
source-specific trees approach over shared tree apprositbriggbeen acknowledged in the study
of network layer multicast [103]. However, existing souspeecific ALM protocols still have some
weaknesses. For examples, Narada incurs a large protoediead, while NICE, the Delaunay
triangulation protocol and LARK do not provide a degree ¢ised overlay. How to achieve
low delay degree-bounded overlay trees with low overhead@ny-to-many multicasting is an
interesting research topic. In Chapter 8, we address tliklgm with a multiple shared trees

proposal.

e In general, an ALM overlay always yields a smaller resousge and link stress than the unicast
star overlay. However, it is important to point out that a lgatksigned delay-optimised protocol

can result in poor delay performance as well as high resaigage.

e NICE, a hierarchical cluster-based protocol, can strikalarce between tree cost and delay op-
timisation due to its overlay structure and choice of cluader. Unfortunately, the resultant
overlay is not constrained in nodes degree, which makessititable for environments where

members have heterogeneous capacities.

e Forvariants of switch-trees, we found that the initial tieggut can affect the final performance. In
particular, a simple DFS (next-available) can create aoressly good initial tree structure for both
cost- and delay-optimised switching functions. In termswitching scope, we show that local
scope switching can provide fast convergence due to infdrpagent choice. But its localised
properties also limit its exploration power. Fortunateiy can interleave the local scope with

random node selection to yield good convergence and beqdération.

e We demonstrate the greedy nature of delay-based switchérig,the case of Random1HopD (see

Section 5.2.1.2). The greedy problem can result in poorydsdavell as poor resource usage.
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e We also examine the impacts of fan-out on the overlays blnlgeneral, we observe that larger
fan-out values allow more flexible overlay reconfiguratiorhappen, and hence provide better
performance. Conversely, smaller fan-out limits the mosehof the nodes, and thus gives poorer

performance.

e By experimenting with different topology models, we beéiehat a well-designed protocol can
achieve its desired optimisation objective under diffétepologies. In addition, the performance

of certain metrics (i.e. link stress and tree cost) is relatethe underlying topology structures.

e In terms of protocol overhead, we show that protocols thatthe spanning tree structure con-
sume the least control traffic, while protocols that use arflash structure and a conventional
routing protocol have the worst overhead. The hierarcluiceter structure has a reasonably small

protocol overhead.

5.3 Related Work

In this work, we limit our comparison to representative toest- and delay-optimised protocols. As
discussed in Chapter 2, there are other interesting metrddan be considered. We believe that some
of our findings are applicable to these cases. For instahealiservations on the switching scope and
transformation techniques can be useful to other treedqasposals. A good example is Overcast [48],
a tree-first protocol that tries to create high-bandwidges$rusing local-scoped switching. It could be
improved by using the mixed local and random switching scope

Since the initial proposals on ALM (e.g. [36, 21]), there he®n some other comparison work.
Typically, the investigation considers only a small numbkproposals. For examples, in [7], Banerjee
et al.’s propose NICE and compared it with Narada; in [104], &Val. introduce AOM and contrasted it
with HMTP.

Another class of comparison work considers proposals tkigib# a similar nature. For example,
Castro et al. [17] evaluate ALM overlays built using DHT-bd®verlays, in particular CAN and Pastry.
They investigate two data delivery mechanisms for thesdays tree building and flooding. Their re-
sults show that the tree-based approach consistently doitpes the flooding approach, and that Pastry-
based overlays out-performs CAN’s.

In [47], Jain et al. evaluate the potential of DHT-based kayex. They compare CAN-multicast [78]
and Chord [88] with NICE and Narada. They consider two waygeéating the DHT-based overlays: (i)
topology-agnostiavhere the overlays are built without using any topology klealge; and (iifopology-
awarewhere the complete topology information is used, i.e. alimthers are assumed to have ideal topol-
ogy knowledge. Their results show that the topology-agaestsions of CAN-multicast and Chord can
have a relative delay penalty that is more than NICE and Nelbgcht least a factor of two. On the other

hand, the topology-aware versions can achieve a compgralflrmance with NICE and Narada.
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These comparisons indeed provide some insights into tlierelift techniques. However, as they
mostly make different assumptions and use different sitiaettings, it becomes difficult to make an
overall comparison. In this chapter, we have consideretbsgmtatives from a larger class of overlay
creation and maintenance techniques, and evaluate theen anhified environment. We also looked in
detail at the various components that contribute to the fpmmat performance of a particular strategy.

There are several excellent surveys on existing strategiated to overlay multicast. In [29], EI-

Sayed et al. review and discuss several multicast proptsati®ffer an alternative due to the lack of

deployment of network layer multicast. They classify thegwsals into several categories (see Sec
tion 1.1.1 for details): based on a reflector approach, iigan automatic overlay topology (i.e. ALM),
or relying on a specific routing service. ALM protocols stdlin this chapter belong to the class of auto-
matic (i.e. self-organised) overlays. In [6], Banerjee Bhdttacharjee compare several ALM protocols:
Narada, HMTP, Yoid, Scribe, CAN-multicast and NICE. Botinays focus on the high-level proto-
col description of the various techniques. On the other haedhave focused on detailed quantitative

evaluations.

5.4 Chapter Summary

In this chapter, we investigated the efficiency of severfiaganising techniques for building low cost
and low delay ALM trees. The techniques studied encompasesentatives from the two main overlay
construction techniques, i.e. tree-first and mesh-firse ffée-first protocols considered include HMTP,
TBCP, NICE, and variants of switch-trees (including a vensf HostCast) and Banerjee et al.'s scheme.
We consider Scribe and Narada as the mesh-first represestalihe various aspects of the protocols
were examined under a unified simulation environment, ualigsi m

This work is the first step towards designing protocols tdding low delay and low cost ALM trees.
From the results, it is clear that these two metrics conflith wach other, and it is better to consider
them separately. The results show that HMTP, a simple diged cost-optimised protocol, can produce
trees that have comparable costs to those created by alsautr@gorithm.

The delay-optimised protocols, on the other hand, stililekbeveral noticeable weaknesses. Specif-
ically, in terms of one-to-many delivery model, we show tBaherjee et al.'s scheme can yield trees with
small root-diameter, but at the expense of the average delay the members. Our improved version
of TBCP provides good average but poorer worst-case delaythis believe, the main challenge for
a good delay-optimised protocol is that: it should proviole maximum and average delay properties,
as well as result in reasonably small traffic redundancy adark resource usage. In Chapter 7, we
introduce a mesh-based approach to create trees thatteklilbiesired properties.

In terms of many-to-many multicasting, the results als@atthat the source-specific trees approach

(i.e. Narada) can yield better delay properties than theeshtiee approach. However, itimposes a much
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higher protocol overhead, which limits its usability forder group sizes. In Chapter 8, we investigate a

multiple shared trees strategy as a compromise betweehdhedstree and the source-specific trees.
This chapter emphasises techniques used to build efficegred-bounded overlay trees. In next

chapter, we consider the problem of managing degree-baumdelay trees. In particular, we propose

a generic framework for creating and maintaining a degr@itied tree using a mesh structure.
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Chapter 6

Mesh-based Overlay Tree
Construction and Maintenance

Framework

This chapter considers the problem of managing a degrerdaaloverlay tree. We introduce a frame-
work for creating and maintaining a loop-free degree-bauittee by using an overlay mesh. The tree
can be used either as a source-rooted tree for single-sappieations, or as a shared tree for multi-
source applications. The main contribution of this work fast tree recovery scheme, which explicitly
harnesses the multiple paths property of the mesh. We dls@tivantage of the tree structure to reduce
the maintenance overhead of the overlay. The frameworkngnie and can thus be used by existing
protocols to maintain their tree structure.

To illustrate the working of the framework, we apply it to aseastudy: a root-diameter and degree-
bounded, minimum cost tree creation problem. We comparghtACDC [54], an existing proposal for
the problem, in terms of the quality of the trees built, and tree recovery schemes in terms of recovery
speed. Simulation results show that our proposal providéstiree quality and recovery speed.

The rest of this chapter is organised as follows. The neximefirst positions our work with some
related research. In Section 6.2, we present the propoaeteWork. Section 6.3 evaluates various

aspects of the framework using the case study. Finallyj@e6t4 concludes this chapter.

6.1 Related Work

One of the key issues in multicast overlay management isikkgepe overlay connected after node

departure (fail or simply leaving the multicast sessioruntdrily).
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A tree is the natural structure for multicasting. It simglfithe data forwarding as it is inherently
loop-free. In a tree, when a non-leaf node departs, its inatedhildren (and nodes under their subtree)
will be partitioned from the main structure. They need to bke@o reconnect quickly to the main tree
(i.e. obtain a new parent) so as to resume the data flow. Tthig isee restoration problem. In a degree-
bounded tree problem, it is important that the restoreddees not violate the fan-out capacity of the
nodes. Due to the limited capacity at the nodes, a degreatidnlmay disrupt the data service [107].

We can classify the ALM proposals based on the structureettntrol topology used to manage

the overlay:

e Tree-basedIn this case, a tree is used as the control or managemeatiseu Typically, the tree
also serves as the data delivery tree. Examples of prottzatsall into this class are HMTP and
TBCP described in Chapter 2.

e Mesh-basedin this case, a connected overlay mesh is used to conneweaibers. The delivery
tree is embedded in the mesh. A routing mechanism is needsutam the delivery tree from the
mesh. As a mesh provides redundant paths between the niddegnsidered to be more resilient
than a tree. Thus, tree-first protocols like Yoid and Host@adude extra links in addition to
the delivery tree to form a control mesh. NICE and Zigzag Wwhise hierarchical clusters in the
overlay also fall into this group. Obviously, all mesh-fipgbtocols considered in Chapter 2 are

mesh-based protocols.

It is worth noting that these two classes are difference ftoentree-first and mesh-first (see Sec-
tion 2.6), which classify the proposals based on the wayttigaproposals construct the overlay.

Reconstructing a degree-bounded tree is a harder task cedwéh the unconstrained case. In the
unconstrained case, when a non-leaf node departs from #réapyits immediate children can quickly
reconnect to their grandparent, and the recovery procesmis. On the other hand, in the constrained
case, the grandparent may not be able to accept all of itsdghéidren, due to its degree limitation.
Hence, the rejected grandchildren need to locate a fegsioént quickly.

Existing tree-based protocols often follow a reactive apph to repair a tree partition. A reactive
approach performs the tree restoration pro@dss detecting a node’s departure. In [107], Yang and
Fei investigate several reactive schemes — grandpareardparent-all, root, root-all — proposed by
Deshpande et al. [26]. Simulation results show that thedparent scheme yields the best recovery time
— the time from when a node loses its parent until it finds a naveipt. In the grandparent scheme,
when a node departs, its children will request to attachéo tirandparent so as to reconnect to the tree.
As all requests go to the same node, some of them may be ikjdEthe grandparent cannot accept a
request, it will redirect the request to one of its childr&he rejoin process continues recursively down
the tree until the recovering nodes finally attach to the theethe redirection target is arbitrarily chosen,

a considerable amount of time may elapse before these naudly find a feasible parent. The root
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scheme is similar to the grandparent scheme, except thahtlizen of the departed node contact the
root rather than their grandparent. Grandparent- andatbdiffer to the corresponding schemes above
in that all the descendants of the departed node, instea$toitg children, try to rejoin the tree.

A similar strategy is used in other tree-based protocolseyThainly differ in choosing the target
parent for nodes performing the recovery process. For ebammiHMTP, each recovery node randomly
selects the target parent from one of the ancestors (i.eesalbng the path from the recovery node
to the tree root). This reduces the chances that all nodegaataihe same node at one time, and may
improve the recovery time. However, this approach may nauiable for all conditions. For example,
for the delay-optimised problem, the tree is likely to haw®mpact structure, where nodes at tree levels
close to the root will mostly be occupied. This reduces thencles of the request being granted by the
ancestor nodes.

In their paper [107], Yang and Fei propose a proactive treevery scheme. As opposed to the
reactive approach, the proactive approach plans for thardepseforethey happen. The basic idea of
the Yang and Fei's scheme is that each non-leaf node in thtagutece precomputes a parent-to-be for
each of its children before it departs. Thus, when they dgtdapart, their children can quickly reattach
to the tree. Their proposal was found to outperform all ttaetige proposals investigated.

Our mesh-based framework can be viewed as a middle groumebetthe reactive and proactive
approaches. Like the reactive approach, the tree resiorptocess starts after the node’s departure.
While not explicitly precomputing the target parent for lea¢ the nodes, such information is implicitly
contained in the mesh overlay. In Section 6.3.2, we will skioat our approach is comparable with, and
sometimes better than, Yang and Fei's proactive scheme.

Another concern in a tree structure is the formation of ldagke tree. Loops typically form during
the overlay reconfiguration process. A loop will result irdss packet circulation and, potentially,
partition the tree. Thus, it is important to have a quick ldepection and termination procedure. A root
path for a node, say, is the list of nodes in the route fromto the root, via the overlay. The root path
is propagated to all tree nodes in the following manner: aeragpends itself to the root path it receives
from its parent, and forwards its to all of its children. Ifegy on-tree node maintains a root path, there
exists a simple loop avoidance technique: a nagaccepts a new child only if the new child is notin the
root path ofx. However, as pointed out by Francis et al. [36], this simpthhique does not guarantee
there are no loops at all. A loop could still happen if two orrenaodes that are the roots of different
subtrees select new parents at approximately the same @oresider the following scenario presented
by Francis et al.. Figure 6.1 (a) shows a tree rooted dthe root paths for the nodes are given beside
the nodes. Now, assume that for some reason, rfigdms e as its new parent, joins f, andg joins b,
then a loop involving nodesf hbg is formed (see Figure 6.1 (b)). This is because at the ingtahthe
nodes join their new parents, the parents’ root paths have yedicate a loop. For loop detection, when

a node switches to a new parent, its new root path is quicldpggated over the subtree of that node.
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Figure 6.1: Example of loop formation [36]

If a node receives a root path that already contains its ofarrimation, it can break the loop by trying
to switch to another node. However, it is possible that mbaa tone node will detect the loop, and try
to rejoin the tree. More importantly, there is no guaranted the new configuration does not contain a
loop. All these could prolong the tree convergence time.[36]counter the above problem, Francis et
al. propose to associate an integer value, caleitch-stampto every node in a root path. When a node
receives the first root path from its new parent, the switelmg for the node is set to be greater than
any of the switch-stamps of the nodes in the received rodt piith this, when a loop is formed, a node
with the largest switch-stamp can be deterministicallysemoto break the loop. In addition, no new join
request will be accepted by nodes in the loop, until the Isaps$olved.

Our framework maintains a mesh overlay. Unlike the treep$oare an inherent feature of the mesh.
In other words, there is no need to prevent loop formatiohémhesh. However, we do need to make sure
that the delivery tree is loop-free. Our approach consistao parts. First, the simple loop avoidance
technique mentioned above is used when a node tries to add &rk, so as to prevent most potential
loops. Secondly, we run the path-vector routing protocerdlie mesh to resolve any loops in the tree.

The path-vector protocol is derived from the well-studiéstahce-vector (sometimes called dis-
tributed Bellman-Ford) routing protocol [93]. In distareector routing, each node periodically ex-
changes its own routing table with its neighbouring noddse fiouting table consists efdestination,
distance- tuples. On receiving a routing table from a neighbour, a nquiiates its own routing entries
for destinations that the neighbour believes to have abedtee for. As the update decision is based
solely on the distance value, distance-vector routing @mdpped by the well-known count-to-infinity
problem, in which the routing update is bouncing back anthfbetween several nodes for an extended
time. The path-vector protocol solves the count-to-infipitoblem by including the whole path list for
each destination in the routing message. This allows nadesitkly detect a loop, and thus improves
the route convergence time. Itis easy to see that the idesimg voot path in the tree-based proposals is
a variant of path-vector routing. What differentiates tleetbased proposals from ours is that they must
always maintain a tree structure, hence a loop must be ebly altering the overlay structure. In our
case, we resolve a loop by reestablishing the on-treeaktiip for nodes involved in the loop.

A common belief is that a mesh is more resilient to the partitig problem than a tree. It is true
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that a mesh may still be connected even after some nodegpdmagimultaneously. Note, however, that
the data distribution topology used is still a tree. We helithat existing mesh-based proposals have
yet to fully exploit the advantage of a mesh structure foe trestoration, specifically, in terms of the

degree-bounded tree restoration problem. We discuss sbiinese limitations as follows.

e Delivery tree derived from the mesh is not degree-boun®d@E and Zigzag use a multi-level
clusters overlay for maintenance. Both protocols congtriie size of each cluster to a value
betweerk and3k — 1 inclusively, wherek is a configurable parameter. Due to this, the degree for
each individual node can be as high(as — 1) logs,._; n, for ann nodes overlay. Other examples
that fall into this group are Delaunay triangulation pratoand LARK. It remains unclear how
these proposals could build delivery trees that honour dggee bound for each individual node,

while still preserving the original properties and int&égof the proposals.

e Delivery tree is degree-bounded but not the méliee-first protocols like Yoid and HostCast try
to improve tree robustness by adding extra links into the steucture (thus, result in a control
mesh topology). In Yoid, the mesh links are randomly addddleanin HostCast, extra links are
added only between nodes within a predefined local regianKggure 2.6). However, these links
are added without considering the degree constraints afidkes. As a result, they may not be
useful when the degree constraints need to be enforcedgdtimnrecovery process. A similar
problem is also faced by the DHT (distributed hash tablegtgmotocols (e.g. Scribe, Bayeux
and CAN-multicast).

Our framework maintains a degree-bounded mesh, and theedetree is embedded in the mesh.
As the degree constraints are decided by each individua baded on their bandwidth limitation, the
mesh links are directly useful for tree restoration.

Our framework can be viewed as a restricted version of Najatlhand Gossamer [18]. Both
proposals maintain a mesh overlay, and create sourcefisgeaes for many-to-many multicasting. The
trees are obtained from the mesh using the path-vectomigptiotocol. Our framework follows the
mesh-based approach, and uses the same routing prototreaerivation. However, we only consider
a single tree in the overlay. This allows us to make some siiaidifications to the routing procedure so
that it is tightly integrated with the tree structure. Thesluces the number of communication messages
required. We also include procedures that take advantatie eédundant links information to help the
tree restoration process.

All previously mentioned schemes, as well as ours, work&éncontrol plane. That is, they try to
provide uninterrupted data flow by repairing the delivegetusing the control topology. The reliability
of the data is managed by the upper-level applications. Gemmgntary to this is the data plane approach,
which also tries to provide reliable data transmission. Aaneple is PRM (Probabilistic Resilient Mul-

ticast) [10] proposed by Banerjee et al.. In PRM, besidedisgrdata over a delivery tree, a randomised
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Figure 6.2: Example of mesh overlay: (a) The mesh structbjeF-orwarding paths from each node to
the root,s; and (c) The multicast delivery tree
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Figure 6.3: The components of the framework and its relatignwith upper-level application

forwarding method is used to deliver extra copies of the ttathe nodes. In particular, each overlay
node randomly chooses a constant number of other overlagsnadd forwards data to each of them
with a low probability. This can provide high delivery raditcn case of node failure, at the expense of
higher data volume [107]. This scheme can be used to impfevéransient behaviour of the control

plane solutions.

6.2 Framework Description

Our mesh-based framework provides basic operations fardhstruction and maintenance of a degree-
bounded overlay delivery tree using an overlay mesh. Figuzga) depicts an example of the mesh
overlay. Figure 6.2 (b) shows the intermediate step to nlite delivery tree (to be explained shortly),
which is shown in Figure 6.2 (c).

Figure 6.3 illustrates the components of the framework sklationship with upper-level applica-
tions. The framework itself comprises two levels. The loveel consists of four components which
provide basic functionality for creating and managing aartay. They include (i) basic procedures for

setting up and tearing down the overlay links; (ii) routimfpirmation dissemination and derivation of
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the delivery tree (consists of a path-vector routing protpgiii) rules that ensure the connectivity of the
tree; and (iv) a procedure for updating subtree informatidrese four components work together to en-
sure the connectivity of the overlay, as well as the loop-femture of the delivery tree. The upper-level
of the framework consists of two components, which inclugléhé joining (i.e. how a newcomer will
join the overlay) and optimisation (i.e. rules for reconfigg the overlay) strategies; and (ii) the path
selection policy to obtain the tree. The joining and optatin strategies decide when and where to add
or drop an overlay link; while the path selection policy idgo guide the derivation of the delivery
tree. These two components are provided by a specific oveolastruction proposal which applies the
framework. The joining and optimisation strategies andhaiection policy are in turn driven by the
upper-level application needs (e.g. delay, bandwidth, etc

The rest of this section describes the framework, and istsired as follows. In the next two sub-
sections (6.2.1, 6.2.2), we discuss the overlay structudestate information use by the framework. The
basic procedures provided by the framework: (i) setting ngh tearing down overlay links; (ii) routing
process and delivery tree derivation; (iii) overlay mairaiece; and (iv) subtree information update, will
be given in Sections 6.2.3, 6.2.4, 6.2.5 and 6.2.6, reymigti Section 6.2.7 summarises the control
messages used in the framework, which is followed by an aizabf the framework in Section 6.2.8.
In Section 6.3, we illustrate how a specific overlay constamcprotocol can make use of the basic

procedures using a case study.

6.2.1 Overlay Structure

The framework maintains overlays in the form of a connectggtele-bounded mesh. The mesh connects
the tree roots with all other members. The degree bound for a nads,represented by,,q. (7). It
is calculated based on the maximum fan-out,ofvhich in turn depends ofis bandwidth limitation
(see Section 3.1). The value @f,.. (i) is determined based on the type of the tree to be created. For
a source-rooted tred,,,.. (i) is equal to one plus the maximum fan-outipfvhere the additional one
accounts fofi's incoming link from its parent. If is the tree root, which is also the source, the one is
omitted. For a shared treé,,.. (i) is set equal ta’s maximum fan-out. This is because any node in
the shared tree can be a data source. In the rest of this chapteefer to the tree maintained by the
framework as thelelivery tree

Two nodes in a session are said to have a neighbouring (oinggeelationship when the overlay
link between them exists in the constructed mesh. For ripttee set of neighbours in the overlay is
represented byv,”. The links between and its neighbours are called mesh links (thus, all link$1en t
overlay are mesh links). A mesh link may or may not appeargrdiivery tree as shown in Figure 6.2. In
other words, the set of mesh links can be further classifitedtimo types (which define the neighbouring

relationship between the two end points of a link):
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1. Tree links These are links that exist in the delivery tree. One endiprfia tree link defines the
parent node, while the other end defines the child node. Alesdexcept) must have a parent
node. For a nodg we useN! to represent its set afee neighboursThe parent and children éf

are represented as andC; respectively. ThusV! = {p;} U C;.

2. Non-tree links These are links that are not included in the delivery trea:. fodei, the set of

non-tree neighbourare represented hy!', i.e. N/ = N\ N?.

We further defineN/* as the pending neighbours ffi.e. the set of nodes thathas agreed to
accept as neighbours, while waiting for the neighbour senggess to complete (see Section 6.2.3).
Consider node: in Figure 6.2, we can see that™ = {q,¢,v,y, 2}, N: = {q,y, 2} wherep, = q and
C, = {y, 2}, andN! = {t,v}.

The degree constraint for a nodlel,,,... (i) can be enforced by making sure that

[NP"| 4+ | NFIS dimas (0)- (6.1)

Since the delivery tree is derived from the degree-boundeshirthe degree bounds for the nodes in
the tree are guaranteed. This simplifies the tree restorptiocess as the non-tree links available in the
mesh are immediately eligible for repairing a tree pantitido aid the overlay recovery process, we also

defined, .. (i), the residual degree féras
dres(i) = dpmaz(i)— | Nf| . (6.2)

It represents the number of nodes the&n still accept as its tree neighbours. We further defjpg(T;)

as the total residual degree of the subtree rooted diake noder in Figure 6.2 (c) as an example.
Assume thatl,,q.(z) = 5, dmaz(y) = 3, dmaz(2) = 3, dmaz(w) = 2 @anddp,q.(u) = 2. Forz,

| N | is 3, thusd,.s(z) is 2. This indicates that can still accommodate two more tree neighbours
(other thant andv). However, to do so, it needs to drop the non-tree links wiéimdv, so as to fulfil

the degree constraint. Ferandv, they just need to negotiate a change of status with becomer’s
tree neighbours. We can also calculate the total residuakédor subtree rooted at d,..s(T) as 6,
wherez has 2 spare degree, and each of its descendants{, v) each has one spare degree. Table 6.1
summarises the notations used in the framework.

The delivery tree is obtained based on the reverse path tmeeept used in DVMRP [25]. Every
node participates in a path-vector routing protocol toriedwe paths from itself ta. Given multiple
routes tos, a hode selects the “best” path as its routing path, whergdbdness of a path is judged by
the desired properties, e.g. low delay, low cost! €fthe delivery tree is obtained as the union of all the

reverse of these paths, i.e. a reverse routing tree. Thénopxthat a node uses in its pathstis therefore

11t is important to note that the path selection policy mustitein loop-free paths.
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Notation | Description |

dmaz(i) | Nodei’s degree bound

dres(1) Residual degree at

dr.s(T;) | Residual degree for subtree rooted at
N Set ofi’'s mesh neighbours

Nt Set ofi’s tree neighbours

N} Set ofi’'s non-tree neighbours

Ny Set ofi’s pending neighbours

Di Nodei’s parent

Ci Set ofi’s children

Table 6.1: Notations used in the framework

the node’s delivery tree parent. For example, Figure 6.8I(strates the routing paths from each of the
nodes to the root, and the reverse delivery tree is showrgnr€i6.2 (c). The details procedures will be

explained in Section 6.2.4.

6.2.2 Overlay Node State

This section describes the basic information used by thedveork. Extra information may be added by
a specific overlay construction protocol.

A node,i, maintains the following information.

e Theinformation (IP address and communication port numtiféty mesh neighbours and the root

node,s.

¢ Residual degree for each of its children, and the total usdidegree of the nodes in the subtree
rooted at each childi,..;(c) andd,..s(T.)Vc € C;. This information is provided using the subtree
information update procedure, Section 6.2.6. This infdromawill be used to redirect a node
which actively looking for a parent node (see Section 6.ZI8g idea of using the residual degree

information is borrowed from Yang and Fei’s tree recovemygmsal [107] (see Section 6.3.2.2).

e Root path. A root path is the list of nodes in the overlay rdugen a node to the root. Take node
in Figure 6.2 (c) as an example, its root patiis y, z, ¢, s}. For ease of exposition, we classify

a root path into three types:

1. Routing path. This is the forwarding path from a node tortieg, obtained from the routing
process (see Figure 6.2 (b)). As explained before, the sewarit forms part of the delivery
tree. A node uses the next hop of the routing path as its trempaThe routing protocol
requires neighbouring nodes to periodically exchange toeiting path. Using the whole
path provides a simple way for loop avoidance. In partigudane path from a neighbour of

nodes includesi, ¢ will treat it as an invalid path. An invalid path will not be msidered in
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deriving the delivery tree (see Section 6.2.4). One or meréopmance metrics (e.g. delay,

bandwidth, etc) may be associated with a path. This givesdheof using a path.

2. Non-tree neighbours’ root paths (non-TNRPs). For ng@denon-TNRP is a valid path via
one ofi’s non-tree neighbourst'. It provides a first tier alternative route to the root. A
node applies the path selection algorithm on all of its n&RPs to find the best alternative
path to the root. The selected path will be advertised tcatemt, which becomes the parent’s

tree children’s root pathas described below.

3. Tree children’s root paths (TCRPs). These are the “béwirative paths provided bys
children. They serve as the second tier alternative rootdset root. Both non-TNRPs and

TCRPs are used in the overlay recovery process (see Sec?it).6

Referring to Figure 6.2 (b);'s routing path is{z, ¢, s}, whereg is z’s parent. In additiony has two
non-TNRPs, which aréz, ¢, r, s} and{z, v, p, s}, obtained fromt andwv respectively. Node: also has
one TCRP{z, z,t,r, s} from its child, z. Note thatz’s child y does not provide any valid TCRP fer

since it does not have any non-tree neighbours.

6.2.3 Setting Up and Tearing Down Overlay Links

An overlay consists of a set of overlay links connecting trembers. As mentioned previously, each
link is represented by the neighbouring relationship betwsvo nodes. In other words, an overlay is
constructed by forming the relationships between the nodeish involves setting up and tearing down
the links.

The establishment of a new link consists of a sequence oesgreply and acknowledgement pro-
cedures, occurring between the two end points of the link. déaciseness, we will refer to the node
that is currently performing a requesting process, asd its potential neighbour gs The procedures
ensure that both nodes reach a common consensus on thearetiép, i.e. parent-child or merely mesh
neighbours. During the procegsand/orj may need to drop an existing neighbour so as to enforce the
degree bound.

Briefly, the three procedures perform the following funnso

e Request procedureNode: initiates a link establishment request to a potential nedgin. The
identity of the target neighbour is determined by the owedanstruction protocol that uses the

framework.

e Reply procedureNodej processess request, and decidesiitan be accepted as a neighbour, and
if yes, what type of relationship will be established. Agdhre rules used in the decision making

is provided by the overlay construction protocol. The adinis reply will be sent back ta
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1) i sends request
msg to target
neighbour, j (1) REQ

3) If j accepts |, (3) ACK 2) j receives the req,
i will finalise ’@ and decides if i can

the process ™\ (2 RepLy~~  be added as a nbr

with an ack

Figure 6.4: The request, reply and acknowledge sequensefiimg up an overlay link

¢ Acknowledgement procedulé j accepts as a neighboui,will determine if a common consensus
has been reached between the nodes. A positive or negaktivewdledgement will be sent tpto

finalise the link establishment processj lejectsi’s request, no further action is needed.

Figure 6.4 offers a simple summary of the procedures. Frefiglare, we can see that when a node (say
1) initiates a message to another node (ggy may expect a reply message frginTo avoid deadlock

in the waiting process,will start a timer when it transmits the message. If the timguires before the
reply fromj reaches, i will considerj as unreachable and clean up the intermediate informatiomeio
during the process.

We divide the link establishment procedures based on th@firig two circumstances:

1. Join or rejoin the overlay In this case, a child to parent tree link will be created. Aentioned
previously, all nodes (except the root) must have a parese nbhe procedures are needed when:
(i) a newcomer tries to join in the overlay; and (ii) an exigtmember loses its parent, and needs
to reattach to the tree. It is worth recalling that the deiineee is obtained from the mesh. Hence,

adding a tree link also means adding a mesh link.

2. Overlay reconfiguration An overlay needs to be reconfigured from time to time for ssEvea-
sons. First, the initial structure does not necessary geoie desired robustness and/or quality in
data delivery. Secondly, the overlay needs to adapt to a@simgthe overlay memberships (when
members join/leave/fail) as well as changes in the undeglgetwork conditions, which may hap-
pen throughout the session. This may result in either a iimkeot a pure mesh link. The overlay
construction protocol determines when a node should paréorimprovement operation, and how

to reconfigure the overlay.
The following two subsections (6.2.3.1 and 6.2.3.2) désci details these two cases. Section 6.2.3.3
describes the procedure of tearing down an overlay link.
6.2.3.1 Join or Rejoin the Overlay

Request Procedure The request procedure marks the start of a link establishpreness. To create
a new tree link; will first select a number of potential parents, and send th ed them a JOINREQ

message. The number of potential parents should be limiteket residual degree of By allowing
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multiple requests, we hope to attacquickly to the overlay. If more than one node accefgsequest,
only one of them will be used ags parent (see the acknowledgement procedure below). Hew th
potential parents are chosen depends on the overlay cotistrprotocol. For example, a newcomer
may use the tree root or some randomly selected nodes agipbpements. For a node trying to reattach

to the overlay tree, its potential parent is provided by therlay recovery procedure (see Section 6.2.5).

Reply Procedure On receiving a JOINREQ messagej, performs a simple admission control proce-
dure. The main criterion is whethgrstill has spare capacity to accept a new child. (Note thataiBp
protocol can provide additional admission control rulds.) still has spare degree (see Equation 6.1),
7 will be accepted as its delivery tree child; orjihas a non-tree neighbour (sky; j will accepti by
droppingk. Nodek will be sent a LINKDROP message (see Section 6.2.3.3). Otherwigéll reject
7’s request. In other words, a mesh link will be dropped in favaf a tree link.

If j can accept, it adds: into its pending neighbours se¥*. The JOINREPLY message from
j to ¢ will contain an acceptance flag arig routing path information. Whenreceives the reply, the
acknowledgement procedure will be used.

On the other hand, if rejectsi, the JOINREPLY message will contain a rejection flag and a list of
j's tree children. The residual degree information of thédrbin will be included. Whenm receives this
information, it first sorts the list in ascending order basadhe residual degree of the nodes, using their
total subtree degree as a tie-breaker. It then pushes tteeldist into a stack such that the node with the
largest spare degree is at the topi fieeds to perform a rejoin, it will pop the join targets frora gtack.
This simulates depth-first searching down the delivery, tnéch prevents from randomly selecting the
join target. The use of residual degree as a tie-breakevgaltmdes to quickly locate a feasible parent.
This idea is borrowed from Yang and Fei’'s proactive recosatyeme [107]. In addition,records the
recent history of nodes that have rejected its requestss tm arevent redundant requests. The idea of

using a stack and request history is borrowed from HMTP [109]

Acknowledgement Procedure Node: will take the sender of the first acceptance reply that itikese

as the parent node in the delivery tree. A JOMSK message will be sent to the parent to update its
neighbour lists. For other nodes that are also able to a¢eeya child; includes them as the neighbour
nodes in the mesh and replies to them with a JAIBK about this intention — these nodes will change

their neighbour type accordingly.

6.2.3.2 Overlay Reconfiguration

Request Procedure In this casej sends a PEERINREQ message tpindicating its desire to estab-
lish a neighbouring relationship. Hoyvis chosen depends on the desired improvement under consid-

eration. For example, to achieve good robustnessy wish to add a link to a node which provides a
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path that is disjoint fromi’s existing routing path. Again, this is determined by theay construction

protocol.

Reply Procedure Whenj receives the PEERINREQ fromi, it performs an admission control pro-
cess to decide if can be accepted and the type of the neighbouring relatipristbe established with
1. The main criterion of the admission control algorithm is ttegree bound of node In addition, the
algorithm must also consider the connectivity of the oweftet accepting a new neighbour. Specifically,
if by accepting, j needs to drop an existing neighbour — it is important thattrexlay stays connected
after the changes.

If 7 is accepted, it will be added int¥}", and; will trigger some changes such as path recomputation
and distribution (see Section 6.2.4), if necessary. Theiggiom result will be conveyed back taising
a PEERINGREPLY message.

Acknowledgement Procedure When: receives an acceptance reply frgmit will perform the nec-
essary changes (i.e. update neighbour list and path redatign) if it is accepted. In addition, it will
reply to ;7 with a PEERINGACK message to confirm the neighbouring relationship to ieahe link
establishment. If the two nodes cannot reach a common ceasai this point (i.e. an agreement about

the neighbouring relationship to be established), thewiiknot be added.

6.2.3.3 Tearing Down an Overlay Link

To drop an existing link, a node simply issues a LINMROP message to the corresponding neighbour,
and purges the neighbour from the corresponding neighbstst IWhen the neighbour receives the
message, it updates its neighbour lists, and performs &dbesee if there is any changes to its path to
the root. If the node finds that it is disconnected from the,titeconsults the overlay level maintenance
procedure, Section 6.2.5. For changes in the routing pagh ¢hange of parent), the node will trigger

the routing procedure to distribute its new routing infotima. Otherwise, nothing has to be done.

6.2.4 Routing Process and Delivery Tree Derivation

This section describes the routing process uses to aclievedp-free routing tree. The framework uses
a path-vector protocol, similar in nature to the Border @ateRouting Protocol (BGP) [79]. Note that
BGP is a much more complicated protocol which includes cempblicies that manage routes between
different routing domains. In our case, the overlay can leevgd as a single routing domain, thus every
node uses the same routing policy.

Figure 6.5 illustrates a simple model of the routing prodess overlay node. Each node maintains,
for each of its mesh neighbours, the routing path and cosiaibey used to reach the tree roefin an

incoming routing base. Examples of cost metric can be theawpath’'s hop count, delay, bandwidth
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Figure 6.5: Model of routing process in an overlay node

or a combination of them. This is determined based on theirements of the upper-level applications.
A node will place newly received routing information from @ighbour into the incoming routing base.
It then executes a path selection algorithm which picks &t path tos using the policy provided by
the overlay construction protocol. The next hop of the selbpath will become its tree parent. If the
computation results in a change in the parent node, the nddeonfirm its child status with the new
parent, and withdraw its child status from its existing pdr@ he changes will then be advertised to other
neighbours. The routing update continues to propagatéthetrouting path tos has converged. The
union of all the paths from every node é¢dorm a reverse tree rooted gtwhich becomes the delivery

tree (see Figure 6.2).

Routing Update: Simple Case The routing update process takes advantage of the fachératis only
one destination (i.e. the root) in the topology, and makesfithe tree structure to reduce the number of
messages exchanged. For simplicity, we first explain howrthgsages are propagated in the case when
there are no changes in the routing paths. The changed dhbe déscribed in detail afterwards. Under
normal conditions, the root periodically triggers routinfprmation dissemination across the overlay. It
sends to each of its neighbours a copy of its routing infoionaising a PATHADVERT message. If

a routing message is received by a tree child, the child wilppgate the message to all its neighbours,
except the sender. On the other hand, if the message is edcleywva mesh neighbour, the message
will not be forwarded. In this way, the routing updates tithng across the overlay roughly follow the
delivery tree structure. This is illustrated by the samplertay in Figure 6.6. In the figure, five nodes
are connected in a ring topology. The delivery tree is roatadand is shown as the dark arrowed lines.
Our tree-based message propagation scheme is as showniia 6i§ (b), where the small arrows depict
the direction of the routing messages. Figure 6.6 (c) depiet working of the conventional routing
protocol which requires each neighbouring pair to exchangdng messages. Consideringamode
network, a spanning tree will have— 1 links. With our technique, for each tree link (i.e. parehild

link), the message will only flow from the parent to child. $lsaves: — 1 copies of routing message.

Routing Update: Detailed Description Now we describe the detailed routing operation. Periotjical

the root sends to each of its neighbours its routing infolomat.e. a path consists of itself, and routing
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Figure 6.6: Example showing the dissemination of routingsages

cost of zero. The routing information will then be propagitteroughout the overlay in the following
manner.

When a node, say, receives a routing message from a neighbguit first tries to validate the
received path. That is, if the path already contdiniswill mark the path as invalid. Otherwisé will

update the path and the corresponding cost as follows.
1. Routing path: append its own information to the path, and

2. Routing cost: set the routing cost as the cost it uses thribee root. For example, if the shortest
path policy is used;'s cost will be the summation of the cost betweeand;, and the cost of the

path fromj to the root.

The path will be added int@is incoming routing base. In normal conditions, besitieparent, only its
non-tree neighbours will provide valid paths. Given theddefalid paths in its routing baségconsults a
path selection policy to select the best path.td’he path selection policy is based on the optimisation
objective considered. For example, a node can use the shpgth first policy to select the least cost

path to the root. The path selection may result in the follapgases.

1. There is no change tds existing routing path. In this caseé,will propagate its own routing
information to its other neighbours, if and onlyjifs i’s current delivery tree parent. This reduces

the message overhead as described above.

2. Node: finds a new path via a neighbour, sky In this casej will initiate a parent request tb
with a PARENTREQ message. On receiving a PAREIREQ from a neighbour (in this cass,
k convertsi’s status to a child node and replies to it with a CHUATK message. (Sinceand
k are already neighbours, this will not result in degree tiofain either nodes.) Oncereceives
the CHILD_ACK from k, it will replace the existing parent with and update the existing parent
with a PARENT.WITHDRAWAL message. The link betweerand its old parent will not be torn
down; rather, it is changed into a mesh link. It is easy to ba¢ this process is essentially a
parent-switch operation. However, unlike the parent-cwih tree-based proposals, no link will
be deleted. After the parent-switch operatiomwill replace its routing path with the one via its

new parentk. It then distributes the new path information to all of itsgidours, except.
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Figure 6.7: Example of routing operation

3. The routing cost and/or the nodes in the path has changedpbthe next hop of the path. This
means that while there have been changes to the routingnatamn, the best path is still via the
same neighbour. In this cagewill update its routing information, and distribute theanfation

to other neighbours.

4. Node: has lost the path to the root. This may happen when a routiog i® formed due to
misinformed overlay reconfiguration operations. Nodéll trigger the overlay level maintenance

(Section 6.2.5.2) to find a new parent.

The routing information is then disseminated in a similanmex to all nodes. The routing update
will also be triggered by any node if the path informationges due to overlay recovery, an overlay
reconfiguration process or changes in the path cost.

We explain some operations of the routing process with thgpatopology in Figure 6.7. In the
figure, the overlay consists of five nodes, withcting as the root. Assume that all links have unit cost,
and the shortest path first policy is used. Panel (a) showsage that the overlay is connected in a line
topology. Obviously, the delivery tree for the overlay alstbows the line structure. Panel (b) depicts
the delivery tree and the routing cost at each node. Nownasshatd adds a link tas, thus forming the
ring topology in panel (c). Nodé now learns that it can reachvia a shorter route, i.e. via the direct
link to s with a cost of 1. It will request to be its new parent, and then withdraw its child status from
c. It then updates with its new routing information, i.e. the path towith a cost of 1. Note that in an
implementation, one could piggyback the routing updaté wie withdrawal message to the old parent,
so as to reduce the communication overhead. Wireneives the update frod) it will find that the path
via d is shorter than its existing path. Thus, it will perform trergnt switching operation, and update
b with its new information. Whelb receivesc’s message, there will not be any changes to its routing
path as the path via is shorter. Thus, the routing update is done. Now, the dsfitree will be as in

panel (d).

6.2.5 Overlay Maintenance

Overlay maintenance takes care of the connectivity of tleglay. We devise procedures that exploit the

mesh multipath properties to achieve quick recovery. Warsgp the maintenance tasks into two levels:
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1. Link level This level monitors the liveness of an overlay link betwésa nodes. If a link ap-
pears to be disconnected, the overlay level maintenantéewviotified to perform any necessary
recovery process. Hence, each node only needs to monitwit®verlay links. This reduces the

communication overhead.

2. Overlay level This level takes care of the connectivity of the whole cagri.e. it repairs partitions

in the overlay.

The following two subsections detail their operations.

6.2.5.1 Link Level Maintenance

At this level, two neighbouring nodes exchanges periodi€ RESH messages (heartbeats) to monitor
the liveness of the overlay link between them. Each REFRESdsage is tagged with a sequence
number to detect out-of-order delivery. A node assumeseighiour has failed if it has not receive a
REFRESH message from its neighbour after a predefined timedoeThe refresh period depends on
the estimated distance between the two nodes, as well asitibality of the link. For example, a tree
link should be monitored at a higher frequency than a mesh lin addition, any data flows between
two nodes can be viewed as heartbeats to reduce unnecesstint messages.

In some cases, a node may wish to leave the session prergatWelrequire the node to inform
each of its neighbours using a LEAVE message. On receiviolg aunessage or on detecting neighbour
failure, a node will trigger the overlay level maintenanceqess to perform any necessary recovery op-
eration. We note that even if a leaving node fails to send @lBA/E message, the heartbeat mechanism
will still detect the departure of the node, although it vdlke a longer time. Hereafter, we will use the

termdepartto refer a node either failing or leaving, unless specifiérovise.

6.2.5.2 Overlay Level Maintenance

This level maintains the connectivity of the entire overlag the delivery tree is a spanning tree inter-
connects all the members in the overlay, it is sufficient targntee connectivity by making sure that the
delivery tree is not partitioned. In order to do so, each raddgely monitors the status of its parent using
link level maintenance.

If the departed neighbour is a child node or a non-tree n@ighta node only needs to update its
neighbour list and the information associated with the nlegr. Otherwise (a node loses its parent), the
following restoration procedures will be used. The progeay also be triggered by the routing process
on detecting a loop (see Section 6.2.4). We note that theregiin process enforces the overlay nodes
degree constraints.

The recovery process consists of three stages, which a niddi/wwne by one, until it is successful.

Briefly, in stage 1, a node will attempt to attach to one of ibm4tree neighbours that provides an
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alternative path to the root. If this fails, in stage 2 the@adll next try the neighbours of its children. If

stage 2 fails, the node will need to rejoin the overlay (st&gd he detailed operation is as follows.
Consider that a non-leaf node, departs from the session. We explain the recovery opertiat

will be performed by one of its children, On detecting the departure of the parent nadiest performs

the following preparation steps:

1. Removep from its current routing path, and push the nodes in the patb a stack in the order
such that its grandparent will be at the top while the root b4l at the bottom of the stack. The

stack (which is called theejoin stack) will be used in Stage 3, in case the first two stages fail

2. Validate all the paths obtained from its neighbours (idolg the TCRPs obtained from the chil-
dren). Specifically, if a path contaips the path is considered invalid and will not be used in the

path selection algorithm.

Stage 1 (using non-TNRPs) At this stage,i will try to reconnect to the tree via one of its non-tree
neighbours, if there are any.

From the updated path informatiohuses the path selection algorithm to find a neighbour that
provides the best alternative path to the root. Say that tue sk, which will becomei’s potential
parent. At this stage, the path selection only consideratimeTNRPs. (The TCRPs will be considered
in Stage 2.) Nodeé then sends a PARENREQ message tb, and sets a waiting timer for the reply
from k. The message contains the information ahout a potential parent does not existyill proceed
to Stage 2. If the waiting timer expireswill invalidate k’s path, and try to recompute and request to
another alternative parent.

On receiving a PARENIREQ message which contains the information of the depaddd,p from
1, k simply performs a path selection where pathsivaadp will be excluded from the computation. If a
valid path is availablée; returns a CHILDACK to 7 with an acceptance flag as well as its routing path. It
also convertg's status from a mesh neighbour to a child. Otherwise, thesageswill contain a rejection
flag. It is possible that cannot find a path after excludirigandp from the path selection algorithm.
For examplef just switches to a new parent that uses one of these node athdo reach the root,
andk’s new routing information has yet to propagate tdn other wordsfk is in the same subtree as
that has been detached from the main tree. Howéveill not trigger the recovery process as long as
it believes its parent is still alive. The reason for thisdsbnstrain the recovery process to nodes that
actually detect the partition, thus minimising the charigebe overlay.

On receiving the CHILDACK message; first cancels the timer associated with If the message
indicates that can accept as a child node, the recovery process is done. In this ¢agegates its
routing path and triggers a distribution of PATADVERT messages to all its neighbours, excluding
The PATHADVERT message triggers the recomputation of paths foreighbours, if necessary (see

Section 6.2.4 for details.). If the parent request is rejgt will try to recompute another alternative
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parent and retry the above procedures. The process costimig no more alternative parents are
available, in which the Stage 2 recovery process will be used

Considerz andy in Figure 6.2 (b), and assume that they have both detectéthitiaparenty, has
left the overlay. Asz has a non-TNRP vig, it can quickly attach ta@ to repair the tree. On the other

hand,y will consider the procedures to be described below.

Stage 2 (using TCRPs) If Stage 1 recovery fails, it means thiadoes not have a direct neighbour that
has an alternative path to the root. Hereijjll consider the TCRPs provided by its children.

Specifically,i performs the path selection algorithm using the TCRPs. dfdhis a valid path via a
child, ¢, this means that the next hop node, sathatc uses to reach the root has spare capacity to accept
a new child. This is becaugds a mesh neighbour d@f, which can be dropped by in order to accept
a new child if it has reached its degree bound. Henedll set h as potential parent and initiate a link
establishment proceduresiolf State 2 recovery failg, will proceed with the procedures in Stage 3.

At this point, we can see an alternative recovery techni@iece: knows thatc has an alternative
route viah, it can notifyc so as to converk into parent. Thenj can convert into its parent. The
obvious advantage of this approach is that there is no nesettp a new link — the nodes only need
to reestablish their relationships. However, it requires thanges to the tree structuiebecomes:'s
child andc becomesi’c child), compared to only one in our approaghbecomes’s child). More
importantly, the alternative approach becomes more camigld if the request fromto h has failed —
then, should: carry on the recovery process, or should it nofifjo as to continue the recovery? With
our approach, the recovery decision is always local tdhus, we decided not to use this alternative
approach.

Refer to nodey in Figure 6.2. We can see thathas a TCRP via its childy: {y,w,u, z,z,q, s}.
However, as the path passes through regards the path as invalid. Thyswill have to consider Stage

3 recovery.

Stage 3 (rejoin recovery) Reaching this stage indicates thiatould not find an alternative route via
its neighbours. Herg,will performs a rejoin process similar to the initial joilgjprocedures. However,
instead of joining from an arbitrary nodewill rejoin using the rejoin stack mentioned above. Specifi-
cally, 7 pops a node from the stack and begins the joining processtfrere. As described previously,
the first node ig’s old parent’s parent, i.e. the grandparent.

Figure 6.8 illustrates three sample cases that triggeriffezeht stages of the recovery process.

6.2.6 Subtree Information Update

The framework provides a SUBTREBPDATE message to carry information from a node along the

path to the root. Each piece of information is associatel witype and value. Examples of information
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Figure 6.8: Three stages of the recovery process

are the total residual degree in a subtree (Section 6.21@tjee maximum subtree delay (i.e. delay from
a node to its farthest descendant), to be discussed in oeistizdy (Section 6.3).

Take the total subtree residual degree for example. Rdwtllthe residual degree for a node rep-
resents the number of new tree links that the node can stidramodate. For a leaf nodg,its total
subtree residual degreé.((7;))is equal to its residual degreé.(,(i)). Each non-leaf node maintains
the total subtree residual degree for each of its childray.j3s i's parent. Node reportsd,..s(T;) to 7,

which in turn calculates its owt,.,(T;) as

dres (Tg) - Z dres (Tc) (63)

Veelj

Nodej then reports its new,.;(T}) to its parent. The process continues along the path up tatte r

6.2.7 Summary of Control Messages

This section summarises the control messages describadymsly. Note that we only provide the func-

tionality of the messages, and left the exact format of thesages opens to the actual implementation.

¢ JOIN.REQ, JOINREPLY and JOINACK. These messages are used to establish a new overlay

link between two nodes.

e PEERINGREQ, PEERINGREPLY and PEERINGACK. These messages are used for adding

new links into the overlay, during the overlay improvementgess.
e LINK_DROP. This message is used by a node to tear down an existlngilih its neighbour.

e REFRESH. This is the periodic heartbeat message exchamgesdn a pair of neighbours to

monitor the liveness of the link between them.
e PATH_ADVERT. This message carries the routing path informatiba wode to its neighbour.

e PARENT.REQ, CHILD_ACK and PARENTWITHDRAWAL. These messages are used between
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two neighbours to change their neighbouring relationskigr. example, a nodeé, sends a PAR-
ENT_REQ to a mesh neighbour, sgyto convertj to its delivery tree parent. Nodereplies with
CHILD_ACK message if it agrees with the change. Notten sends a PARENWITHDRAWAL

message to its old parent to convert it to a mesh neighbour.

e LEAVE. This message is sent by a node to its neighbours tarnmfihe intention to leave the

session voluntarily.

e SUBTREEUPDATE. This message carries information (e.g. residugtels) from a node to its

upstream ancestors, up to the root.

6.2.8 Discussion

One major concern with a mesh-based approach that usesentmmal routing protocol is its scalability.
For example, as seen in Chapter 5, Narada has high protoedi@ad. As pointed out in Section 6.1,
our framework has several similarities with Narada. In ipatar, both schemes run the path-vector
routing protocol to obtain the delivery trees. However, vatdenthat Narada is designed for many-to-
many multicasting. For each node, a source-specific trelebwilcreated from the mesh. Thus, all
nodes need to advertise their respective routing table.nin-aode overlay, the size of each routing
message will be in the order ¢(n). This results in an aggregated overheadXf,?) for the whole
population. Furthermore, Narada requires each node totamaitme liveness of other nodes for partition
detection. On the other hand, in our framework, each nodésm®y maintains the route to the tree root.
By exploiting the tree structure, the routing update ovachean also be reduced. In terms of overlay
management, each node only needs to know their respeciyetoairs.

We recall that some tree-based overlay protocols (e.g. HMA® TBCP) maintain a root path.
The root path is delivered from the root to the members fopIdetection and/or prevention. This can
be viewed as a variant of the path-vector protocol. As a teeerblatively fewer links compared to a
mesh, they will impose less control overhead. In Sectior2633we show that our framework incurs a

reasonably low overhead, while providing several advasgayer the tree-based approach.

6.3 Case Study: Root-diameter and Degree-bounded, Low Cost

Tree Problem

In this section, we demonstrate how the mesh-based frarkesaorbe used with a case study: a root-
diameter- and degree-bounded, low cost overlay tree oreptoblem.

We first present the problem statement. The overlay netvgomkadelled as an undirected complete
graph,G = (V, E), as defined in Section 4.1.1. We consider the edge delay efsegsents the edge

cost. Thus, théree costis defined as the summation of the delays on all the overlg lin the tree.
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The root-diameter of a tree is the maximum shortest patlamist from the tree root to any vertex via
the tree. An overlay tree is to be formed using node¥® inA special nodes € V, is designated as
the data source as well as the tree root. Aatepresents the delay bound. Now, the root-diameter and

degree-bounded, low cost tree problem can be defined as/follo

Given an undirected complete graph= (V, E), a degree bound, ... (v) € N for each
vertexv € V and adelay(e) € Z* for each edge € E; find a tree;I" rooted ats spanning
nodes inl” of minimum tree cost, subject to the delay constraint (diatheter< A) and

the degree constraints,, .. (v) forallv € V.

Solving this problem using global knowledge is NP-comp|88j. For scalability reason, the prob-
lem needs to be solve in a decentralised manner. Thus, tHeruis to approximate the global solution
in a decentralised manner using partial information.

The main reason for choosing the problem is because a tsssslution, called ACDC [54], is
available. A short overview of ACDC can be found in Sectiof.2.2, a more detailed description will
be given shortly in Section 6.3.2.1. We adapt several cdsagged in ACDC in our solution, and call
the resultant protocalbMeshTree With this, we can perform a comparison between the mesbebas
approach and the tree-based approach. In the next subrseetipresent the dbMeshTree protocol. It is
followed by an evaluation of the trees built by dbMeshTred AGDC. We also evaluate the robustness

of the mesh-based framework compared with two tree resdorathemes.

6.3.1 dbMeshTree Description

We first provide an overview of dbMeshTree. Basically, itemds the framework in the following

manner.
e Provide a joining strategy for newcomers.
¢ Include an overlay improvement strategy, which is adoptechfACDC.

e Define the routing cost as the overlay delay from a node to #stirthtion (i.e. the root), and

include a path selection policy to help to obtain the dejiveze.

In the resultant protocol, the overlay is first randomly stiwed, similar to ACDC. Overlay members
then use periodic improvement to try to achieve the delaytd@nd minimise the tree cost. The protocol
is designed to be scalable. In particular, each reconfigurgrocess only involves the nodes that are
engaged in the operation. Only local information at the sadeised for decision making. In addition,
the measurement overhead per node is fixed, i.e. each ndtiscto probe only a small fixed number

of other members per improvement round.
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The remainder of this section describes each componeniésibTree. The next subsection (6.3.1.1)
presents the additional information required by dbMesbT&ection 6.3.1.2 discusses the overlay con-
struction process. Section 6.3.1.3 presents the core girtitecol, i.e. improving the overlay towards

the desired structure. Then, section 6.3.1.4 explains hewlata delivery tree is formed.

6.3.1.1 Notation and Node State

In addition to the basic information needed by the framew@&edction 6.2.2), a node, also maintains

the following information.

e Delay boundA. The target delay bound. We assume that it is provided by pbécation that

uses the protocol.

e The unicast delay betweeand each of its neighbours. Henceforth, we will d&e j) to represent

the unicast delay betweérandj.

e Routing cost for each valid path, i.e. the delay frote the root using an overlay path (we also
refer to this as the root delay). It is defined as the summatidhe delay of the overlay links in
the path. We us#& () to represent the overlay delay frano the root via its neighbout. This

information is carried in the PATHADVERT message.

¢ Maximum subtree delaw;, which represents the maximum delay frotu its farthest descendant.
CombiningA; with the root delay above enabléso estimate the current tree height for the tree
branch that is in. This information is propagated from a node to its Lgestn ancestors using the
SUBTREEUPDATE message.

e List of members (other thai's neighbours) in the overlay. The list contains nodes wifts local

scope and some randomly selected nodes. This informatigseis for overlay improvement.

We define the local scope for a nodeas in Figure 6.9. It includes's grandparent, siblings and
uncles on the delivery tree. Nodecan obtain the information in the following manner. Lt
parent ben. Nodep will inform = about its parent, siblings (whighlearned from its parent) and

children (excludingr). On receiving such information; can update its local region information
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Figure 6.10: lllustration of the notations on: (a) Mesh etaue and (b) Delivery tree structure

| Notation | Description |

A Target delay bound

Yi(4) Overlay delay from to the root via a neighbouy,

A; Maximum delay for subtree rooted at

H; Tree height contributed by tree branch consists pf

Table 6.2: Additional notations introduced by dbMeshTree

as follows: parent o is z's grandparenty’s siblings arer’s uncles; ang’s other children are’s
siblings. This information can be piggybacked on the REFRE®ssages exchanged between a

child-parent pair.

To learn about other overlay nodes, we use the gossip-style discovery technique as described
in Section 2.6.1.1. Basically, a node, sgymaintains a list of known members. Periodically,
1 randomly picks a node, say from the list and sends tp a randomly constructed fixed-size
member list (8 nodes in our implementation). Whearceives the list, it updates its own member
list, and replies ta with a list of members that it knows about. With this, eachewadll gradually
learn about other members of the overlay. Each node is @asdoith a heartbeat counter to

handle changes in the membership (see Section 2.6.1.1).

It is worth pointing out that a node does not keep the distamioemation to these nodes. The

node also does not try to keep an accurate view of the overtayglmarship.

In Figure 6.10, we show an example overlay mesh structurétendorresponding delivery tree. In
panel (a), the value beside each link represents the deldnedink. In panel (b), we show the values
of root delay and maximum subtree delay for each node in tira ff (root delay, maximum subtree
delay). We can see that the tree has a height of 6, i.e. fromotitalelay ofu or the maximum subtree
delay ofs.

Based on its root delay and the subtree delay, ri@d@ calculate the tree heigli,, contributed by

its tree branch. Specifically,

H; = Yi(pi) + As, (6.4)
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wherep; is i's parent node. Hence will know if it is on a tree branch that is within the delay baun

Assume that the delay bound for the example in Figure 6.10Th6re are three possible cases:for

e H; < A: This indicates that all nodes on the path from the roat tmdi's subtree descendants

fulfil the delay target. Examples of nodes that fulfil this diion arep, r, ¢, v, w andy.

e T,(p;) < AandH; > A: This indicates that nodes in the branch from the root upisodelay

bounded, but nodes undes subtree are not. Nodesz andz are in this category.

e T,;(p;) > A: The delay bound is violated byand its subtree descendants. For example, mode

6.3.1.2 Initial Overlay Construction

As mentioned earlier, doMeshTree first creates a randonmiypected overlay and relies on periodic
reconfiguration to achieve the desired structure. This@ecliscusses the growing of the overlay as
newcomers join in.

We assume that a well-known Rendezvous Point (RP) is alailalbootstrap new members into an
existing session (see Section 2.4). A newcoméirst obtains the information (the IP address) of the root
node, and a small list of overlay members from the RP. Ndden selects a number of members (limited
by its degree bound) from the list as joining targets, antibitds the request, reply and acknowledgement
sequence to each of the nodes. The reason for sending rautktigliests is to quickly locate a feasible
parent for:. In addition, the member list may be out-dated due to chaimgédse membership. The
number of initial joining targets is a configurable paramete

The main reason for using the random joining strategy is ¢wide a fair comparison with ACDC,
which begins with a random tree. However, the random styasdgp helps to distribute the joining
overhead among the overlay members. This avoids overlgadgingle node, e.g. the root, especially
during the early stage of a session where many nodes arg fikgin at about the same time. This also

serves as the worst-case scenario where distance infomaiout other nodes is initially unavailable.

6.3.1.3 Overlay Reconfiguration

Once joined to the overlay, each node (except the root) pada periodic improvement process to try to
achieve the target tree structure. The process is adaptextiie switch parent operation used in ACDC.
In particular, if a node finds that its descendants all lie within the delay boundébamH;), it will try
to minimise the tree cost by finding a closer parent; othexrwitswill try to find a parent that provides
shorter route to the root so as to minimise the tree height.

Nodei periodically selects a non-neighbour node (gpgis potential neighbour, and initiates a peer-
ing request sequence jo To select a potential neighbourfirst forms a fixed-size candidates set. The
candidates are chosen from the overlay memberg thaintains (see Section 6.3.1.1). The mixed local

and random node selection strategy (LR) described in Sebtib.1.4 is used. In particular, candidates
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are selected from either the local region or randomly frohreoknown members. The local/random
choice is made depending on a probability that favours leelction during the early stages (to im-
prove the overlay quickly) and random selection in later iovement rounds (to explore the search
space thoroughly).

Once the candidates are selectegstimates the distance between itself and these nodes.: N¢ste
obtains the routing information (path and cost) of theseesatiiring the probing process. By inspecting
the obtained pathg, can avoid choosing nodes that havi their paths (indicating these nodes are
descendants a) as potential parents. Nodeselects a potential parent,from all the valid candidates

using one of the following conditions, based on the givereard

1. H; < A:iwill selecty if d(i,7) < d(i,p;) andY;(j) + A; < A, i.e. j is closer toi thani’s

existing parent while the new tree height tas still fulfilling the delay bound.

2. H; > AandY,(p;) < A:iwill selectj if Y;(j) < Y;(p;) andd(i,j) < d(i,p;), i-€. j provides

a shorter or equal distance to the root and it is closeéthanp,;.
3. Ti(ps) > A: i will selectj with the smallest(;(j).

4. Otherwisej is randomly chosen.

In the first three casess trying to replace its existing parent with a better onetéirms of cost or
delay). Thus will send the PEERINGREQ message tpindicating a parent request. Noglill accept
1 as long as it still has spare degree, or if it has a non-treghbeiur which can be dropped to accepf
j acceptg’s request; will set j as its parent. For its old parent, Saythere are two possibilities: first,
if the new link with j does not result in degree violationsends a PARENWITHDRAWAL message
to k£ to change the link between them to a non-tree link; otherwisends a LINKDROP message tb
to drop the link.

In the fourth case above, since there is no node that is lib#tei’s existing parent; will try to setup
a non-tree link to improve the robustness. However, theestjs only sent if still has spare degree for

a new neighbour. In this casgpnly accepts if it still has spare degree.

6.3.1.4 Delivery Tree Derivation

As discussed in Section 6.2.4, the routing process dissgashe path information to all nodes. Each
node validates and stores the paths from each of its neighliwuhe incoming routing base. Given
multiple valid paths to the root, each node selects the tehtyith a route selection policy. To explain
the policy, we first define &easiblepath as the path that gives a resultant tree height withirdéhey
target,A. Thus, for a nodé, a feasible path via a neighbopwill fulfil the relation 1;(j) + A; < A.

The following policy will be used by to choose the best routing path.
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1. First, choose a feasible path. If more than one such pasitseselect the one provided by the

nearest neighbour.
2. Otherwise (no feasible path), select the path that pesvide smallest root distance.

The next hop (i.es’'s neighbour) of the chosen path will becomi&ssdelivery tree parent. In case of a
tie, the IP address of the next hop nodes will be consideteinbde with the smallest IP address will
be chosen.

The policy essentially prioritises the delay over the trestcin an effort to achieve a delay-bounded
tree that has low cost. The first condition makes sureifaad its subtree nodes are within the delay
bound. If there is more than one feasible patbelects the one that reduces the tree cost — our second
optimisation objective. However, if no feasible path ex{ste. the second condition), the path that yields

the smallest tree height will be used.

6.3.2 Performance Evaluation

We evaluate dbMeshTree from two perspectives: (i) qualitthe tree constructed; and (ii) robustness
of the protocol. For the overlay tree quality, we compare dsWree against ACDC. In terms of robust-
ness, we investigate how fast the overlay tree can be relsafiter some nodes depart from the overlay.
We compare dbMeshTree against the grandparent and pretetwrecovery techniques studied by Yang
and Fei [107].

6.3.2.1 Comparison of Tree Quality

We first describe ACDC. Like dbMeshTree, ACDC initially ctmets a randomly connected tree. It then
relies on a periodic switch parent operation to improvettée.tThe switching conditions in dbMeshTree
are borrowed from ACDC. Unlike dbMeshTree, ACDC maintainyya tree structure throughout the
session. In addition, the way that it selects the switchimgdadates is different from dbMeshTree. In
dbMeshTree, the candidates are selected from a predeficeddégion and nodes learned via the gossip-
style discovery protocol. On the other hand, ACDC uses anigcle calledRanSul{Section 2.6.1.1) to
distribute a set of switching targets (called a probe setyéanodes on the tree. All the probe sets within
each epoch are formed to follow an ordering which makes ibissjble for two nodes to simultaneously
pick new parents that will introduce a loop in the tree. Assule ACDC does not keep a root path for
loop prevention.

As ACDC and dbMeshTree use different techniques to selechlitching candidates, we also con-
sidered a tree-only version of dbMeshTree to prevent bialagACDC. Specifically, this version of
dbMeshTree maintains only the delivery tree structurdeams of a mesh. To achieve this, when a node
performs a switching operation, it drops the link to its olfgnt. Hence, the tree structure is preserved.

We have found that there is no significant difference betwhenvariant of dbMeshTree and ACDC.
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| Group Size| dbMeshTree] ACDC |

64 95 95
128 97 94
256 91 83
512 71 50

Table 6.3: Success rate (%) for ACDC and dbMeshTree

This shows that the performance differences observed ifotlosving results are not due the difference
in the way that the switching candidates are selected. Beednly version of dobMeshTree is therefore
omitted from the following discussion.

In the experiments, all members randomly join the overlafinithe first 50 seconds. We consider
four group sizes: 64, 128, 256 and 512. The first member igydatéd as the tree root. Each run
last for 3600 seconds, sufficient for the overlay tree toiksab For both ACDC and dbMeshTree, the
number of switching candidates is set to 5 per improvememdaoFor dbMeshTree, all newcomers use
only one joining target (see Section 6.3.1.2), so the oyaslanitially a tree (until extra links are added
when nodes begin their improvement process), as in ACDCdBbteshTree, the improvement period
is 30 seconds. For ACDC, we use a smaller period (i.e. 15 sisyavhich is needed to achieve similar
performance compared to dbMeshTree. We report results fhemi0100-node transit-stub topology
(TS10k-0) described in Section 3.2.2.

We first look at how well the protocols can achieve a delayAulaad tree. In the experiments, all
members are assigned a maximum out-degree of 10 as in theatwal of ACDC [53]. To provide a
tight delay bound, we use the root-diameter from trees tatled by the Compact Tree (CPT) algorithm
(see Chapter 4). Specifically, for a given set of members,rstaréin CPT to calculate a low root-diameter
tree. The root-diameter of the tree is used as target delaydfor both ACDC and dbMeshTree, running
with the same set of members. For each group size, we con@lQdhdependent runs.

Table 6.3 depicts the percentage of trials in which the matosuccessfully achieve the delay targets.
It is clear that the success rate using dbMeshTree is cenglishigher than ACDC. We believe this is
due to the multiple paths property of the mesh. We explamhih the following example. Consider
a node; which has not achieved the delay target. In a tree, each nadlgams a single path (via its
parent) to the root. Thug's delay performance can be improved if: (i) it switches toeétdr parent; or
(ii) the delay performance of its current path is improved.te other hand, in a mesh, a node maintains
multiple root paths. Hence, besides the above two caseay improve its delay when one of its mesh
neighbours obtains better delay performance. In other syangintaining multiple paths at a time gives
better chances of improving the overlay.

The result also shows that the distributed solutions caalmatys achieve the delay targets. We note
that the centralised algorithm (CPT) computes trees usiadull knowledge of the network topology,
the membership and the degree bound of each member. On #réhatid, ACDC and dbMeshTree only
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Figure 6.11: Quality of the overlay tree: (a) RMP, (b) Trestaatio, (c) Maximum link stress, and (d)
Convergence properties

have partial knowledge of this information. In additione tlegree bounds of the nodes also limit the
way that the overlay can be reconfigured. These limitati@t®ine more prominent as the number of
members increases. This is confirmed by the drop in the ssicags with the group size, as shown in
Table 6.3.

We also examine the actual delay performance, in terms of R¥® Chapter 3). In Figure 6.11 (a),
we plot the RMP averages over experiments (for each groa) siavhich the protocols fail to achieve
the delay targets. From the figure, we can see that the delaydb@epicted by CPT's RMP) is rather
tight, i.e. just over 1.2 times of the maximum delay usingdirect unicast connections. The RMP for
ACDC and dbMeshTree are always less than 1.4, showing teatgbrform reasonably well.

We examine our second optimisation objective: the tree redist of the trees build (see Chapter 3).
Figure 6.11 (b) shows the result. From the figure, we can gbgbat dbMeshTree and ACDC always

yield trees with lower cost than CPT, and dbMeshTree hasdbegerformance. The cost ratio for both
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distributed protocols increases with the group size. Ireotd see how well the protocols optimise the
tree cost, we also consider trees computed by the centtélagristic for the degree-bounded, minimum
cost tree problem [67] (see Chapter 4). The centralisedighgo indeed gives overlay trees with very
low cost, compared to the two protocols. In particular, tbstcatios range from 1.1 to 1.2 for the group
sizes. However, the corresponding RMP values range frono32.

We also conduct some limited experiments using smaller artwopologies (e.g. 600 and 2000
nodes). For these topologies, we found that both ACDC andediiWlree can produce trees with low
cost while keeping the delay within bound. This suggests ttia delay target is easier to realise in
certain network conditions, and thus allows the nodes try@art cost minimisation. This is in line with
the observations made by Kostic et al. [54].

Figure 6.11 (c) depicts the worst-case stress of CPT andrtteqols. We can see that dbMeshTree
is marginally better than ACDC in most cases, and their stpesformance is considerably lower than
CPT. The performance advantage of the protocols increaiteshe group size. The observation is in
line with our previous observation that trees with lowentaso have lower stress (Chapter 5).

In Figure 6.11 (d), we show the evolution of RMP and tree casbrof dbMeshTree and ACDC
for an experiment with 512 members. The delay target for ttpeement is set to 1.2 times of the
maximum delay achieved using a unicast star overlay. Frerfigre, we can see that the RMP and cost
ratio increase quickly as members are joining the overlajs 1 because the initial overlay is randomly
connected. In the first 200s, the RMP values of both protodetsease rapidly to about a value of 2.
After that, dbMeshTree continues to improve its delay artdeae the delay target at about 750s. On
the other hand, ACDC achieves the delay target after abdlsl 7The cost ratio curves show a similar
trend. We note that ACDC uses a smaller improvement peribgétonds compared with 30 seconds

for dbMeshTree). This indicates that the dbMeshTree cagasemuch faster than ACDC.

6.3.2.2 Robustness of the Overlay

In this section, we investigate the problem of restoringdbgree-bounded overlay tree upon node de-
partures. As mentioned in Section 6.1, it is important thatrecovery process does not result in a degree
violation in any node. This problem has been considered mg¥ad Fei [107], in the context of tree-
based protocols. Here we compare our mesh-based failusgagcscheme (using dbMeshTree) with

the two approaches that have been shown to perform the bistiirnpaper:

e Grandparent schemeThis is a reactive approach where the tree restorationegeostartsfter
node departures. The grandparent scheme was initiallyopeapby Deshpande et al. [26], along
with several other variants (grandparent-all, root, ralgtas described in Section 6.1). Each of
these schemes differ slightly in the way that a recovery thockges its first rejoin target. In [107],

Yang and Fei show the grandparent scheme outperforms @hants. In this scheme, the children
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Figure 6.12: The proactive recovery scheme

of the departed node first try to attach to their grandpa@me.grandparent will try to accommo-

date them as long as it has spare capacity. Otherwise, iteditect them to its descendants.

The ACDC recovery process is another version of a reactigecgeh. Instead of using the grand-
parent as rejoin target, the target is arbitrarily chosemfthe rejoining node’s probe set. Since
both approaches differ only in their rejoin targets, wedadithat there will be no significant differ-

ence in the recovery speed. Hence, we only consider the gaaat scheme in the experiments.

e Proactive schem§l07]. Unlike the reactive approach, the proactive appngalans for the de-
parturesdbeforethey happen. The basic idea of Yang and Fei's scheme is tbhtrem-leaf node
precalculates a parent-to-be for each of its childrenduttie course of the session. Thus, when
a non-leaf node actually departs, its children can immetjiaequest to their respective parent-
to-be. If a node does not have a parent-té-itewill try to reattach to its grandparent. Unlike the
grandparent scheme above, the grandparent node will usegttrial degree information of its

subtree nodes to redirect any request that it fails to accept

In[107], Yang and Fei use the heuristic for the degree-bedmdinimum cost tree problem [67] to
compute the parent-to-be information. Consider the cabégimre 6.12 (a) where is performing
the computation. Node will try to find a degree-bounded minimum spanning tree raateits
parentp that connects all its childrem{b andc). For example, see Figure 6.12 (b). If a feasible
tree cannot be found using only these nodes (due to degre&aimts),x’s grandchildren will be
used (see Figure 6.12 (c)). The distance information usedibyprovided by the nodes involved.

This scheme has been shown to outperform the grandparentlagidschemes proposed in [26].

In the experiments, we model the departure event as a leav. éhhis is because we are interested
in the recovery time — the duration from when a node losesdtemt until it finally attaches to a new
parent. When a node leaves the group, it will inform all itgghbours about this intention; once it has

left the group, the node will not reply to any message sentd to i

2This can happen under some cases [107]. First, when a nogieshsined the tree, and its parent leaves before it finishes
computation. Secondly, it is possible that the parent wadtsy with the delivery task and scheduled the computatioa fater
time.
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In each experiment, we first run dbMeshTree to create anaytde before generating any departure
events. The tree will be used by the grandparent and preastivemes, so that all schemes begin with
the same structure for any departure event. After that, a imodindomly chosen to leave or rejoin (from
the nodes that have left) the overlay. The rate of joininglaading is modelled as a Poisson process as
in [107]. We use a rate @f/minute, which means that on average, there is a node joining onlgatie
overlay tree every 10s. The out-degrees of the nodes areromyf distributed between 2 and 6. Since a
smaller degree results in a taller tree with fewer leaf nptiheschances that a departing node is a non-leaf
node is higher. Each simulation lasts for two simulated BoWe present average results obtained from
20 independent runs.

Figure 6.13 (a) plots the result for the average recoverg timhich is the average time for an affected

node to find a new parent. Itis clear that the grandparentseladways has the worst performance. This
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| | dbMeshTree| Proactive Schemé Grandparent schemle

Stage 1 recovery/attach to parent-to{be 80.36% 89.04% N/A
Stage 2 recovery 15.93% N/A N/A
Stage 3 recovery (rejoin recovery) 3.71% 10.96% 100%

Table 6.4: Breakdown of the types of recovery perform by tiffergnt schemes

is expected since when a non-leaf node departs, all of itdremi will try to attach to the grandparent.
Due to the degree constraint, the grandparent can only anodate some of these nodes. Consequently,
many nodes have to search through a number of candidate hefl@® attaching to a new parent.
The result also shows that in most cases, our mesh-basetedam actually outperform the proactive
scheme. We believe this is because our mesh-based scharsemfifre alternatives for a recovery node,
i.e. either via the node’s direct neighbours (stage 1), ative node’s children’ neighbours (stage 2). To
confirm this, we examine the breakdown of the types of regoperform by these three schemes.

We first recall the types of recovery perform by each of theestds. Our mesh-based recovery
scheme consists of three recovery stages: stage 1 wherev@rgoode tries to attach to a direct neigh-
bour; stage 2 where the node tries to attach to a neighbous @hild; and stage 3 where the node
performs a rejoin recovery. Correspondingly, the proacsistheme consists of two stages: the node first
tries to attach to its parent-to-be; and then tries a repiovery. The grandparent scheme only performs
rejoin recovery. Table 6.4 depicts the breakdown of thevegotypes, obtained from experiments with
groups of 512 nodes. It is clear that all the recoveries peréal by the grandparent scheme are rejoin
recoveries. For the proactive scheme, of all the recovenigde, 10.96% are rejoin recoveries, while
the rest use parent-to-be recovery. For our mesh-basethscloaly 3.71% of all recoveries are rejoin
recoveries, while stage 1 and stage 2 recoveries make upith@nder 96.29%. As explained above,
rejoin recovery typically requires a longer recovery tim@n the other hand, the proactive scheme’s
parent-to-be recovery and our stage 1 and stage 2 recovew alnode to attach quickly to an eligi-
ble node. The fact that our scheme uses the fewest rejoingges explains the better recovery time
achieved.

Figure 6.13 (b) plots the corresponding average number dés@ontacted by an affected node
during the recovery process. From the figures, we can obseate¢he grandparent recovery scheme
always has the worst performance. The fact that both dbMeghdnd the proactive scheme require a
much smaller number of contacts for tree restoration coatpar the grandparent scheme also partly
explains the longer time taken by the grandparent scheme.

Figure 6.13 (c) depicts the cumulative distribution of tkeavery time for experiments with 512
nodes. Results for other group sizes show a similar trendcaiesee that for dbMeshTree, about 85%
of the recoveries are done within 2s and about 99% of recesare done within 5s; for the proactive
scheme, the percentages are 70% and 95% respectively; atitefgrandparent scheme, the percent-

ages are 45% and 80% only. While this result indicates thatmash-based approach can provide faster
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Figure 6.14: Protocol overhead performance

recovery time, it also shows that the worst-case result @igcovery time more than 5 seconds) may
not be acceptable. Examining the traces of the simulatect egeeals that the worst results are due to
multiple simultaneous departures. In particular, thisgeags when a node, initiates a rejoin operation
to a recently departed member. The departed member wilespond tac’s request, which will eventu-
ally timeout and trigget’s rejoin mechanism. Multiple such cases result in a longvecy time. This
suggests that a control plane only solution is not suitadri@brking environments with high churn rate.
However, it can be coupled with a data plane solution suctiRM RL0] (see Section 6.1) to improve the

transient performance.

6.3.2.3 Protocol Overhead

Figure 6.14 (a) illustrates the protocol overhead propfertglbMeshTree, obtained from an experiment
with 2048 members. Each member can have up to 10 mesh neighblouthe figure, we show the
control messages sent and received per overlay node (ir) 8bgag a multicast session. The following

settings are used by dbMeshTree.
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e Periodic refresh between a neighbouring pair: 5 seconds.
e Periodic routing update: 30 seconds.

e Periodic overlay improvement: 30 seconds. The gossigstgtles discovery runs every 30 sec-

onds.

We can observe that the normal operating point is around 905, kwhich is reasonably low. The
overhead is largely contributed by the refresh messagegebatthe neighbouring nodes. Periodically,
the overhead shoots up to values from 1.5 to 2.0 kbps. Thissepts the control messages used during
the routing updates, overlay refinement and gossip-styde discovery. To see how the overhead scales
with the group size, we plot the average overhead for gragrainges from 32 to 2048 in Figure 6.14 (b).
We can see that the overhead increases very slowly from @bblbps for 32-node overlay to less than
0.6 kbps for a group size of 2048. This is because, in our @apa node only communicates with
its neighbours, and a small fixed number of other nodes ditsrigmprovement process. Increasing the
group size only marginally increases the overlay path kebgtween the nodes. This slightly increases
the size of messages that carry path information, and tleusases the overhead slowly across the group
sizes. Note that simulations run with 2048 members typidake a considerable amount of time, thus

our later experiments only consider group sizes of up to Iiies.

6.4 Chapter Summary

This chapter has described a framework for creating andtaining a degree-bounded overlay trees.
The tree is embedded in a degree-bounded mesh. Our meghdpmeach provides several advantages
over a tree-based solution. First, it improves the robisstrod the tree. In addition, the mesh is more
flexible in achieving a better configuration.

As a case study, we devised a protocol, called dbMeshTraeuies the framework to build a
low cost, delay- and degree-bounded overlay tree. The tesion problem is NP-complete, even if
computed centrally with full network and membership infation. Our simulation results show that
dbMeshTree can provide a higher success rate in achievingléelay bound compared with a tree-
based solution called ACDC. In addition, it provides tredgthwower cost and stress. We also compare
dbMeshTree with two tree-based recovery schemes in ternesotery speed: dbMeshTree outperforms
both schemes. More importantly, the control overhead optb&ocol is reasonably small, which allows
it to be considered for large-scale applications.

The proposed framework is generic and can be used for othercteation problems. In the next
chapter, it is used in the degree-bounded minimum delaygreblem. In Chapter 8, we adapt the

framework for a multiple tree creation problem.
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MeshTree

This chapter considers the problem of constructing a mininnoot-diameter degree-bounded overlay
tree in a distributed manner. In contrast to the root-di@meind degree-bounded, low cost tree problem
studied in previous chapter, our current problem aims taiokd degree-bounded tree with the lowest
(rather than bounded) root-diameter. This new problemaddses not explicitly try to minimise the tree
cost. This problem is NP-complete [60]. A low root-diametee is useful for single-source applications
that require fast data delivery, for example, critical gvaatification.

This chapter is organised as follows. The next section dsesi some issues related to the tree
creation problem. The discussion includes two issues — tbedy problem and delay-cost trade-off,
which can happen in some distributed degree-bounded,-dpiyised trees solutions. In Section 7.2,
we introduce a concept called a MeshTree that addressebdkie awo issues. The section also analyses
the potential of MeshTree by using a simple centralised @mgntation. Section 7.3 then presents and

evaluates a distributed protocol for MeshTree. Finallgt®a 7.4 concludes this chapter.

7.1 Building Minimum Root-diameter Degree-bounded Trees

This section discusses the minimum root-diameter degoeedied tree creation problem. We begin with
the problem statement. Then, we look into the differencésdren this problem and the root-diameter-
bounded problem. This is followed by a discussion on sewex@ting efforts. We end this section

by analysing two limitations, called the greedy problem dethy-cost trade-off, that can affect some
distributed tree building proposals. Our proposed sohytideshTree, is explicitly devised to solve these

two problems.
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7.1.1 Problem Formulation

Using the definitions given in Section 6.3, the minimum rd@meter degree-bounded tree problem can

be stated as follows.

Given an undirected complete graph= (V, E), a degree bound,,,,(v) € N for each
vertexv € V and a delay(e) € Z* for each edge € FE; find a tree, T rooted ats
spanning nodes if of minimum root-diameter, subject to the degree constsaiijt,... (v)

forallv e V.

In [60], Malouch et al. proved that the above problem is NRipkete even under a centralised com-
putation model where full topology information is availabFor scalability reasons, we are interested in

a distributed solution.

7.1.2 Why not the Root-diameter Bounded Solution?

In Chapter 6, we show that it is possible to approximate degainded trees that have bounded root-
diameter using the distributed ACDC [54] or our dbMeshTremppsal. In the chapter, we use the root-
diameter obtained from the centralised Compact Tree (CIgjoyithm [87] as the target delay bound for
both ACDC and dbMeshTree, and show that they could buildtitest have root-diameters that are close
to those of the CPT. This prompts an interesting question a-acdelay-bounded solution (i.e. ACDC
or dbMeshTree) be used to minimise the root-diameter, uecorrent problem?

To use dbMeshTree or ACDC, one would need to provide an apigteparget delay bound. Assume
that there is an optimum solution which provides minimunt+gi@ameter degree-bounded trees. The de-
lay target needs to be small enough to avoid over-estimativle big enough to avoid under-estimation
of the delay given by the optimum solution. It is clear thaeweestimation is undesirable, as it will
result in trees with large delay. To understand the impdaisder-estimation, we conduct the following
simulation experiments.

We used dbMeshTree to create 100 overlays for a group sizE2oth top of the 10100-node transit-
stub topology (TS10k-0 as in Table 3.1). Figures 7.1 (a) &dlépict the delay performance in terms
of RMP, and tree cost ratio respectively. In the experimentsran dbMeshTree with delay bounds
of 0.5, 0.75 and 1.0 times of the maximum root-diameter olethiusing a unicast star overlay (these
are represented by the 0.5Q 0.75 x and 1.00x curves in the figures). This ensures that the delay
target is always under-estimated. We also include thetsesbtained using the centralised CPT. From
Figure 7.1, we can observe that dbMeshTree’s RMP and treeatasperforms much worse than those
of CPT. More importantly, dbMeshTree’s RMP values vary lesw 1.4 to 3.0, compared to the much
smaller range of 1.2to 1.4 given by CPT. This indicates thideshTree provides an unpredictable delay
performance. The poor performance of dbMeshTree can baiesgl in terms of how it works (which

also applies to ACDC). In the protocol, a node keeps trackefdurrent tree height. If the tree height
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Figure 7.1: Performance of dbMeshTree with under-estidiatget delay bound: (a) RMP; and (b) Tree
cost ratio

is smaller than the delay target, the node will have morelileransformation options. On the other
hand, if the tree height exceeds the delay target, the naderdg switch to a lower delay parent. The
smaller the delay target, the fewer the possibilities farges to the overlay, and thus the performance
is poor. Overall, the results show that the root-diametemoled solution is not suitable for cases with

an unknown delay bound.

7.1.3 Prior Work

The problems of creating degree-bounded trees with smalbonded root-diameter have been studied
under both centralised and decentralised environment&7ln Shi et al. propose the centralised CPT
algorithm that we use extensively in our performance evedoa. A detailed description of CPT can
be found in Chapter 4. In [60], Malouch et al. consider theagddounded version of the problem in a
mixed end hosts and proxies system. They designed a hewadtition that is similar in nature to CPT.

A centralised algorithm can be used in conjunction with aredised tree building protocol such as
ALMI [72] or HBM [80] (see Chapter 2). However, a centraliggabtocol is only suitable if the number
of members are very small, e.g. within a few tens of membehss i partly because the centralised al-
gorithm requires the complete distance matrix of the membere distance information can be obtained
using active end-to-end measurement technique (e.gpithg program). Each measurement typically
requires two nodes to exchange some probe messages, whisthnee a certain amount of network
bandwidth. For am-node overlayQ(n?) measurements will be needed to infer all the distances. This
limits the scalability of the solution. In recent years,rhbave been efforts to develop scalable distance
estimation system, such as IDMaps [35] and the coordinasedbglobal network positioning [68] (see
Section 2.7). Indeed, with the maturity of these systenesgthtance information can be obtained more
easily. However, the overlay membership and underlyinggot conditions can change over time. Each
change may require a recomputation and redistributionebiferlay structure. This can still make the

centralised solution impractical.
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As discussed in Chapter 2, several decentralised propesaisfor the minimum root-diameter
degree-boundedtree problem. For examples, TBCP, Hos&vatth-trees and Banerjee et al.'s scheme.
For practical reasons, these protocols limit the knowlezfgeach overlay node. In particular, each node
knows only the distances to a small number of other membars.t®the limited topology knowledge,
the initial overlays typically have poor performance. Thhgese protocols improve upon the initial struc-
ture with localised incremental overlay reconfiguratiorhey offer different improvement strategies:
switch-trees and HostCast use simple parent switching;rB@opts a localised central reconfiguration
strategy; while Banerjee et al. opt for a more flexible transfation scheme. These strategies fulfil
another requirement for practicality: each operationésldo the nodes involved, i.e. there is no global
coordination between the nodes. Our comparison study ipteh& reveals that Banerjee et al.'s scheme
outperforms the other proposals in creating low root-dig@miees. However, the tree may have poor
average delay from the root to its members. We have seenuhanbanced version of TBCP performs
better in terms of average delay. For both measures, switels-and HostCast perform the worst.

In this chapter, we propose a distributed mesh-based idtmcreate low root-diameter trees. The
protocol has several similarities to earlier mesh-basetbpols, such as Narada [21] and Gossamer [18].
In particular, the protocol improves the overlay from a ramdy connected structure through periodic
improvement, and uses the path-vector routing protocoktp bbtain the delivery tree. However, the
overlay improvement process is significantly differennfirthese protocols. We note that both Narada
and Gossamer are designed to construct multiple souragfisgeees for many-to-many multicasting.
Thus, their optimisation process is tailored to improvelad trees involved. Our protocol, on the other
hand, is designed for single tree optimisation. Indeed,étisy to adapt Narada and Gossamer for single
tree data delivery. However, doing so essentially traasltte technique to the parent switching strategy.
We explain this in the case of Narada. As discussed in Se2t®@, a Narada node, sayperiodically
estimates the benefit of adding a new overlay neighbour; sdyink (i, j) will be added if doing so
offers a substantial performance gain. Nadmlculates the gain as the delay improvement to all other
members in the overlay that can be observed after {ink) is added. To optimise for a single tree,
needs only consider the delay gain to the tree root. Thuswane&ghbour that offers a shorter route to
the root will be added, and will becomis delivery tree parent. This is similar to the parent swiitgh
used in switch-trees and HostCast (except that in switebstior HostCast, nodewill have to drop
its old parent immediately after switching to the new parevitile Narada will drop any unused links
periodically).

The parent switching approach is arguably the most basighlited improvement solution. In the
next section, we analyse its behaviour in an effort to urtdadsthe limitations in distributed tree build-

ing. Our own proposal, MeshTree, is driven by the observaddtions.
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Figure 7.2: The greedy problem due to degree constraintlayagtimisation

7.1.4 The Greedy Problem and Delay-Cost Trade-off

Greedy Problem The optimisation problem considered attempts to minirtigedelay from the tree
root to its farthest descendant. With parent switchingifabé delay-based switch-trees and HostCast),
this can be achieved as every node tries to get as close ablpasshe root. This delay-based switching
is greedy in nature as a switch will only be made if a betteepgis available. In a distributed envi-
ronment, nodes need to make decisions based on limitedagyp&howledge. Besides, there can be
little coordination between the nodes during the procesemiining the degree constraints and these
limitations, the greedy nature of delay-based switchingresult in poor overlay structures. We call this
thegreedy problem

The greedy problem can be explained using the example irréig2 (a). The figure shows a tree
rooted ats. Assume that the distance between any two nodes is propaltmits distance in the drawing.
We can see that, which is topologically close te, is positioned undet. This results in a long path
from s to x, which gives poor delay performance. This can happenjafs in the overlay before,
and has attached to the tree &s child. Obviously,s provides the best delay performance. Thwys,
will greedily stick tos. The same case also apply to other children.d0fVhens has reached its degree
bound, other nodes such awill be prevented from attaching ta This excludes the possibility for a
better configuration, such as the example in Figure 7.2 (b).

A simpler version of this problem is the triangle problemcdissed in Section 2.2. To recall, it
arises when the inefficient structure involves three camsexnodes along the delivery path. While this
problem can easily be solved by using the promotion operdticchild swaps position with its parent,

as in Figure 2.4 (c)), there is no such simple solution forgireedy problem discussed above.

Delay-cost Trade-off The configuration in Figure 7.2 (b) suggests that the greediplem can be
avoided if the nodes are connected based on their relatiséiggoon the underlying topology, i.e. if
nodes are clustered using their proximity measures. Shreaim is to construct a tree, we can view
this as the minimum spanning tree problem with the delay eetwtwo nodes as the cost function. In
Chapter 5, our evaluation results show that distributedtsmis such as HMTP can yield trees with

reasonably low cost. However, the results also show thawvectst tree often has a higher end-to-end
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delay, i.e.delay-cost trade-off

To summarise, the discussion points out that delay-basichsémg can be easily trapped in the greedy
problem. This results in poor overlay performance. Onemt@ksolution for the greedy problem is to
create a low cost tree. Unfortunately, a low cost tree doés@cessarily provide low latency, which is

the objective of our tree creation problem.

7.2 The MeshTree Concept

This section presents the concept behind MeshTree. In ttisualsection (7.2.1), we develop an overlay
structure that addresses the above two conflicting probléms proof of concept, we devise a simple
centralised algorithm to create the structure, and compagainst CPT, in Section 7.2.2. A distributed

version of the solution will be given in Section 7.3.

7.2.1 MeshTree Overlay Structure
The propose overlay structure is based on two simple ideas.

1. To solve the greedy problem, the structure must contamwabst tree which connects nodes that

are topologically close together. The tree is calbedkbondree, and is rooted at the souree,
2. To improve the delay property of the backbone tree, sholittks are added on top of the tree.

Essentially, this results in a mesh overlay. To fulfil the @egconstraints, the mesh is degree-bounded
based on each individual node’s capacity limitation. The ttelay tree can then be obtained from the
mesh as the shortest path tree rooted &te will refer to this idea as a MeshTree.

Figure 7.3 illustrates the concept of a MeshTree. In parjeM{a show a low cost tree rooted gt
connecting nodes fromup to f. An overlay link (s, e) is then added to form the mesh in panel (b). The
figure also depicts the length of the overlay links. Now, ie&sy to see that the tree in panel (a) has a
root-diameter of 6 units, i.e. the path frasnto f. On the other hand, the shortest path tree calculated
from the mesh in panel (b) will reduce the root-diameter & Riunits (see panel (c)).

We will examine the delay property of MeshTree overlay witbeatralised implementation in the
next section. Here, we look at a more important question: arabuild the MeshTree overlay in a

distributed manner? Our answer consists of three parts.

1. Creating the low cost treeAs shown in Section 5.2.1.1, simple parent switching cedplith a
suitable node selection strategy can build trees that leasonably low cost. For example, HMTP

and variants of switch-trees that use the mixed local anda@mnode selection strategy.
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Figure 7.3: lllustration of the MeshTree concept: (a) A lavsttree; (b) Adding a linKs, ¢) to become
a Mesh; and (c) The low delay tree

2. Adding the shortcut linksFirst, each overlay nhode can easily maintain its overldgydizom the
root, s (as the sum of the overlay links’ delays fronto the node). With this, a simple technique

can be developed to add links that improve the delay perfocama

3. Obtaining the low delay tre@With the mesh structure, the framework presented in Ch&ptan
be used to maintain and obtain the data delivery tree. Theestigath first path selection policy

will provide the low delay tree.

At this point, we consider if the compact tree structure cammbtained in a distributed manner. We
first review the CPT algorithm. The algorithm maintains aipétree which grows at each iteration until
all nodes are included in the tree. Thus, the nodes can bgegddnto two sets: (i) on-tree nodes; and
(i) non-tree nodes. To begin with, the partial tree cordanly the root node. At each iteration, the
algorithm adds a non-tree node to the partial tree. The teelemde is such that adding it will result in
the least increase in the partial tree’s delay, while présgrthe degree constraints. It is clear that the
process requires a priori information of all the memberd, taeir distance matrix.

Among the existing distributed efforts, we believe that 8dee et al.'s scheme [9] can best achieve
the compact tree structure. In the scheme, every node riraritee overlay delay to the root and its
subtree delay. Based on this information, a node will try éof@rm a transformation (e.g. a switch-
ing, swapping or promotion operation as explained in Sai6.1) that improves its delay to the root
while not increasing the overall tree height. Each tramafdion improves the tree, until the tree finally

converges. In Section 7.3.6, we will compare our altereadipproach to their solution.

7.2.2 Centralised Implementation

As a proof of concept, we modify the centralised mesh geiweraigorithm (GreedyMesh) introduced
in Chapter 4 to create the MeshTree structure. Figure 7 wshwe algorithm.

The algorithm works as follows. To start with, it generatelegree-bounded minimum spanning tree
(line 1). This serves as the low cost backbone tree. Theitligothen calculates the available degree
at each node before entering the main loop (line 7 to 24). iwitie loop, a new link (i.e. the shortcut
link) is added to the current overlay at each iteration. Tihesen link is the one that gives the largest

delay improvement (in terms of the sums of weighted gainsetdydto all other nodes) with respect to
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Algorithm : Centralised MeshTree Construction
Input: Complete graph G(V, E), Degree constraints dy,q4(v), The root node, s
Output: Connected degree-bounded mesh G'(V, E'), E' C E, s.t. dpmaz(v)Vv €V
CMESHTREE(G, dmag)
genDBMST(G, dinez) := Generate a degree-bounded minimum spanning tree from G subject to
dmaw
getNode(S) := Get a node from the given set, S
sptAlg(u, G) := Compute the shortest path distances from w to all other nodes
dysed(v) := Current used degree for vertex v
dspare(v) := Current spare degree for vertex v
F := Set of vertices with spare degree, dspare(v) > 0
D,, := Set of shortest path delays from u to other nodes
Uy := Delay gain for w if a link to v is to be added
G'(V,E'") «— genDBMST(G, dinaz)
foreach v € V
dspwre(”) — dmaw(”) - dused(”)
F—0
foreach v € V A dgpare(v) > 0
F — FU{v}
while |F|> 1
u « getNode(F')
D, — sptAlg(s,G")
foreach v #u A (u,v) ¢ E' A\veF
G" — G'(V,E'"U{u,v))
D!, — sptAlg(s, G")
g0 /* g:=gain */
foreach w € V'\ {s}

g g+ 2 D)

)
)
)
)
)
)
) Uu,v —4g

) b«— argmax { Uy, : Yo € F} /* b:= best selected node */
)

)

)

)

)

)

)

ool o=zl

G — (V,E"U (b,u))
dspare(u) — dspa,re(“) -1
dspm‘c(b) — dspm‘c(b) -1
if dpare(u) =0

F — F\ {u}
if dpare(b) =0

F— F\{b}

Figure 7.4: The centralised MeshTree algorithm

the sources. Note that a link will only be considered if adding it will nsult in degree violation. The
algorithm terminates when there are no more feasible ligkeerall, the algorithm differs from the one
given in Chapter 4 only in two aspects. First, it explicitlyes the low cost tree as the initial structure
(line 1). Then, when calculating the tree delay, it consdeily the delay from the sourceto all other
nodes (line 9 and 12). Thus, we refer the readers to Chapteraldetailed analysis of the algorithm.

Given the degree-bounded mesh, a shortest path algoritioh,as Dijkstra’s [23], can be used to
obtain the low delay tree rooted at

We compare the delay property of MeshTree overlays with dhedelay trees built by CPT. We
ran simulations on nine 1000-node topologies (see Sect@2)3 The group sizes range from 32 to
256. Figure 7.5 depicts two representative results (fromdiiferent topologies) in terms of RMP. We
recall that RMP represents the ratio between the maximumayvdelay and the maximum delay using
unicast froms to all other nodes. Each data point to be shown is the averfdsfeindependent runs. We
found that both algorithms often yield comparable perfaroea There are cases where the centralised

MeshTree outperforms CPT (e.g. Figure 7.5 (a)); while oreottcasions, CPT performs better (e.g.
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Figure 7.5: Representative delay properties of the césadhhlgorithms (from two different topologies:
(a) TS1k-0; and (b) PL1k-0)

Figure 7.5 (b)). These trends were observed across theugaonpology models considered (i.e. transit-
stub, power-law and random Waxman, see Appendix C). In atleds, the results are independent of
the underlying topology model used. Thus, we conclude tieaMeshTree concept offers an alternative
to the centralised CPT algorithm. More importantly, unk&BT, it can be implemented in a distributed

manner.

7.3 Distributed MeshTree Protocol

This section presents a distributed solution for MeshTFee conciseness, we will refer to the distributed
protocol as MeshTree, unless specified otherwise.

The main objective of the MeshTree protocol is to constriaetdesired overlay structure: a degree-
bounded mesh that contains a low cost backbone tree witlcsiidinks. Then, to obtain the low delay
tree out of the mesh for data delivery.

To achieve the overlay structure in a scalable manner, Meghlses the incremental improvement
strategy typically used by distributed tree building poutis. First, the overlay grows when newcomers
join in the session. Newcomers are randomly attached toweday. Thus, the initial overlay is unop-
timised. Then, every MeshTree node (except the soujceeriodically tries to improve its own local
overlay structure. Each improvement process involvesragddeleting links to/from the overlay using
only the topology knowledge of the nodes involved.

MeshTree makes use of the mesh-based framework introdu&hipter 6 to construct and maintain
the mesh overlay, and to derive the delivery tree. MeshTeseskveral similarities with dbMeshTree
introduced in the previous chapter (Section 6.3). Thus,esnotations and procedures are necessarily

common to MeshTree and dbMeshTree. For clarity, the folhgwdiscussions will reiterate the shared
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ideas and information. However, to avoid unnecessary itepetwe refer the reader to previous chapter
for some detailed description.

The rest of this section describes the protocol. The nexsextton introduces the notations and
state information used. The four components of the protdgahitial overlay construction; (ii) overlay
reconfiguration; (iii) delivery tree derivation; and (ivyerlay maintenance, will be presented in Sec-
tion 7.3.2, 7.3.3, 7.3.4 and 7.3.5 respectively. Secti@rbvaluates the performance of MeshTree, and

Section 7.3.7 discusses an alternative application of Wieshoverlay.

7.3.1 Notation and Node State

MeshTree constructs a degree-constrained overlay mesk. mEsh includes a backbone tree and a
delivery tree, both rooted at the data sourceSince the delivery tree is used for one-to-many delivery,
every node (excep) must have a parent node from which it receives the datarstréhe degree bound
for a nodej is represented by,,.... (¢) which includes the incoming link from the parent (excepand

the out-going links to the set of downstream children.

Two overlay nodes are said to have a neighbouring (or peemtationship when there is an overlay
link between them in the constructed mesh. In general, thef seeighbours for a nodé is represented
by N/. The link betweeri and its neighbours are called mesh links. A mesh link may grmeaappear
in the backbone and/or delivery tree. For ease of exposiiengroup the set of mesh links into three

subsets

1. Backbone tree links These are links included in the backbone tree. For a ripdlee set of
backbone tree neighbours is representedWy The backbone tree parent and children afe

represented g8 andC?, respectively. Thusy? = {p?} U C?.

2. Delivery tree links There are links that exist in the delivery tree. We D&eto represent’s deliv-
ery tree neighbours. As above/, andC¢ refer toi's delivery tree parent and children respectively,

andN¢ = {pd} U C¢. Note that a backbone link can also be a delivery tree linél,\ace versa.

3. Non-tree links These are links that are neither the backbone nor the dglikee link. In other
words, these are purely mesh links. Epthe set of pure mesh neighbours is representety by
Thus,N? = N/™ \ (N? U N?).

As we are using the mesh-based framework in Chapter 6, weuatsy”, the pending neighbours
for i; andd,..s (), the residual degree at

We use Figure 7.6 to help to explain the notations. Figurd&).@epicts an example of a MeshTree
overlay. In the figures is the data source and the rest of the nodes are receiversaliteebeside a link

represents its delay value. Both backbone tree (Figurebf)&td delivery tree (Figure 7.6 (c)) can be
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(a) Overlay Mesh (b) Backbone Tree (b) Delivery Tree

Figure 7.6: Example of MeshTree overlay: (a) The mesh; (8 Backbone tree; and (c) The delivery
tree

obtained from the mesh. Take nad@s an example, we can see thgf' = {q,t,v,y,2}, N = {v,y}
with p®. = v andC? = {y}, N = {q,y, 2} with p? = gandC? = {y, z}, and finallyN? = {t}.

In addition to the basic information needed by the framewierl. addresses of the tree root and
mesh neighbours, residual degree and root path informat@nSection 6.2.2 for details), a nodelso

maintains the following information, as in dobMeshTree (Seetion 6.3.1.1).

e The unicast delay betweemand each of its neighbours. Henceforth, we will d&g ;) to represent

the unicast delay betweérand;.

e Routing cost for each valid path, i.e. the delay fromo the root using an overlay path (we also
refer to this as the root delay). It is defined as the summaiidhe delay of the overlay links in
the path. We us&;(5) to represent the overlay delay franto the root using its neighboyr via

the delivery tree.

e Maximum subtree delay\;, which represents the maximum delay frerto its furthest descen-
dants via the delivery tree. By combining the root delay aruiree delay; can estimate the tree

height,H;, contributed by its tree branch. Specifically,

e Information about other members in the overlay. Basicalery node loosely maintains a list
of other members currently in the overlay. The list includesles that are within a small over-
lay distance of, and other non-neighbour members acquired with a gosgipisbde discovery
technique (see Section 6.3.1.1 for details). This inforomais used in the overlay improvement

process.

MeshTree introduces the following three pieces of infoiorat

e Backbone tree root path. This is used as a simple loop avoédé®ection 7.3.3) and detection

(Section 7.3.5) mechanism for the backbone tree.
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Figure 7.7: An example showing howcan estimate the tree height for its child,

e The routing cost (or root delay) viés delivery tree’s children’ root paths (TCRPs as in Sec-
tion 6.2.2). We recall thats TCRPs are the “best” alternative paths provided’byelivery tree

children.
e The maximum subtree delay for each of its delivery tree céiid

The root delay foi's TCRPs and delivery children’ subtree delay will be usetthaoverlay reconfig-
uration process (Section 7.3.3). Briefly, during the precasiode may need to drop a delivery tree child
S0 as to accommodate a new neighbour. The node may seletd ¢heltj when dropped, will result in the
least increase to the tree height. This requires an estimafithe tree height when the child switches to
an alternative parent. An example is shown in Figure 7.7ep@) repeats the previously shown overlay
mesh, and panel (b) shows thatan reach the root, via two paths. With the shortest path routing,
will choose path 1 which is 5 units away frosm Thus,z becomes’s delivery tree parent. Nodewiill
inform 2 about its maximum subtree delay (1 unit) and the alterngiath cost via (6 units) tos. With
this information;: can calculate the alternative tree heightf@sH, = T, (¢) + A, = 7. Note that the

TCRP is also used in the tree recovery by the mesh-basedvmarkeas described in Section 6.2.5.2.

7.3.2 Initial Overlay Construction

Similar to the dbMeshTree protocol, MeshTree bootstrapsomers into the overlay randomly. Here
we point out the similarities and differences between the pvwotocols.

In both protocols, a newcomer, sayfirst obtains information (the IP address) about the roaoteno
and a small list of overlay members from the well-known Reavdes Point (RP). Node then selects a
fixed number of members (limited hi,...(«)) from the list as joining targets and initiates the request,
reply and acknowledgement sequence (see Section 6.23agh of the nodes.

The difference arises whet's request is rejected by a node, sayn dbMeshTreey will provide x
with a list of its delivery tree children so as to continue$earch. However, in MeshTree, the redirection
is based on the backbone tree. By using the backbone treehdpied that: can find a closer node to
attach to. Whenx finally attaches to a node, the node will becom® parent in both backbone and

delivery trees.
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7.3.3 Overlay Reconfiguration

Once joined in the overlay, all nodes (except the root) gerfperiodic reconfiguration to improve their
own local overlay structure. In the process, a node will tryacate and add a new overlay link that
will improve the overlay performance. In order to achieve tiesired MeshTree structure, i.e. a low
cost backbone augmented with shortcut links, the procds$éambur a configuration that improves the
backbone cost over a configuration that reduces the delivegydelay. If adding the link will result in
degree violation at either of the link’s end-points, an gxgslink will be dropped.

We first provide an overview of the overlay improvement pssceConsider that the improvement

process is initiated by a node, The process consists of the following steps.

e Part I: Identify a potential neighbourNodez first needs to identify a potential neighbour. This
can be further divided into the following two steps.
1. Form a candidates set from the set of (hnon-neighbour) reesrtbatz maintains.
2. Pick a potential neighbour (sgy from the candidates set.
e Part Il: Establish the overlay link betweenandy. Nodex then tries to setup the overlay link to
y. This consists of the following request, reply and acknalgkEment sequence.
1. Request procedure:initiates a peering request o

2. Reply procedurey processes’s request, and decides if it will acceptas a neighbour. This

consists of the following two steps.

(a) Determine the neighbour type. Nog@eeds to first determine the neighbouring rela-

tionship to be formed with, e.g.x asy’s backbone parent or child, or a mesh neighbour.

(b) Accept/ reject. Now, based on the neighbour type detegthabovey will decide if it

can accept as a neighbour.
The decision made hyis then sent back to.

3. Acknowledgement procedure: On receiviigreply, z finalises the link establishment pro-

cess and either confirms the link betweeandy, or rejects the creation of the link.

The detailed operations are as follows.

Part I: Identify a Potential Neighbour

I.1 Form a Candidates Set To select a potential neighbourfirst forms a fixed-size set of candidates.
The size of candidates set is a configurable parameter. Tukdzdes are chosen from the set of overlay
members that maintains (see Section 7.3.1), using the mixed local andai@mode selection strategy

described in Section 5.1.1.4. Once the candidates arge@)ecestimates the distance between itself
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and these nodes. Nodealso obtains the routing cost of these nodes during the pgaglriocess. These
nodes will also indicate if they are descendants of the backbone and delivery trees. This can be done

by checking ifz is included in their respective root paths.

I.2 Pick a Potential Neighbour Using the information gathered, will pick the node that gives the
most reduction in the backbone tree cost (to be explainedlgholf no such node existsy will pick

the node that most improves the delivery tree delay. Otlseryvéd node is randomly picked from the list.
The last case is to increase the connectivity of the meshtharsdimproves the robustness. In the last
casez will only perform a link request if it still has spare degre&ssumey is picked as the potential
neighbour.

The reduction in the backbone cost is estimated by comp#randistance betweenand its current
backbone tree parent, and the distance betwegrandy. To considey as the potential neighbour, the
distance between andy must be smaller than the distance betweeandp’, as well as the distances
between: and other candidates. As a simple loop avoidance step¢ludes candidates that are descen-
dant of its backbone tree from the estimation. In a similahfan,z can estimate the improvement in

the delivery tree delay using the routing cost provided leydandidates.

Part Il: Establish the Overlay Link

Nodex needs to initiate a request sequencg.tén overlay link will be created ift andy can reach a
common consensus about their neighbouring relationslepwhether the new link is a backbone tree
or a mesh link. The role of the link in the delivery tree will established by the routing process.

Next we detail the request, reply and acknowledgement segubat occurs during the link negoti-

ation process.

II.1 Request Procedure First, 2 sends a peering request messaggitalicating its desire to establish

a neighbouring relationship. The message contains thexoly information.

e The measured distance betweeandy, d(z, y).

e The overlay paths and costs:d$ backbone and delivery trees. The delivery tree costseéer's
routing cost, i.e. the overlay distance franto the root, while the backbone tree cost refers to the

distance between and its backbone tree parent.

This information is needed far's admission control algorithm.

II.2 Reply Procedure Wheny receives the request message fronit needs to perform admission
control to decide ifr can be accepted and the type of neighbouring relationshipcin be established

with z. The admission control results is one of the following:
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Figure 7.8: Relationship betweerandy in the backbone tree

e Rejectz’s request,

e Acceptz as a backbone tree child,

e Acceptz as the backbone tree parent, or
e Acceptz as a pure mesh neighbour.

The result will be returned te with a peering reply message. gfacceptst as a neighbour, the
reply message will contaings backbone and delivery trees’ information as in the regoesssage. In
addition,y will add = into the pending neighbour listy,’, and wait for the acknowledgement from
N, is used to enforce the degree constraint as in Equation éctios 6.2.1.

The admission control algorithm consists of two main pdijsietermine the neighbouring relation-

ship withz; and (ii) decide whether to accept or reje request.

II.2.a Determine the Neighbour Type This process determines whetheis treated byy as a back-
bone tree parent or child, or a mesh neighbour.

The first step of the process is to determine the relationséiyween: andy on the backbone tree.
Figure 7.8 illustrates three possible cases:x(& an ancestor of; (b) y is an ancestor af; and (c)x
andy are unrelated. This provides a clue so that an ancestor nilideottry to consider its descendant
as a parent. The relationship can be easily inferred fronb#ioébone root paths far (included in the

request message) and farThe operations for the three cases are as follows.

e x is y’s ancestor (or vice versa)lf x is y’s ancestor, it can only becomgs parent or mesh
neighbour. In this case, the descendantyill treat the ancestora) as a potential backbone
parent if the distance betweenandy is smaller than the distance benNeﬁandpg. (A similar
consideration is needed in the case thad z's ancestor.) Otherwise;, will regardx as a mesh

neighbour. This is to reduce the cost of the backbone tree.

e r andy are unrelated If x andy are unrelated, one can freely become parent or child of tier ot
node. In this casey will try to use the configuration that provides the lowesttcdfo do so,y
compares the following distanced(z, v), d(z, p%) (given in the request message), af(g,pg).

If d(x,y) is smaller than one or both of th&z,p’) and d(y,pZ), the node £ or y) that has
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Figure 7.9: Example of determining a lower cost configuratio

made a larger distance from its parent will be regarded astili@¢ node. This helps to obtain a
configuration with a lower overall cost. This can be seen éngkample in Figure 7.9. Panel (a)
shows the sample configuration and the corresponding dessaretween the nodes. In the figure,
d(x,y) is smaller thani(z,p}) andd(y,p?), andd(y, pl) is smaller thani(z, p’). Thus, the
configuration in panel (c) will give a lower backbone treet¢dban the one in panel (b). Finally, if

d(z,y) is the largest of these distancgsyill regardz as a mesh neighbour.

I1.2.b Accept/ Reject The main decision making is based on the available degrg€Tdiere are three
main cases.

1 IF [N + [N [< dinaa (y), theny can immediately acceptas a new neighbour.

2. Elseif|Ny*| + [N,’| — [Ny|< dmax(y), theny can still accept at the expense of a node chosen
from Ny.

3. Otherwisey will execute a pruning procedure to decide if there is anglhleour that can be
dropped in flavour of:.

The first condition indicates thatstill has spare degree, and thus can acecege a new neighbour.
The second condition indicates thahas some pure mesh neighbours in its pure mesh neighbqur list
Ny. Hencey can still be accepted, but a randomly selected node figr(if there is more than one such
node) will be dropped. The reason for including the pendieigimbours {V,;’) in the conditions above
is to preventy from exceeding its degree bound. The third condition ingisahaty does not have any
spare degree for a new neighbour. It needs to execute a grdaiision to determine if it is beneficial
to drop an existing neighbour in order to accepifhis will be discussed in the rest of this section.

Nodey considers a neighbour, is prunableif v fulfils the following criteria:

e v is y's backbone tree parent, ands replacingy, i.e. y is trying to switch to a closer backbone
parent.

e visy's delivery tree parent, and can provide a shorter route to the root, i, (z) < T, (p).
Henceyy is trying to improve its root delay.
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ol ¢ Ny
return p}
if % =pd A3 alt. path tos
return p
if pb € C A Hy, < H,
return p
if Ty(z) < Ty(pf)
if pi =4 03
return pd
elsif pg € C;’ ANd(y,z) < d(y,pg)
return p¢
if H. < H:,/:(:Ecg/\cgcg
return ¢
if d(y,x) <d(y,c):ce (‘f/’ Ne & C:,‘j
return ¢
if H. < HyAd(y,z) <d(y,c):ce C;’/\ce Cg
return c
return nil

Figure 7.10: Conditions used hyto determine a prunable neighbour so as to aceegst the backbone
tree parent

e v is one ofy’s delivery tree children, and has an alternate path o0In this casey needs to make
sure that the alternative tree height fodoes not exceed that gf(see Section 7.3.1). This is to

prevent an increase in the delivery tree height.

e v isone ofy’s backbone tree children, and the distance betwesmdy is smaller than the distance

betweeny andv. Here,y is trying to reduce the backbone tree cost.

Based on the above criteria and the new neighbouring rakttip to be established, we devise a
set of conditions to determine if an existing neighbour carptuned. Figure 7.10 depicts the pruning
conditions used by in order to accept as its backbone tree parent. The conditions return a neighbo

that can be dropped, if one exists.

e Acceptz as a backbone parenflo begin with,y examines its current backbone tree parpi;u,
Nodepg will be returned if it is not alsg/’s delivery tree neighbour. This is becaqﬁpis to be
replaced byr, and dropping)f; will preserve the backbone’s tree structure. In the cast—:‘pfyha
is alsoy’s delivery tree parento;j, it will be selected as long aghas an alternative path (via
or other existing neighbours) to the roet, If pg is alsoy’s delivery child,y needs to make sure
thatp’; has an alternative path which will not increase the deliverg height. In the fourth case,
y begins by examining its current delivery tree par@ijrt, First, y makes sure that provides
a shorter route to the roof((,(z) < Ty(pfj)). This is to repIaC@g with x to improvey’s root
delay. Now, ifpg is not also a backbone tree neighbour, it will be returnethe@tise,y can only
dl’OppZ if d(z,y) is smaller thard(y,pZ). This is because including link:, )) will improve
the backbone tree cost. Nextwill examine its delivery tree and backbone tree childreiartiig
with the delivery tree children; can drop one which has an alternative path that does notsere
the tree height. For the backbone tree children, a child maddoe dropped if it is further from

thanzx. Finally, the last condition in Figure 7.10 considers bakes together.
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e Acceptx as a backbone child or a mesh neighboliese two cases actually are subset of the
above conditions. If is to be accepted as a backbone chijld;ll exclude the test for the backbone
parent. Otherwise, if is to be added as a mesh neighbguwill consider conditions that involves

only its delivery tree parent.

In summary, the above procedures help to achieve a low cokbbae tree augmented with shortcut

links in the following manner:

e y will drop its current backbone tree parent if and only i closer toy, andz will becomey new
backbone parent. This makes sure that the backbone is imthedf a tree. In addition, if the
backbone parent is also a delivery tree parent, it can gtilfopped if doing so will not detagh

from the delivery tree.

e To improve the tree delay; will drop its current delivery tree parent if offers a shorter route.

However, this can be done only if it does not increase the @k tree cost.

e The pruning conditions prioritise the backbone neighbawes the delivery tree neighbours. In
particular, the delivery tree parent and children are aersid before the backbone children. The

backbone children are also not considered whénto be added as a mesh neighbour.

Referring back to the greedy example in Figure 7.2, the cardiipn in panel (b) can be achieved
if node s can accept by pruning an existing child. Otherwise, when one of thedrieih finds a closer
node as backbone parent, it may detach itself fscand so allow another configuration to happen.

We note that the prunable neighbour is not dropped in thtamt®, rather, its information is recorded
and will only be dropped on receiving a positive acknowledget fromx. To prevent transient disrup-

tion to the data delivery, a parent node continues to traindata to the pruned child for a short time.

I1.3 Acknowledgement Procedure Whenz receives the acceptance reply frgirit will use the same
admission control procedure as described in the previatt®egusing its current information and the
neighbour type determined hy) to admity as a neighbour. This is to avoid any discrepancy due to
stale information. Ify is acceptedsy will update the neighbours list, and trigger the route repatation.
(The routing process will reconfigure the delivery tree $inik necessary.) It also returns an acceptance
acknowledgement tg so as to finalise the link addition process. Otherwisg,iff rejected, a rejection
acknowledge is returned 0so as to updatg’'s pending neighbour list. On receiving the acknowledge-

ment message from (accept or rejectly will update the corresponding information accordingly.

7.3.4 Data Delivery

MeshTree uses the routing process in the mesh-based fraknewdisseminate the (delivery tree) path

information to all nodes. Each node validates and storepdlties from each of its neighbours in the
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incoming routing base. As our aim is to find a low delay tree,use the shortest path first policy to
select the best path. That is, given multiple valid path&iéorbot, a node, say, will select the one that
provides the smallest overlay delay. The next hop (i’s.neighbour) of the chosen path will become
o’s delivery tree paren?. In case of a tie, the IP address of the next hop nodes will heidered; the

node with the smallest IP address will be chosen.

7.3.5 Overlay Maintenance

The mesh-based framework is used to manage the connedfititg delivery tree (see Section 6.2.5 for
details). This section discusses the maintenance of tHébbae tree links.

Unlike the delivery tree, the backbone structure is onlysklp managed. In other words, while we
try to maintain the connectivity of the backbone tree, it canasionally become partitioned. When a
partition happens, the protocol will not attempt to reptimmediately.

Under normal conditions, the joining and optimisation awares will result in a loop-free backbone
tree. However, occasionally, a loop may be formed due toiplelsimultaneous transformations or a
transformation which is done based on stale informatioa &ection 6.1).

The backbone root path is used for loop detection. In pdaica backbone tree parent node peri-
odically refreshes its children with its backbone root pathe information can be piggybacked in the
refresh messages exchanged between the neighbours. leasaya, receives a root path that contains
its address, this indicates a loop has been formedzamitl break the loop by withdrawing its child sta-
tus from the parent node (while keeping the overlay link)uglx and its backbone tree’s descendants
are now partitioned from the backbone tree. Nadien replaces the root path with a new list which
contains only itself, and quickly updates its descendaiitts the new path. This can be achieved by
including a “push” flag in the update messages to its childserthat the messages will be propagated
to its subtree descendants in the backbone tree immedittelyclear that the process will partition the
backbone tree, with the subtree rooted:dieing isolated from the main tree. Nodewill attempt to

repair the partition (by finding a new backbone tree paremting its periodic improvement process.

7.3.6 Performance Evaluation

This section evaluates the performance of the distributedhWree protocol. We focus on the quality of
the overlays built. As MeshTree is layered on top of the meabed framework discussed in the previous
chapter, its other properties (e.g. protocol overhead faihgde recovery) are quite similar to those of
dbMeshTree. We thus refer readers to Section 6.3.2.2 arth686c3.2.3 for details. In short, MeshTree
has reasonably small protocol overhead and is quick to resfmonodes departure.

We compare MeshTree with two other distributed protocoBn@jee et al.'s scheme (NaBanerjee)

and TBCP (TbcpD), which were shown to provide the best RMPRAB performance respectively,
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in Chapter 5. We also include the centralised CPT in the éxmats. (CPT is used instead of the
centralised MeshTree as they produce comparable resat<CRT is more computationally efficient.)

We conduct extensive simulations on a set of transit-stuld 000 nodes) and power-law (5000
nodes) topologies (see Section 3.2.2). The results predéetre are obtained from TS10k-0, a 10100-
node transit-stub network. We point out the differencesolel from other topologies. The properties
of the topologies can be found in Section 3.2.2. For all tkalte to be presented (except Figures 7.11 (f),
7.13 and 7.14), each data point in the graph representsgageower 50 independent runs. In the ex-
periments, the number of members ranges from 32 to 1024. Wiaxfember is selected as the data
source. The out-degrees of the overlay nodes are uniforisiiyltlited between 2 and 10. All distributed
proposals use a tree improvement period of 30 seconds, amdghlts are collected after 3600 seconds,
which is sufficient for the trees to stabilise.

MeshTree has a number of configurable parameters. Firdguisaa newcomer to initiate a number
of multiple joining requests when trying to attach to the sy Typically, we set this value to one.
The impact of this parameter will be discussed later in thigisn. Secondly, MeshTree uses the mixed
local and random node selection technique (see Sectioh %)lwhich requires an exponent base value,
b. We have observed no significant differences with valudsrahging from 1 to 100 (the same trends
were also observed in Section 5.2.1.1). The following iteswkere obtained withh set to 20. Finally,
at each periodic improvement process, a hode selects atjabtegighbour from a set of candidates
(Section 7.3.3). We use a maximum of 5 candidates in all opeements.

We first examine the quality of the overlays built. Figurel7(a) and (b) depict the delay perfor-
mance, in terms of RMP and RAP respectively. The results shatvMeshTree always outperforms
TBCP and Banerjee et al.'s scheme. For group sizes from 38@pi2produces trees with lower RMP
and similar RAP compared to the centralised CPT algorithon.l&rger group sizes where we expect a
centralised approach to be unsuitable, MeshTree still shheasonably good delay properties.

It is interesting to observe an inconsistent trend in the RIM& RAP curves with the growing group
size. We note that both RMP and RAP are ratios between théagvaelay with the unicast delay. The
absolute values of the overlay delays observed actualtg@se with the group sizes. This can be seem
in Figure 7.12 which plots the root-diameter of MeshTree #radcorresponding unicast delay against
the group size.

Figure 7.11 (c), (d) and (e) depict the worst-case and aeeliag stress, and the tree cost ratio
performance. We can now observe that CPT produces low dedag fit the expense of high traffic
redundancy and network resource usage. The fact that itst\wase stress grows rapidly also suggests
that it is not suitable for larger group sizes. MeshTree s@wuch lower maximum stress performance,
which is close to that of Banerjee et al.’s scheme. In factpbaver-law topologies (see Appendix C), we
observed that MeshTree always results in maximum stresevadhat are smaller than those of TBCP

and Banerjee et al’s scheme. Interestingly, Banerjee.'stsgheme yields the worst stress and tree
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cost performance for power-law topologies. Overall, MageTgenerally gives the lowest average link
stress and tree cost properties. We conclude that Mesh@hézvas good delay properties and results in
reasonable traffic redundancy and resource usage.

In the results presented, each data point in the figuresseptethe average for experiments using
a different set of randomly chosen members. (We make sutealihschemes are run with the similar
set.) For an incremental improvement scheme, it is desitthialt given the same data source, members
and degree constraints, a solution should converge to the paint regardless of the joining sequence.
We randomly chose a set of members and conducted 50 runs diffieiggnt joining sequences. Fig-
ure 7.11 (f) depicts the result for RMP, which provides arigation on the root-diameter performance.
From the figure, we can see that MeshTree consistently pesduees with about the same delay prop-
erty, compared to Banerjee et al.’s scheme. This also stgytieg our scheme can avoid an inefficient
structure better than the delay-centric approach.

We also conduct experiments where the out-degree of thesrfodew a truncated binomial distri-
bution with a minimum of 2 and maximum of 10, with different amevalues (see Section 3.2.3). While
not shown here, the observed trends are similar to the aleguéis.

In Figure 7.13, we show the convergence property of Meshfbreegroup size of 1024 members. In
the experiment, all members randomly join the overlay withie first 50 seconds. We plot the evolution
of the tree cost ratio of the backbone structure, and the RAPPRIMP of the delivery tree. From
the figure, we can see that the RAP, RMP and cost ratio incrgpaiskly as members are joining the
overlay. This is because the initial overlay is randomlyreested. In the experiment, we set the periodic
improvement period to 30 seconds (as before), for each aéthevers. Hence, the improvement process
started soon after all members have joined. We can see th&AP and RMP values rapidly decrease
to a value less than 2 within the first 250 seconds, i.e. lems 10 improvement rounds per node. This
indicates that MeshTree can converge very quickly. Theltratso shows that MeshTree can gradually
improve its backbone tree cost, which suggests that thdayveontains a lot of short links between the
members. This helps to reduce the delivery tree cost andtiekss, as observed previously.

The high delay observed at the early stage is obviously uradds. As mentioned earlier, a new
MeshTree node can send multiple joining requests whengtyirattach to the overlay. This parameter,
number of initial join targets (NIJT), is configurable. Thislue affects the structure of the initial overlay.
With an NIJT value of one (the setting used in our previouseexpents), the initial overlay will have
the form of a tree (until the nodes begin to add in extra linkarreasing the value of NIJT allows a
newcomer to attach to more than one node, and results in asuedhy. As a mesh contains more links
than a tree, one would expect it to increase the chanceslofling “good” links into the overlay which
helps to improve the delivery tree. To confirm this assunmptige reran the convergence experiments
above, but varying the NIJT for each node from 1 to 5. Figur&4 {a) and (b) show the RMP and RAP

results. The results show that increasing NIJT (from 1 ton@8ged improves the initial RMP and RAP
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values, as expected. Note that the curves for NIJT of 4 an@ Saincident with the curve of NIJT of
3, which suggests that further increases the value do nog by improvement. This is because, as the
NIJT increases, the available degree for nodes in the gvedilaquickly be occupied, and this restricts
the number of links that can be connected by nodes joininglatea time. Also, changing the NIJT
shows no significant effect on the converged state resutssfrown in the region shown in the figures,

which concentrate on the early stage).

7.3.7 Further Discussion: An Alternative Usage of MeshTree

MeshTree is designed for applications that require lowydgkes. The low delay tree is embedded in a
mesh overlay, which also contains a low cost backbone treis.dual trees structure offers an alternative
usage for applications that do not require fast distributibtheir normal data, but, occasionally, need to
dispatch some critical information to the members quickiythis case, the backbone tree can be used
for normal data delivery, while the low delay tree can be usegliickly deliver the critical information.
The benefit of this approach is that frequent data transorissin be done over a low cost tree, which
uses less network resources and results in lower packatdeday.

We recall that in the original MeshTree, the backbone traemlig loosely maintained. Specifically,
when a node loses its backbone tree parent, it will only tng&dtach to the tree during its next improve-
ment process. For the alternative which uses the backbeeaddr data delivery, we require the repair

process to start as soon as possible.

7.4 Chapter Summary

This chapter studied the problem of creating degree-caingt low delay overlay multicast trees. We
approach the problem by analysing arguably the simplesilalised solution: parent switching. Two
important issues were identified: (i) the greedy problend @i delay-cost trade-off, which can result
in an inefficient overlay structure. We then introduced acem called MeshTree to address the above
issues. The main idea of MeshTree is to embed the delivegyitra degree-bounded mesh containing
many short links.

We devised a distributed protocol for MeshTree that exithie following desirable properties:

e |t constructs overlay trees in a fully distributed manneng®nly local information maintained at

the members. It also has fast convergence and good failcogery properties.

e The constructed trees are degree-bounded based on eadHuatihode’s capacity limitation. In

addition, these trees have small delay from the root.

Our simulation experiments reveal that the MeshTree oysrteve delay properties comparable

with (and sometimes better than) the centralised compeetaigorithm, and always have lower delay
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than other decentralised schemes. In addition, MeshTreays consume fewer network resources. We
point out that MeshTree maintains a mesh structure and gassmore state information than comparable
tree-based proposals. Consequently, its control overbaade slightly higher than these proposals.
However, the mesh-based approach has the advantage of aduestiness, as shown in the previous
chapter.

In this chapter, the MeshTree concept is applied to creaitegéesdelivery tree. In the next chapter,
we will adapt the idea for the case of multiple trees. Speadlficwe propose the use of multiple shared

trees for many-to-many multicasting.
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Chapter 8

A Multiple Shared Trees Approach for

Many-to-many Multicasting

Many-to-many multicast offers a service for group commatian applications that involve multiple
active senders, for example, video conferencing and maltiy network gaming. Conventionally, mul-
ticasting in such groups is based on one of the two extrenescsiagle shared treer source-specific
trees In the shared tree approach, a single tree is used as a staretire for communications among
the members. On the other hand, the source-specific tregsagbpuses a separate tree for each of
the data sources; thus the number of trees can be as high gsotipesize. Unsurprisingly, these two
approaches complement each other in various aspects géag, protocol overhead and robustness.

In this chapter, we investigate an intermediate solutiotihéoabove two extremes. Specifically, we
consider a multiple shared trees solution that usdsees for a group witm members, where: > 1
andm < n. We are particularly interested in showing that for a reabbnlargen (e.g. up to thousands
of nodes), a smath can provide good delay while still incurring low protocoleshiead.

The rest of this chapter is structured as follows. The negtige discusses the background and
related research on the data delivery mechanism for manyatoy multicasting. In Section 8.2, we
discuss some design issues pertinent to a multiple treesagipin ALM. We then present two versions
of our proposal in Section 8.3, along with the performanadueation. Finally, Section 8.5 summarises

the work in this chapter.

8.1 Background

The notions of using a single shared tree and source-sp&eiis has long being investigated in studies
of network layer multicast. Before discussing some suctkgjone first recall the working principle of

the network layer multicast.
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1 Number of Trees n
<—— Higher Delay Lower Delay——>
<«—— Lower Protocol Overhead Higher Protocol Overhead—>
<«—— Lower Fault Tolerance Higher Fault Tolerance—>

<«—— Higher Traffic Concentration Lower Traffic Concentration—»

Figure 8.1: Single shared tree vs. multiple source-spdodes

In network layer multicast, every multicast group is idéat by a uniqgue multicast address. Each
multicast-capable router discovers the multicast menhiieis its local network using the Internet Group
Management Protocol (IGMP). These routers participate muéticast routing protocol to form the
delivery trees for groups for which they have active membé&msr a multicast group, there can be a
single tree that is shared among the members, or a set ofatepgres dedicated to each data source.
Packets addressed to a group will be delivered over thesporeling tree and reach the members. Note
that data sources do not need to be a member of the group tb trieg are sending.

Early works on network layer multicast, e.g. Deering’s Biste Vector Multicast Routing Protocol
(DVMRP) [25] and Moy’s multicast extension to the Open ShsttPath First (OSPF) routing proto-
col [65], adopted the source-specific approach. In thes®@ots, each tree is calculated based on the
(network layer) shortest routes between a source and membargroup. Due to this, the trees have
low delay. However, this inevitably requires the routersrtaintain per-source information for every
multicast group for which they have members. This limitssbalability of these protocols.

Consequently, later works such as CBT (Core-based Tregn®@]PIM-SM (Protocol Independent
Multicast - Sparse Mode) [31], began to adopt the groupeshéiee approach. As only one tree is
maintained for a group, the shared tree approach signifjcatuces the routing state overhead. Hence,
it is also being used by BGMP [56], the inter-domain multicasiting protocol, to reduce state within
the Internet backbone. The shared tree is rooted at a dedinatle, typically called a core.

Despite the scalability advantage, the shared tree has henwhdrawbacks relative to the source-
specific trees. In [103], Wei and Estrin conduct an extensateof comparisons between these two
approaches. Their simulation results show that the shegedh average imposes a higher delay between
a source and the group members. This is because packets fsonr@e must travel over the shared
structure to reach all other members, which in many cases dokinvolve the shortest path to those
members. They also show that the shared tree approach mdyiregaffic concentration, in which
some links in the network are much more heavily utilised tbirers. The shared tree approach is also
less robust as the core node creates a single point of faitakdem. Overall, there are trade-offs between
the single tree and all sources trees approaches, as shéiguire 8.1.

Observing these trade-offs, Zappala et al. [108] begin ¢k lat an intermediate design that uses
a small number of trees rather than the extreme of using @eedr all source trees. Their objective

was to investigate if the multiple trees approach can peioder end-to-end delay and improved fault
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Figure 8.2: Alternative designs for network layer multipleared trees

tolerance over the single tree approach, at reasonablythte everhead. They examine two multiple
trees designs: (i) senders-to-all; and (ii) members-tokalboth designs, a small number of nodes are
selected as cores. Each core is the root of its own bidireakishared multicast tree, spanning some or
all of the group members.

In the senders-to-all design, members join to only one oftctires, as shown in Figure 8.2 (a). In
this figure there are three cores, each of which is the rootsafparate, bidirectional tree connecting a
subset of the group members. A sender, denotadiaslso a member and has joined to core 1. To send
a message to the grouptransmits 3 copies, one to each core. To receive packetspdbarehooses a
core and joins the core’s shared tree. The members-tosaleon the other hand, requires the members
to join to all of the cores. This is depicted in Figure 8.2 (A%.in the previous example, there are three
cores. In this case, all members join all the cores and tkidtin 3 trees (Note that the tree for core 1
is only partially drawn to avoid cluttering up the figure). ffansmit data to the group, the sendeigan
use any of the three trees. Both designs improve the fagtante of single tree protocol by reducing
the recovery delay when a core fails. This is because in thi@pol, a sender or receiver (depending on
the variation) can quickly switch to another core, whichlisady installed. With a single tree protocol,
the members have to wait for the routing protocol to re-distathe new tree for the new core.

A third design, in which the senders and members both useamdycore, the cores distribute multi-
cast packets among them, is also sketched by Zappala eD8]. [The data distribution among the cores
could be done with a spanning tree, a ring or some other tggolbigure 8.2 (c) depicts an example
where the cores are interconnected by a bidirectional ditage. Following this, we will refer to the
design as cores-to-cores. No performance investigatiercaaied out for this design by Zappala et al..

Zappala et al. carried out a set of experiments to evaluaie thultiple trees designs. They first
assumed that all cores are randomly selected, and are veithinall fraction of the group size. The
experiments ran on networks of 50 to 100 nodes, group sizgechfrom 5 to 50 and the number of
cores varied from 1 to 8. Their results confirm that both desigre feasible alternatives to the shared
tree and the source-specific trees approaches. In partithe#r approaches can have lower delay than a
single shared tree and cost comparable to source-speedi tBetween the two designs, the members-

to-all variant has better performance in terms of cost artalydst the expense of more router state as all
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members need to join all of the trees.

Zappala et al. also examine the impacts of the placementeotdhnes. They view the multiple
cores selection in two ways: (i) the minimufrdominating set problem; and (ii) the minimutrcentre
problem (see Section 8.2.2 for details). Both problems dpehldrd [37]. Zappala et al. introduce a
centralised heuristic called the dominating set approtionalgorithm that can be adapted for both the
d-dominating set and-centre problems. By comparing tlledominating set ané-centre selections
with a random cores selection, they show that a carefullgehaet of cores offers better performance.

Our work applies the multiple trees concept to ALM. While grancipal idea — using multiple trees
to strike a balance between the one or all approaches — isathe as Zappala et al.’s, the design and
working of our protocol is necessarily different from theiork due to the different system architecture.
In the network layer approach, a multicast tree is formedheyrtetwork routers. The tree structure is
principally limited by the physical links that interconnéese routers. On the other hand, ALM trees are
created by the multicast members as an overlay on top of th&qai network. Due to this, the overlay
can have a more flexible structure, which is restricted bydiégree constraints of the members. More
importantly, the overlay is evolving for better performantn addition, Zappala et al. used a centralised
algorithm to select the multiple cores. This, however, isuitable for ALM as the overlay is changing
over time. Instead, we focus on a simple distributed styatteddentify the cores.

Moving to application layer multicasting, we can generatiil classify existing work as either based
on the shared tree or source-specific trees concept. SiegléALM protocols inherit the shared tree
idea for scalability reasons. For examples, Yoid [36], HMIB9], TBCP [62] and switch-trees [43].
Other protocols, e.g. Narada [21] and Gossamer [18], onttier ihiand, adopt the source-specific trees
approach. Both of these protocols use the path-vectomguptiotocol to help obtain the multicast trees.
Narada automatically derives trees for all members, and iheffective only for small group sizes.
Gossamer tries to reduce the routing overhead by derivigs tior active senders. However, this is only
useful if the number of senders is relatively small, and tieo$ senders is consistent throughout the
session. If the set of sender is dynamic, or nodes becomedatitransmitting data) and passive (act
as receiver only) intermittently, the total number of tréaslved may still be large. This approach is
therefore not suitable for all cases.

As mentioned above, ALM trees are overlays on top of the miaysietwork. This allows more
flexibility in organising the members into structures that@ify routing and management, and thus
improve the scalability of source-specific trees. For exaiplCE [7] creates a multiple-level clusters
overlay; LARK [49] organises the members into inter-cortadcliques; and the Delaunay triangulation
protocol [58] embeds Delaunay triangulation into the caerWith these structures, source-specific trees
can be obtained easily by using only local information neiimgd at each overlay node. Unfortunately,
the structures of these overlays is typically driven by s@ystem-wide parameters. The parameters,

rather than the actual degree constraints, will deternmtieenumber of overlay links that a node can
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maintain. For example, NICE uses a configurable paramietar,bound the cluster size. For amode
overlay, the maximum degree in the overlay can be as high(asogn) as discussed in Chapter 2. In
other words, to maintain the properties of the overlay, aenmdy have to serve more nodes than its
degree constraint. Our proposed multiple shared treesgrbhonours the degree constraints of the
overlay nodes, and scales for moderately large groups.

Another related work is Wang et al's TMesh [100]. TMesh isaaerlay optimisation technique
designed for many-to-many applications with a small settifa senders. TMesh begins with a shared
tree (created by existing protocols such as HMTP or Yoiddrsut links are then added to the tree to
form a mesh structure. The shortcut addition is initiatedh®y/receivers so as to improve the average
delay observed from the active senders in the session. Tinotite routing trees, TMesh uses the
path-vector protocol. As in Gossamer, TMesh only creatsstrooted at the active senders. By using
simulation, Wang et al. show that for multicast groups wigimaall fraction of senders (i.e. 10% of groups
of up to 1000 nodes), TMesh outperforms Yoid, HMTP and Namaderms of source-to-members delay.
Due to its routing approach, TMesh has low protocol overliethd number of senders is small, which
however increases when more nodes begin to transmit datddition, it may need to create a large
number of trees if the senders set is dynamic, as in the calsé@aessamer. Our multiple trees approach,
on the other hand, is designed to achieve low routing overteggardless of the number of active senders.
However, we note that the knowledge of the active senderstralyto improve the data delivery trees.

The technique for the addition of shortcut links propose@iMesh can also be used by our proposal.

8.2 Multiple Shared Trees for Application Layer Multicasti ng

This chapter investigates the potential of the multiplesrapproach in the context of ALM. In particular,
we focus on a practical distributed solution that can offeyoad balance between the one-tree and
all-trees approaches. Consistent with our system mode{teh 3), a potential solution must honour
the capacity constraints of the members, i.e. the delivergstare necessarily degree bounded based
on individual node capability. In addition, the protocoleshead must be small so as to scale for a
reasonably large multicast group. The rest of this sectiscudses some issues pertinent to the multiple
trees approach in ALM. In the rest of this chapter, we wilkrab the tree root as the core, following the
convention used in network layer multicast. Also, the nundfecores represents the number of trees,

and vice versa.

8.2.1 Alternative Designs

Previously we have mentioned the three designs proposedappata et al., namely senders-to-all,
members-to-all and cores-to-cores [108]. We discuss thabslity of these designs in the context of
ALM.
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Senders-to-all This approach partitions the members into several disgeta. Members within each
set join a tree rooted at one of the cores. A sender delivaestdall the cores, which in turn deliver
the data to their members. Owing to this, a sender needsnentibas many copies of a packet as
there are cores. As the number of cores is a system-wide p&earthis inevitably requires all nodes to
have the same sending capacity, i.e. fan-out. This is inraetvith our model where nodes may have
heterogeneous capacity. Moreover, if the number of coresasonably large, e.g. tens of nodes, not all

members can fulfil the fan-out requirement. We thus belibigedesign is not suitable for our study.

Cores-to-cores This design can be viewed as a variant of the senders-tasathembers join to differ-
ent trees. Unlike the previous approach, the sender trasmsiatia onto the tree it has joined. The data is
then distributed to other cores using a spanning tree, ringher suitable topology. Hence, we can view
this as a two level system — the top level consists of the ¢ot@nected core nodes and the lower level
consists of other members forming shared trees rooted htadle cores.

We believe that this approach has a number of drawbackd, Eiis vulnerable to the core failure
problem. In particular, when a core fails, its tree is pamied from other trees. A new core needs
to be quickly elected to heal the partition. In this desigaglemember can only join one tree. As end
systems have limited topological knowledge, it is unclehiolr tree a member should join. This problem
becomes more complicated as more cores are involved, afsbifipplies to the senders-to-all design.
Also, as the data is delivered from one tree to other treetheiaores, this approach may resultin longer

delivery path. Hence, we reject this design in our study.

Members-to-all We believe that this design is more appropriate for ALM. lis ttase, members join
all trees, and the senders choose only one of them to tradstait In [108], Zappala et al. actually

favour the senders-to-all over this design. This is dueaddfiowing two reasons.

1. Members-to-all will require the routers to store mordestaformation, as they need to join more

trees. The senders-to-all, on the other hand, only reqeaek router to join one tree.

2. The senders-to-all approach gives the members conteslahoosing a tree, while in members-
to-all, the sender is responsible for choosing a tree. Thgyeal that in this way, senders-to-all

allows the members to select the tree that best suit theloqmeance.

In our opinion, these two shortcomings are rather irreleirathe context of ALM. First, in network
layer multicast, the trees are formed by the routers. Theeedreater concern over the size of state
information as it is kept at the network routers, which cooded to support a large number of multi-
cast groups. In contrast, ALM trees are formed directly agnthre members, which are end systems.
Typically, an end system will only participate in one or a §mamber of multicast sessions. More im-

portantly, storing more information at these systems dogaffiect the underlying routing infrastructure.
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For their second concern, as discussed previously, theystehss have limited topology knowledge and
thus face difficulty in deciding the best tree to join to.
If we assume that a subset of members has been chosen astlver@gmbers-to-all design can be

achieved in two ways:

1. The members run a separate tree building protocol (e.gTPJMBCP) to create and maintain

each tree.
2. The members create a shared structure (i.e. a mesh) dnel thertrees from the mesh.

The first approach is perhaps the most straightforward wagelise the multiple trees design. Also,
each tree can be optimised separately. However, this agipreguires every node to manage multiple
instances of the tree building protocol. A complex coortdoraprocedure may be needed to efficiently
manage the information kept for each of the trees. With tloersé approach, we can easily use the
path-vector routing protocol to establish trees rootechaheore node simultaneously. For this reason,

we advocate the second approach in this work.

8.2.2 Core Selection

An important factor that affects the performance of the ipldttrees approach is the selection of the
core nodes. There are two major considerations here: ()uh&er of cores; and (ii) the placement of
the cores.

As discussed in Section 8.1, the number of trees is choseadte-bff the performance and scalability.
When the number of trees is small, the performance appredbkesingle shared tree solution. On the
other hand, increasing the number of cores will drive théguerance towards the source-specific trees
approach. However, increasing the number of trees alseases the protocol overhead. It is crucial to
find a point that balances these two conflicting metrics.

The core placement is not a new problem. In fact, much rekesdtention has been devoted to the
optimal core placement problem for the network layer sistigred tree protocols. Selecting an optimal
core under a dynamic environment is a hon-trivial problemdirg an optimal placement fonultiple
cores is more difficult. As discussed in Section 8.1, theeet@p ways to view the problem. The first
is to view it as the minimuna@-dominating set problem which tries to find the smallest nendj cores
such that the maximum distance from the cores to the nodémiestd. The second is to view it as
the minimumk-centre problem which locatéscores such that the maximum distance from a node to its
nearest core is minimised. These two problems are both MiP[83].

In [108], Zappala et al. introduce a centralised heuristibed the dominating set approximation
algorithm that can be adapted for both i&€ominating set and-centre problems. The algorithm
requires complete information about the members and ths@rtte matrix. As our proposal works on

top of the application layer that has limited topology imf@tion, we are interested in a simple distributed
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technique to do the selection. Specifically, we devise aremental technique that adds-in cores until
a predefined number is reached. The objective of the techngji spread the cores evenly across the
overlay. This aims to minimise the distance from the memtmetiseir nearest core. In other words, our
technique attempts to approximate the objective ofitloentre problem.

The reason to approximate thecentre problem is because we would like to have more coate
the number of cores, which directly affects the scalabdityhe solution. In addition, it is more difficult
to provide a good estimation of the distance parameter ®ritiominating set problem without full

knowledge of the overlay membership and topology. Furtloeenthe overlay is changing over the time.

8.3 Application Layer Multiple Shared Trees Protocol

In this section, we describe our solution to multiple shareds application layer multicasting. The so-
lution is a self-organising protocol which fulfils the regrients (degree-bounded trees and reasonably
low protocol overhead) and the design considerations digxlipreviously. For conciseness, we refer to
the protocol as MSTP.

In MSTP, the members self-organise into a connected mestagv®ut of all the members; nodes
are chosen as cores. By using the path-vector routing prhtee derive shortest path trees rooted at
these cores. These trees are used as bidirectional sheesd\When a member wishes to multicast data,
it selects one of the trees and transmits the data by flootlimgelected tree. With this approach, when
a core node fails, the overlay is still connected as long asitiderlying mesh is connected.

The development of MSTP has gone through two phases. Thefdime first phase was to quickly
build a working prototype to investigate the feasibilitytbé multiple shared trees in ALM. To achieve
this, we adapt the Narada protocol to implement the multiigles design mentioned in Section 8.2. We
refer to this version as MSTP-v1. With some limited simwas, we show that MSTP-v1 is a promising
alternative for many-to-many multicasting [91]. In the @ed phase, we include lessons learned from
our MeshTree protocol (Chapter 7) to further enhance thtopoh We call the second version MSTP-
v2. Itis worth pointing out that MSTP-v1 was developed ptmMeshTree, and the MeshTree concept
was actually conceived during our attempt to enhance MSILRAke first applied the MeshTree concept
to create source-rooted trees for one-to-many multiogséia in Chapter 7. Then, the idea was applied
to MSTP-v2.

We next present the working of MSTP-v1. Section 8.3.2 thestdees the improved version of the

protocol, MSTP-v2. In Section 8.4, we examine the perforoeaf both versions of MSTP.

8.3.1 MSTP-v1

The first version of the protocol can be viewed as an exterdfidtarada for creating multiple shared

trees. It first creates a randomly connected mesh, whichgsedeoounded based on the limitation of
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each individual node. Initially, only one core exists in thesh. The path-vector routing protocol is used
to obtain the tree rooted at the core. The protocol then mergally adds in new cores up to a predefined
number. As all the trees are obtained from the degree boumésd, they are also degree bounded.
The protocol consists of five main components: (i) constngcthe overlay; (ii) data delivery; (iii)
selection of new cores; (iv) improving the overlay; and (v@day maintenance. These will be discussed

in the following subsections.

8.3.1.1 Constructing the Overlay

MSTP-v1 first creates a randomly connected mesh. As in owiqure proposals (dbMeshTree and
MeshTree) and in most other ALM protocols, MSTP-v1 assurhasthere exists a well-known Ren-
dezvous Point (RP) as the bootstrapping entity for all newmbers. When a newcomer wishes to join a
group, it first contacts the RP to obtain a list of existing rbens. It then tries to attach to some randomly
selected members from the list. The joining procedure atssif the request, reply and acknowledge
sequence as in dbMeshTree and MeshTree. A newcomer wiltddlga first member that provides a
successful reply as its parent for all the trees currentltheoverlay. Once the node attaches to the
overlay, it participates in the maintenance and routingedorres. The routing procedure (explained in
the next section) will establish the best routing pathslierriode.
In MSTP-v1, the first member that joins in the overlay will les@nated as thead coreby the RP.
It will become the root of the first tree, and is responsibletfi@ creation of additional cores (thus, new

trees).

8.3.1.2 Data Delivery

MSTP uses the path-vector routing protocol to help estalihig trees rooted at the cores. The rout-
ing process at each node consists of an incoming routingnrdtion base, path selection policy and

the actual routing path, as discussed in Section 6.2.4 k&iie mesh-based framework in Chapter 6,
MSTP needs to obtain more than one tree from the mesh. Tisuguting process uses the conven-
tional approach to propagate the routing information,aathan the tree-based approach introduced in
Section 6.2.4.

In the routing process, every member periodically exchaiitgerouting table with its mesh neigh-
bours. For a node, the routing table contains the identities of the cores, tiedoverlay paths and
distances fronx to the cores. The routing information is propagated actos®verlay in the following
manner. When: receives routing information from its neighbour, it firses to validate the received
paths. Thatis, if a path already contains: will mark the path as invalid. Otherwise will add the path
into the incoming routing base. Thenwill use the shortest path first policy to select the bestp#ih
each of the cores. As before, the next hop of the best pathdcesbecomes the parent of the tree rooted

atthe core. If there is a change of route after the recomipuatatwill trigger the necessary response. For
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example, if a parent node is replaced by another node]l trigger the new parent acknowledgement
and old parent withdrawal procedures (see Section 6.2)}¢stablish the relationship.

Given multiple trees, a source first needs to select one dfdls on which the data will be delivered.
There are several possible selection criteria, such a®rasélection, or selecting a tree whose core is
nearest (via the overlay) to the source member. Our coresti®i approximates the-centre problem,
which tries to minimise the distance between nodes and tieairest cores. It is thus a natural choice to
use nearest core selection. In our performance study, weralestigate the random selection strategy.

Now, assume that a source,has chosen a tree rooted at careThe chosen tree is used as a shared
tree, i.e. a source node transmits packets to all of its tegghbours (i.e. parent and children); when an
on-tree node receives a packet, it will replicate and fodithe copies to its other tree neighbours. In
order to use the tree,needs to include the identity of the coggjn every packet that it transmits. When

other nodes receive the packets fronthey can forward the packets on the chosen tree.

8.3.1.3 Core Selection

As discussed in Section 8.2.2, we are interested in a lighgfw distributed strategy that approximates
the k-centre problem. To achieve this, our protocol begins wilingle tree (rooted at the lead core),
and periodically increases the number of trees up to a caafigeimaximum value The first new core
selection begins after a configurable period, e.g. 500 skxdrhis is to allow the overlay to converge to
a more stable structure.

In the new core selection process, the lead core first triegdetatify a number of potential cores,
which fulfil a certain requirement. Specifically, the leadeccandomly transmitg copies of new core
discovery message to its delivery tree children. A timeeists wait for possible replies from the mem-
bers. The value is configurable. The discovery message contains a basiareewgnt for a potential
core: h,,, the minimum overlay hop distance to the nearest core. Anpielecore must have a hop
distance that is larger thdr,,. This is an attempt to find a new core that is far away from adstores,

i.e. spreading the cores evenly across the overlay. Themdasspecifying the distance in terms of hop
count is simplicity. Instead of a predefinég, value, one may consider a technique which adaptively
adjust the value of,,, at each new core discovery period based on the potentiad'aesponse. For ex-
ample, if no potential core is found, tlg, value can be decremented. In our experiments, we typically
setp = 20 andh,,, = 3.

The discovery message also contains a sequence humberegghiges transmitted by the lead core
within each period have an identical sequence number. Besl tio prevent a node replying more than
once to the message.

A new core discovery message is forwarded down the lead <dedivery tree in the following

1if a group has very small number of members (e.g. 10), it isibtesthat all members could become cores. In this case, our
proposal will work like the source-specific trees approach.
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manner. Say a member, receives a message from its parentz Has not seen the message (based on
the sequence number), amnds not already a core, andfulfils the h,,, requirementg will send a reply

to the lead core. The reply message contains the distanwedret and the core closest (via the overlay)
toit. In the case that is a leaf node which does not fulfil thg,, requirementg will reply (as potential
core) to the lead core if it has not done so. In other casesi)l forward the message to a randomly
selected child on the lead core’s tree.

Once the lead core receives all the replies (at masipies) or the timer expires, the lead core will
select a new core from the responding nodes. Specificatigniipares the distances of the potential cores
to their respective nearest cores. The one that has thestatigéance to its nearest core will be selected.
In other words, the selection tries to maximise the distameng the cores. The lead core than sends
an acknowledgement to the newly elected core, which wilitoegadvertise itself in the routing update.
The routing update will take a while to reach the whole pofioitea Hence, when a node first learns about
a new core, the core will not be considered in the tree seledtr a few cycles of the routing period

(four cycles in our implementation).

8.3.1.4 Overlay Improvement

As the initial overlay is randomly structured, and shoul@tcto the changes in the membership and
network conditions, the overlay needs to be reconfigured fime to time. MSTP-v1 employs a slightly
modified version of Narada’s overlay improvement technique

In Narada, every member periodically tries to add a new linki@ete an existing overlay link to
improve its delay to other members. Consider a nadeA new link will be added byz if it believes
that the link will improve its delay. On the other hand, anstéirig link may be dropped by if the link
is considered ineffective. To add a new linkrandomly selects a non-neighbour node, and requests a
copy of the routing table from the node. Assume thé selected. Node will compute the expected
delay gain fromr to other nodes if a link tg is added, using the utility function shown in Figure 2.10,
Chapter 2. The link will be added if the gain exceeds a thrigshii drop an existing linkg estimates
the consensus cost of links that it currently maintains. ddresensus cost of a link is calculated as the
maximum number of times that the link is used in data forwagdor both nodes involved in the link. A
link with consensus cost lower than a threshold will be diexpp

To implement the above strategy in MSTP-v1, several modifina are needed. First, unlike Narada,
the MSTP-v1 routing process only distributes the idergtiiécores over the overlay. As a result, every
member only knows their immediate neighbours and the availzores. In order to discover other nodes
in the overlay, we uses the gossip-style node discoverppobthat has been used in dbMeshTree and
MeshTree (see 6.3.1.1 for details). Secondly, we modifyutiiigy function so that the gain of a link is
calculated with respect to the core nodes only. The new fmmés shown in Figure 8.3. The link add

threshold is calculated using a functi%#m wherem is the number of treesf, and f, are the
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EvaluateUtility (y) begin

utility = 0

for each core ¢ (where ¢ # x) begin
CL = current latency between = and ¢ along mesh
NL = new latency between z and ¢ along mesh if edge (z,y) were added
if (NL < CL) then begin

itilata _ CL-NL
utility += =7

end
end
return utility

Figure 8.3: Modified Narada utility function for MSTP-v1

available degree at the end points of the linlgndy, respectively. The link drop threshold is half of the
add threshold.

As discussed in Section 5.1.1.1, Narada does not strictiyremthe degree constraint for the nodes.
To avoid degree violation, MSTP-v1 adds in new rules in thi &ddition. In order to add a new link,
a node must first ensure that it has spare degree for the nlewilitne node has no more spare degree,
it may still include a new link provided an existing link thiatrendered ineffective can be dropped.

Otherwise, no link can be added.

8.3.1.5 Overlay Maintenance

The objective of overlay maintenance is to ensure the cdivitgof every tree in the overlay. We envis-
age that a small number of trees is sufficient for most casdact, our performance study (Section 8.4)
shows that with only 10 trees (for group size ranges from 30@4), MSTP achieves delay as good as
the centralised Compact Tree algorithm. We thus apply thehab@sed technique developed in Chapter 6
to manage each of the trees. As shown before, the techniquips fast recovery for degree-bounded
trees. The detailed operations of the maintenance proegfiura tree) can be found in Section 6.2.5. In
our current implementation, the control messages for ramiimg each of the delivery trees is handled
separately. To further reduce the message overhead, oltkagmregate the information of the different
trees in the control messages.

Another issue to consider is the departure of the coresrditheause they fail or leave the group
voluntarily. When a core departs, its tree is partitionecheMv core needs to be selected quickly to re-
connect the tree. Assume thais the core departing from the group. In order to minimisediseuption
to the existing tree rooted at a new core is elected fromis children, as this moves the tree root to a
nearby node. In addition, the children are the first to ndtieedeparture of (via the periodic heartbeat
or explicit leave message from).

As a preemptive measure, all existing cores elect theieas backup core from their children set.
Note that only a non-core node is eligible to become a backtg dhe selection can be done randomly,
or based on the distance between the core and the childremaiteible degree of the children, etc. The

identity of the backup core is made known to all children. Wherex actually departs, its backup core
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(sayy) will take overz’s role: if x is the lead corey will also become the lead core. The new core
y will start advertising itself in the routing update, amd other children will need to join tg’s tree.

To achieve fast restoration, we could use the proactivergst®@ration technique by Yang and Fei [107]
(a short description can be found in Section 6.3.2.2). Iniq@dar, the old coreg, could precompute

parent-to-be using as tree root, for all the other children.

8.3.2 MSTP-v2

Our early investigation on MSTP-v1 [91] shows that it is ampising strategy for many-to-many appli-
cation layer multicasting. In the experiments, we consM&mP-v1 with 10 trees, and show that it can
achieve delay performance that is better than the singeeHMTP, and is comparable to NICE which
uses source-specific trees, for groups up to 250 memberg0B@&nodes transit-stub network. MSTP-
v1 achieves the performance with reasonably low protocettowad compared to Narada, which creates
trees for all members.

We have later compared MSTP-v1 with other delay-optimisadls tree protocols, i.e. TBCP
(TbcpD) [62] and Banerjee et al's scheme (NaBanerjee) B]rprisingly, we found that even using
a larger number of trees (i.e. 10), MSTP-v1 performs worae tBanerjee et al.'s scheme (which uses
a single shared tree) in end-to-end delay. Figuré Bistrates the delay comparison in terms of RMP
and RAP, obtained from experiments with topologies of 1000as. In the experiments, all members
are data sources, and are randomly assigned degrees imgfee2do 10. For NICE, the lowest cluster
size,k is equal to 3. From the results, we can see that MSTP-v1 gived BMP for small group sizes
(32 and 64) compared to other protocols. This is becauseuh®er of cores to group size ratio is
relatively high in such group sizes. However, as the grome Bicreases, its RMP also increases and
performs less well than Banerjee et al.'s scheme and TBGPrims of RAP, MSTP-v1 consistently out-
performs other protocols, except NICE which does not olestrg individual node’s degree limitation
(see Section 5.2.7).

The better average delay (RAP) performance is expected 8$°MSes more trees than other proto-
cols (except NICE). As the senders choose the tree with theesecore, the sending quality is approach-
ing the shortest path trees. Note that the shortest pathdredased on the overlay. The poor maximum
end-to-end delay (RMP) performance suggests that theo®ia to further improve the overlay. Recall
that the overlay improvement process is adopted from Narad8ection 7.1.3, we have discussed that
this technique is actually similar to switch-trees [43],ig¥hfaces the greedy problem (Section 7.1.4). In
Chapter 7, we devised the MeshTree protocol to overcomethldem.

We thus include the MeshTree overlay improvement processdar second version of MSTP,

MSTP-v2. The new version retained most of the mechanisméefitst version. MSTP-v2 starts

2This is a replot of Figure 5.21 (a) and (b) to include the refulMSTP-v1.
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Figure 8.4: Comparing MSTP-v1 with other protocols

with a single tree rooted at the lead core, as in the first @ersiThe MeshTree overlay construction
(Section 7.3.2) and improvement (Section 7.3.3) procedare used to create the initial overlay, and to
improve the lead core’s tree. With this, the overlay is ojged such that it contains a low cost backbone
tree augmented with shortcut links that improves the lead'sdelivery tree.

By design, the rules and conditions used to improve the ayaend MeshTree consider only one
delivery tree. To accommodate more than one tree, more emples have to be introduced. For
simplicity, we instead consider the technique used in MSTPusing a utility function to calculate the
gain of adding a new link. We modify the original function dlre 8.3) to take into account the low
cost backbone tree. The new function is shown in Figure 8dnster that: is trying to add a link to
y; the new function first computes the utility as before. Thém,is not a descendant afs backbone
tree (this can be determined fragis backbone root path, which is includedyis reply tox’s request)
and if the link also improves the cost of the backbone tree the distance betweanandy is smaller
than the distance betweenand its backbone tree parent), a constant value is addee tatittty. The
constant value should be larger than the add link threslwés go include the new link into the overlay.
As before, a link can only be added if it will not violate thegdee constraints of the nodes.

Other components of MSTP-v2 such as tree derivations, eradmice, cores selection stay as MSTP-

v1. The next section provides further evaluation of botlsigers.

8.4 Performance Evaluation

This section examines the performance of our multiple shémees proposals. The evaluations are
divided into two parts: (i) MSTP properties; and (ii) comigan of MSTP with other proposals.

For all the results shown (except Figure 8.8 and 8.12), eatdbint is obtained as the average of
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EvaluateUtility (y) begin

utility = 0

for each core ¢ (where ¢ # x) begin
CL = current latency between = and ¢ along mesh
NL = new latency between z and ¢ along mesh if edge (z,y) were added
if (NL < CL) then begin

itilata _ CL-NL
utility += =7

end
end
/* new condition */
if (y is not z’s backbone tree decendant) then begin
C = a constant
CBTL = current latency between x and its backbone tree parent

d(x,y) = latency between z and y

if (d(z,y) < CBTL) then begin
utility +=C

end

end
return utility

Figure 8.5: Utility function for MSTP-v2

50 independent runs. Unless specified otherwise, we cansigey member as a potential data source.
This is to prevent biases in the results due to the locatioth@fsenders with respect to the overlay
(see Section 3.2.3). The members’ degree bounds are umjfdistributed in the range 2 to 10. For
all distributed protocols, the overlay improvement peri®det to 30 seconds. For MSTP, the periodic
refresh between two neighbours is 5 seconds, the routingtapmkriod is 30 seconds, and the gossip-
style nodes discovery runs every 30 seconds. Again, thetyjadlthe overlays built is judged by the
following metrics: RMP and RAP for the maximum and averagaylpenalties, tree cost ratio (TCR)

and link stress.

8.4.1 MSTP Properties

This section studies the various aspects of MSTP: the toffdeetween the number of trees and the
overlay quality, the strategy used to choose among the, tteesstrategy used to place the cores and
a comparison of the two versions of MSTP. The experimentgwenducted with topologies of 1000
nodes (see Section 3.2.2). We show the representativagdsuh a transit-stub topology (TS1k-0).
Unless specified otherwise, the results are obtained witliRA&L using the following settings: 10 trees,

senders choose tree with the nearest core and the coresidoenig placed.

8.4.1.1 Effects of the Number of Trees

A natural question in using a multiple trees approach is: hwamy trees are needed? Intuitively, more
trees will give better delivery quality, but at the same timerease the maintenance overhead. This
section examines this quality versus overhead trade-adfcivisider a group of 256 members, and vary
the number of trees from 1 up to 64 in the experiments.

The results in Figure 8.6 clearly show that the delay (botiPR¥yd RMP) improves as the number
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of trees is increased. In particular, large improvementlmambserved initially, but the improvement
rate diminishes as the number of trees increases furthesurgrisingly, the protocol overhead (bytes
of control messages sent and received per overlay node)sdnogarly with the number of trees. It is
interesting to see that for up to 10 trees, the per-node mess&rhead is still less than 1.5 kbps. We
believe that the overhead with up to 50 trees (approxim&elythan 5 kbps), is still acceptable for some
applications. Considering the overhead (about 23 kbps)&dk (which uses source-specific trees) for
the same group size, as shown in Figure 5.30 (Chapter 5)léas that MSTP has better scalability. The
comparison of the overlay quality built with MSTP and othesshiniques will be given in Section 8.4.2.
Figure 8.7 shows the scaling of 10 trees MSTP with the gromg ginge from 32 to 1024, running
on a 10000-node transit-stub topology. While the per nodesage overhead grows with the group size

(which is doubled at each step), the overhead is still wdbwe kbps when there are 1024 members.
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Figure 8.8: Impacts of tree selection strategy

This shows the protocol is reasonably scalable, consigéhia performance advantage over single tree

proposals (see Section 8.4.2).

8.4.1.2 Tree Selection Strategies

As explained in Section 8.3.1.2, given multiple trees, ars@wvill pick the tree with the core that is
closest to it. Here we compare this strategy with a naivectielewhere the source randomly picks one
of the trees.

To compare the strategies, we use MSTP-v1 to create 100ag¢each with 256 members. For
each overlay, we measure the RMP and RAP obtained usingfeetis¢lection strategies. Figure 8.8 (a)
and (b) depict the results. From the figure, it is clear thartbarest core selection always provides lower
delay. We recall that each of the trees is the shortest pagh(tvith respect to the overlay) of its core.
Hence, the closer (with respect to the tree) a sender is toattee the closer the delay will approach that
of the shortest path tree. For other metrics (i.e. TCR ara$s)r there is no difference between the two
techniques. This is because these metrics are affectectsgrticture of the trees, but not by which tree

is chosen.

8.4.1.3 Impacts of Cores Placement

A key factor that may influence the performance of MSTP is wlike cores are placed in the overlay.

Here we examine two cases: (i) the strategies used to placeths; and (ii) sender-aware core selection.

A. Core Selection Strategies Assume that the total number of cores desired snd the lead core has

been identified, the following strategies will locate theneeningk — 1 cores.
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1. Random Given the number of members, this strategy randomly picks — 1 nodes from the
members list with a probability of /n. This strategy disregards any available information about

the members (e.g. distances), and thus acts as the woessa@asario.

2. Distributed cores selectionThis refers to the distributed randomised technique psegdan Sec-
tion 8.3.1.3, which consists of two parts. First, the newecdiscovery message is randomly
distributed to identify a number of potential cores. Théwe, lead core will select one of them as a

new core. We examine two ways that a new core can be chosen:

e Random selectiarA node is randomly selected from the set of potential covés.refer to
this technigue as DistRandom. This version is used to stuelatlvantage of the following

more informed selection algorithm.

e Centre selectionThe lead core selects the node that has the maximum didtaitsenearest
core. The intuition behind this technique is to spread thresacross the overlay as much as

possible. We refer to this technique as DistCentre.

3. Centralisedk-Centre In this case, we use a centralisedentre algorithm to compute the cores.
As discussed previously, thecentre problem is NP-hard. We have experimented with three
simple heuristic solutions (see Appendix D), and decideddge thek-mean algorithm which
offers the best performance. The algorithm takes as inpuntimber of desired centres (i.e.
cores) and the complete distance matrix of the members, @pdts a set of centres that minimise

the maximum distance of nodes to their nearest centre.

The results in terms of RMP (Figure 8.9) shows that the randores selection performs the worst,
while the centralise&-centre algorithm performs the best. This indicates thetiph the cores at strate-

gic location helps to provide better performance. The faat our distributed cores selection techniques

184



CHAPTER 8. AMULTIPLE SHARED TREES APPROACH FOR MANY-TO-MAX
MULTICASTING

1.85

18 r

175

RMP
RAP

Original —+—
Mixed =X
SenderAware K-

Original —+—
Mixed -3¢
SenderAware ¥

19}

F
1.85 ‘ ‘ ‘ ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Sender to Group Size Ratio Sender to Group Size Ratio
(CY (b)

Figure 8.10: Performance of sender-aware cores selection

(DistRandom and DistCentre) perform better than the ranstoategy shows that our randomised distri-
bution strategy indeed helps in placing the cores. Thistlseraencouraging as the technique uses only
limited knowledge available at the members. Between thediswibuted strategies, the DistCentre is
slightly better than the DistRandom. No significant diffeses have been observed for other metrics:
TCR and link stress.

B. Sender-aware Cores SelectionIn some many-to-many multicasting applications such asoid
conferencing, the number of members that actually takeip#ine conversation can be small relative to
the total number of members. Here, we study the impact ofjusia knowledge of the data sources in
core selection.

We have implemented a simple sender-aware core selectaiagt. The strategy requires the mem-
bers (most importantly, the lead core) to keep the idestibiethe active sources in the session. This
is a reasonable assumption as in a multi-party conversatierupper-level applications need to know
the identity of the data source so as to perform functionk sscflow control and error recovery. Thus,
every member knows all the active sources. At each corets@laound, the lead core randomly picks
a number of nodes from the senders list as potential corelsteauests their distances to the existing
cores. The lead core then selects a new core according teteeselection criterion.

We also consider a variant which combines the sender-awateumaware (i.e. original) core se-
lection technique. In particular, half of the cores are delé based on the original technique, while the
other half are chosen with the sender-aware technique. #&fketeethis strategy amixed

We have conducted experiments with a group of 256 membersalRbat MSTP uses 10 trees
for the purpose of evaluation. We vary the fraction of acgeaders from 10% to 50% of the group

size. Figure 8.10 (a) and (b) illustrate the results of RAB BRMP. Thex-axis represents the ratio
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Figure 8.11: Comparing MSTP-v1 and MSTP-v2

between the number of senders and the group size. We firstazentipe performance of the original
(sender-unaware) and sender-aware approaches. It isticlgasender-aware yields much better delay
when the number of senders is small. When the number of tsedege to the number of senders, the
trees are rooted at most senders, the performance is thusxappting the shortest path trees rooted
at the chosen senders. Unsurprisingly, the performancaaye diminishes as the number of senders
increases. Now, consider the mixed technique. Interdgting can see that its performance is closer
to sender-aware than to the original. For a small numberradeses, it trails the sender-aware technique.
However, as the number of senders increases, it is on pasesttier-aware in terms of RMP, and out-
performs sender-aware in terms of RAP.

Overall, the results show that if the number of senders idlseng. tens of nodes, the sender-aware
technique can be used to improve the delay performance altipe, this could be useful for (audio or
video) conferencing applications. In particular, a coef@e may consist of a large audience, even though
the number of active speakers (i.e. data sources) could i $hthe average delay to the members is of
particular concern, one might consider combining the sead@re and unaware strategies (i.e. mixed).
This mixed technique provides some cores that are indepéenéithe senders, and hence may be useful

for applications that have a highly dynamic senders set.

8.4.1.4 Comparing MSTP-v1 and MSTP-v2

We are now in the position to compare the two version of MSTHs Tomparison is used to evaluate
the advantage of including the MeshTree overlay improveriréga MSTP-v2. The comparison also
includes a version of MeshTree that uses shared tree deliver

Figure 8.11 (a) and (b) depict the RAP and RMP performancés dtear that MSTP-v2 always
yields trees with lower RAP and RMP than MeshTree and MSTRAgIMSTP-v2 can be viewed as an

186



CHAPTER 8. AMULTIPLE SHARED TREES APPROACH FOR MANY-TO-MAX
MULTICASTING

10 p T T T T

9 H MSTP-v1I ———

8 MSTP-v2 -eeeee |

7 1 i
o 6 ) 1
5 5 start adding new cores

4 stop adding core |

3 4

2t T

1 1 1

0 500 1000 1500 2000 2500
Simulator Time (sec)
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extension of MeshTree with additional trees, the resuligioo the advantage of using multiple shared
trees. While MSTP-v1 trails MeshTree in RMP (except for 3i@ overlay, where the cores to group
size ratio is rather large), its RAP is significantly betteart MeshTree’s. This shows another advantage
of using multiple trees. The results again prove a comtbnadif low cost tree and shortcut links can
improve the delay.

In Figure 8.12, we compare the evolution of RMP for both \awsiof MSTP for a group of 256
members. In the experiments, all members randomly join Weelay within the first 50 seconds. The
first member automatically becomes the lead core. The leglmgins to add in new cores after 500
seconds, one every 50 seconds until the total number of 1€s

From the figure, we can see RMP values increase quickly as ersmbe joining the overlay. This
is because the initial overlay is randomly connected. Adtemembers have joined, the delay quickly
improves due to the improvement process, until about 400rekc At this point, we can see that
MSTP-v2 already produces a better quality overlay. Thisraganfirms the advantage of the MeshTree

improvement process. The overlay then continues to impaewesw cores are added into the overlay.

8.4.2 Comparing MSTP with Other Techniques

This section compares MSTP-v2 (with 10 trees) against ttistebuted protocols: TBCP, Banerjee et
al.'s scheme and HMTP. These protocols have been shownfarmemell in their class: TBCP provides

low average delay between the members; Banerjee et alesreeives low member-to-member maxi-
mum delay; and HMTP yields low cost trees. NICE and Naradaxckided as they cannot strictly limit

the nodes’ degree (see Section 5.2.7 and 5.2.2). The deattdlompact Tree [87] and GreedyMesh
algorithms (see Chapter 4) are included as benchmarks. Wehes5000- and 10000-node topolo-
gies (Section 3.2.2) for the comparison, and show the reptasve results from a transit-stub topology

(TS10k-0). The results for a 5000-node power-law topolaayy loe found in Appendix C.
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Figure 8.13: Comparison results: (a) RMP; (b) RAP; (c) Trest catio; and (d) Maximum link stress

Figure 8.13 (a) to (d) depict the RMP, RAP, TCR and maximurk Biress results, respectively.
We first point out that the results for techniques studiedlaer 5 are similar to those found in Sec-
tion 5.2.2, where they were discussed in detail. So we foouthe behaviour of MSTP-v2. In terms
of delay, we can see that MSTP-v2 provides RMP that is bétter dther distributed protocols (HMTP,
TBCP and Banerjee et al's scheme), and is close to the tieattZPT. Its RAP outperforms all these
techniques. The centralised GreedyMesh that createsesgpecxific trees always gives the lowest RAP
and RMP, as expected. The observed result is very encogragirsidering that MSTP-v2 uses only 10
trees (even for 1024-node overlays), which requires resdgiow overhead. We note the experiments
consider all members as senders. If the sender populationgs smaller than the group size, we could
further improve MSTP-v2 by choosing the cores from the senset, as discussed in Section 8.4.1.3.

In terms of TCR, generally we can see that MSTP-v2 perfornigbthan other techniques, except

HMTP and GreedyMesh. HMTP is a cost-optimised protocol, iahds the worst delay performance.
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The lower tree cost of MSTP-v2 and GreedyMesh (with respecthier delay-optimised protocols) is
because they both include a low cost tree in their overlapalbi, Figure 8.13 shows that MSTP-v2
gives a moderate maximum link stress performance, whiclogedo those of Banerjee et al.'s scheme.
Overall, the results prove that our multiple shared tregs@axrh is a promising technique for many-to-

many multicasting.

8.5 Chapter Summary

This chapter investigates the case of using multiple shaeed for many-to-many multicasting in ALM.
The motivation is to use multiple trees to bridge the perfamoe and quality trade-off in the traditional
one tree or all source trees. We have considered a numbesighdesues in achieving multiple shared
trees in ALM, and chosen to use a simple mesh-based appribwamembers self-organise into a degree-
bounded mesh; the trees, rooted at nodes that we called epeederived from the mesh with the path-
vector routing protocol. In our design, all overlay nodesét themselves to each of the trees. When
one node is transmitting, it delivers data over one of thestr&he core nodes are added into the overlay
in an incremental manner, using a simple distributed tephaiWe refer to our protocol as MSTP.

The development of MSTP has gone through two phases. Thedirsibn is a simple variation of
the Narada protocol to study the feasibility of the multipkses approach. The second version combines
the lesson learned in our MeshTree proposal to further ingte protocol. Our performance evalu-
ation shows that by using a reasonably small number of tiges10, MSTP outperforms single trees
techniques such as TBCP and Banerjee et al.'s scheme, ang&r avith the centralised compact tree

algorithm in terms of delay, whilst incurring a reasonabtyadl protocol overhead.
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Chapter 9

Conclusions and Further Work

In this chapter, we conclude the thesis by revisiting therdoumions and lessons learned from this work,

and presenting directions for future work.

9.1 Thesis Contributions

The focus of this thesis has been the construction of eftiédM overlay trees for one-to-many and
many-to-many data delivery. We have restricted our ingesitn to building low cost and low delay
delivery trees, subject to the degree constraintimposeadly mdividual member. For scalability reasons,
we are interested in distributed proposals that use limitémrmation about the overlay members and
the underlying network, and that require only limited capadion between the members in building the
overlays. The rest of this section discusses the contdbstinade by this thesis.

The past few years has seen a growing interest in using ALMdwvigee multicast services over the
Internet. Unsurprisingly, a wide variety of ALM construmii proposals have emerged. As a first step
in this work, we have conducted a detailed performance casgastudy for some existing proposals
using simulation. We have chosen proposals with differbatacteristics. For example, proposals that
use only a tree structure and proposals that derive treesf@utichly connected mesh; proposals that
use either a single shared tree or multiple source-spefs in many-to-many data delivery; proposals
that use simple overlay reconfiguration technique suchnpawitching and proposals that use a more
elaborated transformation scheme. The chosen proposfisi@a HMTP [109], TBCP [62], variants
of switch-trees [43] (which includes a version of HostCa&st]], NICE [7], AOM [104], Scribe [15],
Banerjee et al.'s scheme [9] and Narada [21].

Two by-products arise from the comparison study. Firstetwe as a standard and controlled plat-
form for comparing the proposals, we have developed a siygtidlexible and extensible simulator

which we calledALMSi m Secondly, we have devised a centralised degree-boundathpunesh
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creation algorithm, which we called GreedyMesh. Our ev@nmashows that GreedyMesh can create
degree-bounded mesh with low diameter. In this thesis, @tdesh is primarily used as a benchmark
for many-to-many distributed ALM proposals.

By analysing the behaviour of the various proposals, welasleeta identify their strengths and weak-
nesses. This allowed us to provide enhancements to swiek-and TBCP. For switch-trees, we have
proposed a mixed local and random node selection schemehwhimbines the precision of informed
parent choice in local-scoped selection and the explorgtiover of random selection. The new scheme
is generic and is applicable for other overlay construgbicposals. For TBCP, we have proposed a new
tie-breaking rule and a new score function for overlay te@nfiguration. We have shown that these
extensions to the proposals perform better than the otigéraions.

From the comparison study, we have shown that for tree caoishigation, existing proposals such as
HMTP can achieve results close to a centralised algorittowgler, there is still room for improvement
for delay optimisation, for both one-to-many and many-taamproposals. Thus, our own proposals
have been designed to provide low delay trees for both omaaiay and many-to-many delivery models.

As a basis for our own proposals, we have presented a ditdinesh-based framework for overlay
tree construction and maintenance. The framework providsi procedures for creating and maintain-
ing a degree-bounded overlay tree, embedded in a mesh typdlbe mesh-based approach offers fast
and robust failure recovery, as well as offering more flditibin overlay reconfiguration. In addition,
by exploiting the structure of the delivery tree, we can lotiee maintenance overheads for the mesh.
The framework is generic and can be used to improve the nobsisf some existing ALM proposals.

For one-to-many data delivery, we have proposed MeshTréistributed proposal for creating low
root-diameter, degree-bounded overlay trees. The de$igleshTree is inspired by the greedy problem
and delay-cost trade-off that happens in some delay-bastibdted proposals. MeshTree approaches
the problem by creating a structure consisting of a low ot &and some additional links to improve
the delay performance. Our evaluation shows that MeshTuggedorms other distributed proposals in
providing trees with low root-diameter and low average ftmeteceivers delay.

For many-to-many data delivery, we have proposed a dis&ibsolution based on the concept of
using multiple shared trees. This is based on the obsenvttat existing proposals either use a single
shared tree or source-specific trees for data delivery. Trggesshared tree approach is scalable, but
provides poorer delay performance; the source-speciks tapproach gives better delay performance,
but does not scale well. By using a small number of shared,tree show that our multiple shared trees

approach can provide reasonably good delay performande wmiiintaining low control overhead.
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9.2 Further Work

In the course of the investigations reported in this thesisumber of interesting avenues have been

uncovered which merit further research.

9.2.1 On the Techniques Proposed by the Thesis

Besides continuing the efforts to further enhance the perdmce of our overlay construction proposals
(GreedyMesh, MeshTree and the multiple shared trees miokSTP)), there are other areas that are

worth additional attention.

o Improve the running time of the GreedyMesh algoritt@{max{\, An3mlogn}), where) is the
running time of the tree building algorithm usel,is the maximum spare degree of all vertices,

andn andm are the number of vertices and edges respectively.

e Consider other alternative design choices for the Greedy\dgorithm. In particular, in line 8
of the algorithm (see Figure 4.1), when adding a new edgegt@éntial mesh, a vertex is picked
in a round robin manner from all vertices with spare degréés ihteresting to study the impact
of other node selection strategies, such as random selemtiselection of node with the largest

spare degree first.

e Incorporate the GreedyMesh algorithm into a centralised/Abrotocol (e.g. ALMI [72]) for
small-scale multicast applications. In this case, a ceotratroller is used to distribute the overlay
mesh computed by the algorithm to the group members. Toroltta delivery trees from the

mesh, a distributed routing mechanism (e.g. the path veataing protocol) may be needed.

e In Section 3.1.2, we discussed two ways that can be used tbthe impact of the dynamic
variations of the delay metric to the overlay structure:céizhe and threshold; and (ii) quantise
the delay value. It is interesting to integrate these twhnégues with the proposed distributed

protocols and study their performance implication in a-teatld environment (see next section).

e In Section 8.4.1.3, we have shown that the core placemextegir used has an effect on the per-
formance of MSTP. Our chosen strategy consists of two pRitst, the core discovery messages
are randomly distributed to the members to select a numbearadidate cores. Then, a new core
is elected based solely on the overlay distances betweeatitidates and the existing cores. The
random message distribution technique is used for its &ityl In the future, it is worth con-
sidering alternative techniques that improve the distiilouof the messages to the members. In
addition, other factors such as the capability of the nodesdcbe taken into consideration in the

core selection process.
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9.2.2 Real-world Testing and Applications

The performance evaluation in this thesis is based heawibiraulation. Simulation is suitable for com-
paring and for examining the detailed working of the profp®baing studied. However, the simulation
environment has abstracted away several real-world cteaistics (such as congestion and system load)
of a practical environment. Hence, the immediate extensfahis work is to subject our proposals to
a real-world testing in a wide-area testbed such as Plabgil4. Lessons could be learned from such
testing to further improve our proposals.

In addition, it would be meaningful to apply our proposalstmme real life applications. For ex-
ample, MeshTree could be useful for single-source apjdicatsuch as streaming media, while the
multiple shared trees protocol could be used by multi-seapplications such as video conferencing or
multi-party network gaming. Such applications would requidditional components such as security,

reliability of data, flow control and congestion control.

9.2.3 Network Address Translators (NATs) and Firewalls

In this work, we model the overlay network as a complete grapivhich every member can reach every
other members as long as the address information is availddgiwever, this may not be the case in a
practical environment due to the use of NATs and firewallec8jrally, hosts separated by NATs and/or
firewalls may not be able to communicate directly with onetheo For example, this has been observed
by Chu et al. in their experience [20] with the End System Malkt project [75], an early wide-area
deployment of ALM for live events broadcast. They reportihaer 20 — 30% of viewers attempting to
join the broadcast need to be turned down due to NATs and filewa

Early this year, Wang et al. [99] proposed a generic protoatied e* to address the limited con-
nectivity problem. Ire*, nodes are classified into two typegpenhosts andyuardedhosts. Open hosts
are nodes that allow both incoming and outgoing TCP conmestiwhile guarded hosts are nodes that
only allow incoming TCP connections. In other words, a gedrtiost can only serve as a leaf node.
The concept oé* is to cluster the nodes into a two level overlay. The botterrel consists of all nodes
which are grouped into several clusters. Each cluster hassgecleader, which must be an open host.
The guarded hosts attach to one of the clusters as leaf nédlébe cluster leaders form the top-level
overlay. Any existing overlay building protocol (e.g. HMTFBCP, Narada) can be used to create the

top-level overlay. It is interesting future work to incoratee* into our proposals.

9.2.4 Trust

In this work, we have considered a cooperative environmenterlay construction. In particular, we
assume that the overlay members are honest and trust eactbgtbharing their information in building

efficient overlays. Unfortunately, in the real-world, thare incentives for a member to violate this
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assumption. For instance, a selfish member may be relucarrtribute its own bandwidth to the
system. Such a member will refuse any request to becomalids eten if it still has sufficient resources.
In [61], Mathy et al. study the impacts of some simple chepsittategies on several ALM proposals,
i.e. Narada, NICE, TBCP and HBM [80]. Their findings show tbheating always has a negative
impact, either on the quality of the data delivery percetrgthe members, or on the underlying physical

network, or on both. How to prevent nodes from taking advgetay cheating is interesting future work.
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Acronym

AGCS Alternative Group Communication Service.
ALM Application Layer Multicast.

BG Border Gateway.

BGMP Border Gateway Multicast Protocol.

BGP Border Gateway Protocol.

BN Broadcast Network.

CBT Core Based Tree.

CoP Cost-optimised Protocol.

CPT Compact Tree.

dbMST Degree-bounded Minimum Spanning Tree.
DFS Depth first search.

DHT Distributed Hash Table.

DoP Delay-optimised Protocol.

DT Delaunay Triangulation.

DVMRP Distance Vector Multicast Routing Protocol.
GNP Global Network Positioning.

HBM Host Based Multicast.

HMTP Host Multicast Tree Protocol.

IETF Internet Engineering Task Force.

IGMP Internet Group Management Protocol.

IP Internet Protocol.

MAAA Multicast Address Allocation Architecture.
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MBGP Multicast extension for the Border Gateway Protocol.
MDC Multiple Description Coding.

MOSPF Multicast extension for Open Shortest Path First routirgigool.
MSDP Multicast Source Discovery Protocol.

MSTP Multiple Shared Trees Protocol.

NAT Network Address Translator.

non-TNRP Non-tree Neighbours’ Root Path.

OMNI Overlay Multicast Network Infrastructure.

PIM-DM Protocol Independent Multicast — Dense Mode.
PIM-SM Protocol Independent Multicast — Sparse Mode.
P2P Peer-to-Peer.

PRM Probabilistic Reliable Multicast.

RAMA Root Addressed Multicast Architecture.

RDP Relative Delay Penalty.

RP Rendezvous Point.

RPF Reverse Path Forwarding.

SM Simple Multicast.

TBCP Tree Building Control Protocol.

TCR Tree cost ratio.

TCRP Tree Children’s Root Path.
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Appendix B

Annotated Publications List

This appendix lists the papers written during the coursaisfRhD, and how they relate to this thesis.

Conference and Workshop

1. Su-Wei Tan, Gill Waters and John Crawford, "MeshTree: Rakal ow Delay Degree-bounded
Multicast Overlays”, The 1st International Workshop on filsuted, Parallel and Network Appli-
cations (DPNA’'05), Fukuoka, Japan, 20-22 July 2005.

This work presents the MeshTree proposal (Chapter 7) fatiog low root-diameter degree-
bounded ALM trees.

2. Su-Wei Tan, Gill Waters and John Crawford, "A Study of Diatited Low Latency Application
Layer Multicast Tree Construction”, London CommunicagoBymposium, London, UK, 13-14
Sept 2004.

In this work, we present comparison study of several digteth one-to-many ALM proposals

(Chapter 5), in the light of achieving low cost and low delayMtrees.

3. Su-Wei Tan, Gill Waters and John Crawford, "A Multiple Shéirees Approach for Application
Layer Multicasting”, The 39th annual IEEE International @f@rence on Communications (ICC),
Paris, France, 20-24 June 2004.

This paper presents the first version of our multiple shareéstapproach (i.e. MSTP-v1) for

many-to-many multicasting (Chapter 8).

4. Su-Wei Tan, Gill Waters and John Crawford, "A Multiple Shdlrees Approach for Application
Layer Multicasting”, The 8th Radicals Workshop, Caberi@dysica, France, Oct 2003.

This paper introduces the concept behind the multiple shies approach, its challenges and

design considerations (Chapter 8).
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5. Su-Wei Tan and Gill Waters, "Building Low Delay Applicatibayer Multicast Trees”, The 4th
Annual PostGraduate Symposium (PGNet), Liverpool, UK;3200

In this paper, we describe and evaluate our enhanced vestibree Building Control Protocol
(TBCP) (Chapter 5).

Technical Reports

1. Su-Wei Tan, Gill Waters, and John Crawford, "MeshTree: Adyebptimised Overlay Multicast
Tree Building Protocol”, University of Kent Technical Repd'R 5-05, April 2005.

This paper is an extended version of our DPNAO5 paper, fetMeshTree proposal (Chapter 7).
2. Su-Wei Tan, Gill Waters, and John Crawford, "A Survey andétanance Evaluation of Scalable

Tree-based Application Layer Multicast Protocols”, Unisity of Kent Technical Report, TR 9-03,
July 2003.

This work is our initial comparison study of various exigtiALM proposals, focusing only on

tree-based proposals, for both one-to-many and many-toraata delivery models (Chapter 5).

Under Review

1. Su-Wei Tan, Gill Waters, and John Crawford, "A Performanaen@®arison of Self-organising
Application Layer Multicast Overlay Construction Techuds”, submitted to Computer Commu-

nications Journal, Elsevier Science.

This work extends the above technical report (TR 9-03) bjuliog new proposal (i.e. Narada)

and consists of a larger set of experiments (Chapter 5).
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Appendix C

Additional Results

In this appendix, we provide some results omitted from thenret.
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k-Centre Problem

The k-centre problem is a basic facility location problem, whereare asked to locatefacilities in a
graph and to assign vertices to facilities, so as to mininfisemaximum distance from a vertex to the
facility to which it is assigned. In Section 8.4.1.3, we ugethean [85], a heuristic for thg-centre
problem to investigate the impacts of cores location in oultiple shared trees protocol. This appendix
describes some comparison results for three sirhglentre selection algorithms: randommean and
a 2-approximation algorithm [98]. Note that this is not a guehensive comparison. We are only

interested in technique that yields reasonably good padoce.

D.1 The Problem and Solutions

Formally, thek-centre problem can be stated as follows [98].

Let G = (V, E) be a complete undirected graph with edge costs satisfyiagrihngle
inequality, andk be a positive integer. For any st C V and vertexv € V, define
connect(v, S) to be the cost of the cheapest edge frotn a vertex inS. The problem is to

find a setS C V, with |S|= k, so as to minimisenax, {connect(v, S)}.

Unfortunately, the above problem is NP-hard [37]. We arerigdgted in simple heuristic that performs

reasonably well for the problem. We consider the followinigee strategies:

e Random This technique does not uses any knowledge of the undgrtyiaph to compute the
centres. Rather, it randomly picks centres up to the reduitenber. Thus, it serves as the worst-

case scenario.

e 2-approximation We consider a 2-approximation algorithm, which outputisition that is at
most twice as bad as the optimal solution. This is the bessiplescase in the sense that no

r-approximation algorithm exists with < 2, unlessP = NP [98]. We use an algorithm by
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Hochbaum and Shmoys [98]. In the algorithm, edges are ligisarted in a nondecreasing order
based on their distances. For each edge lerigthe graph is pruned by removing edges with cost
greater thard. The aim is to find a minimum dominating set in the pruned graphthe smallest
set D of vertices such that every vertex notinis adjacent to one of the vertices in. If the
cardinality of the minimum dominating set of the pruned gragat mostk;, then such a dominating
set is also the solution for thecentre problem. This algorithm has also been considerethier
networking research, e.g. the Internet distance sernMi@abs [35], for placing distance tracers

in the network.

e k-mean k-mean is a popular clustering algorithm that divides a gidata set intd: subsets. For
the k-centre problem, the vertices are treated as the data setalgbrithm begins by selecting
k nodes as initial seeds or centroids. For simplicity, we cenlg select the initial centroids.
Other nodes are then assigned to their nearest centroids.rdults ink clusters. After that,
the algorithm computes new centroid for each cluster, andsigns the nodes to new clusters.
For a given cluster, there are several ways to compute theodgne.g. average-within, nearest-
within and farthest-away (see [85] for details). We use therage-within technique which selects

a centroidj € C that minimises the intra-cluster distance:

d(i,C) =y %' (D.1)

jec

whereC represents nodes in a cluster, atid ;) is the distance between nodandj.

The above process continues until the solution convergestlie latest solution is similar to the
previous one. We also set a maximum number of iterationghleslgorithm can run (100 in our
implementation). The output of the algorithm is nodes gealip & clusters. The desirgdcentres

are selected as the most central node (i.e. the node withrthlest maximum distance to other
nodes in the same cluster) from each cluster. The ugeméan was drawn to our attention by

work that applies the technique to create hierarchicalicast trees [59].

D.2 Performance Evaluation

We are interested in the following performance metrics:

e The maximum distance from a node to its nearest centreheeolijective function of thé-centre
problem:

max,{connect(v,S):v eV — S}
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Figure D.7: Comparing threle-centre heuristics

e The average distance from the set of nodes to their neamgsese

We have ran some experiments on top of a 1000-node tranbiteghology (TS1k-0in Section 3.2.2).
In each experiment, we chose 100 nodes and constructechaaignatrix using the Floyd-Warshall all-

pair shortest path algorithm [23]. The distance matrixketeas the input graph to each of the algorithms

_
Vi =15l

Z connect(v, S)

YoeV -5

listed above. For each value bfwe conduct 50 independent runs and report the average.

The results are shown in Figures D.7 (a) and (b). In both o®tkimean always gives the best
performance. The 2-approximation (2Approx) algorithmfpens reasonably well in the maximum

distance, but poorer than the random approach in terms odgeelistance for a small number of centres,

i.e. k < 25. Consequently, we choose to usenean in Chapter 8.
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